
UC San Diego
Technical Reports

Title
Consensus for Dependent Process Failures

Permalink
https://escholarship.org/uc/item/7d43h6dt

Authors
Junqueira, Flavio
Marzullo, Keith

Publication Date
2003-02-18

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7d43h6dt
https://escholarship.org
http://www.cdlib.org/

Consensus for Dependent Pro
ess Failures

�

Flavio P. Junqueira

flavio�
s.u
sd.edu

Keith Marzullo

marzullo�
s.u
sd.edu

University of California, San Diego

Department of Computer S
ien
e and Engineering

9500 Gilman Drive

La Jolla, CA

8th O
tober 2002

Keywords: Distributed Systems, Fault Toleran
e, Correlated Failures,

Consensus

�

This work was developed in the
ontext of the RAMP proje
t, supported by DARPA as proje
t number

N66001-01-1-8933.

1 Introdu
tion

Most fault-tolerant proto
ols are designed assuming that out of n
omponents, no more

than t
an be faulty. For example, solutions to the Consensus problem are usually de-

veloped assuming no more than t of the n pro
esses are faulty where \being faulty" is

spe
ialized by a failure model. We
all this the t of n assumption. It is a
onvenient

assumption to make. For example, bounds are easily expressed as a fun
tion of t: if pro-

esses
an fail only by
rashing, then the Consensus problem is solvable when t < n if the

system is syn
hronous and when t < 2n if the system is asyn
hronous extended with a

failure dete
tor of the
lass 3W . [1, 2℄

The use of the t of n assumption dates ba
k to the earliest work on fault-tolerant

omputing. [3℄ It was �rst applied to distributed
oordination proto
ols in the SIFT proje
t

[4℄ whi
h designed a
y-by-wire system. The reliability of systems like this is a vital

on
ern, and using the t of n assumption allows one to represent the probabilities of

failure in a simple manner. For example, if ea
h pro
ess has a probability p of being

faulty, and pro
esses fail independently, then the probability P (t) of no more than t out

of n pro
esses being faulty is:

P (t) =

t

X

i=0

�

n

i

�

p

i

(1� p)

n�i

If one has a target reliability R then one
an
hoose the smallest value of t that satis�es

P (t) � R.

The t of n assumption is best suited for
omponents that have identi
al probabilities

of failure and that fail independently. For embedded systems built using rigorous software

development this is often a reasonable assumption, but for most modern distributed sys-

tems it is not. Pro
ess failures
an be
orrelated be
ause, for example, the same buggy

software was used. [5℄ Computers in the same room are subje
t to
orrelated
rash failures

in the
ase of a power outage.

That failures
an have di�erent probabilities and
an be dependent is not a novel

observation. The
ontinued popularity of the t of n assumption, however, implies that it

is an observation that is being overlooked by proto
ol designers. If one wishes to apply,

for example, a Consensus proto
ol in some real distributed system, one
an use one of two

approa
hes:

1. Use some o�-line analysis te
hnique, su
h as fault tree analysis [6℄ to identify how

pro
esses fail in a
orrelated manner. For those that do not fail independently or fail

with di�erent probabilities, re-engineer the system so that failures are independent

and identi
ally distributed (IID).

2. Use the same o�-line analysis te
hnique to
ompute what the maximum number of

faulty pro
esses
an be, given a target reliability. Use this value for t and
ompute

the value of n that, under the t of n assumption, is required to implement Consensus.

Repli
ate to that degree.

Both of these approa
hes are used in pra
ti
e. [6℄ This paper advo
ates a third ap-

proa
h:

3. Use the same o�-line analysis to identify how pro
esses fail in a
orrelated manner.

Represent this using our abstra
tion for dependent failures, and repli
ate in a way

that satis�es our repli
ation requirement and that minimizes the number of repli
as.

Instantiate the appropriate dependent failure proto
ol.

2

We believe that our approa
h and proto
ols are amenable to on-line adaptive repli
a-

tion te
hniques as well.

In this paper we propose an abstra
tion that exposes dependent failure information

for one to take advantage of in the design of a proto
ol. Like the t of n assumption, it is

expressed in a way that hides its underlying probabilisti
 nature in order to make it more

generally appli
able.

We then apply this abstra
tion to the Consensus in both syn
hronous and asyn
hronous

models assuming
rash and arbitrary failures. We show repli
ation requirements that

are suÆ
ient to enable a solution for Consensus. In order to demonstrate suÆ
ien
y, we

applyed simple modi�
ations to Consensus algorithms proposed in the literature. Although

we
annot generalize this result to every problem in fault-tolerant distributed
omputing,

we believe that our work does not invalidate all the previous work assuming t of n pro
ess

failures. We also show that expressing pro
ess failure
orrelations with our model enables

the solution of Consensus in some systems in whi
h it is impossible when making the t of

n assumption.

There has been some work in providing abstra
tions more expressive than the t of n

assumption. The hybrid failure model (for example, [7℄) generalizes the t of n assumption

by providing a separate t for di�erent
lasses of failures. Using a hybrid failure model

allows one to design more eÆ
ient proto
ols by having suÆ
ient repli
ation for masking

ea
h failure
lass. It is still based on failures in ea
h
lass being independent and identi
ally

distributed. In this paper, however, we do not
onsider hybrid failure models.

Byzantine Quorum systems have been designed around the abstra
tion of a Fail-prone

System [8℄. This abstra
tion allows one to de�ne quorums that take
orrelated failures into

a

ount. This abstra
tion has been used to express a suÆ
ien
y
ondition for repli
ation.

Our work
an be seen as generalizing this work, whi
h applies only to Quorum Systems.

The remainder of this paper is divided as follows. Se
tion 2 presents our assump-

tions for the system model and introdu
es our abstra
tion that models dependent pro
ess

failures. Se
tion 3 de�nes the distributed Consensus problem. Se
tions 4 and 6 present

repli
ation requirements and algorithms for syn
hronous Consensus on the
rash and arbi-

trary failure models, respe
tively. For asyn
hronous Consensus, repli
ation requirements

and algorithms on the
rash and arbitrary failure models are presented in se
tions 5 and

7, respe
tively. Finally, we draw
on
lusions and dis
uss future work in Se
tion 8.

2 System Model

A system is
omposed of a set � of pro
esses, numbered from 1 to n = j�j. The number

assigned to a pro
ess is its pro
ess id, and it is known by all the other pro
esses. In the rest

of paper, every time we refer to a pro
ess with id i, we use the notation p

i

. Additionally,

we de�ne Pid as the set of pro
ess id's, i.e., Pid = fi : p

i

2 �g. We use this set to de�ne

a sequen
e w of pro
ess id's. Su
h a sequen
e w is an element of Pid

�

.

A pro
ess
ommuni
ate with others by ex
hanging messages. Messages are transmitted

through point-to-point reliable
hannels, and ea
h pro
ess is
onne
ted to every other

pro
ess through one of these
hannels. We model a
hannel between pro
esses p

i

and p

j

as

two pairs of bu�ers: input

ij

=output

ij

and input

ji

=output

ji

. If pro
ess p

i

sends a message

m to p

j

, then it pla
esm at bu�er input

ij

. On
e the transfer of the message is
ompleted,

a

ording to the timing assumptions, the message is moved to output

ij

. Pro
ess p

j

then

has a

ess to m. Note that pro
ess p

i

only has
ontrol over the bu�ers input

ij

and output

ji

.

Pro
esses, on the other hand, are not assumed to be reliable. We
onsider both
rash

and arbitrary pro
ess failures. Di�erent from most previous works in fault-tolerant dis-

3

tributed systems, pro
ess failures are allowed to be
orrelated. We introdu
e a new ab-

stra
tion, namely
ore, whi
h
orresponds to a reliable subset of pro
esses. From a set of

ores, it is possible to derive subsets of pro
esses su
h that in every run of the system at

least one of these subsets
ontains only
orre
t pro
esses. We
all them survivor sets.

Ea
h pro
ess p 2 � exe
utes a deterministi
 automaton as part of the distributed

omputation [2, 9℄. A deterministi
 automaton is
omposed of a set of states, a initial

state, and a transition fun
tion. The
olle
tion of the automata exe
uted by the pro
esses

is de�ned as a distributed algorithm. An exe
ution of a distributed algorithm pro
eeds

in steps of the pro
esses. In a step, a pro
ess may: 1) re
eive a message; 2) undergo a

state transition; 3) send a message to a single pro
ess. Steps are assumed to be atomi
,

and there is no restri
tion in terms of sequentiality. That is, steps of di�erent pro
esses

are allowed to overlap in time. A pro
ess is assumed to take a step at global time t 2 T

provided by some external devi
e. Although pro
esses do not have a

ess to this external

devi
e, this assumption turns out to be useful in reasoning about the systems we dis
uss

here. The range of T is the non-negative integers.

Although the
omputational model is the same independently of the timing assump-

tions, we des
ribe algorithms for syn
hronous and asyn
hronous systems di�erently. As

we show later in this se
tion, we explore the fa
t that the
omputation
an be split in

syn
hronous rounds to fa
ilitate the
oordination among the pro
esses.

This is the general pi
ture of our system model. In the following subse
tions, we dis
uss

in details its various aspe
ts.

2.1 Pro
esses, Cores, and Survivor Sets

A system is
omposed of a set � = fp

1

; p

2

; � � � ; p

n

g of pro
esses. In our model, pro
ess

failures are allowed to be
orrelated, whi
h means that the failure of a pro
ess may indi
ate

an in
rease in the failure probability of another pro
ess. To represent these
orrelations,

we assume some abstra
tion. For example, pro
esses
an be represented by attributes and

pro
esses sharing an attribute have higher probability of failing in the same exe
ution of

the system.

To a
hieve fault-toleran
e in a system assuming no failed pro
ess re
overs, it is ne
-

essary to guarantee that non-empty subsets of � survive to every exe
ution. A pro
ess

is said to survive to an exe
ution if and only if it is
orre
t in that exe
ution. Thus, we

would like to distinguish subsets of pro
esses su
h that the probability of all pro
esses in

ea
h of these subsets failing is negligible. Moreover, we want these subsets to be minimal

in that removing any pro
ess of su
h a subset
 makes the probability of all the pro
esses

in
 failing non-negligible, These subsets are
alled
ores. Cores
an be extra
ted from

the information about pro
ess failure
orrelations. In this paper, however, we assume that

the set of
ores is provided as part of the system spe
i�
ation. Models to des
ribe failure

orrelations and methods to extra
t
ores from instan
es of these models are not addressed

here.

By assumption, ea
h
ore
ontains at least one pro
ess that is going to be
orre
t

in an exe
ution. Thus, a subset of pro
esses, su
h that the interse
tion with every
ore

is non-empty
ontains pro
esses that are
orre
t in some exe
ution. If su
h a subset is

minimal, then it is
alled a survivor set. Noti
e that in every run of the system there is

at least one survivor set that
ontains only
orre
t pro
esses. The de�nition of survivor

sets is equivalent to the one of a fail-prone system B [8℄. The set of all survivor sets is the

omplement of B.

We now de�ne
ores and survivor sets more formally. Let R be a rational number

4

expressing the target degree of reliability for �, and r(x), x � �, be a fun
tion that

evaluates to the reliability of the subset x. We de�ne
ores and survivor sets as follows:

De�nition 2.1 Given a set of pro
esses � and target degree of reliability R 2 [0; 1℄ \Q,

 is said to be a
ore if and only if:

1.
 � �;

2. r(
) � R;

3. 8p 2
, r(
� fpg) < R.

C

�

is the set of
ores of �. Given a set of pro
esses � and a set of
ores C

�

, s is said

to be a survivor set if and only if:

1. s � �;

2. 8
 2 C, s \
 6= ;;

3. 8p 2 s, 9
 2 C

�

su
h that p 2
.

We de�ne C

�

and S

�

as the set of
ores and the set of survivor sets of �, respe
tively.

2

2:1

The fun
tion r(:) and the target degree of reliability R are used at this point only

to formalize the idea of a
ore. In reality, reliability does not need to be expressed as

probabilities. For example,
onsider the following system representation:

Example 2.2 :

� � = fph

1

;ph

2

;pl

1

;pl

2

;pl

3

;pl

4

g

� C

�

= ffph

1

;ph

2

;pl

1

g; fph

1

;ph

2

;pl

2

g; fph

1

;ph

2

;pl

3

g; fph

1

;ph

2

;pl

4

gg

� S

�

= ffph

1

g; fph

2

g; fpl

1

;pl

2

;pl

3

;pl

4

gg

2

2.2

In this system, ph

1

and ph

2

are very reliable and ea
h of these fail independently of

every other p 2 �. Pro
esses pl

i

, for 1 � i � 4, however, fail dependently among ea
h

other. That is, for every pair of pro
esses pl

i

, pl

j

, 1 � i; j � 4 and i 6= j, we have that if

pl

i

is faulty in some exe
ution of the system, then pl

j

is also faulty. Thus, a subset with

maximum reliability
ontains pro
esses ph

1

, ph

2

, and exa
tly one pro
ess pl

i

. Suppose

that the maximum reliability a
hievable for a subset of pro
esses satis�es the intuitive

notion of target degree of reliability for this system. We
an therefore infer that for ea
h

i, 1 � i � 4, fph

1

; ph

2

; pl

i

g is a
ore. The set C

�

of
ores is hen
e as follows:

In the remainder of this paper, we assume that these subsets are provided as part of

the system representation. In the following se
tions, a system is des
ribed by a triple

h�; C

�

; S

�

i, for � being a set of pro
esses, C

�

being the set of
ores of �, and S

�

being

the set of survivor sets of �. We
all hen
eforth h�; C

�

; S

�

i a system representation.

5

2.2 Failure Models

We assume two failure models:
rash and arbitrary. When dis
ussing failures, one dis-

tinguishes
hannel failures and pro
ess failures. In both models
onsidered here,
hannels

are assumed to be reliable. We de�ne a reliable
hannel as one that satis�es the following

properties:

Validity: If p; q 2 � are
orre
t pro
esses and p sends a message m to q, then m is

eventually delivered;

Integrity: A pro
ess p 2 � re
eives a message m if and only if some pro
ess q 2 � sent

it to p. Moreover, p re
eives m exa
tly on
e.

From these
hannel properties, if a
orre
t pro
ess p

i

puts a messagem in bu�er input

ij

and p

j

is also
orre
t, then m is eventually moved to output

ij

. Also, no message in bu�er

output

ij

is spontaneously generated, for any pair of pro
esses p

i

; p

j

2 �. If a message is in

output

ij

at some time t, then it was pla
ed at output

ij

by p

i

at some time t

0

< t.

The possibilities for pro
ess failures di�erentiate the models. In the
rash model, pro-

esses fail by
rashing. That is, if a pro
ess p is faulty in an exe
ution, then it prematurely

stops sending and re
eiving messages in that exe
ution. Thus, there is a time t after whi
h

p stops re
eiving and sending messages, even though it was supposed to do it a

ording

to the algorithm. In
ontrast to a
rashed pro
ess, we say that a pro
ess is alive at some

time t either if it is
orre
t at t or if it has not
rashed at any time t

0

< t.

Although a
rashed pro
ess p

i

does not operate properly after time t, p

i

does not a

om-

plish in
orre
t
omputations. In the arbitrary model, on the other hand, faulty pro
esses

behave arbitrarily, and hen
e this model is stri
tly weaker than the
rash model. Examples

of arbitrary behavior are: forging messages, arbitrarily modifying the
ontent of messages,

sele
tively forwarding messages, and
hanging states without following the proto
ol spe
-

i�
ation. It is important to observe that some arbitrary failures are dete
table, whereas

others are not [10, 11℄. For example, the modi�
ation of the initial value of a pro
ess p

i

is not dete
table. This is due to the lo
ality of this information. The initial value of p

i

is

only known by p and
onsequently it is not possible to verify whether it was modi�ed ar-

bitrarily or not. On the other hand, some failures are dete
table and attributable to some

pro
ess. Suppose the
hannels are FIFO. If a pro
ess p

i

sends malformed or out-of-order

messages then a
orre
t pro
ess p

j

re
eiving those messages is able to dete
t that p

i

is

faulty. Note that FIFO
hannels are easily implemented by a
ounter, whi
h has its value

sent along with every message and is in
remented every time a message is sent. Even if a

byzantine pro
ess p

i

hanges the value of a
hannel
ounter arbitrarily, it is still possible

for a
orre
t pro
ess p

j

to dete
t p

i

as faulty. We assume FIFO
hannels for our proto
ol

that solves Consensus in a asyn
hronous systems with byzantine pro
esses. The issue of

FIFO
hannels is hen
e addressed again in the se
tion 2.4, whi
h dis
uss asyn
hronous

systems with arbitrary pro
ess failures.

2.3 Syn
hronous Model

The syn
hronous model imposes bounds on message delay, pro
ess speed, and
lo
k drift.

These bounds, however, are not ne
essarily based on absolute time. As in the model of

Dolev et al. [12℄, steps of an algorithm are used to de�ne these bounds. Following this

model, the timing assumptions for a syn
hronous system are given by two parameters:

� � 1 and � � 1. Furthermore, any exe
ution of an algorithm � in su
h a system satis�es

the following properties:

6

Pro
ess syn
hrony : for any �nite subsequen
e w of
onse
utive steps, if some pro
ess

p

i

takes � + 1
onse
utive steps in w, then any pro
ess that is still alive at the end

of w has taken at least one step in w;

Message syn
hrony : for any pair of indi
es k; l, with l � k +�, if message m is sent

to p

i

during the k-th step, then m is re
eived by the end of the l � th step.

If these properties hold, then an exe
ution
an be further organized in rounds, whi
h

are de�ned in terms of steps of pro
esses. In a round, a pro
ess p

i

exe
utes n + k steps.

The �rst n steps are used by p

i

to send real messages, whereas in the last k steps it sends

null messages. These k last steps are ne
essary to guarantee that all messages sent to p

i

in a round r are re
eived before p

i

pro
eeds to round r + 1. The number k of steps is a

fun
tion of �, �, n, and r.

The algorithms for syn
hronous systems des
ribed in se
tions 4 and 6 are round-based.

This format fa
ilitates understanding, sin
e it abstra
ts several details of the system model.

The algorithms are also not des
ribed in an automaton format, sin
e the des
ription would

be longer and would not improve
larity. Instead, we use sequential
ode to present the

algorithms. States and transitions, however, are easily observable from the
hanges on the

values stored by the variables used by the algorithm.

2.4 Asyn
hronous Model

In an asyn
hronous system, there is no bound on message delay, pro
ess speed, or
lo
k

drift [2, 13, 9, 14℄. Thus, in su
h a system, a message sent from a
orre
t pro
ess p

i

to

some other pro
ess p

j

may take arbitrarily long to be re
eived. Message delay, although

onsidered to be unbounded, is assumed to be �nite. This is due to the validity property

of the
hannels, whi
h says that every message sent from a
orre
t pro
ess p

i

to another

orre
t pro
ess p

j

is eventually re
eived.

A

ording to the FLP result [15℄, it is not possible to solve Consensus in a pure

asyn
hronous system, even if only a single
rash failure is assumed. The intuition behind

the impossibility is that it is not possible to distinguish a
rashed pro
ess from a very slow

one. As dis
ussed previously, a message sent may take a �nite but unbounded amount

of time to rea
h its destination, preventing pro
esses from distinguishing some exe
utions

from others. It is therefore ne
essary to assume some liveness property for the system that

guarantees that something good will eventually happen and will hold long enough so that

orre
t pro
esses
an rea
h agreement.

Chandra and Toueg proposed to extend the asyn
hronous model with an ora
le that

provides information about pro
ess failures. This ora
le is
alled a failure dete
tor [2℄.

Brie
y, ea
h pro
ess has a failure dete
tor module available to itself, and it queries the

module every time the algorithm requires failure information. They showed in their work

that failure dete
tors do not need to dete
t
rash failures perfe
tly to make Consensus

solvable in su
h extended model. Moreover, they proved that a failure having the properties

of 3W is ne
essary [16℄. Another interesting result out of their work is the equivalen
e

between the
lasses 3W and 3S, meaning that given a failure dete
tor D of one of the

lasses, there is an algorithm that transforms D into a failure dete
tor D

0

of the other
lass.

In this paper, we assume an asyn
hronous model with
rash pro
ess failures extended with

a failure dete
tor D 2 3S. The properties that de�ne a failure dete
tor D 2 3S are as

follows:

Strong
ompleteness : Eventually every pro
ess that
rashes is permanently suspe
ted

by every
orre
t pro
ess;

7

Eventual weak a

ura
y : There is a time after whi
h some
orre
t pro
ess is never

suspe
ted by any
orre
t pro
ess.

In se
tion 5, we assume an asyn
hronous model extended with a failure dete
tor D 2

3S.

For a byzantine setting, other
lasses of failure dete
tors are proposed in the literature.

Malkhi and Reiter des
ribe the failure dete
tor
lass 3S(bz) [11℄. A failure dete
tor D in

3S(bz) provides information about quiet pro
esses only. By de�nition, a quiet pro
ess is

a faulty pro
ess whi
h sends a �nite number of messages in an in�nite exe
ution. Thus, a

failure dete
tor D is not supposed to dete
t any other faulty behavior other than silen
e.

The dete
tion of other arbitrary behaviors is implemented by a distributed algorithm. This

is illustrated in [11℄ by an algorithm whi
h relies on the dete
tion of malformed, out-of-

order, and unjusti�able messages to solve Consensus, thus showing that the properties of

3S(bz) are suÆ
ient for an asyn
hronous system with byzantine failures. The de�nition

of 3S(bz), however, assumes a strong system model. It assumes a reliable broad
ast

primitive, whi
h also satis�es
ausal order, to ex
hange messages [13℄ and authenti
ated

1

,

reliable
hannels between pairs of pro
esses. By assumption, every message is broad
ast

to all the pro
esses using the given primitive. This prevents that faulty pro
esses send

di�erent messages to di�erent pro
esses in a broad
ast.

Di�erently from Malkhi and Reiter, Kihlstrom et al. de�ne a
lass 3S(Byz) of failure

dete
tors whi
h expose arbitrarily faulty pro
esses. [10℄ As in the previous de�nitions, ea
h

pro
ess has a failure dete
tor module that output a list of pro
esses suspe
ted of having

presented dete
table arbitrary failures. Note that the de�nition of dete
table arbitrary

failures in
ludes omission failures, hen
e dete
ting quiet pro
esses as well. The algorithm

shown in their work to solve Consensus is tightly
oupled to the failure dete
tor, sin
e

it has to provide
erti�
ates that justify messages sent. The failure dete
tor thus uses

these
erti�
ates to validate the
hoi
es made by the algorithm. Note that this validation

me
hanism is viable only by assuming the
erti�
ates to be unforgeable. An important

observation is that the system model assumed is weaker than the model assumed in the

de�nition of 3S(bz). Pro
esses send messages to ea
h other through end-to-end reliable

hannels, guaranteeing that a message sent from a
orre
t pro
ess to another
orre
t

pro
ess is eventually re
eived.

The last
lass of failure dete
tors for arbitrary settings we dis
uss here is3M , proposed

by Doudou and S
hiper. [17℄ A failure dete
tor of this
lass satis�es the mute
ompleteness

property, besides the eventual weak a

ura
y de�ned previously. The de�nition of a mute

pro
esses resembles the de�nition of a quiet pro
ess, but the former is more
omprehensive.

An advantage over the 3S(bz)
lass is again the weaker system model assumed. We now

repeat the de�nitions of a mute pro
ess and mute
ompleteness as presented in [17℄.

Mute pro
ess : Let p

i

and p

j

be two pro
esses. Pro
ess p

i

is mute to p

j

if there is a

time after whi
h either (1) p

i

rashes, or (2) p

i

stops forever sending messages to

p

j

, or (3) p

i

sends only in
orre
t signed messages (sender
annot be identi�ed) or

unsigned messages to p

j

.

Mute Completeness : There is a time after whi
h every pro
ess p

i

, that is mute to a

orre
t pro
ess p

j

, is suspe
ted forever by p

j

.

The failure dete
tor is not tightly
oupled to the algorithm that solves Consensus

in [17℄. Although the failure dete
tor veri�es signatures, these are not assumed to be

1

The authenti
ation me
hanism is assumed to be unforgeable

8

generated by the algorithm. Unforgeable signatures are assumed to be available as part of

the system model. The only stronger assumption made in terms of the system model
om-

pared to the one assumed by Kihlstrom et al. is the FIFO property for the
ommuni
ation

hannels. This property is required by the Consensus algorithm, though, and not by the

failure dete
tor. As observed before, the FIFO property for a
hannel is implemented by

a
ounter, whi
h is in
remented every time a message is sent and its
urrent value goes

along with every message. Even if a faulty pro
ess p

i

hanges arbitrarily the value of the

ounter sent with a message to p

j

, p

j

eventually dete
ts p

i

as faulty. If p

i

never sends

a message with the value expe
ted by p

j

, then p

j

eventually suspe
ts p

i

as mute, by the

mute
ompleteness property of the failure dete
tor. On the other hand, if eventually p

i

sends a message with the
orre
t
ounter value, but the message is not the one expe
ted

a

ording to the algorithm, then p

i

is dete
ted by p

j

as a byzantine pro
ess. Implementing

FIFO
hannels has its own problems however. One su
h a problem is the size of the bu�er

that holds messages re
eived in advan
e. Implementation details, however, are out of the

s
ope of this work.

Based on the properties of three
lasses des
ribed above, our opinion is that the fail-

ure dete
tor as an abstra
tion should only satisfy enough properties so that it enables

the system to over
ome the FLP impossibility result. That is, it should provide only

the ne
essary information to enable the system to make progress, guaranteeing liveness.

Adding dete
tion of byzantine behavior to the failure dete
tor is a design de
ision, and

does not help in over
oming the impossibility of solving Consensus in an asyn
hronous

model. Moreover, the system model should be as weak as possible, so that it fa
ilitates

implementations. We therefore assume in se
tion 7 an asyn
hronous model extended with

a failure dete
tor of the 3M
lass. Out of the three dis
ussed here, 3M has the best

trade-o� in terms of the system model assumptions and failure dete
tor properties.

2

In se
tions 5 and 7, we des
ribe algorithms for Consensus in asyn
hronous systems.

Both algorithms simulate rounds asyn
hronously. Di�erently from syn
hronous rounds,

asyn
hronous rounds
annot have their boundaries determined by elapsed time or number

of steps, due to the timing assumptions. Typi
ally, a pro
ess de
ide for the end of a round

independently from other pro
esses by identifying some pattern of events. For instan
e,

the re
eption of one message from every pro
ess in some parti
ular subset of pro
esses.

More details are provided in the se
tions that des
ribe the algorithms.

2.5 Exe
utions

An exe
ution of an algorithm is essentially a sequen
e of steps of the pro
esses in �. There

are, however, other details that
hara
terize an exe
ution, su
h as the initial
on�guration

of the pro
esses, the history of failures of the pro
esses, and the step s
hedule. These

attributes are important, be
ause a di�eren
e in one of them may
hange the result of the

omputation. For example, the same sequen
e of steps with a di�erent time s
hedule may

hange the de
ision value in an exe
ution of a Consensus algorithm.

An exe
ution � of an algorithm A is de�ned as a tuple hF

�

; I

�

; S

�

; T

�

i. This de�nition

is based on the one by Chandra and Toueg [2℄ and Charron-Bost et al. [14℄. F

�

(t)

evaluates to the subset of pro
esses that have failed by time t. A dire
t impli
ation of this

2

Ideally, we would
hoose the weakest failure dete
tor to solve Consensus in a byzantine setting.

Kihlstrom et al.
laim that a failure dete
tor implementing only the properties of 3S(Byz) is the weakest

failure dete
tor that enables solving Consensus. The 3M
lass, however, is stri
tly weaker than 3S(Byz)

and it still enables solving Consensus. Thus, a further analysis on the relations of failure dete
tor
lasses

is ne
essary, but it is out of the s
ope of this work, sin
e we are only interested in showing lower bounds

for Consensus in our failure model with
ores and survivor sets.

9

de�nition is that F

�

(t) � F

�

(t+ 1). Be
ause an exe
ution depends on the initial state of

the pro
esses, we have that I

�

provides the initial
on�guration of the system. This initial

on�guration depends on the problem being solved. The Consensus problem, for example,

requires every pro
ess to have an initial proposed value. Finally, S

�

is an in�nite sequen
e

of steps of pro
esses in �. The time t at whi
h a step e 2 S

�

is exe
uted is given by T

�

(e).

For every
orre
t pro
ess p

i

in �, we assume that S

�

ontains an in�nite number of steps

of p

i

.

Be
ause our asyn
hronous model is extended with a failure dete
tor, the de�nition

of an exe
ution have to a

ommodate su
h feature of the model. First, we revisit the

de�nition of a step. During a step, a pro
ess may de
ide to query its failure dete
tor

module. Thus, for asyn
hronous systems, we add a fourth a
tion to the de�nition of a

step, whi
h is probing its failure dete
tor module for a list of suspe
ted pro
esses. The

history of the failure dete
tor in an exe
ution may
hange the result of the
omputation and

it is hen
eforth part of the de�nition of an exe
ution. An exe
ution � of an asyn
hronous

algorithm A is de�ned as a tuple hF

�

;H

�

; I

�

; S

�

; T

�

i. The di�eren
e from the previous

de�nition is in the in
lusion of the failure dete
tor history H

�

. The list of pro
esses that

p

i

suspe
ts at time t is given by H

�

(i; t). Sin
e the failure dete
tor is assumed to be

unreliable, the number of suspe
ted pro
esses may in
rease and de
rease as the exe
ution

pro
eeds.

From the de�nition of an exe
ution, the set of
orre
t pro
ess in an exe
ution � is

de�ned as Corre
t

�

= � � d

t2T

�

F (t). The set of failed pro
esses is given by Faulty

�

=

d

t2T

�

F (t). Note that the mapping F (t) is only useful in the
rash failure model. The

faulty behavior of a
rashed pro
ess is observable as soon as it
rashes. On the
ontrary,

an arbitrarily faulty pro
ess may be
ome faulty at some time t but still behave as a
orre
t

pro
ess for an unbounded period of time. For this reason, the time by whi
h a pro
ess

be
omes faulty is only
onsidered in the
rash failure model. Be
ause we are assuming

round-based proto
ols, we de�ne for the subset of
rashed pro
esses that failed by round

r � 0 as Crashed

�

(r). A pro
ess p

i

is in Crashed

�

(r) if it has not exe
uted all the steps

of some round r

0

� r. Neither a
orre
t pro
ess nor a faulty pro
ess that halts

3

is in

Faulty

�

(r), for any r � 0.

3 Consensus

The Consensus problem in a fault-tolerant message-passing distributed system
onsists,

informally, in rea
hing agreement among a set of pro
esses upon a value. Ea
h pro
ess

starts with a proposed value and the goal is to have all non-faulty pro
esses de
iding on

the same value. Throughout the paper, we denote V as the set of possible de
ision values.

Although often a binary set V is suÆ
ient, we assume that V has an arbitrary size to keep

the de�nition as general as possible. Also, we assume that the default value ? used in the

algorithms is not in V . Every time we refer to a value that is either a de
ision value in V

or the default, we use V [f?g to denote all the possibilities.

In the
rash failure model, Consensus is often spe
i�ed in terms of the following three

properties [17℄:

Validity If some non-faulty pro
ess p

i

2 � de
ides on value v, then v is the initial value

of some pro
ess p

j

2 �;

3

Some
omputations are �nite, su
h as distributed Consensus. Thus, we assume that on
e a
orre
t

pro
ess halts, it exe
utes an unbounded number of null steps.

10

Agreement If two non-faulty pro
esses p

i

; p

j

2 � de
ide on values v

i

and v

j

respe
tively,

then v

i

= v

j

;

Termination Every
orre
t pro
ess eventually de
ides.

The validity property as spe
i�ed above assumes that no pro
ess will ever try to
heat

on its proposed value. This is true in the
rash failure model, but unrealisti
 assuming

arbitrary pro
ess failures. Although a byzantine pro
ess
annot prevent agreement by

heating on its proposed value, it
an prevent progress. For example, assuming that the

only possible de
ision values are either write or abort, with the above validity property, a

faulty pro
ess may prevent
orre
t pro
esses from writing if they are all ready to do so,

and
onsequently from making progress. Thus, in the arbitrary model, strong validity is

usually
onsidered instead ofvalidity [17, 10℄. Strong validity is stated as follows:

Strong validity If the proposed value of pro
ess p is v, for all p 2 �, then the only

possible de
ision value is v.

Strong validity only
onsiders the
ase in whi
h all pro
esses have the same initial

value. Intuitively, this is suÆ
ient to prevent a byzantine pro
ess from disrupting the

normal behavior of a system when all non-faulty pro
esses are enabled to make progress.

When the system is fa
ing problems and not all of the pro
esses propose the same value,

however, this property allows the de
ision value to be arbitrary in the set of possible

de
ision values. That is, the de
ision value v of non-faulty pro
esses
an be either the

value proposed by a faulty a pro
esses or even a value that was not proposed by any

pro
ess, assuming the set of de
ision values is not binary.

An alternative validity property is proposed by S
hiper,
alled ve
tor validity. [17℄

The ve
tor validity property says that every
orre
t pro
ess has to agree on a ve
tor of

proposed values, su
h that the ve
tor has one value for ea
h pro
ess in �. In addition,

for every
orre
t pro
ess p

i

, the value attributed to p

i

has to be the initial value of p

i

,

and the ve
tor has to
ontain the value of at least t + 1
orre
t pro
esses. In the
ase

that every pro
ess has to de
ide on a single value, the de
ision value is
hosen from this

ve
tor by some deterministi
 strategy: majority, minimum value, et
. Even this property

annot prevent pro
esses from de
iding upon the value proposed by a faulty pro
ess when

the initial value is not the same for every pro
ess. A

ording to our assumptions, the two

properties do not di�er, and hen
e we
hoose the strong validity property for simpli
ity.

4 Syn
hronous Consensus with Crash Failures

Consensus in a syn
hronous system with
rash pro
ess failures is solvable for any number

of failures. [18℄ In the
ase that all pro
esses may fail in some exe
ution before agreement

is rea
hed, though, it is often ne
essary to re
over the latest state prior to total failure

for re
overy purposes. [19℄ Sin
e we assume that failed pro
esses do not re
over, we don't

onsider total failure in this work. That is, we assume that the following
ondition holds

for a system representation h�; C

�

; S

�

i:

Property 4.1 C

�

6= ;. 2

4.1

Property 4.1 implies that there is at least one
orre
t pro
ess in any exe
ution. We now

des
ribe a proto
ol for a syn
hronous system represented by h�; C

�

; S

�

i, assuming that

property 4.1 holds for this system. The proto
ol is based on the early-de
iding proto
ols

11

dis
ussed by Charron-Bost and S
hiper [18℄, Lamport and Fis
her [20℄. Algorithms that

onsider the a
tual number of failures f are important be
ause they redu
e the laten
y

on the
ommon
ase in whi
h just a few pro
ess failures o

ur. An important observation

made by Charron-Bost and S
hiper [18℄ is that there is a fundamental di�eren
e between

early-de
iding proto
ols and early-stopping proto
ols for Consensus. In an early-de
iding

proto
ol, a pro
ess may be ready to de
ide, but may not be ready to halt, whereas an

early-stopping proto
ol is
on
erned about the round in whi
h a pro
ess is ready to halt.

One
onsequen
e of this di�eren
e is that the lower bound on the number of rounds is

not the same. For early-stopping algorithms, there is some exe
ution in whi
h a
orre
t

pro
ess takes at least min(t + 1; f + 2) rounds to halt, for n � t + 2, as shown by Dolev

et al.. [21℄ On the other hand, for every early-de
iding algorithm, there is some exe
ution

in whi
h no
orre
t pro
ess de
ides before f + 1 rounds, as shown by Charron-Bost and

S
hiper [18℄. In both
ases, there are algorithms that meet these bounds, thereby showing

that they are tight.

We now des
ribe algorithm Syn
Crash whi
h solves Consensus in a syn
hronous

system with
rash pro
ess failures, assuming that information about
ores and survivor

sets is available. Later in this se
tion, we dis
uss the advantages of
onsidering our model

instead of assuming t of n pro
ess failures.

The algorithm di�erentiates the pro
esses of a
hosen
ore d-
ore 2 S

�

and the pro-

esses in � � d-
ore. In a round, every pro
ess in d-
ore broad
asts its knowledge of

proposed values to all the other pro
esses, whereas pro
esses in �� d-
ore listen to these

messages. Pro
esses in d-
ore from whi
h a message is not re
eived in a round are known

to have
rashed, a

ording to the assumptions of the failure model. This observation is

used to dete
t a round in whi
h no pro
ess
rashed. Pro
esses p

i

2 � hen
e keep tra
k

of the pro
esses in d-
ore that
rashed in a round, and as soon as p

i

dete
ts a round with

no
rashes p

i

de
ides. As we show later in this se
tion, when su
h a round r happens,

and by assumption it eventually happens, all alive pro
esses are guaranteed to have the

same view of the values proposed by the other pro
esses. In other words, all alive pro-

esses in r have the same array of proposed values. On
e a pro
ess p

i

in d-
ore de
ides,

it broad
asts a de
ision message announ
ing the de
ision value de

i

it de
ided upon. All

pro
esses re
eiving this message de
ide on x

i

as well. Thus, only two types of messages are

ne
essary in the proto
ol: messages
ontaining the array of proposed values and de
ision

messages. Be
ause pro
esses in d-
ore broad
asts at most one message in every round

to all the pro
esses in j�j, message
omplexity is given by O(jd-
orej � j�j). Note that

the proto
ols in [18, 20℄ designed with the t of n assumption have message
omplexity

O(j�j

2

). In addition, our algorithm requires f + 1 rounds for all the pro
esses to de
ide

if � 6= d-
ore, and min(jd-
orej; f + 2) rounds to halt otherwise, where f is the number

of pro
esses in d-
ore that
rash in a given exe
ution �. We prove in [22℄ that these are

a
tually lower bounds on the number of rounds for Consensus in a system represented

with our model. By providing a proto
ol that meet these bounds, we prove them tight.

The idea of using a subset of pro
esses to rea
h agreement on behalf of the whole set of

pro
esses is not new. The Consensus Servi
e proposed by Guerraoui and S
hiper utilizes

this
on
ept [23℄. Their failure model, however, still assumes t of n pro
ess failures, and

onsequently the subset used to rea
h agreement is not
hosen based on information about

orrelated failures. This is the main point where our work di�ers.

Before presenting a pseudo-
ode of the algorithm, we show a table des
ribing the

variables used in the proto
ol. Table 1 des
ribes the variables, and the pseudo-
ode of

Syn
Crash is presented in �gure 1.

12

d-
ore 2 C

�

Core set
hosen as the one responsible for the

de
ision.

de

i

2 V [f?g A pro
ess p

i

de
ides on
e it sets de

i

.

d 2 ftrue ; falseg Boolean variable indi
ating whether the

pro
ess de
ided in the previous round or not.

pv

i

[1 � � � jd-
orej℄, pv

i

[j℄ 2 V Ve
tor of proposed values.

e

i

[1 � � � (jd-
orej � 1)℄, e

i

[r℄ � d-
ore Array of failed pro
esses. e

i

[r℄ stores subset of

pro
esses dete
ted by p

i

as
rashed at round r.

Table 1: Variables used in the algorithm Syn
Crash

We now present a proof of
orre
tness for Syn
Crash in the syn
hronous model with

rash failures. Before proving the theorems showing that our algorithm satis�es the three

Consensus properties, we prove a few lemmas that are used in the proofs of the theorems.

Consider the following de�nition �rst.

De�nition 4.2 Let � be an exe
ution of Syn
Crash. We denote �(ijwk) as the value

pv

j

[k℄ that pro
ess p

i

re
eives in a message from pro
ess p

j

at round jjwkj. 2

4:2

Lemma 4.3 Let � be an exe
ution of Syn
Crash and p

i

; p

j

be two pro
esses su
h that

p

i

2 d-
ore, p

j

2 �, i 6= j. Let w 2 Pid

�

be the shortest sequen
e of pro
esses su
h

that �(iwj) = x, x 2 V , x 6=?, assuming su
h a sequen
e exists. For every round r,

1 � r � jiwjj � 1, the value stored in pv

i

[j℄ is ?. For every round r, jiwjj � r � jd-
orej,

f = jd-
orej � j(d-
ore \ Corre
t(�))j, the value stored in pv

i

[j℄ is x, and x is the initial

value of p

j

.

Proof: We prove this lemma by indu
tion on the length of w. The base
ase
onsists

of jwj = 0. If jwj = 0, then, at round 1, pro
ess p

i

re
eives a message from pro
ess p

j

ontaining its initial value x, and it stores this value in pv

i

[j℄. Observe that every message

m

k

sent in this round by a pro
ess p

k

6= p

j

is su
h thatm

k

:pv

k

[j℄ =?, and by the algorithm

p

i

does not update pv

i

[j℄.

Now assume the lemma is valid for all w

0

, jw

0

j � jwj. We prove it for jwj+1. Suppose

that pro
ess p

i

re
eives a message from pro
ess p

k

, su
h that �(ikwj) = x

0

, x

0

2 V . Con-

sequently, from the algorithm, pro
ess p

i

makes pv

i

[j℄ = x

0

. By the indu
tion hypothesis,

we have that x

0

= x, the initial value of p

j

. Moreover, for every other pro
ess p

l

2 d-
ore,

p

l

6= p

k

, we have that either pv

l

[j℄ = x or pv

l

[j℄ =? at the end of round jkwjj. 2

4.3

From lemma 4.3 we
an extra
t the following
orollary.

Corollary 4.4 Let � be an exe
ution. 8p

i

2 d-
ore \ Corre
t(�); p

j

2 Corre
t(�), 8r 2

f1 � � � jd-
orejg, we have that pv

j

[i℄ = x at the end of round r, for x 2 V being the initial

value of pro
ess pv

i

.

Proof: If p

i

2 d-
ore is
orre
t, then for every
orre
t pro
ess p

j

, we have that �(ji) = x.

From lemma 4.3, for every round r, r � 1, we have that pv

j

[i℄ = x. 2

4.4

The next three lemmas form a substantial part of the proof that Syn
Crash satis�es

agreement. The following de�nition is used in the statement of the three lemmas.

13

Algorithm Syn
Crash for pro
ess p

i

:

Input: set � of pro
esses; set C

�

of
ores; initial value v

i

2 V

Initialization:

d-
ore 2 C

�

; de

i

 ?; d false

pv

i

[1 � � � jd-
orej℄, pv

i

[k℄ =?, 8k 2 [1 � � � jd-
orej℄, k 6= i. If p

i

2 d-
ore, pv

i

[i℄ v

i

e

i

[1 � � � (jd-
orej � 1)℄, e

i

[k℄ = d-
ore, 8k 2 [1 � � � (jd-
orej � 1)℄

Round 1 � r < jd-
orej, 8p

i

2 d-
ore:

if (d = false) then

send(i; pv

i

) to all pro
ess in d-
ore

send(i; pv

i

) to all pro
ess in �� d-
ore

else

send(De
ide,de

i

) to all pro
esses in d-
ore

send(De
ide,de

i

) to all pro
esses in �� d-
ore

halt

upon re
eption of (m = (De
ide,de

j

)) do

de

i

 de

j

d true

upon re
eption of (m = (j; pv

j

)) do

e

i

[r℄ e

i

[r℄� fjg

for k = 1 to j�j do

if (pv

j

[k℄ 6=?) then pv

i

[k℄ pv

j

[k℄

if (((e

i

[r � 1℄ = e

i

[r℄) ^ (d = false)) _ (r = jd-
orej � 1)) then

de

i

 min(pv

i

[k℄)

d true

Round jd-
orej, 8p

i

2 d-
ore:

send(De
ide,de

i

) to all pro
esses in �� d-
ore

halt

Round 1 � r � jd-
orej, 8p

i

2 �� d-
ore:

upon re
eption of (m = (De
ide,de

j

)) do

de

i

 de

j

halt

upon re
eption of (m = (j; pv

j

)) do

e

i

[r℄ e

i

[r℄ [fjg

for k = 1 to j�j do

if (pv

j

[k℄ 6=?) then pv

i

[k℄ pv

j

[k℄

if ((e

i

[r � 1℄ = e

i

[r℄)) then

de

i

 min(pv

i

[k℄)

halt

Figure 1: Syn
hronous Consensus for Dependent Crash Failures

De�nition 4.5 Let:

1. � = hF

�

; I

�

; S

�

; T

�

i be an exe
ution of Syn
Crash;

2. p

i

, p

j

be two pro
esses in �� Crashed(�; r), where r is a round of �;

3. e

i

2 S

�

be a step of p

i

su
h that p

i

re
eives its last message of round r at step e

i

;

4. e

j

2 S

�

be a step of p

j

su
h that p

j

re
eives its last messages of round r at step e

j

;

14

5. e

0

i

; e

0

j

2 S

�

be any two steps of p

i

and p

j

, respe
tively, at round r, su
h that T (e

0

i

) �

T (e

i

) and T (e

0

j

) � T (e

j

).

We say that pro
esses p

i

and p

j

have identi
al ve
tors at round r if and only if for every

p

k

2 d-
ore and, pv

i

[k℄ = pv

i

[k℄, where pv

i

is the ve
tor of proposed values of p

i

after

taking step e

0

i

and pv

j

is the ve
tor of proposed values of p

j

after taking step e

0

j

. 2

4:5

Lemma 4.6 Let � be an exe
ution of Syn
Crash. If r is a round of � in whi
h no

pro
ess
rashes, then for every p

i

; p

j

2 (��Crashed(�; r)) p

i

and p

j

have identi
al ve
tors

in r.

Proof: If no pro
ess
rashes in r, then every pro
ess p

i

2 (� � Crashed(�; r)) re
eives

the same set of messages M . A message m

j

2 M
ontains the ve
tor of proposed values

of pro
ess p

j

. From the algorithm, for every entry m

j

:pv

j

[k℄ with a value v, v 2 V and

v 6=?, p

i

updates pv

i

[k℄ with the same value v. Note that for every entry k, there are

no two messages in M indi
ating distin
t values v; v

0

2 V , by Lemma 4.3. Thus, on
e

a pro
esses p

i

and p

j

re
eive every message sent to them at round r and update their

respe
tive ve
tors pv

i

and pv

j

a

ordingly, we have that pv

i

[k℄ = pv

j

[k℄ for every k 2 Pid.

An alive pro
ess p

k

in r de
ides if it either re
eives messages from the same subset

of pro
esses in both rounds r � 1 and r, or it re
eives a de
ide message. Otherwise, it

moves on to round r + 1 by the end of round r. An important observation is that p

k

annot re
eive at round r a message from some pro
ess p

l

from whi
h p

k

does not re
eive

a message at round r � 1. This is due to the assumptions that
hannels are reliable and

pro
esses only fail by
rashing.

By assumption, no pro
ess
rashes in r. Pro
esses p

i

and p

j

have to re
eive all the

messages sent to them at round r and updating their respe
tive ve
tor of proposed values

before either de
iding in r or moving to round r + 1. We
on
lude that p

i

and p

j

have

identi
al ve
tors at r. 2

4.6

Lemma 4.7 Let � be an exe
ution of Syn
Crash, r > 1 be a round in whi
h every

pro
ess in ��Crashed(�; r� 1) has an identi
al ve
tor of proposed values before re
eiving

any messages in r, and p

i

; p

j

2 (��Crashed(�; r)) be two pro
esses that do not re
eive a

de
ide message at round r. Pro
esses p

i

and p

j

have identi
al ve
tor at round r.

Proof: By assumption, every two pro
esses p

k

and p

l

that send at least one message in r

do so with the same array of proposed values. Thus, even if two alive pro
esses p

i

and p

j

in r re
eive di�erent sets of messages, no updates at the ve
tor of proposed values o

ur

in none of the pro
esses. In su
h a round, for every message m

k

an alive pro
ess p

i

in r

re
eives, we have that m

k

:pv

k

= pv

i

, and
onsequently no entry in pv

i

hanges its value

after p

i

re
eives every delivered message at round r. Pro
ess p

i

is some arbitrary alive

pro
ess in r; and hen
e the previous observation generalizes to every alive pro
ess in r.

Be
ause there are no updates in the ve
tor of proposed values of any alive pro
ess

and by assumption these ve
tors are the same in the beginning of round r, we have that

pv

i

= pv

j

before de
iding at round r

0

or moving to round r

0

+ 1. Pro
esses p

i

and p

j

therefore have identi
al ve
tors at round r. 2

4.7

Lemma 4.8 Let � be an exe
ution of Syn
Crash, r be the �rst round of � in whi
h no

pro
ess
rashes. For every round r

0

� r, if p

i

and p

j

are alive pro
esses at round r

0

, then

p

i

and p

j

have identi
al ve
tors at round r

0

.

15

Proof: We prove this lemma with a simple indu
tion on the round numbers. Let the base

ase be round r. From lemma 4.6, every alive pro
ess at round r has the same ve
tor of

proposed values before de
iding at round r or moving to round r + 1. Assume now that

the proposition is true for every r

0

� r. We prove for r

0

+1. By assumption, we have that

p

i

and p

j

have identi
al ve
tors at round r

0

, for where p

i

; p

j

2 (� � Crashed(�; r

0

+ 1)).

Thus, both p

i

and p

j

begin round r

0

+ 1 with the same ve
tor of proposed values. From

lemma 4.7, p

i

and p

j

have identi
al ve
tors at round r

0

+ 1. 2

4.8

Lemma 4.9 Let � be an exe
ution and f = jd-
orej � j(d-
ore \Corre
t(�))j. For every

p

i

2 � \ Corre
t(�), if p

i

2 d-
ore, then p

i

de
ides in at most min(jd-
orej � 1; f + 1),

otherwise p

i

de
ides in at most f + 1 rounds.

Proof: Suppose that f pro
esses in d-
ore fail in exe
ution �, where 0 � f < d-
orej � 1.

For every pro
ess p

i

in Corre
t(�), p

i

de
ides either when it dete
ts a round without

failures or when it re
eives a de
ide message. In the former
ase, p

i

annot dete
t f + 1

rounds with failures, be
ause there are f failures by assumption. Thus, it has to de
ide

in some round r, 1 � r � f + 1. On the other hand, if p

i

de
ides due to the re
eption

of a de
ide message this
annot happen at a round r

0

> (f + 1), otherwise p

i

de
ides by

dete
ting a round with no failures.

Consider now the spe
ial
ase of f = jd-
orej � 1. If a
orre
t pro
ess in d-
ore dete
ts

jd-
orej � 1 rounds with failures and it re
eives no de
ide message in a previous round,

then it knows at round jd-
orej � 1 that every other pro
ess in d-
ore has failed. It is safe

then to de
ide and to send a de
ide message at the last round jd-
orej. Note that this

is only true be
ause a pro
ess in d-
ore sends messages to the other pro
esses in d-
ore

�rst. This implies that no
orre
t pro
ess in �� d-
ore knows about more initial values of

pro
esses than the
orre
t pro
esses in d-
ore. A
onsequen
e of this impli
ation is that a

orre
t pro
ess p

j

in �� d-
ore
annot do the same in the
ase it has dete
ted jd-
orej � 1

rounds with failures. Pro
ess p

j

has to wait until round jd-
orej to de
ide. Thus, a
orre
t

pro
ess in �� d-
ore again de
ides in at most f + 1 = jd-
orej rounds.

To
on
lude, let p

i

be a pro
ess in Corre
t(�). If p

i

2 d-
ore, then it de
ides in at most

min(jd-
orej � 1; f + 1). Otherwise, p

i

de
ides in at most f + 1 rounds. 2

4.9

We now show that Syn
Crash satis�es the three Consensus properties. Before stating

and proving the theorems, we introdu
e some useful notation. For a given exe
ution �,

suppose some pro
ess p

i

de
ided upon a value re
eived in a de
ision message from pro
ess

p

j

. Let �(w;De
ide, w 2 Pid

�

, be a sequen
e of pro
esses su
h that a pro
ess p

k

in w

de
ides upon the value it re
eives in a de
ision message from the pro
ess p

l

that pre
edes

p

k

in w. The only ex
eption is the rightmost pro
ess in w, whi
h de
ides dues to the

dete
tion of a round without failures. For example, suppose p

i

de
ides upon the value it

re
eives from p

j

in a de
ision message, p

j

de
ides upon the value it re
eives from p

k

, and

p

k

is the �rst pro
ess to generate a de
ision message. With our notation, this is expressed

as �(ijk;De
ide.

Theorem 4.10 Let � be an exe
ution of Syn
Crash. Syn
Crash satis�es Validity in

�.

Proof: From the algorithm, every
orre
t pro
ess in � de
ides either when it dete
ts a

round without
rashes or when it re
eives a de
ision message. If a pro
ess de
ides in a

given exe
ution � be
ause it dete
ted a round r without
rashes, then it de
ides on the

�rst value of the array that is di�erent from ?. By assumption, there is at least one
orre
t

16

pro
ess p

i

in d-
ore in any exe
ution �. From
orollary 4.4, pv

j

[i℄ has the initial value of

p

i

, for every
orre
t pro
ess p

j

2 Corre
t(�). Thus, there is no exe
ution su
h that a

orre
t pro
ess de
ides on ?. It remains to show that if a
orre
t pro
ess p

i

de
ides on the

value pv

i

[k℄, then pv

i

[k℄
ontains the initial value of p

k

even if p

k

is faulty. From lemma

4.3, pv

i

[k℄ is either ? or the initial value of p

k

. A

ording to the algorithm, no pro
ess

de
ides on the value ?,
onsequently, pv

i

[k℄ has to be the initial value of p

k

.

In the se
ond
ase, a pro
ess p

i

de
ides when it re
eives a de
ision message with a

de
ision value de

j

from some pro
ess p

j

2 d-
ore. Thus, we assume there is a
hain of

de
ide messages �(ijw;De
ide), where: 1) w 2 Pid

�

; 2) i; j 2 Pid. In the suÆx jw, let k

be the id of the �rst pro
ess that sends a de
ide message. Be
ause p

k

is the �rst pro
ess

in the
hain, it does not de
ide upon a value re
eived in a de
ide message. Pro
ess p

k

de
ides be
ause it dete
ts a round without failures. From the �rst
ase, p

k

de
ides in a

value v 2 V proposed by some pro
ess in d-
ore. As the value de

k

is forwarded along

the
hain, every pro
ess in ijw de
ides on de

k

. Pro
ess p

i

therefore de
ides upon de

k

as

well. We
on
lude that validity is satis�ed. 2

4.10

Theorem 4.11 Let � be an exe
ution of Syn
Crash. Syn
Crash satis�es Agreement

in �.

Proof: Let r be the earliest round in whi
h some pro
ess p

i

2 � de
ides in �. By the

algorithm, if p

i

de
ides in r, then p

i

re
eives messages from the same subset of pro
esses

in both rounds r � 1 and r. From the assumptions for the failure model, we have that no

pro
ess
rashed either in round r or in round r� 1. By Lemma 4.8, for every round r

0

� r

and p

j

; p

k

2 �� Crashed (�; r

0

), we have that p

j

and p

k

have identi
al ve
tors.

If any pro
ess p

j

2 � de
ides in a round r

0

� r, then either p

j

dete
ts that there was

no failure at the previous round or p

j

re
eives a de
ision message from some other pro
ess

p

k

2 d-
ore�Crashed (�; r

0

� 1). In the former
ase, pro
ess p

j

de
ides on the same value

as p

i

, be
ause pv

i

= pv

j

and the strategy to
hoose the de
ision value from the array is

deterministi
.

If p

j

de
ides upon the value de

k

re
eived in a de
ision message from some pro
ess

p

k

2 d-
ore, then there is a
hain of de
ide messages �(jkw;De
ide), where w 2 Pid

�

,

and j; k 2 Pid. In the suÆx jkw, let l be the id of the �rst pro
ess that sends a de
ide

message. Note that l
an be either k or the id of some other pro
ess. Be
ause p

l

is the �rst

pro
ess in the
hain, it does not de
ide upon a value re
eived in a de
ide message. Pro
ess

p

l

de
ides be
ause it dete
ts a round without failures. From the �rst
ase, p

l

de
ides upon

the same value as p

i

. As the value de

l

is forwarded along the
hain, every pro
ess in jkw

de
ides on de

l

. Thus, p

j

de
ides upon de

l

, whi
h is the same value as de

i

. We
on
lude

that agreement holds in �. 2

4.11

Theorem 4.12 Let � be an exe
ution of Syn
Crash. Syn
Crash satis�es Termination

in �.

Proof: From lemma 4.9, every
orre
t pro
ess eventually de
ides. 2

4.12

By
hara
terizing
orrelated pro
ess failures with
ores and survivor sets, we improve

performan
e both in terms of message and time
omplexity. For example,
onsider again

the six pro
ess system des
ribed in Example 2.2. By assuming t of n failures, t must

be as large as the maximum number of failures among all valid exe
utions, whi
h is �ve.

Thus, it is ne
essary to have at least �ve rounds to solve Consensus in the worst
ase.

17

By exe
uting Syn
Crash with a minimum-sized
ore as d-
ore, only three rounds are

ne
essary in the worst
ase. In addition, no messages are broad
ast by the pro
esses in

� � d-
ore. This is di�erent from most proto
ols designed under the t of n assumption

[20, 18, 21℄, although the same idea
an be applied by having only a spe
i�
 subset of t+1

pro
esses broad
asting messages.

5 Asyn
hronous Consensus with Crash Failures

Given a system representation h�; C

�

; S

�

i, suppose the following properties for this sys-

tem:

Property 5.1 (Crash Partition) Any partition (A;B) of � is su
h that either A or B

ontain a
ore. 2

5.1

Property 5.2 (Crash Interse
tion) S

�

forms a
oterie. 2

5.2

Claim 5.3 Crash Partition � Crash Interse
tion.

Proof:

� Crash Partition ! Crash Interse
tion

We need to prove that the following properties hold:

5.3.1: If s

1

; s

2

2 S

�

, then s

1

\ s

2

6= ;;

5.3.2: There are no s

1

; s

2

2 S

�

su
h that s

1

� s

2

.

First, we prove 5.3.1 by
ontradi
tion. Assume a system
on�guration in whi
h Crash

Partition holds and there are two survivor sets s

i

; s

j

2 S

�

su
h that s

i

\ s

j

= ;. In

any partition (A;B), either A or B
ontain elements from all survivor sets. Now

suppose the following partition (A;B): A = s

1

, and B = ([

s

i

2S�fs

1

g

s

i

). In this

partition, neither A nor B
ontain elements from all survivor sets. Consequently,

neither of them
ontains a
ore,
ontradi
ting our assumption that property 5.1

holds.

The proof for property 5.3.2 follows dire
tly from the de�nition of survivor sets.

Survivor sets are minimal by
onstru
tion.

� Crash Interse
tion ! Crash Partition

We prove by
ontradi
tion. Assume a system
on�guration in whi
h Crash Interse
-

tion holds and there is a partition (A;B) of � su
h that none of A and B
ontains a

ore. For every pair of survivor sets s

1

; s

2

2 S

�

, we have that s

1

\s

2

6= ;. In order to

onstru
t a partition (A;B) su
h that there is no
ore in none of the subsets, these

properties have to hold for both A and B:

5.3.3: For every s

i

2 S

�

, we have that s

i

6� A and s

i

6� B;

5.3.4: There exist survivor sets s

i

; s

j

2 S, s

i

6= s

j

, su
h that A\s

i

= ; and B\s

j

= ;.

By showing that both
annot be satis�ed at the same time, we rea
h our
ontradi
-

tion. If we
onstru
t a partition (A;B) of � su
h that this partition satisfy 5.3.3,

then both A and B
ontain at least one element of every survivor set s

i

2 S

�

and

18

onsequently both A and B
ontain
ores. On the other hand, if we
onstru
t a

partition (A;B) that satisfy 5.3.4, then we have that s

i

� B. In this
ase, B
on-

tains a
ore. Thus, 1 and 2
annot be satis�ed at the same time by any partition.

Consequently, any partition (A;B) is su
h that either A or B
ontains a
ore.

2

5.3

5.1 Lower bound on pro
ess repli
ation

Chandra an Toueg showed that n > 2t, for n being the number of pro
ess and t the

maximum number of
rashed pro
esses in any exe
ution, is the lower bound on pro
ess

repli
ation for solving Consensus in an asyn
hronous system extended with a failure dete
-

tor of the
lass 3S [2℄. This lower bound assumes independent and identi
ally distributed

pro
ess failures. In our failure model, the Crash Interse
tion (Crash Partition) prop-

erty happens to be the generalization of the n > 2t lower bound. The proof idea is similar

to the one used by Chandra and Toueg.

Assume there is an algorithmA that solves Consensus in some system sys= h�; C

�

; S

�

i.

In addition, suppose that there is a partition (A;B) of the pro
esses in � su
h that neither

A nor B
ontains a
ore. Thus, we build an exe
ution in whi
h the agreement property is

violated, no matter what the algorithm does. We build two preliminary exe
utions, � and

�, in the pro
ess of building an exe
ution
 that violates agreement. For exe
ution � of A,

suppose that all the pro
esses in A are
orre
t and the pro
esses in B
rash before sending

a single message. From the termination property, every pro
ess in A eventually de
ides,

and they all have to de
ide upon the same value v in order to satisfy agreement. Suppose

that all the pro
esses in A have the same initial value v

a

. By the validity property, we

have that v = v

a

.

The exe
ution � is analogous to �. For �, however, all the pro
esses in B are
orre
t

and all the pro
esses in A
rash before sending a single message. We assume also, that

all the pro
esses in B have the same initial value v

b

, and v

b

6= v

a

. Again from the three

Consensus properties, every
orre
t pro
ess p

i

2 B eventually de
ides, and p

b

de
ides upon

v

b

.

Now suppose an exe
ution in whi
h every pro
ess in � is
orre
t. We des
ribe an

exe
ution
 that looks the same as � for the pro
esses in A, and the same as � for the

pro
esses in B. In
, the initial value for every pro
ess in A is v

a

and for every pro
ess

in B is v

b

. Let t

a

be the time by whi
h all pro
esses in A have de
ided in �, and t

b

the

time by whi
h all pro
esses in B have de
ided in �. We use t

a

and t

b

to de�ne message

s
hedule and failure dete
tor history. The messages sent among pro
ess in A are s
heduled

as in �, whereas the messages among pro
esses in B are s
heduled as in �. The messages

from pro
esses in A to pro
esses in B, and from pro
esses in B to pro
esses in A are only

delivered after time t > max(t

a

; t

b

). The failure dete
tor history follows the same pattern.

For the pro
esses in A, the failure dete
tor history is the same as in � up to time t

a

.

Pro
esses in B have the same history as in � up to time t

b

.

Considering the previous de�nitions for exe
utions �, �, and
, pro
esses in A and

pro
esses in B
annot distinguish exe
utions � and �, respe
tively, from exe
ution
.

Hen
e, pro
esses in A de
ide v

a

, albeit pro
esses in B de
ide v

b

. Exe
ution
 therefore

violates agreement independently of what algorithm A does.

We now prove our proposition more formally.

Theorem 5.4 Let an asyn
hronous system sys extended with a failure dete
tor of the

lass 3S be represented by h�; C

�

; S

�

i be a system. If Consensus is solvable in sys, then

19

sys satis�es the
rash partition property.

Proof: We prove this theorem by
ontradi
tion. Assume that there is an algorithm A

that solves Consensus in sys, albeit sys does not satisfy the
rash partition property.

That is, there is at least one partition (A;B) of the pro
esses in �, su
h that none of A or

B
ontains a
ore. We show that there is an exe
ution
 in whi
h the agreement property

is violated.

We de�ne �rst two other exe
utions, � and �, whi
h are used to build
. Let � =

hF

�

;H

�

; I

�

;S

�

; T

�

i be as follows:

F

�

(t) = B;8t � 0

H

�

(t; i) = B;8t � 0;8p

i

2 A

I

�

(i) = v

�

; v

�

2 V;8i 2 �

The sequen
e of steps S

�

and timestamps T

�

are dependent on the algorithm, and

hen
e we do not spe
ify them in order to keep the de�nition
ompliant with any possible

algorithm. The only assumption we make is that there is a �nite time t

a

su
h that for

every p

i

2 Corre
t(�), there is a step e 2 S

�

of p

i

in whi
h p

i

de
ides, T

�

(e) � t

a

. By

assumption, algorithm A solves Consensus and therefore it has to satisfy the termination

property. Thus, su
h a t

a

has to exist.

Now let � = hF

�

;H

�

; I

�

;S

�

; T

�

i be as follows:

F

�

(t) = A;8t � 0

H

�

(t; i) = A;8t � 0;8p

i

2 B

I

�

(i) = v

�

;8i 2 �; v

�

2 V; v

�

6= v

�

By the same argument presented before, we do not de�ne S

�

and T

�

, although we

assume that there is a time t

b

su
h that, for every p

i

2 Corre
t(�), there is a step e 2 S

�

of p

i

in S

�

in whi
h p

i

de
ides, T

�

(e) � t

b

.

F

(t) = ;;8t � 0

H

(t; i) =

8

<

:

H

�

(t; i) 8t � t

0

;8p

i

2 B

H

�

(t; i) 8t � t

0

;8p

i

2 A

; 8t > t

0

;8p

i

2 �

I

(i) =

�

v

�

;8p

i

2 A

v

�

;8p

i

2 B

S

and T

are de�ned algorithmi
ally as follows:

� For every e

a

2 S

�

su
h that T

�

(e

a

) < max(t

a

; t

b

), we have that e

a

2 S

and T

(e

a

) =

T

�

(e

a

);

� For every e

b

2 S

�

su
h that T

�

(e

b

) < max(t

a

; t

b

), we have that e

b

2 S

and T

(e

b

) =

T

�

(e

b

);

� If e 2 S

and T

< max(t

a

; t

b

), then either e 2 S

�

or e 2 S

�

. If e 2 S

�

, then

T

�

(e) < max(t

a

; t

b

), otherwise T

�

(e) < max(t

a

; t

b

);

20

� Let e 2 S

be a step in whi
h a pro
ess p

i

2 A re
eives a message from a pro
ess

p

j

2 B. We have that for every su
h a step, T

(e) > max(t

a

; t

b

);

� Let e 2 S

be a step in whi
h a pro
ess p

i

2 B re
eives a message from a pro
ess

p

j

2 A. We have that for every su
h a step, T

(e) > max(t

a

; t

b

);

A pro
ess p

i

2 A
annot distinguish exe
ution � from exe
ution
, whereas pro
ess

p

j

2 B
annot distinguish exe
ution � from exe
ution. Thus, p

i

and p

j

have to de
ide

upon v

a

and v

b

, respe
tively, therefore violating the agreement property of Consensus.

2

5.4

5.2 An algorithm to solve Consensus

As dis
ussed before, Consensus is not solvable in a pure asyn
hronous system. An ap-

proa
h to over
ome this impossibility is to extend the asyn
hronous model with a failure

dete
tor. Here we assume a failure dete
tor D of the
lass 3S, whi
h satis�es the strong

ompleteness and eventual weak a

ura
y properties. The algorithm we des
ribe uses this

failure dete
tor to guarantee liveness.

As the algorithm proposed by Chandra and Toueg [2℄, our algorithm Asyn
Crash

is based on the rotating
oordinator paradigm and pro
eeds in asyn
hronous rounds. In

every asyn
hronous round, one pro
ess is
hosen as the
oordinator of that round. The

knowledge of whi
h pro
ess is the
oordinator of some round is pre-determined, and hen
e

there is no need to use leader-ele
tion algorithms or similar approa
hes. The
oordinator

of a round is responsible for gathering the estimates of some survivor set S 2 S

�

and for

hoosing a value out of the ones re
eived from the pro
esses in this survivor set. In the

algorithm, the
oordinator
hooses the value from the pro
ess that updated it in the latest

round among all the estimates re
eived from the pro
esses in S. On
e the
oordinator

hooses a value, it sends a message to informed all the pro
esses of its estimate. A pro
ess

that re
eives this message from the
oordinator e
hoes the
oordinator estimate to all the

other pro
esses. A pro
ess de
ides as soon as it re
eives an e
ho from all the pro
esses in

some survivor set S

0

2 S

�

, not ne
essarily the same as S.

So far, we assumed that the
oordinator is
orre
t. If the
oordinator
rashes and no

orre
t pro
ess re
eives an estimate from the
oordinator, then eventually all the pro
esses

in some survivor set
ontaining only
orre
t pro
esses suspe
t that the
oordinator
rashed.

This is guaranteed by the strong
ompleteness property of the failure dete
tor. On
e a

pro
ess p

i

suspe
ts that the
oordinator of its
urrent round has failed, p

i

sends a message

to all the other pro
esses suggesting the others to move on to the next round. If a pro
ess

re
eives a message to move on from all the pro
esses in some survivor set, then it re-

initializes its variables and moves on to the next round.

The use of e
ho messages is not really ne
essary, but it may anti
ipate de
ision when

the
oordinator

r

of round r
rashes at r and at least one
orre
t pro
ess, say p

i

, re
eives

either a message from the
oordinator or an e
ho message from some other pro
ess p

j

.

The e
ho messages from p

i

indu
e other pro
esses to send e
ho messages as well, and

eventually non-
rashed pro
esses exe
uting round r de
ide. Without the e
ho messages,

every non-
rashed pro
esses would need to wait until all the pro
esses in some survivor

set
ontaining only
orre
t pro
esses suspe
t the
oordinator and send moveon messages.

Furthermore, de
ision would be postponed, thereby delaying termination. Be
ause the

time to suspe
t the
oordinator may be arbitrarily long, this me
hanism prevents unne
-

essary wait in making a de
ision. Therefore, the argument in favor of e
ho messages is

not
orre
tness, sin
e it is not hard to modify the algorithm to work without it. Its use,

21

however, may redu
e the laten
y in rea
hing agreement among the
orre
t pro
esses in a

real implementation. S
hiper proposed originally the utilization of e
ho messages as an

optimization to have a
oordinator-based algorithm less dependent on the
oordinator in

an asyn
hronous round [17, 24℄.

Figure 2 shows the pseudo-
ode of Asyn
Crash. Every pro
ess exe
utes the same

algorithm in a run of the system, although pro
esses have di�erent roles in a round.

The algorithm is stru
tured in stages, and every pro
ess initiates an exe
ution at stage

StartRound. In the �rst round, round 0, p

0

is the
oordinator. After sending an Esti-

mate message to itself, it
hanges stages, from StartRound to WaitForEstimates. On
e

it re
eives an Estimate message from every pro
ess in some survivor set, then it sends a

CoordEstimate message with its proposed value to all the pro
esses. After sending Co-

ordEstimatemessages, the
oordinator
hanges to stage E
hoes and behaves as the other

pro
esses for the rest of this round. All the other pro
esses go to stage E
hoes right after

sending an Estimate message at stage StartRound. At stage E
hoes, every non-
rashed

pro
ess waits for either an E
ho message or a MoveOn message from all the pro
esses in

some survivor set S 2 S

�

. By re
eiving E
ho messages from the pro
esses in S, a pro
ess

p

i

de
ides, whereas it moves to stage GoToNextRound upon re
eption of MoveOn mes-

sages from the pro
esses in S. At the GoToNextRound stage, no messages are involved. A

pro
ess only re-initializes the variables, assigns a new
oordinator, and moves on the next

round by
hanging ba
k to stage StartRound. This
y
li
 pro
ess
ontinues until all the

orre
t pro
esses eventually de
ide.

Stage Indi
ates the stage the pro
ess is in the
urrent round.

E
hoes Set with E
ho messages re
eived in the
urrent round.

Estimate Current estimate of pro
ess p

i

.

EstUpdate Round in whi
h Estimate is updated.

CurEstimates Set with the Estimate messages re
eived by the
oordinator.

r Keeps tra
k of the
urrent round.

Table 2: Variables used in the algorithm Asyn
Crash

We now provide a proof of
orre
tness for the algorithm Asyn
Crash. Before stating

and proving the theorems that a
tually show that Asyn
Crash satisfy the three Consen-

sus properties, we show some preliminary lemmas. The theorems then are easily shown

from these lemmas.

Lemma 5.5 Let � be an exe
ution of Asyn
Crash and p

i

be some
orre
t pro
ess that

does not de
ide at round r, r � 0. Eventually p

i

moves on to round r + 1.

Proof: If a pro
ess p

i

does not de
ide at round r, then it neither re
eives aDe
idemessage

nor re
eives an E
ho message from all pro
esses in some survivor set. If p

i

does not re
eive

a De
ide message, then there is no
hain ofDe
ide messages (iwj)

De
ide

2 C-De
ide(�),

j 2 Pid, w 2 Pid

�

, su
h that p

j

re
eived an E
ho message from all pro
esses in some

survivor set.

By assumption, at least one survivor set S 2 S

�

ontains only
orre
t pro
esses, and

every message sent by a
orre
t pro
ess to another pro
ess is eventually re
eived. A

ord-

ing to the algorithm, the pro
esses in S send an E
ho message upon re
eption of either the

�rst E
ho message or a CoordEstimate message. If none of these messages is re
eived

by any of the pro
esses in S, then the
oordinator is faulty. Eventually the elements of

S suspe
t the
oordinator and send MoveOn messages. The eventual suspi
ion of the

22

Algorithm Asyn
Crash for pro
ess i:

Input: set � of pro
esses; set C

�

of
ores; set S

�

of survivor sets; initial value v

i

2 V

Variables: Stage StartRound ; E
hoes ;; CurEstimates ;; Estimate v

i

;

EstUpdate 0; r 0

Stages: StartRound ; De
isionTentative; GoToNextRound ;

Transition fun
tion:

When (Stage = StartRound)

Send(Estimate, i, r, Estimate, EstUpdate) to the
oordinator p

i

if(

i

= i) then Stage WaitForEstimates

else Stage WaitForCoordEstimate

When (Stage = De
isionTentative)

upon re
eption of (Estimate, j, r , v

j

, r

j

)

CurEstimates CurEstimates [f(v

j

; r

j

)g

if(9S 2 S

�

su
h that 8p

k

2 S, (Estimate, k, r , v

k

, r

k

) 2 CurEstimates)

then r

k

 max(r

x

j(v

x

; r

x

) 2 CurEstimates)

Estimate v

k

, (v

k

; r

k

) 2 CurEstimates; EstUpdate r

Send(CoordEstimate, i, r, Estimate.v) to all pro
esses in �

Stage E
hoes

upon re
eption of (CoordEstimate, j, r , v

j

)

if(E
hoes = ;) then

Send(E
ho, j, r, v

j

) to all pro
esses in �

Estimate v

j

; EstUpdate r

upon re
eption of (E
ho, j, r, v

j

)

if (E
hoes = ;) then

Send(E
ho, j, r, v

j

) to all pro
esses in �

Estimate (v

j

; r)

E
hoes E
hoes [(E
ho, j, r, v

j

)

if(9S 2 S

�

su
h that 8p

k

2 S, (E
ho, k, r , v) 2 E
hoes, v 2 V) then

De
ide upon value v

Send(De
ide, i, v) to all pro
esses in �

halt

upon suspi
ion of

i

Send(MoveOn, j, r) to all pro
esses in �

upon re
eption of (MoveOn, j, r)

MoveOn MoveOn [(MoveOn, j, r)

if (9S 2 S

�

su
h that 8p

k

2 S, (MoveOn, k, r , v) 2 E
hoes, v 2 V) then

Stage GoToNextRound

When (Stage = GoToNextRound)

r r + 1;

i

 (

i

+ 1) mod j�j

E
hoes ;; MoveOn ;

Stage StartRound

When (Stage = *)

upon re
eption of (De
ide, j, v)

De
ide upon value v

Send(De
ide, i, v) to all pro
esses in �

halt

Figure 2: Asyn
hronous Consensus with Crash Failures

23

oordinator by all the pro
esses in S is guaranteed to happen by the strong
ompleteness

property of the failure dete
tor. On
e pro
ess p

i

re
eives a MoveOn message from every

pro
ess p

j

2 S, p

i

moves to stage GoToNextRound and pro
eeds to round r + 1. 2

5.5

Lemma 5.6 Let � be an exe
ution of Asyn
Crash and r be the �rst asyn
hronous round

in whi
h some
orre
t pro
ess p

i

de
ides. If p

i

de
ides upon value v, then for every asyn-

hronous round r

0

> r, v is the estimate value proposed by the
oordinator of r

0

.

Proof: We prove this lemma by indu
tion on the round numbers. Initially, we prove for

r

0

= r + 1, and then for r

0

+ 1, assuming the lemma is true for r

0

.

Let r

0

= r + 1. By assumption, we have that some
orre
t pro
ess p

i

de
ides at round

r. If p

i

de
ides at round r upon value v, then it re
eives one E
ho message from every

pro
ess in some survivor set S 2 S

�

. An alive pro
ess p

j

sends an E
ho message to all

the pro
esses, in
luding itself, upon re
eption of either a CoordEstimate or an E
ho

message for the �rst time from some other pro
ess. Moreover, p

j

updates its estimate

upon re
eption of the �rst E
ho message. Be
ause p

j

does not
rash at round r + 1 by

assumption, if it sends an E
ho message, then it eventually updates its estimate. From

lemma 5.5, every
orre
t pro
ess that does not de
ide at round r eventually moves on to

round r + 1. At the beginning of round r + 1, the
oordinator of that round waits for

the estimate of all the pro
esses in some survivor set S

0

2 S

�

. Upon re
eption of all the

Estimatemessages sent by pro
esses in S

0

, the
oordinator
hooses the estimate generated

at the latest round. By the interse
tion property assumed for S

�

, there is at least one

pro
ess p

j

2 S

0

su
h that p

j

's estimate is v and it is updated at round r. Consequently,

the
oordinator of r + 1
hooses v as its estimate.

Now, assume that the proposition is true for every r

00

� r

0

. We prove the proposition

for r

0

+ 1. From the indu
tive assumption, the
oordinator of round r

0

proposes v as

its estimate for round r

0

. Note that the
hoi
e of the value v by the
oordinator as its

estimate for round r

0

has to be independent of the subset of pro
esses from whi
h it re
eived

Estimate messages from. In other words, any survivor set
ontaining pro
esses that have

not
rashed at asyn
hronous round r

0

must be
apable of indu
ing the
oordinator to
hoose

v as its estimate for that round. We now show that the
oordinator

r

0

+1

of round r

0

+ 1

has to
hoose v as its estimate for this round. There are two
ases to be analyzed. First,

suppose that

r

0

+1

re
eives Estimate messages from a survivor set S 2 S

�

whi
h
ontains

no pro
esses that updated their estimates in the previous round. From the indu
tive

assumption,

r

0

+1

has to
hoose v as the
oordinator estimate for this round. For the

se
ond
ase, let S 2 S

�

be the survivor set from whi
h

r

0

+1

re
eived Estimate messages

before
hoosing the
oordinator estimate value for round r

0

+1. Suppose that at least one

pro
ess p

j

updated its estimate in the previous round r

0

. This value has to be v, by the

indu
tive assumption. From the algorithm,

r

0

+1

has to
hoose the estimate updated at

the latest round, and
onsequently the
oordinator estimate for round r

0

+ 1 has to be v.

2

5.6

Lemma 5.7 Let � be an exe
ution of Asyn
Crash and p

i

be some
orre
t pro
ess that

de
ides at round r. Pro
ess p

i

de
ides upon the value v 2 V proposed by the
oordinator

of round r.

Proof: A pro
ess de
ides either when it re
eives an E
ho message from every pro
ess in

some survivor set S 2 S

�

or when it re
eives a De
ide message from some other pro
ess.

If p

i

re
eives one E
ho message from every pro
ess p

j

in some survivor set S 2 S

�

, then

24

for all p

j

2 S there is a
hain of E
ho messages (jwk)

E
ho

2 C-E
ho(�), j; k 2 Pid,

w 2 Pid

�

, su
h that p

k

re
eived a CoordEstimate from

r

. Thus, every E
ho message

p

i

re
eives
ontains the value proposed by the
oordinator

r

.

If p

i

re
eives aDe
idemessage, then there is a
hain ofDe
idemessages (iwj)

De
ide

2

C-De
ide(�), i; j 2 Pid, w 2 Pid

�

, su
h that p

j

re
eived an E
ho message from all pro-

esses in some survivor set. Two
ases are possible: the De
ide message is sent in some

previous round r

0

> r or the De
ide message is generated by some pro
ess at round r.

Suppose the former
ase �rst. A

ording to lemma 5.6, on
e some pro
ess de
ides upon a

value v

0

at some round r

0

< r, the value proposed by the
oordinator of round r � r

0

has

to be v

0

. Therefore, in this
ase, p

i

de
ides upon the value proposed by

r

. In the se
ond

ase, the De
ide message is generated at this round. Thus, p

j

re
eived E
ho messages

from all the pro
esses in some survivor set, and, from the argument above, p

j

de
ides on

the value proposed by the
oordinator

r

. 2

5.7

Lemma 5.8 Let � be an exe
ution of Asyn
Crash. For every pro
ess p

i

, if p

i

updates

its estimate at asyn
hronous round r, then it does so with the initial value of some pro
ess

p

j

2 �.

Proof: We prove this lemma with an indu
tion on the asyn
hronous round numbers. For

the base
ase, suppose r = 0. From the algorithm, there are two ways for a pro
ess p

j

to

hange its estimate. First, if j = 0 (p

j

is the
oordinator), then it re
eives an Estimate

message from every pro
ess in some survivor set S 2 S

�

. Be
ause this is the �rst round,

all the Estimate messages
ontain the initial values. More spe
i�
ally, if pro
ess p

k

is

not
rashed at round 0 and it sends an Estimate message, then this message
ontains

the initial value of p

k

. Thus, the
oordinator p

0

hooses arbitrarily among the Estimate

messages, sin
e they are all tagged with round number 0, and updates its estimate variable

a

ordingly. For the se
ond
ase, p

j

is not the
oordinator. If p

j

does not re
eive a single

E
ho message, then it pro
eeds without updating its estimate. The estimate
ontinues

hen
e to be its initial value v

j

. On the other hand, if p

j

re
eives at least one E
ho

message, then it updates its estimate. On the other hand, if p

j

re
eives an E
ho message

from some pro
ess p

k

�rst, then it updates with the value v

k

sent in the E
ho message.

Sin
e p

k

sends an E
ho message at round 0 by assumption, there is a
hain of messages

(kwl)

E
ho

2 C-E
ho(�), w 2 Pid

�

, k; l 2 Pid, su
h that p

l

sent the �rst E
ho message of

this
hain. A

ording to the algorithm, p

k

re
eived a CoordEstimate with the estimate

of the
oordinator p

j

, and
onsequently all the messages in this
hain
ontain the estimate

of the
oordinator. The estimate of the
oordinator at round 0 is the initial value of some

pro
ess as we showed before.

Now assume that the proposition is true for every round r

0

� r. We prove for asyn-

hronous round r + 1. Suppose p

i

is the
oordinator of round r. Pro
ess p

i

then updates

its estimate based on the values re
eived in the Estimate messages sent by every pro
ess

in some survivor set S 2 S

�

. Observe that every pro
ess p

j

in S has as its estimate the

initial value of some pro
ess. For every p

j

2 S, if p

j

has not updated its estimate in any

previous round, then its estimate is still v

j

. Otherwise, from the indu
tive assumption, p

j

has as its estimate the initial value of some pro
ess p

k

2 �. Consequently, p

i

updates its

estimate with the initial value of some pro
ess. In the
ase p

i

is not the
oordinator, it

updates its estimate if and only if it re
eives at least one E
ho message. If p

i

re
eives a

E
ho message from some other pro
ess p

k

, then there is a
hain (kwl)

E
ho

2 C-E
ho(�),

w 2 Pid

�

, k; l 2 Pid, su
h that p

l

sends the �rst E
ho message. A

ording to the algo-

rithm, p

l

re
eives a CoordEstimate and sends the E
ho messages with the estimate of

25

the
oordinator. As we showed before, the estimate of the
oordinator is the initial value

of some pro
ess p

j

2 �. 2

5.8

Lemma 5.9 Let � be an exe
ution of Asyn
Crash. Every p

i

2 Corre
t(�) eventually

de
ides in �.

Proof: From lemma 5.5, every
orre
t pro
ess that does not de
ide in a round r, r � 0,

moves on to the next round. A pro
ess moves on by re
eiving oneMoveOn message from

every pro
ess p

j

in some survivor set S 2 S

�

. A

ording to the algorithm, a pro
ess sends

a MoveOn message to all the other pro
esses when it dete
ts that the
oordinator

r

has

failed. From the eventual weak a

ura
y property of the failure dete
tor, however, there is

a time t after whi
h there is some
orre
t pro
ess p

k

that is permanently not suspe
ted by

any other
orre
t pro
ess. Therefore, there is time t

0

> t that p

k

be
omes the
oordinator

of some asyn
hronous round r

0

and no
orre
t pro
ess suspe
ts p

k

. No
orre
t pro
ess

then sends a MoveOn message at this round, and
onsequently no
orre
t pro
ess moves

on to the next round. Eventually, every
orre
t pro
ess re
eives either an E
ho message

from every pro
ess in some survivor set or a De
ide message and �nally de
ides. 2

5.9

We now show three theorems to
on
lude our proof thatAsyn
Crash solves Consensus

in the asyn
hronous model with
rash pro
ess failures. In order to a

omplish this, we

present three theorems, ea
h one showing that one of the Consensus property is satis�ed

by Asyn
Crash in every possible exe
ution �.

Theorem 5.10 Let � be an exe
ution of Asyn
Crash. Asyn
Crash satis�es Validity

in �.

Proof: From lemma 5.7, every
orre
t pro
ess that de
ides at round r de
ides upon

the value v proposed by the
oordinator. Before sending a CoordEstimate message, the

oordinator updates its estimate with v. By lemma 5.8, v has to be the initial value of

some pro
ess p

j

2 �. 2

5.10

Theorem 5.11 Let � be an exe
ution of Asyn
Crash. Asyn
Crash satis�es Agree-

ment in �.

Proof: If Corre
t(�)
ontains only one pro
ess, then agreement is trivially satis�ed. Thus,

suppose Corre
t(�)
ontains at least two pro
esses. From lemma 5.9, every
orre
t pro
ess

eventually de
ides. Let p

i

; p

j

2 Corre
t(�), p

i

6= p

j

, de
ide at round r

i

and r

j

respe
tively.

If r

i

= r

j

, then both de
ide upon the value v proposed by the
oordinator of round

r = r

i

= r

j

, by lemma 5.7. In the
ase that r

i

6= r

j

, they also have to de
ide upon the

same value. Assume without loss of generality that r

i

< r

j

. From lemma 5.7, p

i

de
ide

upon the value v proposed by the
oordinator, and from lemma 5.6, the
oordinator of

r

j

has to update its estimate with the value v and propose v in the CoordEstimate

messages it sends. Again from lemma 5.7, if p

j

de
ides at round r

j

, then it de
ides on v.

2

5.11

Theorem 5.12 Let � be an exe
ution of Asyn
Crash. Asyn
Crash satis�es Termi-

nation in �.

Proof: This result follows dire
tly from lemma 5.9. 2

5.12

26

6 Syn
hronous Consensus with byzantine failures

Given a system representation h�; C

�

; S

�

i, suppose the following properties for this sys-

tem:

Property 6.1 (Byzantine Partition) For every partition (A;B;C) of �, at least one

of A, B, or C
ontains a
ore.

Property 6.2 (Byzantine Interse
tion) 8s

i

; s

j

2 S

�

, 9

k

2 C

�

, su
h that

k

� (s

i

\

s

j

).

We want to show that these two properties are equivalent. Before doing so, we prove

two preliminary lemmas, whi
h are useful in the proof of the equivalen
e between properties

6.1 and 6.2. For
onvenien
e, we de�ne f : x 2 � ! fs

1

; s

2

; � � � ; s

k

g � S

�

as a fun
tion

that evaluates to the survivor sets x belongs to. Thus, given a subset of pro
esses X, we

de�ne S

X

as follows:

S

X

= [

x2X

f(x) (1)

Lemma 6.3 Let (A;B;C) be a partition of � su
h that none of A, B, or C
ontains a

ore. Suppose that for all s 2 S

�

, there is a
 2 C

�

su
h that
 � s. Then, we have that

for all s 2 S

Pi

, (s 6� A) ^ (s 6� B) ^ (s 6� C)

Proof: The proof is straightforward. If one of A, B, or C
ontains a survivor set, then

it also
ontains a
ore, be
ause all survivor sets
ontain a
ore. This
ontradi
ts our

assumption that none of the partitions
ontains a
ore. 2

6.3

Lemma 6.4 Let S

�

be su
h that 8s

i

2 S

�

, 9

j

2 C

�

su
h that

j

� s

i

. Given a partition

(A;B;C) of �, su
h that none of A, B, or C
ontain a
ore, the following properties hold:

6.4.1 8I 2 fA;B;Cg, (S

�

6� S

I

);

6.4.2 For all permutations I; J;K of fA;B;Cg, 9s

i

2 S

�

, su
h that (s

i

2 ((S

I

\S

J

)�

S

K

)).

Proof:

� 6.4.1: Suppose we have a subset � � � su
h that for all s 2 S

�

we have that

R\ s 6= ;. By the de�ned relation between
ores and survivor sets, there is a subset

of pro
esses
 2 C

�

su
h that
 � �. Thus, if S

�

= S

I

, then by our previous

observation, I
ontains a
ore.

� 6.4.2: we prove this property by
ontradi
tion. Suppose without loss of generality

that ((S

A

\ S

B

) � S

C

) = ;. We prove that for all s 2 S

�

, we have that s 2 S

C

.

There are three
ases to be
onsidered:

1. if s 2 (S

A

\ S

B

), then by assumption it is in S

C

;

2. if (s 2 S

A

) ^ (s 62 S

B

), then by lemma 6.3 s 2 S

C

;

3. if (s 62 S

A

) ^ (s 62 S

B

), then s � C, whi
h violates lemma 6.3.

27

If C
ontains at least one element from every survivor set, then, by property 6.4.1, C

ontains a
ore. This
ontradi
ts our assumption that none of the partitions
ontains

a
ore.

2

6.4

Claim 6.5 Byzantine Partition � Byzantine Interse
tion.

Proof:

� Byzantine Partition ! Byzantine Interse
tion

We prove this impli
ation by
ontradi
tion. Assume that property 6.1 holds and

there are two survivor sets s

i

; s

j

2 S

�

su
h that (s

i

\ s

j

) does not
ontain a
ore.

We need to build a partition (A;B;C) su
h that none of the subsets
ontain a
ore.

Suppose the following partition: A = ��s

i

, B = (s

i

\s

j

), and C = (s

i

�B). Subset

A
annot
ontain a
ore, be
ause it has no element from s

i

. By assumption, B does

not
ontain a
ore either. Be
ause C
ontains no elements from s

j

, we have that C

also does not
ontain a
ore. Thus, none of A, B, or C
ontain a
ore,
ontradi
ting

our assumption that property 6.1 holds.

� Byzantine Interse
tion ! Byzantine Partition

We prove this impli
ation also by
ontradi
tion. Assume that property 6.2 holds and

there is a partition (A;B;C) su
h that neither A, B, nor C
ontain a
ore. From

lemma 6.4, we have that:

9x

1

2 S

A

, su
h that x

1

2 (S

A

\ S

B

)� S

C

(2)

9x

2

2 S

A

, su
h that x

2

2 (S

A

\ S

C

)� S

B

(3)

Be
ause x

1

62 S

C

and x

2

62 S

B

, we have that (x

1

\ x

2

) � A. By assumption, A

does not
ontain a
ore, and
onsequently x

1

\ x

2

does not
ontain a
ore. This

ontradi
ts, however, our assumption that property 6.2 holds.

2

6.5

6.1 Lower bound on pro
ess repli
ation

The interse
tion (partition) property is ne
essary and suÆ
ient for solving Strong Con-

sensus in a syn
hronous system with byzantine failures. First, we prove that this property

is ne
essary. The proof we provide is based upon the one by Lamport for independent and

identi
ally distributed pro
ess failures [25, 26℄. We show that if there is a partition of the

pro
esses in three non-empty subsets, su
h that none of them
ontains a
ore, then there

is at least one run in whi
h agreement is violated, for any algorithm A. This is illustrated

in �gure 3, where we have three exe
utions: �, �, and
. Suppose that we have a system

representation h�; C

�

; S

�

i and a partition of � in three non-empty subsets (A;B;C) su
h

that none of them
ontains a
ore. In addition, suppose by way of
ontradi
tion that we

have an algorithm A that solves Strong Consensus in su
h a system.

In exe
ution �, the initial value of every the pro
esses is the same, let's say v. Moreover,

all the pro
esses in subset B are faulty, and they all lie to the pro
esses in subset C about

28

their initial values and the value re
eived from pro
esses in A. Thus, running algorithm A

in su
h a exe
ution results in all the pro
esses in subset C de
iding v, by the strong validity

property. Exe
ution � is analogous to exe
ution A, but instead of every pro
ess beginning

with a initial value v, they all have initial value v

0

6= v. Consequently, by the strong

validity property, all pro
esses in B de
ide v

0

in this exe
ution. Lastly, in exe
ution
, the

pro
esses in subset C have initial value v, whereas pro
esses in subset B have initial value

v

0

. The pro
esses in subset A are all faulty and behave for pro
esses in C as in exe
ution �.

For pro
esses in C, however, pro
esses in B behave as in exe
ution �. Be
ause pro
esses

in C
annot distinguish exe
utions � from
, pro
esses in C have to de
ide v. At the same

time, pro
esses in B
annot distinguish exe
utions � from
, and therefore they de
ide v

0

.

Consequently, there are
orre
t pro
esses whi
h de
ide di�erently in exe
ution
, violating

the agreement property of Strong Consensus.

B:v’, C:v
A:v, B:vA:v,

 C
:v

A:v’, B:v’

A:v, C:v
B C

A

A:v’, B:v’

B:v’
, C

:v

A:v’
, C

:v’

A:v’, B:v’

A:v, C:v
B C

A

B:v’, C:v
A:v, B:v

B:v’
, C

:v

A:v’
, C

:v’

A:v’, B:v’

A:v, C:v
B C

B:v,
 C

:v B:v’, C:v’

A

Scenario α Scenario β

Scenario γ

Figure 3: Exe
utions illustrating the violation of Consensus. The pro
esses in shaded

subsets are all faulty in the given exe
ution

We now provide a more formal argument by proving the following theorem. Before

pro
eeding in the statement and proof of the theorem, we introdu
e some useful notation.

Let � be an exe
ution. We assume that �(i

0

i

2

� � � i

k

) is the value that pro
ess p

i

0

re
eives

from pro
ess p

i

1

, whi
h
laims that this value is the initial value of p

k

passed by every

pro
ess p

i

to pro
ess p

i�1

in this k-pro
ess
hain. For example, �(ijk) is the value that

pro
ess p

i

re
eives from pro
ess p

j

, whi
h is the value that supposedly p

k

has sent to p

j

as

its initial value. If the k-pro
ess
hain
ontains only
orre
t pro
ess, k � 1, then the value

�(i

0

i

2

� � � i

k

) is the initial value of p

k

. Otherwise, this property is not guaranteed. In the

ase that k = 1, we have that �(i) is the initial value of pro
ess p

i

.

Theorem 6.6 Let sys = h�; C

�

; S

�

i be a system representation. If there is a partition

(A;B;C) of � su
h that none of A, B, or C
ontains a
ore, then there is no algorithm

whi
h solves Strong Consensus in su
h a system.

Proof: We assume without loss of generality that none of A, B, or C is empty.

Suppose there is an algorithm A whi
h solves Strong Consensus in sys. We
onstru
t

re
ursively an exe
ution in whi
h two
orre
t pro
esses de
ide di�erently. Moreover, the

29

agreement violation in this exe
ution is independent of the number of rounds the algorithm

runs. Even if the algorithm runs for an in�nite number of rounds, it
annot prevent

agreement violation.

By assumption, there is a partition (A;B;C) of � in three non-empty subsets su
h that

none of A, B, or C
ontains a
ore. Let's start by des
ribing two preliminary exe
utions

that are used to
onstru
t the one in whi
h agreement is violated. We
onstru
t exe
utions

� and � as follows:

Let a 2 A, b 2 B,
 2 C, v 2 V , v

0

2 V , v

0

6= v

�(a) = �(b) = �(
) = v

�(a) = �(b) = �(
) = v

0

Let w 2 �

�

and p 2 �

�(paw) = �(aw)

�(abw) = �(bw)

�(
bw) = �(bw)

�(p
w) = �(
w)

�(paw) = �(aw)

�(pbw) = �(bw)

�(a
w) = �(
w)

�(b
w) = �(
w)

Based on exe
utions � and �, we
onstru
ted exe
ution
 as follows:

Let a, b,
, v, v

0

, p, and w be as in de�nition of exe
utions � and �

(a) = v

(b) = v

0

(
) = v

(baw) = �(aw)

(
aw) = �(aw)

(pbw) =
(bw)

(p
w) =
(
w)

It remains to show that �(
w) =
(
w) and �(bw) =
(bw), for b 2 B,
 2 C, and

w 2 �

�

. We prove these equivalen
es by a simple indu
tion on the length of w.

� Base
ase: jwj = 0

For jwj = 0, we have that �(
) = v =
(
) and that �(b) = v

0

=
(b).

� Indu
tion step: the indu
tion hypothesis is that the proposition is valid for all w

su
h that jwj � i. We need to prove that the proposition is true for all w of length

30

i + 1. That is, we need to show that �(
pw) =
(
pw) and �(bpw) =
(bpw) for

every p 2 �. There are three
ases to be analyzed: p = a, p = b, and p =
. We

show below these three
ases separately:

1. p = a: by the de�nitions of �, �, and
:

�(
aw) = �(aw) =
(
aw)

�(baw) = �(aw) =
(baw)

2. p = b: by the de�nitions of �, �, and
 and the indu
tion hypothesis:

�(
bw) = �(bw) =
(bw) =
(
bw)

�(bbw) = �(bw) =
(bw) =
(bbw)

3. p =
: by the de�nitions of �, �, and
 and the indu
tion hypothesis:

�(

w) = �(
w) =
(
w) =
(

w)

�(b
w) = �(
w) =
(
w) =
(b
w)

Be
ause pro
esses in C
annot distinguish between exe
utions � and
, these pro
esses

have to de
ide v in
. On the other hand, pro
esses in B
annot distinguish exe
ution

� from exe
ution
, and
onsequently they have to de
ide v

0

in
. By assumption, in

exe
ution
, the pro
esses in both subset B and subset C are
orre
t. Therefore, the

agreement property of Strong Consensus is violated in this exe
ution.

2

6.6

6.2 An algorithm to solve Strong Consensus

We des
ribe an algorithm that solves Strong Consensus in a system sys= h�; C

�

; S

�

i

whi
h satis�es the interse
tion property. This algorithm is based on the one des
ribed by

Lamport to demonstrate that it is suÆ
ient to have 3t + 1 pro
esses (t is the maximum

tolerated number of faulty pro
esses) to have intera
tive
onsisten
y in a setting with

byzantine pro
esses [25℄.

In our algorithm, all the pro
esses run the same state ma
hine. Every pro
ess
reates

a tree where every node is labeled with a string w of pro
ess id's and stores a value. Every

label is
omposed of a sequen
e of pro
ess id's and ea
h id appears at most on
e in a given

label w. The value stored at a given node labeled w
orresponds to the value forwarded

by the
hain of pro
esses with id's on the string, following the sequen
e determined by

the string. Thus, at round r, every
orre
t pro
ess p

i

sends a message
ontaining the

values stored at depth r of the tree to all the other pro
esses. Every
orre
t pro
ess p

j

that re
eives this message at round r+1 stores the values
ontained in it in the following

31

manner: for every node labeled wi, with w 2 Pid

�

; jwj = r, make the value of node equal

to the value in the message sent by p

i

orresponding to w.

A simple example will help to
larify the use of the tree. Suppose that a
orre
t pro
ess

p re
eives at round 3 a message from pro
ess p

k

, whi
h
ontains the string ij and the value

v asso
iated to this string. Pro
ess p hen
e stores the value v at the node labeled ijk and

forward a message
ontaining ijk asso
iated to the value v to all the other pro
esses.

An important observation about the tree built by the algorithm is that the last

level is
omposed of survivor sets. More spe
i�
ally, a Node(w)

4

is a leaf if and only

��Pro
esses(w) does not
ontain a survivor set

5

. Consequently, if Node(wp) is a leaf,

then Child(w)

6

is a survivor set

7

. A property that every node of the tree labeled w satis-

�es is that ��Pro
esses(w) has to
ontain a survivor set. A
onsequen
e of the previous

observations is that the depth of tree is j�j �min js

i

jjs

i

2 S

�

+1. An example of a tree is

presented in �gure 4, for a system a
hara
terized by the following sets:

� � = fa; b;
; d; eg

� C

�

= fab; a
; ad; ae; b
; bd;
d;
e; deg

� S

�

= fab
e; abde; a
d; b
deg

b

becbea

ba bc bd be

bed

a
c d

ab ac ad ae ca cb cd ce da db dc de ea ec

e

ed

ebdebceba

eb

Figure 4: An example of a tree built by ea
h pro
ess in the �rst stage of the algorithm.

Building and initializing the tree
orresponds to the �rst stage of the algorithm. The

se
ond stage
onsists in running several rounds of message ex
hange. In the �rst round,

ea
h pro
ess broad
ast its initial value. In the subsequent rounds, ea
h pro
ess broad
ast

the values it learned in the previous round. As the pro
esses re
eive the messages
on-

taining values learned in previous rounds, ea
h node �lls out the nodes of its tree with

these values. Be
ause the depth of the tree is j�j � min js

i

jjs

i

2 S

�

+ 1, this is exa
tly

the total number of rounds required for message ex
hanging. An important observation is

that this mat
hes the lower bound on the number of rounds ne
essary to solve Consensus

in a byzantine setting. As shown in [9℄, if t is the maximum number of pro
ess failures

assumed, t � (j�j � 2), then at least t + 1 rounds are ne
essary. Furthermore, the proof

presented does not assume independent and identi
ally distributed pro
ess failures, and

therefore it a

ommodates a more general model as ours. A question that may strike one's

mind is why we
annot use a tri
k of using a subset of
ores or survivor sets to design

4

Node(w) is de�ned as the node of the tree labeled with the string w.

5

Pro
esses(w)= fpjp.id is in wg

6

Child(w)= fp

i

jnode labeled wi is a
hild of node labeled wg.

7

Observe that the tree stru
ture is the same for all
orre
t pro
esses, and hen
e none of Pro-

esses(�),Node(�), or Child(�) need to be asso
iated with any parti
ular pro
ess.

32

an algorithm that runs in fewer rounds, as we did for the syn
hronous
rash model. The

answer is simple: from our previous results on the lower bound for pro
ess repli
ation,

this subset would need to satisfy the byzantine interse
tion property. If we take a
ore as

an isolated system, for instan
e, then it
learly does not satisfy this property.

Finally, in the last stage, ea
h pro
ess traverses the tree visiting the nodes in postorder

to de
ide on a value. We show later in this se
tion that all pro
esses de
ide on the same

value after traversing the tree.

Before presenting the pseudo-
ode of the algorithm, a few words about the notation.

We de�ne Pid to be the set of pro
ess id's, i.e., Pid= fij(i = p.id) ^ (p 2 �)g. This

is
onvenient, be
ause we label the nodes of the trees with strings of pro
ess id's. The

fun
tion x.Value(w) evaluates to the value v asso
iated to the string of id's w. Be
ause v is

provided either by a message or a node of the tree, the value x represents either a pro
ess or

a message. Thus, m.Value(w) evaluates to the value v that message m
arries asso
iated

to string w, whereas p

i

.Value(w) evaluates to the value v stored by node labeled w at

pro
ess p

i

. This is a slight abuse of notation, but it is
onvenient and the di�erentiation

between the
ases will be
lear from
ontext.

A pseudo-
ode of the algorithm is presented below.

We now prove that the algorithm Syn
Byz satisfy the properties of Strong Consensus.

First, we state and prove three preliminary lemmas that we are useful in demonstrating

that these properties hold for Syn
Byz.

For the following lemmas, suppose that S

min

is a minimum-sized survivor set in S

�

.

That is, there is no survivor set in S

�

with fewer elements than S

min

.

Lemma 6.7 Let � be an exe
ution of Syn
Byz, p

i

be a
orre
t pro
ess in �, and w 2 Pid

�

be the label of some non-leaf node. At the end of round r = (j�j � jS

min

j + 1), for

every p

k

; p

j

2 Corre
t(�), p

j

:Value(wi) = p

k

:Value(wi) = v

w

i

, where v

w

i

2 V is the value

p

i

:Value(w) at round jwj.

Proof: Let s

2 S

�

be a survivor set
ontaining only
orre
t pro
esses in �.

We prove this lemma by re
ursion on the length of node label w, 1 � jwj � (j�j �

jS

min

j + 1). For the base
ase, suppose that wi is the label of a leaf. If p

i

is
orre
t,

then it forwards the same value v

w

i

2 V it has for w to all the other pro
esses at round

jwj + 1. Noti
e that if w = ;, then p

i

sends its initial value. Thus, for every pro
ess

p

j

2 Corre
t(�), p

j

:Value(wi) = v

w

i

at the end of round r = jwj + 1, where v 2 V is the

value p

i

:Value(w) at round jwj+ 1.

We now assume that for every p

i

; p

j

2 Corre
t(�), p

j

:Value(wi) = v

w

i

, jwij � jw

0

j �

(j�j � jS

min

j + 1), where v

w

i

2 V is the value p

i

:Value(w) at round jwj + 1. We need

to prove the proposition for the labels of length jwj. Suppose that w = w

0

i. Let s

1

be

su
h that s

1

� Child (w). From the indu
tive assumption, for every pro
ess p

i

1

2 s

\ s

1

and p

j

2 Corre
t(�), we have that p

j

:Value(wi

1

) = v

w

0

i

, where v

w

0

i

2 V is the value

p

i

:Value(w

0

) at round jw

0

j+1. Moreover, suppose that there are two survivor sets s

2

; s

3

2

S

�

, (s

2

\ s

3

) 6= (s

1

\ s

), su
h that (s

2

\ s

3

) 2 Child(w). From the byzantine interse
tion

property, there is ate least one
orre
t pro
ess p

i

3

2 (s

2

\ s

3

). Consequently, if for every

pro
ess p

i

4

2 s

\ s

d

, p

j

:Value(wi

4

) = v

0

, then v

0

has to be equal to v

w

i

. Otherwise, the

value p

j

:Value(wi

3

) 6= v

k

,
ontradi
ting the indu
tive assumption.

A

ording to the algorithm, we have that for every p

j

2 Corre
t(�), p

j

:Value(w

0

i) =

v

w

0

i

, where v

w

0

i

2 V is the value p

i

:Value(w

0

) at round jw

0

j+ 1. 2

6.7

Before stating and proving the following lemma, we need to introdu
e some more

notation. We de�ne RLeaves(w) as the set of labels ww

0

, su
h that Child(ww

0

) = ; and

w

0

2 Pid

�

.

33

Algorithm Syn
Byz for pro
ess p

i

:

Input: a set of pro
esses �; a set of
ores C

�

; a set of survivor sets S

�

; an input value v

i

2 V

Variables:

Let s

min

be a smallest survivor set in S

Let r be the
urrent round number

Let root be a referen
e to the root of pro
ess i's tree

Let M be a set of messages

Let P; P

0

be sets of pairs hw; vi, where w 2 Pid

�

, and v 2 V

initialization:

root CreateNode(;, v

i

)

BuildTree(root)

P fh;; v

i

ig

rounds 1 � r < (j�j � js

min

j+ 1):

SendAll(i, P)

let M be the set of messages re
eived by p

i

at round r

P ;

for every message m = (j; P

0

) 2M do

for every node at depth r labeled wj, w 2 Pid

�

, jwj = r do

p

i

:Value(wj) m:Value(w)

if node labeled wj is not a leaf then P P [fhwj ;m:Value(w)ig

round r = (j�j � js

min

j+ 1):

SendAll(i, P)

let M be the set of messages re
eived by p

i

at round r

for every message m = (j; P

0

) 2M do

for every node at level r labeled wj, w 2 Pid

�

, jwj = r, do

p

i

:Value(wj) m:Value(w)

Traverse Tree in postorder, exe
uting the following steps when visiting a node labeled w:

if Child(w)6= ;

then let I Child(w)

if(9s

1

; s

2

2 S su
h that ((s

1

\ s

2

) � I) ^ (8p

j

2 (s

1

\ s

2

); p

i

:Value(wj) = v, v 2 V)))

then p

i

.Value(w) v

else p

i

.Value(w) ?

Auxiliary fun
tion

Fun
tion BuildTree(w)

let � Pro
esses(w)

8p

j

2 � su
h that p

j

62 �

if (9s

1

2 S su
h that s

1

� (�� �))

then node CreateNode(wj, ?)

Child(w) Child(w) [fnodeg

BuildTree(wj)

Figure 5: Syn
hronous Consensus for Dependent Arbitrary Failures

Lemma 6.8 Let � be an exe
ution of Syn
Byz, and u be a node labeled wi, w 2 Pid

�

; p

i

2

�. If for every wiw

0

2 RLeaves(wi), it is the
ase that Corre
t(�) \ Pro
esses(iw

0

) 6= ;,

then p

j

:Value(wi) = p

k

:Value(wi) for all p

j

; p

k

2 Corre
t(�) at the end of round r =

34

(j�j � js

min

j+ 1).

Proof: We prove this lemma by indu
tion on the height of the tree, starting from the

leaves.

The base
ase o

urs when u is a leaf. By assumption, p

i

is
orre
t. Thus, we have

that p

k

:Value(wi) = p

l

:Value(wi), from lemma 6.7.

The indu
tion hypothesis is that the proposition is valid for all the nodes at depth d,

starting from the leaves. We need to prove the proposition for a node v at depth d � 1.

We have two
ases to analyze: p

i

is
orre
t and p

i

is faulty. If p

i

is
orre
t, then the proof

is straightforward from lemma 6.7. We need to analyze the
ase in whi
h p

i

is faulty.

Suppose that p

i

is faulty and that every leaf labeled wiw

0

is su
h that Pro
esses(iw

0

)\

Corre
t(�) 6= ;. In this
ase, for every
hild labeled wii

1

, we have that for all wii

1

w

00

2

RLeaves(wii

1

), Pro
esses(i

1

w

00

) \ Corre
t(�) 6= ;. By the indu
tion hypothesis, it is the

ase that p

j

.Value(wii

1

) = p

k

.Value(wii

1

) for every p

i

1

2 Child(wi). From the algorithm,

it has to be the
ase that p

k

.Value(w) = p

l

.Value(w), for all p

j

; p

k

2 Corre
t(�). 2

6.8

Lemma 6.9 Let � be an exe
ution of Syn
Byz. Syn
Byz satis�es Strong Validity in

�.

Proof: By the de�nition of S

�

, in every exe
ution there is at least one survivor s

i

set

ontaining only
orre
t pro
esses. From lemma 6.7, for every pro
ess p

i

2 s

a

, we have

that p

j

.Value(i) is the initial value of p

i

, assuming p

j

is
orre
t. If all the pro
esses start

an exe
ution with the same initial value v, then, from the algorithm and the assumption

that the interse
tion property holds, p

j

.Value(;)=v. 2

6.9

Lemma 6.10 Let � be an exe
ution of Syn
Byz. Syn
Byz satis�es Agreement in �.

Proof: Let p

i

be a pro
ess in �, and � be some exe
ution of Syn
Byz. We need

to prove that for every pro
ess p

j

2 Corre
t(�), p

j

:Value(;) = v, for some de
ision value

v 2 V [f?g. By the
onstru
tion of the tree, for every leaf labeled iwj, w 2 (Pid�fi; jg)

�

,

there is at least one
orre
t pro
ess p

i

1

2 Pro
esses(iwj). From lemma 6.2, we have that

by the end of round r = (j�j � jxj + 1) , for some v 2 V [f?g, p

i

1

:Value(i) = v, for all

p

i

1

2 Corre
t (�).

From the previous argument, we have that for every p

i

2

; p

i

3

2 Corre
t(�) and every

p

i

4

2 �, p

i

2

:Value(i

4

) = p

i

3

:Value(i

4

). A

ording to the algorithm, the de
ision value

of every
orre
t pro
ess therefore has to be the same. This proves that the agreement

property holds for Syn
Byz. 2

6.10

Lemma 6.11 Let � be an exe
ution of Syn
Byz. Syn
Byz satis�es Termination in �.

Proof: The absen
e of in�nite loops in the algorithm makes it straightforward to observe

that it eventually terminates and every pro
ess eventually de
ides. 2

6.11

7 Asyn
hronous Consensus with Arbitrary Failures

Under Constru
tion

35

8 Final Remarks

The results we showed in this paper en
ourage one to use
ores and survivor sets in the

design of fault-tolerant algorithms. There are a few questions, however, that remain to

be answered. First, it is not
lear that
ores or survivor sets are a good way of modeling

failure
orrelation. In the worst
ase, there is an exponential number of su
h subsets.

Representing and �nding
ores or survivor sets in these system
on�gurations may not

be pra
ti
al. Some of our results show that even in the
ase that there is an exponential

number of
ores in a system, just a subset of
ores are ne
essary to satisfy repli
ation

requirements. For example, in the
ase of Consensus for syn
hronous systems with
rash

failures, pro
esses need to know about a single
ore. For asyn
hronous systems with
rash

failures, all is needed is a set of survivor sets that is a
oterie. Both
ases imply that not

all subsets are needed, but just some of them.

A se
ond question is how to extra
t the information about
ores. One has to know how

to
orrelate failures in order to determine
ores. An obvious approa
h is to
onsider failure

probabilities. This may not be as pra
ti
al as assuming independent failure probabilities,

be
ause in general one has to deal with equations with an exponential number of terms.

Alternatively, one
an use intrinsi
 properties of the system to
orrelate pro
ess failures.

For example, if there are two PC's in the same room, then a power failure
an make

both
rash at the same time. Another example is having implementations using the same

buggy
ode. Pro
esses running su
h a software may present the same arbitrary behavior

and
onsequently present
orrelated failures. Thus, it is not ne
essary to quantify failure

orrelation in order to determine
ores in a system. Although we do not have a ni
e and

losed formula to
ompute
ores in the general
ase, there are heuristi
s that
an be used

on a per-
ase basis. We present two heuristi
s in [27℄.

In more dynami
 systems, there is the issue of
orrelating failures on-line. Suppose

the
ase of mobile nodes. Assuming ea
h mobile node is a pro
ess, pro
esses
lose to

ea
h other may be subje
t to the same unfortunate events. In this
ase, it is ne
essary

to know the position of the nodes to determine
ores. Furthermore,
ores are
onstantly

hanging. Thus, a probing me
hanism is ne
essary to determine positioning information.

This information is then used to extra
t
ores. A probing me
hanism, however, is not

suÆ
ient. It is also ne
essary to have either an agreement proto
ol so that pro
esses agree

on the
ores at a given point of an exe
ution, or proto
ols should be designed to
ope with

in
onsisten
ies in the set of
ores a
ross all pro
esses.

Generalizing the results we have is also one of our goals. It seems that the idea of

using proto
ols proposed in the literature modi�ed to
onsider
ores or survivor sets is not

appli
able only to Consensus. So far we have investigated the appli
ation of our model only

to Distributed Consensus yet we plan to do the same for other problems in FT distributed

omputing. By doing this, we will gain more intuition on the appli
ability of our model.

To
on
lude, we believe that all questions we posed here are important and that we

will have answers for most of them only after applying to the designing of real systems.

We are optimisti
 about our results, be
ause the ones we have so far show several bene�ts

in using failure
orrelation in the design of algorithms and the preliminary results we have

about
ores in real systems show that tha approa
h is not unrealisti
.

Referen
es

[1℄ I. Keidar and S. Rajsbaum, \On the Cost of Fault-Tolerant Consensus When There

Are No Faults - A Tutorial," Te
h. Rep. MIT-LCS-TR-821, MIT, May 2001.

36

[2℄ T. Chandra and S. Toueg, \Unreliable Failure Dete
tors for Reliable Distributed

Systems," Journal of the ACM, vol. 43, pp. 225{267, Mar
h 1996.

[3℄ J. von Neumann, \Probabilisti
 Logi
s and the Synthesis of Reliable Organisms from

Unreliable Components," in Automata Studies, pp. 43{98, Prin
eton University Press,

1956.

[4℄ J. Wensley, \SIFT: Design and Analysis of a Fault-Tolerant Computer for Air
raft

Control," in Pro
eedings of the IEEE, vol. 66, pp. 1240{1255, O
tober 1978.

[5℄ R. Rodrigues, B. Liskov, and M. Castro, \BASE: Using Abstra
tion to Improve Fault

Toleran
e," in 18th ACM Symposium on Operating Systems Prin
iples (SOSP'01),

vol. 35, (Chateau Lake Louise, Ban�, Alberta, Canada), pp. 15{28, O
tober 2001.

[6℄ Y. Ren and J. B. Dugan, \Optimal Design of Reliable Systems Using Stati
 and Dy-

nami
 Fault Trees," IEEE Transa
tions on Reliability, vol. 47, pp. 234{244, De
ember

1998.

[7℄ P. Thambidurai and Y.-K. Park, \Intera
tive Consisten
y with Multiple Failure

Modes," in IEEE 7th Symposium on Reliable Distributed Systems, (Columbus, Ohio),

pp. 93{100, O
tober 1988.

[8℄ D. Malkhi and M. Reiter, \Byzantine Quorum Systems," in 29th ACM Symposium

on Theory of Computing, pp. 569{578, may 1997.

[9℄ H. Attiya and J. Wel
h, Distributed Computing: Fundamentals, Simulations, and

Advan
ed Topi
s. M
Graw-Hill, 1998.

[10℄ K. Kihlstrom, L. Moser, and P. M. Melliar-Smith, \Solving Consensus in a Byzan-

tine Environment using an Unreliable Failure Dete
tor," in Pro
eedings of the Inter-

national Conferen
e on Prin
iples of Distributed Systems (OPODIS'97), (Chantilly,

Fran
e), pp. 61{76, De
ember 1997.

[11℄ D. Malkhi and M. Reiter, \Unreliable Intrusion Dete
tion in Distributed Com-

putations," in Pro
eedings of the 10th Computer Se
urity Foundations Workshop

(CSFW97) , (Ro
kport, MA), pp. 116{124, June 1997.

[12℄ D. Dolev, C. Dwork, and L. Sto
kmeyer, \On the Minimal Syn
hronism Needed for

Distributed Consensus," Journal of the ACM, vol. 1, pp. 77{97, January 1987.

[13℄ S. Mullender, ed., Distributed Systems,
h. 5. Addison-Wesley, 2nd ed., 1995.

[14℄ B. Charron-Bost, R. Guerraoui, and A. S
hiper, \Syn
hronous System and Perfe
t

Failure Dete
tor: solvability and eÆ
ien
y issues," in IEEE International Conferen
e

on Dependable Systems and Networks (DSN'00), (New York, NY), pp. 523{532, June

2000.

[15℄ M. Fis
her, N. Lyn
h, and M. Paterson, \Impossibility of Distributed Consensus with

One Faulty Pro
ess," Journal of the ACM, vol. 32, pp. 374{382, April 1985.

[16℄ T. Chandra, V. Hadzila
os, and S. Toueg, \The Weakest Failure Dete
tor for Solving

Consensus," Journal of the ACM, vol. 43, pp. 685{722, July 1996.

37

[17℄ A. Doudou and A. S
hiper, \Muteness Dete
tors for Consensus with Byzantine Pro-

esses," in Pro
eedings of the 17th ACM Symposium on Prin
iple of Distributed Com-

puting, (Puerto Vallarta, Mexi
o), p. 315, July 1998. (Brief Announ
ement).

[18℄ B. Charron-Bost and A. S
hiper, \Uniform Consensus is Harder Than Consensus,"

te
h. rep.,

�

E
ole Polyte
hnique F�ed�erale de Lausanne, Switzerland, May 2000.

[19℄ D. Skeen, \Determining the Last Pro
ess to Fail," ACM Transa
tions on Computer

Systems, vol. 3, pp. 15{30, February 1985.

[20℄ L. Lamport and M. Fis
her, \Byzantine Generals and Transa
tion Commit Proto-

ols," te
h. rep., SRI International, April 1982.

[21℄ D. Dolev, R. Reis
huk, and H. R. Strong, \Early Stopping in Byzantine Agreement,"

Journal of the ACM, vol. 37, pp. 720{741, O
tober 1990.

[22℄ F. Junqueira and K. Marzullo, \Lower Bound on the Number of Rounds for Syn-

hronous Consensus with Dependent Pro
ess Failures," te
h. rep., UCSD, La Jolla,

CA, September 2002. http://www.
s.u
sd.edu/users/
avio/Do
s/lb.ps.

[23℄ R. Guerraoui and A. S
hiper, \Consensus Servi
e: A Modular Approa
h for Building

Fault-tolerant Agreement Proto
ols in Distributed Systems," in 26th International

Symposium on Fault-Tolerant Computing (FTCS-26), (Sendai, Japan), pp. 168{177,

June 1996.

[24℄ A. S
hiper, \Early Consensus in a Asyn
hronous System with a Weak Failure Dete
-

tor," Distributed Computing, vol. 10, pp. 149{157, April 1997.

[25℄ L. Lamport, R. Shostak, and M. Pease, \The Byzantine Generals Problem," ACM

Transa
tions on Programming Languages and Systems, vol. 4, pp. 382{401, July 1982.

[26℄ M. Pease, R. Shostak, , and L. Lamport, \Rea
hing Agreement in the Presen
e of

Faults," Journal of the ACM, vol. 27, pp. pp. 228{234, April 1980.

[27℄ F. Junqueira, K. Marzullo, and G. Voelker, \Coping with Dependent

Pro
ess Failures," te
h. rep., UCSD, La Jolla, CA, De
ember 2001.

http://www.
s.u
sd.edu/users/
avio/ Do
s/JuMaVo2001.ps.

38

