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1 Introdution

Most fault-tolerant protools are designed assuming that out of n omponents, no more

than t an be faulty. For example, solutions to the Consensus problem are usually de-

veloped assuming no more than t of the n proesses are faulty where \being faulty" is

speialized by a failure model. We all this the t of n assumption. It is a onvenient

assumption to make. For example, bounds are easily expressed as a funtion of t: if pro-

esses an fail only by rashing, then the Consensus problem is solvable when t < n if the

system is synhronous and when t < 2n if the system is asynhronous extended with a

failure detetor of the lass 3W . [1, 2℄

The use of the t of n assumption dates bak to the earliest work on fault-tolerant

omputing. [3℄ It was �rst applied to distributed oordination protools in the SIFT projet

[4℄ whih designed a y-by-wire system. The reliability of systems like this is a vital

onern, and using the t of n assumption allows one to represent the probabilities of

failure in a simple manner. For example, if eah proess has a probability p of being

faulty, and proesses fail independently, then the probability P (t) of no more than t out

of n proesses being faulty is:

P (t) =

t

X

i=0

�

n

i

�

p

i

(1� p)

n�i

If one has a target reliability R then one an hoose the smallest value of t that satis�es

P (t) � R.

The t of n assumption is best suited for omponents that have idential probabilities

of failure and that fail independently. For embedded systems built using rigorous software

development this is often a reasonable assumption, but for most modern distributed sys-

tems it is not. Proess failures an be orrelated beause, for example, the same buggy

software was used. [5℄ Computers in the same room are subjet to orrelated rash failures

in the ase of a power outage.

That failures an have di�erent probabilities and an be dependent is not a novel

observation. The ontinued popularity of the t of n assumption, however, implies that it

is an observation that is being overlooked by protool designers. If one wishes to apply,

for example, a Consensus protool in some real distributed system, one an use one of two

approahes:

1. Use some o�-line analysis tehnique, suh as fault tree analysis [6℄ to identify how

proesses fail in a orrelated manner. For those that do not fail independently or fail

with di�erent probabilities, re-engineer the system so that failures are independent

and identially distributed (IID).

2. Use the same o�-line analysis tehnique to ompute what the maximum number of

faulty proesses an be, given a target reliability. Use this value for t and ompute

the value of n that, under the t of n assumption, is required to implement Consensus.

Repliate to that degree.

Both of these approahes are used in pratie. [6℄ This paper advoates a third ap-

proah:

3. Use the same o�-line analysis to identify how proesses fail in a orrelated manner.

Represent this using our abstration for dependent failures, and repliate in a way

that satis�es our repliation requirement and that minimizes the number of replias.

Instantiate the appropriate dependent failure protool.
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We believe that our approah and protools are amenable to on-line adaptive replia-

tion tehniques as well.

In this paper we propose an abstration that exposes dependent failure information

for one to take advantage of in the design of a protool. Like the t of n assumption, it is

expressed in a way that hides its underlying probabilisti nature in order to make it more

generally appliable.

We then apply this abstration to the Consensus in both synhronous and asynhronous

models assuming rash and arbitrary failures. We show repliation requirements that

are suÆient to enable a solution for Consensus. In order to demonstrate suÆieny, we

applyed simple modi�ations to Consensus algorithms proposed in the literature. Although

we annot generalize this result to every problem in fault-tolerant distributed omputing,

we believe that our work does not invalidate all the previous work assuming t of n proess

failures. We also show that expressing proess failure orrelations with our model enables

the solution of Consensus in some systems in whih it is impossible when making the t of

n assumption.

There has been some work in providing abstrations more expressive than the t of n

assumption. The hybrid failure model (for example, [7℄) generalizes the t of n assumption

by providing a separate t for di�erent lasses of failures. Using a hybrid failure model

allows one to design more eÆient protools by having suÆient repliation for masking

eah failure lass. It is still based on failures in eah lass being independent and identially

distributed. In this paper, however, we do not onsider hybrid failure models.

Byzantine Quorum systems have been designed around the abstration of a Fail-prone

System [8℄. This abstration allows one to de�ne quorums that take orrelated failures into

aount. This abstration has been used to express a suÆieny ondition for repliation.

Our work an be seen as generalizing this work, whih applies only to Quorum Systems.

The remainder of this paper is divided as follows. Setion 2 presents our assump-

tions for the system model and introdues our abstration that models dependent proess

failures. Setion 3 de�nes the distributed Consensus problem. Setions 4 and 6 present

repliation requirements and algorithms for synhronous Consensus on the rash and arbi-

trary failure models, respetively. For asynhronous Consensus, repliation requirements

and algorithms on the rash and arbitrary failure models are presented in setions 5 and

7, respetively. Finally, we draw onlusions and disuss future work in Setion 8.

2 System Model

A system is omposed of a set � of proesses, numbered from 1 to n = j�j. The number

assigned to a proess is its proess id, and it is known by all the other proesses. In the rest

of paper, every time we refer to a proess with id i, we use the notation p

i

. Additionally,

we de�ne Pid as the set of proess id's, i.e., Pid = fi : p

i

2 �g. We use this set to de�ne

a sequene w of proess id's. Suh a sequene w is an element of Pid

�

.

A proess ommuniate with others by exhanging messages. Messages are transmitted

through point-to-point reliable hannels, and eah proess is onneted to every other

proess through one of these hannels. We model a hannel between proesses p

i

and p

j

as

two pairs of bu�ers: input

ij

=output

ij

and input

ji

=output

ji

. If proess p

i

sends a message

m to p

j

, then it plaesm at bu�er input

ij

. One the transfer of the message is ompleted,

aording to the timing assumptions, the message is moved to output

ij

. Proess p

j

then

has aess to m. Note that proess p

i

only has ontrol over the bu�ers input

ij

and output

ji

.

Proesses, on the other hand, are not assumed to be reliable. We onsider both rash

and arbitrary proess failures. Di�erent from most previous works in fault-tolerant dis-
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tributed systems, proess failures are allowed to be orrelated. We introdue a new ab-

stration, namely ore, whih orresponds to a reliable subset of proesses. From a set of

ores, it is possible to derive subsets of proesses suh that in every run of the system at

least one of these subsets ontains only orret proesses. We all them survivor sets.

Eah proess p 2 � exeutes a deterministi automaton as part of the distributed

omputation [2, 9℄. A deterministi automaton is omposed of a set of states, a initial

state, and a transition funtion. The olletion of the automata exeuted by the proesses

is de�ned as a distributed algorithm. An exeution of a distributed algorithm proeeds

in steps of the proesses. In a step, a proess may: 1) reeive a message; 2) undergo a

state transition; 3) send a message to a single proess. Steps are assumed to be atomi,

and there is no restrition in terms of sequentiality. That is, steps of di�erent proesses

are allowed to overlap in time. A proess is assumed to take a step at global time t 2 T

provided by some external devie. Although proesses do not have aess to this external

devie, this assumption turns out to be useful in reasoning about the systems we disuss

here. The range of T is the non-negative integers.

Although the omputational model is the same independently of the timing assump-

tions, we desribe algorithms for synhronous and asynhronous systems di�erently. As

we show later in this setion, we explore the fat that the omputation an be split in

synhronous rounds to failitate the oordination among the proesses.

This is the general piture of our system model. In the following subsetions, we disuss

in details its various aspets.

2.1 Proesses, Cores, and Survivor Sets

A system is omposed of a set � = fp

1

; p

2

; � � � ; p

n

g of proesses. In our model, proess

failures are allowed to be orrelated, whih means that the failure of a proess may indiate

an inrease in the failure probability of another proess. To represent these orrelations,

we assume some abstration. For example, proesses an be represented by attributes and

proesses sharing an attribute have higher probability of failing in the same exeution of

the system.

To ahieve fault-tolerane in a system assuming no failed proess reovers, it is ne-

essary to guarantee that non-empty subsets of � survive to every exeution. A proess

is said to survive to an exeution if and only if it is orret in that exeution. Thus, we

would like to distinguish subsets of proesses suh that the probability of all proesses in

eah of these subsets failing is negligible. Moreover, we want these subsets to be minimal

in that removing any proess of suh a subset  makes the probability of all the proesses

in  failing non-negligible, These subsets are alled ores. Cores an be extrated from

the information about proess failure orrelations. In this paper, however, we assume that

the set of ores is provided as part of the system spei�ation. Models to desribe failure

orrelations and methods to extrat ores from instanes of these models are not addressed

here.

By assumption, eah ore ontains at least one proess that is going to be orret

in an exeution. Thus, a subset of proesses, suh that the intersetion with every ore

is non-empty ontains proesses that are orret in some exeution. If suh a subset is

minimal, then it is alled a survivor set. Notie that in every run of the system there is

at least one survivor set that ontains only orret proesses. The de�nition of survivor

sets is equivalent to the one of a fail-prone system B [8℄. The set of all survivor sets is the

omplement of B.

We now de�ne ores and survivor sets more formally. Let R be a rational number
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expressing the target degree of reliability for �, and r(x), x � �, be a funtion that

evaluates to the reliability of the subset x. We de�ne ores and survivor sets as follows:

De�nition 2.1 Given a set of proesses � and target degree of reliability R 2 [0; 1℄ \Q,

 is said to be a ore if and only if:

1.  � �;

2. r() � R;

3. 8p 2 , r(� fpg) < R.

C

�

is the set of ores of �. Given a set of proesses � and a set of ores C

�

, s is said

to be a survivor set if and only if:

1. s � �;

2. 8 2 C, s \  6= ;;

3. 8p 2 s, 9 2 C

�

suh that p 2 .

We de�ne C

�

and S

�

as the set of ores and the set of survivor sets of �, respetively.

2

2:1

The funtion r(:) and the target degree of reliability R are used at this point only

to formalize the idea of a ore. In reality, reliability does not need to be expressed as

probabilities. For example, onsider the following system representation:

Example 2.2 :

� � = fph

1

;ph

2

;pl

1

;pl

2

;pl

3

;pl

4

g

� C

�

= ffph

1

;ph

2

;pl

1

g; fph

1

;ph

2

;pl

2

g; fph

1

;ph

2

;pl

3

g; fph

1

;ph

2

;pl

4

gg

� S

�

= ffph

1

g; fph

2

g; fpl

1

;pl

2

;pl

3

;pl

4

gg

2

2.2

In this system, ph

1

and ph

2

are very reliable and eah of these fail independently of

every other p 2 �. Proesses pl

i

, for 1 � i � 4, however, fail dependently among eah

other. That is, for every pair of proesses pl

i

, pl

j

, 1 � i; j � 4 and i 6= j, we have that if

pl

i

is faulty in some exeution of the system, then pl

j

is also faulty. Thus, a subset with

maximum reliability ontains proesses ph

1

, ph

2

, and exatly one proess pl

i

. Suppose

that the maximum reliability ahievable for a subset of proesses satis�es the intuitive

notion of target degree of reliability for this system. We an therefore infer that for eah

i, 1 � i � 4, fph

1

; ph

2

; pl

i

g is a ore. The set C

�

of ores is hene as follows:

In the remainder of this paper, we assume that these subsets are provided as part of

the system representation. In the following setions, a system is desribed by a triple

h�; C

�

; S

�

i, for � being a set of proesses, C

�

being the set of ores of �, and S

�

being

the set of survivor sets of �. We all heneforth h�; C

�

; S

�

i a system representation.
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2.2 Failure Models

We assume two failure models: rash and arbitrary. When disussing failures, one dis-

tinguishes hannel failures and proess failures. In both models onsidered here, hannels

are assumed to be reliable. We de�ne a reliable hannel as one that satis�es the following

properties:

Validity: If p; q 2 � are orret proesses and p sends a message m to q, then m is

eventually delivered;

Integrity: A proess p 2 � reeives a message m if and only if some proess q 2 � sent

it to p. Moreover, p reeives m exatly one.

From these hannel properties, if a orret proess p

i

puts a messagem in bu�er input

ij

and p

j

is also orret, then m is eventually moved to output

ij

. Also, no message in bu�er

output

ij

is spontaneously generated, for any pair of proesses p

i

; p

j

2 �. If a message is in

output

ij

at some time t, then it was plaed at output

ij

by p

i

at some time t

0

< t.

The possibilities for proess failures di�erentiate the models. In the rash model, pro-

esses fail by rashing. That is, if a proess p is faulty in an exeution, then it prematurely

stops sending and reeiving messages in that exeution. Thus, there is a time t after whih

p stops reeiving and sending messages, even though it was supposed to do it aording

to the algorithm. In ontrast to a rashed proess, we say that a proess is alive at some

time t either if it is orret at t or if it has not rashed at any time t

0

< t.

Although a rashed proess p

i

does not operate properly after time t, p

i

does not aom-

plish inorret omputations. In the arbitrary model, on the other hand, faulty proesses

behave arbitrarily, and hene this model is stritly weaker than the rash model. Examples

of arbitrary behavior are: forging messages, arbitrarily modifying the ontent of messages,

seletively forwarding messages, and hanging states without following the protool spe-

i�ation. It is important to observe that some arbitrary failures are detetable, whereas

others are not [10, 11℄. For example, the modi�ation of the initial value of a proess p

i

is not detetable. This is due to the loality of this information. The initial value of p

i

is

only known by p and onsequently it is not possible to verify whether it was modi�ed ar-

bitrarily or not. On the other hand, some failures are detetable and attributable to some

proess. Suppose the hannels are FIFO. If a proess p

i

sends malformed or out-of-order

messages then a orret proess p

j

reeiving those messages is able to detet that p

i

is

faulty. Note that FIFO hannels are easily implemented by a ounter, whih has its value

sent along with every message and is inremented every time a message is sent. Even if a

byzantine proess p

i

hanges the value of a hannel ounter arbitrarily, it is still possible

for a orret proess p

j

to detet p

i

as faulty. We assume FIFO hannels for our protool

that solves Consensus in a asynhronous systems with byzantine proesses. The issue of

FIFO hannels is hene addressed again in the setion 2.4, whih disuss asynhronous

systems with arbitrary proess failures.

2.3 Synhronous Model

The synhronous model imposes bounds on message delay, proess speed, and lok drift.

These bounds, however, are not neessarily based on absolute time. As in the model of

Dolev et al. [12℄, steps of an algorithm are used to de�ne these bounds. Following this

model, the timing assumptions for a synhronous system are given by two parameters:

� � 1 and � � 1. Furthermore, any exeution of an algorithm � in suh a system satis�es

the following properties:

6



Proess synhrony : for any �nite subsequene w of onseutive steps, if some proess

p

i

takes � + 1 onseutive steps in w, then any proess that is still alive at the end

of w has taken at least one step in w;

Message synhrony : for any pair of indies k; l, with l � k +�, if message m is sent

to p

i

during the k-th step, then m is reeived by the end of the l � th step.

If these properties hold, then an exeution an be further organized in rounds, whih

are de�ned in terms of steps of proesses. In a round, a proess p

i

exeutes n + k steps.

The �rst n steps are used by p

i

to send real messages, whereas in the last k steps it sends

null messages. These k last steps are neessary to guarantee that all messages sent to p

i

in a round r are reeived before p

i

proeeds to round r + 1. The number k of steps is a

funtion of �, �, n, and r.

The algorithms for synhronous systems desribed in setions 4 and 6 are round-based.

This format failitates understanding, sine it abstrats several details of the system model.

The algorithms are also not desribed in an automaton format, sine the desription would

be longer and would not improve larity. Instead, we use sequential ode to present the

algorithms. States and transitions, however, are easily observable from the hanges on the

values stored by the variables used by the algorithm.

2.4 Asynhronous Model

In an asynhronous system, there is no bound on message delay, proess speed, or lok

drift [2, 13, 9, 14℄. Thus, in suh a system, a message sent from a orret proess p

i

to

some other proess p

j

may take arbitrarily long to be reeived. Message delay, although

onsidered to be unbounded, is assumed to be �nite. This is due to the validity property

of the hannels, whih says that every message sent from a orret proess p

i

to another

orret proess p

j

is eventually reeived.

Aording to the FLP result [15℄, it is not possible to solve Consensus in a pure

asynhronous system, even if only a single rash failure is assumed. The intuition behind

the impossibility is that it is not possible to distinguish a rashed proess from a very slow

one. As disussed previously, a message sent may take a �nite but unbounded amount

of time to reah its destination, preventing proesses from distinguishing some exeutions

from others. It is therefore neessary to assume some liveness property for the system that

guarantees that something good will eventually happen and will hold long enough so that

orret proesses an reah agreement.

Chandra and Toueg proposed to extend the asynhronous model with an orale that

provides information about proess failures. This orale is alled a failure detetor [2℄.

Briey, eah proess has a failure detetor module available to itself, and it queries the

module every time the algorithm requires failure information. They showed in their work

that failure detetors do not need to detet rash failures perfetly to make Consensus

solvable in suh extended model. Moreover, they proved that a failure having the properties

of 3W is neessary [16℄. Another interesting result out of their work is the equivalene

between the lasses 3W and 3S, meaning that given a failure detetor D of one of the

lasses, there is an algorithm that transforms D into a failure detetor D

0

of the other lass.

In this paper, we assume an asynhronous model with rash proess failures extended with

a failure detetor D 2 3S. The properties that de�ne a failure detetor D 2 3S are as

follows:

Strong ompleteness : Eventually every proess that rashes is permanently suspeted

by every orret proess;
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Eventual weak auray : There is a time after whih some orret proess is never

suspeted by any orret proess.

In setion 5, we assume an asynhronous model extended with a failure detetor D 2

3S.

For a byzantine setting, other lasses of failure detetors are proposed in the literature.

Malkhi and Reiter desribe the failure detetor lass 3S(bz) [11℄. A failure detetor D in

3S(bz) provides information about quiet proesses only. By de�nition, a quiet proess is

a faulty proess whih sends a �nite number of messages in an in�nite exeution. Thus, a

failure detetor D is not supposed to detet any other faulty behavior other than silene.

The detetion of other arbitrary behaviors is implemented by a distributed algorithm. This

is illustrated in [11℄ by an algorithm whih relies on the detetion of malformed, out-of-

order, and unjusti�able messages to solve Consensus, thus showing that the properties of

3S(bz) are suÆient for an asynhronous system with byzantine failures. The de�nition

of 3S(bz), however, assumes a strong system model. It assumes a reliable broadast

primitive, whih also satis�es ausal order, to exhange messages [13℄ and authentiated

1

,

reliable hannels between pairs of proesses. By assumption, every message is broadast

to all the proesses using the given primitive. This prevents that faulty proesses send

di�erent messages to di�erent proesses in a broadast.

Di�erently from Malkhi and Reiter, Kihlstrom et al. de�ne a lass 3S(Byz) of failure

detetors whih expose arbitrarily faulty proesses. [10℄ As in the previous de�nitions, eah

proess has a failure detetor module that output a list of proesses suspeted of having

presented detetable arbitrary failures. Note that the de�nition of detetable arbitrary

failures inludes omission failures, hene deteting quiet proesses as well. The algorithm

shown in their work to solve Consensus is tightly oupled to the failure detetor, sine

it has to provide erti�ates that justify messages sent. The failure detetor thus uses

these erti�ates to validate the hoies made by the algorithm. Note that this validation

mehanism is viable only by assuming the erti�ates to be unforgeable. An important

observation is that the system model assumed is weaker than the model assumed in the

de�nition of 3S(bz). Proesses send messages to eah other through end-to-end reliable

hannels, guaranteeing that a message sent from a orret proess to another orret

proess is eventually reeived.

The last lass of failure detetors for arbitrary settings we disuss here is3M , proposed

by Doudou and Shiper. [17℄ A failure detetor of this lass satis�es the mute ompleteness

property, besides the eventual weak auray de�ned previously. The de�nition of a mute

proesses resembles the de�nition of a quiet proess, but the former is more omprehensive.

An advantage over the 3S(bz) lass is again the weaker system model assumed. We now

repeat the de�nitions of a mute proess and mute ompleteness as presented in [17℄.

Mute proess : Let p

i

and p

j

be two proesses. Proess p

i

is mute to p

j

if there is a

time after whih either (1) p

i

rashes, or (2) p

i

stops forever sending messages to

p

j

, or (3) p

i

sends only inorret signed messages (sender annot be identi�ed) or

unsigned messages to p

j

.

Mute Completeness : There is a time after whih every proess p

i

, that is mute to a

orret proess p

j

, is suspeted forever by p

j

.

The failure detetor is not tightly oupled to the algorithm that solves Consensus

in [17℄. Although the failure detetor veri�es signatures, these are not assumed to be

1

The authentiation mehanism is assumed to be unforgeable
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generated by the algorithm. Unforgeable signatures are assumed to be available as part of

the system model. The only stronger assumption made in terms of the system model om-

pared to the one assumed by Kihlstrom et al. is the FIFO property for the ommuniation

hannels. This property is required by the Consensus algorithm, though, and not by the

failure detetor. As observed before, the FIFO property for a hannel is implemented by

a ounter, whih is inremented every time a message is sent and its urrent value goes

along with every message. Even if a faulty proess p

i

hanges arbitrarily the value of the

ounter sent with a message to p

j

, p

j

eventually detets p

i

as faulty. If p

i

never sends

a message with the value expeted by p

j

, then p

j

eventually suspets p

i

as mute, by the

mute ompleteness property of the failure detetor. On the other hand, if eventually p

i

sends a message with the orret ounter value, but the message is not the one expeted

aording to the algorithm, then p

i

is deteted by p

j

as a byzantine proess. Implementing

FIFO hannels has its own problems however. One suh a problem is the size of the bu�er

that holds messages reeived in advane. Implementation details, however, are out of the

sope of this work.

Based on the properties of three lasses desribed above, our opinion is that the fail-

ure detetor as an abstration should only satisfy enough properties so that it enables

the system to overome the FLP impossibility result. That is, it should provide only

the neessary information to enable the system to make progress, guaranteeing liveness.

Adding detetion of byzantine behavior to the failure detetor is a design deision, and

does not help in overoming the impossibility of solving Consensus in an asynhronous

model. Moreover, the system model should be as weak as possible, so that it failitates

implementations. We therefore assume in setion 7 an asynhronous model extended with

a failure detetor of the 3M lass. Out of the three disussed here, 3M has the best

trade-o� in terms of the system model assumptions and failure detetor properties.

2

In setions 5 and 7, we desribe algorithms for Consensus in asynhronous systems.

Both algorithms simulate rounds asynhronously. Di�erently from synhronous rounds,

asynhronous rounds annot have their boundaries determined by elapsed time or number

of steps, due to the timing assumptions. Typially, a proess deide for the end of a round

independently from other proesses by identifying some pattern of events. For instane,

the reeption of one message from every proess in some partiular subset of proesses.

More details are provided in the setions that desribe the algorithms.

2.5 Exeutions

An exeution of an algorithm is essentially a sequene of steps of the proesses in �. There

are, however, other details that haraterize an exeution, suh as the initial on�guration

of the proesses, the history of failures of the proesses, and the step shedule. These

attributes are important, beause a di�erene in one of them may hange the result of the

omputation. For example, the same sequene of steps with a di�erent time shedule may

hange the deision value in an exeution of a Consensus algorithm.

An exeution � of an algorithm A is de�ned as a tuple hF

�

; I

�

; S

�

; T

�

i. This de�nition

is based on the one by Chandra and Toueg [2℄ and Charron-Bost et al. [14℄. F

�

(t)

evaluates to the subset of proesses that have failed by time t. A diret impliation of this

2

Ideally, we would hoose the weakest failure detetor to solve Consensus in a byzantine setting.

Kihlstrom et al. laim that a failure detetor implementing only the properties of 3S(Byz) is the weakest

failure detetor that enables solving Consensus. The 3M lass, however, is stritly weaker than 3S(Byz)

and it still enables solving Consensus. Thus, a further analysis on the relations of failure detetor lasses

is neessary, but it is out of the sope of this work, sine we are only interested in showing lower bounds

for Consensus in our failure model with ores and survivor sets.
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de�nition is that F

�

(t) � F

�

(t+ 1). Beause an exeution depends on the initial state of

the proesses, we have that I

�

provides the initial on�guration of the system. This initial

on�guration depends on the problem being solved. The Consensus problem, for example,

requires every proess to have an initial proposed value. Finally, S

�

is an in�nite sequene

of steps of proesses in �. The time t at whih a step e 2 S

�

is exeuted is given by T

�

(e).

For every orret proess p

i

in �, we assume that S

�

ontains an in�nite number of steps

of p

i

.

Beause our asynhronous model is extended with a failure detetor, the de�nition

of an exeution have to aommodate suh feature of the model. First, we revisit the

de�nition of a step. During a step, a proess may deide to query its failure detetor

module. Thus, for asynhronous systems, we add a fourth ation to the de�nition of a

step, whih is probing its failure detetor module for a list of suspeted proesses. The

history of the failure detetor in an exeution may hange the result of the omputation and

it is heneforth part of the de�nition of an exeution. An exeution � of an asynhronous

algorithm A is de�ned as a tuple hF

�

;H

�

; I

�

; S

�

; T

�

i. The di�erene from the previous

de�nition is in the inlusion of the failure detetor history H

�

. The list of proesses that

p

i

suspets at time t is given by H

�

(i; t). Sine the failure detetor is assumed to be

unreliable, the number of suspeted proesses may inrease and derease as the exeution

proeeds.

From the de�nition of an exeution, the set of orret proess in an exeution � is

de�ned as Corret

�

= � � d

t2T

�

F (t). The set of failed proesses is given by Faulty

�

=

d

t2T

�

F (t). Note that the mapping F (t) is only useful in the rash failure model. The

faulty behavior of a rashed proess is observable as soon as it rashes. On the ontrary,

an arbitrarily faulty proess may beome faulty at some time t but still behave as a orret

proess for an unbounded period of time. For this reason, the time by whih a proess

beomes faulty is only onsidered in the rash failure model. Beause we are assuming

round-based protools, we de�ne for the subset of rashed proesses that failed by round

r � 0 as Crashed

�

(r). A proess p

i

is in Crashed

�

(r) if it has not exeuted all the steps

of some round r

0

� r. Neither a orret proess nor a faulty proess that halts

3

is in

Faulty

�

(r), for any r � 0.

3 Consensus

The Consensus problem in a fault-tolerant message-passing distributed system onsists,

informally, in reahing agreement among a set of proesses upon a value. Eah proess

starts with a proposed value and the goal is to have all non-faulty proesses deiding on

the same value. Throughout the paper, we denote V as the set of possible deision values.

Although often a binary set V is suÆient, we assume that V has an arbitrary size to keep

the de�nition as general as possible. Also, we assume that the default value ? used in the

algorithms is not in V . Every time we refer to a value that is either a deision value in V

or the default, we use V [ f?g to denote all the possibilities.

In the rash failure model, Consensus is often spei�ed in terms of the following three

properties [17℄:

Validity If some non-faulty proess p

i

2 � deides on value v, then v is the initial value

of some proess p

j

2 �;

3

Some omputations are �nite, suh as distributed Consensus. Thus, we assume that one a orret

proess halts, it exeutes an unbounded number of null steps.
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Agreement If two non-faulty proesses p

i

; p

j

2 � deide on values v

i

and v

j

respetively,

then v

i

= v

j

;

Termination Every orret proess eventually deides.

The validity property as spei�ed above assumes that no proess will ever try to heat

on its proposed value. This is true in the rash failure model, but unrealisti assuming

arbitrary proess failures. Although a byzantine proess annot prevent agreement by

heating on its proposed value, it an prevent progress. For example, assuming that the

only possible deision values are either write or abort, with the above validity property, a

faulty proess may prevent orret proesses from writing if they are all ready to do so,

and onsequently from making progress. Thus, in the arbitrary model, strong validity is

usually onsidered instead ofvalidity [17, 10℄. Strong validity is stated as follows:

Strong validity If the proposed value of proess p is v, for all p 2 �, then the only

possible deision value is v.

Strong validity only onsiders the ase in whih all proesses have the same initial

value. Intuitively, this is suÆient to prevent a byzantine proess from disrupting the

normal behavior of a system when all non-faulty proesses are enabled to make progress.

When the system is faing problems and not all of the proesses propose the same value,

however, this property allows the deision value to be arbitrary in the set of possible

deision values. That is, the deision value v of non-faulty proesses an be either the

value proposed by a faulty a proesses or even a value that was not proposed by any

proess, assuming the set of deision values is not binary.

An alternative validity property is proposed by Shiper, alled vetor validity. [17℄

The vetor validity property says that every orret proess has to agree on a vetor of

proposed values, suh that the vetor has one value for eah proess in �. In addition,

for every orret proess p

i

, the value attributed to p

i

has to be the initial value of p

i

,

and the vetor has to ontain the value of at least t + 1 orret proesses. In the ase

that every proess has to deide on a single value, the deision value is hosen from this

vetor by some deterministi strategy: majority, minimum value, et. Even this property

annot prevent proesses from deiding upon the value proposed by a faulty proess when

the initial value is not the same for every proess. Aording to our assumptions, the two

properties do not di�er, and hene we hoose the strong validity property for simpliity.

4 Synhronous Consensus with Crash Failures

Consensus in a synhronous system with rash proess failures is solvable for any number

of failures. [18℄ In the ase that all proesses may fail in some exeution before agreement

is reahed, though, it is often neessary to reover the latest state prior to total failure

for reovery purposes. [19℄ Sine we assume that failed proesses do not reover, we don't

onsider total failure in this work. That is, we assume that the following ondition holds

for a system representation h�; C

�

; S

�

i:

Property 4.1 C

�

6= ;. 2

4.1

Property 4.1 implies that there is at least one orret proess in any exeution. We now

desribe a protool for a synhronous system represented by h�; C

�

; S

�

i, assuming that

property 4.1 holds for this system. The protool is based on the early-deiding protools
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disussed by Charron-Bost and Shiper [18℄, Lamport and Fisher [20℄. Algorithms that

onsider the atual number of failures f are important beause they redue the lateny

on the ommon ase in whih just a few proess failures our. An important observation

made by Charron-Bost and Shiper [18℄ is that there is a fundamental di�erene between

early-deiding protools and early-stopping protools for Consensus. In an early-deiding

protool, a proess may be ready to deide, but may not be ready to halt, whereas an

early-stopping protool is onerned about the round in whih a proess is ready to halt.

One onsequene of this di�erene is that the lower bound on the number of rounds is

not the same. For early-stopping algorithms, there is some exeution in whih a orret

proess takes at least min(t + 1; f + 2) rounds to halt, for n � t + 2, as shown by Dolev

et al.. [21℄ On the other hand, for every early-deiding algorithm, there is some exeution

in whih no orret proess deides before f + 1 rounds, as shown by Charron-Bost and

Shiper [18℄. In both ases, there are algorithms that meet these bounds, thereby showing

that they are tight.

We now desribe algorithm SynCrash whih solves Consensus in a synhronous

system with rash proess failures, assuming that information about ores and survivor

sets is available. Later in this setion, we disuss the advantages of onsidering our model

instead of assuming t of n proess failures.

The algorithm di�erentiates the proesses of a hosen ore d-ore 2 S

�

and the pro-

esses in � � d-ore. In a round, every proess in d-ore broadasts its knowledge of

proposed values to all the other proesses, whereas proesses in �� d-ore listen to these

messages. Proesses in d-ore from whih a message is not reeived in a round are known

to have rashed, aording to the assumptions of the failure model. This observation is

used to detet a round in whih no proess rashed. Proesses p

i

2 � hene keep trak

of the proesses in d-ore that rashed in a round, and as soon as p

i

detets a round with

no rashes p

i

deides. As we show later in this setion, when suh a round r happens,

and by assumption it eventually happens, all alive proesses are guaranteed to have the

same view of the values proposed by the other proesses. In other words, all alive pro-

esses in r have the same array of proposed values. One a proess p

i

in d-ore deides,

it broadasts a deision message announing the deision value de

i

it deided upon. All

proesses reeiving this message deide on x

i

as well. Thus, only two types of messages are

neessary in the protool: messages ontaining the array of proposed values and deision

messages. Beause proesses in d-ore broadasts at most one message in every round

to all the proesses in j�j, message omplexity is given by O(jd-orej � j�j). Note that

the protools in [18, 20℄ designed with the t of n assumption have message omplexity

O(j�j

2

). In addition, our algorithm requires f + 1 rounds for all the proesses to deide

if � 6= d-ore, and min(jd-orej; f + 2) rounds to halt otherwise, where f is the number

of proesses in d-ore that rash in a given exeution �. We prove in [22℄ that these are

atually lower bounds on the number of rounds for Consensus in a system represented

with our model. By providing a protool that meet these bounds, we prove them tight.

The idea of using a subset of proesses to reah agreement on behalf of the whole set of

proesses is not new. The Consensus Servie proposed by Guerraoui and Shiper utilizes

this onept [23℄. Their failure model, however, still assumes t of n proess failures, and

onsequently the subset used to reah agreement is not hosen based on information about

orrelated failures. This is the main point where our work di�ers.

Before presenting a pseudo-ode of the algorithm, we show a table desribing the

variables used in the protool. Table 1 desribes the variables, and the pseudo-ode of

SynCrash is presented in �gure 1.
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d-ore 2 C

�

Core set hosen as the one responsible for the

deision.

de

i

2 V [ f?g A proess p

i

deides one it sets de

i

.

d 2 ftrue ; falseg Boolean variable indiating whether the

proess deided in the previous round or not.

pv

i

[1 � � � jd-orej℄, pv

i

[j℄ 2 V Vetor of proposed values.

e

i

[1 � � � (jd-orej � 1)℄, e

i

[r℄ � d-ore Array of failed proesses. e

i

[r℄ stores subset of

proesses deteted by p

i

as rashed at round r.

Table 1: Variables used in the algorithm SynCrash

We now present a proof of orretness for SynCrash in the synhronous model with

rash failures. Before proving the theorems showing that our algorithm satis�es the three

Consensus properties, we prove a few lemmas that are used in the proofs of the theorems.

Consider the following de�nition �rst.

De�nition 4.2 Let � be an exeution of SynCrash. We denote �(ijwk) as the value

pv

j

[k℄ that proess p

i

reeives in a message from proess p

j

at round jjwkj. 2

4:2

Lemma 4.3 Let � be an exeution of SynCrash and p

i

; p

j

be two proesses suh that

p

i

2 d-ore, p

j

2 �, i 6= j. Let w 2 Pid

�

be the shortest sequene of proesses suh

that �(iwj) = x, x 2 V , x 6=?, assuming suh a sequene exists. For every round r,

1 � r � jiwjj � 1, the value stored in pv

i

[j℄ is ?. For every round r, jiwjj � r � jd-orej,

f = jd-orej � j(d-ore \ Corret(�))j, the value stored in pv

i

[j℄ is x, and x is the initial

value of p

j

.

Proof: We prove this lemma by indution on the length of w. The base ase onsists

of jwj = 0. If jwj = 0, then, at round 1, proess p

i

reeives a message from proess p

j

ontaining its initial value x, and it stores this value in pv

i

[j℄. Observe that every message

m

k

sent in this round by a proess p

k

6= p

j

is suh thatm

k

:pv

k

[j℄ =?, and by the algorithm

p

i

does not update pv

i

[j℄.

Now assume the lemma is valid for all w

0

, jw

0

j � jwj. We prove it for jwj+1. Suppose

that proess p

i

reeives a message from proess p

k

, suh that �(ikwj) = x

0

, x

0

2 V . Con-

sequently, from the algorithm, proess p

i

makes pv

i

[j℄ = x

0

. By the indution hypothesis,

we have that x

0

= x, the initial value of p

j

. Moreover, for every other proess p

l

2 d-ore,

p

l

6= p

k

, we have that either pv

l

[j℄ = x or pv

l

[j℄ =? at the end of round jkwjj. 2

4.3

From lemma 4.3 we an extrat the following orollary.

Corollary 4.4 Let � be an exeution. 8p

i

2 d-ore \ Corret(�); p

j

2 Corret(�), 8r 2

f1 � � � jd-orejg, we have that pv

j

[i℄ = x at the end of round r, for x 2 V being the initial

value of proess pv

i

.

Proof: If p

i

2 d-ore is orret, then for every orret proess p

j

, we have that �(ji) = x.

From lemma 4.3, for every round r, r � 1, we have that pv

j

[i℄ = x. 2

4.4

The next three lemmas form a substantial part of the proof that SynCrash satis�es

agreement. The following de�nition is used in the statement of the three lemmas.
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Algorithm SynCrash for proess p

i

:

Input: set � of proesses; set C

�

of ores; initial value v

i

2 V

Initialization:

d-ore 2 C

�

; de

i

 ?; d false

pv

i

[1 � � � jd-orej℄, pv

i

[k℄ =?, 8k 2 [1 � � � jd-orej℄, k 6= i. If p

i

2 d-ore, pv

i

[i℄ v

i

e

i

[1 � � � (jd-orej � 1)℄, e

i

[k℄ = d-ore, 8k 2 [1 � � � (jd-orej � 1)℄

Round 1 � r < jd-orej, 8p

i

2 d-ore:

if (d = false) then

send(i; pv

i

) to all proess in d-ore

send(i; pv

i

) to all proess in �� d-ore

else

send(Deide,de

i

) to all proesses in d-ore

send(Deide,de

i

) to all proesses in �� d-ore

halt

upon reeption of (m = (Deide,de

j

)) do

de

i

 de

j

d true

upon reeption of (m = (j; pv

j

)) do

e

i

[r℄ e

i

[r℄� fjg

for k = 1 to j�j do

if (pv

j

[k℄ 6=?) then pv

i

[k℄ pv

j

[k℄

if (((e

i

[r � 1℄ = e

i

[r℄) ^ (d = false)) _ (r = jd-orej � 1)) then

de

i

 min(pv

i

[k℄)

d true

Round jd-orej, 8p

i

2 d-ore:

send(Deide,de

i

) to all proesses in �� d-ore

halt

Round 1 � r � jd-orej, 8p

i

2 �� d-ore:

upon reeption of (m = (Deide,de

j

)) do

de

i

 de

j

halt

upon reeption of (m = (j; pv

j

)) do

e

i

[r℄ e

i

[r℄ [ fjg

for k = 1 to j�j do

if (pv

j

[k℄ 6=?) then pv

i

[k℄ pv

j

[k℄

if ((e

i

[r � 1℄ = e

i

[r℄)) then

de

i

 min(pv

i

[k℄)

halt

Figure 1: Synhronous Consensus for Dependent Crash Failures

De�nition 4.5 Let:

1. � = hF

�

; I

�

; S

�

; T

�

i be an exeution of SynCrash;

2. p

i

, p

j

be two proesses in �� Crashed(�; r), where r is a round of �;

3. e

i

2 S

�

be a step of p

i

suh that p

i

reeives its last message of round r at step e

i

;

4. e

j

2 S

�

be a step of p

j

suh that p

j

reeives its last messages of round r at step e

j

;
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5. e

0

i

; e

0

j

2 S

�

be any two steps of p

i

and p

j

, respetively, at round r, suh that T (e

0

i

) �

T (e

i

) and T (e

0

j

) � T (e

j

).

We say that proesses p

i

and p

j

have idential vetors at round r if and only if for every

p

k

2 d-ore and, pv

i

[k℄ = pv

i

[k℄, where pv

i

is the vetor of proposed values of p

i

after

taking step e

0

i

and pv

j

is the vetor of proposed values of p

j

after taking step e

0

j

. 2

4:5

Lemma 4.6 Let � be an exeution of SynCrash. If r is a round of � in whih no

proess rashes, then for every p

i

; p

j

2 (��Crashed(�; r)) p

i

and p

j

have idential vetors

in r.

Proof: If no proess rashes in r, then every proess p

i

2 (� � Crashed(�; r)) reeives

the same set of messages M . A message m

j

2 M ontains the vetor of proposed values

of proess p

j

. From the algorithm, for every entry m

j

:pv

j

[k℄ with a value v, v 2 V and

v 6=?, p

i

updates pv

i

[k℄ with the same value v. Note that for every entry k, there are

no two messages in M indiating distint values v; v

0

2 V , by Lemma 4.3. Thus, one

a proesses p

i

and p

j

reeive every message sent to them at round r and update their

respetive vetors pv

i

and pv

j

aordingly, we have that pv

i

[k℄ = pv

j

[k℄ for every k 2 Pid.

An alive proess p

k

in r deides if it either reeives messages from the same subset

of proesses in both rounds r � 1 and r, or it reeives a deide message. Otherwise, it

moves on to round r + 1 by the end of round r. An important observation is that p

k

annot reeive at round r a message from some proess p

l

from whih p

k

does not reeive

a message at round r � 1. This is due to the assumptions that hannels are reliable and

proesses only fail by rashing.

By assumption, no proess rashes in r. Proesses p

i

and p

j

have to reeive all the

messages sent to them at round r and updating their respetive vetor of proposed values

before either deiding in r or moving to round r + 1. We onlude that p

i

and p

j

have

idential vetors at r. 2

4.6

Lemma 4.7 Let � be an exeution of SynCrash, r > 1 be a round in whih every

proess in ��Crashed(�; r� 1) has an idential vetor of proposed values before reeiving

any messages in r, and p

i

; p

j

2 (��Crashed(�; r)) be two proesses that do not reeive a

deide message at round r. Proesses p

i

and p

j

have idential vetor at round r.

Proof: By assumption, every two proesses p

k

and p

l

that send at least one message in r

do so with the same array of proposed values. Thus, even if two alive proesses p

i

and p

j

in r reeive di�erent sets of messages, no updates at the vetor of proposed values our

in none of the proesses. In suh a round, for every message m

k

an alive proess p

i

in r

reeives, we have that m

k

:pv

k

= pv

i

, and onsequently no entry in pv

i

hanges its value

after p

i

reeives every delivered message at round r. Proess p

i

is some arbitrary alive

proess in r; and hene the previous observation generalizes to every alive proess in r.

Beause there are no updates in the vetor of proposed values of any alive proess

and by assumption these vetors are the same in the beginning of round r, we have that

pv

i

= pv

j

before deiding at round r

0

or moving to round r

0

+ 1. Proesses p

i

and p

j

therefore have idential vetors at round r. 2

4.7

Lemma 4.8 Let � be an exeution of SynCrash, r be the �rst round of � in whih no

proess rashes. For every round r

0

� r, if p

i

and p

j

are alive proesses at round r

0

, then

p

i

and p

j

have idential vetors at round r

0

.
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Proof: We prove this lemma with a simple indution on the round numbers. Let the base

ase be round r. From lemma 4.6, every alive proess at round r has the same vetor of

proposed values before deiding at round r or moving to round r + 1. Assume now that

the proposition is true for every r

0

� r. We prove for r

0

+1. By assumption, we have that

p

i

and p

j

have idential vetors at round r

0

, for where p

i

; p

j

2 (� � Crashed(�; r

0

+ 1)).

Thus, both p

i

and p

j

begin round r

0

+ 1 with the same vetor of proposed values. From

lemma 4.7, p

i

and p

j

have idential vetors at round r

0

+ 1. 2

4.8

Lemma 4.9 Let � be an exeution and f = jd-orej � j(d-ore \Corret(�))j. For every

p

i

2 � \ Corret(�), if p

i

2 d-ore, then p

i

deides in at most min(jd-orej � 1; f + 1),

otherwise p

i

deides in at most f + 1 rounds.

Proof: Suppose that f proesses in d-ore fail in exeution �, where 0 � f < d-orej � 1.

For every proess p

i

in Corret(�), p

i

deides either when it detets a round without

failures or when it reeives a deide message. In the former ase, p

i

annot detet f + 1

rounds with failures, beause there are f failures by assumption. Thus, it has to deide

in some round r, 1 � r � f + 1. On the other hand, if p

i

deides due to the reeption

of a deide message this annot happen at a round r

0

> (f + 1), otherwise p

i

deides by

deteting a round with no failures.

Consider now the speial ase of f = jd-orej � 1. If a orret proess in d-ore detets

jd-orej � 1 rounds with failures and it reeives no deide message in a previous round,

then it knows at round jd-orej � 1 that every other proess in d-ore has failed. It is safe

then to deide and to send a deide message at the last round jd-orej. Note that this

is only true beause a proess in d-ore sends messages to the other proesses in d-ore

�rst. This implies that no orret proess in �� d-ore knows about more initial values of

proesses than the orret proesses in d-ore. A onsequene of this impliation is that a

orret proess p

j

in �� d-ore annot do the same in the ase it has deteted jd-orej � 1

rounds with failures. Proess p

j

has to wait until round jd-orej to deide. Thus, a orret

proess in �� d-ore again deides in at most f + 1 = jd-orej rounds.

To onlude, let p

i

be a proess in Corret(�). If p

i

2 d-ore, then it deides in at most

min(jd-orej � 1; f + 1). Otherwise, p

i

deides in at most f + 1 rounds. 2

4.9

We now show that SynCrash satis�es the three Consensus properties. Before stating

and proving the theorems, we introdue some useful notation. For a given exeution �,

suppose some proess p

i

deided upon a value reeived in a deision message from proess

p

j

. Let �(w;Deide, w 2 Pid

�

, be a sequene of proesses suh that a proess p

k

in w

deides upon the value it reeives in a deision message from the proess p

l

that preedes

p

k

in w. The only exeption is the rightmost proess in w, whih deides dues to the

detetion of a round without failures. For example, suppose p

i

deides upon the value it

reeives from p

j

in a deision message, p

j

deides upon the value it reeives from p

k

, and

p

k

is the �rst proess to generate a deision message. With our notation, this is expressed

as �(ijk;Deide.

Theorem 4.10 Let � be an exeution of SynCrash. SynCrash satis�es Validity in

�.

Proof: From the algorithm, every orret proess in � deides either when it detets a

round without rashes or when it reeives a deision message. If a proess deides in a

given exeution � beause it deteted a round r without rashes, then it deides on the

�rst value of the array that is di�erent from ?. By assumption, there is at least one orret
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proess p

i

in d-ore in any exeution �. From orollary 4.4, pv

j

[i℄ has the initial value of

p

i

, for every orret proess p

j

2 Corret(�). Thus, there is no exeution suh that a

orret proess deides on ?. It remains to show that if a orret proess p

i

deides on the

value pv

i

[k℄, then pv

i

[k℄ ontains the initial value of p

k

even if p

k

is faulty. From lemma

4.3, pv

i

[k℄ is either ? or the initial value of p

k

. Aording to the algorithm, no proess

deides on the value ?, onsequently, pv

i

[k℄ has to be the initial value of p

k

.

In the seond ase, a proess p

i

deides when it reeives a deision message with a

deision value de

j

from some proess p

j

2 d-ore. Thus, we assume there is a hain of

deide messages �(ijw;Deide), where: 1) w 2 Pid

�

; 2) i; j 2 Pid. In the suÆx jw, let k

be the id of the �rst proess that sends a deide message. Beause p

k

is the �rst proess

in the hain, it does not deide upon a value reeived in a deide message. Proess p

k

deides beause it detets a round without failures. From the �rst ase, p

k

deides in a

value v 2 V proposed by some proess in d-ore. As the value de

k

is forwarded along

the hain, every proess in ijw deides on de

k

. Proess p

i

therefore deides upon de

k

as

well. We onlude that validity is satis�ed. 2

4.10

Theorem 4.11 Let � be an exeution of SynCrash. SynCrash satis�es Agreement

in �.

Proof: Let r be the earliest round in whih some proess p

i

2 � deides in �. By the

algorithm, if p

i

deides in r, then p

i

reeives messages from the same subset of proesses

in both rounds r � 1 and r. From the assumptions for the failure model, we have that no

proess rashed either in round r or in round r� 1. By Lemma 4.8, for every round r

0

� r

and p

j

; p

k

2 �� Crashed (�; r

0

), we have that p

j

and p

k

have idential vetors.

If any proess p

j

2 � deides in a round r

0

� r, then either p

j

detets that there was

no failure at the previous round or p

j

reeives a deision message from some other proess

p

k

2 d-ore�Crashed (�; r

0

� 1). In the former ase, proess p

j

deides on the same value

as p

i

, beause pv

i

= pv

j

and the strategy to hoose the deision value from the array is

deterministi.

If p

j

deides upon the value de

k

reeived in a deision message from some proess

p

k

2 d-ore, then there is a hain of deide messages �(jkw;Deide), where w 2 Pid

�

,

and j; k 2 Pid. In the suÆx jkw, let l be the id of the �rst proess that sends a deide

message. Note that l an be either k or the id of some other proess. Beause p

l

is the �rst

proess in the hain, it does not deide upon a value reeived in a deide message. Proess

p

l

deides beause it detets a round without failures. From the �rst ase, p

l

deides upon

the same value as p

i

. As the value de

l

is forwarded along the hain, every proess in jkw

deides on de

l

. Thus, p

j

deides upon de

l

, whih is the same value as de

i

. We onlude

that agreement holds in �. 2

4.11

Theorem 4.12 Let � be an exeution of SynCrash. SynCrash satis�es Termination

in �.

Proof: From lemma 4.9, every orret proess eventually deides. 2

4.12

By haraterizing orrelated proess failures with ores and survivor sets, we improve

performane both in terms of message and time omplexity. For example, onsider again

the six proess system desribed in Example 2.2. By assuming t of n failures, t must

be as large as the maximum number of failures among all valid exeutions, whih is �ve.

Thus, it is neessary to have at least �ve rounds to solve Consensus in the worst ase.
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By exeuting SynCrash with a minimum-sized ore as d-ore, only three rounds are

neessary in the worst ase. In addition, no messages are broadast by the proesses in

� � d-ore. This is di�erent from most protools designed under the t of n assumption

[20, 18, 21℄, although the same idea an be applied by having only a spei� subset of t+1

proesses broadasting messages.

5 Asynhronous Consensus with Crash Failures

Given a system representation h�; C

�

; S

�

i, suppose the following properties for this sys-

tem:

Property 5.1 (Crash Partition) Any partition (A;B) of � is suh that either A or B

ontain a ore. 2

5.1

Property 5.2 (Crash Intersetion) S

�

forms a oterie. 2

5.2

Claim 5.3 Crash Partition � Crash Intersetion.

Proof:

� Crash Partition ! Crash Intersetion

We need to prove that the following properties hold:

5.3.1: If s

1

; s

2

2 S

�

, then s

1

\ s

2

6= ;;

5.3.2: There are no s

1

; s

2

2 S

�

suh that s

1

� s

2

.

First, we prove 5.3.1 by ontradition. Assume a system on�guration in whih Crash

Partition holds and there are two survivor sets s

i

; s

j

2 S

�

suh that s

i

\ s

j

= ;. In

any partition (A;B), either A or B ontain elements from all survivor sets. Now

suppose the following partition (A;B): A = s

1

, and B = ([

s

i

2S�fs

1

g

s

i

). In this

partition, neither A nor B ontain elements from all survivor sets. Consequently,

neither of them ontains a ore, ontraditing our assumption that property 5.1

holds.

The proof for property 5.3.2 follows diretly from the de�nition of survivor sets.

Survivor sets are minimal by onstrution.

� Crash Intersetion ! Crash Partition

We prove by ontradition. Assume a system on�guration in whih Crash Interse-

tion holds and there is a partition (A;B) of � suh that none of A and B ontains a

ore. For every pair of survivor sets s

1

; s

2

2 S

�

, we have that s

1

\s

2

6= ;. In order to

onstrut a partition (A;B) suh that there is no ore in none of the subsets, these

properties have to hold for both A and B:

5.3.3: For every s

i

2 S

�

, we have that s

i

6� A and s

i

6� B;

5.3.4: There exist survivor sets s

i

; s

j

2 S, s

i

6= s

j

, suh that A\s

i

= ; and B\s

j

= ;.

By showing that both annot be satis�ed at the same time, we reah our ontradi-

tion. If we onstrut a partition (A;B) of � suh that this partition satisfy 5.3.3,

then both A and B ontain at least one element of every survivor set s

i

2 S

�

and
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onsequently both A and B ontain ores. On the other hand, if we onstrut a

partition (A;B) that satisfy 5.3.4, then we have that s

i

� B. In this ase, B on-

tains a ore. Thus, 1 and 2 annot be satis�ed at the same time by any partition.

Consequently, any partition (A;B) is suh that either A or B ontains a ore.

2

5.3

5.1 Lower bound on proess repliation

Chandra an Toueg showed that n > 2t, for n being the number of proess and t the

maximum number of rashed proesses in any exeution, is the lower bound on proess

repliation for solving Consensus in an asynhronous system extended with a failure dete-

tor of the lass 3S [2℄. This lower bound assumes independent and identially distributed

proess failures. In our failure model, the Crash Intersetion (Crash Partition) prop-

erty happens to be the generalization of the n > 2t lower bound. The proof idea is similar

to the one used by Chandra and Toueg.

Assume there is an algorithmA that solves Consensus in some system sys= h�; C

�

; S

�

i.

In addition, suppose that there is a partition (A;B) of the proesses in � suh that neither

A nor B ontains a ore. Thus, we build an exeution in whih the agreement property is

violated, no matter what the algorithm does. We build two preliminary exeutions, � and

�, in the proess of building an exeution  that violates agreement. For exeution � of A,

suppose that all the proesses in A are orret and the proesses in B rash before sending

a single message. From the termination property, every proess in A eventually deides,

and they all have to deide upon the same value v in order to satisfy agreement. Suppose

that all the proesses in A have the same initial value v

a

. By the validity property, we

have that v = v

a

.

The exeution � is analogous to �. For �, however, all the proesses in B are orret

and all the proesses in A rash before sending a single message. We assume also, that

all the proesses in B have the same initial value v

b

, and v

b

6= v

a

. Again from the three

Consensus properties, every orret proess p

i

2 B eventually deides, and p

b

deides upon

v

b

.

Now suppose an exeution in whih every proess in � is orret. We desribe an

exeution  that looks the same as � for the proesses in A, and the same as � for the

proesses in B. In , the initial value for every proess in A is v

a

and for every proess

in B is v

b

. Let t

a

be the time by whih all proesses in A have deided in �, and t

b

the

time by whih all proesses in B have deided in �. We use t

a

and t

b

to de�ne message

shedule and failure detetor history. The messages sent among proess in A are sheduled

as in �, whereas the messages among proesses in B are sheduled as in �. The messages

from proesses in A to proesses in B, and from proesses in B to proesses in A are only

delivered after time t > max(t

a

; t

b

). The failure detetor history follows the same pattern.

For the proesses in A, the failure detetor history is the same as in � up to time t

a

.

Proesses in B have the same history as in � up to time t

b

.

Considering the previous de�nitions for exeutions �, �, and , proesses in A and

proesses in B annot distinguish exeutions � and �, respetively, from exeution .

Hene, proesses in A deide v

a

, albeit proesses in B deide v

b

. Exeution  therefore

violates agreement independently of what algorithm A does.

We now prove our proposition more formally.

Theorem 5.4 Let an asynhronous system sys extended with a failure detetor of the

lass 3S be represented by h�; C

�

; S

�

i be a system. If Consensus is solvable in sys, then
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sys satis�es the rash partition property.

Proof: We prove this theorem by ontradition. Assume that there is an algorithm A

that solves Consensus in sys, albeit sys does not satisfy the rash partition property.

That is, there is at least one partition (A;B) of the proesses in �, suh that none of A or

B ontains a ore. We show that there is an exeution  in whih the agreement property

is violated.

We de�ne �rst two other exeutions, � and �, whih are used to build . Let � =

hF

�

;H

�

; I

�

;S

�

; T

�

i be as follows:

F

�

(t) = B;8t � 0

H

�

(t; i) = B;8t � 0;8p

i

2 A

I

�

(i) = v

�

; v

�

2 V;8i 2 �

The sequene of steps S

�

and timestamps T

�

are dependent on the algorithm, and

hene we do not speify them in order to keep the de�nition ompliant with any possible

algorithm. The only assumption we make is that there is a �nite time t

a

suh that for

every p

i

2 Corret(�), there is a step e 2 S

�

of p

i

in whih p

i

deides, T

�

(e) � t

a

. By

assumption, algorithm A solves Consensus and therefore it has to satisfy the termination

property. Thus, suh a t

a

has to exist.

Now let � = hF

�

;H

�

; I

�

;S

�

; T

�

i be as follows:

F

�

(t) = A;8t � 0

H

�

(t; i) = A;8t � 0;8p

i

2 B

I

�

(i) = v

�

;8i 2 �; v

�

2 V; v

�

6= v

�

By the same argument presented before, we do not de�ne S

�

and T

�

, although we

assume that there is a time t

b

suh that, for every p

i

2 Corret(�), there is a step e 2 S

�

of p

i

in S

�

in whih p

i

deides, T

�

(e) � t

b

.

F



(t) = ;;8t � 0

H



(t; i) =

8

<

:

H

�

(t; i) 8t � t

0

;8p

i

2 B

H

�

(t; i) 8t � t

0

;8p

i

2 A

; 8t > t

0

;8p

i

2 �

I



(i) =

�

v

�

;8p

i

2 A

v

�

;8p

i

2 B

S



and T



are de�ned algorithmially as follows:

� For every e

a

2 S

�

suh that T

�

(e

a

) < max(t

a

; t

b

), we have that e

a

2 S



and T



(e

a

) =

T

�

(e

a

);

� For every e

b

2 S

�

suh that T

�

(e

b

) < max(t

a

; t

b

), we have that e

b

2 S



and T



(e

b

) =

T

�

(e

b

);

� If e 2 S



and T



< max(t

a

; t

b

), then either e 2 S

�

or e 2 S

�

. If e 2 S

�

, then

T

�

(e) < max(t

a

; t

b

), otherwise T

�

(e) < max(t

a

; t

b

);
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� Let e 2 S



be a step in whih a proess p

i

2 A reeives a message from a proess

p

j

2 B. We have that for every suh a step, T



(e) > max(t

a

; t

b

);

� Let e 2 S



be a step in whih a proess p

i

2 B reeives a message from a proess

p

j

2 A. We have that for every suh a step, T



(e) > max(t

a

; t

b

);

A proess p

i

2 A annot distinguish exeution � from exeution , whereas proess

p

j

2 B annot distinguish exeution � from exeution. Thus, p

i

and p

j

have to deide

upon v

a

and v

b

, respetively, therefore violating the agreement property of Consensus.

2

5.4

5.2 An algorithm to solve Consensus

As disussed before, Consensus is not solvable in a pure asynhronous system. An ap-

proah to overome this impossibility is to extend the asynhronous model with a failure

detetor. Here we assume a failure detetor D of the lass 3S, whih satis�es the strong

ompleteness and eventual weak auray properties. The algorithm we desribe uses this

failure detetor to guarantee liveness.

As the algorithm proposed by Chandra and Toueg [2℄, our algorithm AsynCrash

is based on the rotating oordinator paradigm and proeeds in asynhronous rounds. In

every asynhronous round, one proess is hosen as the oordinator of that round. The

knowledge of whih proess is the oordinator of some round is pre-determined, and hene

there is no need to use leader-eletion algorithms or similar approahes. The oordinator

of a round is responsible for gathering the estimates of some survivor set S 2 S

�

and for

hoosing a value out of the ones reeived from the proesses in this survivor set. In the

algorithm, the oordinator hooses the value from the proess that updated it in the latest

round among all the estimates reeived from the proesses in S. One the oordinator

hooses a value, it sends a message to informed all the proesses of its estimate. A proess

that reeives this message from the oordinator ehoes the oordinator estimate to all the

other proesses. A proess deides as soon as it reeives an eho from all the proesses in

some survivor set S

0

2 S

�

, not neessarily the same as S.

So far, we assumed that the oordinator is orret. If the oordinator rashes and no

orret proess reeives an estimate from the oordinator, then eventually all the proesses

in some survivor set ontaining only orret proesses suspet that the oordinator rashed.

This is guaranteed by the strong ompleteness property of the failure detetor. One a

proess p

i

suspets that the oordinator of its urrent round has failed, p

i

sends a message

to all the other proesses suggesting the others to move on to the next round. If a proess

reeives a message to move on from all the proesses in some survivor set, then it re-

initializes its variables and moves on to the next round.

The use of eho messages is not really neessary, but it may antiipate deision when

the oordinator 

r

of round r rashes at r and at least one orret proess, say p

i

, reeives

either a message from the oordinator or an eho message from some other proess p

j

.

The eho messages from p

i

indue other proesses to send eho messages as well, and

eventually non-rashed proesses exeuting round r deide. Without the eho messages,

every non-rashed proesses would need to wait until all the proesses in some survivor

set ontaining only orret proesses suspet the oordinator and send moveon messages.

Furthermore, deision would be postponed, thereby delaying termination. Beause the

time to suspet the oordinator may be arbitrarily long, this mehanism prevents unne-

essary wait in making a deision. Therefore, the argument in favor of eho messages is

not orretness, sine it is not hard to modify the algorithm to work without it. Its use,
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however, may redue the lateny in reahing agreement among the orret proesses in a

real implementation. Shiper proposed originally the utilization of eho messages as an

optimization to have a oordinator-based algorithm less dependent on the oordinator in

an asynhronous round [17, 24℄.

Figure 2 shows the pseudo-ode of AsynCrash. Every proess exeutes the same

algorithm in a run of the system, although proesses have di�erent roles in a round.

The algorithm is strutured in stages, and every proess initiates an exeution at stage

StartRound. In the �rst round, round 0, p

0

is the oordinator. After sending an Esti-

mate message to itself, it hanges stages, from StartRound to WaitForEstimates. One

it reeives an Estimate message from every proess in some survivor set, then it sends a

CoordEstimate message with its proposed value to all the proesses. After sending Co-

ordEstimatemessages, the oordinator hanges to stage Ehoes and behaves as the other

proesses for the rest of this round. All the other proesses go to stage Ehoes right after

sending an Estimate message at stage StartRound. At stage Ehoes, every non-rashed

proess waits for either an Eho message or a MoveOn message from all the proesses in

some survivor set S 2 S

�

. By reeiving Eho messages from the proesses in S, a proess

p

i

deides, whereas it moves to stage GoToNextRound upon reeption of MoveOn mes-

sages from the proesses in S. At the GoToNextRound stage, no messages are involved. A

proess only re-initializes the variables, assigns a new oordinator, and moves on the next

round by hanging bak to stage StartRound. This yli proess ontinues until all the

orret proesses eventually deide.

Stage Indiates the stage the proess is in the urrent round.

Ehoes Set with Eho messages reeived in the urrent round.

Estimate Current estimate of proess p

i

.

EstUpdate Round in whih Estimate is updated.

CurEstimates Set with the Estimate messages reeived by the oordinator.

r Keeps trak of the urrent round.

Table 2: Variables used in the algorithm AsynCrash

We now provide a proof of orretness for the algorithm AsynCrash. Before stating

and proving the theorems that atually show that AsynCrash satisfy the three Consen-

sus properties, we show some preliminary lemmas. The theorems then are easily shown

from these lemmas.

Lemma 5.5 Let � be an exeution of AsynCrash and p

i

be some orret proess that

does not deide at round r, r � 0. Eventually p

i

moves on to round r + 1.

Proof: If a proess p

i

does not deide at round r, then it neither reeives aDeidemessage

nor reeives an Eho message from all proesses in some survivor set. If p

i

does not reeive

a Deide message, then there is no hain ofDeide messages (iwj)

Deide

2 C-Deide(�),

j 2 Pid, w 2 Pid

�

, suh that p

j

reeived an Eho message from all proesses in some

survivor set.

By assumption, at least one survivor set S 2 S

�

ontains only orret proesses, and

every message sent by a orret proess to another proess is eventually reeived. Aord-

ing to the algorithm, the proesses in S send an Eho message upon reeption of either the

�rst Eho message or a CoordEstimate message. If none of these messages is reeived

by any of the proesses in S, then the oordinator is faulty. Eventually the elements of

S suspet the oordinator and send MoveOn messages. The eventual suspiion of the
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Algorithm AsynCrash for proess i:

Input: set � of proesses; set C

�

of ores; set S

�

of survivor sets; initial value v

i

2 V

Variables: Stage StartRound ; Ehoes  ;; CurEstimates  ;; Estimate  v

i

;

EstUpdate  0; r  0

Stages: StartRound ; DeisionTentative; GoToNextRound ;

Transition funtion:

When (Stage = StartRound)

Send(Estimate, i, r, Estimate, EstUpdate) to the oordinator p



i

if(

i

= i) then Stage  WaitForEstimates

else Stage  WaitForCoordEstimate

When (Stage = DeisionTentative)

upon reeption of (Estimate, j, r , v

j

, r

j

)

CurEstimates  CurEstimates [f(v

j

; r

j

)g

if(9S 2 S

�

suh that 8p

k

2 S, (Estimate, k, r , v

k

, r

k

) 2 CurEstimates)

then r

k

 max(r

x

j(v

x

; r

x

) 2 CurEstimates)

Estimate  v

k

, (v

k

; r

k

) 2 CurEstimates; EstUpdate  r

Send(CoordEstimate, i, r, Estimate.v) to all proesses in �

Stage  Ehoes

upon reeption of (CoordEstimate, j, r , v

j

)

if(Ehoes = ;) then

Send(Eho, j, r, v

j

) to all proesses in �

Estimate  v

j

; EstUpdate  r

upon reeption of (Eho, j, r, v

j

)

if (Ehoes = ;) then

Send(Eho, j, r, v

j

) to all proesses in �

Estimate  (v

j

; r)

Ehoes  Ehoes [ (Eho, j, r, v

j

)

if(9S 2 S

�

suh that 8p

k

2 S, (Eho, k, r , v) 2 Ehoes, v 2 V ) then

Deide upon value v

Send(Deide, i, v) to all proesses in �

halt

upon suspiion of 

i

Send(MoveOn, j, r) to all proesses in �

upon reeption of (MoveOn, j, r)

MoveOn  MoveOn [ (MoveOn, j, r)

if (9S 2 S

�

suh that 8p

k

2 S, (MoveOn, k, r , v) 2 Ehoes, v 2 V ) then

Stage  GoToNextRound

When (Stage = GoToNextRound)

r  r + 1; 

i

 (

i

+ 1) mod j�j

Ehoes  ;; MoveOn  ;

Stage  StartRound

When (Stage = *)

upon reeption of (Deide, j, v)

Deide upon value v

Send(Deide, i, v) to all proesses in �

halt

Figure 2: Asynhronous Consensus with Crash Failures
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oordinator by all the proesses in S is guaranteed to happen by the strong ompleteness

property of the failure detetor. One proess p

i

reeives a MoveOn message from every

proess p

j

2 S, p

i

moves to stage GoToNextRound and proeeds to round r + 1. 2

5.5

Lemma 5.6 Let � be an exeution of AsynCrash and r be the �rst asynhronous round

in whih some orret proess p

i

deides. If p

i

deides upon value v, then for every asyn-

hronous round r

0

> r, v is the estimate value proposed by the oordinator of r

0

.

Proof: We prove this lemma by indution on the round numbers. Initially, we prove for

r

0

= r + 1, and then for r

0

+ 1, assuming the lemma is true for r

0

.

Let r

0

= r + 1. By assumption, we have that some orret proess p

i

deides at round

r. If p

i

deides at round r upon value v, then it reeives one Eho message from every

proess in some survivor set S 2 S

�

. An alive proess p

j

sends an Eho message to all

the proesses, inluding itself, upon reeption of either a CoordEstimate or an Eho

message for the �rst time from some other proess. Moreover, p

j

updates its estimate

upon reeption of the �rst Eho message. Beause p

j

does not rash at round r + 1 by

assumption, if it sends an Eho message, then it eventually updates its estimate. From

lemma 5.5, every orret proess that does not deide at round r eventually moves on to

round r + 1. At the beginning of round r + 1, the oordinator of that round waits for

the estimate of all the proesses in some survivor set S

0

2 S

�

. Upon reeption of all the

Estimatemessages sent by proesses in S

0

, the oordinator hooses the estimate generated

at the latest round. By the intersetion property assumed for S

�

, there is at least one

proess p

j

2 S

0

suh that p

j

's estimate is v and it is updated at round r. Consequently,

the oordinator of r + 1 hooses v as its estimate.

Now, assume that the proposition is true for every r

00

� r

0

. We prove the proposition

for r

0

+ 1. From the indutive assumption, the oordinator of round r

0

proposes v as

its estimate for round r

0

. Note that the hoie of the value v by the oordinator as its

estimate for round r

0

has to be independent of the subset of proesses from whih it reeived

Estimate messages from. In other words, any survivor set ontaining proesses that have

not rashed at asynhronous round r

0

must be apable of induing the oordinator to hoose

v as its estimate for that round. We now show that the oordinator 

r

0

+1

of round r

0

+ 1

has to hoose v as its estimate for this round. There are two ases to be analyzed. First,

suppose that 

r

0

+1

reeives Estimate messages from a survivor set S 2 S

�

whih ontains

no proesses that updated their estimates in the previous round. From the indutive

assumption, 

r

0

+1

has to hoose v as the oordinator estimate for this round. For the

seond ase, let S 2 S

�

be the survivor set from whih 

r

0

+1

reeived Estimate messages

before hoosing the oordinator estimate value for round r

0

+1. Suppose that at least one

proess p

j

updated its estimate in the previous round r

0

. This value has to be v, by the

indutive assumption. From the algorithm, 

r

0

+1

has to hoose the estimate updated at

the latest round, and onsequently the oordinator estimate for round r

0

+ 1 has to be v.

2

5.6

Lemma 5.7 Let � be an exeution of AsynCrash and p

i

be some orret proess that

deides at round r. Proess p

i

deides upon the value v 2 V proposed by the oordinator

of round r.

Proof: A proess deides either when it reeives an Eho message from every proess in

some survivor set S 2 S

�

or when it reeives a Deide message from some other proess.

If p

i

reeives one Eho message from every proess p

j

in some survivor set S 2 S

�

, then
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for all p

j

2 S there is a hain of Eho messages (jwk)

Eho

2 C-Eho(�), j; k 2 Pid,

w 2 Pid

�

, suh that p

k

reeived a CoordEstimate from 

r

. Thus, every Eho message

p

i

reeives ontains the value proposed by the oordinator 

r

.

If p

i

reeives aDeidemessage, then there is a hain ofDeidemessages (iwj)

Deide

2

C-Deide(�), i; j 2 Pid, w 2 Pid

�

, suh that p

j

reeived an Eho message from all pro-

esses in some survivor set. Two ases are possible: the Deide message is sent in some

previous round r

0

> r or the Deide message is generated by some proess at round r.

Suppose the former ase �rst. Aording to lemma 5.6, one some proess deides upon a

value v

0

at some round r

0

< r, the value proposed by the oordinator of round r � r

0

has

to be v

0

. Therefore, in this ase, p

i

deides upon the value proposed by 

r

. In the seond

ase, the Deide message is generated at this round. Thus, p

j

reeived Eho messages

from all the proesses in some survivor set, and, from the argument above, p

j

deides on

the value proposed by the oordinator 

r

. 2

5.7

Lemma 5.8 Let � be an exeution of AsynCrash. For every proess p

i

, if p

i

updates

its estimate at asynhronous round r, then it does so with the initial value of some proess

p

j

2 �.

Proof: We prove this lemma with an indution on the asynhronous round numbers. For

the base ase, suppose r = 0. From the algorithm, there are two ways for a proess p

j

to

hange its estimate. First, if j = 0 (p

j

is the oordinator), then it reeives an Estimate

message from every proess in some survivor set S 2 S

�

. Beause this is the �rst round,

all the Estimate messages ontain the initial values. More spei�ally, if proess p

k

is

not rashed at round 0 and it sends an Estimate message, then this message ontains

the initial value of p

k

. Thus, the oordinator p

0

hooses arbitrarily among the Estimate

messages, sine they are all tagged with round number 0, and updates its estimate variable

aordingly. For the seond ase, p

j

is not the oordinator. If p

j

does not reeive a single

Eho message, then it proeeds without updating its estimate. The estimate ontinues

hene to be its initial value v

j

. On the other hand, if p

j

reeives at least one Eho

message, then it updates its estimate. On the other hand, if p

j

reeives an Eho message

from some proess p

k

�rst, then it updates with the value v

k

sent in the Eho message.

Sine p

k

sends an Eho message at round 0 by assumption, there is a hain of messages

(kwl)

Eho

2 C-Eho(�), w 2 Pid

�

, k; l 2 Pid, suh that p

l

sent the �rst Eho message of

this hain. Aording to the algorithm, p

k

reeived a CoordEstimate with the estimate

of the oordinator p

j

, and onsequently all the messages in this hain ontain the estimate

of the oordinator. The estimate of the oordinator at round 0 is the initial value of some

proess as we showed before.

Now assume that the proposition is true for every round r

0

� r. We prove for asyn-

hronous round r + 1. Suppose p

i

is the oordinator of round r. Proess p

i

then updates

its estimate based on the values reeived in the Estimate messages sent by every proess

in some survivor set S 2 S

�

. Observe that every proess p

j

in S has as its estimate the

initial value of some proess. For every p

j

2 S, if p

j

has not updated its estimate in any

previous round, then its estimate is still v

j

. Otherwise, from the indutive assumption, p

j

has as its estimate the initial value of some proess p

k

2 �. Consequently, p

i

updates its

estimate with the initial value of some proess. In the ase p

i

is not the oordinator, it

updates its estimate if and only if it reeives at least one Eho message. If p

i

reeives a

Eho message from some other proess p

k

, then there is a hain (kwl)

Eho

2 C-Eho(�),

w 2 Pid

�

, k; l 2 Pid, suh that p

l

sends the �rst Eho message. Aording to the algo-

rithm, p

l

reeives a CoordEstimate and sends the Eho messages with the estimate of
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the oordinator. As we showed before, the estimate of the oordinator is the initial value

of some proess p

j

2 �. 2

5.8

Lemma 5.9 Let � be an exeution of AsynCrash. Every p

i

2 Corret(�) eventually

deides in �.

Proof: From lemma 5.5, every orret proess that does not deide in a round r, r � 0,

moves on to the next round. A proess moves on by reeiving oneMoveOn message from

every proess p

j

in some survivor set S 2 S

�

. Aording to the algorithm, a proess sends

a MoveOn message to all the other proesses when it detets that the oordinator 

r

has

failed. From the eventual weak auray property of the failure detetor, however, there is

a time t after whih there is some orret proess p

k

that is permanently not suspeted by

any other orret proess. Therefore, there is time t

0

> t that p

k

beomes the oordinator

of some asynhronous round r

0

and no orret proess suspets p

k

. No orret proess

then sends a MoveOn message at this round, and onsequently no orret proess moves

on to the next round. Eventually, every orret proess reeives either an Eho message

from every proess in some survivor set or a Deide message and �nally deides. 2

5.9

We now show three theorems to onlude our proof thatAsynCrash solves Consensus

in the asynhronous model with rash proess failures. In order to aomplish this, we

present three theorems, eah one showing that one of the Consensus property is satis�ed

by AsynCrash in every possible exeution �.

Theorem 5.10 Let � be an exeution of AsynCrash. AsynCrash satis�es Validity

in �.

Proof: From lemma 5.7, every orret proess that deides at round r deides upon

the value v proposed by the oordinator. Before sending a CoordEstimate message, the

oordinator updates its estimate with v. By lemma 5.8, v has to be the initial value of

some proess p

j

2 �. 2

5.10

Theorem 5.11 Let � be an exeution of AsynCrash. AsynCrash satis�es Agree-

ment in �.

Proof: If Corret(�) ontains only one proess, then agreement is trivially satis�ed. Thus,

suppose Corret(�) ontains at least two proesses. From lemma 5.9, every orret proess

eventually deides. Let p

i

; p

j

2 Corret(�), p

i

6= p

j

, deide at round r

i

and r

j

respetively.

If r

i

= r

j

, then both deide upon the value v proposed by the oordinator of round

r = r

i

= r

j

, by lemma 5.7. In the ase that r

i

6= r

j

, they also have to deide upon the

same value. Assume without loss of generality that r

i

< r

j

. From lemma 5.7, p

i

deide

upon the value v proposed by the oordinator, and from lemma 5.6, the oordinator of

r

j

has to update its estimate with the value v and propose v in the CoordEstimate

messages it sends. Again from lemma 5.7, if p

j

deides at round r

j

, then it deides on v.

2

5.11

Theorem 5.12 Let � be an exeution of AsynCrash. AsynCrash satis�es Termi-

nation in �.

Proof: This result follows diretly from lemma 5.9. 2

5.12
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6 Synhronous Consensus with byzantine failures

Given a system representation h�; C

�

; S

�

i, suppose the following properties for this sys-

tem:

Property 6.1 (Byzantine Partition) For every partition (A;B;C) of �, at least one

of A, B, or C ontains a ore.

Property 6.2 (Byzantine Intersetion) 8s

i

; s

j

2 S

�

, 9

k

2 C

�

, suh that 

k

� (s

i

\

s

j

).

We want to show that these two properties are equivalent. Before doing so, we prove

two preliminary lemmas, whih are useful in the proof of the equivalene between properties

6.1 and 6.2. For onveniene, we de�ne f : x 2 � ! fs

1

; s

2

; � � � ; s

k

g � S

�

as a funtion

that evaluates to the survivor sets x belongs to. Thus, given a subset of proesses X, we

de�ne S

X

as follows:

S

X

= [

x2X

f(x) (1)

Lemma 6.3 Let (A;B;C) be a partition of � suh that none of A, B, or C ontains a

ore. Suppose that for all s 2 S

�

, there is a  2 C

�

suh that  � s. Then, we have that

for all s 2 S

Pi

, (s 6� A) ^ (s 6� B) ^ (s 6� C)

Proof: The proof is straightforward. If one of A, B, or C ontains a survivor set, then

it also ontains a ore, beause all survivor sets ontain a ore. This ontradits our

assumption that none of the partitions ontains a ore. 2

6.3

Lemma 6.4 Let S

�

be suh that 8s

i

2 S

�

, 9

j

2 C

�

suh that 

j

� s

i

. Given a partition

(A;B;C) of �, suh that none of A, B, or C ontain a ore, the following properties hold:

6.4.1 8I 2 fA;B;Cg, (S

�

6� S

I

);

6.4.2 For all permutations I; J;K of fA;B;Cg, 9s

i

2 S

�

, suh that (s

i

2 ((S

I

\S

J

)�

S

K

)).

Proof:

� 6.4.1: Suppose we have a subset � � � suh that for all s 2 S

�

we have that

R\ s 6= ;. By the de�ned relation between ores and survivor sets, there is a subset

of proesses  2 C

�

suh that  � �. Thus, if S

�

= S

I

, then by our previous

observation, I ontains a ore.

� 6.4.2: we prove this property by ontradition. Suppose without loss of generality

that ((S

A

\ S

B

) � S

C

) = ;. We prove that for all s 2 S

�

, we have that s 2 S

C

.

There are three ases to be onsidered:

1. if s 2 (S

A

\ S

B

), then by assumption it is in S

C

;

2. if (s 2 S

A

) ^ (s 62 S

B

), then by lemma 6.3 s 2 S

C

;

3. if (s 62 S

A

) ^ (s 62 S

B

), then s � C, whih violates lemma 6.3.
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If C ontains at least one element from every survivor set, then, by property 6.4.1, C

ontains a ore. This ontradits our assumption that none of the partitions ontains

a ore.

2

6.4

Claim 6.5 Byzantine Partition � Byzantine Intersetion.

Proof:

� Byzantine Partition ! Byzantine Intersetion

We prove this impliation by ontradition. Assume that property 6.1 holds and

there are two survivor sets s

i

; s

j

2 S

�

suh that (s

i

\ s

j

) does not ontain a ore.

We need to build a partition (A;B;C) suh that none of the subsets ontain a ore.

Suppose the following partition: A = ��s

i

, B = (s

i

\s

j

), and C = (s

i

�B). Subset

A annot ontain a ore, beause it has no element from s

i

. By assumption, B does

not ontain a ore either. Beause C ontains no elements from s

j

, we have that C

also does not ontain a ore. Thus, none of A, B, or C ontain a ore, ontraditing

our assumption that property 6.1 holds.

� Byzantine Intersetion ! Byzantine Partition

We prove this impliation also by ontradition. Assume that property 6.2 holds and

there is a partition (A;B;C) suh that neither A, B, nor C ontain a ore. From

lemma 6.4, we have that:

9x

1

2 S

A

, suh that x

1

2 (S

A

\ S

B

)� S

C

(2)

9x

2

2 S

A

, suh that x

2

2 (S

A

\ S

C

)� S

B

(3)

Beause x

1

62 S

C

and x

2

62 S

B

, we have that (x

1

\ x

2

) � A. By assumption, A

does not ontain a ore, and onsequently x

1

\ x

2

does not ontain a ore. This

ontradits, however, our assumption that property 6.2 holds.

2

6.5

6.1 Lower bound on proess repliation

The intersetion (partition) property is neessary and suÆient for solving Strong Con-

sensus in a synhronous system with byzantine failures. First, we prove that this property

is neessary. The proof we provide is based upon the one by Lamport for independent and

identially distributed proess failures [25, 26℄. We show that if there is a partition of the

proesses in three non-empty subsets, suh that none of them ontains a ore, then there

is at least one run in whih agreement is violated, for any algorithm A. This is illustrated

in �gure 3, where we have three exeutions: �, �, and . Suppose that we have a system

representation h�; C

�

; S

�

i and a partition of � in three non-empty subsets (A;B;C) suh

that none of them ontains a ore. In addition, suppose by way of ontradition that we

have an algorithm A that solves Strong Consensus in suh a system.

In exeution �, the initial value of every the proesses is the same, let's say v. Moreover,

all the proesses in subset B are faulty, and they all lie to the proesses in subset C about
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their initial values and the value reeived from proesses in A. Thus, running algorithm A

in suh a exeution results in all the proesses in subset C deiding v, by the strong validity

property. Exeution � is analogous to exeution A, but instead of every proess beginning

with a initial value v, they all have initial value v

0

6= v. Consequently, by the strong

validity property, all proesses in B deide v

0

in this exeution. Lastly, in exeution , the

proesses in subset C have initial value v, whereas proesses in subset B have initial value

v

0

. The proesses in subset A are all faulty and behave for proesses in C as in exeution �.

For proesses in C, however, proesses in B behave as in exeution �. Beause proesses

in C annot distinguish exeutions � from , proesses in C have to deide v. At the same

time, proesses in B annot distinguish exeutions � from , and therefore they deide v

0

.

Consequently, there are orret proesses whih deide di�erently in exeution , violating

the agreement property of Strong Consensus.

B:v’, C:v
A:v, B:vA:v,

 C
:v

A:v’, B:v’

A:v, C:v
B C

A

A:v’, B:v’

B:v’
, C

:v

A:v’
, C

:v’

A:v’, B:v’

A:v, C:v
B C

A

B:v’, C:v
A:v, B:v

B:v’
, C

:v

A:v’
, C

:v’

A:v’, B:v’

A:v, C:v
B C

B:v,
 C

:v B:v’, C:v’

A

Scenario  α Scenario  β

Scenario  γ

Figure 3: Exeutions illustrating the violation of Consensus. The proesses in shaded

subsets are all faulty in the given exeution

We now provide a more formal argument by proving the following theorem. Before

proeeding in the statement and proof of the theorem, we introdue some useful notation.

Let � be an exeution. We assume that �(i

0

i

2

� � � i

k

) is the value that proess p

i

0

reeives

from proess p

i

1

, whih laims that this value is the initial value of p

k

passed by every

proess p

i

to proess p

i�1

in this k-proess hain. For example, �(ijk) is the value that

proess p

i

reeives from proess p

j

, whih is the value that supposedly p

k

has sent to p

j

as

its initial value. If the k-proess hain ontains only orret proess, k � 1, then the value

�(i

0

i

2

� � � i

k

) is the initial value of p

k

. Otherwise, this property is not guaranteed. In the

ase that k = 1, we have that �(i) is the initial value of proess p

i

.

Theorem 6.6 Let sys = h�; C

�

; S

�

i be a system representation. If there is a partition

(A;B;C) of � suh that none of A, B, or C ontains a ore, then there is no algorithm

whih solves Strong Consensus in suh a system.

Proof: We assume without loss of generality that none of A, B, or C is empty.

Suppose there is an algorithm A whih solves Strong Consensus in sys. We onstrut

reursively an exeution in whih two orret proesses deide di�erently. Moreover, the

29



agreement violation in this exeution is independent of the number of rounds the algorithm

runs. Even if the algorithm runs for an in�nite number of rounds, it annot prevent

agreement violation.

By assumption, there is a partition (A;B;C) of � in three non-empty subsets suh that

none of A, B, or C ontains a ore. Let's start by desribing two preliminary exeutions

that are used to onstrut the one in whih agreement is violated. We onstrut exeutions

� and � as follows:

Let a 2 A, b 2 B,  2 C, v 2 V , v

0

2 V , v

0

6= v

�(a) = �(b) = �() = v

�(a) = �(b) = �() = v

0

Let w 2 �

�

and p 2 �

�(paw) = �(aw)

�(abw) = �(bw)

�(bw) = �(bw)

�(pw) = �(w)

�(paw) = �(aw)

�(pbw) = �(bw)

�(aw) = �(w)

�(bw) = �(w)

Based on exeutions � and �, we onstruted exeution  as follows:

Let a, b, , v, v

0

, p, and w be as in de�nition of exeutions � and �

(a) = v

(b) = v

0

() = v

(baw) = �(aw)

(aw) = �(aw)

(pbw) = (bw)

(pw) = (w)

It remains to show that �(w) = (w) and �(bw) = (bw), for b 2 B,  2 C, and

w 2 �

�

. We prove these equivalenes by a simple indution on the length of w.

� Base ase: jwj = 0

For jwj = 0, we have that �() = v = () and that �(b) = v

0

= (b).

� Indution step: the indution hypothesis is that the proposition is valid for all w

suh that jwj � i. We need to prove that the proposition is true for all w of length

30



i + 1. That is, we need to show that �(pw) = (pw) and �(bpw) = (bpw) for

every p 2 �. There are three ases to be analyzed: p = a, p = b, and p = . We

show below these three ases separately:

1. p = a: by the de�nitions of �, �, and :

�(aw) = �(aw) = (aw)

�(baw) = �(aw) = (baw)

2. p = b: by the de�nitions of �, �, and  and the indution hypothesis:

�(bw) = �(bw) = (bw) = (bw)

�(bbw) = �(bw) = (bw) = (bbw)

3. p = : by the de�nitions of �, �, and  and the indution hypothesis:

�(w) = �(w) = (w) = (w)

�(bw) = �(w) = (w) = (bw)

Beause proesses in C annot distinguish between exeutions � and , these proesses

have to deide v in . On the other hand, proesses in B annot distinguish exeution

� from exeution , and onsequently they have to deide v

0

in . By assumption, in

exeution , the proesses in both subset B and subset C are orret. Therefore, the

agreement property of Strong Consensus is violated in this exeution.

2

6.6

6.2 An algorithm to solve Strong Consensus

We desribe an algorithm that solves Strong Consensus in a system sys= h�; C

�

; S

�

i

whih satis�es the intersetion property. This algorithm is based on the one desribed by

Lamport to demonstrate that it is suÆient to have 3t + 1 proesses (t is the maximum

tolerated number of faulty proesses) to have interative onsisteny in a setting with

byzantine proesses [25℄.

In our algorithm, all the proesses run the same state mahine. Every proess reates

a tree where every node is labeled with a string w of proess id's and stores a value. Every

label is omposed of a sequene of proess id's and eah id appears at most one in a given

label w. The value stored at a given node labeled w orresponds to the value forwarded

by the hain of proesses with id's on the string, following the sequene determined by

the string. Thus, at round r, every orret proess p

i

sends a message ontaining the

values stored at depth r of the tree to all the other proesses. Every orret proess p

j

that reeives this message at round r+1 stores the values ontained in it in the following
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manner: for every node labeled wi, with w 2 Pid

�

; jwj = r, make the value of node equal

to the value in the message sent by p

i

orresponding to w.

A simple example will help to larify the use of the tree. Suppose that a orret proess

p reeives at round 3 a message from proess p

k

, whih ontains the string ij and the value

v assoiated to this string. Proess p hene stores the value v at the node labeled ijk and

forward a message ontaining ijk assoiated to the value v to all the other proesses.

An important observation about the tree built by the algorithm is that the last

level is omposed of survivor sets. More spei�ally, a Node(w)

4

is a leaf if and only

��Proesses(w) does not ontain a survivor set

5

. Consequently, if Node(wp) is a leaf,

then Child(w)

6

is a survivor set

7

. A property that every node of the tree labeled w satis-

�es is that ��Proesses(w) has to ontain a survivor set. A onsequene of the previous

observations is that the depth of tree is j�j �min js

i

jjs

i

2 S

�

+1. An example of a tree is

presented in �gure 4, for a system a haraterized by the following sets:

� � = fa; b; ; d; eg

� C

�

= fab; a; ad; ae; b; bd; d; e; deg

� S

�

= fabe; abde; ad; bdeg

b

becbea

ba bc bd be

bed

a
c d

ab ac ad ae ca cb cd ce da db dc de ea ec

e

ed

ebdebceba

eb

Figure 4: An example of a tree built by eah proess in the �rst stage of the algorithm.

Building and initializing the tree orresponds to the �rst stage of the algorithm. The

seond stage onsists in running several rounds of message exhange. In the �rst round,

eah proess broadast its initial value. In the subsequent rounds, eah proess broadast

the values it learned in the previous round. As the proesses reeive the messages on-

taining values learned in previous rounds, eah node �lls out the nodes of its tree with

these values. Beause the depth of the tree is j�j � min js

i

jjs

i

2 S

�

+ 1, this is exatly

the total number of rounds required for message exhanging. An important observation is

that this mathes the lower bound on the number of rounds neessary to solve Consensus

in a byzantine setting. As shown in [9℄, if t is the maximum number of proess failures

assumed, t � (j�j � 2), then at least t + 1 rounds are neessary. Furthermore, the proof

presented does not assume independent and identially distributed proess failures, and

therefore it aommodates a more general model as ours. A question that may strike one's

mind is why we annot use a trik of using a subset of ores or survivor sets to design

4

Node(w) is de�ned as the node of the tree labeled with the string w.

5

Proesses(w)= fpjp.id is in wg

6

Child(w)= fp

i

jnode labeled wi is a hild of node labeled wg.

7

Observe that the tree struture is the same for all orret proesses, and hene none of Pro-

esses(�),Node(�), or Child(�) need to be assoiated with any partiular proess.
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an algorithm that runs in fewer rounds, as we did for the synhronous rash model. The

answer is simple: from our previous results on the lower bound for proess repliation,

this subset would need to satisfy the byzantine intersetion property. If we take a ore as

an isolated system, for instane, then it learly does not satisfy this property.

Finally, in the last stage, eah proess traverses the tree visiting the nodes in postorder

to deide on a value. We show later in this setion that all proesses deide on the same

value after traversing the tree.

Before presenting the pseudo-ode of the algorithm, a few words about the notation.

We de�ne Pid to be the set of proess id's, i.e., Pid= fij(i = p.id) ^ (p 2 �)g. This

is onvenient, beause we label the nodes of the trees with strings of proess id's. The

funtion x.Value(w) evaluates to the value v assoiated to the string of id's w. Beause v is

provided either by a message or a node of the tree, the value x represents either a proess or

a message. Thus, m.Value(w) evaluates to the value v that message m arries assoiated

to string w, whereas p

i

.Value(w) evaluates to the value v stored by node labeled w at

proess p

i

. This is a slight abuse of notation, but it is onvenient and the di�erentiation

between the ases will be lear from ontext.

A pseudo-ode of the algorithm is presented below.

We now prove that the algorithm SynByz satisfy the properties of Strong Consensus.

First, we state and prove three preliminary lemmas that we are useful in demonstrating

that these properties hold for SynByz.

For the following lemmas, suppose that S

min

is a minimum-sized survivor set in S

�

.

That is, there is no survivor set in S

�

with fewer elements than S

min

.

Lemma 6.7 Let � be an exeution of SynByz, p

i

be a orret proess in �, and w 2 Pid

�

be the label of some non-leaf node. At the end of round r = (j�j � jS

min

j + 1), for

every p

k

; p

j

2 Corret(�), p

j

:Value(wi) = p

k

:Value(wi) = v

w

i

, where v

w

i

2 V is the value

p

i

:Value(w) at round jwj.

Proof: Let s



2 S

�

be a survivor set ontaining only orret proesses in �.

We prove this lemma by reursion on the length of node label w, 1 � jwj � (j�j �

jS

min

j + 1). For the base ase, suppose that wi is the label of a leaf. If p

i

is orret,

then it forwards the same value v

w

i

2 V it has for w to all the other proesses at round

jwj + 1. Notie that if w = ;, then p

i

sends its initial value. Thus, for every proess

p

j

2 Corret(�), p

j

:Value(wi) = v

w

i

at the end of round r = jwj + 1, where v 2 V is the

value p

i

:Value(w) at round jwj+ 1.

We now assume that for every p

i

; p

j

2 Corret(�), p

j

:Value(wi) = v

w

i

, jwij � jw

0

j �

(j�j � jS

min

j + 1), where v

w

i

2 V is the value p

i

:Value(w) at round jwj + 1. We need

to prove the proposition for the labels of length jwj. Suppose that w = w

0

i. Let s

1

be

suh that s

1

� Child (w). From the indutive assumption, for every proess p

i

1

2 s



\ s

1

and p

j

2 Corret(�), we have that p

j

:Value(wi

1

) = v

w

0

i

, where v

w

0

i

2 V is the value

p

i

:Value(w

0

) at round jw

0

j+1. Moreover, suppose that there are two survivor sets s

2

; s

3

2

S

�

, (s

2

\ s

3

) 6= (s

1

\ s



), suh that (s

2

\ s

3

) 2 Child(w). From the byzantine intersetion

property, there is ate least one orret proess p

i

3

2 (s

2

\ s

3

). Consequently, if for every

proess p

i

4

2 s



\ s

d

, p

j

:Value(wi

4

) = v

0

, then v

0

has to be equal to v

w

i

. Otherwise, the

value p

j

:Value(wi

3

) 6= v

k

, ontraditing the indutive assumption.

Aording to the algorithm, we have that for every p

j

2 Corret(�), p

j

:Value(w

0

i) =

v

w

0

i

, where v

w

0

i

2 V is the value p

i

:Value(w

0

) at round jw

0

j+ 1. 2

6.7

Before stating and proving the following lemma, we need to introdue some more

notation. We de�ne RLeaves(w) as the set of labels ww

0

, suh that Child(ww

0

) = ; and

w

0

2 Pid

�

.
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Algorithm SynByz for proess p

i

:

Input: a set of proesses �; a set of ores C

�

; a set of survivor sets S

�

; an input value v

i

2 V

Variables:

Let s

min

be a smallest survivor set in S

Let r be the urrent round number

Let root be a referene to the root of proess i's tree

Let M be a set of messages

Let P; P

0

be sets of pairs hw; vi, where w 2 Pid

�

, and v 2 V

initialization:

root  CreateNode(;, v

i

)

BuildTree(root)

P  fh;; v

i

ig

rounds 1 � r < (j�j � js

min

j+ 1):

SendAll(i, P )

let M be the set of messages reeived by p

i

at round r

P  ;

for every message m = (j; P

0

) 2M do

for every node at depth r labeled wj, w 2 Pid

�

, jwj = r do

p

i

:Value(wj) m:Value(w)

if node labeled wj is not a leaf then P  P [ fhwj ;m:Value(w)ig

round r = (j�j � js

min

j+ 1):

SendAll(i, P )

let M be the set of messages reeived by p

i

at round r

for every message m = (j; P

0

) 2M do

for every node at level r labeled wj, w 2 Pid

�

, jwj = r, do

p

i

:Value(wj) m:Value(w)

Traverse Tree in postorder, exeuting the following steps when visiting a node labeled w:

if Child(w)6= ;

then let I  Child(w)

if(9s

1

; s

2

2 S suh that ((s

1

\ s

2

) � I) ^ (8p

j

2 (s

1

\ s

2

); p

i

:Value(wj) = v, v 2 V )))

then p

i

.Value(w)  v

else p

i

.Value(w)  ?

Auxiliary funtion

Funtion BuildTree(w)

let � Proesses(w)

8p

j

2 � suh that p

j

62 �

if (9s

1

2 S suh that s

1

� (�� �))

then node CreateNode(wj, ?)

Child(w)  Child(w) [ fnodeg

BuildTree(wj)

Figure 5: Synhronous Consensus for Dependent Arbitrary Failures

Lemma 6.8 Let � be an exeution of SynByz, and u be a node labeled wi, w 2 Pid

�

; p

i

2

�. If for every wiw

0

2 RLeaves(wi), it is the ase that Corret(�) \ Proesses(iw

0

) 6= ;,

then p

j

:Value(wi) = p

k

:Value(wi) for all p

j

; p

k

2 Corret(�) at the end of round r =
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(j�j � js

min

j+ 1).

Proof: We prove this lemma by indution on the height of the tree, starting from the

leaves.

The base ase ours when u is a leaf. By assumption, p

i

is orret. Thus, we have

that p

k

:Value(wi) = p

l

:Value(wi), from lemma 6.7.

The indution hypothesis is that the proposition is valid for all the nodes at depth d,

starting from the leaves. We need to prove the proposition for a node v at depth d � 1.

We have two ases to analyze: p

i

is orret and p

i

is faulty. If p

i

is orret, then the proof

is straightforward from lemma 6.7. We need to analyze the ase in whih p

i

is faulty.

Suppose that p

i

is faulty and that every leaf labeled wiw

0

is suh that Proesses(iw

0

)\

Corret(�) 6= ;. In this ase, for every hild labeled wii

1

, we have that for all wii

1

w

00

2

RLeaves(wii

1

), Proesses(i

1

w

00

) \ Corret(�) 6= ;. By the indution hypothesis, it is the

ase that p

j

.Value(wii

1

) = p

k

.Value(wii

1

) for every p

i

1

2 Child(wi). From the algorithm,

it has to be the ase that p

k

.Value(w) = p

l

.Value(w), for all p

j

; p

k

2 Corret(�). 2

6.8

Lemma 6.9 Let � be an exeution of SynByz. SynByz satis�es Strong Validity in

�.

Proof: By the de�nition of S

�

, in every exeution there is at least one survivor s

i

set

ontaining only orret proesses. From lemma 6.7, for every proess p

i

2 s

a

, we have

that p

j

.Value(i) is the initial value of p

i

, assuming p

j

is orret. If all the proesses start

an exeution with the same initial value v, then, from the algorithm and the assumption

that the intersetion property holds, p

j

.Value(;)=v. 2

6.9

Lemma 6.10 Let � be an exeution of SynByz. SynByz satis�es Agreement in �.

Proof: Let p

i

be a proess in �, and � be some exeution of SynByz. We need

to prove that for every proess p

j

2 Corret(�), p

j

:Value(;) = v, for some deision value

v 2 V [f?g. By the onstrution of the tree, for every leaf labeled iwj, w 2 (Pid�fi; jg)

�

,

there is at least one orret proess p

i

1

2 Proesses(iwj). From lemma 6.2, we have that

by the end of round r = (j�j � jxj + 1) , for some v 2 V [ f?g, p

i

1

:Value(i) = v, for all

p

i

1

2 Corret (�).

From the previous argument, we have that for every p

i

2

; p

i

3

2 Corret(�) and every

p

i

4

2 �, p

i

2

:Value(i

4

) = p

i

3

:Value(i

4

). Aording to the algorithm, the deision value

of every orret proess therefore has to be the same. This proves that the agreement

property holds for SynByz. 2

6.10

Lemma 6.11 Let � be an exeution of SynByz. SynByz satis�es Termination in �.

Proof: The absene of in�nite loops in the algorithm makes it straightforward to observe

that it eventually terminates and every proess eventually deides. 2

6.11

7 Asynhronous Consensus with Arbitrary Failures

Under Constrution
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8 Final Remarks

The results we showed in this paper enourage one to use ores and survivor sets in the

design of fault-tolerant algorithms. There are a few questions, however, that remain to

be answered. First, it is not lear that ores or survivor sets are a good way of modeling

failure orrelation. In the worst ase, there is an exponential number of suh subsets.

Representing and �nding ores or survivor sets in these system on�gurations may not

be pratial. Some of our results show that even in the ase that there is an exponential

number of ores in a system, just a subset of ores are neessary to satisfy repliation

requirements. For example, in the ase of Consensus for synhronous systems with rash

failures, proesses need to know about a single ore. For asynhronous systems with rash

failures, all is needed is a set of survivor sets that is a oterie. Both ases imply that not

all subsets are needed, but just some of them.

A seond question is how to extrat the information about ores. One has to know how

to orrelate failures in order to determine ores. An obvious approah is to onsider failure

probabilities. This may not be as pratial as assuming independent failure probabilities,

beause in general one has to deal with equations with an exponential number of terms.

Alternatively, one an use intrinsi properties of the system to orrelate proess failures.

For example, if there are two PC's in the same room, then a power failure an make

both rash at the same time. Another example is having implementations using the same

buggy ode. Proesses running suh a software may present the same arbitrary behavior

and onsequently present orrelated failures. Thus, it is not neessary to quantify failure

orrelation in order to determine ores in a system. Although we do not have a nie and

losed formula to ompute ores in the general ase, there are heuristis that an be used

on a per-ase basis. We present two heuristis in [27℄.

In more dynami systems, there is the issue of orrelating failures on-line. Suppose

the ase of mobile nodes. Assuming eah mobile node is a proess, proesses lose to

eah other may be subjet to the same unfortunate events. In this ase, it is neessary

to know the position of the nodes to determine ores. Furthermore, ores are onstantly

hanging. Thus, a probing mehanism is neessary to determine positioning information.

This information is then used to extrat ores. A probing mehanism, however, is not

suÆient. It is also neessary to have either an agreement protool so that proesses agree

on the ores at a given point of an exeution, or protools should be designed to ope with

inonsistenies in the set of ores aross all proesses.

Generalizing the results we have is also one of our goals. It seems that the idea of

using protools proposed in the literature modi�ed to onsider ores or survivor sets is not

appliable only to Consensus. So far we have investigated the appliation of our model only

to Distributed Consensus yet we plan to do the same for other problems in FT distributed

omputing. By doing this, we will gain more intuition on the appliability of our model.

To onlude, we believe that all questions we posed here are important and that we

will have answers for most of them only after applying to the designing of real systems.

We are optimisti about our results, beause the ones we have so far show several bene�ts

in using failure orrelation in the design of algorithms and the preliminary results we have

about ores in real systems show that tha approah is not unrealisti.
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