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New Advances in Cross-linking Mass Spectrometry Toward 
Structural Systems Biology

Clinton Yu, Lan Huang*

Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697

Abstract

Elucidating protein-protein interaction (PPI) networks and their structural features within cells 

is central to understanding fundamental biology and associations of cell phenotypes with human 

pathologies. Owing to technological advancements during the last decade, cross-linking mass 

spectrometry (XL-MS) has become an enabling technology for delineating interaction landscapes 

of proteomes as they exist in living systems. XL-MS is unique due to its capability to 

simultaneously capture PPIs from native environments and uncover interaction contacts though 

identification of cross-linked peptides, thereby permitting the determination of both identity 

and connectivity of PPIs in cells. In combination with high resolution structural tools such 

as cryo-electron microscopy and AI-assisted prediction, XL-MS has contributed significantly 

to elucidating architectures of large protein assemblies. This review highlights the latest 

developments in XL-MS technologies and their applications in proteome-wide analysis to advance 

structural systems biology.
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Introduction

Protein-protein interactions (PPIs) are central to the structure and function of protein 

complexes. These modular assemblies work hand-in-hand to establish an intricate proteome 

network that defines a cell’s functional states under different physiological and pathological 

conditions. Unsurprisingly, aberrations in PPIs and protein complex organization can have 

drastic impacts on basic cellular processes, and thus have been associated with a multitude 

of human diseases over the past several decades. Directly targeting PPIs has become an 

attractive strategy for therapeutics, and its clinical potential has been demonstrated by 

recent success in the development of ‘molecular glues’ that facilitate protein interactions to 

modulate protein degradation. Given their critical importance, systematic elucidation of PPIs 

with molecular and structural details in their native environment towards structural systems 
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biology has become a focal point in modern proteomics research. The information obtained 

will not only advance our understanding of fundamental biology and human pathologies, but 

also provide new targets for developing improved therapeutics.

High-resolution structures of proteins and protein complexes have been achieved through 

X-ray crystallography and nuclear magnetic resonance (NMR), with a sharp increase 

in cryo-electron microscopy (cryo-EM) owing to recent technological advancements. 

However, structural elucidation of compositionally and conformationally heterogenous 

protein complexes remains difficult with traditional biophysical methods. This has led 

to a rapid development of integrative approaches utilizing static structure information in 

conjunction with mass spectrometry (MS)-based structural methods including native MS, 

hydrogen-deuterium exchange, cross-linking mass spectrometry (XL-MS), surface labeling, 

and limited proteolysis.

Among these methodologies, cross-linking mass spectrometry (XL-MS, also abbreviated 

as CL-MS or CX-MS) is a powerful technology for PPI discovery and characterization. 

XL-MS is unique due to its capability to capture endogenous PPIs in native cellular 

environments by forming covalent bonds among three-dimensionally proximal residues 

within and between proteins by chemical cross-linking. The identified cross-linked peptides 

enable simultaneous determination of PPI identities and their contacts at residue-level 

resolution. In addition, distance restraints defined by cross-linkers have been successfully 

utilized to validate and refine existing protein structures, as well as for de novo structural 

modeling to elucidate architectures of large protein complexes [1–7]. Its ability to sample 

heterogeneous and dynamic protein complexes allows the discovery of conformational states 

that cannot be easily assessed from static structures obtained using conventional structural 

tools. As such, XL-MS is uniquely positioned to allow the delineation of intricate wiring 

of proteome networks with structural details at the systems-level in living organisms. The 

information obtained will help define the modular assemblies critical in shaping cellular 

states and phenotypic changes associated with human diseases. XL-MS technologies have 

been constantly evolving towards the goal of structural systems biology and have been 

extensively reviewed in recent years [1–10]. Here, we present a brief overview highlighting 

new advances in XL-MS methods and applications during the last two years with a special 

emphasis on proteome-wide studies.

Addressing Challenges in Proteome-Wide Analysis

Cross-linked peptides are often hard to detect during MS analysis due to their heterogeneity 

and low abundance. In addition, cross-linked peptides composed of two peptide constituents 

yield complex MS/MS spectra, making their unambiguous identification difficult. Both of 

these hindrances are magnified with increasing sample complexity and especially apparent 

during PPI profiling at the systems-level. To address these inherent challenges, numerous 

advancements in sample preparation strategies, cross-linking reagents, data acquisition and 

analysis have been accomplished during the last decade to make XL-MS an enabling 

technology for global PPI mapping in vitro and in vivo (Figure 1) [1,4,5,7–9,11]. It is noted 

that thousands of cross-links and PPIs have been identified from in vivo XL-MS studies 

on various sample origins including bacteria [12], mammalian cells [13–18], and tissues 
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[19]. Compared to in vitro XL-MS analyses of cell lysates, in vivo XL-MS experiments 

have resulted in the identification of considerably more inter-protein PPIs [14–18]. In 

comparison to molecular crowding during in vivo cross-linking, native cell lysis required 

for in vitro cross-linking not only dissipates subcellular compartments and changes protein 

concentration, but also reorganizes dynamic, transient and/or weak protein assemblies and 

PPI networks. Regardless, similar to any proteomics studies, global XL-MS analyses have 

shown a preference for abundant proteins. Only a fraction of the proteome has been 

uncovered by the XL-proteomes [14–22]. Clearly, new developments are needed to expand 

not only the depth, but also the breadth of XL-proteomes.

Enhancing the Detection of Cross-linked Peptides

Due to the high dynamic range of proteomes, enrichment of cross-linked peptides is 

essential to the success of proteome-wide XL-MS studies. This can be accomplished by 

employing cross-linkers that carry an affinity tag (e.g. biotin or phosphonic acid tag) 

or enrichable handle (e.g. azide/alkyne tags for click chemistry conjugation) to allow 

enrichment of cross-linked peptides in complex peptide mixtures (Figure 1) [12,14–16,18–

20,23–25]. Interestingly, polyclonal antibodies targeting two MS-cleavable cross-linkers 

DSSO (Disuccinimidyl sulfoxide) and DSBU (Disuccinimidyl dibutyric urea) have been 

recently developed to probe cross-linked proteins [26]. While their applicability in XL-

MS analysis needs to be demonstrated, the availability of cross-linker-specific antibodies 

presents a unique means for optimizing protein cross-linking and enriching cross-linked 

proteins and peptides. However, affinity-based enrichment alone is often insufficient to 

effectively detect the most structural informative cross-links, i.e. inter-linked peptides, in 

the presence of abundant linear cross-linked (i.e. dead-end (mono-link) and intra-linked 

(loop-linked)) peptides. Thus, peptide separation techniques such as size exclusion (SEC) 

[14], strong cation exchange (SCX) [18,19], and high pH reverse phase (HpH-RP) 

chromatography [16,20] have been employed as additional fractionation steps to further 

improve the detectability of cross-linked peptides. With the development of two-dimensional 

peptide separations (e.g. SEC-HpH-RP and SCX-HpH-RP), non-enrichable cross-linkers 

have been successfully applied for proteome-wide analyses to generate XL-data at a scope 

comparable to those using enrichable cross-linkers [21,27].

To differentiate between co-occurring protein complexes, oligomers, and conformers during 

large scale analysis, MS-based complexome profiling has been effectively coupled with XL-

MS, allowing the determination of protein complex organization with subunit composition, 

subunit stoichiometry and connectivity (Figure 1) [20]. A workflow combining blue 

native PAGE separation with in-gel XL-MS has also been developed to augment global 

description of protein complexes and demonstrated on purified bovine heart mitochondria 

[20]. In addition, in-cell or ex vivo cross-linking has been coupled with subcellular 

fractionation [19,28–30] to reduce sample complexity and increase PPI mapping on specific 

subproteomes. In addition, protein complexes can be affinity purified after in vivo cross-

linking or for in vitro cross-linking to investigate subunit organization and structural 

topologies [31–35]. Moreover, the feasibility of combining APEX2-based proximity labeling 

with lysate cross-linking has been shown in dissecting subcellular interactomes [36,37]. 

Taken together, integration of protein and peptide separation techniques would be beneficial 
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to enhance the in-depth analysis of cellular networks and the characterization of protein 

complexes (Figure 1).

Improving the Identification of Cross-linked Peptides

In comparison to standard bottom-up proteomic studies where MS/MS spectra of linear 

peptides are searched against a database of all n possible enzyme-generated peptides, 

matching of cross-linked peptide spectra requires the consideration of n2 combinations, 

drastically expanding search space, computational demand, and time, as well as making 

the control of false discovery rate (FDR) difficult. These challenges have been previously 

circumvented by the development of MS-cleavable cross-linkers which enable physical 

separation of cross-linked peptide constituents within the mass spectrometer for subsequent 

MS3-based peptide sequencing, permitting cross-link identification through linear peptide 

searches using conventional database searching tools (Figure 2) [1,38]. Because of the 

simplified and accurate identification of cross-linked peptides, MSn-based MS-cleavable 

XL-MS platforms are considered advantageous, especially for global PPI mapping. This 

has been demonstrated by various in vitro [21,22] and in vivo [14,39] large-scale studies. 

However, the reduced speed and sensitivity of MSn- compared to MS2-only acquisitions 

have been suggested to be a limiting factor. Thus, alternative database search algorithms 

and scoring functions have been developed in recent years to permit efficient MS2-based 

analysis of MS-cleavable XL data for global PPI analysis [11,40,41]. Given the benefits of 

MSn and MS2-type acquisitions [11,42], we anticipate that their integration would facilitate 

the expansion of XL-proteomes. While the applicability of non-cleavable cross-linkers for 

large scale analyses has been demonstrated [12,15–17], MS-labile reagents have proven 

beneficial in reducing the ambiguity of peptide identifications during MS2 analysis [42], 

critical for deriving reliable interactomes. One caveat of MS2 acquisitions is that the FDRs 

of intra- and inter-protein linkages need to be considered separately due to the increased 

likelihood of forming decoy-containing inter-subunit cross-links [43]. Furthermore, due to 

error propagation across different levels of XL-MS results (i.e. CSM, cross-linked peptides, 

residue pairs, and PPIs), FDR at each level needs to be carefully controlled [43,44]. To 

benchmark cross-linking search engines, synthetic peptide libraries have been developed in 

recent years in order to accurately estimate FDR from various XL-MS workflows [45,46].

Expanding PPI Coverages with Combinatory Approaches

Currently, lysine-reactive cross-linkers remain the most widely used reagents due to the 

effectiveness of amine-reactive chemistry and the high occurrence of lysines in proteins and 

at PPI interfaces (Figure 2). However, lysine-targeting reagents alone cannot uncover the 

complete map of proteome networks as numerous PPI contact regions lack lysine residues. 

Thus, combinatory XL-MS approaches utilizing multiple cross-linking chemistries have 

been applied to expand PPI coverage [1]. Recent XL-MS analyses have further demonstrated 

multi-chemistry complementarity for increasing PPI coverage by coupling lysine cross-

linkers with carboxyl-reactive [13,20,47–51], lysine-to-cysteine [31] and cysteine [22] cross-

linkers.

Interestingly, cross-linkers made of different reactive groups and/or spacer arm structures/

lengths but targeting the same residues can also lead to the discovery of complementary PPIs 
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[1,2,20,52]. Thus, continued efforts have been made to develop new cross-linkers, notably 

enrichable lysine cross-linkers designed for in vivo XL-MS studies [12,15,16]. In addition, 

a new class of lysine cross-linkers based on di-ortho-phthalaldehyde (DOPA) has been 

recently reported [53]. In comparison to NHS (N-hydroxysuccinimide) esters, DOPA-based 

cross-linkers are non-hydrolyzable and reactive at low pH and temperature, presenting the 

possibility of analyzing PPIs in extreme conditions. More importantly, the reaction kinetics 

of DOPA are significantly faster (by 60~120 times), permitting cross-linking within seconds. 

This has been shown to be particularly beneficial for capturing transient interactions and 

snapshots of protein unfolding during time course experiments. While this fast chemistry 

prevents their use for in-cell cross-linking, the development of DOPA linkers provides a new 

opportunity to uncover PPIs previously inaccessible to NHS ester-based reagents. Moreover, 

the commonly used fixation reagent formaldehyde has been explored for XL-MS studies 

owing to its cell permeability and fast reaction kinetics. However, its application to PPI 

mapping has been challenging due to difficulty in the identification of formaldehyde cross-

linked peptides resulted from complex reactive chemistry. A recent study has discovered 

that formaldehyde cross-linking generates predominant cross-linked products with a mass 

addition of 24 Da instead of conventional 12 Da adducts, permitting the identification 

of cross-linked peptides from mammalian cells [54]. Although successful, the number of 

identified PPIs is limited and the cross-linking reaction mechanism remains elusive. Thus, 

how to effectively identify formaldehyde cross-linked peptides for global PPI mapping 

requires further exploration.

While dihydrazide chemistry has been proven effective for acidic residue cross-linking, 

its applications in proteome-wide analysis have been limited due to low reactivity and 

the need for a conjugating step using zero-length cross-linkers (e.g. DMTMM) [1]. A 

recent comparison of three carboxyl-reactive (i.e. hydrazide, amino, and aminooxy) groups, 

has revealed that the latter two groups are also suited for protein cross-linking with the 

amino reactive group having the highest reactivity [55]. In addition, their feasibility in 

XL-MS analyses of E.coli lysates has been illustrated. To complement lysine- and acidic 

residue-targeting cross-linkers, the cysteine-reactive bromoacetamide-based MS-cleavable 

cross-linker DBrASO has been developed to enable proteome-wide XL-MS analysis [22]. In 

comparison to the maleimide-based cysteine-reactive MS-cleavable linker BMSO, DBrASO 

possesses better specificity at physiological pH and is non-hydrolyzable, thus yielding more 

homogenous cross-linked products to facilitate their identification. The analysis of DBrASO 

cross-linked HEK 293 cell lysates identified additional PPIs and increased the scope of 

XL-proteomes revealed by DSSO cross-linking [22].

In addition to residue-specific cross-linking chemistries, heterobifunctional cross-linkers 

composed of an NHS ester and a nonspecific photoactivable diazirine are valuable in 

probing PPI regions that are inaccessible to residue-specific cross-linkers [1,48,56,57]. To 

facilitate the identification of photocross-linked peptides, three sulfoxide-containing MS-

cleavable NHS-diazirine cross-linkers, namely SDASO (succinimidyl diazirine sulfoxide), 

have been developed [56]. The MSn-based workflow allowed effective identification of 

SDASO-cross-linked peptides to generate a comprehensive interaction network of the yeast 

26S proteasome complementary to existing data. Recently, Faustino, et al has shown the 

feasibility of photocross-linking for global analysis of E. coli cells and lysates by developing 
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new heterobifunctional photo-crosslinkers utilizing an MS-labile urea group (Faustino, 2022, 

bioRxiv). While MS-cleavability is critical for reducing the potential combinations of cross-

linked sites obtained by photo-activatable reagents, the development of software suites 

using novel algorithms is also critical to facilitating cross-link identification. For instance, 

SpotLink has been recently developed using the dual pointer dynamic pruning algorithm and 

efficient memory operations, permitting the identification of nonspecific cross-links obtained 

by non-cleavable photocross-linkers at the proteome scale [58]. Collectively, continued 

development of diverse cross-linker chemistries and robust cross-link search engines [59,60] 

remains invaluable to further boosting XL-MS technologies toward generating a complete 

map of interaction landscapes in cells.

Defining Interaction and Structural Dynamics with QXL-MS

In addition to defining interactome landscapes for elucidating PPI functions, XL-MS can 

be integrated with quantitative proteomics to determine proteome network dynamics under 

different conditions [1,4,61]. Similar to traditional proteomics, quantitative XL-MS (qXL-

MS) strategies can be label-free but typically employ stable isotope labeling to allow 

pairwise or multiplexed comparisons. The relative abundances of cross-linked peptides are 

used to infer changes of protein interactions and conformations.

To advance qXL-MS to systems-level studies, multiplexing capability is desirable to 

increase throughput and decrease missing values between samples. Multiplexed qXL-MS 

workflows have been achieved based on the incorporation of isobaric labels into cross-linked 

peptides by chemical labeling (e.g. TMT (tandem mass tag)) or cross-linking reagents 

[1,24]. Given the potential applicability of TMT labeling to any type of cross-linked peptide 

regardless of cross-linker chemistry and functionality, data acquisition strategies for TMT-

based multiplexed qXL-MS analysis have been further explored [62]. While MS3-based 

analysis provides more accurate quantitation, it has been shown that MS2 acquisitions 

utilizing stepped-HCD can be optimized for quantifying TMT-labeled DSSO cross-linked 

peptides [62]. This presents an adaptable qXL-MS acquisition strategy for TMT-based 

multiplexed quantitation of any types of cross-linked peptides. However, cautions are needed 

to minimize labeling variability and peptide interference during quantitation. To circumvent 

these potential issues, isobaric cross-linkers such as iqPIR [24] have been developed. The 

6-plex MS-cleavable linker iqPIR fragments during MS2 analysis to release higher mass 

reporter ions (m/z 808~826) than TMT [24] and has been successfully applied to dissect 

drug-induced global interactome changes in breast cancer cells [18] and failing murine 

hearts [19]. While successful, it can be challenging to design and synthesize isobaric cross-

linkers with higher levels of multiplexing capability while maintaining ideal mass ranges 

of reporter ions for accurate quantitation. Regardless, these studies have paved the way to 

further develop multiplexed quantitation for large-scale qXL-MS studies.

In recent years, the applications of qXL-MS have been extended to study aspects of protein 

biology beyond simple descriptions of interaction and conformational changes, including 

protein activation mechanisms and binding affinities of protein complexes. Through time-

resolved label-free qXL-MS, Fürsch, et al. have investigated the heat activation and client-

binding modalities of sHSPs [63]. Their quantitative data have suggested a cooperative 
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mechanism driven by heat activation of the Hsp26 middle domain that initiates simultaneous 

global conformational changes within Hsp26 in the presence of its client. In addition, 

Hagemann, et al has developed a new qXL-MS workflow based on d0/d6-labeled BS2G to 

determine PPI interfaces and estimate the phosphorylation-dependent dissociation constants 

(KD) within the kinetochore complex (Hagemann, 2022, bioRxiv). In both studies, cross-

linking incubations were shortened to several minutes despite the fact that NHS ester-based 

reactions often require much longer durations. This suggests that faster cross-linking 

reactions could be beneficial for capturing specific conformational states for mechanistic 

understanding of protein assemblies.

XL-MS-coupled Integrative Structural Analysis

In recent years, XL-MS technology has become an integral component of integrative 

structural modeling approaches and established itself as the perfect partner for cryo-EM to 

elucidate architectures of protein complexes [3–7,33,64–66]. While a single cross-linker can 

produce sufficient data for integrative modeling, comprehensive cross-link data generated 

from combinatory XL-MS approaches based on multiple cross-linkers are beneficial for 

structural analysis of large protein assemblies [47,48] and for improving precision of the 

resulting models [67]. High-density cross-link data obtained from photocross-linking have 

also been shown to facilitate integrative modeling [48,57]. The complementarity of XL-MS 

and cryo-EM has expedited the generation of structural models that uncover molecular 

mechanisms underlying the function and regulation of various protein complexes, including 

the dihydrolipoamide succinyltransferase (E2) component of the human α-ketoglutarate 

dehydrogenase complex [51] and TRanscript-EXport complex [50], as well as the assembly 

of reovirus capsid by the prefoldin-TRiC/CCT chaperone network [64] and virus-induced 

remodeling of Cul4-RING ubiquitin ligase [57]. It is noted that structural insights into 

the exploitation of evolutionarily conserved ubiquitination machinery such as Cul4-RING 

ligase has the potential to improve the design of proteolysis-targeting chimera- or molecular 

glue-type compounds for targeted protein degradation-based therapeutics.

Recent advances of AI-based structural prediction tools such as AlphaFold2 (AF2) have 

begun to revolutionize the field of protein structural biology [68–71]. With over 200 

million structures predicted by AF2 and 600 million by Meta AI, XL-MS stands as a 

critical methodology to corroborate these AI-driven models. The integration of AF2 with 

XL-MS has rapidly followed, not only augmenting the interpretation of cross-linking 

data, but also accelerating integrative structure analysis of various protein complexes 

including understudied ones with increased throughput. A large-scale XL-MS dataset 

recently generated using a combinatory DSSO, DHSO, and DMTMM approach has been 

used to demonstrate the potential of integrating cross-linking data with AF2-based structural 

prediction [13]. The resulting models of proteins and protein complexes have presented 

the opportunity to mine the structural proteome and interactome, revealing mechanisms 

underpinning protein structure and function. AlphaLink, a modified version of the AF2 

algorithm, is another strategy that has been developed to explore the intersection of 

XL-MS and AI-based model prediction. By incorporating cross-link distance restraints to 

complement co-evolutionary relationships via deep learning, AlphaLink improves structure 

prediction to better dissect protein conformational states and dynamics in situ [28]. In 
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addition, integrative analysis coupling AF2 with in situ cross-linking has successfully 

resulted in a single model of the full-length SARS-CoV-2 protein Nsp2, suggesting 

its potential role in zinc regulation within the replication-transcription complex [34]. 

Moreover, the synergy of XL-MS with AI-driven modeling has been employed to define the 

architecture of the full-length p53 tetramer, presenting a strategy for structural elucidation 

of intrinsically disordered proteins (Di Ianni, 2022, bioRxiv). Structural characterization 

of the polymeric intraflagellar transport A (IFT-A) complex in its native environment has 

been carried out by combining XL-MS and AF2 with cryo-electron tomography (cryo-ET), 

yielding low-resolution structures of IFT-A with details on modes of associations and 

subunit stoichiometry in the cellular context [72]. Very recently, DSSO-based in-cell cross-

linking of the model Gram-positive bacterium Bacillus subtilis with co-fractionation mass 

spectrometry (CoFrac-MS) and AlphaFold-Multimer has allowed the structural prediction of 

153 dimeric and 14 trimeric protein assemblies, demonstrating the feasibility of assessing 

interaction topologies and structural features of cellular networks at a global scale [73]. 

Taken together, XL-MS assisted integrative structural analysis is beneficial not only 

for elucidating protein complex architectures, but also for determining the mechanisms 

underlying their function and regulation.

Conclusion

XL-MS continually proves to be unique and effective in its ability to map endogenous PPI 

landscapes with structural features from various sample origins including lysates, organelles, 

cells, and tissues. Thus, it has become the method of choice for global delineation of 

proteome networks to advance our understanding of native protein module topologies at 

the systems-level. In addition, residue-specific PPI contacts revealed by cross-link data 

have demonstrated crucial to integrative structural modeling for elucidating architectures of 

macromolecular assemblies. With the increased robustness, sensitivity, and accessibility of 

XL-MS technologies, their applications have been extended to mechanistic characterization 

of protein complexes beyond simple PPI mapping. Recent advances in sample preparation, 

reagent design, MS data acquisition and analysis have allowed significant expansion of the 

breadth and range of PPIs that can be captured. Despite this, only a fraction of proteome 

networks has currently been mapped. Clearly, in-depth proteome-wide PPI profiling remains 

technically challenging and will continue to be a focus for future XL-MS studies. Similar 

to conventional proteomics studies, combinations of orthogonal separation techniques at 

different levels including subcellular organelles, protein complexes, proteins and peptides 

will certainly help dig deeper in XL-proteomes. It is anticipated that global PPI profiling can 

be expanded to decipher intricate signaling networks with spatial and temporal resolutions 

under different physiological, pathological, and pharmacological conditions. While data-

independent acquisition (DIA)-based qXL-MS analysis has only gained attention recently 

[74,75], the remarkable success of DIA-based methods in large scale proteomics will 

undoubtedly drive innovations in this area to enable global quantitation of cross-links with 

increased reproducibility, robustness, and accuracy. With the aid of cryo-ET and AI-based 

structural prediction tools such as AF2, 3-D description of proteome networks in cells may 

be realized sooner than we can imagine. Therefore, we believe that XL-MS will continue 

to evolve with improved capability and throughput, and the next generation will become a 
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part of the standard structural biologist’s toolkit to advance structural systems biology and 

biomedical research.
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Figure 1. General XL-MS workflow.
Various sample types can be cross-linked, ranging in complexity from protein complexes to 

tissues and organs. Both ends of the cross-linker may target the same or different residues, 

while the spacer arm that connects the functional groups can be either MS-cleavable or not. 

To reduce complexity, proteins can be separated prior to or after cross-linking by subcellular 

or complex-centric fractionation, or affinity purification by tagged proteins or proximity 

labeling (PL). Following digestion, cross-links can be enriched by affinity purification or 

peptide fractionation. Cross-linked peptides can be purified if they contain a biotin or 

“click-able” site for appending biotin (B), phosphonic acid (P), or if an antibody recognizing 

the spacer arm of a cross-linker is used. Various chromatographic methods such as size-

exclusion (SEC), strong-cation exchange (SCX), and high-PH reverse phase (bRP) can be 

used to reduce the complexity of cross-linked peptide samples prior to LC-MS analysis. 

Depending on the MS acquisition type (MS/MS or MSn) and the type of cross-linker 

used (non-cleavable or MS-cleavable), various database search software are available to 

identify cross-linked peptides. Resulting cross-links can be used to generate 2-D XL-maps 

and XL-MS derived PPI, compartmental, pathway, and protein complex networks. Finally, 

cross-links can be used as distance restraints for integrative structure modeling or alongside 

AI-based structure prediction such as AlphaFold2 for protein structural elucidation.
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Figure 2. Selected cross-linkers discussed in this review.
Molecular structures for each cross-linker are shown alongside their corresponding 

references. Cross-linkers grouped and color-coded based on their targeted residues. Green: 

lysine-to-lysine, red: cysteine-to-cysteine, blue: lysine-to-any amino acid (nonspecific), 

yellow: lysine-to-cysteine, grey: lysine-to-acidic residue, orange: lysine/hydroxyl residue-to-

lysine/hydroxyl residue, purple: acidic residue-to-acidic residue (requires coupling reagent 

such as DMTMM). The border of each group designates whether cross-linkers are MS-

cleavable and/or enrichable. No border: non-cleavable and non-enrichable, thin dashed 

border: MS-cleavable but non-enrichable, solid border: non-cleavable but enrichable, and 

thick dashed border: MS-cleavable and enrichable.
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