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We present a study of the decay B� ! D0
�CP�K

� and its charge conjugate, where D0
�CP� is reconstructed

in CP-even, CP-odd, and non-CP flavor eigenstates, based on a sample of 232� 106 ��4S� ! B �B decays
collected with the BABAR detector at the PEP-II e�e� storage ring. We measure the partial-rate charge
asymmetries ACP� and the ratios RCP� of the B! D0K decay branching fractions as measured in CP�
and non-CP D0 decays: ACP� � 0:35� 0:13�stat� � 0:04�syst�, ACP� � �0:06� 0:13�stat� �
0:04�syst�, RCP� � 0:90� 0:12�stat� � 0:04�syst�, and RCP� � 0:86� 0:10�stat� � 0:05�syst�.

DOI: 10.1103/PhysRevD.73.051105 PACS numbers: 11.30.Er, 13.25.Hw, 14.40.Nd
A theoretically clean measurement of the angle � �
arg��VudV�ub=VcdV

�
cb� of the Cabibbo-Kobayashi-

Maskawa matrix V can be obtained from the study of
B� ! D���0K���� decays [1] by exploiting the interference
between the b! c �us and b! u �cs decay amplitudes [2,3].
Among the proposed methods, the one originally suggested
by Gronau, London, and Wyler (GLW) exploits the inter-
ference between B� ! D0K� and B� ! �D0K� when the
D0 and �D0 mesons decay to the same CP eigenstate.

The results of the GLW analyses are usually expressed in
terms of the ratios RCP� of charge-averaged partial rates
and of the partial-rate charge asymmetries ACP�,

RCP� �
��B� ! D0

CP�K
�� � ��B� ! D0

CP�K
��

	��B� ! D0K�� � ��B� ! �D0K��
=2
; (1)
ACP� �
��B� ! D0

CP�K
�� � ��B� ! D0

CP�K
��

��B� ! D0
CP�K

�� � ��B� ! D0
CP�K

��
: (2)

Here, D0
CP� � �D

0 � �D0�=
���
2
p

are the CP eigenstates of
the neutral D meson system, and we have followed the
notation used in [4]. Neglecting D0 � �D0 mixing [5], the
observables RCP� and ACP� are related to the angle �, the
magnitude r of the ratio of the amplitudes for the processes
B� ! �D0K� and B� ! D0K�, and the relative strong
phase � between these two amplitudes, through the rela-
tions RCP� � 1� r2 � 2r cos� cos� and ACP� �
�2r sin� sin�=RCP� [2]. Theoretical expectations for r
are in the range � 0:1–0:2 [2,6], in agreement with the
90% C.L. upper limits on r set by BABAR (r < 0:23) and
Belle (r < 0:18) through the study of B� ! DK�, D!
K��� decays [7].

In this paper we present the measurements of RCP� and
ACP�. The ratios RCP� are computed using the relations
RCP� � R�=R, where the quantities R��� are defined as
Università della Basilicata, Potenza, Italy.

Università di Perugia, Dipartimento di Fisica,
.

aboratoire de Physique Corpusculaire, Clermont-
ce.

the Johns Hopkins University, Baltimore, MD

051105
R��� �
B�B� ! D0

�CP��K
�� �B�B� ! �D0

�CP��K
��

B�B� ! D0
�CP���

�� �B�B� ! �D0
�CP���

��
:

(3)

Several systematic uncertainties cancel out in the measure-
ment of these double ratios. We also express the
CP-sensitive observables in terms of three independent
quantities:

x� �
RCP��1� ACP�� � RCP��1� ACP��

4
; (4)

r2 � x2
� � y

2
� �

RCP� � RCP� � 2

2
; (5)

where x� � r cos��� �� and y� � r sin��� �� are the
same CP parameters as were measured by the BABAR
Collaboration with B� ! DK�, D! K0

S�
��� decays

[8]. This choice allows the results of the two measurements
to be expressed in a consistent manner.

The measurements use a sample of 232 million ��4S�
decays into B �B pairs collected with the BABAR detector at
the PEP-II asymmetric-energy B factory. Since the BABAR
detector is described in detail elsewhere [9], only the
components that are crucial to this analysis are summa-
rized here. Charged-particle tracking is provided by a five-
layer silicon vertex tracker (SVT) and a 40-layer drift
chamber (DCH). For charged-particle identification, ion-
ization energy loss in the DCH and SVT, and Cherenkov
radiation detected in a ring-imaging device (DIRC) are
used. Photons are identified by the electromagnetic calo-
rimeter (EMC), which comprises 6580 thallium-doped CsI
crystals. These systems are mounted inside a 1.5-T sole-
noidal superconducting magnet. We use the GEANT [10]
software to simulate interactions of particles traversing the
detector, taking into account the varying accelerator and
detector conditions.

We reconstruct B� ! D0h� decays, where the prompt
track h� is a kaon or a pion. D0 candidates are recon-
structed in the CP-even eigenstates ���� and K�K�

(D0
CP�), in the CP-odd eigenstates K0

S�
0, K0

S� and K0
S!

(D0
CP�), and in the non-CP, flavor eigenstate K���. �

candidates are reconstructed in the K�K� channel and !
candidates in the�����0 channel. We optimize our event
selection to minimize the statistical error on the B� !
D0
�CP�K

� signal yield, determined for each D0 decay chan-
nel using simulated signal and background events.
-4
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The prompt particle h is required to have a momentum
greater than 1:4 GeV=c and the number of photons asso-
ciated to its Cherenkov ring is required to be greater than
four to improve the quality of the reconstruction. We reject
a candidate track if its Cherenkov angle does not agree
within 4 standard deviations (�) with either the pion or
kaon hypothesis, or if it is identified as an electron by the
DCH and the EMC. Particle identification (PID) informa-
tion from the drift chamber and, when available, from the
DIRC, must be consistent with the kaon hypothesis for the
K meson candidate in D0 ! K���, D0 ! K�K�, and
�! K�K� decays and with the pion hypothesis for the
�� meson candidates in D0 ! ���� and !! �����0

decays.
Neutral pions are reconstructed by combining pairs

of photon candidates with energy deposits larger
than 70 MeV that are not matched to charged tracks. The
�� invariant mass is required to be in the range
115–150 MeV=c2 and the total �0 energy must be greater
than 200 MeV. To improve momentum resolution, the
invariant mass of the two photons from candidate �0’s
used in the B meson reconstruction is constrained to the
nominal �0 mass [11].

Neutral kaons are reconstructed from pairs of oppositely
charged tracks with invariant mass within 7:8 MeV=c2 (
3�) of the nominal K0 mass. We also require that the ratio
between the flight length in the plane transverse to the
beam direction and its error be greater than 2. The
� mesons are reconstructed from two oppositely
charged kaons with invariant mass in the range 1:008<
M�K�K��< 1:032 GeV=c2. We also require
j cos�hel���j> 0:4, where �hel��� is the angle between
the flight direction of one of the � daughters and the D0

flight direction, in the � rest frame. The ! mesons are
reconstructed from �����0 combinations with invariant
mass in the range 0:763<M������0�< 0:799 GeV=c2.
We define �N as the angle between the normal to the !
decay plane and theD0 momentum in the! rest frame, and
��� as the angle between the flight direction of one of the
three pions in the ! rest frame and the flight direction of
one of the other two pions in their center-of-mass (CM)
frame. The quantities cos�N and cos��� follow cos2�N and
sin2��� distributions for the signal and are almost flat for
wrongly reconstructed or false ! candidates. We require
the product cos2�Nsin2��� > 0:08. The invariant mass of a
D0 candidate, M�D0�, must be within 2:5� of the mean
fitted mass, with resolution � ranging from 4 to
20 MeV=c2 depending on the D0 decay mode. For D0 !
����, the invariant mass of the (h���) system, where
�� is the pion from D0, and h� is the prompt track from
B� taken with the kaon mass hypothesis, must be greater
than 1:9 GeV=c2 to reject background from B� ! D0��,
D0 ! K��� and B� ! K�0��, K�0 ! K��� decays.
To improve the D0 momentum resolution, for all the D0

decay channels the candidate invariant mass is constrained
to the nominal D0 mass [11].
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We reconstruct B meson candidates by combining a
D0 candidate with a track h. For the D0 ! K��� mode,
the charge of the track h must match that of the kaon
from the D0 meson decay. We select B meson
candidates using the beam-energy-substituted mass mES �����������������������������������������������������������
�E�2i =2� pi � pB�2=E2

i � p
2
B

q
and the energy difference

�E � E�B � E
�
i =2, where the subscripts i and B refer to

the initial e�e� system and the B candidate, respectively,
and the asterisk denotes the CM [��4S�] frame. The mES

distributions for B� ! D0h� signals are Gaussian func-
tions centered at the B mass with a resolution of
2:6 MeV=c2, which do not depend on the decay mode or
on the nature of the prompt track. In contrast, the �E
distributions depend on the mass assigned to the prompt
track and on the D0 momentum resolution. We evaluate
�E with the kaon mass hypothesis so that the distributions
are Gaussian and centered near zero for B� ! D0K�

events and shifted by approximately 50 MeV for B� !
D0�� events. The B� ! D0K� �E resolution is about
17 MeV for all the D0 decay modes. All B candidates are
selected with mES within 3� of the mean value and with
�E in the range �0:16< �E< 0:23 GeV.

To reduce background from continuum production of
light quarks, we construct a linear Fisher discriminant [12]
based on the following quantities: (i) L0 �

P
ipi and L2 �P

ipicos2�i, evaluated in the CM frame, where pi is the
momentum, and �i is the angle with respect to the thrust
axis of the B candidate of charged tracks and neutral
clusters not used to reconstruct the B; (ii) j cos�T j, where
�T is the angle between the thrust axes of the B candidate
and of the remaining tracks and clusters, evaluated in the
CM frame; (iii) j cos�Bj, where �B is the polar angle of the
B candidate in the CM frame.

For events with multiple B� ! D0h� candidates (1%–
7% of the selected events, depending on the D0 decay
mode), we choose that with the smallest �2 formed from
the differences of the measured and true masses of the
candidate B,D0,�0 (only forD0 ! K0

S�
0,K0

S!),��D0 !
K0
S��,!�D

0 ! K0
S!�, scaled by the mass spread. The total

reconstruction efficiencies, based on simulated signal
events, are 39% (K���), 31% (K�K�), 30% (����),
17% (K0

S�
0), 20% (K0

S�), and 7% (K0
S!).

The main contributions to the background from B �B
events come from the processes B! D�h �h � �;K�,
B� ! D0	�, misreconstructed B� ! D0h�, and from
charmless B decays to the same final state as the signal:
for instance, the process B� ! K�K�K� is a background
for B� ! D0K�, D0 ! K�K�. These charmless back-
grounds have similar �E and mES distribution as the
D0K� signal and we call them ‘‘peaking B �B
backgrounds.’’

For each D0 decay mode an extended unbinned maxi-
mum likelihood fit to the selected data events determines
yields for two signal channels, B� ! D0�� and B� !
D0K�, and four kinds of backgrounds: candidates selected
-5



TABLE I. Yields from the maximum likelihood fit. The quoted
uncertainties are statistical.

D0 mode N�D��� N�D��� N�DK�� N�DK��

K��� 8151� 95 7899� 93 649� 29 611� 28
K�K� 705� 28 690� 28 26� 9 70� 10
���� 256� 18 219� 17 18� 7 17� 7
K0
S�

0 707� 29 677� 29 39� 9 42� 9
K0
S� 176� 14 157� 13 15� 5 13� 4

K0
S! 235� 17 230� 17 25� 7 14� 6
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either from continuum or from B �B events, in which the
prompt track is either a pion or a kaon.

The fit uses as input �E and a particle identification
probability for the prompt track based on the Cherenkov
angle �C, the momentum p, and the polar angle � of the
track.

The extended likelihood function L is defined as

L � exp
�
�
X6

i�1

ni

�YN
j�1

�X6

i�1

niP i� ~xj; ~
i�
�
; (6)

whereN is the total number of observed events and ni is the
yield of the ith event category. The six functions P i� ~xj; ~
i�
are the probability density functions (PDFs) for the varia-
bles ~xj, given the set of parameters ~
i. They are evaluated
as a product P i � P 1i��E� � P 2i��C�.
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FIG. 1. Distributions of �E for events enhanced in the B!
D0K signal. Top: B� ! D0K�, D0 ! K���; middle: B� !
D0
CP�K

�; bottom: B� ! D0
CP�K

�. Solid curves represent pro-
jections of the maximum likelihood fit; dashed, dash-dotted and
dotted curves represent the B! D0K, B! D0� and back-
ground contributions.
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The �E distribution for B� ! D0K� signal events is
parametrized with a Gaussian function. The �E distribu-
tion for B� ! D0�� is parametrized with the same
Gaussian function used for B� ! D0K� with an addi-
tional shift, computed event by event as a function of the
prompt track momentum, arising from the wrong mass
assignment to the prompt track. The offset and width of
the Gaussian functions are determined from data together
with the yields.

The �E distribution for the continuum background is
parametrized with a linear function whose slope is deter-
mined from off-resonance data. The �E distribution for the
nonpeaking B �B background is empirically parametrized
with the sum of a Gaussian function and an exponential
function when the prompt track is a pion, and with an
exponential function when the prompt track is a kaon.
The parameters are determined from simulated events.
The �E distribution for the peaking charmless B �B back-
ground is parametrized with the same Gaussian function
used for the B� ! D0K� signal. The yield of the B �B
peaking background is estimated from the sidebands of
the D0 invariant mass distribution and fixed in the fit.

The parametrization of the particle identification PDF is
performed by fitting with two Gaussian functions the
background-subtracted distribution of the difference be-
tween the reconstructed and expected Cherenkov angles
of kaon and pion samples. The parametrization is per-
formed as a function of the momentum and polar angle
of the track. Pions and kaons are selected from a pure
D�� ! D0��, D0 ! K��� control sample.

The results of the fit are summarized in Table I. Figure 1
shows the distributions of �E for the K���, CP� and
CP� modes after enhancing the B! D0K purity by re-
quiring that the prompt track be consistent with the kaon
hypothesis. The total PDF, normalized by the fitted signal
TABLE II. Measured ratios RCP� and ACP� for CP-even and
CP-odd D decay modes. The first error is statistical, the second
is systematic. RCP� and ACP� are corrected for the CP-even
dilution described in the text.

D0 mode RCP ACP

CP� 0:90� 0:12� 0:04 0:35� 0:13� 0:04
CP� 0:86� 0:10� 0:05 �0:06� 0:13� 0:04
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and background yields, integrated over the Cherenkov
angle variable and modified to take into account the tighter
selection criteria, is overlaid in the figure.

The ratios RCP� are computed for the five CP modes
using the relations in Eq. (3). A number of systematic
uncertainties, as the uncertainty associated to the tracking
efficiency and the uncertainty on the D0 decay branching
fractions, cancel out in the measurement of the double
ratio. The relations RCP� � R�=R hold neglecting the
magnitude r� of the ratio of the amplitudes of the B� !
�D0�� and B� ! D0�� processes [6] (r�  r

�2

1��2 &

0:012, where � � 0:22 [11] is the sine of the Cabibbo
angle). This assumption is considered further when we
discuss the systematic uncertainties. The quantities R�=R
are computed from the ratios of the B! DK and B! D�
yields in Table I, scaled by correction factors taking into
account small differences in the selection efficiency be-
tween B! DK and B! D�. These correction factors are
evaluated from simulated events and range between
0:982� 0:018 and 1:020� 0:031 depending on the D0

decay mode. The results for the CP-even and CP-odd
combinations are listed in Table II.

The partial-rate charge asymmetries ACP� are calculated
from the measured yields of positive and negative B! DK
decays in Table I. The results for the CP-even and CP-odd
combinations are reported in Table II.

In the case ofD0 ! K0
S�,�! K�K�, andD0 ! K0

S!,
!! �����0, the values of RCP� and ACP� quoted in
Table II are obtained after correcting the measured values
to take into account the dilution from a CP-even back-
ground arising from B� ! D0h�, D0 ! K0

S�K
�K��non-�

and D0 ! K0
S��

����0�non-! decays. For the K0
S� chan-

nel we exploit the investigation performed by BABAR of
theD0 ! K0

SK
�K� Dalitz plot [13] to estimate the level of

the CP-even background (0:160� 0:006 relative to the
K0
S� signal) and the corresponding RCP� and ACP� dilu-

tion. For the K0
S! channel there is little information on

this background. We estimate the amount of D0 !
K0
S��

����0�non-! background (0:25� 0:05 relative to
the K0

S! signal) from the cos�N distribution of B� !
TABLE III. Systematic uncertainties on the obs
the two CP-even and the three CP-odd D0 decay

Source �RCP� (%)

Background �E PDF 1.3
PID PDF 0.1
Peaking background yields 3.0
Opposite-CP background � � �

Detector charge asymmetry � � �

"K=�� ="K=� 1.0
r� 2.2

Total 4.1
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D0��, D0 ! K0
S�
����0 candidates, and assume the

CP-even content of this background to be �50� 29�%.
Systematic uncertainties in the ratios RCP� and in the

CP asymmetries ACP� are listed in Table III. They arise
both from the uncertainties on the signal yields, extracted
through the unbinned maximum likelihood fit, and from
the assumptions used to compute RCP� and ACP�. The
correlations between the different sources of systematic
errors, when non-negligible, are considered when combin-
ing the two CP-even or the three CP-odd modes.

The uncertainties on the fitted signal yields are due to the
imperfect knowledge of the �E and PID PDFs and of the
peaking background yields, and are evaluated by varying
the parameters of the PDFs and the peaking background
yields by �1� and taking the difference in the signal
yields. The uncertainties in the branching fractions used
in the simulation of the B decays that contribute to the B �B
background are also taken into account. The yields of the
B �B and continuum backgrounds found in data are consis-
tent with what is expected from the simulation. In the K0

S�
and K0

S! channels we also take into account the uncertain-
ties in the dilution factors due to the imperfect knowledge
of the levels of the CP-even backgrounds from
B� ! D0K�, D0 ! K0

S�K
�K��non-� and D0 !

K0
S��

����0�non-! decays.
A possible bias in the measured ACP� may come from an

intrinsic detector charge asymmetry due to asymmetries in
acceptance or tracking and particle identification efficien-
cies. An upper limit on this bias has been obtained from the
measured asymmetries in the processes B� ! D0h�,
D0 ! K��� and B� ! D0

CP��
�, where CP violation is

expected to be negligible. From the average asymmetry,
��1:8� 0:9�%, we obtain the limit �2:7% for the bias.
This has been added in quadrature to the total systematic
uncertainty on the CP asymmetry.

For the branching fraction ratios RCP� two additional
sources of uncertainty are the correction factors used to
scale the yield ratios, and the assumption that RCP� �
R�=R. The scaling factor, estimated from simulated
events, is a double ratio of efficiencies, "K=�� ="K=�, where
ervables RCP� and ACP� after combination of
modes.

�RCP� (%) �ACP� (%) �ACP� (%)

1.1 1.1 0.4
0.1 0.2 0.2
4.2 2.6 2.2
1.3 � � � 1.0
� � � 2.7 2.7
1.1 � � � � � �

2.1 � � � � � �

5.1 3.9 3.7

-7



B. AUBERT et al. PHYSICAL REVIEW D 73, 051105 (2006)

RAPID COMMUNICATIONS
"K=�
���

denotes the ratio between the selection efficiencies of
B! D0

�CP��K and B! D0
�CP���. In the double ratio the

systematic uncertainties arising from possible discrepan-
cies between data and simulation are negligible, and only
the contribution from the limited statistics of the simulated
samples remains. The assumption RCP� � R�=R introdu-
ces a relative uncertainty �2r� cos�� cos� on RCP�,
where �� is the relative strong phase between the ampli-
tudes A�B� ! �D0��� and A�B� ! D0���. Since
j cos�� cos�j � 1 and r� & 0:012, we assign a relative
uncertainty �2:4% to RCP�, which is completely anticor-
related between RCP� and RCP�.

We quote the measurements in terms of x� and r2,

x� � �0:082� 0:053�stat� � 0:018�syst�; (7)

x� � �0:102� 0:062�stat� � 0:022�syst�; (8)

r2 � �0:12� 0:08�stat� � 0:03�syst�: (9)

The measured values of x� are consistent with those found,
on a slightly smaller data sample, with the B� ! DK�,
D! K0

S�
��� decays, and the precision is comparable

[8].
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In conclusion, we have reconstructed B� ! D0K� de-
cays with D0 mesons decaying to non-CP, CP-even and
CP-odd eigenstates. We have improved the measurements
of RCP� and ACP� [14,15], and we have also expressed the
results in terms of the same x� parameters as were mea-
sured with B� ! DK�, D! K0

S�
��� through a Dalitz

plot analysis of the D final state [8], with a comparable
precision. These measurements, combined with the exist-
ing measurements of the B! DK decays, will improve the
knowledge of the angle � and the parameter r.
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