
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Automated Filter Rule Generation for Adblocking

Permalink

https://escholarship.org/uc/item/7d3374cq

Author

Le, Hieu

Publication Date

2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7d3374cq
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Automated Filter Rule Generation for Adblocking

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Electrical and Computer Engineering

by

Hieu Le

Dissertation Committee:
Professor Athina Markopoulou, Chair

Professor Zubair Shafiq
Professor Salma Elmalaki

2023

Chapter 3 © 2021 The Internet Society
Portions of Chapter 4 © 2023 USENIX Association

All other materials © 2023 Hieu Le

DEDICATION

To my parents, who supported me since Day 1 of my academic pursuit.
To my close friends, who kept my spirits high during my PhD journey.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES x

LIST OF ALGORITHMS xiii

ACKNOWLEDGMENTS xiv

VITA xv

ABSTRACT OF THE DISSERTATION xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 5

1.2.1 CV-Inspector: Automated Detection of Adblock Circumvention . . 5
1.2.2 AutoFR: Automated Filter Rule Generation for Adblocking 6

2 Background & Related Work 7
2.1 Web and Adblocking . 7

2.1.1 Advertising . 7
2.1.2 Filter Rules . 9
2.1.3 Machine Learning and Adblocking . 11

2.2 Countermeasures against Adblocking . 13
2.2.1 Whitelisting . 13
2.2.2 Anti-adblocking . 14

2.3 Adblocking Beyond the Web . 16

3 CV-Inspector: Automated Detection of Adblock Circumvention 18
3.1 Introduction . 18
3.2 Background on Adblock Circumvention . 20

3.2.1 Circumvention . 21
3.3 State of Anti-Circumvention . 24

3.3.1 Filter Rules Overview . 24
3.3.2 Analysis of the Anti-circumvention List (ACVL) 25

3.4 CV-Inspector: Design and Implementation 29

iii

3.4.1 Instrumentation and Data Collection 30
3.4.2 Differential Analysis . 36
3.4.3 Feature Extraction . 39
3.4.4 Ground Truth Labeling . 43
3.4.5 The CV-Inspector Classifier . 47
3.4.6 Feature Robustness . 51
3.4.7 Summary . 53

3.5 CV-Inspector: In the Wild Deployment 54
3.5.1 Discovering Circumvention in the Wild 54
3.5.2 Monitoring Circumvention for Sites of Interest 60

3.6 Discussion and Future Directions . 62

4 AutoFR: Automated Filter Rule Generation for Adblocking 65
4.1 Introduction . 65
4.2 Most Closely Related Work . 68
4.3 The AutoFR Framework . 69

4.3.1 Filter List Authors’ Workflow . 70
4.3.2 Reinforcement Learning Formulation 72
4.3.3 The AutoFR Algorithm . 78

4.4 AutoFR Implementation . 81
4.4.1 Environment . 82
4.4.2 Agent . 85
4.4.3 Automating Visual Component Detection 86

4.5 Evaluation . 88
4.5.1 Filter Rule Evaluation Per-Site . 88
4.5.2 AutoFR vs. EasyList: Comparing Rules 96
4.5.3 Robustness of AutoFR Filter Rules 101

4.6 Generating Rules Across Multiple Sites . 105
4.6.1 Per-site vs. Global Filter Rules . 106
4.6.2 Methodologies to Generating Filter Rules 107
4.6.3 Evaluation . 111

4.7 AutoFR in a Live Environment (AutoFR-L) 116
4.7.1 AutoFR vs. AutoFR-L . 116
4.7.2 AutoFR-L Implementation . 118

4.8 Conclusion & Future Directions . 120

5 Conclusion 121
5.1 Summary . 121
5.2 Perspective . 122

Bibliography 125

iv

LIST OF FIGURES

Page

1.1 TheWebAdvertising and Tracking Ecosystem. This ecosystem consists
of several key players, from left to right: (1) the users who visit websites using
a browser; (2) the publishers who own websites and sell ad locations (slots)
to display ads (i.e., the sellers/supply side); (3) the adblockers that block and
hide ads and tracking (i.e., PETs); (4) the intermediary companies that pro-
vide ad circumvention services (BlockThrough, ExoClick), ad exchanges that
connect sellers and buyers (DoubleClick, PubMatic) while tracking users, an-
alytic services to track users (Google Analytics); and (5) the advertisers (Coke
and Nike) who buy ad slots to display their ads (i.e., the buyers/demand side). 2

2.1 Anti-adblocking. (1) If JS detects that an ad is missing; (2) it shows a
popup window asking the user to disable the adblocker, pay for a subscrip-
tion, or whitelist the site. 15

3.1 Obfuscation-based Circumvention. (1) If JS detects that an ad is miss-
ing; (2) it sends an obfuscated ad request through a CV server; (3) the server
retrieves the new ad from an ad server; (4) the server obfuscates it before
sending it back to the browser; (5) JS rebuilds the ad content into DOM ele-
ments; and (6) re-injects the ad back onto the page. Compare this workflow
with anti-adblocking in Fig. 2.1. 21

3.2 Anti-circumvention List Over Time. This shows how filter rules from
ABP’s ACVL have evolved from May 2018 to May 2020 and categorizes them
by filter types. 25

3.3 Commits by Filter Type. A boxplot of commit changes from 2018 to 2020
and categorized by filter types for ACVL. The horizontal lines within the
boxes represent the median, while the white circles represent the mean. . . . 26

3.4 Time between Commits. The time between commits for ACVL is most
frequently within 4 minutes while the average is 2.3 hours. 27

3.5 Tranco-ranking of ACVL. Sites extracted from ACVL and their corre-
sponding Tranco-ranking. We see that there is low coverage of sites for cir-
cumvention from ranking 100k to one million. Note that about half of the
sites do not appear in the Tranco top one million list (labeled as 1M+). . . . 28

v

3.6 CV-Inspector Workflow. Given a list of URLs, our crawling script will
visit each site four times for: (A) “No Adblocker” and (B) “With Adblocker.”
With each visit, we collect web requests, DOM mutation events, temporal
events (e.g., timestamps and blocked events by the adblocker), and the page
source. We take the set difference between the data collected in the two cases,
(B)-(A), as websites commonly employ circumvention when an adblocker is
on. We use the data to extract most features, train and evaluate our classifier. 30

3.7 Example of Temporal Features. We show the number of DOM muta-
tions (spikes) over time for “No Adblocker” and “With Adblocker” (with the
corresponding blocked events). We define a cluster of activity as consecutive
spikes (no more than one bin apart) and the cluster size as the number of bins
that it spans. The top figure shows the “No Adblocker” case, which has 9
clusters with an average cluster size of 8.33. In the middle figure, we show the
“With Adblocker” case, which has 22 clusters with an average size of 3.86. In
the bottom figure, the dashed vertical lines represent whether blocking events
occurred. The majority of blocking happened within the first 12 seconds when
compared to the remaining time (e.g., 11 events vs. 1 event). 41

3.8 Example of “Suspicious Content.” The website, gamer.com.tw, shows
suspicious content on the right sidebar outlined in red. Note that the three
small images change between the (a) “No Adblocker” and (b) “With Ad-
blocker” sub-figures. Although the content may look like ads, it could also be
benign content related to gaming. Using a browser, we looked at their outgo-
ing URLs and observed that the two smaller images for Tera Awaken and EOS
are ads, while the third image links to a first-party page. Since there are still
ads displayed in (b) “With Adblocker,” we label this example as a positive label. 44

3.9 LabelingMethodology: We start with a list of sites from both ACVL and
Tranco top-2K, as Candidates for Labeling (CL). We develop an iterative pro-
cess for prioritizing which (500 in a batch) sites to inspect and label next, then
add them to ground truth. We bootstrap a classifier by using outlier detec-
tion to find positive labels. In each iteration, we apply the classifier on the
remaining sites in CL, sort the sites by decreasing classifier confidence, and in-
spect and label the 500 sites where the classifier is most confident. Compared
to picking randomly 500 sites to label, this heuristic prioritization discovers
more positive labels. For example, see Fig. 3.10 between “Iteration Zero” and
“Iteration Zero Random.” We add the newly labeled samples into our ground
truth, retrain our classifier, repeat the process for two more iterations, and
declare “Done” when the performance converges, as shown in Fig. 3.10. We
combine all labeled data into our Ground Truth (GT) dataset. 46

3.10 Positive Labels and F1 (per Iteration): For our ground truth, we show
how many positive labels (sites with successful circumvention) were discov-
ered within each iteration. When we compare iteration zero and the randomly
chosen iteration zero, we find that our methodology discovers twice as many
positive labels. We see that by the end of iteration two, we receive diminishing
returns on our classifier performance based on its F1-score. Note that we only
find 55 positive labels from the Tranco top-2K overall. 46

vi

3.11 Top-Features ECDF. We show empirical CDFs of some of the top features
for our classifier. JS path entropy is the most discriminatory feature. 49

3.12 Discovery vs. Precision. The trade-off between discovering more circum-
vention sites (positive instances) within our Tranco-20K (in the wild) dataset
vs. being correct in the prediction. 56

3.13 Trade-offs on the Tranco-20K Dataset. (a) Within our ROC curve, we
can maximize Youden’s J index if we value a high true positive rate (TPR)
with a low false positive rate (FPR) for the purpose of discovering sites with
successful circumvention. The threshold following these criteria is 0.41, which
corresponds to a TPR of 0.85 and FPR of 0.11. (b)Within our precision-recall
curve, we can find the threshold that corresponds to the optimal F1-score for
positive labels. The threshold following these criteria is 0.45, which achieves
an F1-score of 0.79. 56

4.1 AutoFR automates the steps taken by FL authors to generate filter rules for
a particular site. FL authors can configure the AutoFR parameters but no
longer perform the manual work. Once rules are generated by AutoFR, it is
up to the FL authors to decide when and how to deploy the rules to end-users. 66

4.2 (a) Hierarchical Action Space. A node (filter rule) within the action space has

two different edges (i.e., dependencies to other rules): (1) the initiator edge,→, de-

notes that the source node initiated requests to the target node; and (2) the finer-grain

edge, 99K, targets a request more specifically, as discussed in Task 4 and Table 4.1.

(b) SiteRepresentation. We represent a site as counts of visible ads (CA),
images (CI), and text (CT), as explained in Sec. 4.3.2.2. Applying a filter
rule changes them, by blocking ads (reducing CA) and/or hiding legitimate
content (changing CI and CT , thus breakage B). 74

4.3 AutoFRExampleWorkflow(ControlledEnvironment). Initialize (a–
c): (a) spawns n=10 docker instances and visits the site until it finishes load-
ing; (b) extracts the outgoing requests from all visits and builds the action
space; (c) extracts the raw graphs and annotates them to denote CA, CI , and
CT , using JS and Selenium. Once all 10 snapshots are annotated, we run the
RL portion of the AutoFR procedure (steps 1–4). Lastly, AutoFR outputs
the rules at step 5, e.g., ||s.yimg.com/rq/darla/4-10-0/html/r-sf.html. 81

4.4 SiteSnapshot. It is a graph that represents how a site is loaded. The nodes
represent JS Scripts, HTML nodes (e.g., DIV, IMG, TEXT, IFRAME), and
network requests (e.g., URL). “Actor” edges track which source node added
or modified a target node. “Requestor” edges denote which nodes initiated a
network request. “DOM” edges capture the HTML structure between HTML
nodes. Lastly, “Script-used-by” edges track how JS scripts call each other. As
described in Sec. 4.4.1, nodes annotated by AutoFR have filled backgrounds,
while grayed-out nodes are invisible to the user. 86

vii

4.5 SiteDynamics. We consider site dynamics as the unique eSLDs a site con-
tacts. Using our Full-W09-Dataset , we show the fraction of unique eSLDs
that we collect after every subsequent visit. By the fifth visit, we collected
the majority of site dynamics for most sites within our dataset. Besides some
outliers, visiting a site 10 times is more than enough to capture site dynamics. 88

4.6 Full-W09-Dataset.: (a) Action Spaces: 75% of action graphs have 800
nodes or fewer. AutoFR only needs to explore a fraction of the action space
to find effective rules. (b) Site Snapshots: 75% of site snapshots contain 10K
nodes or fewer. (c) AutoFR Run–time: 75% of sites take a minute or less to
execute the multi-arm bandit portion of Alg. 1. (d) Filter Rules: For 75% of
sites, AutoFR generated three filter rules or fewer. 91

4.7 AutoFR(Top–5K). All sub-figures exhibit similar patterns. First, the filter
rules were able to block ads with minimal breakage for the majority of sites.
Thus, the top-right bin (the operating point) is the darkest. Second, there are
edge cases for sites with partially blocked ads within the w threshold (right of
w line) and sites below the w threshold (left of w line). See Table 4.3, col. 1,
2, and 4, for additional information. 92

4.8 AutoFR across Different w (Top–5K). We run AutoFR on Full-W09-
Dataset using a range of w∈ [0,0.5,1] and visualize the effectiveness based on
the trade-off of blocking ads vs. avoiding breakage. As w increases, there are
more sites in operating point. Lower w denotes that the user does not care
about breakage, which causes less exploration of the action space for rules
that fall in the operating point. 95

4.9 ComparingAutoFRRulestoEasyList. Some rules are common and some
are unique to each approach. When comparing rules, one must consider the
right granularity. 98

4.10 ∆ Site Snapshots between July vs. January 2022. The differences in site
snapshots for nodes, edges, and URLs. A positive change in the x-axis denotes
that July had more of the respective factor, while a zero denotes no change. 100

4.11 Longitudinal Study Every FourDays. We conduct a longitudinal study of
100 sites over a two-month period. We find that over time, site snapshots will
become less similar (i.e., negative ∆ Jaccard similarity), denoting that rules
are less effective. FL authors can rerun AutoFR on these sites that change
more frequently to output effective rules. 102

4.12 Collateral Damage of Global Rules. AutoFR rules are generated per-site
and can potentially cause breakage when applied to other sites (i.e., treated as
a global rule). We report the rules that are unique to AutoFR (i.e., not part
of EasyList), ordered by decreasing total collateral damage (

∑
B) that they

cause to site snapshots within Full-W09-Dataset . We can see that most of
these rules (93%) cause negligible collateral damage (below 10 on the x-axis).
Note that the possible max

∑
B of each rule is the size of the dataset. 104

4.13 AutoFR vs. EasyList: PopularRules . 107

viii

4.14 SelectingPer-SiteRules intoGlobal Filter Lists. After creating the per-
site AutoFR rules for each site (with w=0.9), we create 10 global filter lists.
“Popularity 1” means that a rule is selected into the global list if it was gen-
erated in at least one site; “Popularity 10” means that a rule is selected if it
was generated for at least 10 sites. Once selected, the rules are now treated
as global rules. We apply these global filter lists on our Full-W09-Dataset site
snapshots and plot the average blocking ads, avoiding breakage, and reward. 108

4.15 AutoFR-Pop: Top 5K–10K, In the Wild. We create two filter lists,
Fig. 4.15(a) with all rules from W09-Dataset and Fig. 4.15(b) that contains
rules that were created for ≥3 sites. We test them in the wild on the Top–5K
to 10K sites (unseen sites) and show their effectiveness along with EasyList
(Fig. 4.15(c)). We observe that Fig. 4.15(b) performs better, blocking 8%
more ads than Fig. 4.15(a). Table 4.6, col. 1–3, contains additional information.110

4.16 AutoFR-L Example Workflow (Live Environment). Initialize (a–b,
Alg. 1): (a) spawns n=10 docker instances and visits the site until it finishes
loading; (b) extracts the outgoing requests from all visits and builds the action
space. We run the RL portion of AutoFR procedure (steps 1–4). Lastly, Aut-
oFR outputs the filter rules at step 5, e.g., ||s.yimg.com/rq/darla/4-10-0/html/r-
sf.html. Note that we do not use AdGraph or site snapshots in this version. . 117

ix

LIST OF TABLES

Page

2.1 Notable terms and their descriptions within this thesis. 8
2.2 Overview of simple (used by EasyList or “EL”) and advanced (used by EL

and anti-circumvention filter list or “ACVL”) filter rules. Only the advanced
filter rules can stop the execution of JS and take into account the visibility of
content when blocking elements. 9

2.3 FilterRules Support. Corresponding to Table 2.2, the approach to adblock-
ing affects the type of filter rules that are supported. “Browser” denotes ap-
proaches that render web content using browser extensions, custom browsers,
and web views. “Cross-app” approaches utilize local VPNs to decrypt the
network traffic of a device to apply filter rules and block ads and tracking.
“Cross-device” applies the rules on the DNS traffic for all devices within a par-
ticular network. = fully supports, G# = partially supports, # = no support. 16

3.1 Dataset summaries and terminology used throughout the paper. Each of the
original datasets is obtained by crawling the corresponding list of sites (and
sub-page) and collecting all 4 types of data (web requests, DOM changes,
temporal, and page source). 36

3.2 There were 93 features in total in these 4 categories for CV-Inspector.
Those marked as “Top” were in the top-10 most important features in Sec. 3.4.5.
. 38

3.3 CV-Inspector Cross-validation Results. Using a Random Forest classi-
fier, 93 features, and 5-fold validation. The label “CV” means successful cir-
cumvention and “No CV” means that sites have no CV activity or failed at CV. 48

3.4 CV-Inspector on theTranco-20K. For “No CV” instances, we sample from
that predicted set to have a confidence level of 95% with 5% margin of error. 54

3.5 Circumvention Providers and Approaches. We show the presence of
circumvention providers within the Tranco-20K. We use to mean full ob-
fuscation, which means randomized URL components (WR) or deeply nested
nonstandard DOM structures for ad (DOM). G# denotes partial obfuscation,
which means ad resources may be hidden with first-party domain (WR) and ad
reinsertion uses simpler DOM structures (DOM). WR = Webrequests, DOM
= DOM changes. 58

x

3.6 CV-Inspector on the GTP Dataset. We show the results of applying
our classifier on the ∼700 sites from our ground truth that also originated
from ACVL (Table 3.1). However, this time we collect the data by turning
on ACVL as well within our custom ABP extension. For “No CV” instances,
we sample from that predicted set to have a confidence level of 95% with a
5% margin of error. 60

3.7 CV-Inspector on the Adblock PlusMonitoring Dataset. From a real
world dataset used by ABP to monitor circumvention, we apply our classifier
and show the results. For “No CV” instances, we sample from that predicted
set to have a confidence level of 95% with a 5% margin of error. 60

4.1 URL-basedFilterRules. They block requests, listed from coarser to finer-
grain: eSLD (effective second-level domain), FQDN (fully qualified domain),
With Path (domain and path). Other types of filter rules are provided in
Table 2.2. 70

4.2 AutoFR Top–5K Datasets . 90
4.3 Results. We provide additional results to Fig. 4.7. We explain the meaning

of each row: (1) the number of sites that are in the operating point (top-right
corner of the figures), where filter rules were able to block the majority of ads
with minimal breakage; (2) the number of sites that are within w; and (3)
the fraction of ads that were blocked across all ads within w. *Confirming via
Visual Inspection (In the Wild) (Sec. 4.5.1): col. 3 is based on a binary eval-
uation. As it is not simple for a human to count the exact number of missing
images and text, we evaluate each site based on whether the rules blocked
all ads or not (i.e., ĈA is either 0 or 1) and whether they caused breakage
or not (i.e., B is either 0 or 1). For col. 5 (Sec. 4.5.3.1), we repeat the same
experiment of col. 2 during July 2022 for a longitudinal study of AutoFR rules. 91

4.4 Effects of w. We show how w changes the generated rules for one site. As
w increases, some rules will no longer be outputted and new rules may be
discovered. While others will become more specific. 95

4.5 GeneratingFilterRulesAcrossMultipleSites. We compare different ap-
proaches for generating filter rules. We split them into two categories. “Con-
struction” approaches optimize rules during the training process, while the
others apply a “post-processing” step on existing per-site rules. We use Aut-
oFR (row 1) as our baseline. The column “Generalizes” denotes whether the
approach can deal with unseen sites. Efficiency provides empirical estimates
of each approach in minutes. Square brackets [] denote that parallalization
can be used to remove n, e.g., 1.6×n→1.6. 105

4.6 AutoFR-Pop (Top 5K–10K, In the Wild). We evaluate AutoFR-Pop on
unseen sites. See Fig. 4.15. 110

xi

4.7 Generating Rules across Multiple Sites (using Site Snapshots). We lever-

age our W09-Dataset to evaluate our methodologies (from Table 4.5) for generating

filter rules that can be applied across multiple sites. We provide recommendations by

comparing the approaches based on performance on the known sites (training set),

how well they generalize to unseen sites (test set), and their empirical efficiency and

maintainability (over time). We use the following criteria for each methodology from

col. 7–8: ○ = 30+% from the baseline, � = 30%, � = 20%, � = 10%, ○ = same

as baseline. On the other hand, “Best Overall” treats ○ = 1. We then sum up the

scores of each row from col. 7–10 and take their averages. e.g., row 1 has � = 3/4. . 112

xii

LIST OF ALGORITHMS

Page
1 AutoFR Algorithm . 80

xiii

ACKNOWLEDGMENTS

To my advisor, Athina Markopoulou, I would like to extend my deepest gratitude. You moti-
vated me to pursue higher education and was instrumental in my publication success. Thank
you for taking a chance on a student who had no prior experience with research and investing
your time to forge him into a published author. Moreover, thank you for the continuous fund-
ing, which gave me the privilege to focus on research without disruption. And for providing
well-equipped labs, which made for an outstanding work environment. You have been a true
role model. Your patience, guidance, and support empower me to pursue academia further.

To my committee members, Zubair Shafiq and Salma Elmalaki, it has been a pleasure
working with and learning from you both. To Zubair Shafiq, thank you for steering me toward
the subject of advertising and tracking. It has proven to be an engaging topic to research.
You have been a trustworthy source of support and advice. To Salma Elmalaki, thank you
for guiding me during my favorite research project, AutoFR. Thank you for your consistent
availability and patience while I learned reinforcement learning. To all three professors, I
am sincerely grateful for giving me the space to make mistakes and to grow through them.

Thank you to my collaborators: Anastasia Shuba, Janus Varmarken, Rahmadi Trimananda,
Hao Cui, Janice Ho, Qingchuan Yang, Yiyu Qian, and Stelios Stavroulakis. I especially
acknowledge Anastasia Shuba for inspiring me to do my PhD and introducing me to Athina.
To Janus Varmarken, I appreciate your mentorship during our first research paper together.

I thank my friends and fellow EECS cohort members for assisting me in balancing my re-
search commitments with social events, particularly: Huy Nguyen, Kelly Fukomoto, David
Lim, Sean Kocol, Kimberly Kocol, Max Nanasy, Beverly Quon, Robert Marosi, Joann Chen,
Floranne Ellington, Nathan Furman, and Nilab Ismailoglu. In addition, I am grateful for the
ProperData members who provided support and advice, particularly: Umar Iqbal, Marilyne
Tamayo, Tianyue Chu, and Devriş İşler.

Thank you to Gary De La Cruz, who supported me during all five-plus years of my PhD. I
genuinely would not be able to survive this journey without you.

Thank you to the adblocking community, including Oleksandr Paraska, Uwe Bernitt, Shwe-
tank Dixit, Ryan Brown, Arthur Kawa, and Peter Lowe, who provided valuable insights
into ad circumvention and the human process of creating filter rules. Thank you to eyeo for
inviting me to showcase my work at the Ad-Filtering Dev Summit for the last four years.

This thesis was partially supported by NSF Awards 1956393, 1939237 and 1815666.

Reprint Notice

Portions of this dissertation are reprints of, or largely based on, the materials in [85, 84],
used with permission from the Internet Society and USENIX Association, respectively.

xiv

VITA

Hieu Le

EDUCATION

Doctor of Philosophy in Electrical andComputer Engineering 2023
University of California, Irvine Irvine, CA, USA

Master of Science inComputer Engineering 2021
University of California, Irvine Irvine, CA, USA

Bachelor of Computer Science andEngineering 2009
University of California, Irvine Irvine, CA, USA

EXPERIENCE

GraduateResearchAssistant 2018–2023
University of California, Irvine Irvine, CA, USA

CurriculumCo-Lead June 2023
ProperData: Privacy and IoT Research and Exploration Workshop Irvine, CA, USA

Anti-circumvention Intern Summer 2021
eyeo Irvine, CA, USA

REFEREEDCONFERENCEPUBLICATIONS

H.Le, S. Elmalaki, A. Markopoulou, and Z. Shafiq. “AutoFR: Automated Filter Rule Gen-
eration for Adblocking.” In Proc. of the 32nd USENIX Conference on Security Symposium
(SEC 2023). Anaheim CA, Aug. 2023.

R. Trimananda, H.Le, H. Cui, J. Ho, A. Shuba, A. Markopoulou. “OVRseen: Auditing Net-
work Traffic and Privacy Policies in Oculus VR.” In Proc. of the 31nd USENIX Conference
on Security Symposium (SEC 2022). Boston MA, Aug. 2022.

H. Le, A. Markopoulou, and Z. Shafiq. “CV-Inspector: Towards Automating Detection of
Adblock Circumvention.” In Network and Distributed System Security Symposium (NDSS).
Virtual, Feb. 2021.

J. Varmarken, H.Le, A. Shuba, A. Markopoulou, and Z. Shafiq. “The TV is Smart and Full
of Trackers: Measuring Smart TV Advertising & Tracking.” In Proc. of Privacy Enhancing
Technologies Symposium (PETS/PoPETS). Issue 2, pp. 129-154, Virtual, May 2020.

xv

ABSTRACT OF THE DISSERTATION

Automated Filter Rule Generation for Adblocking

By

Hieu Le

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2023

Professor Athina Markopoulou, Chair

Advertising is prevalent across different platforms, especially on the web. To combat this,

millions of users rely on privacy-enhancing technologies, such as adblockers. They are pow-

ered by filter rules, which are string-based patterns that block and hide advertising and

tracking. However, these filter rules are manually curated and continuously maintained by

human experts. This is further exacerbated by technical reasons, as advertising and tracking

are employed in different ways across websites. In addition, for economic reasons, such as

when websites and advertisers attempt to circumvent adblockers to earn revenue through

advertising, effectively causing an arms race.

In this thesis, we examine this arms race and develop methodologies and frameworks to

improve adblockers in terms of automation, scalability, and robustness. To achieve these

goals, we make the following contributions. First, we examine the human effort necessary to

update filter rules that combat adblock circumvention by conducting a longitudinal analy-

sis. To detect circumvention, we build CV-Inspector, a machine-learning approach that

leverages differential analysis to capture features of circumvention across HTTP and HTML

DOM modalities. CV-Inspector reduces the human maintenance cost for filter rules, as it

removes the manual monitoring of websites for circumvention. Our second contribution stud-

ies the problem of filter rule generation from scratch by developing a reinforcement learning

xvi

framework called AutoFR. Our formulation enables us to automate the human process of

filter rule creation and maintenance. Notably, the AutoFR framework is tunable (e.g., users

can explore different reward functions) and applicable beyond ads and the web (e.g., generate

rules that block tracking for mobile apps). We demonstrate that both CV-Inspector and

AutoFR are effective in a controlled setting and in the wild, i.e., when applied to real web-

sites, even for those we have not trained on. We envision our tools and methodologies will be

useful to the adblocking community to improve and automate the creation and maintenance

of adblocking filter rules.

xvii

Chapter 1

Introduction

1.1 Motivation

Advertising is the primary business model that companies depend upon to thrive within on-

line platforms. Those who sell products and services can reach a larger audience through ad-

vertising. Others, such as social media platforms, leverage their large user base to display ads

and earn revenue. The profitability of ads hinges on knowing their audience well. This incen-

tivizes the adoption of techniques such as cookie syncing and fingerprinting to track users and

infer details, such as their demographics, locations, and behaviors. Thus, tracking enables

the collection of data and the creation of user profiles, which facilitates targeted advertising.

Advertising and tracking are interconnected and impact millions of consumers worldwide.

Both are prevalent across platforms like the web, mobile, smart TVs, voice assistants, and

soon-to-be on extended reality devices. This has brought some benefits for users; they can

enjoy free services, such as movies, games, and news content, with interspersed ads. However,

this creates a trade-off with user privacy — the data collection practices and the inner work-

ings of the advertising and tracking ecosystems are opaque to users. In addition, it comes at

1

Websites (Publishers)

Supply Side (Ad Slots) Demand SideIntermediaries

Users

Adblockers

Figure 1.1: The Web Advertising and Tracking Ecosystem. This ecosystem consists
of several key players, from left to right: (1) the users who visit websites using a browser;
(2) the publishers who own websites and sell ad locations (slots) to display ads (i.e., the
sellers/supply side); (3) the adblockers that block and hide ads and tracking (i.e., PETs);
(4) the intermediary companies that provide ad circumvention services (BlockThrough,
ExoClick), ad exchanges that connect sellers and buyers (DoubleClick, PubMatic) while
tracking users, analytic services to track users (Google Analytics); and (5) the advertisers
(Coke and Nike) who buy ad slots to display their ads (i.e., the buyers/demand side).

a cost to the user experience. Advertising can slow down websites, display disturbing images,

disrupt users with frequent popups, and unsettle users with re-targeted ads across websites.

There are several ways to minimize these costs. First, alter the business model of ads to

another. For example, utilize a subscription-based model to earn revenue. This is already

present in services such as Netflix (movies), PlayStation Plus (games), and the New York

Times (news). Another possible business model is to pay users to view ads. We see this

emerging model in Brave Rewards [37], which monetarily rewards users for viewing ads and

lets them spend it on publishers of their choice. Second, introduce privacy regulations, such

as the California Consumer Privacy Act (CCPA) [39] and General Data Protection Regu-

lation (GDPR) [136]. They require companies to report how user data is collected, shared,

and sold, and for which purposes within privacy policies. As a result, this improves the

transparency of how data is collected and utilized for advertising. Third, design technical ad

standards such as the Authorized Digital Sellers (ads.txt) from the Interactive Advertising

Bureau (IAB) [81]. Websites can declare who is permitted to sell their ad inventory. Or

the Acceptable Ads Standard from the Acceptable Ads Committee (AAC) [3], which dic-

2

tates the format, size, and frequency of ads to improve the user experience. Fourth, develop

privacy-enhancing technologies (PETs), such as adblockers, to block, hide, and obfuscate

advertising and tracking. This proactive but hard-line approach prevents companies from

earning ad revenue and encourages them to adopt alternatives that do not impact user pri-

vacy and experience. One such alternative is the Privacy Sandbox, proposed by Google [63].

It is an initiative to develop and apply privacy-preserving approaches during the collection

and processing of data, such as differential privacy and on-device processing.

This dissertation focuses on web adblockers within browsers and the arms race between key

players that want to serve ads to earn revenue vs. those who want to block them. Fig. 1.1

illustrates an overview of this ecosystem. Adblockers are the most widely adopted type

of privacy-enhancing technology and have been installed by millions worldwide. They can

be browser extensions (e.g., Adblock Plus [10], AdGuard [13], uBlock Origin [135]) and

browsers (e.g., Brave, Opera), which are the most prevalent way to access the web1. Their

efficacy depends on filter rules, string-based patterns that can match with HTTP requests

(e.g., ||example.com/ads/) or HTML elements (e.g., ||example.com##.ad-container) to

block and hide advertising and tracking. They are practical beyond this purpose, such as

blocking phishing and malware. These filter rules are contained within filter lists, often

containing thousands of individual rules. By 2022, there were over 2K filter lists supported

by 44 different software tools for 42 diverse purposes [25]. However, filter rules are manually

curated and continuously maintained by human experts who adblocking companies employ

(i.e., filter list authors) or by crowd-sourcing endeavors. The magnitude of this endeavor is

exacerbated by sites that change naturally over time and by companies who want to evade

adblockers. Thus, we study the challenges to improving the scalability of adblockers and to

maintaining their efficacy. To achieve this, we develop methodologies and frameworks that

minimize human involvement in creating and updating filter rules.

1They come in other forms, such asmobile applications (e.g.,AntMonitor [121]) and standalone applications
(e.g., Pi-hole [108], AdGuard Home [12]).

3

First, we investigate the advanced techniques websites and advertisers utilize to circumvent

adblockers. This includes techniques such as randomizing URL components, which evade

filter rules due to their static nature. To reduce human intervention, we train a machine-

learning classifier using HTTP, HTML, and CSS modalities to detect when a website has

successfully circumvented the adblocker. This simplifies the process of filter rule maintenance

by notifying filter list authors when to update filter rules automatically.

Second, we examine the fundamental problem of creating filter rules from scratch and focus

on blocking ads. Blocking ads is easy — break the whole website. It becomes challenging

when one has to consider breakage as well. A second difficulty is removing the reliance on

existing filter rules manually maintained by human experts. Prior work depends on these

rules to label their ground truth to train machine-learning classifiers that predict whether

an HTTP request is related to advertising and tracking. Thus, we develop a reinforcement

learning framework capable of generating filter rules while considering visual breakage for a

website without needing pre-existing rules.

Third, we apply our knowledge of reinforcement learning and automated systems to develop

a framework to audit social platforms that rely on recommendation systems. These algo-

rithms assist users in finding new and relevant content through personalization within “For

You” pages. However, they can also serve unvetted harmful and hateful content. Thus,

our framework aims to audit recommendation systems to inform non-profits, researchers,

and policymakers of undesired content that should either be removed or suppressed; and

ultimately, to protect users from viewing them.

This dissertation comprehensively addresses the major pain-points of filter rule generation

and maintenance. When put into practice, our work can improve the robustness and scala-

bility of adblockers, which ultimately gives users more control over their privacy on the web.

Lastly, our methodologies and frameworks are extendable to generate filter rules for tracking

and for other platforms where there are fewer available privacy-enhancing tools for users.

4

1.2 Contributions

The outline and contributions of this thesis are as follows:

1.2.1 CV-Inspector: Automated Detection of Adblock Circumven-

tion

In Chapter 3, we are interested in studying the escalated arms race between publishers,

advertisers, and adblockers over the last few years. An entirely new ecosystem of circum-

vention (CV) services has recently emerged that aims to bypass adblockers by obfuscating

site content, making it difficult for adblocking filter lists to distinguish between ads and

functional content. In this chapter, we investigate recent anti-circumvention efforts by the

adblocking community that leverage custom filter lists. In particular, we analyze the anti-

circumvention filter list (ACVL), which supports advanced filter rules with enriched syntax

and capabilities designed specifically to counter circumvention. We show that keeping ACVL

rules up-to-date requires expert list curators to continuously monitor sites known to employ

CV services and to discover new such sites in the wild — both tasks require considerable

manual effort. To help automate and scale ACVL curation, we develop CV-Inspector, a

machine-learning approach for automatically detecting adblock circumvention using differ-

ential execution analysis. We show that CV-Inspector achieves 93% accuracy in detecting

sites that successfully circumvent adblockers. We deploy it on Top–20K sites to discover the

sites that employ circumvention in the wild. We further apply CV-Inspector to a list of

sites that are known to utilize circumvention and are closely monitored by ACVL authors.

We demonstrate that it reduces the human labeling effort by 98%, which removes a major

bottleneck for ACVL authors. This chapter presents the first large-scale study of the state

of the adblock circumvention arms race and makes an important step towards automating

anti-CV efforts. This work was also published in [85].

5

1.2.2 AutoFR: Automated Filter Rule Generation for Adblocking

In Chapter 4, we propose a framework to generate filter rules from scratch. Adblocking

relies on filter lists, which are manually curated and maintained by a community of filter list

authors. Filter list curation is a laborious process that does not scale well to a large number

of sites or over time. We introduce AutoFR, a reinforcement learning framework to fully

automate the process of filter rule creation and evaluation for sites of interest. We design an

algorithm based on multi-arm bandits to generate filter rules that block ads while control-

ling the trade-off between blocking ads and avoiding visual breakage. We test AutoFR on

thousands of sites and we show that it is efficient: it takes only a few minutes to generate

filter rules for a site of interest. AutoFR is effective: it optimizes filter rules for a particular

site that can block 86% of the ads, as compared to 87% by EasyList, while achieving com-

parable visual breakage. Using AutoFR as a building block, we devise three methodologies

that generate filter rules across sites based on: (1) a modified version of AutoFR, (2) rule

popularity, and (3) site similarity. We conduct an in-depth comparative analysis of these

approaches by considering their effectiveness, empirical efficiency, and maintainability over

time. We demonstrate that some of them can generalize well to new sites in both controlled

and live settings. We envision that AutoFR can assist the adblocking community in filter

rule generation at scale. This work was also published in [84].

6

Chapter 2

Background & Related Work

In this chapter, we detail our background and related work. Sec. 2.1 provides information

about the advertising ecosystem and adblockers; e.g., filter rules power adblockers and how

machine-learning approaches fall short in replacing rules. Sec. 2.2 describes how websites

and advertisers have responded to adblockers; e.g., how they try to circumvent adblockers.

Sec. 2.3 discusses how adblocking can be applied beyond the web, such as for mobile and

smart TV devices. Table 2.1 summarizes notable terms used throughout this thesis.

2.1 Web and Adblocking

2.1.1 Advertising

Advertising is a multi-billion dollar industry and consists of several key players, as explained

in Fig. 1.1. To be effective, relevant ads are displayed to users to increase the chances of the

user clicking on the ad to purchase a product or service. On the web, advertising can be

personalized to users using two main approaches. The first is contextual-based advertising.

As the name denotes, this personalizes the ad based on the current context of the user, such

7

Term References and Description

Countermeasures to Adblockers

Whitelisting Sec. 2.2.1: Allow ads if they conform to certain standards
Anti-adblocking Sec. 2.2.2, Fig. 2.1: Ask users to disable adblocker or pay for site content
Cloaking-based
Circumvention

Sec. 3.2.1: Cloaking approaches that disguise themselves, e.g., sending ad requests
using WebSockets and hiding third-party request as first-party with DNS CNAME

Obfuscation-based
Circumvention

Sec. 3.2.1, Fig. 3.1: Obfuscation approaches to re-inject ads back by randomizing
URL components or HTML ad structures

Filter Rules (Table 2.2)

Per-site Rules Sec. 2.1.2: Optimized and applicable for known sites
Global Rules Sec. 2.1.2: Optimized for known sites, applicable to any sites
Known Sites Sec. 2.1.2: Given sites during construction of rules (i.e., training set)
Unseen Sites Sec. 2.1.2: Sites not known during the construction of rules (i.e., test set, generalize)
Visual Breakage Sec. 2.1.2, Eq. (4.2): Missing legitimate content (B), such as images and text
Collateral Damage Sec. 2.1.2, Sec. 4.6.1: Sum of unintended breakage (

∑
B) on unseen sites

Rule Popularity Sec. 4.6.2.2: Number of sites that generate a specific rule

Effectiveness of Filter Rules (Sec. 4.3.2.2)

w threshold Sec. 4.3.2.2: Value that user tunes to express acceptable breakage
Bad Rules Eq. (4.3a): Rules that do not help in blocking ads
Potential Rules Eq. (4.3b): Rules that block ads but cause breakage beyond w
Good Rules Eq. (4.3c): Rules that block some ads and cause breakage within w

Filter Rule Generation Challenges

Blocking Ads Sec. 2.1, 4.3.2.2, Eq. (4.3): Block some or majority of ads
Avoiding Breakage Sec. 4.3.2.2, 4.6, Eq. (4.3): Minimize breakage and/or collateral damage
Performance Sec. 4.5, 4.6: Block ads with (visual) breakage within w on known/unseen sites
Efficiency Sec. 4.5.1, 4.6: Scale across thousands of sites
Robust Rules Sec. 4.5.3: Generate rules that perform well over time
Maintainability Sec. 4.6: Fast when updating rules or dealing with unseen sites

Filter Rule Generation Approaches (Sec 4.6.2, Table 4.5)

AutoFR Sec. 4.3: Generates per-site URL-based rules optimized for known sites
AutoFR-Global Sec. 4.6.2.1: Extending AutoFR for global filter rules
AutoFR-Pop Sec. 4.6.2.2: Using popularity to select per-site rules as global rules
AutoFR-Sim Sec. 4.6.2.3: Applying per-site rules from similar sites (e.g., common eSLDs)

Table 2.1: Notable terms and their descriptions within this thesis.

as the content of the website that the user visits or the search term that the user utilizes. For

instance, ads promoting athletic shoes may be shown to users who search for “running shoes.”

Note that this may consider other information, such as the device or location of the user. The

second is targeted advertising, which infers information about the user based on their behav-

ior as they browse the web [129]. This enables companies to build intricate user profiles that

consider multiple interests (e.g., shopping, travel), life stages (e.g., home ownership, marital

8

Filter Types EL ACVL Example Purpose

Web Request
Blocking
(hostname)

✓ ✓ ||a.comˆ Blocks requests match-
ing hostname

Web Request
Blocking
(URL-based)

✓ ✓ ||a.com/ads/*/images$script Blocks web requests
matching domain, path
and script type

Web Request
Blocking
(Per-site)

✓ ✓ ||a.com/ads/$domain=cnn.com Blocks web requests
matching domain and
path for only cnn.com

Element Hiding ✓ ✓ ||a.com##.ad-container Hides all elements
matching class name

Advanced
JavaScript
Abortion

✗ ✓ ||a.com#$#abort-on-property-read
EX,
||a.com#$#abort-on-property-
write EX

Stops JS execution from
reading or writing to
window.EX

Advanced
Element Hiding

✗ ✓ ||a.com#$#hide-if-contains-visible-
text /Sponsor/

Hides all elements con-
taining Sponsor text

Table 2.2: Overview of simple (used by EasyList or “EL”) and advanced (used by EL and
anti-circumvention filter list or “ACVL”) filter rules. Only the advanced filter rules can stop
the execution of JS and take into account the visibility of content when blocking elements.

status, education), and purchasing behavior (e.g., loyal or first-time customers, people who

abandon their shopping carts). One well-studied platform is the Oracle Data Cloud Regis-

ter [105], which aggregates user data based on cookies and ad bid values to assign labels that

describe a user [28, 148]. This registry contains thousands of labels, such as “Health, Beauty

> Style > Dieting > Weight Loss” [50]. To combat this, users install adblockers to both stop

seeing ads and reduce the information that online companies collect and infer about users.

2.1.2 Filter Rules

On the web, adblockers come in the form of browser extensions (e.g., Adblock Plus [10],

AdGuard [13], uBlock Origin [135]) or integrated directly into browsers (e.g., Brave, Opera).

The number of web users who use some form of adblocking now exceeds 42% [24]. The first

adblocker in 2002, a Firefox extension, allowed users to specify custom filter rules to block

9

resources (e.g., images) from a particular domain or URL path [97]. There are different

types of filter rules, shown in Table 2.2. The most popular type is URL-based filter rules,

which block network requests to provide performance and privacy benefits [125]. Other types

of filter rules are element-hiding rules (hide HTML elements) and JS-based rules (stop JS

execution). Chapter 3 focuses on advanced rules to combat adblock circumvention.

Per-site vs. Global Rules. There are two broad types of filter rules that describe how

they can be applied. First, there are “per-site” rules, which are restricted to trigger for

particular sites. They are denoted with the “$domain” option. Second, there are “global”

rules, which can trigger for any site. Examples of both per-site and global rules are provided

in Table 2.2. Popular filter lists support per-site and global rules; they contain mostly global

rules. Chapter 4 develops approaches to generating both per-site and global URL-based rules.

Known vs. Unseen Sites. Per-site and global rules are expected to work well on “known”

sites, i.e., given sites that the rules are being optimized for during their construction. While

per-site rules can be triggered for their known sites, global rules, on the other hand, can also

trigger for other “unseen” sites, i.e., sites that the rules were not optimized for. Chapter 4

evaluates the performance of per-site and global filter rules on both known and unseen sites.

Breakage and Collateral Damage. All types of filter rules have the potential to cause

visual (e.g., missing legitimate content like images and text) and/or functionality break-

age (e.g., breaking infinite scrolling, navigation, form submissions) to sites. If the sites are

known during the construction of rules, then this potential for breakage can be minimized

(i.e., optimized for). However, rules have the potential to cause unintended breakage when

applied to unseen sites, we call this “collateral damage”. In Sec. 4.3, we develop a frame-

work to generate per-site rules that consider visual breakage for a known site. We explore

the potential for collateral damage when applying rules on unseen sites in Sec. 4.6.1.

FilterLists(FL). Since it is non-trivial for lay web users to create filter rules, several efforts

10

were established to curate rules for the broader adblocking community. Specifically, rules are

curated by filter list (FL) authors based on informal crowd-sourced feedback from users of

adblocking tools. There is now a rich ecosystem of thousands of different filter lists focused

on blocking ads, trackers, malware, and other unwanted web resources. EasyList [54] is the

most widely used adblocking filter list. Started in 2005 by Rick Petnel, it is now maintained

by a small set of FL authors and has 22 language-specific versions. An active EasyList com-

munity provides feedback to FL authors on its official forum and GitHub. There are other

filter lists, such as the anti-circumvention filter list (ACVL) [8], that support more advanced

rules and are further discussed in Chapter 3.

FilterListCuration(andChallenges). The research community has looked into the filter

list curation process to investigate its effectiveness and pain-points [125, 85, 138, 19]. Snyder

et al. [125] studied EasyList’s evolution and showed that it needs to be frequently updated

(median update interval of 1.12 hours) because of the dynamic nature of online advertising

and efforts from advertisers to evade filter rules (e.g., adblock circumvention discussed in

Chapter 3). They found that it has grown significantly over the years, with 124K+ rule

additions and 52K+ rule deletions over the last decade. Alrizah et al. [19] showed that Ea-

syList’s curation, despite extensive input from the community, is prone to errors that result

in missed ads (false negatives) and over-blocking of legitimate content (false positives). Thus,

there are challenges in finding effective rules that block ads while minimizing breakage. They

concluded that most errors in EasyList can be attributed to mistakes by FL authors. We

elaborate further on the challenges of filter rule generation in Sec. 4.3.1 and maintenance in

Sec. 3.3.2 and 4.5.3.

2.1.3 Machine Learning and Adblocking

MachineLearning forAdblocking. Motivated by challenges in creating and maintaining

filter lists, and listed in Table 2.1, prior work has explored using machine learning (ML) to

11

assist with filter list curation or replace it altogether. To assist filter list curation, prior work

developed ML models to automatically generate filter rules for blocking ads [30, 66, 124].

Bhagavatula et al. [30] trained supervised ML classifiers to detect advertising URLs. Sim-

ilarly, Gugelmann et al. [66] trained supervised ML classifiers to detect advertising and

tracking domains. Sjosten et al. [124] is the closest related to our work. First, they trained a

hybrid perceptual and web execution classifier to detect ad images [35]. Second, they gener-

ated adblocking filter rules by first identifying the URL of the script responsible for retrieving

the ad and then simply using the effective second-level domain (eSLD) and path information

of the script as a rule (similar to Table 4.1 row 3). We found that 99% of rules that they

open-sourced had paths. However, this overreliance on rules with paths makes them brittle

and easily evaded with minor changes [85]. Furthermore, the design of these rules did not

automatically consider potential breakage. Another line of prior work, instead of generating

filter rules, trained ML models to automatically detect and block ads [73, 122, 146, 2, 127, 7].

AdGraph [73], WebGraph [122], and WTAGraph [146] represent web page execution informa-

tion as a graph and then train classifiers to detect advertising resources. Ad Highlighter [127],

Sentinel [7], and PERCIVAL [2] use computer vision techniques to detect ad images. These

efforts do not generate filter rules but instead attempt to replace filter lists altogether.

While promising, existing ML-based approaches have not seen any adoption by adblocking

tools. Our discussions with the adblocking community have revealed a healthy skepticism

of replacing filter lists with ML models due to performance, reliability, and explainability

concerns. On the performance front, the overheads of feature instrumentation and running

ML pipelines at run-time are non-trivial and almost negate the performance benefits of ad-

blocking [93]. On the reliability front, concerns about the accuracy and brittleness of ML

models in the wild [7, 124, 2], combined with a lack of explainability [130], have hampered

their adoption. In short, it seems unlikely that filter lists will be replaced by ML models any

time soon, and filter rules remain crucial for adblocking tools.

12

Machine Learning Assisted Filter List Curation. There is, however, potential in using

ML-based approaches to assist with maintenance of filter lists. For example, Brave [124],

Adblock Plus [7], and the research community [85] have been using ML models to assist FL

authors in prioritizing filter rule updates. However, they have two main limitations. First,

they rely on filter lists, such as EasyList, for training their supervised ML models causing

a circular dependency : a supervised model is only as good as the ground-truth data it is

trained on. This also means that the adblocking community has to continue maintaining

both ML models as well as filter lists. Second, existing ML approaches do not explicitly

consider the trade-off between blocking ads and avoiding breakage. An over-aggressive ad-

blocking approach might block all ads on a site but may block legitimate content at the

same time. It is essential to control this trade-off for real-world deployment. In summary,

a deployable ML-based adblocking approach should be able to generate filter rules without

relying on existing filter lists for training, while also providing control to navigate the trade-

off between blocking ads and avoiding breakage. To the best of our knowledge, AutoFR is

the only system that can generate and evaluate filter rules automatically (without relying

on humans) and from scratch (without relying on existing filter lists).

2.2 Countermeasures against Adblocking

Publishers, companies that own websites, employ various countermeasures against adblock-

ing. They can be divided into three categories: whitelisting (Sec. 2.2.1), anti-adblocking

(Sec. 2.2.2), and circumvention (Sec. 3.2.1). We describe the first two categories here and

elaborate on circumvention in Chapter 3.

2.2.1 Whitelisting

Some adblockers allow whitelisting of ads if they conform to certain standards. The Ac-

ceptable Ads program [4] whitelists ads if they are not intrusive based on their placement,

13

distinction, and size. Adblock Plus (ABP) and a few other adblockers currently implement

the Acceptable Ads based whitelist. The Better Ads Standard [29], by the Coalition for

Better Ads, prohibits a narrower set of intrusive ad types, such as pop-up ads and large

sticky ads. Google’s Chrome browser blocks ads on sites that do not comply with the Better

Ads Standard, and whitelists ads on the remaining sites [46]. However, whitelisting is not

a silver bullet for publishers. First, it is not supported by many popular adblockers such

as uBlock Origin and the Brave Browser. Second, some adblockers, such as ABP, require

large publishers to pay a fee to be whitelisted. Publishers may also have to pay a fee to ad

exchanges, such as the Acceptable Ads Exchange, to serve acceptable ads.

Prior work has investigated the evolution and impact of ad whitelisting. Walls et al. [139]

studied the growth of the Acceptable Ads whitelist over the years and showed that it covers

a majority of the popular sites. They also reported that the whitelisting process is flawed be-

cause “acceptable” ads are often disliked by users due to their intrusiveness and misleading

resemblance to page content. In fact, the whitelisting of deceptive ads from content rec-

ommendation networks such as Taboola and Outbrain [27] has been quite controversial [6].

Pujol et al. [113] showed that most ABP users do not opt-out of the Acceptable Ads whitelist

despite these issues. Merzdovnik et al. [92] showed that ABP blocked the least amount of

ads as compared to other adblocking tools because of whitelisting.

2.2.2 Anti-adblocking

Many publishers deploy anti-adblockers that use client-side JavaScript (JS) to detect ad-

blockers based on whether ads are missing. Fig. 2.1 illustrates the workflow of anti-adblocking.

The logic is implemented by a client-side JS that detects whether an ad is missing by measur-

ing the ad’s display properties or other dimensions. Then, it displays a popup either warning

users to disable their adblockers or a paywall asking them to sign-up for paid subscriptions.

14

Ad

Anti-
Adblocking
JavaScript

Shows Warning
Mesage

Detects Ad
Missing

Adblock Detected!

Please Disable Your Adblocker

Figure 2.1: Anti-adblocking. (1) If JS detects that an ad is missing; (2) it shows a popup
window asking the user to disable the adblocker, pay for a subscription, or whitelist the site.

Third-party anti-adblocking services [107, 31, 70] are used by many news publishers such

as the Washington Post and Forbes. Nithyanand et al. [102] manually analyzed JS snippets

to characterize anti-adblockers. Mughees et al. [100] trained a machine learning classifier

to detect anti-adblockers based on HTML DOM changes. These early studies showed that

hundreds of sites had started deploying anti-adblockers.

Adblockers counter anti-adblockers using specialized filter lists that use the same syntax

as the standard EL. These filter rules either trick the detection logic of anti-adblockers by

allowing baits or hide the warning message shown by anti-adblockers after detection. Iqbal

et al. [72] studied the coverage of these filter lists (e.g.,, Adblock Warning Removal List)

against anti-adblocking. They showed that these filter lists are often slow in adding suitable

rules by several weeks or sometimes even months. They further trained a machine learn-

ing classifier to detect anti-adblocking JS using static analysis. Zhu et al. [149] proposed a

dynamic differential analysis approach to detect and disrupt anti-adblockers. The counter-

measures above have proven reasonably successful against anti-adblockers. Moreover, the

warning messages shown by anti-adblockers have proven to be of limited benefit [44, 117].

About three-quarters of surveyed users said that they would simply leave the site instead of

disabling their adblocker [107].

15

Filter Types Browser Cross-app Cross-device

Web Request Blocking (hostname)

Web Request Blocking (URL-based) G# #

Web Request Blocking (Per-site or Per-app) G# #

Element Hiding G# #

Advanced JavaScript Abortion G# #

Advanced Element Hiding G# #

Table 2.3: Filter Rules Support. Corresponding to Table 2.2, the approach to adblocking
affects the type of filter rules that are supported. “Browser” denotes approaches that render
web content using browser extensions, custom browsers, and web views. “Cross-app” ap-
proaches utilize local VPNs to decrypt the network traffic of a device to apply filter rules and
block ads and tracking. “Cross-device” applies the rules on the DNS traffic for all devices
within a particular network. = fully supports, G# = partially supports, # = no support.

2.3 Adblocking Beyond the Web

Adblocking is possible beyond the web. Users have several platform choices that provide

app stores, such as mobile [121], smart TVs [137], and extended reality devices [132]. As

illustrated in Table. 2.3, adblocking can apply within a browser as an extension or integrated

directly into the browser, apply across apps, and apply across devices. For example, users

can install applications that integrate with native browsers, acting as browser extensions to

block ads and tracking (e.g., AdGuard on iOS). In addition, users can install applications

that utilize web views (i.e., objects that render web content) for adblocking. However, these

solutions confine adblocking to applications that render web content. To achieve adblocking

across apps, including native apps, users rely on on-device VPNs that intercept the network

traffic of the device to block ads, such as the AntMonitor app for Android [121]. Moreover,

adblocking is possible across different devices at the network level. Users can install DNS-

based adblockers for home networks, such as Pi-Hole [108] and AdGuard Home [12], which

block ads and tracking for devices that connect to the same network. A user-friendly solution

involves connecting to DNS servers with adblocking functionality, such as the AdGuard DNS

server. However, this assumes that the user trusts the DNS server.

16

Limitations. These aforementioned approaches still depend on filter rules but with several

limitations. Local VPN apps incur efficiency drawbacks, as they must decrypt the network

traffic to apply URL-based filter rules. Unlike the web, filter rules that hide HTML elements

and abort JS execution cannot be utilized. Even worse, DNS-based adblocking restricts filter

rules to the domain or hostname form, i.e., not URL-based rules. Prior work investigated

the efficacy of DNS-based adblocking for smart TVs [137] by applying four popular filter

lists: the default Pi-Hole list [109], the Firebog list that contains rules for smart TVs [140],

the Mother of All Adblocking list curated for mobile devices [95], and a commercial filter list

for smart TVs called StopAd [79]. They conclude that these filter lists either miss blocking

ads or cause functionality breakage. There is a need for platform-specific filter lists.

Takeaways. Challenges to creating and maintaining filter rules and how they can be ap-

plied within browsers, cross-app, and cross-device, motivate our work, as described in Ta-

bles 2.1, 2.3. First, adblocking within browsers supports the widest range of filter rule types,

causing the arms race between publishers vs. adblockers to be more accelerated. In other

words, if ads are easily blocked due to the availability of filter rule types, more effort will be

put forth to evade their blocking. Chapter 3 examines this accelerated arms race. Second,

across all platforms, there are scalability and efficacy challenges. Filter rules need to work

for thousands to millions of websites and applications. They must be effective with minimal

breakage. This problem is exacerbated when there is a constraint on the rules that can be

created and applied (e.g., cross-app and cross-device columns of Table 2.3). Chapter 4 takes

a step in addressing these challenges for the web by developing an automated approach to

filter rule generation using reinforcement learning.

17

Chapter 3

CV-Inspector: Automated

Detection of Adblock Circumvention

3.1 Introduction

The widespread adoption of adblocking has threatened the advertising-based business model

of many online publishers [32]. As discussed in Sec. 2.2.2, in response, publishers have

deployed anti-adblockers that detect adblockers and force users to either disable their ad-

blockers or sign up for paid subscriptions [17, 126, 106]. However, anti-adblocking has not

proven very successful: adblockers can often hide anti-adblocking popups [72, 149, 100] or

users mostly choose to navigate away [107, 32]. Some publishers have resorted to outright cir-

cumvention of adblockers. There are now dedicated third-party circumvention (CV) services

that help publishers re-insert ads by bypassing adblockers. Examples include AdThrive [18],

AdDefend [11], and Publica [112]. These CV services are different, and more advanced, than

anti-adblockers. While anti-adblockers generally initiate a dialogue with users [123], CV

providers try to sneak ads without giving users any notice or choice [116, 115, 80]. More

specifically, CV services re-insert ads by evading filter lists [25], such as the community-driven

18

EasyList (EL) [54], used by adblockers to block ads [47, 103, 42, 19].

The adblocking community has taken notice of the aggressive circumvention tactics used

by CV services. Most notably, Adblock Plus (ABP) [10] established a dedicated anti-

circumvention (anti-CV) effort that is centered around a new dedicated filter list, the anti-

circumvention list (ACVL), to counter these CV services [8, 90, 61]. ACVL supports an

extended syntax with advanced capabilities, such as to hide DOM elements based on a com-

bination of CSS styles and text, beyond the simpler rules supported by EL [94]. Concurrently

with ABP, other adblockers, such as uBlock Origin [135] and AdGuard [13], also incorporate

similar advanced anti-CV filter rules [133, 67, 15, 14]. Similar to other adblocking filter lists

[54, 55], anti-CV filter rules are curated manually based on crowdsourced user feedback.

However, ACVL is curated primarily by a small set of expert list authors instead of the

broader community that supports EL. Thus, a key challenge faced by the ACVL curators is

keeping up with the fast paced nature of CV services [52]. Our measurements show that the

updates to ACVL are made 8.7 times more frequently as compared to EL. Another challenge

is that anti-CV efforts are in the public domain, which gives CV providers the opportunity

to monitor anti-CV efforts and adapt their evasive tactics accordingly.

To address these challenges, we introduce CV-Inspector, an automated approach to detect

whether a site employs adblock CV services. CV-Inspector includes (i) an automated data

collection and differential execution analysis for a list of sites of interest; (ii) an algorithm

for prioritizing and expediting ground truth labeling; and (iii) a supervised machine learning

classifier using features that capture obfuscation of web requests and HTML DOM by CV

services. We evaluate CV-Inspector using two real-world data sets. First, we consider the

top-20K sites and show that CV-Inspector is able to accurately detect whether or not a

site employs circumvention. In the process, we uncover several new sites (including news

publishers, adult sites, and niche lower-ranked sites) that successfully employ third-party

CV services. Second, we apply CV-Inspector, with ACVL loaded, on a set of sites that

19

are continuously monitored by ABP, and find that some of them successfully evade anti-CV

filters. More importantly, our results show that CV-Inspector can reduce human labeling

efforts by 98%, which is a major step in scaling the effort to combat circumvention. To the

best of our knowledge, this work presents the first large-scale systematic analysis of adblock

circumvention on the web. It provides tools [82] that can significantly automate circumven-

tion detection and monitoring, thus helping to prioritize the efforts of expert ACVL curators,

which is a major bottleneck in this arms race.

The outline of the rest of the paper is the following. Sec. 3.2 provides the background of

adblock circumvention and related work. Sec. 3.3 provides a longitudinal characterization

of the anti-CV filter list and highlights pain-points and bottlenecks. Sec. 3.4 presents the

design and evaluation of the CV-Inspector methodology, including the description of the

automated web crawling, the differential analysis, the machine learning classifier, and feature

engineering. Sec. 3.5 applies CV-Inspector for two different applications: discovering sites

that employ CV services in the wild and monitoring sites that are known to employ circum-

vention to reduce human labeling efforts. Sec. 3.6 concludes with a discussion of potential

impact, limitations, and future directions.

3.2 Background on Adblock Circumvention

As noted in Sec. 2.1.2, adblockers rely on filter lists to detect and counter ads. Rules in these

filter lists are manually curated by volunteers based on crowdsourced user feedback [19,

125]. Filter rules, as shown in Table 2.2, can block network requests to fetch ads using

hostname or path information. In addition, they can hide HTML elements of ads using class

names or IDs. As adblocking has gone mainstream [32], publishers have undertaken various

countermeasures that can be divided into three categories: whitelisting (Sec. 2.2.1), anti-

adblocking (Sec. 2.2.2), and circumvention (Sec. 3.2.1) as described in the following section.

20

Ad

JavaScript Circumvention
Server

Ad Content
Obfuscation

Ad Request
Obfuscation

Detects Ad
Missing

Re-injects
Ad

Ad
Servers

Rebuilds
Ad Content

Ad Content
Ad

Figure 3.1: Obfuscation-based Circumvention. (1) If JS detects that an ad is missing;
(2) it sends an obfuscated ad request through a CV server; (3) the server retrieves the new
ad from an ad server; (4) the server obfuscates it before sending it back to the browser;
(5) JS rebuilds the ad content into DOM elements; and (6) re-injects the ad back onto the
page. Compare this workflow with anti-adblocking in Fig. 2.1.

3.2.1 Circumvention

Publishers have recently started to manipulate the delivery of ads on their site to outright

circumvent adblockers. Circumvention techniques can be broadly divided into two categories:

Cloaking-based Circumvention. Publishers route ads through channels that adblockers

do not have visibility into due to bugs or other limitations. For instance, advertisers used

WebSockets to circumvent adblocking extensions in Chrome because of a bug in the We-

bRequest API that is used by extensions to intercept network requests [26]. More recently,

advertisers have used DNS CNAME to disguise HTTP requests to advertising and track-

ing domains as first-party requests [48, 49]. However, cloaking-based circumvention is not

long-lasting because it is neutralized once the bug is fixed. For example, Bashir et al. [26]

showed that WebSockets-based cloaking was rendered ineffective when Chrome patched the

WebRequest bug [110]. Moreover, cloaking is typically not effective against browsers with

built-in adblocking because they are not constrained by the extension API used by adblock-

ing extensions. Thus, we do not focus on cloaking-based circumvention in our work.

Obfuscation-based Circumvention. Publishers obfuscate their web content (e.g., URL

21

path, element ID) to evade filter rules used by adblockers [142]. In contrast to cloaking-

based approaches, obfuscation-based circumvention is powerful because it exploits the inher-

ent weaknesses of filter rules — namely, that rules must be precise when targeting what to

block (i.e., to avoid false positives) and that they are slow to adapt (i.e., rule updates). Fur-

thermore, obfuscation-based circumvention can allow publishers to seamlessly continue pro-

grammatic advertising that is financially more lucrative for publishers than anti-adblocking.

In this work, we focus on obfuscation-based circumvention. Fig. 3.1 illustrates its workflow:

(1) JS detects whether an ad is missing; (2) if an ad is found to be missing, then an obfuscated

web request is sent to a CV server; (3) the CV server de-obfuscates the request and relays it

to the corresponding third-party ad servers or the publisher’s ad server to attain the new ad;

(4) the CV server obfuscates the ad content and sends it back to the browser; (5) JS rebuilds

the ad content into DOM elements; and (6) it re-injects the new ad at a desired location.

Alrizah et al. [19] anecdotally showed that EL is ineffective at countering obfuscation-based

circumvention. More recently, Chen el at. [42] found that about one-third of advertising and

tracking scripts are able to evade adblocking filter rules due to URL and other types of obfus-

cation. To the best of our knowledge, prior work does not provide large-scale characterization

of adblock circumvention or automated circumvention detection in the wild.

Anti-Adblocking vs. Circumvention. Fig. 3.1 compares anti-adblocking and adblock

circumvention. Both approaches share the first step, detecting whether an ad is missing.

Patently, this is necessary for anti-adblocking. However, for circumvention, it is not a re-

quired step but a choice that publishers select to minimize the cost of using CV services.

After the first step, their subsequent steps differ. As shown in Fig. 3.1, different from anti-

adblocking, circumvention involves a series of additional steps at the server-side to bypass

filter rules and re-inject ads in the client-side browser. Thus, circumvention is a more intri-

cate process. It must deal with the process of attaining new ad content and where to place

22

them on the page. Recall that it must do this without disrupting the user experience while

also evading filter rules. The complexity of circumvention is further denoted by adblockers

implementing new advanced filter rules, such as aborting JS execution, to adequately combat

it. This is further explored in Sec. 3.3.

As noted before, anti-adblocking and circumvention both aim to affect adblock users only:

thus, making differential analysis a suitable technique to detect them. Intuitively, differential

analysis endeavors to capture fundamental characteristics of anti-adblocking or circumven-

tion. For instance, with regards to Fig. 2.1, prior work [100, 149] sought to detect the action

of step 1 and whether the popup of step 2 was displayed to the user. Note that the outcome

of anti-adblocking does not involve ads. On the other hand, our work identifies character-

istics of circumvention, described in Fig. 3.1, within actions of steps 2 and 4, and whether

ads were displayed as a result of step 6.

However, the differential analysis method proposed in prior work to detect anti-adblockers

cannot be directly used to detect adblock circumvention. For example, Zhu et al. [149] con-

ducted differential analysis of JS execution to find branch divergences due to anti-adblocking.

This technique, if used as is, would incur false positives when a site is able to re-insert ads

but unsuccessfully displays them due to filter rules hiding the ad element. More specifically,

the circumvention approach illustrated in Fig. 3.1 would exhibit a branch divergence at the

first step of detecting missing ads, which would be incorrectly considered a positive label

(successful circumvention). While CV-Inspector also uses a differential analysis approach

that involves loading a page with and without adblocker, it does not aim to capture branch

divergences due to anti-adblocking. As we discuss later, CV-Inspector conducts differen-

tial analysis of web requests, DOM mutations, and other features to be able to distinguish

between successful and unsuccessful circumvention of adblockers.

23

3.3 State of Anti-Circumvention

The adblocking community is increasingly wary of circumvention. Most notably, ABP re-

cently started a dedicated filter list, ACVL, to combat circumvention [74]. The filter list is

enabled by default in ABP to help block “circumvention ads.” This anti-CV list has two

key advantages over the standard EL. First, it allows ABP to have full control over filter

rule design and management, including pushing the updated rules at a higher frequency

(e.g., every hour as opposed to every four days for EL) and without community consensus.

Second, it supports advanced filter rules with enriched syntax and capabilities, which are

not supported by the standard EL, specifically to counter CV services [65].

3.3.1 Filter Rules Overview

Filter rules can be either simple or advanced. Table 2.2 provides examples and their compat-

ibility with EL and ACVL. We refer to EL types of rules as simple filter rules: they can block

web requests by matching domains or hide DOM elements by targeting CSS styles or content.

ACVL deploys additional advanced rules to combat circumvention: these can abort the ex-

ecution of JS or hide DOM elements based on computed styles and visibility of content [59].

For example, if “EX” is an JS object that holds circumvention code, then “||a.com#$#abort-

on-property-read EX” can block any JS that accesses it. Creating the rule often involves

reverse engineering the code to identify that “EX” holds circumvention-related code. Fur-

thermore, a filter rule like “||a.com#$#hide-if-contains-visible-text /Sponsor/” can hide any

element containing the visible text “Sponsor.” Notably, this differs from simple element

hiding because the simple rule only takes into account the existence of text content and not

whether it is displayed to the user.

24

Figure 3.2: Anti-circumventionListOverTime. This shows how filter rules from ABP’s
ACVL have evolved from May 2018 to May 2020 and categorizes them by filter types.

3.3.2 Analysis of the Anti-circumvention List (ACVL)

Evolution of Anti-circumvention Rules. We consider the commit history of ACVL by

using its GitHub repository and rebuild the list’s filter rules for each day from May 2018 to

May 2020 [8]. Fig. 3.2 shows the evolution of the list since its inception in May 2018. The list

grew rapidly near the end of September 2018 and peaked at 700 filter rules in November 2018.

We see the overwhelming usage of element hiding over other filter types such as web request

blocking and advanced element hiding. This can be attributed to the fact that advanced

element hiding has a large performance cost (with the use of “window.getComputedStyles”),

causing filter list authors to use it sparingly. Also, element hiding may have been more effec-

tive in 2018 because JS aborting was not introduced until mid-November of that year [69].

Due to the dependency on element hiding rules, we see that until February 2019, ABP could

not prevent the loading of circumvented ads but rather only hide them from the user. More-

over, we see a large drop in element hiding rules (∼300 filter rules removed) from November

to December 2018. When inspecting the commit changes of that drop, they appear to be

25

Web Request
Blocking

Element
Hiding

Advanced
 JS Aborting

Advanced
 Element Hiding

0

20

40

60

C
ha

ng
es

 P
er

 D
ay

(In

se
rts

/D
el

et
io

ns
)

Figure 3.3: Commits by Filter Type. A boxplot of commit changes from 2018 to 2020
and categorized by filter types for ACVL. The horizontal lines within the boxes represent
the median, while the white circles represent the mean.

cleaning up old filter rules for Czech and German sites [143, 118]. In particular, we find that

many element hiding rules are used to target only 13 sites (e.g., novinky.cz and super.cz).

This is a downside to element hiding: it must target specific elements resulting in a large

number of rules to cover ads even for one site.

Next, we observe that the introduction of JS aborting rules in mid-November 2018 triggers

a change in the filter type usage within ACVL. First, the popularity of JS aborting rules

denotes its effectiveness against circumvention. Second, it reduces the ACVL’s dependency

on element hiding because JS aborting prevents ad reinsertion, which results in fewer ad

elements to hide. Consequently, this also increases the popularity of web request blocking.

This can be due to two factors: (1) once filter list authors understand which JS employs

circumvention, they can better find a way to block the script entirely; and (2) CV services

rely more on web request obfuscation during that period. Thus, from late 2018 to 2020, we

see that the three filter types were used almost equally.

FrequencyofUpdates. For 2019, which denotes ACVL’s first complete year, Fig. 3.2 shows

that the number of filter rules has stabilized within the range of 400 to 500 rules. This con-

trasts with EL’s constant growth, which increases at approximately 8K rules per year [125].

26

0 20 40 60 80 100 120
Minutes

0

500

1000

1500

O
cc

ur
re

nc
es

Figure 3.4: Time between Commits. The time between commits for ACVL is most
frequently within 4 minutes while the average is 2.3 hours.

However, the daily modifications to ACVL remain high. To explore this notion, we review the

changes of all commits within a day by using “git diff” and parse each change to categorize

them into filter types. Fig. 3.3 reveals the spread of changes per day (defined as the num-

ber of inserts and deletions) for each filter type within ACVL. We find that the medians of

changes are 12, 10, and 5 for web request blocking, element hiding, and advanced JS aborting,

respectively. The median for advanced element hiding remains at zero due to its infrequent

changes. Moreover, the frequency of commits persists at a high rate, as indicated by the time

between commits, reported in Fig 3.4: it is commonly within 4 minutes. The average time is

2.3 hours, which is about 8.7 times more frequent than EL’s 20 hours [125]. This highlights

the accelerated arms race between publishers and adblockers within the circumvention space.

Publishers that Employ Circumvention. We find that commits are generally modifica-

tions to existing rules. For web request blocking, curators typically change URL components

(e.g., subdomains and paths) or the resource type within the rule. For both simple and ad-

vanced element hiding, they often modify class names, IDs, styles, and the DOM structure.

For advanced JS aborting, they change the name of the JS object that the rule is targeting.

To evaluate publishers that cause these frequent commits, we identify domains that appear

in both insert and deletion lines within a commit. We discovered that the top two sites,

27

[0-
10

0k
)

[10
0k

-20
0k

)

[20
0k

-30
0k

)

[30
0k

-40
0k

)

[40
0k

-50
0k

)

[50
0k

-60
0k

)

[60
0k

-70
0k

)

[70
0k

-80
0k

)

[80
0k

-90
0k

)

[90
0k

-1M
)

[1M
+]

Tranco-Ranking

10
2

10
3

N
um

be
r o

f S
ite

s 440

133
92

64 58
40 39 31 37 33

1064

Figure 3.5: Tranco-rankingofACVL. Sites extracted from ACVL and their corresponding
Tranco-ranking. We see that there is low coverage of sites for circumvention from ranking
100k to one million. Note that about half of the sites do not appear in the Tranco top one
million list (labeled as 1M+).

reuters.com and quoka.de, have triggered 671 changes to rules over a period of 17 months

and 269 changes within 18 months. Overall, the top-10 websites that give filter list authors

the most trouble have an average ranking of about 10K [111]. However, when considering

the top-30, the average ranking is 189K, which can be explained by the fact that many of

the sites are from Germany, where most of the ACVL authors reside.

Coverage of ACVL. Next, we investigate the coverage of ACVL on the web, which has not

been previously explored. We extract the sites that are specified in the filter rules and map

them to their corresponding Tranco-ranking [111] in Fig. 3.5. First, we note that there are

about 927 sites that employ circumvention within the Tranco top one million sites, which

denotes the low prevalence of circumvention; perhaps, due to the cost of CV providers.

Second, we see that ACVL covers about 1064 sites that are beyond the one million (1M)

Tranco-ranking, more than twice the amount of coverage when compared to the top-100K.

Furthermore, we see low coverage numbers for the range of rankings between 100K to 1M.

We can deduce that the ACVL may lack coverage in two ways. First, advanced rules must

specify which sites to target while simple rules can be website agnostic. Second, we previ-

28

ously saw that ACVL’s number of rules has stabilized — showing that ABP is more focused

on combating circumvention from a few known sites rather than discovering new sites that

employ circumvention. In addition, while EL authors receive help from the community

through forums that have up to 23K reports over a span of nine years [19], ACVL authors

rely on submitted GitHub issues, with a current total of 379 issues over a span of two years

[8]. Thus, significant manual work (e.g., updating rules and discovering new circumvention

sites) falls onto the filter list authors.

Takeaways. The number of ACVL filter rules has stabilized in contrast to EL. This can be

attributed to two factors: (1) ABP’s focus on a few known CV providers; and (2) changes

within ACVL primarily being modifications to existing filter rules. Thus, the coverage of

ACVL is limited due to the focus on modifying rules rather than discovering new circum-

vention sites. Moreover, the effort to combat circumvention requires significant effort from

filter list authors. ACVL has only 14 contributors with three main contributors: wizmak, ar-

sykan, and Milene [9], who commit five, four, and three times on average per day, respectively.

These few filter list authors must undertake a huge effort in keeping rules up-to-date. This

motivates our methodology in the next section, which aims at assisting and prioritizing this

effort. It provides ways to detect successful circumvention in the wild, monitor the changes

in publishers, and be notified when a site has successfully circumvented the adblocker.

3.4 CV-Inspector: Design and Implementation

In this section, we present CV-Inspector for detecting whether a site employs circum-

vention. Fig. 3.6 presents an overview of our methodology. In Sec. 3.4.1, we present our

instrumentation and automated data collection. In Sec. 3.4.2, we apply differential analysis

to identify data that is indicative of circumvention. Then, in Sec. 3.4.3 to 3.4.6, we extract

features, train, and evaluate our CV-Inspector classifier.

29

Browser
No Adblocker (A)

Browser
With Adblocker (B)

Differential Analysis
(Sec. IV-B)

Set Difference of
{ x ∈ B and x ∉ A }

Instrumentation and Data Collection (Sec. IV-A) Machine Learning

Crawling Script

Web Requests
Collector

DOM Mutation
Collector

Web
Requests

DOM
Mutation

Temporal
Events

Page
Source

Feature
Extraction
(Sec. IV-C)

Ground Truth
Labeling

(Sec. IV-D)

Classifier
(Sec. IV-E)

EasyList

A B

Data Collected

Figure 3.6: CV-InspectorWorkflow. Given a list of URLs, our crawling script will visit
each site four times for: (A) “No Adblocker” and (B) “With Adblocker.” With each visit, we
collect web requests, DOM mutation events, temporal events (e.g., timestamps and blocked
events by the adblocker), and the page source. We take the set difference between the data
collected in the two cases, (B)-(A), as websites commonly employ circumvention when an
adblocker is on. We use the data to extract most features, train and evaluate our classifier.

3.4.1 Instrumentation and Data Collection

3.4.1.1 Howwe collect data

Our crawling script takes as input a list of websites for which we collect data. For each page

load of a site, we wait for 25 seconds: we denote this as a “page visit.” Page load times

are commonly less than a minute as they affect the search ranking of sites. As shown in

Fig. 3.6, we visit each site for a total of eight times. As a result, we select 25 seconds to not

significantly slow down CV-Inspector, which is inline with prior work [149].

NoAdblocker vs. WithAdblocker. Since websites typically employ circumvention only

when an adblocker is present, we utilize differential analysis to obtain insights into circumven-

tion “signals.” For each website, we collect data for two different cases: (A) “No Adblocker”

and (B) “With Adblocker.” For “No Adblocker,” we load each site four times and take the

union of the collected data in order to capture the dynamic nature of a site because it can re-

30

trieve ads from different ad servers. This is a heuristic but justified choice: we experimented

with loading the same page multiple times and found that the number of contacted domains

plateaus at four. We will refer to these “four page visits” per case, throughout the paper.

We repeat the same process for “With Adblocker.” In addition, we use ABP and configure it

to use EL. We deselect the “Allow Acceptable Ads” option as we want to make sure ads are

shown due to circumvention and not because it was whitelisted. Furthermore, this gives sites

the best chance to circumvent the adblocker and the best opportunity for us to capture it.

LandingPage andSub-pages. Our crawling considers both landing pages and sub-pages.

This is critical because sites may not employ circumvention in their landing pages but rather

wait until the user clicks into a sub-page to show circumvented ads (e.g., maxpark.com). To

find a sub-page, we inject JS into the landing page to retrieve all URLs from hyperlink tags.

We select the first-party link with the longest number of path segments. We use the intuition

that the deeper the user explores the site, the more interested the user is in the content,

thus increasing the chance that the site would serve ads. We find that this methodology

works well for sites that have articles. To further ensure that we find a sub-page with ads,

we ignore informational pages using keywords (e.g., “contact,” “login”) within the path. To

only consider pages with content, we further ignore first-party links that have extensions

(e.g., “.tar.gz,” “.exe”), to prevent downloading external files.

Automatic Collection. We use Selenium [101], a framework to automate the testing of

websites, to implement the crawling process. We select Chrome (version 78) [45] as the

browser due to its popularity. As depicted in Fig. 3.6, we create two Chrome profiles. One

profile for the “No Adblocker” case, where we include the web request extension and DOM

mutation extension. The second profile is for the “With Adblocker” case, where we also in-

clude the custom ABP extension that only loads EL. In order to have a consistent behavior

with ABP, we only use one version of EL and the ACVL from March 13, 2020. Then, we con-

figure Selenium to disable caching and clear cookies to have a stateless crawl. For scalability

31

purposes, we utilize Amazon’s Elastic Compute Cloud (EC2) and select the “m5.2xlarge”

instance that allows CPU usage without throttling [20]. We create a snapshot out of the

setup using Amazon Machine Image (AMI) [21], which allows us to spawn many instances

of EC2 for data collection.

3.4.1.2 What datawe collect for each page

Next, we describe the types of information we collect for each site. We are interested in how

the site changes from “No Adblocker” to “With Adblocker,” at four vantage points:

1. Web requests: HTTP incoming and outgoing requests.

2. DOM mutation for nodes, attributes, and text.

3. Time stamps of all events like web requests, DOM mutations, and blocked events

caused by ABP (i.e., when a filter rule is matched, see Table 2.2).

4. Page source code of the site (e.g., HTML, text, inline CSS, and inline JS).

We also collect screenshots, which are capped at 1925x3000 to deal with websites that can in-

finitely scroll. Screenshots are useful as we use them to verify our ground truth in Sec. 3.4.4.

Next, we explain how this collected data can reveal obfuscation-based circumvention em-

ployed by the site.

1. CollectingWebRequests. Circumvention providers often randomize subdomains and

paths as an obfuscation technique to retrieve new ad content for reinsertion, going beyond

simply rotating domains [72, 19], as illustrated in Fig. 3.1. Capturing web requests can

help identify this behavior. Examples are provided in Sec. 3.4.3. We implement a Chrome

extension to collect web requests by hooking into the Chrome Web Request API [64]. This

API streamlines the flow of web requests into various life-cycle stages that developers can

32

easily subscribe to. Specifically, we hook into “onSendHeaders” to collect outgoing HTTP

request headers and “onCompleted” to collect incoming HTTP response headers of success-

ful requests. To collect web requests blocked by ABP, we hook into “onErrorOccurred” and

look for status code “ERR BLOCKED BY CLIENT.”

2. Collecting DOMMutation. Fig. 3.1 shows that re-injected ads are often reconstructed

in step 5 and may not have the same DOM structure as the originally blocked ads. Capturing

how the DOM changes as the page loads can help uncover these particular actions. We build

a Chrome extension that uses DOM Mutation Observers [98] to collect DOM changes. The

extension compiles events such as new nodes added (e.g., an ad image being added), nodes

removed (e.g., a script being removed), attribute changes (e.g., an ad element from height

0 to 280px), and text changes (e.g., anti-adblocker popup text). Furthermore, recall from

Table 2.2 that an adblocker can do element hiding. We capture this by instrumenting the

ABP extension (version 3.7) and hook into methods that hide elements when a filter rule

is matched to label the elements with a custom HTML attribute “abp-blocked-element,”

shown in Listing 3.1. Since this causes a DOM attribute change, we consider this as part of

the DOM Mutation information.

3. Collecting Temporal Information. Since circumvention is typically a reaction to

ads being blocked, timestamps of changes on the page can reveal how adblockers and cir-

cumvention code interact with each other. Thus, we record and consider timestamps for

web requests, DOM mutation, and blocked events. For completeness, when we consider the

ACVL in Sec. 3.5.2, we hook into methods that abort the execution of JS to capture JS

blocked events as well.

4. Collecting Page Source withAnnotations. We use Selenium to save the page source

of the site at the end of the page load time. It gives us information about the state of

the site such as the HTML and text, inline CSS, and inline JS. In addition, it contains the

33

Listing 3.1: Page Source Annotations. Highlighted in blue, attribute “abp-blocked-
element” denotes that the adblocker has blocked the element. While attribute “anticv-
hidden” means that the img is not visible (not related to the adblocker). All visible images
and iframes are labeled with their offsetwidth and offsetheight to give a more accurate
representation of the page.
0
1 <div abp−blocked−element="true">
2
3 </div>
4 <div c lass="mobile">
5 <img src="https://b.com/logo.jpg"

6 anticv−hidden="true"/>
7 </div>
8 <iframe src="https://b.com/ad" height="90"

9 anticv−offsetwidth="728"

10 anticv−offsetheight="90">
11 </iframe>

annotated elements that are hidden by the adblocker, as shown in Listing 3.1. Furthermore,

since the page source does not provide the actual visibility state of images and iframes, we

inject JS to annotate these elements with a custom attribute “anticv-hidden” detailed in

Listing 3.1. We extract all images and iframes and consider the following cases. First, if

the element’s “offsetParent” is null and its “offsetWidth” and “offsetHeight” are zero: this

denotes that the element is hidden due to its parent being hidden. Second, otherwise, we

use “window.getComputedStyles,” which provides us with the final styles that are applied

to the element. We consider styles such as “display: none” and “opacity <= 0.1” to see

if the element is hidden. Third, we treat elements with a width and height of less than or

equal to two as hidden. This filters out pixel elements used for tracking. We further use

these annotations for feature extraction, as described in Sec 3.4.3.

3.4.1.3 Tools and Limitations

Using Amazon’s EC2 and AMI, our methodology is scalable (e.g., multiple instances can

be initiated to fit the problem) and configurable (e.g., number of sub-pages to find, which

34

filter list to load). However, it also has its limitations. First, some sites utilize Cloudflare’s

protection against web crawlers using captchas, which prohibits CV-Inspector from ac-

cessing the page. Second, Selenium may not properly produce screenshots, which depends

on how body styles are applied. We address this limitation by first checking whether the

height of the body is zero. If so, then we check the next immediate child element of the

body to see if it has a height to capture, and so on. Third, when discovering sub-pages, we

do not consider links from non-hyperlink tags or if the site is utilizing JS to redirect users

upon a click. Finally, recall that we wait for 25 seconds during each page visit, which might

miss some behavior on sites that need longer to load. This is a parameter to tune: longer

crawling times are possible at the expense of slowing down CV-Inspector.

3.4.1.4 Datasets

We apply our methodology and collect datasets, summarized in Table 3.1, which we then

use for different purposes throughout the paper. For each of these datasets, we start from a

list of URLs, apply the methodology described earlier in this section, and we collect the four

types of information, referred to as “collected data” in Fig. 3.6: web requests, DOM changes,

temporal information, and page source with annotations. The top three datasets in Table 3.1

are collected using our methodology based on a given list of sites: ACVL sites, Tranco’s most

popular sites and Adblock Plus Monitoring. The first two are publicly available.

ACVL has been extensively discussed in Sec. 3.3 and includes sites that currently employ,

or had employed in the past, CV services; we use this list to find positive samples. We use

Tranco ranked sites in two ways. First, since circumvention is hard to find, we use the Tranco

top-2K sites within our ground truth dataset (GT) to ensure that it covers popular sites.

Second, we use the Tranco-20K dataset (which excludes the top-2K) to test our classifier

on popular sites that matter to users. The third dataset, internally maintained by ABP,

contains sites that employed circumvention at some point and ABP continuously monitors

35

Dataset Name List of Sites Crawled # Pages & Sub-pages

Obtained by crawling a given list of sites

ACVL sites Sites extracted from ACVL (public [8]) 3K

Tranco Most popular sites (top-20K) at tranco-list.eu
(public [111])

32K

Adblock Plus
Monitoring

Sites that ABP monitors (maintained and
provided by ABP)

360

Derived from ACVL & Tranco, used for ML training & testing

Candidate for
labeling (CL)

ACVL ∪ Tranco top-2K 6.2K

Ground
Truth (GT)

Subset of sites from CL that are inspected and
labeled (positive or negative) for circumvention

2.3K

Tranco-20K Tranco top 2K-20K (excluding the top-2K used
in CL)

29.3K

Ground Truth
Positives (GTP)

Subset of GT with only positive labels 700

Table 3.1: Dataset summaries and terminology used throughout the paper. Each of the
original datasets is obtained by crawling the corresponding list of sites (and sub-page) and
collecting all 4 types of data (web requests, DOM changes, temporal, and page source).

them to see if ACVL is still effective on them. We refer to sites that are closely monitored by

adblockers as “sites of interest.” Generally, this means that the sites affect a large portion

of adblock users (i.e., in terms of popularity) or that the sites have caused users to submit

feedback about them.

The bottom part of Table 3.1 summarizes our three original crawled datasets that we use

for training and evaluating our classifiers in Sections 3.4.4, 3.4.5, and 3.5.

3.4.2 Differential Analysis

3.4.2.1 SetDifference

Our intuition is that the behavior observed when an adblocker is used (“With Adblocker”)

is different from the behavior observed when there is no adblocker (“No Adblocker”). This is

36

likely due to CV services being triggered. Recall from “No Adblocker vs. With Adblocker”

of Sec.3.4.1.1, that we need to account for the dynamic nature of websites. Therefore, first,

we take the union of the datasets collected across all four page visits in each case. Then, we

take the difference of the two union sets (“With Adblocker” minus “No Adblocker”). Next,

we elaborate on what differences we examine for each of the four types of data collected.

First, for web requests, circumvention services can serve content behind first-party domains.

Therefore, we cannot simply do a set difference on the domain level for web requests, which

would eliminate the presence of the circumvented ads. Instead, we do a set difference based

on the fully qualified domain and its path while disregarding the query parameters. Second,

for DOM mutations, we create a signature for each event based on the element’s attribute

names, tag name, parent tag name, and sibling count. We do not depend on the value of at-

tributes because they can be randomized [19], which would introduce more unrelated events

to circumvention. Instead, we rely on the length of the value within our event signature.

For a simple example, if the element is “<div class=’ererke434’>,” we would consider it as

“div class9.” Third, for temporal information, we first extract features per visit then average

them within their respective cases, then we apply the set difference. Fourth, for page source,

we do a set difference based on words for text differences. For example, a text change event

with an old value of “Please subscribe to our content” and a new value of “Please disable

your adblocker to view our content,” will result in a set difference of “subscribe, disable,

your, adblocker, view.”

3.4.2.2 Cleaning theData

Recall that we load each site four times to capture its dynamic content. A side effect is that

we end up with data (e.g., web requests and DOM mutations) that is not necessarily related

to circumvention, and can be due to tracking, discernible non-ad resources, dynamic content,

etc. We filter these out before extracting features for circumvention. First, for web requests,

37

Web Request Features Top

Number of content-types ✓

Entropy of subdomains, paths, query parameters (by content-types and first/third-party) ✓

Number of Mismatches of URL extension and content-type

Number of Mismatches of loaded resources

DOM Mutation Features Top

Number of DOM attribute changes (display, class, etc) ✓

Number of DOM nodes removed (iframes, etc) ✓

Number of elements blocked by EL (imgs, iframes, etc) ✓

Number of DOM nodes added (a, imgs, etc)

Temporal Features Top

Number of blocked events (in first 12sec of page visit) ✓

Number of blocked events (in second 12sec of page visit)

Average cluster size of DOM mutations over time

Page Source Features Top

Number of iframes and images in ad positions ✓

Number of distinct words, characters, and newlines

Entropy of subdomains, paths, query parameters of visible iframes and images contained
in hyperlinks (with target or rel attributes)

Table 3.2: There were 93 features in total in these 4 categories for CV-Inspector. Those
marked as “Top” were in the top-10 most important features in Sec. 3.4.5.

we identify tracking, social, and anti-adblocking requests by applying EasyPrivacy [55], Ad-

block Warning Removal List [5], Disconnect.Me [51], and uBlock Origin’s GetAdmiral [134]

filter lists. To filter out the requests, we use Brave’s Adblock engine [34], a filter list parser

that supports EL-compatible rules. Second, we keep third-party ad resources by looking at

ones that have content-length larger than 2 KB and have a max-age (within cache-control

headers) shorter than 40 days. We conclude on these numbers by inspecting resources that

were blocked by ABP. This gives us a profile about what content-length and max-age ad

resources should have. Third, we only consider successful web requests (e.g., HTTP status

code 200) and discard the ones that involve redirection, errors, or no content (e.g., HTTP

status codes 304, 400, 204). This is because circumvention related web requests should have

content such as JSON (that may define ad content) and JS (code to re-inject ads).

38

Listing 3.2: ObfuscatedURLExample. Taken from psychologyjunkie.com, we compare a
normal URL with an obfuscated one where subdomains & paths are randomized. Although
truncated, the path can reach up to 6K in length. The entropy of the subdomains for the
regular and obfuscated URLs are 1.58 and 2.25, respectively. Their first path segments would
have entropy of 1.79 and 4.56. As expected, the obfuscated strings have higher entropy.
0
1 /* Regular URL */

2 https: // cdn.convertkit.com/assets/CKJS4.js

3 /* Obfuscated URL */

4 https: // h239rh.lmyiwaakn.com/qO8HqaNP1NUGrt

5 d4qtgA1agJ2JAHpqoDo9QDqqYAptl4qaoF1dZ0...

3.4.3 Feature Extraction

Next, we describe the features that we extract from the cleaned set difference to capture

circumvention. Not all features involve set differences, e.g., blocked events only appear in

the “With Adblocker” case. Table 3.2 lists the features that we explored and highlights those

that ended up being the top-10 most important features. Then, we evaluate those features

and explain our intuition of why they can capture the presence of CV services.

1. Web Request Features. One widely used obfuscation technique is to randomize URL

components and other features extracted from web requests, resulting in noticeable differ-

ences between “No Adblocker” and “With Adblocker” cases. Listing 3.2 shows a comparison

between a regular URL and an obfuscated one by circumvention. To capture this randomiza-

tion, we treat URL components, such as subdomains and paths, as strings, and we calculate

their Shannon entropy, based on the frequency of each character occurring in the string. The

idea is that randomized strings will have higher entropy. An illustrative example is shown

in Listing 3.2. As expected, the obfuscated strings have higher entropy for both subdomains

and paths. We further split web requests up into first-party and third-party sets. In addi-

tion, we count the number of different content-types extracted from their response headers.

Also, we look at mismatch cases, such as when a web request ends with a “.jpg” extension

but its content-type is “application/javascript.” We look at whether a particular path loads

39

different amounts of resources. For instance, when a path “a.com/images/” loads 10 images

with the “No Adblocker” case but then loads 15 images for the “With Adblocker” case.

2. DOMMutationFeatures. DOM mutation features can uncover behavior such as when

new ad-related elements are added. For nodes being added and removed, we focus on ele-

ment types that can be associated with ads such as “<a>,” “<imgs>,” and “<iframes>.”

For attribute changes, we focus on changes such as the class attribute, visibility styles like

display and position, and the height of the element. Moreover, we count the number of

DOM attribute changes that involve “abp-blocked-element,” which denotes the number of

elements blocked by EL.

3. Temporal Features. We expect that a site would exhibit different behavior (events)

over time when employing circumvention, as depicted in Fig. 3.1. Therefore, we examine the

timing of events to extract temporal features. Fig. 3.7 details how we capture differences in

DOM mutations over time by utilizing spikes, clusters, and cluster sizes. By considering the

cluster size, we can identify bursts of DOMmutations and how prolonged they are. For “With

Adblocker,” we see fewer DOM mutations within the first five seconds, perhaps due to many

blocked events in the beginning. However, after that, we see more bursts of DOM activity; no-

tably, within the 12–18 seconds that are not present in the “No Adblocker” case. This is cap-

tured by the smaller average cluster size. Interestingly, this turned out not to be a top feature.

We deduce that this is because not all circumvention techniques cause large DOM mutation

changes. For instance, a site can load in a static ad and use a simple ad structure, as shown

in Listing 3.3. We further discuss circumvention techniques in Sec. 3.5.1.2 and Table 3.5.

Since blocked events (i.e., any matching of filter rules in Table 2.2) can happen for sites that

do not employ circumvention, we want to investigate whether the timing of blocked events

can signal circumvention. Recall that we visit each page for 25 seconds, a parameter value

chosen for reasons explained in Sec. 3.4.1.1. We compute the number of blocked events in

40

D
O

M
 M

ut
at

io
n

(N
o

A
db

lo
ck

er
)

10,000

1

10

100

1,000

10,000

L0 100 25020015050

D
O

M
 M

ut
at

io
n

(W
ith

 A
db

lo
ck

er
)

10,000

1

10

100

1,000

10,000

L0 50 100 150 200 250

B
lo

ck
in

g
O

cc
ur

re
d

(W
ith

 A
db

lo
ck

er
)

10,000

1

L0 50 100 150 200 250
Time (100 ms per Bin)

Figure 3.7: Example of Temporal Features. We show the number of DOM mutations
(spikes) over time for “No Adblocker” and “With Adblocker” (with the corresponding
blocked events). We define a cluster of activity as consecutive spikes (no more than one bin
apart) and the cluster size as the number of bins that it spans. The top figure shows the
“No Adblocker” case, which has 9 clusters with an average cluster size of 8.33. In the middle
figure, we show the “With Adblocker” case, which has 22 clusters with an average size
of 3.86. In the bottom figure, the dashed vertical lines represent whether blocking events
occurred. The majority of blocking happened within the first 12 seconds when compared to
the remaining time (e.g., 11 events vs. 1 event).

the first or second 12 seconds of the page visit. We initially thought the second half would

be a differentiating feature, as the page would exhibit the action of re-injecting ads and the

adblocker would then once again block those ads. However, we observed that the first half

was more important, as shown in Fig. 3.7. This may be because loading ads is a priority,

leading to the blocked events happening at the beginning of the page load. Also, filter rules

often aim to stop circumvention at the earliest possible point. Ultimately, adblockers are

more aggressive against sites with circumvention, and therefore, cause more blocked events.

4. Page Source Features. Page source features characterize the state of the site at the

41

Listing 3.3: SimpleAd Structure. An example of a simple ad structure that can be used
during ad re-insertion instead of an iframe.

0
1 <a href="https://www.512xiaojin.com"

2 target="_blank" rel="nofollow">
3 <img src="https://1.bp.blogspot.com/

4 -YTj2YjT6ODw.gif" />
5

end of our page visit time. These features convey whether circumvention was successful by

identifying possible ads that are still visible on the page. We discover that circumvention

exhibits behavior such as altering the DOM structure of the ad to circumvent adblockers,

while re-injecting the ads back to specific, and often the same, locations.

First, we target specific DOM structures that hold ads such as images or iframes. For images,

we select those that are contained by hyperlink elements (“<a>”) with attributes “target”

and “rel,” as shown in Listing 3.3. The “target” attribute defines how the browser behaves

after a user clicks on the link such as opening up in a new window or tab. The “rel” attribute

defines the relationship between the current page and the outgoing link. We can use this to

infer that if the outgoing link is also third-party, then it is likely to be an ad.

Second, we identify possible ad locations that can be utilized for re-injection. We use the

“No Adblocker” page source and extract all iframes. We then dynamically create CSS selec-

tors for the iframes, specifying at least three levels of ancestors to make sure the selector is

specific enough. We then use these selectors on the page source of the “With Adblocker” side

and count the number of images or iframes that remain. To deal with sites that randomly

alter their element attributes, we do a second search (when the first search does not match

any elements) with more generic selectors by looking at the existence of attributes and not

the values of them. For instance, a selector of “div > div[opacity=’1’] > div[class=’rerejhf’]”

will turn into “div > div[opacity] > div[class].”

42

For both of these cases, we make sure that iframes and images are visible and not hidden by

the adblocker or pixel-size used for tracking. This is possible by using our annotations from

Listing 3.1 to ignore elements that are invisible to the user.

3.4.4 Ground Truth Labeling

Let us revisit Sec. 3.4.1.4 and discuss how we use the original datasets, shown in the top two

rows of Table 3.1, to create our GT dataset, for training our classifier.

WhyPositive Labels are Important. A major challenge for our GT dataset is that pos-

itive samples (i.e., sites that successfully employ circumvention) are rare and hard to find.

First, there are simply not many sites that employ circumvention today. For example, in

Fig. 3.5, only 927, out of the top one million Tranco sites, utilize circumvention. Second, we

define positive labels as not only attempting circumvention, but also successfully circumvent-

ing adblockers, which further reduces their number. Conversely, negative labels are easy to

discover because they correspond to sites that do not attempt circumvention or to sites that

were unsuccessful at evading the adblocker. For instance, see the imbalance in Table 3.4.

Furthermore, human inspection and labeling of sites is a labor-intensive process. To resolve

these challenges, we devise a methodology that reduces human labeling efforts while finding

many positive labels.

Candidates for Labeling (CL). We start from a list of URLs that we consider candidates

for labeling: this includes 2K domains extracted from the ACVL, as described in Sec. 3.3.2,

and popular Tranco top-2K sites. Domains extracted from ACVL are not guaranteed to

have positives, because compatible rules from ACVL can be transferred to EL, thus EL can

deal with circumvention for some sites. Furthermore, since Fig. 3.5 reveals that many ACVL

domains are beyond the one million ranking, we also consider the Tranco top-2K sites as

candidates for labeling, to include more popular sites of interest. We then crawl the sites

43

(a) “No Adblocker” case (b) “With Adblocker” case

Figure 3.8: Example of “Suspicious Content.” The website, gamer.com.tw, shows
suspicious content on the right sidebar outlined in red. Note that the three small images
change between the (a) “No Adblocker” and (b) “With Adblocker” sub-figures. Although
the content may look like ads, it could also be benign content related to gaming. Using a
browser, we looked at their outgoing URLs and observed that the two smaller images for
Tera Awaken and EOS are ads, while the third image links to a first-party page. Since there
are still ads displayed in (b) “With Adblocker,” we label this example as a positive label.

using our data collection methodology, depicted in Fig. 3.6, and end up with approximately

6.2k sites (including sub-pages) for our CL dataset.

LabelingEach Site. We label each site, in our CL dataset, as either successful circumven-

tion (positive label) or not (negative label). We capture a screenshot each time we visit a

page and depend on them to label our sites. Our labeling methodology is as follows. First,

we open up screenshots from “No Adblocker” case and identify where ads are shown. Then

we open up screenshots from “With Adblocker” and compare them to see if the ads are

removed. If an ad is still visible, we label the site as positive; otherwise, we label it as

negative. Second, there may be “suspicious content.” For instance, ads can look similar

to page content rather than common ads, either because they lack transparency (e.g., not

annotated by “Advertisement” or “Sponsored”), or they may be closely related to the site

content. Fig. 3.8 illustrates an example of such “suspicious content”: gaming ads are dis-

played for a gaming site, “gamer.com.tw,” which makes it difficult to tell whether they are

ads or first-party content. To settle these cases, we visit the site on our Chrome browser and

44

set up ABP with the same configuration (settings and filter lists) as our data collection. This

allows us to further verify whether the content was an ad by looking at the outgoing link or

testing it out by clicking on it. If the content is indeed an ad that goes to a third-party site,

we label it as positive. In our GT dataset, we encountered “suspicious content” only 69 out

of 2321 times, thus making it a corner case.

As described, our labeling methodology relies on using screenshots. Recall from Section

3.4.1.1 that for a given site, we visit it four times for the “No Adblocker” and “With Ad-

blocker” cases, which corresponds to four screenshots for each case. An alternative approach

to labeling would be to use a browser to check the site, which can produce higher quality

labels. For instance, the browser allows us to view the entire site as opposed to the limited

height of the screenshots, which is capped at 3000px to deal with infinitely scrolling sites.

However, the browser approach increases human labeling efforts. Screenshots offer an attrac-

tive compromise: they allow us to quickly compare the four page visits of “No Adblocker”

and “With Adblocker” with each other, without setting up our browser and loading the sites

four times per case.

PrioritizingWhich Sites to Label. Labeling is time-consuming and is a well-known bot-

tleneck in all communities that maintain filter lists, including EL and ACVL. We develop a

heuristic for prioritizing which sites from CL to inspect and label first to rapidly discover pos-

itive labels and minimize the overall effort. We employ an iterative process shown in Fig 3.9.

Bootstrapping. We start from CL and perform outlier detection using Isolation Forest [119];

our intuition is that sites that utilize circumvention are drastically different from those that

do not. However, not all outliers have circumvention, as there can be other reasons why a

site behaves differently, such as displaying more page content when ads are not displayed.

Therefore, we still need to inspect and label these initial (108) outliers, and we find 56

positive labels. Next, we order the remaining sites extracted from ACVL by Tranco ranking,

and pick the top-400 sites. Our intuition comes from Fig. 3.5, where there are around 400

45

Candidates for
Labeling (CL)

LabelBootstrap
Ground Truth

Train
Classifier

Apply Classifier
to Remaining CL

Sites from
Anti-CV List

Sites from
Tranco Top-2K

Order by Decreasing
Classifier Confidence

Add to
Ground Truth

Select
Top-500 Sites

Done

Figure 3.9: Labeling Methodology: We start with a list of sites from both ACVL and
Tranco top-2K, as Candidates for Labeling (CL). We develop an iterative process for priori-
tizing which (500 in a batch) sites to inspect and label next, then add them to ground truth.
We bootstrap a classifier by using outlier detection to find positive labels. In each iteration,
we apply the classifier on the remaining sites in CL, sort the sites by decreasing classifier con-
fidence, and inspect and label the 500 sites where the classifier is most confident. Compared
to picking randomly 500 sites to label, this heuristic prioritization discovers more positive
labels. For example, see Fig. 3.10 between “Iteration Zero” and “Iteration Zero Random.”
We add the newly labeled samples into our ground truth, retrain our classifier, repeat the
process for two more iterations, and declare “Done” when the performance converges, as
shown in Fig. 3.10. We combine all labeled data into our Ground Truth (GT) dataset.

Figure 3.10: Positive Labels and F1 (per Iteration): For our ground truth, we show
how many positive labels (sites with successful circumvention) were discovered within each
iteration. When we compare iteration zero and the randomly chosen iteration zero, we
find that our methodology discovers twice as many positive labels. We see that by the end
of iteration two, we receive diminishing returns on our classifier performance based on its
F1-score. Note that we only find 55 positive labels from the Tranco top-2K overall.

46

sites in the Tranco top-100k sites. We balance our ground truth with the most popular sites

in the ACVL so that our classifier can generalize well in the wild. We merge the labeled

outliers with the top-400 sites in the ACVL to obtain our first batch of ground truth with

∼500 sites. We train our classifiers on this GT.

Iteratively enhancing the ground truth. We apply the classifier on the remaining sites of CL,

sort the sites by decreasing classifier confidence, and inspect and label the 500 sites where

the classifier is most confident. We add the newly labeled samples into our ground truth,

retrain our classifier, and repeat the process. In each iteration, we choose and label 500

sites and add them to the ground truth, until the performance converges. Fig. 3.10 shows

diminishing returns after iteration 1, thus we stop at 2 iterations. The main advantage of

prioritizing which sites to label is that it discovers more positive labels in each iteration,

compared to e.g. choosing 500 random sites to label. This saves human effort, which is the

main bottleneck. Fig. 3.10 compares Iteration Zero (with our choice of 500 sites in decreasing

confidence) vs. Iteration Zero (Random choice of 500 sites) and shows that we discover more

than twice the positive labels, and we achieve a higher F1.

GroundTruthDataset (GT). We combine all labeled data (from all iterations, including

the randomly selected Iteration Zero) into one dataset, which we refer to as GT. It contains

755 positive labels and 1566 negative labels.

3.4.5 The CV-Inspector Classifier

Training the Classifier. We train a classifier that can detect successful circumvention,

using all 93 features extracted in Sec. 3.4.3, and the ground truth obtained in Sec. 3.4.4.

We considered different classifiers and observed that Random Forest performs best. We

split the GT data into 70/30 for training and testings, respectively, and we perform 5-fold

cross-validation. We consider our contribution to lie not in the ML technique itself but in

47

Label Precision Recall Accuracy F1-score

CV 0.94 0.84 0.93 0.89

No CV 0.92 0.97 0.93 0.94

Table 3.3: CV-Inspector Cross-validation Results. Using a Random Forest classifier,
93 features, and 5-fold validation. The label “CV” means successful circumvention and “No
CV” means that sites have no CV activity or failed at CV.

the domain-knowledge that guided the design of differential analysis, feature selection, and

ground truth labeling.

Cross-Validation Results. We display the results in Table 3.3. Detecting positive labels

(i.e. sites succeeding in circumventing adblockers) is of interest for filter list authors such as

ABP. Here, we achieve an F1-score of 0.89 and a precision of 0.94. Detecting negatives la-

bels is also important because authors want to be confident when disregarding sites without

circumvention accurately: we see an F1-score of 0.94 and a precision of 0.92; this becomes

invaluable in the monitoring approach in Sec. 3.5.2 as it reduces human effort.

Important Features. Not all 93 features from Sec. 3.4.3 are equally important. In Table

3.2, we highlight the top-10 most important features. Fig. 3.11 also shows the empirical CDFs

(ECDF) of four top-features and illustrates that they can discriminate between sites that em-

ploy successful circumvention or not. For example, consider the circumvention technique that

randomizes the JS first-party path. We see that the path has much more randomness than

sites that did not circumvent the adblocker; see the example in Listing 3.2. Specifically, 40%

of sites with circumvention have path entropy of two or less, while it is more than 80% of sites

with no circumvention. This captures the fact that publishers can use first-party resources

that contains circumvention code to initialize the circumvention process. Thus, randomizing

the path can make it difficult for the adblocker to block it. The corresponding ECDF is the

most discriminatory, compared to ECDFs of other features, uncovering the fact that ran-

domizing the path is a more effective technique against adblockers. Fortunately, our usage

of entropy as a feature captures this difference and can detect the presence of circumvention.

48

0 1 2 3 4
Content-Type JavaScript
 First Party Path Entropy

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

0.0 2.5 5.0 7.5 10.0
Third Party Images

 in Ad Locations

0.00 0.05 0.10 0.15
Number of Blocked Events

 Over First 12 Seconds

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

0 2 4 6 8 10
Iframe Elements

 Removed

Circumvention No Circumvention

Figure 3.11: Top-Features ECDF. We show empirical CDFs of some of the top features
for our classifier. JS path entropy is the most discriminatory feature.

Iframe elements removed and third-party images in ad locations are also direct mechanisms

of circumvention. The former depicts when sites generally clean up iframes that are being

hidden or blocked by the adblocker. The latter details the subsequent actions of re-injecting

ad images into previously known ad locations during circumvention. We can infer that if a

site completes more ad re-injection actions, then it has a higher chance of circumventing the

adblocker. The ECDF of the number of blocked events indicates circumvention, where the

adblocker generally blocks more for sites that successfully circumvent the adblocker. This

highlights that adblockers do not need to block aggressively for sites where they can eas-

ily target the root cause of ads. However, when obfuscation techniques are employed, the

adblocker must try harder and has a higher chance of not blocking all ads.

Analysis of Mistakes. Next, we discuss the mistakes made by CV-Inspector and we

explain the root causes of false negatives (FN) and false positives (FP).

49

3.4.5.1 FalseNegatives (FN)

FN occur when the site circumvented the adblocker but CV-Inspector predicted that it

did not. We find that CV-Inspector does not perform well for sites that employ excessive

DOM obfuscation. For example, argumentiru.com displays Yandex [145] ads using nested

custom HTML tags named <yatag>, while separating the ad image and the ad link in dif-

ferent parts of the ad DOM structure. This makes it hard to identify whether it is an ad

or not and to evaluate the ad link for entropy. In addition, strip2.xxx uses MobiAds [96] to

display ads with a small square image and the rest is text outside of the image. This differs

from regular ads where it is entirely an image with text encapsulated in the image. As a

result, CV-Inspector cannot help notify filter list authors when they should update filter

rules for these particular cases. However, we argue that CV-Inspector can be extended

to cover corner cases to capture CV activity, if the sites are of interest to the adblocker.

Another reason for FN is the logic of triggering circumvented ads for a user. We find that

even when a site is capable of circumventing the adblocker, it may choose not to. Though

more future work is necessary to infer the business logic of circumvention, we find that for

a few cases where the site only triggers circumvention once out of the four times we load

the page, CV-Inspector would predict there is no circumvention. However, the classifier

confidence is generally higher (∼0.40), which is close to a positive label when compared to

when a site displays no ads at all within the four page loads.

Lastly, some FNs are due to the limitations of screenshots not conveying whether an ad is

first-party or not. Thus, when investigating these sites, we manually go to the sites and

found that they were first-party ads and should be labeled as negative. Here, we see that

the classifier was able to determine the correct label when it comes to first-party ads.

50

3.4.5.2 False Positives (FP)

CV-Inspector can mistake sites that heavily rely on affiliation links or third-party links as

their own web content. For example, home-made-videos.com comprises completely of links to

third-parties with image dimensions that can be considered as ad dimensions. Furthermore,

some mistakes by CV-Inspector can be attributed to a site’s code mistakes. For instance,

when investigating empflix.com, we find that CV-Inspector accurately identifies web re-

quests that correspond to circumvented ad content. However, during re-insertion, the JS er-

rors out because it expects the existence of an element with ID “mewTives” but the container

is actually not there. We note that this error does not happen on the site’s sub pages where

the container does exist, and CV-Inspector correctly predicts that circumvention happens.

We find some false positives were actual true positives but were mislabeled due to the height

cap of screenshots. Recall that we limit the height of the screenshots to 3000px to be com-

patible with sites that would infinitely scroll. We discover that many adult content sites

using ExoClick [58] would re-inject ads back near the bottom of the page. We see this as

a strength of CV-Inspector that establishes that it can detect circumvention beyond just

the top part of the site (i.e., above the fold section [104]).

3.4.6 Feature Robustness

CV-Inspector extracts a diverse range of features that capture different fundamental char-

acteristics of circumvention. We discuss potential approaches that CV providers could utilize

to evade each type of feature, along with their effectiveness and trade-offs involved. We argue

that it is challenging for CV providers to evade the features used by CV-Inspector, while

still achieving their objectives, which are: (1) to evade adblocking rules, to display ads, and

to obtain publisher ad revenue; (2) to not degrade the user experience on the publisher’s

site; and (3) to minimize the cost and overhead incurred by integrating the CV service.

51

1. Web Request Features. Randomizing URL components, such as subdomains and

paths, is a typical obfuscation technique that CV providers use to evade filter rules. How-

ever, our entropy features capture not the exact randomized string (which would be easy

to evade) but the fact that randomization is used at all (which is robust). An example was

shown in Listing 3.2. To bypass these features, a CV provider would have to stop obfuscating

URL components altogether, i.e., abandon this circumvention technique.

2. DOM Mutation Features. A CV provider could try to manipulate DOM mutation

features. For instance, instead of removing DOM nodes, the provider can hide the nodes.

However, circumvention would still be detected by our features relating to “DOM attribute

changes,” such as display and class. CV providers could also try to add noise by causing

dummy DOM mutations. However, unless the provider can affect the “No Adblocker” case

as well, it will make circumvention activity even easier to detect via differential analysis.

Furthermore, adding too many dummy mutations can make the site slow since the browser

must refresh how the page is displayed, which affects the user experience.

3. Temporal Features. The CV provider can try to change the number of blocked elements

by making the advertising DOM structure simpler, as shown in Listing 3.3, or more complex

by using unnecessary DOM elements. This effectively reduces the number of blocked ele-

ments. However, page source features can still detect circumvention by analyzing ad positions

rather than the DOM structure. Another exploit is to delay the triggering of circumvention

(e.g. after the 12-second period) so that CV-Inspector does not detect the number of

blocked events. However, this goes against the main objective of ads, which is to quickly

display ads to the user before the user leaves the page. This approach would negatively affect

the revenue that the publisher wants to recover by employing circumvention in the first place.

4. Page Source Features. To evade the features related to the number of iframes and im-

ages in ad positions, a CV provider can change the location of ads when circumvention is em-

52

ployed. For example, if ads were originally shown on the right sidebar for the “No Adblocker”

case, then the ads can be moved to the left sidebar. However, this increases the overhead for

the publisher to integrate with CV providers, as the new ad locations must be seamlessly in-

corporated into individualized templates of different sites. In the above example, the left side-

bar must make sense within the publisher’s template to be a feasible ad location. Also recall

from Fig. 3.1 that the publisher must still fetch for new ad content. Thus, CV-Inspector

can still capture this circumvention characteristic through our web request features.

Takeaways. Overall, CV-Inspector raises the bar in the arms race with CV providers,

by extracting diverse features that collectively capture the fundamental behavior of CV

providers through differential analysis. In order to evade differential analysis, CV providers

would have to make the site’s behavior “With Adblocker” similar to that of “No Adblocker.”

However, this either limits ad re-injection to simple static ads (often not profitable for pub-

lishers) or requires that CV services are triggered for all users (using adblockers or otherwise)

resulting in higher costs for the publisher.

3.4.7 Summary

In this section, we presented the design and implementation of CV-Inspector. Specifically,

it collects data from web requests, DOM mutations, temporal information (including blocked

events caused by ABP), page source, and screenshots. Then, it employs differential analysis

designed uniquely to capture circumvention activity, and we extract intuitive features specif-

ically designed for capturing circumvention. We also provide an iterative methodology for

obtaining ground truth, that speeds up the process and discovers more positive labels. We

trained and evaluated a Random Forest classifier using this GT dataset, and demonstrated

that it achieves an accuracy of 93% in detecting sites that employ CV providers. We further

find that web request features relating to path entropy are the most effective features. By

capturing the essential characteristics of circumvention, we conclude that it would be difficult

53

Detection on Tranco-20K Dataset

Sampling Label Predicted Correct Precision

No CV 91 79 / 91 87%

Yes No CV 29,248 345 / 380 91%

Table 3.4: CV-Inspector on the Tranco-20K. For “No CV” instances, we sample from
that predicted set to have a confidence level of 95% with 5% margin of error.

for CV providers to evade both CV-Inspector and filter rules without incurring costs, i.e.,

not being able to show profitable ads to the users and overhead of activating circumvention

for all users. Next, we apply and evaluate CV-Inspector in real world settings.

3.5 CV-Inspector: In theWild Deployment

We employ CV-Inspector in two real world scenarios. First, in Sec. 3.5.1, we employ

CV-Inspector on the popular Tranco-20K sites to discover sites that circumvent adblock-

ers, and are possibly unknown. Second, in Sec. 3.5.2, we use CV-Inspector to monitor

the effectiveness of ACVL on sites that are well-known to circumvent adblockers, and which

are continuously monitored by filter list curators. For the evaluation of monitoring, we

use two datasets: our own GTP dataset and Adblock Plus Monitoring dataset provided by

ABP. More details are provided in the respective sections and the datasets are detailed in

Sec. 3.4.1.4 and Table 3.1.

3.5.1 Discovering Circumvention in theWild

3.5.1.1 In theWildPerformance

We first conduct a large-scale analysis of deploying CV-Inspector in the wild. Our goal

is to facilitate the crowdsourcing effort by the adblocking community to discover sites that

successfully circumvent adblockers. To that end, we apply CV-Inspector on the popular

Tranco-20K sites, which contains 29.3K pages with sub-pages. Recall that the Tranco top-

54

2K sites were used as candidates for labeling (CL), which eventually affected the training

set (GT) for our CV-Inspector’s classifier. Therefore, we exclude it from the in the wild

evaluation because we want to keep the Tranco sites used for training (top-2K) and testing

(top 2k-20K) disjoint. We follow our earlier data collection approach, described in Fig. 3.6,

to crawl these URLs. As shown in Table 3.4, CV-Inspector detects 91 sites as “CV” and

the remaining 29,248 sites as “No CV.” We validate the 91 “CV” sites and a random sam-

ple (380) of “No CV” sites. CV-Inspector achieves 87% precision when identifying sites

with successful CV and 91% for the opposite case. Our evaluation in Table 3.4 shows that

CV-Inspector generalizes well in the wild, with similar precision compared to Table 3.3.

The Random Forests classifier picks the likeliest class, which in binary classification is by

default the class with a probability above 0.5. This is the case in the results presented in

Tables 3.4, 3.6, and 3.7 in this section. CV-Inspector can be applied to different use cases

(e.g. discovery or monitoring of sites employing circumvention) that value different metrics

(e.g. recall vs. precision, respectively). Since there is no universally applicable operating

point, instead of tuning parameters to overfit a particular use case and dataset, we discuss

the trade-offs involved and leave it up to the users of CV-Inspector to decide upon the

operating point that matches their goals.

Trade-offs. Fig. 3.12 reports how CV-Inspector navigates the trade-off between discov-

ering more sites that successfully circumvent adblockers and precision, when applied to the

Tranco-20K dataset. For instance, a confidence level threshold of 0.6 achieves a precision of

98% with only one FP. This would be an attractive option to minimize human supervision

for monitoring sites of interest. However, if discovering sites that use circumvention is more

important, then lowering the threshold below 0.5 would find more sites at the expense of

increasing human efforts to deal with FPs. The operating point can be tweaked to optimize

various objectives of interest.

As a concrete example, Fig. 3.13(a) depicts how CV-Inspector can navigate the trade-

55

Figure 3.12: Discovery vs. Precision. The trade-off between discovering more circumven-
tion sites (positive instances) within our Tranco-20K (in the wild) dataset vs. being correct
in the prediction.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

Random
Random Forest
(AUC=0.92)
Max Youden's J
Threshold (0.41)
0.5 Threshold

(a) ROC Curve

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

Random
Random Forest
F1-score Threshold (0.45)
0.5 Threshold

(b) Precision vs. Recall

Figure 3.13: Trade-offs on the Tranco-20K Dataset. (a) Within our ROC curve, we
can maximize Youden’s J index if we value a high true positive rate (TPR) with a low false
positive rate (FPR) for the purpose of discovering sites with successful circumvention. The
threshold following these criteria is 0.41, which corresponds to a TPR of 0.85 and FPR of
0.11. (b) Within our precision-recall curve, we can find the threshold that corresponds to
the optimal F1-score for positive labels. The threshold following these criteria is 0.45, which
achieves an F1-score of 0.79.

off between true positive rate (TPR) and false positive rate (FPR). The suitable classifier

threshold depends on the use case. For example, if one wants to optimize for TPR (i.e.,

recall) while keeping the FPR low, one metric to maximize is Youden’s J index, which leads

56

to a threshold of 0.41 with a corresponding TPR of 0.85 and an FPR of 0.11. This is the

right objective when we are interested in discovering more sites that employ circumvention

at the risk of some additional false positives.

Another even more relevant trade-off in our case is precision vs. recall, depicted in Fig. 3.13(b).

We find that a threshold of 0.45 maximizes the F1-score for positive labels, achieving an

F1-score of 0.79. It is not surprising that this value is close but below 0.5, because our

Tranco-20K dataset is imbalanced as shown in Table 3.4. As discussed in Sec. 3.4.4, positive

labels are rare when compared to negative labels, which makes the classifier less sensitive

to the minority class. To compensate for this, one would decrease the threshold to improve

recall for positive labels at the expense of precision.

3.5.1.2 CircumventionProviders

We now analyze the breakdown of different circumvention providers. Note thatCV-Inspector

is not designed to distinguish between different circumvention providers. Therefore, we rely

on other heuristics to detect specific CV providers.

UniqueKeywords for CVProviders. We curate keywords that are indicative of specific

CV providers through a careful manual inspection of known circumvention sites in our GT

dataset. Intuitively, to discover keywords, we first search using the name of the providers

within our collected data of web requests (e.g., URLs and HTTP request/response headers)

and page source files (e.g., HTML files consisting of HTML, inline CSS, and inline JS).

Notably, we discover that some CV providers, like ExoClick, AdDefend, and Adthrive, do

not attempt to hide their presence, as the name of the provider was sufficient to be used as

keywords. For example, we found that ExoClick can be detected by the keywords “exoclick”

and “exoloader” in the page source. For AdDefend, AdThrive and MobiAds, we look at

keywords “addefend,” “adthrive,” and “mobiads” in the page source, respectively. Similarly,

Publica can be detected by looking for the key ”publica user id” in the HTTP response

57

CV Providers Count WR DOM CV-Inspector
precision

AdThrive [18] 154 G# 98%

Publica [112] 77 G# 95%

ExoClick [58] 76 G# G# 100%

Yandex [145] 434 G# 100%

AdDefend [11] 38 G# N/A

MobiAds [96] 17 G# N/A

Table 3.5: Circumvention Providers and Approaches. We show the presence of
circumvention providers within the Tranco-20K. We use to mean full obfuscation, which
means randomized URL components (WR) or deeply nested nonstandard DOM structures
for ad (DOM). G# denotes partial obfuscation, which means ad resources may be hidden
with first-party domain (WR) and ad reinsertion uses simpler DOM structures (DOM).
WR = Webrequests, DOM = DOM changes.

Set-Cookie header. When the name of the provider was not enough, we inspected the DOM

structure of the ad using the page source to see if there was any unique identifier that we

could use. In this case, we find that Yandex can be detected by looking for the custom DOM

tag “<yatag>.” In total, we utilized seven keywords to identify the presence of six different

CV providers listed in Table 3.5.

We note that the presence of these keywords does not necessarily always indicate that cir-

cumvention was successful. It could also mean that the circumvention attempt failed or that

circumvention was not even attempted (e.g., dormant code). Therefore, we cannot simply

use these heuristics in place of CV-Inspector to detect sites that circumvent adblockers.

Table 3.5 summarizes the application of the aforementioned heuristics on Tranco-20K sites.

We identify many instances of different CV providers, including ad networks such as Yandex

and dedicated CV providers such as AdThrive and AdDefend.

Taxonomy of Circumvention Approaches. Next, we characterize the obfuscation ap-

proaches used by different CV providers by defining whether the obfuscation is full () or

partial (G#). For web request obfuscation, full obfuscation refers to the use of randomized

URLs including subdomains and paths as shown in Listing 3.2 while partial obfuscation

58

refers to the use of first-party subdomains. For DOM obfuscation, full obfuscation refers

to the use of non-standard DOM structures such as deeply nested elements or randomized

tag attributes while partial obfuscation refers to only randomized tag attributes with simple

DOM structures, such as Listing 3.3.

Using this taxonomy, we compare the full vs. partial obfuscation techniques of different

CV providers. First, ExoClick and AdDefend simply leverage inlined JS, which is difficult

to block without hurting other page functionality [42], to implement their circumvention

logic. AdThrive redirects through several domains (e.g., cloudfront.net → edvfwlacluo.com

→ lmyiwaakn.com) before fetching the JS that implements their circumvention logic. Sec-

ond, ExoClick and AdDefend do not obfuscate URLs but rather serve their ad resources

under first-party domains that are difficult to distinguish from legitimate content. AdThrive

fetches ads in iframes using rotating third-party domains, subdomains, and randomized IDs.

Third, ExoClick and AdDefend differ in their DOM obfuscation techniques. ExoClick uses a

simpler ad structure (a hyperlink with two div children) while obfuscating the ad image by

serving it with CSS background-image instead of a regular image tag. On the other hand,

AdDefend employs a nested DOM structure with obfuscated IDs, while Yandex uses nested

non-standard tags with obfuscated class names.

Finally, we analyze CV-Inspector’s performance in detecting different CV providers. We

match each detected CV provider instance in Table 3.5 to our CV-Inspector deployment

results on Tranco-20K sites from Table 3.4. We see that CV-Inspector achieves good

precision in detecting different popular CV providers. For AdDefend and MobiAds, we use

“N/A” to denote that we lack sufficient data.

59

Ground Truth Positives (GTP) Dataset

Sampling Label Predicted Correct Precision

No CV 244 223 / 244 91%

Yes No CV 465 187 / 211 89%

Table 3.6: CV-Inspector on the GTP Dataset. We show the results of applying
our classifier on the ∼700 sites from our ground truth that also originated from ACVL
(Table 3.1). However, this time we collect the data by turning on ACVL as well within our
custom ABP extension. For “No CV” instances, we sample from that predicted set to have
a confidence level of 95% with a 5% margin of error.

Adblock Plus Monitoring Dataset

Sampling Label Predicted Correct Precision

No CV 5 4 / 5 80%

Yes No CV 355 184 / 185 99%

Table 3.7: CV-Inspector on the Adblock Plus Monitoring Dataset. From a real
world dataset used by ABP to monitor circumvention, we apply our classifier and show the
results. For “No CV” instances, we sample from that predicted set to have a confidence
level of 95% with a 5% margin of error.

3.5.2 Monitoring Circumvention for Sites of Interest

As discussed in Sec. 3.3.2, ACVL is updated very frequently to combat the back and forth be-

tween adblockers and circumvention providers. In addition, filter list authors generally focus

their attention on “sites of interest,” as discussed in Sec. 3.4.1.4. Curators must continuously

monitor them to see if the filter list (ACVL) continues to be effective, or if circumvention

has evolved, and the filter rules need updating. Consequently, much human labor goes to

this continuous monitoring of sites in the ACVL. To that end, we show how CV-Inspector

can automatically monitor whether ACVL is effective in countering circumvention on a site.

We use the same approach as laid out in Fig. 3.6 but with one change. We use the ACVL, in

addition to EL, when crawling a site with an adblocker. We use two datasets from Table 3.1

for evaluation: (1) the GTP dataset, which contains all sites that circumvent the adblocker

in our GT; and (2) Adblock Plus Monitoring dataset, which contains 360 sites that ABP

continuously monitor for circumvention activity to update filter rules.

60

3.5.2.1 Monitoring sites inGTP

We use CV-Inspector to classify sites within our GTP dataset, which comprises of 700

sites from the GT dataset that originated from ACVL and were successful at circumventing

the adblocker. If CV-Inspector again detects a site as “CV,” it shows that the site is able

to successfully circumvent even the ACVL. We manually validate CV-Inspector’s classi-

fications. Table 3.6 summarizes the results. We note that CV-Inspector again detects

244 sites as “CV” with 91% precision and 465 sites as “No CV” with 89% precision. The

results show that more than one-third of sites with relevant filter rules in the ACVL are still

able to successfully circumvent adblockers. This demonstrates that the sites addressed by

the ACVL need to be continuously monitored. We suggest that CV-Inspector should be

periodically used (e.g., every hour) to monitor the sites on the ACVL. The sites that are

detected by CV-Inspector would need to be reviewed by ACVL curators to update the

filter rules and the rest can be safely ignored.

3.5.2.2 Monitoring sites fromABP

To further demonstrate CV-Inspector’s usefulness, we obtain a list of 360 sites from ABP

that are manually monitored by the ABP team due to the sites’ fast-paced adaptation to

changes in the ACVL. Table 3.7 summarizes the results of applying CV-Inspector (with

ACVL) on these sites. Out of these sites, we note that 5 sites are detected as “CV” and the

remaining 355 as “No CV,” again with high precision. This finding shows that even the sites

that are closely monitored to be addressed by the ACVL team can successfully circumvent

the adblocker. Notably, if we consider only the 190 sites that we labeled as human labeling

effort, then CV-Inspector was able to save up to 98% of the work for ACVL curators by

predicting 188 sites correctly. Thus, CV-Inspector can help with continuously monitoring

these sites at a high frequency.

61

3.6 Discussion and Future Directions

Summary. In this paper, we studied an emerging threat in the advertising ecosystem: cir-

cumvention (CV) services that help publishers bypass adblockers and re-injects ads. CV

services are sophisticated, opaque for the user, and exploit fundamental weaknesses of ad-

blockers’ design and the open-source nature of anti-CV community efforts (exemplified by

the anti-CV list). Although there has been increasing anecdotal evidence about the adoption

of circumvention in the wild, to the best of our knowledge, ours is the first large-scale study

of the state of the circumvention arms race. We develop CV-Inspector: a methodology for

automatically crawling sites of interest and a classifier that can accurately detect whether

a site successfully circumvents the adblocker or not. We envision that CV-Inspector will

serve as an automation tool for filter list curators to help them focus their inspection efforts

on discovering new sites that employ circumvention in the wild and in monitoring sites of

interest continuously in the arms race between circumvention and anti-CV filter rules.

Open Source Tools. We plan to make CV-Inspector available to the community at [82].

This will include the datasets (including our labeled dataset of top-20K crawled sites), crawl-

ing instrumentation (shareable as Amazon Machine Images [21]), and the trained classifier.

Limitations. There are limitations in our design and implementation. First, CV-Inspector

uses differential analysis that relies on differences between the “No Adblocker” and “With

Adblocker” cases. If sites exhibit no actual differences in the two cases, then CV-Inspector

will not be able to detect circumvention. For example, searchenginereports.net already in-

cludes circumvented ads in the DOM structure of the “No Adblocker” case but only hidden.

When it detects an adblocker affecting its ads, it will simply show the backup ads that were

already there. Second, CV-Inspector only considers circumvention that appears without

user interaction. For instance, shahid4u.cam displays no visual ads to the user, but when

the user clicks on a link, it will redirect the user to an ad before showing the real content.

62

More details on implementation choices and limitations are provided in Sec. 3.4.1.3.

Future Directions. We plan to further automate filter rule generation and help anti-CV

authors, by building on two opportunities already provided by CV-Inspector. First, our

differential analysis already uncovers web requests that are related to circumvention. Con-

sider the spring.org.uk example: CV-Inspector already pinpoints all randomized paths

and subdomains of podfdch.com. Using that information, a filter list author can simply

create a filter rule such as “*.podfdch.comˆ” or any variations of its subdomains and paths

if there are common prefixes and suffixes like “||podfdch.com/erej*”. Second, our feature

extraction already dynamically generates CSS selectors of ad locations where re-injection can

happen. Filter list authors can translate them into DOM element hiding rules, as described

in Table 2.2. They can infer the effectiveness of the selectors — the more elements that

match, the more ads the selectors will affect.

It also remains to be seen how robust CV-Inspector is in the presence of ever-changing

circumvention obfuscation techniques. Our intuition is that the features used by CV-

Inspector (e.g., randomness in an obfuscated path) are inherently more long-lived and

harder to evade than the exact rules used by filter lists (e.g., the actual randomized string

in the path). It would be interesting to characterize the time scales of this arms race.

Feature engineering can also be improved. We can consider new features (e.g. extracted

from JS) and improve existing features (e.g. the way we capture DOM mutation, by taking

into account the DOM graph structure in the differential analysis). With respect to JS in

particular, the current version of CV-Inspector does not take into account JS features

on purpose, because CV providers heavily obfuscate JS, which makes differential analysis

challenging. As shown in Fig. 3.1, this involves retrieving new ad content (web requests) and

displaying the ad to the user at the end (DOM structure). The technique that JS utilizes to

re-inject ads back upon the page does not matter: as long as CV-Inspector can recognize

the final DOM structure, it can still detect circumvention.

63

Overall, we consider CV-Inspector to be the first significant step towards automating as-

pects of the defense (ad blockers, filter list authors’ effort) against circumvention by showing

that it can reduce human labeling efforts by 98%. The longer term goal is to fully automate

the defense against circumvention through detection and filter rule generation. In Chapter 4,

we further address filter rule generation by developing a framework to generate URL-based

filter rules using reinforcement learning.

64

Chapter 4

AutoFR: Automated Filter Rule

Generation for Adblocking

4.1 Introduction

As discussed in Sec. 2.1.2, adblockers are prevalent, especially on the web, and depend on

filter rules for their adblocking functionality. It is well-known that the filter rule curation

process is slow and error-prone [19], and requires significant continuous effort by the fil-

ter list community to keep them up-to-date [85]. As a result, as described in Sec. 2.1.3,

the research community is actively working on machine learning (ML) approaches to assist

with filter rule generation [30, 66, 124] or to build models to replace filter lists altogether

[73, 122, 146, 2]. There are two key limitations of prior ML-based approaches. First, ex-

isting ML approaches are supervised as they rely on human feedback and/or existing filter

lists (which are also manually curated) for training. This introduces a circular dependency

between these supervised ML models and filter lists — the training of models relies on the

very filter lists (and humans) that they aim to augment or replace. Second, existing ML

approaches do not explicitly consider the trade-off between blocking ads and avoiding break-

65

Browser

Site (ℓ)

Filter List
Author

Network
Requests

2. Create Filter
Rule and Apply

3. Visual
Inspection

Filter
Rules

1. Selects 5. Stop

Filter List
Author

4. Repeat

(a) Filter List Authors’ (Human) Workflow. How filter list authors create filter rules for a site ℓ: (1)
they select a network request caused by the site; (2) they create a rule and apply it on the site; (3) they
visually inspect whether it blocked ads without breakage; (4) they repeat the process if necessary for other
network requests; and (5) they stop when they have crafted rules that can block all/most ads for the site
without causing significant breakage.

Configs Updates

Environment

User of
AutoFR

Browser

Site (ℓ)

Agent

Policy Action
Space

2. Action (a)
(Filter Rule)

3. Reward

Output

Filter
Rules

1. Selects
5. Stop4. Repeat

(b) AutoFR (Automated) Workflow. AutoFR automates these steps as follows: (1) the agent selects
an action (i.e., filter rule) following a policy; (2) it applies the action on the environment; (3) the environment
returns a reward, used to update the action space; (4) the agent repeats the process if necessary; and (5)
the agent stops when a time limit is reached, or no actions are available to be explored. The human filter
list author only provides a site ℓ and configurations (e.g., threshold w and hyper-parameters).

Figure 4.1: AutoFR automates the steps taken by FL authors to generate filter rules for
a particular site. FL authors can configure the AutoFR parameters but no longer perform
the manual work. Once rules are generated by AutoFR, it is up to the FL authors to decide
when and how to deploy the rules to end-users.

age. An over-aggressive adblocking approach might block all ads on a site but may block

legitimate content at the same time. Thus, despite recent advances in ML-based adblocking,

filter lists remain defacto in adblocking.

Fig. 4.1(a) illustrates the workflow of a FL author for creating rules for a particular site: (1)

select a network request to block; (2) design a filter rule that corresponds to this request

and apply it on the site; (3) visually inspect the page to evaluate if the filter rule blocks ads

and/or causes breakage and; (4) repeat for other network requests and rules; since modern

sites are highly dynamic, and often more so in response to adblocking [85, 19, 149, 43], the

FL author usually revisits the site multiple times to ensure the rule remains effective; and

(5) stop when a set of filter rules can adequately block ads without causing breakage.

66

We ask the question: how can we minimize the manual effort of FL authors by automating the

process of generating and evaluating adblocking filter rules? We propose AutoFR to automate

each of the aforementioned steps, as illustrated in Fig. 4.1(b), and we make the following

contributions.

First, we formulate the filter rule generation problem within a reinforcement learning (RL)

framework, which enables us to efficiently create and evaluate good candidate rules, as op-

posed to brute force or random selection. We focus on URL-based filter rules that block ads,

a popular and representative type of rules that can be visually audited. An important com-

ponent, which replaces the visual inspection, is the detection of ads (through a perceptual

classifier, Ad Highlighter [127]) and of visual breakage (through JavaScript [JS] for images

and text) on a page. We design a reward function that combines these metrics to enable

explicit control over the trade-off between blocking ads and avoiding breakage.

Second, we design and implement AutoFR to train the RL agent by accessing sites in a

controlled realistic environment. It creates rules for a site in under two minutes, which is

crucial for scalability. We provide in-depth details of our implementation, hyper-parameter

tuning, and experimental setup for future researchers to reproduce and extend AutoFR. We

deploy and evaluate AutoFR’s efficient implementation on Top–5K websites, and we find

that the filter rules generated by AutoFR block 86% of the ads. The effectiveness of the

AutoFR rules is overall comparable to EasyList in terms of blocking ads and visual breakage.

Third, we address how to generate filter rules that are applicable across multiple sites. We

leverage AutoFR as a building block to design three new approaches. The first modifies our

AutoFR algorithm to accept a set of sites and optimize rules for them. The second utilizes

the notion of rule popularity, i.e., if the same rules are created individually for several sites,

then intuitively, they will also be good for other sites. The third relies on collaborative

filtering, i.e., use existing rules from the known sites and apply them to other sites based

on site similarity. We compare these approaches against AutoFR as our baseline using

67

both controlled and in the wild experiments and evaluate them for effectiveness, efficiency,

and maintainability. We envision that the adblocking community will use AutoFR and its

variations to automatically generate and update filter rules at scale.

The rest of our paper is organized as follows. Sec. 4.2 provides background and related work.

Sec. 4.3 formalizes the problem of filter rule generation, including the human process, the

formulation as an RL problem, and our particular multi-arm bandit algorithm for solving it.

Sec. 4.4 presents our implementation of the AutoFR framework. Sec. 4.5 provides its eval-

uation on the Top–5K sites. Sec. 4.6 describes and compares new approaches to generating

filter rules across multiple sites. Sec. 4.7 provides our implementation of AutoFR in a live

setting. Sec. 4.8 concludes the paper.

4.2 Most Closely RelatedWork

Reinforcement Learning. We formulate the problem of filter rule curation from scratch

(i.e., without any ground truth or existing list) as a reinforcement learning (RL) problem; see

Sec. 4.3. Within the vast literature in RL [128], we choose the Multi-Arm Bandits (MAB)

framework [22], for reasons explained in Sec. 4.3.2. Identifying the top–k arms [38, 89]

rather than searching for the one best arm [60] has been used in the problems of coarse

ranking [76] and crowd-sourcing [40, 68]. Contextual MAB has been used to create user pro-

files to personalize ads and news [87]. Bandits where arms have similar expected rewards,

commonly called Lipschitz bandits [77], have also been utilized in ad auctions and dynamic

pricing problems [78]. In our context of filter rule generation, we leverage the theoretical

guarantees established for MAB to search for “good” filter rules and identify the “bad”

filter rules, while searching for opportunities of “potentially good” filter rules (hierarchical

problem space [141]), as discussed in Sec. 4.3.3. While RL algorithms, in general, have been

applied to several application domains [56, 147, 33, 57], RL often faces challenges in the

real-world [53] including convergence and adversarial settings [62, 144, 114, 71, 23].

68

Our Work in Perspective. The design of the framework is described in Sec. 4.3 and il-

lustrated in Fig. 4.1(b). AutoFR is the first to fully automate the process of filter rule

generation and create URL-based, per-site rules that block ads from scratch, using reinforce-

ment learning. The majority of prior ML-based techniques relied on existing filter lists at

some point in their pipeline, thus creating a circular dependency. Furthermore, AutoFR is

the first to choose the granularity of the URL-based rule to explicitly optimize the trade-off

between blocking ads and avoiding visual breakage.

The implementation is described in Sec. 4.4 and illustrated in Fig. 4.3. Within the RL

framework, AutoFR’s key design contributions include the action space, the RL components

(e.g., agent, environment, reward, policy), the annotation of raw AdGraphs into site snap-

shots, and the logic and implementation of utilizing site snapshots to emulate site visits. The

latter was instrumental in scaling the approach (it reduced the time for generating rules for a

single site from approximately 13 hours to 1.6 minutes) and making our results reproducible.

For some individual RL components, we leverage state-of-the-art tools: (1) we utilize one

part of AdGraph that creates a graph representing the site (we do not use the trained ML

model of AdGraph); and (2) we use Ad Highlighter to automatically detect ads, which is

used to compute our reward function. As these individual components improve over time,

the AutoFR framework can benefit from new and improved versions or even incorporate

newly available tools in the future.

4.3 The AutoFR Framework

In this section, we formalize the problem of filter rule generation, including the process fol-

lowed by human FL authors (Sec. 4.3.1 and Fig. 4.1(a)), our formulation as a reinforcement

learning problem (Sec. 4.3.2 and Fig. 4.1(b)), and our multi-arm bandit algorithm for solving

it (Sec. 4.3.3 and Alg. 1).

69

Description FilterRule

1 eSLD ||ad.comˆ

2 FQDN ||img.ad.comˆ

3 With Path ||ad.com/banners/ or ||img.ad.com/banners/

Table 4.1: URL-based Filter Rules. They block requests, listed from coarser to finer-
grain: eSLD (effective second-level domain), FQDN (fully qualified domain), With Path
(domain and path). Other types of filter rules are provided in Table 2.2.

4.3.1 Filter List Authors’ Workflow

Scope. Among all possible filter rules, we focus on the important case of URL-based rules for

blocking ads to demonstrate our approach. Table 4.1 shows examples of URL-based rules at

different granularities: blocking by the effective second-level domain (eSLD), fully qualified

domain (FQDN), and including the path.

Filter List Authors’ Workflow for Creating Filter Rules. Our design of AutoFR is

motivated by the bottlenecks of filter rule generation, revealed by prior work [85, 19], our

discussions with FL authors, and our own experience in curating filter rules. Next, we

break down the process that FL authors employ into a sequence of tasks, also illustrated

in Fig. 4.1(a). When FL authors create filter rules for a specific site, they start by visiting

the site of interest using the browser’s developer tools. They observe the outgoing network

requests and create, try, and select rules through the following workflow.

Task1: Select a Network Request . FL authors consider the set of outgoing network requests

and treat them as candidates to produce a filter rule. The intuition is that blocking an ad

request will prevent the ad from being served. For sites that initiate many outgoing network

requests, it may be time-consuming to go through the entire list. When faced with this task,

FL authors depend on sharing knowledge of ad server domains with each other or heuristics

based on keywords like “ads” and “bid” in the URL. FL authors may also randomly select

network requests to test.

70

Task2: Create a Filter Rule and Apply. FL authors must create a filter rule that blocks the

selected network request. However, there are many options to consider since rules can be the

entire or part of the URL, as shown in Table 4.1. FL authors intuitively handle this problem

by trying first an eSLD filter rule because the requests can belong to an ad server (i.e., all

resources served from the eSLD relate to ads). However, the more specific the filter rule is

(e.g., eSLD→ FQDN), the less likely it would lead to breakage. Then, the FL authors apply

the filter rule of choice onto the site.

Task3: Visual Inspection. Once the rule is applied on the site, FL authors inspect its effect,

i.e., whether it indeed blocks ads and/or causes breakage (i.e., legitimate content goes miss-

ing or the page displays improperly). FL authors use differential analysis. They visit a site

with and without the rule applied, and they visually inspect the page and observe whether

ads and non-ads (e.g., images and text) are present/missing before/after applying the rule. In

assessing the effectiveness of a rule, it is essential to ensure that it blocks at least one request,

i.e., a hit. Filter rules are considered “good” if they block ads without breakage and “bad”

otherwise. Avoiding breakage is critical for FL authors because rules can impact millions of

users. If a rule blocks ads but causes breakage, it is considered a “potentially good” rule.

Task4: Repeat . FL authors repeat the process of Tasks 1, 2, 3, multiple times to make sure

that the filter rule is effective. Repetition is necessary because modern sites typically are

dynamic. Different visits to the same site may trigger different page content being displayed

and different ads being served. If a rule from Task 2 blocks ads but causes breakage, the

author may try a more granular filter rule (e.g., eSLD→ FQDN from Table 4.1). If the rule

does not block ads, go back to Task 1.

Task5: Stop and Store Good Filter Rules. FL authors stop this iterative process when they

have identified a set of filter rules that block most ads without breakage (i.e., a best-effort

approach). None of the considered rules may satisfy these (somewhat subjective) conditions,

in which case no filter rules are produced.

71

Bottlenecks: ScaleandHuman-in-the-Loop. The workflow above is labor-intensive and

does not scale well. There is a large number of candidate rules to consider for sites with a

large number of network requests (Task 1) and long and often obfuscated URLs (Task 2).

The scale of the problem is amplified by site dynamics, which requires repeatedly visiting a

site (Task 4). The effect of applying each single rule must then be evaluated by the human

FL author through visual inspection (Task 3), which is time-consuming on its own.

Motivated by these observations, we aim to automate the process of filter rule generation

per-site. We reduce the number of iterations needed (by intelligently navigating the search

space for good filter rules via reinforcement learning), and we minimize the work required

by the human FL author in each step (by automating the visual inspection and assessment

of a rule as “good” or “bad”). Our proposed methodology is illustrated in Fig. 4.1(b) and

formalized in the next section.

4.3.2 Reinforcement Learning Formulation

As illustrated in Fig. 4.1(a), FL authors repeatedly apply different rules and evaluate their

effects until they build confidence on which rules are generally “good” for a particular site.

This repetitive action-response cycle lends itself naturally to the reinforcement learning

(RL) paradigm, as depicted in Fig. 4.1(b), where actions are the applied filter rules and

rewards (response) must capture the effectiveness of the rules upon applying them to the

site (environment). Testing all possible filter rules by brute force is infeasible in practice due

to time and power resources. However, RL can enable efficient navigation of the action space.

Specifically, we choose the multi-arm bandit (MAB) RL formulation. The actions in MAB are

independent k-bandit arms and the selection of one arm returns a numerical reward sampled

from a stationary probability distribution that depends on this action. The reward deter-

mines if the selected arm is a “good” or a “bad” arm. Through repeated action selection, the

72

objective of the MAB agent is to maximize the expected total reward over a time period [22].

The MAB framework fits well with our problem. The MAB agent replaces the human (FL

author) in Fig. 4.1(a). The agent knows all available “arms” (possible filter rules), i.e., the ac-

tion space; see Sec. 4.3.2.1. The agent picks a filter rule (arm) and applies it to theMAB envi-

ronment, which, in our case, consists of the site ℓ (with its unknown dynamics as per Task 4),

the browser, and a selected configuration (how we value blocking ads vs. avoiding breakage,

explained in Sec. 4.3.3). The latter affects the reward of an action (rule) the agent selects.

Filter rules are independent of each other. Furthermore, the order of applying different filter

rules does not affect the result. For adblockers, like Adblock Plus, blocking rules do not have

precedence. Through exploring available arms, the agent efficiently learns which filter rules

are best at blocking ads while minimizing breakage; see Sec. 4.3.2.2. Next, we define the

key components of the proposed AutoFR framework, depicted in Fig. 4.1(b). It replaces the

human-in-the-loop in two ways: (1) the FL author is replaced by the MAB policy that avoids

brute force and efficiently navigates the action space; and (2) the reward function is automat-

ically computed, as explained in Sec. 4.3.2.2, without requiring a human’s visual inspection.

4.3.2.1 Actions

An action is a URL blocking filter rule that can have different granular levels, shown in

Table 4.1, and is applied by the agent onto the environment. We use the terms action, arm,

and filter rule, interchangeably.

Hierarchical Action Space AH. Based on the outgoing network requests of a site ℓ

(Task 1), there are many possible rules that can be created (Task 2) to block that request.

Fig. 4.2(a) shows an example of dependencies among candidate rules:

1. We should try rules that are coarser grain first before trying more finer-grain rules (the

horizontal dotted lines). In other words, try doubleclick.net, then stats.g.doubleclick.net.

73

(a) Hierarchical Action Space

CT

CI

CA

11

20

3

(b) Site Representation

Figure 4.2: (a) Hierarchical Action Space. A node (filter rule) within the action space has two

different edges (i.e., dependencies to other rules): (1) the initiator edge,→, denotes that the source

node initiated requests to the target node; and (2) the finer-grain edge, 99K, targets a request more

specifically, as discussed in Task 4 and Table 4.1. (b) Site Representation. We represent a
site as counts of visible ads (CA), images (CI), and text (CT), as explained in Sec. 4.3.2.2.
Applying a filter rule changes them, by blocking ads (reducing CA) and/or hiding legitimate
content (changing CI and CT , thus breakage B).

This intuition was discussed in Task 4.

2. If doubleclick.net initiates requests to clmbtech.com, we should explore it first, before

trying clmbtech.com (the vertical solid lines). Sec. 4.4.2 describes how we retrieve the

initiator information.

The dependencies among rules introduce a hierarchy in the action space AH , which can be

leveraged to expedite the exploration and discovery of good rules via pruning. If an action

(filter rule) is good (it brings a high reward, as defined in Sec. 4.3.2.2), the agent no longer

needs to explore its children. We further discuss the size of action spaces in Fig. 4.6; we

show that they can be large. The creation of AH automates Task 2.

4.3.2.2 Rewards

Once a rule is created, it is applied on the site (Task 2). The human FL author visually

inspects the site, before and after the application of the rule, and assesses whether ads have

74

been blocked without breaking the page (Task 3). To automate this task, we need to define

a reward function for the rule that mimics the human FL author’s assessment of whether a

rule blocks ads and the breakage that could occur.

Site Representation. We abstract the representation of a site ℓ by counting three types

of content visible to the user: we count the ads (CA), images (CI), and text (CT) displayed.

An example is shown in Fig. 4.2(b). The baseline representation refers to the site before

applying the rule. Since a site ℓ has unknown dynamics (Task 4), we need to visit it multiple

times and average these counters: CA, CI , and CT .

We envision that obtaining these counters from a site can be done not only by a human

(as it is the case today in Task 3) but also automatically using image recognition (e.g., Ad

Highlighter [127]) or better tools as they become available. This is an opportunity to remove

the human-in-the-loop and further automate the process. We further detail this in Sec. 4.4.3.

Site Feedback after Applying a Rule. When the agent applies an action a (rule), the

site representation will change from (CA,CI ,CT) to (CA, CI , CT). The intuition is that

after applying a filter rule, it is desirable to see the number of ads decrease as much as

possible (ideally CA =0) and continue to see the legitimate content (i.e., no change in CI ,

CT compared to the baseline). To measure the difference before and after applying the rule,

we define the following:

ĈA=
CA−CA

CA

, ĈI=
|CI−CI |

CI

, ĈT =
|CT−CT |

CT

(4.1)

ĈA measures the fraction of ads blocked; the higher, the better the rule is at blocking ads.

Ideally all ads are blocked, i.e., ĈA is 1. In contrast, ĈI and ĈT measure the fraction of

page broken. Higher values incur more breakage. ĈA, ĈI and ĈT are bounded between [0,1].

Next, we define page breakage (B) as the visible images (ĈI) and text (ĈT), which are not

75

related to ads but are missing after a rule is applied:

B= ĈI+ĈT

2
(4.2)

We take a neutral approach and treat both visual components equally and average ĈI , ĈT .

This can be configured to express different preferences by the user, e.g., treat content above-

the-fold as more important. Lastly, avoiding breakage is measured by 1−B. It is desirable

that 1−B is 1, and the site has no visual breakage.

Trade-off: BlockingAds (ĈA) vs. Avoiding Breakage (1−B). The goal of a human FL

author is to choose filter rules that block as many ads as possible (high ĈA) without breaking

the page (high 1−B). There are different ways to capture this trade-off. We could have

taken a weighted average of ĈA and B. However, to better mimic the practices of today’s FL

authors, we use a threshold w∈ [0,1] as a design parameter to control how much breakage a

FL author tolerates: 1−B≥w. Blocking ads is easy when there is no constraint on breakage

— one can choose rules that break the whole page. FL authors control this either by using

more specific rules (e.g., eSLD→ FQDN) to avoid breakage or avoid blocking at all. We rely

on this trade-off as the basis of our evaluation in Sec. 4.5. It is desirable to operate where

ĈA = 1 and 1−B= 1. In practice, FL authors tolerate little to no breakage, e.g., w≥ 0.9.

However, w is a configurable parameter in our framework.

RewardFunctionRF. When the MAB agent applies a filter rule F (action a) at time t on

the site ℓ (environment), this will lead to ads being blocked and/or content being hidden,

which is measured by feedback (ĈA, ĈI , ĈT) defined in Eq. (4.1). We design a reward function

RF :R3→ [−1,1] that mimics the FL author’s assessment (Task 3) of whether a filter rule F is

76

good (RF (w,ĈA,B)>0) or bad (RF (w,ĈA,B)<0) at blocking ads based on the site feedback:

RF (w,ĈA,B)=

−1 if ĈA=0 (4.3a)

0 if ĈA>0 , 1−B<w (4.3b)

ĈA if ĈA>0 , 1−B≥w (4.3c)

The rationale for this design is as follows.

a) Bad Rules (Eq. (4.3a)): If the action does not block any ads (ĈA=0), the agent receives

a reward value of −1 to denote that this is not a useful rule to consider.

b) Potentially Good Rules (Eq. (4.3b)): If the rule blocks some ads (ĈA > 0) but incurs

breakage beyond the FL author’s tolerable breakage, then it is considered as “poten-

tially good”1 and receives a reward value of zero.

c) Good Rules (Eq. (4.3c)): If the rule blocks ads2 and causes no more breakage than what

is tolerable for the FL author, then the agent receives a positive reward based on the

fraction of ads that it blocked (ĈA).

4.3.2.3 Policy

Our goal is to identify “good” filter rules, i.e., rules that give consistently high rewards. To

that end, we need to refine our notion of a “good” rule and define a strategy for exploring

the space of candidate filter rules.

Expected Reward Qt(a). The MAB agent selects an action a, following a policy, from a

set of available actions A, and applies it on the site to receive a reward (rt=RF (w,ĈA,B)).

It does this over some time horizon t= 1, 2, ..., T . However, due to the site dynamics as

explained in Task 4, the reward varies over time, and we need a different metric that captures

1“Potentially” means that the rule may have children rules within the action space that are effective at
blocking ads with less breakage.

2Eq. (4.3) explicitly requires a rule to block at least some ads, to receive a positive reward. AutoFR can
select rules that have additional side-benefits (e.g., also blocks tracking requests, typically related to ads).

77

how good a rule is over time. In MAB, this metric is the weighted moving average of the

rewards over time: Qt+1(a)=Qt(a)+α(rt−Qt(a)), where α is the learning step size.

Policy. Due to the large scale of the problem and the cost of exploring candidate rules, the

agent should spend more time exploring good actions. The MAB policy utilizes Qt(a) to

balance between exploring new rules in AH and exploiting the best known a so far. This

process automates Task 1 and 2.

We use a standard Upper Bound Confidence (UCB) policy to manage the trade-off between

exploration and exploitation [22]. Instead of the agent solely picking the maximum Qt(a) at

each t to maximize the total reward, UCB considers an exploration value Ut(a) that measures

the confidence level of the current estimates, Qt(a). An MAB agent that follows the UCB

policy selects a at time t, such that at=argmaxa[Qt(a)+Ut(a)]. Higher values of Ut(a) mean

that a should be explored more. It is updated using Ut(a)=c×
√

logN [a′]
N [a]

, where N [a′] is the

number of times the agent selected all actions (a′) and N [a] is the number of times the agent

has selected a, and c is a hyper-parameter that controls the amount of exploration.

4.3.3 The AutoFR Algorithm

Algorithm 1 summarizes our AutoFR algorithm. The inputs are the site ℓ that we want

to create filter rules for, the design parameter (threshold) w, and various hyper-parameters,

discussed in Sec. 4.5.1.1. In the end, it outputs a set of filter rules F , if any. It consists of

the two procedures discussed next.

Initialize Procedure. First, we obtain the baseline representation of a site of interest ℓ

(Sec. 4.3.2.2), when no filter rules are applied. It will visit the site n times (i.e., VisitSite)

to capture some dynamics of ℓ. The environment will return the average counters CA,CI ,CT ,

and the outgoing reqs. The average counters are used by the reward function (Eq. (4.3)).

Next, we build the hierarchical action space AH using all network requests reqs (Task 1, 2).

78

AutoFRProcedure. This is the core of AutoFR algorithm. We call Initialize and then

traverse the action space AH from the root node to get the first set of arms to consider,

denoted as A. Note that we treat every layer (A) of AH as a separate run of MAB with

independent arms (filter rules).

One run of MAB starts by initializing the expected values of all “arms” at Q0 and then

running UCB for a time horizon T , as explained in Sec. 4.3.2.3. Since the size ofA can change

at each run, we scale T based on the number of arms; by default, we used 100×A.size. Each

run of the MAB ends by checking the candidates for filter rules. In particular, we check if

a filter rule should be further explored (down the AH) or become part of the output set F ,

using Eq. (4.3) as a guide. A technicality is that Eq. (4.3b) compares the reward RF to zero,

while in practice, Q(a) may not converge to exactly zero. Therefore, we use a noise threshold

(ϵ=0.05) to decide if Qt(a) is close enough to zero (−ϵ≤Q(a)≤ϵ). Then, we apply the same

intuition as in Eq. (4.3) but using Q(a), instead of RF , to assess the rule and next steps.

a) Bad Rules: Ignore. This case is not explicitly shown but mirrors Eq. (4.3a). If a rule is

Q(a)< ϵ, then we ignore it and do not explore its children.

b) Potentially Good Rules: Explore Further. Mirroring Eq. (4.3b), if a rule is within a range

of ± ϵ of zero, it helps with blocking ads but also causes more breakage than it is ac-

ceptable (w). In that case, we ignore the rule but further explore its children within AH .

An example based on doubleclick.net is shown in Fig. 4.2(a). In that case, A is reset to

be the immediate children of these arms, and we proceed to the next MAB run.

c) Good Rules: Select. When we find a good rule (Q(a)> ϵ), we add that rule to our list

F and no longer explore its children. This mimics Eq. (4.3c). An example is shown in

Fig. 4.2(a): if doubleclick.net is a good rule, then its children are not explored further.

We repeatedly run MAB until there are no more potentially good filter rules to explore3.

3When we find a rule that we cannot apply, we put it to “sleep”, in MAB terminology. This is because they

79

Algorithm1AutoFR Algorithm
Require:

Design-parameter: w∈ [0,1]
Inputs: Site (ℓ)

Reward function (RF :R3→ [−1,1])
Noise threshold (ϵ =0.05)
Number of site visits (n=10)

Hyper-parameters: Exploration for UCB (c=1.4)
Initial Q-value (Q0=0.2)
Learning step size (α= 1

N [a])

Time Horizon (T)
Output: Set of filter rules (F)

1:
2: procedure Initialize(ℓ, n)
3: CA,CI ,CT , reqs← VisitSite(ℓ, n, ∅)
4: AH← BuildActionSpace(reqs)
5: return CA,CI ,CT ,AH

6: end procedure
7:
8: procedure AutoFR(ℓ, w, c, α, n)
9: CA,CI ,CT ,AH←Initialize(ℓ,n)
10: F←∅, A←∅
11: A← AH .root.children
12: repeat
13: Q(a)←Q0, ∀a∈A
14: for t=1 to T do
15: at← ChooseArmUCB(A, Qt, c)
16: CAt ,CIt ,CTt , hits← VisitSite(ℓ, 1, at)

17: ĈAt
,ĈIt ,ĈTt

← SiteFeedback(CAt
,CIt ,CTt

)

18: Bt ← Breakage(ĈIt ,ĈTt)
19: if at∈hits then
20: rt←RF (w, ĈAt

,Bt)
21: Qt+1(at)←Qt(at)+α(rt−Qt(at))
22: else
23: Put at to sleep
24: end if
25: end for
26: A←{a.children , ∀a∈A|− ϵ <=Q(a)<= ϵ}
27: F←F∪{∀a∈A|Q(a)> ϵ }
28: until A is ∅
29: return F
30: end procedure

This stopping condition automates Task 5. The output is the final set of good filter rules F .

do not block any network request (i.e., no hits, in Task 3), and we expect them to not likely affect the site in
the future, either.

80

Environment (Controlled)

Site Snapshots
(NetworkX)

Agent (Python)

Policy
(Python)

Action Space
(NetworkX)

2. Action (a)
(adblockparser)

Output
(Text File)

Filter
Rules

User of
AutoFR

Site (ℓ)

Configs
(𝑤)

Hits by Action
(adblockparser)

b. Extract requests (Selenium)

Updates

1. Selects

c. Extract (JS) &
annotate (Selenium)

Docker

a. Visit site n times (Selenium)

5. Stop

AdGraph
Browser

Ad
Highlighter

4. Repeat

In
iti

al
iz

e
A

ut
oF

R
 A

lg
or

ith
m

3. Reward (Python)

Figure 4.3: AutoFRExampleWorkflow(ControlledEnvironment). Initialize (a–c):
(a) spawns n=10 docker instances and visits the site until it finishes loading; (b) extracts the
outgoing requests from all visits and builds the action space; (c) extracts the raw graphs and
annotates them to denote CA, CI , and CT , using JS and Selenium. Once all 10 snapshots are
annotated, we run the RL portion of the AutoFR procedure (steps 1–4). Lastly, AutoFR
outputs the rules at step 5, e.g., ||s.yimg.com/rq/darla/4-10-0/html/r-sf.html.

4.4 AutoFR Implementation

In this section, we present the AutoFR tool that fully implements the RL framework as de-

scribed in the previous section. AutoFR removes the human-in-the-loop. The FL author only

needs to provide their preferences (i.e., how much they care about avoiding breakage via w)

and hyper-parameters (detailed in Alg. 1), and the site of interest ℓ. AutoFR then automates

Tasks 1– 5 and outputs a list of filter rules F specific to ℓ, and their corresponding values Q.

ImplementationCosts. Let us revisit Fig. 4.1(b) and reflect on the interactions with the

site. The MAB agent (as well as the human FL author) must visit the site ℓ, apply the filter

rule, and wait for the site to finish loading the page content and ads (if any). The agent must

repeat this several times to learn the expected reward of rules in the set of available actions

A. First, for completeness, we implemented exactly that in a live environment, referred to

as AutoFR-L with details in Sec. 4.7.

81

We employed cloud services using Amazon Web Services (AWS) to scale to tens of thou-

sands of sites. This has high computation and network access costs and, more importantly,

introduces long delays until convergence.

To make things concrete. For the delay, we found it took 47 seconds per-visit to a site, on

average, by sampling 100 sites in the Top–5K. Thus, running AutoFR for one site with ten

arms in the first MAB run, for 1K iterations, would take 13 hours for one site alone! For the

monetary cost, running AutoFR-L on 1K sites and scaling it using one AWS EC2 instance

per-site ($0.10/hour) would cost roughly $1.3K for 1K sites, or $1.3 to run it once per-site.

This a well-known problem with applying RL in a real-world setting. Thus, an implementa-

tion of AutoFR that creates rules by interacting with live sites is inherently slow, expensive,

and does not scale to a large number of sites.

Scalable and Practical. Although AutoFR-L is already an improvement over the human

workflow, we were able to design an even faster tool, which produces rules for a single site in

minutes instead of hours. The core idea is to create rules in a realistic but controlled environ-

ment, where the expensive and slow visits to the website are performed in advance, stored

once, and then used during multiple MAB runs, as explained in Sec. 4.3.3. In this section, we

present the design of this implementation in a controlled environment: AutoFR-C, or Aut-

oFR for simplicity. An implementation overview is provided in Fig. 4.3. Importantly, this al-

lows our AutoFR tool to scale across thousands of sites and, thus, utilized as a practical tool.

4.4.1 Environment

To deal with the aforementioned delays and costs during training, we replace visiting a site

live with emulating a visit to the site, using saved site snapshots. This provides advantages:

(1) we can parallelize and speed up the collection of snapshots, and then run MAB off-line;

(2) we can reuse the same stored snapshots to evaluate different w values, algorithms, or

82

reward functions while incurring the collection cost only once; and (3) we plan to make these

snapshots available to the community.

Collecting and Storing Snapshots. Site snapshots are collected up-front during the Ini-

tialize phase of Alg. 1 and saved locally. We illustrate this in Fig. 4.3, steps a–c. We use

AdGraph [73], an instrumented Chromium browser that outputs a graph representation of

how the site is loaded. To capture the dynamics, we visit a site multiple times using Selenium

to control AdGraph and collect and store the site snapshots. The environment is dockerized

using Debian Buster as the base image, making the setup simple and scalable. For example,

we can retrieve 10 site snapshots in parallel, if the host machine can handle it. In Sec. 4.5.1,

we find that a site snapshot takes 49 seconds on average to collect. Without parallelization,

this would take 8 minutes to collect 10 snapshots sequentially.

Defining Site Snapshots. Site snapshots represent how a site ℓ is loaded. They are di-

rected graphs with known root nodes and possible cycles. An example is shown in Fig. 4.4.

Site snapshots are large and contain thousands of nodes and edges, shown later in Fig. 4.6.

We use AdGraph as the starting point for defining the graph structure and build upon it.

First, we automatically identify the visible elements, i.e., ads (AD), images (IMG), and text

(TEXT) (technical details in Sec. 4.4.3), for which we need to compute counts CA, CI , and

CT , respectively. Second, once we identify them, we make sure that AdGraph knows that

these elements are of interest to us. Thus, we annotate the elements with a new attribute

such as “FRG-ad”, “FRG-image”, and “FRG-textnode” set to “True”. Annotating is chal-

lenging because ads have complex nested structures, and we cannot attach attributes to text

nodes. Third, we include how JS scripts interact with each other using “Script-used-by”

edges, shown in Fig. 4.4. Lastly, we save site snapshots as “.graphml” files.

Emulating a Visit to a Site. Emulation means that the agent does not actually visit the

site live but instead reads a site snapshot and traverses the graph to infer how the site was

83

loaded. To emulate a visit to the site, we randomly read a site snapshot into memory using

NetworkX and traverse the graph in a breadth-first search manner starting from the root

— effectively replaying the events (JS execution, HTML node creation, requests that were

initiated, etc.) that happened during the loading of a site. This greatly increases the per-

formance of AutoFR as the agent does not wait for the per-site visit to finish loading or for

ads to finish being served. Thus, reducing the network usage cost. We hard-code a random

seed (40) so that experiments can be replicated later.

Applying Filter Rules. To apply a filter rule, we use an offline adblocker, adblock-

parser [120], which can be instantiated with our filter rule. If a site snapshot node has

a URL, we can determine whether it is blocked by passing it to adblockparser. We further

modified adblockparser to expose which filter rules caused the blocking of the node (i.e.,

hits). If a node is blocked, we do not consider its children during the traversal.

Capturing Site Feedback from Site Snapshots. The next step is to assess the effect of

applying the rule on the site snapshot. At this point, the nodes of site snapshots are already

annotated. We need to compute the counters of ads, images, and text (CA, CI , CT), which are

then used to calculate the reward function. Its Python implementation follows Sec. 4.3.2.2.

We use the following intuition. If we block the source node of edge types “Actor”, “Re-

questor”, or “Script-used-by”, then their annotated descendants (IMG, TEXT, AD) will be

blocked (e.g., not visible or no longer served) as well. Consider the following examples on

Fig. 4.4: (1) if we block JS Script A, then we can infer that the annotated IMG and TEXT

will be blocked; (2) if we block the annotated IMG node itself, then it will block the URL

(i.e., stop the initiation of the network request), resulting in the IMG not being displayed;

and (3) if we block JS Script B that is used by JS Script A, then the annotated nodes IMG,

TEXT, IFRAME (AD) will all be blocked. As we traverse the site snapshot, we count as

follows. If we encounter an annotated node, we increment the respective counters CA. CI ,

84

CT . If an ancestor of an annotated node is blocked, then we do not count it.

Limitations. To capture the site dynamics due to a site serving different content and ads, we

perform several visits per-site and collect the corresponding snapshots. We found that 10 vis-

its were sufficient to capture site dynamics in terms of the eSLDs on the site, which is a similar

approach taken by prior work [85, 149]. We describe why 10 visits are enough in Sec. 4.5.1.1.

However, there is also a different type of dynamics that snapshots miss. When we emulate a

visit to the site while applying a filter rule, we infer the response based on the stored snapshot.

In the live setting, the site might detect the adblocker (or detect missing ads [85]) and try to

evade it (i.e., trigger different JS code), thus leading to a different response that is not cap-

tured by our snapshots. We evaluate this limitation in Sec. 4.5.1.3 and show that it does not

impact the effectiveness of our rules. Another limitation can be explained via Fig. 4.4. When

JS Script B is used by JS Script A, we assume that blocking B will negatively affect A. There-

fore, if A is responsible for IMG and TEXT, then blocking B will also block this content; this

may not happen in the real world. When we did not consider this scenario, we found that Aut-

oFR may create filter rules that cause major breakage. Since breakage must be avoided and

we cannot differentiate between the two possibilities, we maintain our conservative approach.

4.4.2 Agent

Action SpaceAH. During the Initialize procedure (Alg. 1), we visit the site ℓ multiple

times and construct the action space. First, we convert every request to three different

filter rules, as shown in Table 4.1. We add edges between them (eSLD → FQDN → With

path), which serve as the finer-grain edges, shown in Fig. 4.2(a). We further augment AH

by considering the “initiator” of each request, retrieved from the Chrome DevTools protocol

and depicted in solid lines in Fig. 4.2(a). This makes the AH taller and reduces the number

of arms to explore per run of MAB, as described in Sec. 4.3.3. The resulting action space is

a directed acyclic graph with nodes that represent filter rules. Fig. 4.2(a) provides a zoom-in

85

Figure 4.4: Site Snapshot. It is a graph that represents how a site is loaded. The nodes
represent JS Scripts, HTML nodes (e.g., DIV, IMG, TEXT, IFRAME), and network
requests (e.g., URL). “Actor” edges track which source node added or modified a target
node. “Requestor” edges denote which nodes initiated a network request. “DOM” edges
capture the HTML structure between HTML nodes. Lastly, “Script-used-by” edges track
how JS scripts call each other. As described in Sec. 4.4.1, nodes annotated by AutoFR have
filled backgrounds, while grayed-out nodes are invisible to the user.

example. We implement it as a NetworkX graph and save it as a “.graphml” file, a standard

graph file type utilized by prior work [124].

Policy. The UCB policy of Sec. 4.3.2.3 is implemented in Python. At time t (Alg. 1, line

14), the agent retrieves the filter rule selected by the policy and applies it on the randomly

chosen site snapshot instance.

4.4.3 Automating Visual Component Detection

A particularly time-consuming step in the human workflow is Task 3 in Fig. 4.1(a). The FL

author visually inspects the page, before and after they apply a filter rule, to assess whether

the rule blocked ads (ĈA) and/or impacted the page content (ĈI , ĈT). AutoFR in Fig. 4.1(b)

summarizes this assessment in the reward in Eq. (4.3). However, to minimize the human

86

work, we also need to replace the visual inspection and automatically detect and annotate

elements as ads (AD), images (IMG), or text (TEXT) on the page.

Detection ofAD(Perceptual). To that end, we automatically detect ads using Ad High-

lighter [127], a perceptual ad identifier (and web extension) that detects ads on a site. We

evaluated different ad perceptual classifiers, including Percival [2], and we chose Ad High-

lighter because it has high precision and does not rely on existing filter rules. We utilize

Selenium to traverse nested iframes to determine whether Ad Highlighter has marked them

as ads. The details of how Ad Highlighter works are deferred to Sec. 4.7.2.1.

Detection of IMG andTEXT. We automatically detect visible images and text by using

Selenium to inject our custom JS that walks the HTML DOM and finds image-related ele-

ments (i.e., ones that have background-urls) or the ones with text node type, respectively.

To know if they are visible, we see whether the element’s or text container’s size is > 2px [85].

Discussion of the Visual Components. It is important to note that our framework is

agnostic to how we detect elements on the page. For detecting ads, this can be done by

a human, the current Ad Highlighter, future improved perceptual classifiers, heuristics, or

any component that identifies ads with high precision. This also applies to detecting the

number of images and text. Images can be counted using an instrumented browser that

hooks into the pipeline of rendering images [2]. Text can be extracted from screenshots of

a site using Tesseract [127], an OCR engine. Therefore, the AutoFR framework is modular

and dependent on how well these components perform.

Discussion of BlockingAds vs. Tracking. We focus on detecting ads and generating filter

rules that block ads for two reasons. First, they are the most popular type of rules in filter

lists. Second, ads can be visually detected, enabling a human (FL author) or a visual detec-

tion module (such as Ad Highlighter) to assess if the rule was successful (the ad is no longer

displayed) or not at blocking ads. Although tracking is related to ads, it is impossible to de-

87

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Total eSLDs

1
2
3
4
5
6
7
8
9

10

S
ite

 V
is

its

Figure 4.5: SiteDynamics. We consider site dynamics as the unique eSLDs a site contacts.
Using our Full-W09-Dataset , we show the fraction of unique eSLDs that we collect after
every subsequent visit. By the fifth visit, we collected the majority of site dynamics for
most sites within our dataset. Besides some outliers, visiting a site 10 times is more than
enough to capture site dynamics.

tect visually, and assessing the success of a rule that blocks tracking is more challenging, e.g.,

involves JS code analysis [43]. Extending AutoFR for tracking is a direction for future use.

4.5 Evaluation

In this section, we evaluate the performance of AutoFR (i.e., the trade-off between blocking

ads and avoiding breakage) and compare it to EasyList as a baseline. We characterize prop-

erties of the filter rules produced by AutoFR: how they can be controlled via parameter w,

how they compare to EasyList rules, and how fast they need to be updated.

4.5.1 Filter Rule Evaluation Per-Site

4.5.1.1 Parameter Selection forAutoFR

We select w=0.9 to represent a user who has similar interests to FL authors but has a slightly

higher tolerance for breakage. This user wants filter rules that block ads with minimal break-

age. We further explore how changing w affects the output of AutoFR in Sec. 4.5.1.5. As

explained in Sec. 4.3.3, we have several hyper-parameters that need to be tuned. We list the

88

choices of these hyper-parameters as follows:

• Initial estimates (Q0): We use the optimistic initial value approach for MAB [128]. Ev-

ery filter rule may block ads if the MAB selects it. However, we do not want to go too

far above zero, as the rules that are “potentially good” need to converge near zero (see

Sec. 4.3.3). Hence, we chose Q0 =0.2 as an initial value. This allows every filter rule to

be tested by the MAB agent.

• Learning rate (α): We use an adaptive learning rate α = 1
N [a]

to update the Q(a) val-

ues. Here, N [a] is the number of times the action a has been selected. We adopted this

approach over a constant learning rate to capture the fact that rules can vary in their

effectiveness. For example, on one extreme, if the rule googlesyndication.com gets r=1

for the first 10 pulls by the MAB but then does not work at all on the 11th pull (r=−1),

then Q(a) would be dramatically affected with a high constant learning step.

• Exploration rate for UCB (c): We set the exploration rate for UCB c=1.4, to encourage

AutoFR to explore the arms without prolonging the convergence of the algorithm greatly

(e.g., c=2 causes the convergence to take twice as long).

• Site Dynamics: To capture site dynamics, we visit each site multiple times. Motivated by

prior work, we determine the number of visits necessary by counting the number of new

eSLDs captured after every visit incrementally. Fig. 4.5 reveals that 10 visits are more

than enough to capture the site dynamics. This more than doubles prior work [85, 149].

4.5.1.2 Experiment Setup

For Sec. 4.5 and 4.6, we utilize an automated approach to evaluate the effectiveness of filter

rules. We discuss its limitations and confirm our results with independent visual inspections

in Sec. 4.5.1.3.

• In the Wild: In the live setting, we apply rules to a site (for real) 10 times and capture the

89

Datasets w=0.9 Sites FilterRules Snapshots

W09-Dataset (Sites ≥ 1 rule) 933 361 9.3K

Full-W09-Dataset (All sites) 1042 361 10.4K

Table 4.2: AutoFR Top–5K Datasets

site feedback CA, CI , CT , as described in Sec. 4.4.1. We then average the values and use

that to calculate our trade-off terms of blocking ads ĈA (Eq. (4.1)) and avoiding breakage

1−B (Eq. (4.2)). We use the Tranco list [86, 131]. Since we run our experiments in the US

region, we customize the list with popular sites for the US only. Next, we set up AutoFR

using Amazon’s Web Services (AWS) and EC2. Specifically, we use EC2 instance type

m5.2xlarge with eight vCPU, 32GB memory, and 35GB storage. For each site, we make

sure that Ad Highlighter can detect at least one ad before applying AutoFR. Specifically,

we visit each site three times and consider sites with an average number of ads >0.

• Controlled (Site Snapshots): In a controlled environment, we apply rules to each set of 10

site snapshots for a given site to emulate its visits, as explained in Sec. 4.4.1. We proceed

with the same calculations for the trade-off terms.

• Comparing to EasyList. EasyList is a state-of-the-art filter list for adblocking on the

web [54]. However, it contains rules beyond URL-based filter rules, such as element hiding

rules. Thus, for any experiment that involves EasyList, we make it comparable to our

URL-based filter rules. We parse the list and utilize delimiters (e.g., “$”, “||”, and “ˆ”)

to identify URL-based filter rules and keep them.

4.5.1.3 AutoFRResults

We apply AutoFR on the Tranco Top–5K sites [86, 131] to generate rules using the break-

age tolerance threshold of w=0.9. All other AutoFR parameters are the same as in Alg. 1.

Table 4.2 summarizes our datasets and filter rules generated on the Top–5K, while Fig. 4.6

utilizes the Full-W09-Dataset to characterize the sizes of action spaces and site snapshots,

90

0K 0.5K 1.0K 1.5K
Count

0.0

0.2

0.4

0.6

0.8

1.0
E
C
D
F

Nodes
Explored

(a) Action Spaces

0K 10K 20K 30K 40K
Count

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

Nodes
Edges

(b) Site Snapshots

0 50 100 150 200
Seconds

0.0

0.2

0.4

0.6

0.8

1.0

E
C
D
F

(c) AutoFR Run-time

0 2 4 6 8 10
Filter Rules per Site

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

(d) Filter Rules

Figure 4.6: Full-W09-Dataset.: (a) Action Spaces: 75% of action graphs have 800 nodes
or fewer. AutoFR only needs to explore a fraction of the action space to find effective
rules. (b) Site Snapshots: 75% of site snapshots contain 10K nodes or fewer. (c) AutoFR
Run–time: 75% of sites take a minute or less to execute the multi-arm bandit portion of
Alg. 1. (d) Filter Rules: For 75% of sites, AutoFR generated three filter rules or fewer.

Sec. 4.5.1, Fig. 4.7, Top–5K Sec. 4.5.3.1

AutoFR
(Snapshots)
(Jan. 2022)

AutoFR
(In-the-Wild)
(Jan. 2022)

AutoFR
(*Confirm)
(In the Wild)

EasyList
(In the Wild)
(Jan. 2022)

AutoFR
(In the Wild)
(July 2022)

Description (w=0.9) 1 2 3 4 5

1
Sites in operating point:
ĈA≥0.95, 1−B≥0.95

62% 74% 85% 79% 72%

2
Sites within w:
ĈA>0, 1−B≥0.9

77% 86% 85% 87% 82%

3
Ads blocked within w:∑

ℓ(CA×ĈA) /
∑

ℓCA;
1−B≥0.9

70% 86% 84% 87% 78%

Table 4.3: Results. We provide additional results to Fig. 4.7. We explain the meaning of
each row: (1) the number of sites that are in the operating point (top-right corner of the
figures), where filter rules were able to block the majority of ads with minimal breakage;
(2) the number of sites that are within w; and (3) the fraction of ads that were blocked
across all ads within w. *Confirming via Visual Inspection (In the Wild) (Sec. 4.5.1): col. 3
is based on a binary evaluation. As it is not simple for a human to count the exact number
of missing images and text, we evaluate each site based on whether the rules blocked all ads
or not (i.e., ĈA is either 0 or 1) and whether they caused breakage or not (i.e., B is either
0 or 1). For col. 5 (Sec. 4.5.3.1), we repeat the same experiment of col. 2 during July 2022
for a longitudinal study of AutoFR rules.

the run-time of AutoFR and the number of rules generated per-site. Overall, AutoFR gen-

erated 361 filter rules for 933 sites. For some sites, AutoFR did not generate any rules since

none of the potential rules were viable at the selected w threshold.

Efficiency. AutoFR is efficient and practical: it can take 1.6–9 minutes to run per-site,

91

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0
B

lo
ck

in
g

A
ds

 (
̂

C A
)

w
=
0.
9

0

200

400

600

800

1000

N
um

be
r o

f S
ite

s

(a) AutoFR (Snapshots)

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
in

g
A

ds
 (

̂
C A

)

w
=
0.
9

0

200

400

600

800

1000

N
um

be
r o

f S
ite

s

(b) AutoFR (In the Wild)

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
in

g
A

ds
 (

̂
C A

)

w
=
0.
9

0

200

400

600

800

1000

N
um

be
r o

f S
ite

s

(c) EasyList (In the Wild)

Figure 4.7: AutoFR (Top–5K). All sub-figures exhibit similar patterns. First, the filter
rules were able to block ads with minimal breakage for the majority of sites. Thus, the
top-right bin (the operating point) is the darkest. Second, there are edge cases for sites
with partially blocked ads within the w threshold (right of w line) and sites below the w
threshold (left of w line). See Table 4.3, col. 1, 2, and 4, for additional information.

which is an order of magnitude improvement over the 13 hours per-site of live training in

Sec. 4.4. During each per-site run, we explore tens to hundreds of potential rules and con-

duct up to thousands of iterations within MAB runs (see Fig. 4.6). This efficiency is key to

scaling AutoFR to a large number of sites and over time.

AutoFR: Validation with Snapshots. Since AutoFR generates rules for each particular

site (i.e., per-site), we first apply these rules to the site for which they have been created.

To that end, we first apply the rules to the stored site snapshots, and we report the results

in Fig. 4.7(a) and Table 4.3 col. 1. We see that the rules block ads on 77% of the sites within

the w = 0.9 breakage threshold. As we demonstrate next, this number is lower due to the

limitations of traversing snapshots (Sec. 4.4.1) and the rules are more effective when tested

on sites in the wild.

AutoFR vs. EasyList: Validation In The Wild. EasyList4 to the same set of Top–5K

sites and we report our results in Fig. 4.7(b) and Table 4.3 col. 2 and 4. AutoFR’s rules

block 95% (or more) of ads with less than 5% breakage for 74% of the site (i.e., within the

operating point) as compared to 79% for EasyList. For sites within the w threshold, AutoFR

4For a fair comparison, we parse EasyList and utilize delimiters (e.g., “$”, “||”, and “ˆ”) to identify
URL-based filter rules and keep them.

92

and EasyList perform comparably at 86% and 87%, respectively (row 2). Overall, our rules

blocked 86% of all ads vs. 87% by EasyList, within the w threshold (row 3). Some sites fall

below the w threshold partly due to the limitations of AdGraph [73].

To further confirm our results for AutoFR and EasyList, we randomly selected 272 sites (a

sample size out of 933 sites to get a confidence level of 95% with a 5% confidence interval),

and we visually inspected them. In particular, we looked for breakage not perfectly captured

by automated evaluation. Table 4.3 col. 3 summarizes the results and confirms our results

obtained through the automated workflow. We find that 3% (7/272) of sites had previously

undetected breakage. For instance, the layout of four sites was broken (although all of the

content was still visible), and one site’s scroll functionality was broken. Note that this kind

of functionality breakage is currently not considered by AutoFR. We find three sites had

some images missing. This was because images were served with “<amp-img>” instead of

the standard “” tag. This can be easily addressed by updating how we retrieve CA

in Sec. 4.4.3. We observed two sites (e.g., gazeta.ru) that intentionally caused breakage (the

site loads the content, then goes blank) after detecting their ads were blocked. AutoFR’s im-

plementation currently does not handle this type of adblocking circumvention. AutoFR can

generate filter rules that block ads that do not have ad transparency logos. We observe that

our filter rules could block all ads for 90% (44/49) of sites that also served non-transparency

ads. We deduce this is because a site will use the same approach (or JS) to serve ads with

and without ad transparency logos.

4.5.1.4 Validation ofDetectionModules

In this section, we validate the detection of AD, IMG, and TEXT used in AutoFR.

Detection of AD (Perceptual): Validation In TheWild. We leverage the same sample

of 272 sites to keep track of ads detected by Ad Highlighter to validate its precision. We

count a total of 1040 ads that were detected by Ad Highlighter. We found five false positives

93

(i.e., not ads), giving us a 99% precision in ads. When we consider it in terms of sites, this

affected 2% of sites (5/272). False positives can appear due to social widgets like Twitter

and SoundCloud with play buttons similar to AdChoice logos. However, we note that this

does not always happen for every embedded social widget.

Detection of IMG and TEXT: Validation In The Wild. To validate our methodology

of capturing the number of visible images (CI) and text (CT) for a given site, we randomly

sample 100 sites from W09-Dataset and modify our custom JS in the following ways. For im-

ages that we identify, we add a blue solid border; for text, we append “(AutoFR)”. For each

site, we automatically visit the site using Selenium and inject the modified JS before taking

a screenshot. We then visually inspected the 100 screenshots to see whether the images and

text were correctly captured. Note that the images and text captured must not be part of

ads. We observe our methodology has 100% precision in capturing visible images and text.

This is not surprising, as our methodology relies on common approaches to display images

(using img tags, and “background-url”) and text (we only consider HTML nodes with the

type “TEXT NODE” [91]).

Next, we evaluate the images and text that were missed. First, we utilize the screenshots

to find the locations of visible content that were missed and keep track of their counts.

Then, we visit the site manually using a Chrome browser, inject the JS using the Chrome

Developer Tools, and inspect the HTML DOM to discern the reason for the missed content.

For instance, we miss some visible images and text because they are rendered using <svg>

or pseudo-elements. However, most of this missed content is small icons for social media

sharing (e.g., Facebook, Twitter), top menus, and footers. If we consider the missed images

as false negatives, we get a recall of 95% for capturing visible images. For capturing visible

text, we get a recall of 99%. Future improvements to AutoFR can consider <svg> for CI

by modifying the JS. However, for pseudo-elements, we would need to modify the browser

to capture these images. Fortunately, these are often trivial images such as small icons.

94

Threshold w FilterRules forwomenshealthmag.com

0 ||doubleclick.netˆ, ||googlesyndication.comˆ, ||hearstapps.comˆ

0.1–0.5 ||doubleclick.netˆ, ||hearstapps.comˆ

0.6–0.9
||doubleclick.netˆ, ||assets.hearstapps.comˆ, ||amazon-adsystem.comˆ,
||googletagmanager.comˆ

1
||doubleclick.netˆ, ||amazon-adsystem.comˆ, ||googletagmanager.comˆ,
||assets.hearstapps.com/moapt/moapt-hdm.latest.js,
||assets.hearstapps.com/moapt/moapt-bidder-pb.*.js

Table 4.4: Effects of w. We show how w changes the generated rules for one site. As w
increases, some rules will no longer be outputted and new rules may be discovered. While
others will become more specific.

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
in

g
A

ds
 (

̂
C A

)

0

200

400

600

800

1000

N
um

be
r o

f S
ite

s

(a) AutoFR: w=0

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
in

g
A

ds
 (

̂
C A

)

w
=
0.
5

0

200

400

600

800

1000

N
um

be
r o

f S
ite

s

(b) AutoFR: w=0.5

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
in

g
A

ds
 (

̂
C A

)

w
=
1.
0

0

200

400

600

800

1000

N
um

be
r o

f S
ite

s

(c) AutoFR: w=1

Figure 4.8: AutoFR across Differentw(Top–5K). We run AutoFR on Full-W09-Dataset
using a range of w∈ [0,0.5,1] and visualize the effectiveness based on the trade-off of blocking
ads vs. avoiding breakage. As w increases, there are more sites in operating point. Lower
w denotes that the user does not care about breakage, which causes less exploration of the
action space for rules that fall in the operating point.

4.5.1.5 TuningAutoFRviaThresholdw

AutoFR is the first approach that can be tuned per-site and explicitly allows one to express

a preference. The FL author that uses AutoFR must select the site to create rules for and

express their preference by tuning a knob (threshold w). There is no optimized value for

threshold w, but rather it is a manually selected value by the user of AutoFR.

How does the Trade-off Change as w Increases? Fig. 4.8 illustrates the trade-off as w

increases on the entire Full-W09-Dataset for each individual w value. First, for low w’s, we

notice more breakage. This is not surprising as the user does not care about breakage. As

95

w increases, we can see that the filter rules adhere to the threshold and mostly stay within

it (i.e., being on the right side of w). However, interestingly, we observe that there are more

sites that are in the operating point of the plots (i.e., the top-right corner). This is because as

the user cares more about breakage, AutoFR is exploring more of the action space (i.e., going

down the hierarchy), and thus more chances of candidate rules that are in the operating point.

How do Filter Rules Change as w Increases? Next, Table 4.4 deep dives into an ex-

ample of how w changes the output of AutoFR for one site. First, filter rules can go from

being part of the output to no longer part of the output, as shown with the transition of

||googlesyndication.comˆ from w = 0 to w = 0.1. Conversely, new rules may appear as w

increases, as evident with ||amazon-adsystem.comˆ between w = 0.5 and w = 0.6. Lastly,

we observe that as w increases, rules will be more specific, as shown with the progression

of how ||hearstapps.comˆ changes from eSLD in w=0, to FQDN in w=0.6, then to a rule

with a path in w=1.

4.5.2 AutoFR vs. EasyList: Comparing Rules

We compare the rules generated per-site by AutoFR and EasyList from Sec. 4.5.1. For a fair

comparison, we only consider EasyList rules that are triggered when visiting sites.

4.5.2.1 Rule TypeGranularity

An important aspect to consider when comparing rules is the suitable granularity of the rules

that block ads while limiting breakage. Fig. 4.9(a) breaks down the granularity of rules by

AutoFR and EasyList. We note that both exhibit a similar distribution: eSLD rules are the

most common, while the other rule types are less common. Across all granularities, there

are 59 identical rules (e.g., ||pubwise.ioˆ, ||adnuntius.comˆ, and ||deployads.comˆ) between

AutoFR and EasyList, which represents 15% of EasyList rules.

96

Next, we focus on rules that are related, i.e., they share a common eSLD but may differ in

subdomain or path, to understand why AutoFR generates rules that are coarser or finer-

grain than EasyList rules. In Fig. 4.9(b), we show that when we group rules by eSLD, there

are 78 common eSLDs, 60 (77%) of which have at least one identical rule. For example, for

mail.ru, both AutoFR and EasyList have ||ad.mail.ruˆ.

For 26 eSLD groups, AutoFR and EasyList rules differ in granularity. First, 18 eSLDs

have AutoFR rules that are coarser-grained than EasyList. For instance, AutoFR has

||cloudfront.netˆ but EasyList has 15 variations of ||d2na2p72vtqyok.cloudfront.netˆ based

on FQDNs. CloudFront is a CDN that can serve resources for legitimate content, ads, and

tracking. As AutoFR generates per-site rules, it can afford to be more coarse-grained because

a site may only use CloudFront for ads and tracking. However, since EasyList rules that

target CloudFront are not per-site, they are more finer-grain to avoid breakage on other sites.

Second, six eSLDs have AutoFR rules that are finer-grain than EasyList. For instance, for

moatads.com, AutoFR has ||z.moatads.comˆ when EasyList has ||moatads.comˆ. Recall

in Sec. 4.4.1 that AutoFR generates rules with a conservative approach when using site

snapshots, and will consider finer-grain rules for some cases to avoid breakage. Whereas FL

authors verify rules for EasyList and will know that ||moatads.comˆ is more appropriate.

Lastly, four eSLDs share the same granularity but contain rules that are not identical. For ex-

ample, AutoFR has ||pastemagazine.com/common/js/ads-gam-a9-ow.js, while EasyList has

pastemagazine.com/common/js/ads- for site pastemagazine.com. Partial paths within

EasyList may extend the life of a filter rule over time for some sites. We further evaluate

this in Sec. 4.5.3.1. AutoFR can extend to partial paths in the future.

97

eSLD FQDN With Path
0

20

40

60

80

P
er

ce
nt

 o
f R

ul
es

73

13 12

62

9

27

AutoFR
EasyList

(a) Rule Types

220 27978

AutoFR EasyList

(b) Grouped by eSLD

Figure 4.9: ComparingAutoFRRulestoEasyList. Some rules are common and some are
unique to each approach. When comparing rules, one must consider the right granularity.

4.5.2.2 UnderstandingUniqueRules

We investigate why AutoFR generates rules that are not present in EasyList and vice versa.

We found that when grouped by eSLD (Fig. 4.9(b)), unique rules are due to the design and

implementation of our framework, as well as due to site dynamics.

Methodology. To investigate each unique rule (either from AutoFR or EasyList), we ap-

ply the rule to its corresponding site snapshots (per-site) and extract the requests that were

blocked. We manually investigate these requests as follows. For images, we visually decide

whether it is an ad. For scripts, we use our domain knowledge and keywords (e.g., “ad-

vertising”, “bid”) to examine the source code to discern whether they affect ads, tracking,

functionality, or legitimate site content. When we cannot determine the nature of the re-

quest (e.g., due to obfuscated JS code), we fall back to applying the rule and evaluating its

effectiveness via visual inspection, following the methodology in Sec. 4.5.1.

Findings. Depicted in Fig. 4.9(b), the differences in rules when grouped by eSLDs are due

to three main reasons.

1. AutoFR Framework: Our framework exhibits several strengths when generating rules.

48% (105/220) of the unique eSLDs for AutoFR have rules that are valid but seem chal-

98

lenging for a FL author to manually craft. Within this set, 19% (20/105) are first-party

(e.g., ||kidshealth.org/.../inline ad.html), 52% (55/105) block resources that involve both

ads and tracking (e.g., ||snidigital.comˆ), 23% (24/105) block ad-related resources served

by CDNs (e.g., ||cdn.fantasypros.com/realtime/media trust.js), and 42% (44/105) block

ad-related resources served through seemingly obfuscated URLs. We conclude that AutoFR

can create rules that are not obviously ad-related (e.g., by looking at keywords in the URL)

but are effective nonetheless.

Next, we explain how certain design decisions behind AutoFR’s framework can lead to

missed EasyList rules. First, AutoFR focuses on rules that block at least some ads (due to

Eq. (4.3a)), which is why AutoFR ignored 10% (28/279) of unique eSLDs from EasyList that

are responsible for purely tracking requests. Second, we choose to generate rules that block

ads across all 10 site snapshots of a site, not just one site snapshot, to be robust against

site dynamics. In addition, we choose to stop exploring the hierarchical action space when

we find a good rule following the intuition from Sec. 4.3.2.1, which improves the efficiency

of AutoFR. Of course, these design decisions can be altered depending on the user’s pref-

erence. When we do so, we find that the overlap in Fig. 4.9(b) goes from 22% (78/357) to

35% (124/357). For example, adtelligent.com and adscale.de are new common eSLDs found

when we remove these design decisions.

2. AutoFR Implementation: Our implementation of Alg. 1 focuses on visual components

(e.g., using Ad Highlighter to detect ads) and how filter rules affect them. The rules gen-

erated are as good as the components that we utilize. First, AutoFR misses 28% (78/279)

of unique eSLDS from EasyList because Ad Highlighter can only detect ads that contain

transparency logos. However, AutoFR rules are still effective when compared to EasyList,

as shown in Sec. 4.5.1 and Table 4.3. This demonstrates that we do not necessarily need to

replicate all rules from EasyList to be effective. Second, 18% of unique eSLDs from AutoFR

can affect both ads and functionality (e.g., cdn.ampproject.org/v0/amp-ad-0.1.js for ads,

99

-10.0K 0 10.0K
Δ Nodes

0.00

0.25

0.50

0.75

1.00

E
C

D
F

(S
ite

s)

-10.0K 0 10.0K
Δ Edges

-1.0K 0 1.0K
Δ URL

All Other Sites (94%) Sites to Rerun (6%)

Figure 4.10: ∆ Site Snapshots between July vs. January 2022. The differences in site
snapshots for nodes, edges, and URLs. A positive change in the x-axis denotes that July
had more of the respective factor, while a zero denotes no change.

amp-accordion-0.1.js for functionality). AutoFR balances the trade-off between blocked ads

and breakage, see Sec. 4.5.1.

3. Site Dynamics can also lead to differences in the site resources between site snapshots vs.

the in the wild evaluation. Due to this, 18% (50/279) of unique eSLDs on the EasyList side

did not appear in our W09-Dataset . Thus, AutoFR did not get an opportunity to generate

these rules. Conversely, 5% (11/220) of unique eSLDs from AutoFR appear in EasyList

but were not triggered during the evaluation of EasyList rules. This can be mitigated by

increasing the number of site snapshots used in AutoFR’s rule generation or applying Ea-

syList more times during our in the wild evaluation. Although, recall that we already do

these steps for 10 times.

Takeaways. The difference in the granularity of related rules generated by AutoFR and

EasyList is mainly because AutoFR creates rules per-site. Unique rules to AutoFR or Ea-

syList are due to the design and implementation of our framework and site dynamics. These

differences are acceptable because the effectiveness of the rules from AutoFR and EasyList

is comparable. This is crucial from a practical standpoint.

100

4.5.3 Robustness of AutoFR Filter Rules

AutoFR generates rules for a particular site and uses snapshots collected at a particular

time. We investigate how well these rules perform over time and in adversarial scenarios.

4.5.3.1 HowLong-lived areAutoFRRules?

Sites change naturally over time, which may result in changes in the site snapshots, and

eventually into changes in the filter rules. We show that AutoFR rules remain effective for

a long time and can be rerun fast when needed to update.

Efficacy of Rules Over Time. We re-apply per-site rules generated in January 2022

(Sec. 4.5.1) to the same sites in July 2022 and summarize the results in Table 4.3 (col. 5).

We find that the majority of AutoFR rules are still effective after six months. 72% of sites

(down only by 2%) still achieve the operating point (row 1), and 82% (down by 4%) achieve

1−B≥ 0.9 (row 2). Even more interestingly, we found only 6% of the sites now no longer

have all or any ads blocked in July. For those few sites, which we refer to as “sites to rerun”,

we can rerun AutoFR; this takes 1.6 min-per-site on average.

Site Snapshots Over Time. We recollect site snapshots for our entire W09-Dataset in

July 2022 and associate them with the results of re-applying the rules above. For the 6% of

sites that AutoFR needs to rerun, we report the changes in their corresponding snapshots.

Fig. 4.10 reports the changes in snapshots of the same site between January and July in terms

of different nodes, edges, and URLs. It also compares the differences for all sites, with those

6% sites to rerun AutoFR. For all other sites, 50% and 70% of sites have more than ±1K

changes in nodes and edges, respectively; while 40% of sites have more than ±100 changes in

URL nodes. Compared to sites to rerun, 75% of sites have more than ±1K changes in nodes

and edges, while 65% of sites have more than ±100 changes in URL nodes. As expected, the

101

−0.2

−0.1

0.0

Δ
Ja

cc
ar

d
S

im
.

(v
s.

 J
ul

y
15

)

Ju
ly

15

Ju
ly

19

Ju
ly

23

Ju
ly

27

Ju
ly

31

Aug
us

t 4

Aug
us

t 8

Aug
us

t 1
2

Aug
us

t 1
6

Aug
us

t 2
0

Aug
us

t 2
4

Aug
us

t 2
8

Sep
tem

be
r 1

Sep
tem

be
r 5

Sep
tem

be
r 9

Sep
tem

be
r 1

3
0

10

20
S

ite
s

to
 R

er
un

(s
in

ce
 J

ul
y

15
)

Figure 4.11: Longitudinal Study Every Four Days. We conduct a longitudinal study of
100 sites over a two-month period. We find that over time, site snapshots will become less
similar (i.e., negative ∆ Jaccard similarity), denoting that rules are less effective. FL authors
can rerun AutoFR on these sites that change more frequently to output effective rules.

snapshots of the sites to rerun indeed change more than other sites. However, AutoFR’s rules

remain effective on the vast majority of sites whose snapshots do not significantly change.

Why do Rules become Ineffective? For the sites that need to be rerun, we conduct a

comparative analysis of how rules change by rerunning AutoFR on those sites. We find that

23% of these sites have completely new rules than before, which is typically due to a change

in ad-serving infrastructure on the site. 40% of the sites need some additional rules (some

older rules still work), which is due to additional ad slots on the site. In addition, 9% of the

sites have changes in their paths. Lastly, 29% of these sites have the same rules as before.

We deduce that this is because the rules are the best we can do without pushing breakage

beyond the acceptable threshold w.

Takeaways. AutoFR rules need to be updated for a small fraction of sites (6% of Top–5K

in six months), which demonstrates that AutoFR generates robust rules over time. AutoFR

can be rerun for these sites at an average of 1.6 min-per-site.

102

4.5.3.2 HowFrequently ShouldWeRunAutoFR?

Next, to understand how often FL authors should run AutoFR over time, we provide a finer-

grain longitudinal study of every four days for two months to study how site snapshots change

and the sites that need AutoFR to be rerun. We choose every four days because this is how

often EasyList is updated and deployed to end-users. In addition, we choose to focus on 100

sites, two-thirds of which are sampled from W09-Dataset and one-third is sampled from the

set of 6% of sites that need to rerun in July (from Sec. 4.5.3.1). Fig. 4.11 illustrates our two-

month results, using July 15, 2022, as our baseline. In this study, using Jaccard similarity, our

comparison considers the relationship between HTML, JS, and CSS (different nodes within

site snapshots). To do so, we retrieve the path from the root to every URL node for every

site snapshot. We then convert these paths to strings and use them to calculate the Jaccard

similarity between the site snapshots of July 15 to subsequent dates shown in the figure.

As expected, we arrive at the same conclusion as Sec. 4.5.3.1. Over time, the similarity be-

tween site snapshots will naturally decrease, denoting that there are sites where our rules are

no longer effective, and we need to rerun AutoFR on them. For our 100 sites, we ran AutoFR

on 13 sites once (e.g., weheartit.com, legit.ng), three sites twice (e.g., buzzfeednews.com),

and two sites three or more times (e.g., npr.org), within two months. In terms of the time

between the reruns of AutoFR, we find that one site (e.g., charlotteobserver.com) varied

between four to 10 days from August 12 to September 13. This was due to path changes

that would evade our rules5 Similarly, one site (e.g., npr.org) varied from two weeks to one

month. In addition, two sites had runs that were 1–2 weeks apart (e.g., AutoFR found ad-

ditional rules for amarujala.com). Lastly, one site had runs that were a month apart (e.g.,

liputan6.com went from ||googlesyndication.comˆ to a new rule, ||infeed.idˆ). By the end

of this study, the similarity of site snapshots decreased by 10% (compared to site snapshots

of July 15), and we ran AutoFR 27 times on 18 unique sites within two months.

5e.g., ||charlotteobserver.com/.../0a086549941921c9ac8e.js

103

10
1

Collateral Damage (∑)
||googletagmanager.com^

||rlcdn.com^
||cookielaw.org^

||amazonaws.com^
||adobedtm.com^
||cloudflare.com^

||bing.com^
||consensu.org^

||jquery.com^
||cloudflareinsights.com^Fi

lte
r R

ul
es

 b
y

A
ut

oF
R

(N
ot

 in
 E

as
yL

is
t)

52
16

14
5

4
3

3
3
3

1

Figure 4.12: Collateral Damage of Global Rules. AutoFR rules are generated per-site
and can potentially cause breakage when applied to other sites (i.e., treated as a global
rule). We report the rules that are unique to AutoFR (i.e., not part of EasyList), ordered by
decreasing total collateral damage (

∑
B) that they cause to site snapshots within Full-W09-

Dataset . We can see that most of these rules (93%) cause negligible collateral damage (below
10 on the x-axis). Note that the possible max

∑
B of each rule is the size of the dataset.

Takeaways. We find that each site will naturally change over time, causing site snapshots

to be less similar. More changes often denote a higher possibility of rules being evaded.

Overall, 18% of 100 sites needed a rerun of AutoFR. FL authors can periodically rerun Aut-

oFR on sites that tend to change frequently in terms of weekly to monthly reruns. AutoFR

minimizes the human effort for updating rules over time.

4.5.3.3 EvadingURL-based FilterRules

AutoFR generates URL-based filter rules, which EasyList also supports. Well-known evasion

techniques for URL-based filter rules, such as randomizing URL components, affect both

AutoFR rules and EasyList rules [85]. The strength of AutoFR is that new rules can be

learned automatically and quickly (e.g., in 1.6 min-per-site on average) when old ones are

evaded. Publishers and advertisers can also try to specifically evade AutoFR [85, 130]. For

example, they can put ads outside of iframes, use different ad transparency logos, or split the

logo into smaller images, preventing Ad Highlighter from detecting ads [130]. This impacts

our reward calculations. Defense approaches include the following. At the component level,

we can try to improve Ad Highlighter to handle new logos or look beyond iframes, replace

104

Methodology In
p
u
t
(n

si
te
s)

O
u
tp

u
t
(r
u
le
s)

D
o
e
s

N
o
t

N
e
e
d

E
x
is
ti
n
g
R
u
le
s

G
e
n
e
ra

li
z
e
s

E
ffi
c
ie
n
c
y
(m

in
)

(e
m
p
ir
ic
al
)

(S
ec
.
4.
6.
3.
2)

M
a
in
ta

in
a
b
il
it
y

(u
p
d
at
e
ru
le
s
fo
r

m
k
n
ow

n
si
te
s)

(S
ec
.
4.
6.
3
.2
)

C
on

st
ru
ct
io
n 1 AutoFR (Sec. 4.5) 1 Per-site ✕ 1.6

Rerun AutoFR
for m sites

2 AutoFR-Global (Sec 4.6.2.1) 1+ Global [0.8 × n] + n

Collect snap-
shots for m
sites and rerun
AutoFR-Global.

P
os
t-
p
ro
ce
ss 3 AutoFR-Pop (Sec. 4.6.2.2) 1+ Global ✕ [1.6 × n]

Rerun AutoFR for
m sites and run
post-processing

4 AutoFR-Sim (Sec 4.6.2.3) 1+ Per-site ✕ [1.6×n] + 0.8
Rerun AutoFR for
m sites and run
post-processing.

Table 4.5: Generating Filter Rules Across Multiple Sites. We compare different
approaches for generating filter rules. We split them into two categories. “Construction”
approaches optimize rules during the training process, while the others apply a “post-
processing” step on existing per-site rules. We use AutoFR (row 1) as our baseline. The
column “Generalizes” denotes whether the approach can deal with unseen sites. Efficiency
provides empirical estimates of each approach in minutes. Square brackets [] denote that
parallalization can be used to remove n, e.g., 1.6×n→1.6.

Ad Highlighter with a better future visual perception tool, or pre-process the logos to remove

adversarial perturbations [75]. At the system level, as an adversarial bandits problem, where

the reward received from pulling an arm comes from an adversary [23].

4.6 Generating Rules Across Multiple Sites

By design, the AutoFR framework optimizes per-site rules. We now address the problem

of generating rules across multiple sites by developing new approaches that consider both

per-site and global rules. These approaches either leverage AutoFR as a building block or

extend the AutoFR framework. Using AutoFR as a baseline, we compare these approaches

and evaluate their effectiveness at blocking ads vs. avoiding breakage to known sites, and

how well they generalize to unseen sites. Sec. 4.6.1 compares the differences between per-site

105

and global rules. Sec. 4.6.2 outlines our approaches to generate filter rules across multiple

sites. Sec. 4.6.3 presents their comparative analysis and makes recommendations.

4.6.1 Per-site vs. Global Filter Rules

Recall that Sec. 2.1.2 and Table 2.1 introduce ways in which filter rules can be applied to

known and unseen sites, and their potential for collateral damage. The first are per-site

rules, which can only trigger for known sites. For example, AutoFR generates per-site rules

for cnn.com, which can only be used on cnn.com, e.g., ||ad.comˆ$domain= cnn.com. Note

that the previous sections disregard this qualifier for simplicity when mentioning per-site

rules. The second, which we refer to as “global” filter rules, can trigger for both known and

unseen sites, e.g., ||ad.comˆ. Thus, these definitions are based on how they can be applied

to sites and not the methodology used to generate them.

EasyList supports per-site rules and currently contains ∼800 of them. Per-site rules are

guaranteed to perform well on known sites because they are commonly optimized for those

sites (Sec. 4.5.1). However, as they cannot be applied to unseen sites, they cause the filter

list to be larger. More rules in a filter list mean more effort to maintain them over time. On

the other hand, global filter rules do not have these limitations. Hence, EasyList contains

mostly global rules. However, when rules are applied to unseen sites, they have the potential

to cause collateral damage.

In Fig. 4.12, we report the potential collateral damage, defined as the sum of breakage (
∑
B),

caused when AutoFR per-site rules are treated as global rules. This serves as an example of

applying per-site and global rules to unseen sites. We observe that they tend to block tag

managers (e.g., ||googletagmanager.comˆ, ||adobedtm.comˆ), CDNs or cloud storage ser-

vices (e.g., ||cloudflare.comˆ, ||amazonaws.comˆ, ||rlcdn.comˆ), third-party libraries (e.g.,

||jquery.comˆ), and cookie consent forms (e.g., ||cookiekaw.orgˆ, ||consensu.orgˆ). These

106

10
1

10
2

Number of Sites
||doubleclick.net^

||googlesyndication.com^
||googletagservices.com^
||googletagmanager.com^
||amazon-adsystem.com^

||google-analytics.com^
||pubmatic.com^
||cloudfront.net^

||fastly.net^
||indexww.com^

||rubiconproject.com^
||assets.hearstapps.com^

||mdpcdn.com^
||adlightning.com^

||adsafeprotected.com^
||tiqcdn.com^

||criteo.net^
||htlbid.com^

||cookielaw.org^
||googleapis.com^

Fi
lte

r R
ul

es
 b

y
A

ut
oF

R
618

437
200

81
75

30
27

20
18

15
14

13
13

12
11
11
11

10
10
10

AutoFR
Match w/ EL

(a) Top–20 Filter Rules by AutoFR for
Top–5K Sites. They include the main adver-
tising and tracking services, such as Alphabet
and Amazon. They are likely to generalize well.

10
2

10
3

Number of Sites
||doubleclick.net^$third-party

||adnxs.com^
||amazon-adsystem.com^
||googletagservices.com^

||pubmatic.com^$third-party
||pagead2.googlesyndication.com^

||rubiconproject.com^
||openx.net^

||mookie1.com^
||3lift.com^

||indexww.com^
||smartadserver.com^$third-party

||rfihub.com^
||moatads.com^

||adform.net/serving/$third-party
||spotxchange.com^

||adsafeprotected.com^
||ml314.com^

||ads-twitter.com^
||emxdgt.com^

Fi
lte

r R
ul

es

948
353
340

318
297

277
275

227
187

148
148

139
136
131
126
126
123
121

109
103

(b) Top–20 Filter Rules by EasyList for
Top–5KSites. We apply EasyList to the same
Top–5K sites in Sec. 4.5.1 and show the popular
rules by the number of sites that they “hit” on.

Figure 4.13: AutoFR vs. EasyList: PopularRules

rules target domains that can serve legitimate content and ads across different sites. Thus,

adopting a per-site rule into a global rule is nontrivial because the rule may not block as

many ads or may cause more breakage (i.e., collateral damage). It is not a problem distinct

to AutoFR. Our discussions with EasyList authors confirmed that new rules are created

per-site. They become global rules when FL authors know that the same rules are effective

for other sites. FL authors rely on feedback from users to know when global rules either are

ineffective or cause collateral damage on unknown sites [19].

Global rules can be evaluated by: (1) how a rule affects multiple sites using the sum of

ĈA, ĈI , ĈT (Eq. (4.1)) to calculate breakage B (Eq. (4.2)), shown in Fig. 4.12; (2) how a set

of rules affect multiple sites using averages of ĈA, ĈI , ĈT (Eq. (4.4)) and RF (Eq. (4.5)),

shown in Fig. 4.14; and (3) the number of sites they are effective on, shown in Tables 4.6, 4.7.

4.6.2 Methodologies to Generating Filter Rules

107

0.8

0.9

1 2 3 4 5 6 7 8 9 10
Popularity Threshold

0.42

0.44
A

ve
ra

ge

Blocking Ads (̂CA)
Avoiding Breakage
 (1−)
Reward ()

Figure 4.14: SelectingPer-SiteRulesintoGlobalFilterLists. After creating the per-site
AutoFR rules for each site (with w = 0.9), we create 10 global filter lists. “Popularity 1”
means that a rule is selected into the global list if it was generated in at least one site; “Popu-
larity 10” means that a rule is selected if it was generated for at least 10 sites. Once selected,
the rules are now treated as global rules. We apply these global filter lists on our Full-W09-
Dataset site snapshots and plot the average blocking ads, avoiding breakage, and reward.

There are two general approaches to generating filter rules for both known and unseen sites.

The first approach is based on post-processing of per-site rules, i.e., it selects and possibly

modifies from existing per-site rules to also apply to other sites. The second possible approach

is to optimize the rules during their construction (i.e., training) process for a given set of

sites and does not depend on existing per-site rules. In this section, we explore representative

implementations of both of these broad approaches and summarize them in Table 4.5. We

evaluate their performance, efficiency, and maintainability in Sec. 4.6.3.

4.6.2.1 AutoFR-Global: ExtendingAutoFR forGlobal FilterRules

For AutoFR-Global, we revise our Algorithm 1 to generate global rules (i.e., output) opti-

mized for a set of known sites (i.e., input). By doing so, the output of possible global rules is

not limited to the union of all known per-site rules, as compared to Sec. 4.6.2.2, 4.6.2.3. We

make the following changes to the algorithm and refer to specific lines of code. First, we build

our action space (line 4) from web requests of all visits to the given sites (i.e., there is only

one action space for the given sites). The virtual node of the action space simply represents

all of the given sites instead of one site as before. Next, once an action is selected, we apply

108

the action to each site (lines 16–23). Similar to Algorithm 1, we consider rewards where

the action caused at least one hit. Otherwise, we put the arm to sleep. Everything else,

including hyper-parameters, is kept the same. The outputs are global rules optimized for the

given sites. Note that if AutoFR-Global is given one site as input, it is essentially AutoFR.

To optimize AutoFR-Global, we explore different ways of calculating the reward for the ac-

tion. One approach is to take the site feedback terms (ĈA, ĈI , ĈT)) (Eq. (4.1)) from applying

the action to each site, then averages them before calculating the reward using Eq. (4.3).

ĈA=
1

n

n∑
i=1

ĈAℓi
, ĈI=

1

n

n∑
i=1

ĈIℓi , ĈT =
1

n

n∑
i=1

ĈTℓi
(4.4)

Another approach takes the individual rewards received after applying the action to each

site and calculates their average. We define this average reward below, where ℓi represents

a particular site and n is the number of sites:

RF =
1

n

n∑
i=1

Rℓi (4.5)

4.6.2.2 AutoFR-Pop: UsingPopularity to Select Per-siteRules asGlobal Rules

Although we cannot guarantee, in advance, how well per-site rules will perform on other

sites, we can try heuristics and assess their performance. Intuitively, if the same filter rule

is generated by AutoFR across multiple sites, then it has a better chance of generalizing to

new sites. As mentioned in Sec. 4.6.1, this is exactly the process that FL authors utilize

when changing a per-site rule into a global rule. We denote this as the “popularity” of a

rule. Fig. 4.13(a) shows the Top–20 AutoFR most popular rules across sites in the Top–

5K, which shares common rules with EasyList in Fig. 4.13(b). They intuitively make sense

as they belong to widely used advertising and tracking services. Therefore, we utilize this

heuristic as criteria to select AutoFR per-site rules to include in filter lists. Once selected,

109

AutoFR-Pop
(≥ 1 sites)

AutoFR-Pop
(≥ 3 sites)

EasyList

Description (w=0.9) 1 2 3

1
Sites in operating point:
ĈA≥0.95, 1−B≥0.95

67% 73% 80%

2
Sites within w:
ĈA>0, 1−B≥0.9

76% 80% 87%

3
Ads blocked within w:∑

ℓ(CA×ĈA) /
∑

ℓCA;
1−B≥0.9

72% 80% 86%

Table 4.6: AutoFR-Pop (Top 5K–10K, In the Wild). We evaluate AutoFR-Pop on unseen
sites. See Fig. 4.15.

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
in

g
A

ds
 (

̂
C A

)

w
=
0.
9

0

500

1000

1500

N
um

be
r o

f S
ite

s

(a) AutoFR-Pop (≥ 1 sites)

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
in

g
A

ds
 (

̂
C A

)

w
=
0.
9

0

500

1000

1500

N
um

be
r o

f S
ite

s
(b) AutoFR-Pop (≥ 3 sites)

0.0 0.2 0.4 0.6 0.8 1.0
Avoiding Breakage (1−)

0.0

0.2

0.4

0.6

0.8

1.0

B
lo

ck
in

g
A

ds
 (

̂
C A

)

w
=
0.
9

0

500

1000

1500

N
um

be
r o

f S
ite

s

(c) EasyList (In the Wild)

Figure 4.15: AutoFR-Pop: Top 5K–10K, In the Wild. We create two filter lists,
Fig. 4.15(a) with all rules from W09-Dataset and Fig. 4.15(b) that contains rules that
were created for ≥ 3 sites. We test them in the wild on the Top–5K to 10K sites (unseen
sites) and show their effectiveness along with EasyList (Fig. 4.15(c)). We observe that
Fig. 4.15(b) performs better, blocking 8% more ads than Fig. 4.15(a). Table 4.6, col. 1–3,
contains additional information.

we now treat them as global rules. To further understand how popularity can affect the

performance of global filter rules, we leverage our site snapshots, as explained in Fig. 4.14.

Notably, it depicts the trade-off between blocking ads vs. avoiding breakage, which exists

even for global filter rules. As the popularity increases, the global filter list contains fewer

global rules, resulting in fewer blocked ads but less breakage.

4.6.2.3 AutoFR-Sim: ApplyingPer-site FilterRules fromSimilar Sites

We devise a collaborative filtering approach whereupon visiting an unseen site, we utilize

per-site filter rules from similar sites. This is an intuitive approach: sites commonly share

110

similar eSLDs that are related to advertising and tracking services. Thus, if two sites contact

roughly the same set of eSLDs, then the same filter rules will be effective for both. Other

notions of similarity, can also be incorporated by our framework, if so desired. This is il-

lustrated in Fig. 4.13. We envision the following scenario. First, there is a large dataset of

known sites where we already applied AutoFR, such as our W09-Dataset . Second, when a

user visits an unseen site, we will identify its Top–K similar sites within our dataset using a

similarity metric. Then, we treat per-site rules of similar sites as per-site rules belonging to

the unseen site. This strategy allows us to rely solely on per-site rules. Note that for known

sites, we simply apply their corresponding per-site rules.

Motivated by how we measure site dynamics using unique eSLDs of a site in Sec. 4.5.1.1,

we now represent a site as the set of unique destinations that it contacts to calculate the

similarity between sites. For example, for any eSLD u and site ℓi in a training set D,

∀i ∈ D, we define Sℓi as the set of unique u, found in the site’s action space. Then, their

set union is SD =
⋃
Sℓi. Then for every u ∈ SD, we can now represent a site ℓ as vector

X⃗ℓ=[xu1, xu2, ..., xu|SD|], where xu=1 if u∈Sℓ and zero otherwise. We can now leverage X⃗ℓ

to calculate similarity metrics as the cosine similarity of two sites:

cos(X⃗ℓ1, X⃗ℓ2)=
X⃗ℓ1 ·X⃗ℓ2∥∥∥X⃗ℓ1

∥∥∥ ∥∥∥X⃗ℓ2

∥∥∥ (4.6)

For the Top–K similar sites, we calculate the cosine distance: d(X⃗ℓ1, X⃗ℓ2)=1−cos(X⃗ℓ1, X⃗ℓ2).

4.6.3 Evaluation

4.6.3.1 EvaluatingAutoFR-Pop In theWild

To understand how we can evaluate and compare different methodologies for generating filter

rules across multiple sites, we first take AutoFR-Pop as a naive use case.

111

Training Set
(466 sites)

Test Set
(350 sites)

Recommendations

O
p
er
at
in
g
p
o
in
t

S
it
es

in
w

A
d
s
b
lo
ck
ed

in
w

O
p
er
a
ti
n
g
p
o
in
t

S
it
es

in
w

A
d
s
b
lo
ck
ed

in
w

P
er
fo
rm

a
n
ce

(T
ra
in
in
g)

G
en
er
a
li
za
ti
o
n

(T
es
t)

E
ffi
ci
en
cy

M
ai
n
ta
in
a
b
il
it
y

B
es
t
O
ve
ra
ll

Methodology 1 2 3 4 5 6 7 8 9 10 11

1 AutoFR (Baseline) 59% 77% 76% 64% 78% 75% ○ ○ ○ ○ �

AutoFR-Global
2(a) Eq. (4.4) and Eq. (4.3) 40% 53% 56% 42% 54% 53% � � � � �
2(b) Eq. (4.5) 51% 69% 67% 50% 64% 58% � � � � �

AutoFR-Pop

3(a) ≥1 sites 41% 53% 54% 42% 53% 52% � � � � �

3(b) ≥2 sites 41% 53% 54% 44% 54% 53% � � � � �

3(c) ≥3 sites 42% 55% 57% 44% 54% 53% � � � � �

3(d) ≥4 sites 42% 56% 57% 45% 55% 53% � � � � �

3(e) ≥5 sites 42% 57% 58% 46% 56% 54% � � � � �

3(f) ≥6 sites 45% 61% 60% 49% 60% 59% � � � � �

3(g) ≥7 sites 44% 61% 59% 49% 60% 59% � � � � �

3(h) ≥8 sites 44% 61% 59% 49% 60% 59% � � � � �

3(i) ≥9 sutes 44% 61% 59% 49% 60% 59% � � � � �

3(j) ≥10 sites 44% 61% 59% 49% 60% 59% � � � � �

AutoFR-Sim (eSLD, cosine distance d)
4(a) Top–1, d≤0.2 59% 77% 76% 19% 23% 22% ○ ○ � � �

4(b) Top–3, d≤0.2 59% 77% 76% 19% 23% 24% ○ ○ � � �

4(c) Top–5, d≤0.2 59% 77% 76% 19% 23% 24% ○ ○ � � �

4(d) Top–1, d≤0.6 59% 77% 76% 48% 62% 60% ○ � � � �

4(e) Top–3, d≤0.6 59% 77% 76% 53% 66% 65% ○ � � � �

4(f) Top–5, d≤0.6 59% 77% 76% 53% 65% 64% ○ � � � �

4(g) Top–1, d≤1.0 59% 77% 76% 48% 62% 60% ○ � � � �

4(h) Top–3, d≤1.0 59% 77% 76% 53% 66% 65% ○ � � � �

4(i) Top–5, d≤1.0 59% 77% 76% 53% 65% 64% ○ � � � �

Table 4.7: Generating Rules across Multiple Sites (using Site Snapshots). We leverage our
W09-Dataset to evaluate our methodologies (from Table 4.5) for generating filter rules that can be
applied across multiple sites. We provide recommendations by comparing the approaches based on
performance on the known sites (training set), how well they generalize to unseen sites (test set),
and their empirical efficiency and maintainability (over time). We use the following criteria for each
methodology from col. 7–8: ○ = 30+% from the baseline, � = 30%, � = 20%, � = 10%, ○ =
same as baseline. On the other hand, “Best Overall” treats ○ = 1. We then sum up the scores of
each row from col. 7–10 and take their averages. e.g., row 1 has � = 3/4.

We analyze in detail two global filter lists. First, “popularity 1” (i.e., ≥ 1 sites) treats all

AutoFR per-site rules as global rules, which serves as a baseline for comparison. Second,

“popularity 3” denotes AutoFR rules that were generated from ≥ 3 sites. Fig. 4.14 reveals

112

that this has the highest average reward. Note that selecting the popularity threshold based

on the average reward implicitly considers collateral damage because it encompasses break-

age (Eq. (4.3)). We apply these global filter lists on the Tranco Top 5K–10K sites in the

wild. Fig. 4.15 and Table 4.6 col. 1–3 show the results. As expected, we see that the global

filter list created from rules that appeared in ≥ 3 sites perform better than the list with all

rules. Moreover, Fig. 4.15(b) compares relatively well against Fig. 4.15(c) (EasyList): 73%

of sites are in the desired operating point (top-right corner), vs. 80% by EasyList (row 1,

col. 2–3). Overall, the rules generated from the Top–5K sites were able to block 80% of ads

on the Top 5K–10K sites. This shows a good generalization of AutoFR rules across unseen

sites, which agrees with Fig. 4.13(a). However, although expected, there is a decrease in

performance when applied to unseen sites. Motivated by this use case, we will evaluate all

methodologies on known sites and unseen sites in the next section.

4.6.3.2 KnownSites vs. Unseen Sites

To evaluate each methodology described in Sec. 4.6.2, we split our W09-Dataset into a train-

ing set by randomly sampling 50% of the dataset (466 sites). We treat the remaining as a

test set (350), i.e., the unseen sites. We remove any shared eSLDs from the test set that it

has with the training set so that similarity between home and sub-pages is not a factor. Ta-

ble 4.7 presents our comparative results across performance, efficiency, and maintainability

factors, as discussed in Sec. 2.1.2. This corresponds to Table 4.5.

1. AutoFR (row 1): For the training set, we apply the per-site rules to their specific site.

We do the same for the test set (col. 4–6). This serves as our baseline to compare

against other approaches.

2. AutoFR-Pop (row 2(a)–2(b)): For the training set, we take the per-site rules created

by AutoFR (row 1) and select them as global rules within a filter list using a popularity

threshold of 1–10. We then apply those same filter lists generated by the training set

113

to the test set.

3. AutoFR-Global (row 3(a)–3(j)): We explore two ways of calculating rewards as de-

scribed in Sec. 4.6.2.1. For the test set, we apply the generated global rules created

during the training phase to the test set.

4. AutoFR-Sim (row 4(a)–4(r)): We evaluate AutoFR-Sim using three different factors:

(a) representing a site as a vector of eSLDs or FQDNs; (b) which Top–K to use for

a range of 1–5; and (c) a minimum distance threshold to be considered a Top–K. For

instance, for row 4(a), the distance between site ℓ1 and ℓ2 must be ≤0.2 before using the

filter rules. For brevity, we report the results for cosine distance only and Top–[1, 3, 5].

Performance (Training Set). We now examine the results in Table 4.7 using AutoFR as

our baseline. We first focus on the training set results. AutoFR-Pop performs identically

to our baseline by returning the known per-site rules. A close second is AutoFR-Global

using Eq. (4.5), which outperforms AutoFR-Pop. This is not surprising, as AutoFR-Global

is not confined to existing per-site rules like AutoFR-Pop. For AutoFR-Pop, the popularity

threshold ≥ 6 performs the best among the different thresholds. Although, we note that it

did not perform considerably better than other thresholds from ≥7 to ≥10.

Generalization (Test Set). Next, we focus on the test set results. We find that AutoFR-

Sim performs the best, especially for Top–[3, 5] with d ≤0.6. AutoFR-Global and AutoFR-

Pop come in a close second. Notably, all of the approaches do not closely compare to our

baseline. This highlights the advantage of optimizing filter rules per-site and further illus-

trates the limitation of generalizing rules to unseen sites. As expected, we cannot guarantee

good performance for our test set.

Efficiency. Table 4.5 provides the efficiency of each approach using empirical estimates

using our Python-based implementation, while Table 4.7 visualizes it. AutoFR-Pop runs

AutoFR for every given site to have per-site rules before selecting them as global rules using

114

a predetermined threshold. We treat its post-processing as negligible time. For AutoFR-

Global, it collects site snapshots of the given sites first, which takes on average 0.8 min per

site (Sec. 4.4.1). Then, it runs the modified AutoFR algorithm. Similar to AutoFR, AutoFR-

Global’s efficiency is affected by the given sites and the reward function. The former affects

the size of the action space, while the latter affects how much of the action space is explored.

We execute AutoFR-Global for various input size (n sites) [1, 10, 50, 100, 200, 500] using

Eq. (4.5) and find that it linearly increases with n. For AutoFR-Sim, we must run AutoFR

for the given sites (like AutoFR-Pop) first. If an unseen site is given, then we must visit

the site to collect the URLs that it contacts to build its vector representation. This takes

on average 0.8 min (Sec. 4.4). Next, we must calculate the Top–K similar sites. Our ex-

periments show that this takes on average 0.02–0.06 sec. We regard this as negligible time.

AutoFR-Global cannot be optimized across actions. For example, if 100 sites were given

to AutoFR-Global, at each time step t, it must finish applying the action to 100 sites first

before selecting the next action at t+1. This can considerably slow down the run time.

Maintainability. Table 4.5 summarizes how to deal with maintaining filter rules over time,

i.e., when rules are no longer effective for some sites, while Table 4.7 visualizes the com-

parison. Most approaches rely on updating rules for the affected sites before applying some

post-processing. However, rerunning AutoFR-Global is the most costly, especially if the

number of affected sites is small. For instance, it may not be worthwhile to rerun AutoFR-

Global when only one site has rules that are no longer effective. AutoFR is the easiest to

maintain, followed by AutoFR-Pop and AutoFR-Sim.

Recommendations. As illustrated in Table 4.7, every possible approach has its own trade-

offs, including ones that we designed and implemented. For users who want to adopt our

approaches to generating filter rules, we recommend the following. If we only care about

the performance for a known set of sites without generalization, choose AutoFR. If we con-

sider all factors (e.g., performance, generalization, efficiency, and maintainability), choose

115

AutoFR-Sim or AutoFR-Pop. AutoFR-Sim’s downside is that it delays the loading of the

site during the post-processing step. However, this can be addressed with implementation,

such as using open-sourced web archives to get the URLs quickly for the site. To avoid

this potential delay, choose AutoFR-Pop. Otherwise, if we care about performance and

generalization only, choose AutoFR-Global or AutoFR-Sim.

Directions for FutureWork. In this section, we compared the performance of four possi-

ble approaches to generating filter rules using site snapshots. Future work can explore their

efficacy in the wild. Furthermore, although we compare them as separate methodologies,

hybrid approaches may yield better results. For instance, one can use AutoFR-Sim for un-

seen sites while triggering the run of AutoFR for them behind the scenes. Once AutoFR is

done, use the newly generated per-site rules instead. Conversely, if we want to utilize global

rules instead, we can run AutoFR-Global infrequently (e.g., once a month). To address its

maintainability, run AutoFR for sites that have ineffective rules and use the per-site rules

temporarily (for those sites) until the next run of AutoFR-Global.

4.7 AutoFR in a Live Environment (AutoFR-L)

In this section, we provide the full details of an alternative implementation of AutoFR in

a live setting, referred to as AutoFR-L. Sec. 4.7.1 explains the differences between AutoFR

(that runs using site snapshots) vs. AutoFR-L (that visits the site for real during the initial-

ize phase or when an arm is pulled). In Sec. 4.7.2, we detail the implementation. Fig. 4.16

illustrates an example of how AutoFR-L works end-to-end.

4.7.1 AutoFR vs. AutoFR-L

This section complements Sec. 4.4, where we presented the implementation of AutoFR in

a controlled environment (i.e., based on site snapshots). There, we argued that an imple-

116

Environment (Live)

Docker

Agent (Python)

Policy
(Python)

Action Space
(NetworkX)

2. Action (a)
(Python)

Output
(Text File)

Filter
Rules

User of
AutoFR

Site (ℓ)

Configs
(𝑤)

Hits by Action
(JS)

b. Extract requests (Selenium)

Updates

1. Selects

Docker

a. Visit site n times (Selenium)

5. Stop

Chomium
Browser

Ad
Highlighter

4. Repeat

In
iti

al
iz

e
A

ut
oF

R
 A

lg
or

ith
m

3. Reward
(JS, Python)

Adblocker
Plus

Apply action
using same

Docker image

Figure 4.16: AutoFR-L Example Workflow (Live Environment). Initialize (a–b,
Alg. 1): (a) spawns n=10 docker instances and visits the site until it finishes loading; (b)
extracts the outgoing requests from all visits and builds the action space. We run the RL
portion of AutoFR procedure (steps 1–4). Lastly, AutoFR outputs the filter rules at step
5, e.g., ||s.yimg.com/rq/darla/4-10-0/html/r-sf.html. Note that we do not use AdGraph or
site snapshots in this version.

mentation of AutoFR that exactly mimics the human process, would need to interact with

sites and test different rules in a live environment, which would be slow and expensive, al-

beit strictly better than the human FL author process. In this appendix, we describe the

implementation of this live version, which we refer to as AutoFR-L. It is worth emphasizing

that the distinction between controlled (i.e., based on snapshots) and “live” in the imple-

mentation of AutoFR applies only to the training phase, i.e., during the trial and evaluation

of candidate filter rules. Once the filter rules are generated with either version of the imple-

mentation, they can be applied or tested on any site in the wild. Fig. 4.16 outlines how we

implement AutoFR in a live environment (AutoFR-L). This means that AutoFR-L visits the

site for real at every time step t of the algorithm. It corresponds to our formulation of the

problem in Fig. 4.1(b). To simplify our explanation, we follow the same outline as in Sec. 4.4.

117

4.7.2 AutoFR-L Implementation

Agent. The implementation of the agent, policy, and action space is the same as Sec. 4.4.2.

Environment(Live). The environment allows the agent to apply an action in a live setting.

In particular, it visits a site ℓ for real and applies the filter rule using Adblock Plus [10]. It

then captures the site feedback (e.g., ads, images, text) using JS injection and calculates the

reward, and returns it back to the agent. A visit to a site for real is explained in Sec. 4.7.2.2.

Importantly, it has a high cost and we deem it impractical, as discussed in Sec. 4.4.

4.7.2.1 AdHighlighter

As discussed in Sec. 4.4.3, we rely on Ad Highlighter [127] to capture the number of ads

during a visit to a site. Ad Highlighter works in the following ways. Within every iframe, it

finds all images and SVGs, or HTML elements that contain the background-url style (e.g.,

spans, a tags, and divs), and calculates their 625-bit image hash. It calculates a Jaccard

similarity score between the image hash and the set of known hashes (hard-coded), if the

similarity is above 0.8, it marks it as an ad by overlaying it with the word “AdChoice Iden-

tified.” We modify Ad Highlighter to listen to a custom event so that we can extract the

number of ads it identified using JS injection. Ad Highlighter is easily extendable using JS.

It also allows us to audit its effectiveness visually using a browser. In addition, the similarity

matching threshold is easily tuned to improve the precision of the tool. Ad Highlighter has

high precision; we explain this in Sec. 4.5.1.4.

4.7.2.2 Visiting a (Live) Site

This involves the same setup as described in Sec. 4.4.1 when collecting raw AdGraphs. How-

ever, we use the Chromium browser this time with Ad Highlighter and a customized ABP

(taken from [85]). We use Selenium to toggle off any filter lists that are by default loaded.

118

As a result, ABP will start off with no filter rules loaded.

Applying Action a. To apply our action (filter rule), we do the following methodology

as [85]. First, we use Flask, a Python web server to locally serve our custom filter rules.

We then utilize a customized ABP extension with the browser [85]. This allows us to load

the custom filter rules being served by Flask. In addition, we can retrieve the filter rules

that block any outgoing requests (i.e., hits). To do so, we trigger a custom event that ABP

responds to. ABP will add the hits information in JSON format into the body of the page.

We then retrieve it from the page by injecting JS using Selenium.

Capturing Site Feedback. To capture the number of ads (CA), we rely on Ad Highlighter,

as described in Sec. 4.7.2.1. For CI , we inject custom JS to retrieve images, similar to [85]. It

considers all visible images (e.g., with height and width > 2px and opacity > 0.1) or HTML

elements that have a background-url set [99]. Similarly, for CT , we inject custom JS to find

all visible textnodes, which are locations of texts and not the individual word count [91].

This allows us to deal with dynamic sites that can serve personalized content. For example,

a news site can display the same layout for five articles, each article contains one title and

one description. The articles may change upon separate visits, but our approach allows us to

still retrieve the same number for text (e.g., CT =5×2) without worrying about the change

in the content itself. Using Selenium, we are able to collect the outgoing network requests

(reqs) from the browser, including the initiator information, a call stack that connects how

scripts call each other, and also which script initiated the request.

Rewards. We calculate rewards with python, as explained in Sec. 4.3.2.2.

119

4.8 Conclusion & Future Directions

Summary. The filter list curation follows a human-in-the-loop approach: (1) the rules are

manually created, visually evaluated, and maintained; and (2) the FL author has to carefully

balance between blocking ads vs. avoiding breakage. We introduced the AutoFR framework

to automate the process of generating URL-based filter rules to block ads from scratch. Our

implementation of the framework allows it to learn rules without relying on existing rules

created by humans. Our evaluation showed that AutoFR is efficient and performs compa-

rably to EasyList. Next, we develop and evaluate new approaches to generating filter rules

that apply across multiple sites. We envision that AutoFR will be used by the adblocking

community to automatically generate and update filter rules at scale.

Future Directions. AutoFR provides a general framework for automating filter rule gen-

eration. In this paper, we focused specifically on the commonly used URL-based rules for

blocking ads on browsers, but we envision several extensions and applications. The AutoFR

framework can be extended to include: (1) the creation of global rules, in addition to site-

specific rules, (2) rules that block tracking; (3) other types of filter rules, such as element

hiding rules, e.g., using the concept of CSS specificity to leverage the hierarchy; (4) func-

tionality (beyond visual) breakage, e.g., by testing click functionality for buttons and links;

(5) new visual detection modules for images and ads on sites as these become available. The

AutoFR implementation, generated filter rules, and the dataset are available at [83].

120

Chapter 5

Conclusion

5.1 Summary

In this dissertation, we address major challenges in the automation of creating and main-

taining filter rules for web adblockers. In doing so, we improve the robustness and scalability

of filter rules for adblocking users.

First, we conduct a longitudinal analysis to measure the accelerated arms race between

publishers, advertisers and adblockers. We find that it takes substantial human effort to

maintain filter rules. Furthermore, we investigate the state-of-the-art techniques that pub-

lishers employ to evade adblockers. Leveraging our understanding of these techniques, we

develop CV-Inspector, a machine-learning tool based on differential analysis to detect

when websites circumvent adblockers. Using CV-Inspector, filter list authors no longer

need to manually check thousands of websites to know when filter rules need to be updated.

Second, we examine the fundamental problem of creating filter rules from scratch. We formu-

late this problem within a reinforcement learning framework, called AutoFR, using multi-arm

bandits. Given a website, AutoFR optimizes and outputs filter rules that block ads for the

121

website while remaining within an acceptable breakage threshold the user selects. To achieve

practicality and scalability, we implement AutoFR to run within a controlled but realistic en-

vironment using site snapshots that represent how websites are loaded as graphs. Next, using

AutoFR as a building block, we develop new approaches that generate rules across multiple

websites. AutoFR further minimizes the human involvement in creating filter rules, which

makes it possible to scale filter rule generation to thousands of websites and over time. We en-

vision that our findings, methodologies, and tools will be useful to the adblocking community.

Future Directions. AutoFR can be extended to other platforms, such as mobile, smart

TVs, and VR devices, as there is a need for better platform-specific filter lists, in terms of

coverage and breakage [121, 137, 132]. On mobile and smart TVs specifically, one could

leverage existing tools to automatically explore apps or mobile browsers [121, 137, 88, 41].

Furthermore, it can be extended to generate rules that block tracking. Deploying AutoFR

and its extensions creates a scalable and maintainable future for filter rules across platforms.

These rules and their updates can be open-sourced in repositories for users (and researchers),

comparable to current filter lists, such as EasyList. Lastly, there is a potential to apply and

adapt the AutoFR framework for auditing streams of information. For instance, we can au-

dit recommendation systems within social media platforms like TikTok for topics of interest,

such as harmful and hateful content.

5.2 Perspective

Reflecting upon our work and the adblocking space, we anticipate the following future trends:

Accelerated Arms Race on Other Platforms: As automated approaches, such as Aut-

oFR, are adopted for other platforms, their arms race will accelerate. Similar to what has

happened on the web, we expect CV-Inspector to play a role in helping the adblocking

community combat the circumvention of adblocking, especially through differential analysis

122

and the detection of randomizing URL components.

FilterRules,AI, andHumans: We predict that filter rules will remain crucial for at least

the next ten years because they are easy to interpret (the very rules tell the user what they

are blocking) and they are easy to deploy (there are processes in place to push rule updates to

users hourly, discussed in Sec. 3.3). New automated tools, like AutoFR, will further sustain

the usefulness of filter rules for adblocking. However, we predict that advances in AI, such

as GPT–4, can complement filter rules. For instance, GPT–4 can edit out ads within videos

and then display them to the user [16]. In this case, using filter rules to block ads integrated

into videos may not be possible, so a hybrid approach is necessary. Furthermore, GPT–4

can be utilized as a component within filter rule generation frameworks, like AutoFR. For

instance, it can detect ads, site content, or even breakage. Lastly, human involvement in ad-

blocking will be necessary as long as adblocking affects millions of users (i.e., breakage must

be minimized) and there is an arms race. However, new tools, such as CV-Inspector and

AutoFR, will minimize human involvement while helping them focus on important cases.

Advances in Adblocking Cross-Device: We expect that adblocking across devices will

improve. First, we can extend and employ AutoFR to generate optimized rules for specific

platforms and apps, which is necessary to reduce their potential for breakage and improve

their effectiveness [137]. Second, to apply these rules, adblocking tools, like Pi-Hole, can uti-

lize network-based fingerprinting techniques to infer the device and the opened application.

This overall approach will enhance privacy protection for users and make adblockers more

prevalent beyond just the web browser.

Non-profit Initiatives forAdblocking: Adblocking companies are businesses. They earn

revenue through donations and whitelisting programs (Sec. 2.2.1). Recently, some have

even established their own ad exchanges like the Acceptable Ads Exchange [1]. In addition,

privacy-focused browsers that integrate adblocking functionality have launched their own

123

first-party ad platform [36]. As users see more ads, we expect this will spawn new non-

profit initiatives to block ads and tracking so that the service is disentangled from financial

incentives: adblockers paid by ads – the very problem that adblockers are supposed to stop.

124

Bibliography

[1] AAX. Acceptable ads exchange. https://www.aax.media/, 2023. (Accessed on
07/23/2023).

[2] Z. Abi Din, P. Tigas, S. T. King, and B. Livshits. PERCIVAL: Making in-browser
perceptual ad blocking practical with deep learning. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20), pages 387–400, Virtual, July 2020. USENIX
Association.

[3] Acceptable Ads. Sustainable and nonintrusive advertising. https://acceptablead

s.com/. (Accessed on 01/27/2022).

[4] Acceptable Ads. The Acceptable Ads Standard. https://acceptableads.com/stan
dard.

[5] Adblock Plus. Adblock warning removal list. https://easylist-downloads.adblo

ckplus.org/antiadblockfilters.txt. (Accessed on 07/10/2020).

[6] Adblock Plus. Taboola whitelisting too annoying, turned off acceptable ads.
https://adblockplus.org/forum/viewtopic.php?f=17&t=50287, January 2017.
(Accessed on 05/04/2020).

[7] Adblock Plus. Sentinel is online. https://blog.adblockplus.org/blog/sentin

el-is-online, 2018. Archived at https://perma.cc/RNV9-5M5B. (Accessed on
01/24/2022).

[8] Adblock Plus. ABP anti-circumvention filter list . https://github.com/abp-filte
rs/abp-filters-anti-cv, 2019. (Accessed on 05/09/2019).

[9] Adblock Plus. Contributors to abp-filters/abp-filters-anti-cv. h t t p s :

//github.com/abp-filters/abp-filters-anti-cv/graphs/contributors,
May 2020. (Accessed on 05/21/2020).

[10] Adblock Plus. The world’s # 1 free ad blocker. https://adblockplus.org/, 2023.
(Accessed on 07/11/2023).

[11] AdDefend. Anti-adblock platform - addefend.com. https://www.addefend.com/en/
platform/#why-anti-adblock-inventory, 2020. (Accessed on 03/18/2020).

125

https://www.aax.media/
https://acceptableads.com/
https://acceptableads.com/
https://acceptableads.com/standard
https://acceptableads.com/standard
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://easylist-downloads.adblockplus.org/antiadblockfilters.txt
https://adblockplus.org/forum/viewtopic.php?f=17&t=50287
https://blog.adblockplus.org/blog/sentinel-is-online
https://blog.adblockplus.org/blog/sentinel-is-online
https://perma.cc/RNV9-5M5B
https://github.com/abp-filters/abp-filters-anti-cv
https://github.com/abp-filters/abp-filters-anti-cv
https://github.com/abp-filters/abp-filters-anti-cv/graphs/contributors
https://github.com/abp-filters/abp-filters-anti-cv/graphs/contributors
https://adblockplus.org/
https://www.addefend.com/en/platform/##why-anti-adblock-inventory
https://www.addefend.com/en/platform/##why-anti-adblock-inventory

[12] AdGuard. Network-wide software for any os: Windows, macos, linux. https:

//adguard.com/en/adguard-home/overview.html. (Accessed on 01/04/2022).

[13] AdGuard. World’s most advanced adblocker! https://adguard.com/en/welcome.h

tml. (Accessed on 01/03/2022).

[14] AdGuard. AdGuard Scriptlets and Resources . https://github.com/AdguardTeam

/Scriptlets, 2019. (Accessed on 05/09/2019).

[15] AdGuard. Adguardextra: Adguard extra is designed to solve complicated cases when
regular ad blocking rules aren’t enough. https://github.com/AdguardTeam/AdGua

rdExtra, 2020. (Accessed on 03/18/2020).

[16] AdGuard. Can gpt-4 block ads better than humans? we put an ai-powered ad blocker
to the test. https://adguard.com/en/blog/chatgpt-ad-blocking-extension.h

tml, July 2023. (Accessed on 07/23/2023).

[17] Admiral. Admiral launches one-click subscriptions and donations for publishers to
help grow alternative revenue post-gdpr. https://blog.getadmiral.com/admira

l-launches-subscriptions-donations-transact-publishers, 2020. (Accessed
on 03/18/2020).

[18] AdThrive. Ad management and optimization for the world’s best content creators.
https://www.adthrive.com/, 2020. (Accessed on 07/20/2020).

[19] M. Alzirah, S. Zhu, Z. Xing, and G. Wang. Errors, misunderstandings, and attacks:
Analyzing the crowdsourcing process of ad-blocking systems. In Proceedings of the
Internet Measurement Conference, Amsterdam, Netherlands, Oct. 2019. ACM.

[20] Amazon. Amazon ec2 instance types - amazon web services. h t t p s :

//aws.amazon.com/ec2/instance-types/, 2020. (Accessed on 05/09/2020).

[21] Amazon. Amazon machine images (ami) - amazon elastic compute cloud.
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html,
2020. (Accessed on 05/09/2020).

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine learning, 47(2):235–256, 2002.

[23] P. Auer and C.-K. Chiang. An algorithm with nearly optimal pseudo-regret for both
stochastic and adversarial bandits. In Conference on Learning Theory, pages 116–120,
New York, NY, June 2016. PMLR.

[24] Backlinko. Ad blockers usage and demographic statistics in 2022. https://backli

nko.com/ad-blockers-users, 2022. Archived at https://perma.cc/BG5J-B3FS.
(Accessed on 01/27/2022).

[25] C. Barrett. Filterlists. https://filterlists.com/, 2022. Archived at
https://perma.cc/KE8N-S6DE. (Accessed on 01/27/2022).

126

https://adguard.com/en/adguard-home/overview.html
https://adguard.com/en/adguard-home/overview.html
https://adguard.com/en/welcome.html
https://adguard.com/en/welcome.html
https://github.com/AdguardTeam/Scriptlets
https://github.com/AdguardTeam/Scriptlets
https://github.com/AdguardTeam/AdGuardExtra
https://github.com/AdguardTeam/AdGuardExtra
https://adguard.com/en/blog/chatgpt-ad-blocking-extension.html
https://adguard.com/en/blog/chatgpt-ad-blocking-extension.html
https://blog.getadmiral.com/admiral-launches-subscriptions-donations-transact-publishers
https://blog.getadmiral.com/admiral-launches-subscriptions-donations-transact-publishers
https://www.adthrive.com/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://backlinko.com/ad-blockers-users
https://backlinko.com/ad-blockers-users
https://perma.cc/BG5J-B3FS
https://filterlists.com/
https://perma.cc/KE8N-S6DE

[26] M. A. Bashir, S. Arshad, E. Kirda, W. Robertson, and C. Wilson. How tracking com-
panies circumvented ad blockers using websockets. In Proceedings of the Internet Mea-
surement Conference 2018, IMC ’18, pages 471–477, New York, NY, USA, 2018. ACM.

[27] M. A. Bashir, S. Arshad, and C. Wilson. “recommended for you”: A first look at
content recommendation networks. In Proceedings of the 2016 Internet Measurement
Conference, IMC ’16, page 17–24, New York, NY, USA, 2016. Association for
Computing Machinery.

[28] M. A. Bashir, U. Farooq, M. Shahid, M. F. Zaffar, and C. Wilson. Quantity vs.
quality: Evaluating user interest profiles using ad preference managers. In The
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019. The Internet Society.

[29] Better Ads. The Better Ads Standards. https://www.betterads.org/standards.

[30] S. Bhagavatula, C. Dunn, C. Kanich, M. Gupta, and B. Ziebart. Leveraging machine
learning to improve unwanted resource filtering. In Proceedings of the 2014 Workshop
on Artificial Intelligent and Security Workshop, pages 95–102, New York, NY, USA,
Nov. 2014. ACM.

[31] BlockAdBlock. Stop losing ad revenue. https://blockadblock.com/. (Accessed on
05/04/2020).

[32] Blockthrough. 2020 adblock report. https://blockthrough.com/2020/02/06/2020
-adblock-report-3/, February 2020. (Accessed on 03/18/2020).

[33] T. Boroushaki, I. Perper, M. Nachin, A. Rodriguez, and F. Adib. Rfusion: Robotic
grasping via rf-visual sensing and learning. In Proceedings of the 19th ACM Conference
on Embedded Networked Sensor Systems, pages 192–205, Coimbra, Portugal, Nov.
2021. ACM.

[34] Brave. Ad block engine used in the brave browser for abp filter syntax based lists like ea-
sylist. https://github.com/brave/ad-block, May 2020. (Accessed on 06/21/2020).

[35] Brave. Pagegraph: Wiki. https://github.com/brave/brave-browser/wiki/Page

Graph, 2022. Archived at https://perma.cc/78Q9-4KQX. (Accessed on 01/28/2022).

[36] Brave. Brave ads. https://brave.com/brave-ads/, 2023. (Accessed on 08/01/2023).

[37] Brave. What is brave rewards? https://brave.com/brave-rewards/, 2023.
(Accessed on 07/20/2023).

[38] S. Bubeck, T. Wang, and N. Viswanathan. Multiple identifications in multi-armed
bandits. In Proceedings of the 30th International Conference on International
Conference on Machine Learning, pages 258–265, Atlanta, GA, June 2013. PMLR.

[39] California. California consumer privacy act (ccpa). https://oag.ca.gov/privacy

/ccpa, May 2023. (Accessed on 07/19/2023).

127

https://www.betterads.org/standards
https://blockadblock.com/
https://blockthrough.com/2020/02/06/2020-adblock-report-3/
https://blockthrough.com/2020/02/06/2020-adblock-report-3/
https://github.com/brave/ad-block
https://github.com/brave/brave-browser/wiki/PageGraph
https://github.com/brave/brave-browser/wiki/PageGraph
https://perma.cc/78Q9-4KQX
https://brave.com/brave-ads/
https://brave.com/brave-rewards/
https://oag.ca.gov/privacy/ccpa
https://oag.ca.gov/privacy/ccpa

[40] W. Cao, J. Li, Y. Tao, and Z. Li. On top-k selection in multi-armed bandits and
hidden bipartite graphs. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28,
Montreal, Canada, Dec. 2015. Curran Associates, Inc.

[41] D. Cassel, S.-C. Lin, A. Buraggina, W. Wang, A. Zhang, L. Bauer, H.-C. Hsiao,
L. Jia, and T. Libert. Omnicrawl: Comprehensive measurement of web tracking with
real desktop and mobile browsers. In Proceedings on Privacy Enhancing Technologies,
volume 1, pages 227–252, Sydney, Australia, July 2022. Sciendo.

[42] Q. Chen, P. Snyder, B. Livshits, and A. Kapravelos. Improving web content blocking
with event-loop-turn granularity javascript signatures, 2020.

[43] Q. Chen, P. Snyder, B. Livshits, and A. Kapravelos. Detecting filter list evasion with
event-loop-turn granularity javascript signatures. In IEEE Symposium on Security and
Privacy (SP), pages 1715–1729, San Francisco, CA, May 2021. IEEE.

[44] Y. Chen. Tough sell: Why publisher ’turn-off-your-ad-blocker’ messages are so polite
- digiday. https://digiday.com/media/tough-sell-publisher-turn-off-ad-blo
cker-messages-polite/, April 2016. (Accessed on 05/04/2020).

[45] Chromium. Chromedriver. https://sites.google.com/a/chromium.org/chromedr
iver/. (Accessed on 05/09/2020).

[46] Chromium. Under the hood: How chrome’s ad filtering works. https:

//blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html,
Febrary 2018. (Accessed on 05/04/2020).

[47] T. Claburn. Revealed: The naughty tricks used by web ads to bypass blockers.
https://www.theregister.co.uk/2017/08/11/ad_blocker_bypass_code/, 2017.
(Accessed on 05/09/2019).

[48] R. Cointepas. Cname cloaking, the dangerous disguise of third-party trackers.
https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-t

hird-party-trackers-195205dc522a, November 2019. (Accessed on 05/04/2020).

[49] H. Dao, J. Mazel, and K. Fukuda. Characterizing cname cloaking-based tracking on
the web. IEEE/IFIP TMA’20, pages 1–9, 2020.

[50] M. Degeling and J. Nierhoff. Tracking and tricking a profiler: Automated measuring
and influencing of bluekai’s interest profiling. In Proceedings of theWorkshop on Privacy
in the Electronic Society, WPES’18, page 1–13, New York, NY, USA, 2018. ACM.

[51] DisconnectMe. Tracking services. https://raw.githubusercontent.com/discon

nectme/disconnect-tracking-protection/master/services.json, May 2020.
(Accessed on 06/21/2020).

[52] S. Dixit. Block, unblock, block! How ad blockers are being circumvented .
https://www.youtube.com/watch?v=Vk9bPDaZELQ, 2019. (Accessed on 05/09/2019).

128

https://digiday.com/media/tough-sell-publisher-turn-off-ad-blocker-messages-polite/
https://digiday.com/media/tough-sell-publisher-turn-off-ad-blocker-messages-polite/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
https://blog.chromium.org/2018/02/how-chromes-ad-filtering-works.html
https://www.theregister.co.uk/2017/08/11/ad_blocker_bypass_code/
https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-third-party-trackers-195205dc522a
https://medium.com/nextdns/cname-cloaking-the-dangerous-disguise-of-third-party-trackers-195205dc522a
https://raw.githubusercontent.com/disconnectme/disconnect-tracking-protection/master/services.json
https://raw.githubusercontent.com/disconnectme/disconnect-tracking-protection/master/services.json
https://www.youtube.com/watch?v=Vk9bPDaZELQ

[53] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C. Paduraru, S. Gowal, and
T. Hester. Challenges of real-world reinforcement learning: definitions, benchmarks
and analysis. Machine Learning, 110(9):2419–2468, 2021.

[54] EasyList. EasyList. h t t p s : / / e a s y l i s t . t o/, 2022. Archived at
https://perma.cc/T7S2-TZKH. (Accessed on 01/21/2022).

[55] EasyPrivacy. EasyPrivacy. https://easylist.to/easylist/easyprivacy.txt.
(Accessed on 01/21/2022).

[56] S. Elmalaki. Fair-iot: Fairness-aware human-in-the-loop reinforcement learning for
harnessing human variability in personalized iot. In Proceedings of the International
Conference on Internet-of-Things Design and Implementation, pages 119–132, Virtual,
May 2021. ACM.

[57] S. Elmalaki, H.-R. Tsai, and M. Srivastava. Sentio: Driver-in-the-loop forward
collision warning using multisample reinforcement learning. In Proceedings of the 16th
ACM Conference on Embedded Networked Sensor Systems, pages 28–40, Shenzhen,
China, Nov. 2018. ACM.

[58] ExoClick. The innovative ad company. https://www.exoclick.com/, 2020.
(Accessed on 07/26/2020).

[59] eyeo. Snippet filters tutorial — adblock plus help center. https://help.eyeo.com/

adblockplus/snippet-filters-tutorial. (Accessed on 06/10/2020).

[60] V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified
approach to fixed budget and fixed confidence. In Proceedings of the 25th International
Conference on Neural Information Processing Systems, pages 3212–3220, Lake Tahoe,
Nevada, Dec. 2012. Curran Associates Inc.

[61] M. Garcia. Circumvention of ad blockers? not on our watch. – eyeo gmbh.
https://eyeo.com/circumvention-of-ad-blockers-not-on-our-watch/,
September 2018. (Accessed on 05/04/2020).

[62] A. Gleave, M. Dennis, C. Wild, N. Kant, S. Levine, and S. Russell. Adversarial
policies: Attacking deep reinforcement learning. In International Conference on
Learning Representations, Virtual, Apr. 2020. ICLR.

[63] Google. The privacy sandbox: Technology for a more private web.
https://privacysandbox.com/, 2023. (Accessed on 07/19/2023).

[64] Google Chrome. chrome.webrequest. https://developer.chrome.com/extension

s/webRequest, 2020. (Accessed on 05/06/2020).

[65] greiner. Adblock plus • view topic - why anti-circumvention filter list not operated
by easylist? https://adblockplus.org/forum/viewtopic.php?f=4&t=59473,
September 2019. (Accessed on 05/23/2020).

129

https://easylist.to/
https://perma.cc/T7S2-TZKH
https://easylist.to/easylist/easyprivacy.txt
https://www.exoclick.com/
https://help.eyeo.com/adblockplus/snippet-filters-tutorial
https://help.eyeo.com/adblockplus/snippet-filters-tutorial
https://eyeo.com/circumvention-of-ad-blockers-not-on-our-watch/
https://privacysandbox.com/
https://developer.chrome.com/extensions/webRequest
https://developer.chrome.com/extensions/webRequest
https://adblockplus.org/forum/viewtopic.php?f=4&t=59473

[66] D. Gugelmann, M. Happe, B. Ager, and V. Lenders. An automated approach for com-
plementing ad blockers’ blacklists. In Proceedings on Privacy Enhancing Technologies,
volume 2, pages 282–298, Philadelphia, PA, June 2015. De Gruyter Open.

[67] gwarser. Resources Library . https://github.com/gorhill/uBlock/wiki/Resourc
es-Library, 2019. (Accessed on 05/09/2019).

[68] S. Heinecke and L. Reyzin. Crowdsourced pac learning under classification noise.
In Proceedings of the AAAI Conference on Human Computation and Crowdsourcing,
volume 7, pages 41–49, Skamania Lodge, WA, Oct. 2019. AAAI Press.

[69] hfiguiere. #6969 (implement abort-on-property-read snippet) – adblock plus issue
tracker. https://issues.adblockplus.org/ticket/6969, March 2019. (Accessed
on 06/11/2020).

[70] IAB Tech Lab. Ad blocking detection script and improved user experience are keys to
a better value exchange. https://iabtechlab.com/standards/ad-blocking/deal/.
(Accessed on 05/04/2020).

[71] N. Immorlica, K. A. Sankararaman, R. Schapire, and A. Slivkins. Adversarial bandits
with knapsacks. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pages 202–219, Baltimore, MD, Nov. 2019. IEEE.

[72] U. Iqbal, Z. Shafiq, and Z. Qian. The ad wars: Retrospective measurement and
analysis of anti-adblock filter lists. In Proceedings of the 2017 Internet Measurement
Conference, IMC ’17, pages 171–183, New York, NY, USA, 2017. ACM.

[73] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq. Adgraph: A
graph-based approach to ad and tracker blocking. In IEEE Symposium on Security
and Privacy (SP), pages 763–776, San Francisco, CA, May 2020. IEEE.

[74] M. Jethani. Adblock plus and (a little) more: Adblock plus 3.3 for chrome, firefox
and opera released. https://adblockplus.org/releases/adblock-plus-33-for

-chrome-firefox-and-opera-released, August 2018. (Accessed on 05/04/2020).

[75] X. Jia, X. Wei, X. Cao, and H. Foroosh. Comdefend: An efficient image compression
model to defend adversarial examples. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6077–6085, Los Alamitos, CA, June
2019. IEEE Computer Society.

[76] S. Katariya, L. Jain, N. Sengupta, J. Evans, and R. Nowak. Adaptive sampling for
coarse ranking. In International Conference on Artificial Intelligence and Statistics,
pages 1839–1848, Playa Blanca, Lanzarote, Canary Islands, Apr. 2018. PMLR.

[77] R. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In
L. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing
Systems, volume 17, pages 697–704, Vancouver, Canada, Dec. 2004. MIT Press.

130

https://github.com/gorhill/uBlock/wiki/Resources-Library
https://github.com/gorhill/uBlock/wiki/Resources-Library
https://issues.adblockplus.org/ticket/6969
https://iabtechlab.com/standards/ad-blocking/deal/
https://adblockplus.org/releases/adblock-plus-33-for-chrome-firefox-and-opera-released
https://adblockplus.org/releases/adblock-plus-33-for-chrome-firefox-and-opera-released

[78] R. Kleinberg and T. Leighton. The value of knowing a demand curve: Bounds
on regret for online posted-price auctions. In 44th Annual IEEE Symposium on
Foundations of Computer Science, pages 594–605, Cambridge, MA, Oct. 2003. IEEE.

[79] Kromtech Alliance Corp. Stopad for tv. https://stopad.io/tv, 2019.

[80] L. Kudryavtseva. New ad-tech terms: “ad reinsertion”, “ad recovery”, “ad replace-
ment”. https://adguard.com/en/blog/ad-reinsertion.html, March 2017.
(Accessed on 03/18/2020).

[81] I. T. Lab. Standards. https://iabtechlab.com/standards/, 2023. (Accessed on
07/19/2023).

[82] H. Le. CV-Inspector: Towards Automating Detection of Adblock Circumvention:
Project Overview. https://athinagroup.eng.uci.edu/projects/cv-inspector/,
January 2021. (Accessed on 01/04/2021).

[83] H. Le. AutoFR Project Page. https://athinagroup.eng.uci.edu/projects/ats

-on-the-web/, 2023. (Accessed on 01/05/2023).

[84] H. Le, S. Elmalaki, A. Markopoulou, and Z. Shafiq. AutoFR: Automated Filter Rule
Generation for Adblocking. In 32nd USENIX Security Symposium (USENIX Security),
Anaheim, CA, Aug. 2023. USENIX Association.

[85] H. Le, A. Markoupoulou, and Z. Shafiq. CV-Inspector: Towards automating detection
of adblock circumvention. In The Network and Distributed System Security Symposium
(NDSS), Virtual, Feb. 2021. The Internet Society.

[86] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen.
Tranco: A research-oriented top sites ranking hardened against manipulation. In The
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2019. The Internet Society.

[87] L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to
personalized news article recommendation. In Proceedings of the 19th International
Conference on World Wide Web, pages 661–670, Raleigh, NC, Apr. 2010. ACM.

[88] Y. Li, Z. Yang, Y. Guo, and X. Chen. Droidbot: a lightweight ui-guided test input gen-
erator for android. In 2017 IEEE/ACM39th International Conference on Software Engi-
neering Companion (ICSE-C), pages 23–26, Buenos Aires, Argentina, May 2017. ACM.

[89] A. Locatelli, M. Gutzeit, and A. Carpentier. An optimal algorithm for the thresholding
bandit problem. In M. F. Balcan and K. Q. Weinberger, editors, Proceedings of
The 33rd International Conference on Machine Learning, volume 48 of Proceedings of
Machine Learning Research, pages 1690–1698, New York, NY, June 2016. PMLR.

[90] N. Lomas. Adblock Plus maker has a new taskforce to fight publisher efforts to
reinject ads. https://techcrunch.com/2018/09/19/adblock-plus-maker-has-a-n
ew-taskforce-to-fight-publisher-efforts-to-reinject-ads/, 2018. (Accessed
on 05/09/2019).

131

https://stopad.io/tv
https://adguard.com/en/blog/ad-reinsertion.html
https://iabtechlab.com/standards/
https://athinagroup.eng.uci.edu/projects/cv-inspector/
https://athinagroup.eng.uci.edu/projects/ats-on-the-web/
https://athinagroup.eng.uci.edu/projects/ats-on-the-web/
https://techcrunch.com/2018/09/19/adblock-plus-maker-has-a-new-taskforce-to-fight-publisher-efforts-to-reinject-ads/
https://techcrunch.com/2018/09/19/adblock-plus-maker-has-a-new-taskforce-to-fight-publisher-efforts-to-reinject-ads/

[91] MDN. Text: Web APIs. https://developer.mozilla.org/en-US/docs/Web/API

/Text, 2022. (Accessed on 01/06/2022).

[92] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Neuner, M. Schmiedecker,
and E. Weippl. Block me if you can: A large-scale study of tracker-blocking tools. In
2017 IEEE European Symposium on Security and Privacy (EuroS&P), pages 319–333.
IEEE, 2017.

[93] H. Minhas. Project moonshot: Experimentation with machine learning based ad
blocking. https://www.youtube.com/watch?v=1nJfvtvOOs0, 2022. Archived at
https://perma.cc/CMJ7-QJLR. (Accessed on 01/28/2022).

[94] mjethani. Implement basic support for snippet filters . https://issues.adblockpl

us.org/ticket/6781, 2018. (Accessed on 05/09/2019).

[95] MoaAB: Mother of All AD-BLOCKING. https://forum.xda-developers.com/sh

owthread.php?t=1916098, 2019.

[96] Mobiad. Home page. http://mobiadhome.com/, 2020. (Accessed on 07/26/2020).

[97] mozdev. Adblocker. https://web.archive.org/web/20021206021438/http:

//adblock.mozdev.org/, 2002. (Accessed on 01/28/2022).

[98] Mozilla. Mutationobserver - web apis. https://developer.mozilla.org/en-US/do
cs/Web/API/MutationObserver, January 2020. (Accessed on 05/06/2020).

[99] Mozilla. Background CSS: Cascading style sheets. https://developer.mozilla.or
g/en-US/docs/Web/CSS/background, 2022. (Accessed on 01/31/2022).

[100] M. H. Mughees, Z. Qian, and Z. Shafiq. Detecting anti ad-blockers in the wild.
Proceedings on Privacy Enhancing Technologies, 2017(3):130–146, 2017.

[101] B. Muthukadan. Selenium with python — selenium python bindings 2 documentation.
https://selenium-python.readthedocs.io/, 2018. (Accessed on 05/09/2020).

[102] R. Nithyanand, S. Khattak, M. Javed, N. Vallina-Rodriguez, M. Falahrastegar, J. E.
Powles, E. De Cristofaro, H. Haddadi, and S. J. Murdoch. Adblocking and counter
blocking: A slice of the arms race. In 6th {USENIX} Workshop on Free and Open
Communications on the Internet ({FOCI} 16), 2016.

[103] A. Oehler. How the platform works – help center. https://support.instart.com/
hc/en-us/articles/220929867, October 2019. (Accessed on 03/18/2020).

[104] Optimizely. Above the fold. https://www.optimizely.com/optimization-gloss

ary/above-the-fold/. (Accessed on 07/14/2020).

[105] Oracle. Data cloud registry. https://datacloudoptout.oracle.com/, 2023.
(Accessed on 07/20/2023).

132

https://developer.mozilla.org/en-US/docs/Web/API/Text
https://developer.mozilla.org/en-US/docs/Web/API/Text
https://www.youtube.com/watch?v=1nJfvtvOOs0
https://perma.cc/CMJ7-QJLR
https://issues.adblockplus.org/ticket/6781
https://issues.adblockplus.org/ticket/6781
https://forum.xda-developers.com/showthread.php?t=1916098
https://forum.xda-developers.com/showthread.php?t=1916098
http://mobiadhome.com/
https://web.archive.org/web/20021206021438/http://adblock.mozdev.org/
https://web.archive.org/web/20021206021438/http://adblock.mozdev.org/
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/API/MutationObserver
https://developer.mozilla.org/en-US/docs/Web/CSS/background
https://developer.mozilla.org/en-US/docs/Web/CSS/background
https://selenium-python.readthedocs.io/
https://support.instart.com/hc/en-us/articles/220929867
https://support.instart.com/hc/en-us/articles/220929867
https://www.optimizely.com/optimization-glossary/above-the-fold/
https://www.optimizely.com/optimization-glossary/above-the-fold/
https://datacloudoptout.oracle.com/

[106] Oriel. How it works. https://oriel.io/index.html#howitworks, 2020. (Accessed
on 03/18/2020).

[107] Page Fair. The State of the Blocked Web. https://pagefair.com/downloads/201

7/01/PageFair-2017-Adblock-Report.pdf, 2017. (Accessed on 05/09/2019).

[108] Pi-hole. Network-wide ad blocking. https://pi-hole.net/. (Accessed on
01/03/2022).

[109] Pi-hole. Customising Sources for Ad Lists. https://github.com/pi-hole/pi-hol

e/wiki/Customising-Sources-for-Ad-Lists, 2019.

[110] pkalinnikov. Issue 2449913002: Support websocket in webrequest api. - code review.
https://codereview.chromium.org/2449913002/, 2017. (Accessed on 05/04/2020).

[111] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen.
Tranco: A research-oriented top sites ranking hardened against manipulation. arXiv
preprint arXiv:1806.01156, 2018.

[112] Publica. Products. https://dev.getpublica.com/products/, 2020. (Accessed on
07/27/2020).

[113] E. Pujol, O. Hohlfeld, and A. Feldmann. Annoyed users: Ads and ad-block usage in
the wild. In Proceedings of the 2015 Internet Measurement Conference, IMC ’15, page
93–106, New York, NY, USA, 2015. Association for Computing Machinery.

[114] A. Rakhlin and K. Sridharan. Bistro: An efficient relaxation-based method for
contextual bandits. In Proceedings of The 33rd International Conference on Machine
Learning, pages 1977–1985, New York, NY, June 2016. PMLR.

[115] ReviveAds. Ad reinsertion: An overview. http://news.reviveads.com/white-pap

er-reviveads-ad-reinsertion/. (Accessed on 03/18/2020).

[116] ReviveAds. Adblock circumvention strategies: Ad reinsertion, ad replacement, ad
recovery. http://news.reviveads.com/adblock-circumvention-strategies/.
(Accessed on 03/18/2020).

[117] K. Rogers. Why doesn’t my ad blocker block ‘please turn off your ad blocker’ popups?
- vice. https://www.vice.com/en_us/article/j5zk8y/why-your-ad-blocker-d

oesnt-block-those-please-turn-off-your-ad-blocker-popups, December 2018.
(Accessed on 05/04/2020).

[118] sashachu. D: #8471 · abp-filters/abp-filters-anti-cv@d36effc. h t t p s :

//github.com/abp-filters/abp-filters-anti-cv/commit/d36effc62ec

5207f5a6730127372a6cd3ebd1717, December 2018. (Accessed on 06/11/2020).

[119] scikit-learn. sklearn.ensemble.isolationforestdocumentation. https://scikit-learn

.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html,
September 2016. (Accessed on 07/07/2020).

133

https://oriel.io/index.html##howitworks
https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf
https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf
https://pi-hole.net/
https://github.com/pi-hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists
https://github.com/pi-hole/pi-hole/wiki/Customising-Sources-for-Ad-Lists
https://codereview.chromium.org/2449913002/
https://dev.getpublica.com/products/
http://news.reviveads.com/white-paper-reviveads-ad-reinsertion/
http://news.reviveads.com/white-paper-reviveads-ad-reinsertion/
http://news.reviveads.com/adblock-circumvention-strategies/
https://www.vice.com/en_us/article/j5zk8y/why-your-ad-blocker-doesnt-block-those-please-turn-off-your-ad-blocker-popups
https://www.vice.com/en_us/article/j5zk8y/why-your-ad-blocker-doesnt-block-those-please-turn-off-your-ad-blocker-popups
https://github.com/abp-filters/abp-filters-anti-cv/commit/d36effc62ec5207f5a6730127372a6cd3ebd1717
https://github.com/abp-filters/abp-filters-anti-cv/commit/d36effc62ec5207f5a6730127372a6cd3ebd1717
https://github.com/abp-filters/abp-filters-anti-cv/commit/d36effc62ec5207f5a6730127372a6cd3ebd1717
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

[120] scrapinghub. Python parser for adblock plus filters. https://github.com/scrapin

ghub/adblockparser, 2016. Archived at https://perma.cc/DN46-678C. (Accessed
on 01/07/2022).

[121] A. Shuba, A. Markopoulou, and Z. Shafiq. NoMoAds: Effective and efficient cross-app
mobile ad-blocking. In Proceedings on Privacy Enhancing Technologies, volume 4,
pages 125–140, Barcelona, Spain, July 2018. Sciendo.

[122] S. Siby, U. Iqbal, S. Englehardt, Z. Shafiq, and C. Troncoso. WebGraph: Capturing ad-
vertising and tracking information flows for robust blocking. In 31st USENIX Security
Symposium (USENIX Security), Boston, MA, Aug. 2022. USENIX Association.

[123] S. Singh. LEAN - IAB Tech Lab. https://iabtechlab.com/standards/ad-block

ing/lean/, 2019. (Accessed on 05/09/2019).

[124] A. Sjösten, P. Snyder, A. Pastor, P. Papadopoulos, and B. Livshits. Filter list
generation for underserved regions. In Proceedings of The Web Conference 2020, pages
1682–1692, Taipei, Taiwan, Apr. 2020. ACM.

[125] P. Snyder, A. Vastel, and B. Livshits. Who filters the filters: Understanding the growth,
usefulness and efficiency of crowdsourced ad blocking. In Proceedings of the ACM on
Measurement and Analysis of Computing Systems, volume 4, Virtual, June 2020. ACM.

[126] SourcePoint. Homepage - sourcepoint. https://www.sourcepoint.com/, 2020.
(Accessed on 03/18/2020).

[127] G. Storey, D. Reisman, J. R. Mayer, and A. Narayanan. The future of ad blocking:
An analytical framework and new techniques. CoRR, abs/1705.08568, 2017.

[128] R. Sutton and A. Barto. Reinforcement learning: an introduction. The MIT Press,
Cambridge, Massachusetts London, England, 2018.

[129] V. Toubiana, A. Narayanan, D. Boneh, H. Nissenbaum, and S. Barocas. Adnostic:
Privacy preserving targeted advertising. In The Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2010. The Internet Society.

[130] F. Tramèr, P. Dupré, G. Rusak, G. Pellegrino, and D. Boneh. Adversarial: Perceptual
ad blocking meets adversarial machine learning. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 2005–2021,
London, UK, Nov. 2019. ACM.

[131] Tranco. Information on the tranco list with ID XV9N. https://tranco-list.eu

/list/XV9N/full, 2022. Archived at https://perma.cc/V76V-9JS2. (Accessed on
01/31/2022).

[132] R. Trimananda, H. Le, H. Cui, J. Tran Ho, A. Shuba, and A. Markopoulou. OVRseen:
Auditing network traffic and privacy policies in oculus vr. In 31st USENIX Security
Symposium (USENIX Security), Boston, MA, Aug. 2022. USENIX Association.

134

https://github.com/scrapinghub/adblockparser
https://github.com/scrapinghub/adblockparser
https://perma.cc/DN46-678C
https://iabtechlab.com/standards/ad-blocking/lean/
https://iabtechlab.com/standards/ad-blocking/lean/
https://www.sourcepoint.com/
https://tranco-list.eu/list/XV9N/full
https://tranco-list.eu/list/XV9N/full
https://perma.cc/V76V-9JS2

[133] uBlock Origin. Resources for uBlock Origin, uMatrix: static filter lists, ready-to-use
rulesets, etc. . https://github.com/uBlockOrigin/uAssets, 2019. (Accessed on
05/09/2019).

[134] uBlock Origin. Getadmiral domains. https://raw.githubusercontent.com/LanikS
J/ubo-filters/master/filters/getadmiral-domains.txt, March 2020. (Accessed
on 06/21/2020).

[135] uBlock Origin. gorhill/ublock: ublock origin - an efficient blocker for chromium and
firefox. fast and lean. https://github.com/gorhill/uBlock, July 2020. (Accessed
on 07/22/2020).

[136] E. Union. General data protection regulation (gdpr). https://gdpr-info.eu/, May
2018. (Accessed on 07/19/2023).

[137] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and Z. Shafiq. The tv is smart
and full of trackers: Measuring smart tv advertising and tracking. In Proceedings on
Privacy Enhancing Technologies, volume 2, pages 129–154, Virtual, July 2020. Sciendo.

[138] R. J. Walls, E. D. Kilmer, N. Lageman, and P. D. McDaniel. Measuring the
impact and perception of acceptable advertisements. In Proceedings of the Internet
Measurement Conference, pages 107–120, Tokyo, Japan, 2015. ACM.

[139] R. J. Walls, E. D. Kilmer, N. Lageman, and P. D. McDaniel. Measuring the impact
and perception of acceptable advertisements. In Proceedings of the 2015 Internet
Measurement Conference, IMC ’15, page 107–120, New York, NY, USA, 2015.
Association for Computing Machinery.

[140] WaLLy3K. The Big Blocklist Collection. https://firebog.net, 2019.

[141] J. Wang, C. Song, and H. Yin. Reinforcement learning-based hierarchical seed
scheduling for greybox fuzzing. In The Network and Distributed System Security
Symposium (NDSS), Virtual, Feb. 2021. The Internet Society.

[142] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster. Webranz: Web
page randomization for better advertisement delivery and web-bot prevention. In
Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2016, page 205–216, New York, NY, USA, 2016.
Association for Computing Machinery.

[143] wizmak. D: #9056 · abp-filters/abp-filters-anti-cv@ddd0c3d. h t t p s :

//github.com/abp-filters/abp-filters-anti-cv/commit/ddd0c3d9cd7

29d589519c57ba9aaa07229bdf10c, November 2018. (Accessed on 06/11/2020).

[144] Y. Xu, B. Kumar, and J. D. Abernethy. Observation-free attacks on stochastic bandits.
In M. Ranzato, A. Beygelzimer, Y. Dauphin, P. Liang, and J. W. Vaughan, editors,
Advances in Neural Information Processing Systems, volume 34, pages 22550–22561,
Virtual, Dec. 2021. Curran Associates, Inc.

135

https://github.com/uBlockOrigin/uAssets
https://raw.githubusercontent.com/LanikSJ/ubo-filters/master/filters/getadmiral-domains.txt
https://raw.githubusercontent.com/LanikSJ/ubo-filters/master/filters/getadmiral-domains.txt
https://github.com/gorhill/uBlock
https://gdpr-info.eu/
https://firebog.net
https://github.com/abp-filters/abp-filters-anti-cv/commit/ddd0c3d9cd729d589519c57ba9aaa07229bdf10c
https://github.com/abp-filters/abp-filters-anti-cv/commit/ddd0c3d9cd729d589519c57ba9aaa07229bdf10c
https://github.com/abp-filters/abp-filters-anti-cv/commit/ddd0c3d9cd729d589519c57ba9aaa07229bdf10c

[145] Yandex. Yandex advertising network and ad exchanges. https://yandex.com/sup

port/direct/general/yan.html, 2020. (Accessed on 07/26/2020).

[146] Z. Yang, W. Pei, M. Chen, and C. Yue. Wtagraph: Web tracking and advertising
detection using graph neural networks. In IEEE Symposium on Security and Privacy
(SP), pages 1540–1557, San Francisco, CA, May 2022. IEEE.

[147] L. Yu, W. Xie, D. Xie, Y. Zou, D. Zhang, Z. Sun, L. Zhang, Y. Zhang, and T. Jiang.
Deep reinforcement learning for smart home energy management. IEEE Internet of
Things Journal, 7(4):2751–2762, 2019.

[148] J. Zhang, K. Psounis, M. Haroon, and Z. Shafiq. HARPO: Learning to subvert online
behavioral advertising. In The Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2022. The Internet Society.

[149] S. Zhu, X. Hu, Z. Qian, Z. Shafiq, and H. Yin. Measuring and disrupting anti-
adblockers using differential execution analysis. In The Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2018. The Internet Society.

136

https://yandex.com/support/direct/general/yan.html
https://yandex.com/support/direct/general/yan.html

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Contributions
	CV-Inspector: Automated Detection of Adblock Circumvention
	AutoFR: Automated Filter Rule Generation for Adblocking

	Background & Related Work
	Web and Adblocking
	Advertising
	Filter Rules
	Machine Learning and Adblocking

	Countermeasures against Adblocking
	Whitelisting
	Anti-adblocking

	Adblocking Beyond the Web

	CV-Inspector: Automated Detection of Adblock Circumvention
	Introduction
	Background on Adblock Circumvention
	Circumvention

	State of Anti-Circumvention
	Filter Rules Overview
	Analysis of the Anti-circumvention List (ACVL)

	CV-Inspector: Design and Implementation
	Instrumentation and Data Collection
	Differential Analysis
	Feature Extraction
	Ground Truth Labeling
	The CV-Inspector Classifier
	Feature Robustness
	Summary

	CV-Inspector: In the Wild Deployment
	Discovering Circumvention in the Wild
	Monitoring Circumvention for Sites of Interest

	Discussion and Future Directions

	AutoFR: Automated Filter Rule Generation for Adblocking
	Introduction
	Most Closely Related Work
	The AutoFR Framework
	Filter List Authors' Workflow
	Reinforcement Learning Formulation
	The AutoFR Algorithm

	AutoFR Implementation
	Environment
	Agent
	Automating Visual Component Detection

	Evaluation
	Filter Rule Evaluation Per-Site
	AutoFR vs. EasyList: Comparing Rules
	Robustness of AutoFR Filter Rules

	Generating Rules Across Multiple Sites
	Per-site vs. Global Filter Rules
	Methodologies to Generating Filter Rules
	Evaluation

	AutoFR in a Live Environment (AutoFR-L)
	AutoFR vs. AutoFR-L
	AutoFR-L Implementation

	Conclusion & Future Directions

	Conclusion
	Summary
	Perspective

	Bibliography

