UC San Diego

Technical Reports

Title
Consensus for Dependent Process Failures

Permalink
https://escholarship.org/uc/item/7d43h6dt

Authors
Junqueira, Flavio
Marzullo, Keith

Publication Date
2003-02-18

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7d43h6dt
https://escholarship.org
http://www.cdlib.org/

Consensus for Dependent Process Failures *

Flavio P. Junqueira Keith Marzullo
flavio@cs.ucsd.edu marzullo@cs.ucsd.edu

University of California, San Diego
Department of Computer Science and Engineering
9500 Gilman Drive
La Jolla, CA

8th October 2002

Keywords: Distributed Systems, Fault Tolerance, Correlated Failures,
Consensus

*This work was developed in the context of the RAMP project, supported by DARPA as project number
N66001-01-1-8933.

1 Introduction

Most fault-tolerant protocols are designed assuming that out of n components, no more
than t can be faulty. For example, solutions to the Consensus problem are usually de-
veloped assuming no more than ¢ of the n processes are faulty where “being faulty” is
specialized by a failure model. We call this the ¢ of n assumption. It is a convenient
assumption to make. For example, bounds are easily expressed as a function of ¢: if pro-
cesses can fail only by crashing, then the Consensus problem is solvable when ¢ < n if the
system is synchronous and when ¢ < 2n if the system is asynchronous extended with a
failure detector of the class OW. [1, 2]

The use of the t of n assumption dates back to the earliest work on fault-tolerant
computing. [3] It was first applied to distributed coordination protocols in the SIFT project
[4] which designed a fly-by-wire system. The reliability of systems like this is a vital
concern, and using the ¢ of n assumption allows one to represent the probabilities of
failure in a simple manner. For example, if each process has a probability p of being
faulty, and processes fail independently, then the probability P(¢) of no more than ¢ out
of n processes being faulty is:

t
P(t) = 7) i(1—p)n
=3 (1) -n
If one has a target reliability R then one can choose the smallest value of ¢ that satisfies
P(t) > R.

The t of n assumption is best suited for components that have identical probabilities
of failure and that fail independently. For embedded systems built using rigorous software
development this is often a reasonable assumption, but for most modern distributed sys-
tems it is not. Process failures can be correlated because, for example, the same buggy
software was used. [5] Computers in the same room are subject to correlated crash failures
in the case of a power outage.

That failures can have different probabilities and can be dependent is not a novel
observation. The continued popularity of the ¢ of n assumption, however, implies that it
is an observation that is being overlooked by protocol designers. If one wishes to apply,
for example, a Consensus protocol in some real distributed system, one can use one of two
approaches:

1. Use some off-line analysis technique, such as fault tree analysis [6] to identify how
processes fail in a correlated manner. For those that do not fail independently or fail
with different probabilities, re-engineer the system so that failures are independent
and identically distributed (IID).

2. Use the same off-line analysis technique to compute what the maximum number of
faulty processes can be, given a target reliability. Use this value for ¢ and compute
the value of n that, under the ¢ of n assumption, is required to implement Consensus.
Replicate to that degree.

Both of these approaches are used in practice. [6] This paper advocates a third ap-
proach:

3. Use the same off-line analysis to identify how processes fail in a correlated manner.
Represent this using our abstraction for dependent failures, and replicate in a way
that satisfies our replication requirement and that minimizes the number of replicas.
Instantiate the appropriate dependent failure protocol.

We believe that our approach and protocols are amenable to on-line adaptive replica-
tion techniques as well.

In this paper we propose an abstraction that exposes dependent failure information
for one to take advantage of in the design of a protocol. Like the ¢ of n assumption, it is
expressed in a way that hides its underlying probabilistic nature in order to make it more
generally applicable.

We then apply this abstraction to the Consensus in both synchronous and asynchronous
models assuming crash and arbitrary failures. We show replication requirements that
are sufficient to enable a solution for Consensus. In order to demonstrate sufficiency, we
applyed simple modifications to Consensus algorithms proposed in the literature. Although
we cannot generalize this result to every problem in fault-tolerant distributed computing,
we believe that our work does not invalidate all the previous work assuming ¢ of n process
failures. We also show that expressing process failure correlations with our model enables
the solution of Consensus in some systems in which it is impossible when making the ¢ of
n assumption.

There has been some work in providing abstractions more expressive than the ¢ of n
assumption. The hybrid failure model (for example, [7]) generalizes the ¢ of n assumption
by providing a separate ¢ for different classes of failures. Using a hybrid failure model
allows one to design more efficient protocols by having sufficient replication for masking
each failure class. It is still based on failures in each class being independent and identically
distributed. In this paper, however, we do not consider hybrid failure models.

Byzantine Quorum systems have been designed around the abstraction of a Fail-prone
System [8]. This abstraction allows one to define quorums that take correlated failures into
account. This abstraction has been used to express a sufficiency condition for replication.
Our work can be seen as generalizing this work, which applies only to Quorum Systems.

The remainder of this paper is divided as follows. Section 2 presents our assump-
tions for the system model and introduces our abstraction that models dependent process
failures. Section 3 defines the distributed Consensus problem. Sections 4 and 6 present
replication requirements and algorithms for synchronous Consensus on the crash and arbi-
trary failure models, respectively. For asynchronous Consensus, replication requirements
and algorithms on the crash and arbitrary failure models are presented in sections 5 and
7, respectively. Finally, we draw conclusions and discuss future work in Section 8.

2 System Model

A system is composed of a set II of processes, numbered from 1 to n = |II|. The number
assigned to a process is its process id, and it is known by all the other processes. In the rest
of paper, every time we refer to a process with id 4, we use the notation p;. Additionally,
we define Pid as the set of process id’s, i.e., Pid = {i : p; € II}. We use this set to define
a sequence w of process id’s. Such a sequence w is an element of Pid*.

A process communicate with others by exchanging messages. Messages are transmitted
through point-to-point reliable channels, and each process is connected to every other
process through one of these channels. We model a channel between processes p; and p; as
two pairs of buffers: inputij/outputij and inputji/outputji. If process p; sends a message
m to pj, then it placesm at buffer input;;. Once the transfer of the message is completed,
according to the timing assumptions, the message is moved to output;;. Process p; then
has access to m. Note that process p; only has control over the bufters input;; and output;;.

Processes, on the other hand, are not assumed to be reliable. We consider both crash
and arbitrary process failures. Different from most previous works in fault-tolerant dis-

tributed systems, process failures are allowed to be correlated. We introduce a new ab-
straction, namely core, which corresponds to a reliable subset of processes. From a set of
cores, it is possible to derive subsets of processes such that in every run of the system at
least one of these subsets contains only correct processes. We call them survivor sets.

Each process p € Il executes a deterministic automaton as part of the distributed
computation [2, 9]. A deterministic automaton is composed of a set of states, a initial
state, and a transition function. The collection of the automata executed by the processes
is defined as a distributed algorithm. An execution of a distributed algorithm proceeds
in steps of the processes. In a step, a process may: 1) receive a message; 2) undergo a
state transition; 3) send a message to a single process. Steps are assumed to be atomic,
and there is no restriction in terms of sequentiality. That is, steps of different processes
are allowed to overlap in time. A process is assumed to take a step at global time ¢t € T
provided by some external device. Although processes do not have access to this external
device, this assumption turns out to be useful in reasoning about the systems we discuss
here. The range of 7 is the non-negative integers.

Although the computational model is the same independently of the timing assump-
tions, we describe algorithms for synchronous and asynchronous systems differently. As
we show later in this section, we explore the fact that the computation can be split in
synchronous rounds to facilitate the coordination among the processes.

This is the general picture of our system model. In the following subsections, we discuss
in details its various aspects.

2.1 Processes, Cores, and Survivor Sets

A system is composed of a set II = {p1,p2,---,pn} of processes. In our model, process
failures are allowed to be correlated, which means that the failure of a process may indicate
an increase in the failure probability of another process. To represent these correlations,
we assume some abstraction. For example, processes can be represented by attributes and
processes sharing an attribute have higher probability of failing in the same execution of
the system.

To achieve fault-tolerance in a system assuming no failed process recovers, it is nec-
essary to guarantee that non-empty subsets of II survive to every execution. A process
is said to survive to an execution if and only if it is correct in that execution. Thus, we
would like to distinguish subsets of processes such that the probability of all processes in
each of these subsets failing is negligible. Moreover, we want these subsets to be minimal
in that removing any process of such a subset ¢ makes the probability of all the processes
in c failing non-negligible, These subsets are called cores. Cores can be extracted from
the information about process failure correlations. In this paper, however, we assume that
the set of cores is provided as part of the system specification. Models to describe failure
correlations and methods to extract cores from instances of these models are not addressed
here.

By assumption, each core contains at least one process that is going to be correct
in an execution. Thus, a subset of processes, such that the intersection with every core
is non-empty contains processes that are correct in some execution. If such a subset is
minimal, then it is called a survivor set. Notice that in every run of the system there is
at least one survivor set that contains only correct processes. The definition of survivor
sets is equivalent to the one of a fail-prone system B [8]. The set of all survivor sets is the
complement of B.

We now define cores and survivor sets more formally. Let R be a rational number

expressing the target degree of reliability for II, and r(z), = C II, be a function that
evaluates to the reliability of the subset x. We define cores and survivor sets as follows:

Definition 2.1 Given a set of processes II and target degree of reliability R € [0,1] N Q,
c is said to be a core if and only if:

1. ¢ C1II;
2. r(c) > R;
3. Vpec, r(ic—{p}) <R.

Ch1 is the set of cores of II. Given a set of processes II and a set of cores CYy, s is said
to be a survivor set if and only if:

1. s C1II;
2. Vee C,sNc#0;
3. Vp € s, dc € Cpy such that p € c.

We define C; and Sty as the set of cores and the set of survivor sets of 11, respectively.
U2

The function r(.) and the target degree of reliability R are used at this point only
to formalize the idea of a core. In reality, reliability does not need to be expressed as
probabilities. For example, consider the following system representation:

Example 2.2 :
e II = {phy,phy, pl;, ply, pl3, ply }
e Cn = {{phy, phy, pl; }, {phy, phy, plo}, {phy, phy, pl3}, {phy, phy, plyt}
o Su = {{phi}, {phy}, {pli, ply, pl3, ply}}

Uz.2

In this system, ph, and ph, are very reliable and each of these fail independently of
every other p € II. Processes pl;, for 1 < i < 4, however, fail dependently among each
other. That is, for every pair of processes pl;, pl;, 1 <i4,7 <4 and i # j, we have that if
pl; is faulty in some execution of the system, then pl; is also faulty. Thus, a subset with
maximum reliability contains processes ph;, phy, and exactly one process pl;. Suppose
that the maximum reliability achievable for a subset of processes satisfies the intuitive
notion of target degree of reliability for this system. We can therefore infer that for each
i, 1 <14 <4, {phy, phy,pl;} is a core. The set Cyy of cores is hence as follows:

In the remainder of this paper, we assume that these subsets are provided as part of
the system representation. In the following sections, a system is described by a triple
(I1, C11, Sm), for II being a set of processes, Cr; being the set of cores of II, and Sy being
the set of survivor sets of II. We call henceforth (IT, Cyy, Si1) a system representation.

2.2 Failure Models

We assume two failure models: crash and arbitrary. When discussing failures, one dis-
tinguishes channel failures and process failures. In both models considered here, channels
are assumed to be reliable. We define a reliable channel as one that satisfies the following
properties:

Validity: If p,q € II are correct processes and p sends a message m to ¢, then m is
eventually delivered;

Integrity: A process p € Il receives a message m if and only if some process g € II sent
it to p. Moreover, p receives m exactly once.

From these channel properties, if a correct process p; puts a message m in buffer input;;
and p; is also correct, then m is eventually moved to output;;. Also, no message in buffer
output;; is spontaneously generated, for any pair of processes p;,p; € II. If a message is in
output;; at some time ¢, then it was placed at output;; by p; at some time t' <t

The possibilities for process failures differentiate the models. In the crash model, pro-
cesses fail by crashing. That is, if a process p is faulty in an execution, then it prematurely
stops sending and receiving messages in that execution. Thus, there is a time ¢ after which
p stops receiving and sending messages, even though it was supposed to do it according
to the algorithm. In contrast to a crashed process, we say that a process is alive at some
time ¢ either if it is correct at ¢ or if it has not crashed at any time t' < t.

Although a crashed process p; does not operate properly after time ¢, p; does not accom-
plish incorrect computations. In the arbitrary model, on the other hand, faulty processes
behave arbitrarily, and hence this model is strictly weaker than the crash model. Examples
of arbitrary behavior are: forging messages, arbitrarily modifying the content of messages,
selectively forwarding messages, and changing states without following the protocol spec-
ification. It is important to observe that some arbitrary failures are detectable, whereas
others are not [10, 11]. For example, the modification of the initial value of a process p;
is not detectable. This is due to the locality of this information. The initial value of p; is
only known by p and consequently it is not possible to verify whether it was modified ar-
bitrarily or not. On the other hand, some failures are detectable and attributable to some
process. Suppose the channels are FIFO. If a process p; sends malformed or out-of-order
messages then a correct process p; receiving those messages is able to detect that p; is
faulty. Note that FIFO channels are easily implemented by a counter, which has its value
sent along with every message and is incremented every time a message is sent. Even if a
byzantine process p; changes the value of a channel counter arbitrarily, it is still possible
for a correct process p; to detect p; as faulty. We assume FIFO channels for our protocol
that solves Consensus in a asynchronous systems with byzantine processes. The issue of
FIFO channels is hence addressed again in the section 2.4, which discuss asynchronous
systems with arbitrary process failures.

2.3 Synchronous Model

The synchronous model imposes bounds on message delay, process speed, and clock drift.
These bounds, however, are not necessarily based on absolute time. As in the model of
Dolev et al. [12], steps of an algorithm are used to define these bounds. Following this
model, the timing assumptions for a synchronous system are given by two parameters:
® > 1 and A > 1. Furthermore, any execution of an algorithm « in such a system satisfies
the following properties:

Process synchrony : for any finite subsequence w of consecutive steps, if some process
p; takes ® + 1 consecutive steps in w, then any process that is still alive at the end
of w has taken at least one step in w;

Message synchrony : for any pair of indices k,[, with [> k + A, if message m is sent
to p; during the k-th step, then m is received by the end of the [— th step.

If these properties hold, then an execution can be further organized in rounds, which
are defined in terms of steps of processes. In a round, a process p; executes n + k steps.
The first n steps are used by p; to send real messages, whereas in the last &k steps it sends
null messages. These k last steps are necessary to guarantee that all messages sent to p;
in a round 7 are received before p; proceeds to round r + 1. The number k of steps is a
function of A, ®, n, and r.

The algorithms for synchronous systems described in sections 4 and 6 are round-based.
This format facilitates understanding, since it abstracts several details of the system model.
The algorithms are also not described in an automaton format, since the description would
be longer and would not improve clarity. Instead, we use sequential code to present the
algorithms. States and transitions, however, are easily observable from the changes on the
values stored by the variables used by the algorithm.

2.4 Asynchronous Model

In an asynchronous system, there is no bound on message delay, process speed, or clock
drift [2, 13, 9, 14]. Thus, in such a system, a message sent from a correct process p; to
some other process p; may take arbitrarily long to be received. Message delay, although
considered to be unbounded, is assumed to be finite. This is due to the validity property
of the channels, which says that every message sent from a correct process p; to another
correct process p; is eventually received.

According to the FLP result [15], it is not possible to solve Consensus in a pure
asynchronous system, even if only a single crash failure is assumed. The intuition behind
the impossibility is that it is not possible to distinguish a crashed process from a very slow
one. As discussed previously, a message sent may take a finite but unbounded amount
of time to reach its destination, preventing processes from distinguishing some executions
from others. It is therefore necessary to assume some liveness property for the system that
guarantees that something good will eventually happen and will hold long enough so that
correct processes can reach agreement.

Chandra and Toueg proposed to extend the asynchronous model with an oracle that
provides information about process failures. This oracle is called a failure detector [2].
Briefly, each process has a failure detector module available to itself, and it queries the
module every time the algorithm requires failure information. They showed in their work
that failure detectors do not need to detect crash failures perfectly to make Consensus
solvable in such extended model. Moreover, they proved that a failure having the properties
of OW is necessary [16]. Another interesting result out of their work is the equivalence
between the classes OW and ¢S, meaning that given a failure detector D of one of the
classes, there is an algorithm that transforms D into a failure detector D’ of the other class.
In this paper, we assume an asynchronous model with crash process failures extended with
a failure detector D € ©S. The properties that define a failure detector D € S are as
follows:

Strong completeness : Eventually every process that crashes is permanently suspected
by every correct process;

Eventual weak accuracy : There is a time after which some correct process is never
suspected by any correct process.

In section 5, we assume an asynchronous model extended with a failure detector D €
O8S.

For a byzantine setting, other classes of failure detectors are proposed in the literature.
Malkhi and Reiter describe the failure detector class ¢S(bz) [11]. A failure detector D in
&S (bz) provides information about quiet processes only. By definition, a quiet process is
a faulty process which sends a finite number of messages in an infinite execution. Thus, a
failure detector D is not supposed to detect any other faulty behavior other than silence.
The detection of other arbitrary behaviors is implemented by a distributed algorithm. This
is illustrated in [11] by an algorithm which relies on the detection of malformed, out-of-
order, and unjustifiable messages to solve Consensus, thus showing that the properties of
OS(bz) are sufficient for an asynchronous system with byzantine failures. The definition
of ©S8(bz), however, assumes a strong system model. It assumes a reliable broadcast
primitive, which also satisfies causal order, to exchange messages [13] and authenticated !,
reliable channels between pairs of processes. By assumption, every message is broadcast
to all the processes using the given primitive. This prevents that faulty processes send
different messages to different processes in a broadcast.

Differently from Malkhi and Reiter, Kihlstrom et al. define a class ©¢S(Byz) of failure
detectors which expose arbitrarily faulty processes. [10] As in the previous definitions, each
process has a failure detector module that output a list of processes suspected of having
presented detectable arbitrary failures. Note that the definition of detectable arbitrary
failures includes omission failures, hence detecting quiet processes as well. The algorithm
shown in their work to solve Consensus is tightly coupled to the failure detector, since
it has to provide certificates that justify messages sent. The failure detector thus uses
these certificates to validate the choices made by the algorithm. Note that this validation
mechanism is viable only by assuming the certificates to be unforgeable. An important
observation is that the system model assumed is weaker than the model assumed in the
definition of ¢S(bz). Processes send messages to each other through end-to-end reliable
channels, guaranteeing that a message sent from a correct process to another correct
process is eventually received.

The last class of failure detectors for arbitrary settings we discuss here is O M, proposed
by Doudou and Schiper. [17] A failure detector of this class satisfies the mute completeness
property, besides the eventual weak accuracy defined previously. The definition of a mute
processes resembles the definition of a quiet process, but the former is more comprehensive.
An advantage over the OS(bz) class is again the weaker system model assumed. We now
repeat the definitions of a mute process and mute completeness as presented in [17].

Mute process : Let p; and p; be two processes. Process p; is mute to p; if there is a
time after which either (1) p; crashes, or (2) p; stops forever sending messages to
pj, or (3) p; sends only incorrect signed messages (sender cannot be identified) or
unsigned messages to p;.

Mute Completeness : There is a time after which every process p;, that is mute to a
correct process pj, is suspected forever by p;.

The failure detector is not tightly coupled to the algorithm that solves Consensus
in [17]. Although the failure detector verifies signatures, these are not assumed to be

!The authentication mechanism is assumed to be unforgeable

generated by the algorithm. Unforgeable signatures are assumed to be available as part of
the system model. The only stronger assumption made in terms of the system model com-
pared to the one assumed by Kihlstrom et al. is the FIFO property for the communication
channels. This property is required by the Consensus algorithm, though, and not by the
failure detector. As observed before, the FIFO property for a channel is implemented by
a counter, which is incremented every time a message is sent and its current value goes
along with every message. Even if a faulty process p; changes arbitrarily the value of the
counter sent with a message to p;, p; eventually detects p; as faulty. If p; never sends
a message with the value expected by p;, then p; eventually suspects p; as mute, by the
mute completeness property of the failure detector. On the other hand, if eventually p;
sends a message with the correct counter value, but the message is not the one expected
according to the algorithm, then p; is detected by p; as a byzantine process. Implementing
FIFO channels has its own problems however. One such a problem is the size of the buffer
that holds messages received in advance. Implementation details, however, are out of the
scope of this work.

Based on the properties of three classes described above, our opinion is that the fail-
ure detector as an abstraction should only satisfy enough properties so that it enables
the system to overcome the FLP impossibility result. That is, it should provide only
the necessary information to enable the system to make progress, guaranteeing liveness.
Adding detection of byzantine behavior to the failure detector is a design decision, and
does not help in overcoming the impossibility of solving Consensus in an asynchronous
model. Moreover, the system model should be as weak as possible, so that it facilitates
implementations. We therefore assume in section 7 an asynchronous model extended with
a failure detector of the OM class. Out of the three discussed here, OM has the best
trade-off in terms of the system model assumptions and failure detector properties. 2

In sections 5 and 7, we describe algorithms for Consensus in asynchronous systems.
Both algorithms simulate rounds asynchronously. Differently from synchronous rounds,
asynchronous rounds cannot have their boundaries determined by elapsed time or number
of steps, due to the timing assumptions. Typically, a process decide for the end of a round
independently from other processes by identifying some pattern of events. For instance,
the reception of one message from every process in some particular subset of processes.
More details are provided in the sections that describe the algorithms.

2.5 Executions

An execution of an algorithm is essentially a sequence of steps of the processes in II. There
are, however, other details that characterize an execution, such as the initial configuration
of the processes, the history of failures of the processes, and the step schedule. These
attributes are important, because a difference in one of them may change the result of the
computation. For example, the same sequence of steps with a different time schedule may
change the decision value in an execution of a Consensus algorithm.

An execution « of an algorithm A is defined as a tuple (Fy, I, Sa, Ta). This definition
is based on the one by Chandra and Toueg [2] and Charron-Bost et al. [14]. F,(t)
evaluates to the subset of processes that have failed by time ¢. A direct implication of this

?Ideally, we would choose the weakest failure detector to solve Consensus in a byzantine setting.
Kihlstrom et al. claim that a failure detector implementing only the properties of ©.S(Byz) is the weakest
failure detector that enables solving Consensus. The OM class, however, is strictly weaker than ¢S(Byz)
and it still enables solving Consensus. Thus, a further analysis on the relations of failure detector classes
is necessary, but it is out of the scope of this work, since we are only interested in showing lower bounds
for Consensus in our failure model with cores and survivor sets.

definition is that F,(t) C F,(t + 1). Because an execution depends on the initial state of
the processes, we have that I, provides the initial configuration of the system. This initial
configuration depends on the problem being solved. The Consensus problem, for example,
requires every process to have an initial proposed value. Finally, S, is an infinite sequence
of steps of processes in II. The time ¢ at which a step e € S, is executed is given by T (e).
For every correct process p; in «, we assume that S, contains an infinite number of steps
of Pi-

Because our asynchronous model is extended with a failure detector, the definition
of an execution have to accommodate such feature of the model. First, we revisit the
definition of a step. During a step, a process may decide to query its failure detector
module. Thus, for asynchronous systems, we add a fourth action to the definition of a
step, which is probing its failure detector module for a list of suspected processes. The
history of the failure detector in an execution may change the result of the computation and
it is henceforth part of the definition of an execution. An execution « of an asynchronous
algorithm A is defined as a tuple (Fy, Ha, Ia, Sa,Ts). The difference from the previous
definition is in the inclusion of the failure detector history .. The list of processes that
p; suspects at time ¢ is given by H,(i,¢). Since the failure detector is assumed to be
unreliable, the number of suspected processes may increase and decrease as the execution
proceeds.

From the definition of an execution, the set of correct process in an execution « is
defined as Correct, = II — Uiet, F'(t). The set of failed processes is given by Fuulty, =
UieT, F(t). Note that the mapping F(¢) is only useful in the crash failure model. The
faulty behavior of a crashed process is observable as soon as it crashes. On the contrary,
an arbitrarily faulty process may become faulty at some time ¢ but still behave as a correct
process for an unbounded period of time. For this reason, the time by which a process
becomes faulty is only considered in the crash failure model. Because we are assuming
round-based protocols, we define for the subset of crashed processes that failed by round
r > 0 as Crashedy(r). A process p; is in Crashed,(r) if it has not executed all the steps
of some round / < r. Neither a correct process nor a faulty process that halts 3 is in
Faulty,,(r), for any r > 0.

3 Consensus

The Consensus problem in a fault-tolerant message-passing distributed system counsists,
informally, in reaching agreement among a set of processes upon a value. Each process
starts with a proposed value and the goal is to have all non-faulty processes deciding on
the same value. Throughout the paper, we denote V as the set of possible decision values.
Although often a binary set V' is sufficient, we assume that V' has an arbitrary size to keep
the definition as general as possible. Also, we assume that the default value 1 used in the
algorithms is not in V. Every time we refer to a value that is either a decision value in V'
or the default, we use VU { L} to denote all the possibilities.

In the crash failure model, Consensus is often specified in terms of the following three
properties [17]:

Validity If some non-faulty process p; € Il decides on value v, then v is the initial value
of some process p; € 1I;

3Some computations are finite, such as distributed Consensus. Thus, we assume that once a correct
process halts, it executes an unbounded number of null steps.

10

Agreement If two non-faulty processes p;, p; € II decide on values v; and v; respectively,
then v; = vj;

Termination Every correct process eventually decides.

The validity property as specified above assumes that no process will ever try to cheat
on its proposed value. This is true in the crash failure model, but unrealistic assuming
arbitrary process failures. Although a byzantine process cannot prevent agreement by
cheating on its proposed value, it can prevent progress. For example, assuming that the
only possible decision values are either write or abort, with the above validity property, a
faulty process may prevent correct processes from writing if they are all ready to do so,
and consequently from making progress. Thus, in the arbitrary model, strong validity is
usually considered instead ofvalidity [17, 10]. Strong validity is stated as follows:

Strong validity If the proposed value of process p is v, for all p € II, then the only
possible decision value is v.

Strong validity only considers the case in which all processes have the same initial
value. Intuitively, this is sufficient to prevent a byzantine process from disrupting the
normal behavior of a system when all non-faulty processes are enabled to make progress.
When the system is facing problems and not all of the processes propose the same value,
however, this property allows the decision value to be arbitrary in the set of possible
decision values. That is, the decision value v of non-faulty processes can be either the
value proposed by a faulty a processes or even a value that was not proposed by any
process, assuming the set of decision values is not binary.

An alternative validity property is proposed by Schiper, called vector validity. [17]
The vector validity property says that every correct process has to agree on a vector of
proposed values, such that the vector has one value for each process in II. In addition,
for every correct process p;, the value attributed to p; has to be the initial value of p;,
and the vector has to contain the value of at least ¢ + 1 correct processes. In the case
that every process has to decide on a single value, the decision value is chosen from this
vector by some deterministic strategy: majority, minimum value, etc. Even this property
cannot prevent processes from deciding upon the value proposed by a faulty process when
the initial value is not the same for every process. According to our assumptions, the two
properties do not differ, and hence we choose the strong validity property for simplicity.

4 Synchronous Consensus with Crash Failures

Consensus in a synchronous system with crash process failures is solvable for any number
of failures. [18] In the case that all processes may fail in some execution before agreement
is reached, though, it is often necessary to recover the latest state prior to total failure
for recovery purposes. [19] Since we assume that failed processes do not recover, we don’t
consider total failure in this work. That is, we assume that the following condition holds
for a system representation (II, Cyy, Syp):

Property 4.1 Cp # 0. Oy

Property 4.1 implies that there is at least one correct process in any execution. We now
describe a protocol for a synchronous system represented by (II, Cyy, Spi), assuming that
property 4.1 holds for this system. The protocol is based on the early-deciding protocols

11

discussed by Charron-Bost and Schiper [18], Lamport and Fischer [20]. Algorithms that
consider the actual number of failures f are important because they reduce the latency
on the common case in which just a few process failures occur. An important observation
made by Charron-Bost and Schiper [18] is that there is a fundamental difference between
early-deciding protocols and early-stopping protocols for Consensus. In an early-deciding
protocol, a process may be ready to decide, but may not be ready to halt, whereas an
early-stopping protocol is concerned about the round in which a process is ready to halt.
One consequence of this difference is that the lower bound on the number of rounds is
not the same. For early-stopping algorithms, there is some execution in which a correct
process takes at least min(¢ + 1, f 4+ 2) rounds to halt, for n > ¢ 4+ 2, as shown by Dolev
et al.. [21] On the other hand, for every early-deciding algorithm, there is some execution
in which no correct process decides before f + 1 rounds, as shown by Charron-Bost and
Schiper [18]. In both cases, there are algorithms that meet these bounds, thereby showing
that they are tight.

We now describe algorithm SyncCrash which solves Consensus in a synchronous
system with crash process failures, assuming that information about cores and survivor
sets is available. Later in this section, we discuss the advantages of considering our model
instead of assuming ¢ of n process failures.

The algorithm differentiates the processes of a chosen core d-core € Sy and the pro-
cesses in Il — d-core. In a round, every process in d-core broadcasts its knowledge of
proposed values to all the other processes, whereas processes in II — d-core listen to these
messages. Processes in d-core from which a message is not received in a round are known
to have crashed, according to the assumptions of the failure model. This observation is
used to detect a round in which no process crashed. Processes p; € II hence keep track
of the processes in d-core that crashed in a round, and as soon as p; detects a round with
no crashes p; decides. As we show later in this section, when such a round r happens,
and by assumption it eventually happens, all alive processes are guaranteed to have the
same view of the values proposed by the other processes. In other words, all alive pro-
cesses in have the same array of proposed values. Once a process p; in d-core decides,
it broadcasts a decision message announcing the decision value dec; it decided upon. All
processes receiving this message decide on x; as well. Thus, only two types of messages are
necessary in the protocol: messages containing the array of proposed values and decision
messages. Because processes in d-core broadcasts at most one message in every round
to all the processes in |II|, message complexity is given by O(|d-core| * |II|). Note that
the protocols in [18, 20] designed with the ¢ of n assumption have message complexity
O(|1I)?). In addition, our algorithm requires f + 1 rounds for all the processes to decide
if IT # d-core, and min(|d-core|, f + 2) rounds to halt otherwise, where f is the number
of processes in d-core that crash in a given execution . We prove in [22] that these are
actually lower bounds on the number of rounds for Consensus in a system represented
with our model. By providing a protocol that meet these bounds, we prove them tight.

The idea of using a subset of processes to reach agreement on behalf of the whole set of
processes is not new. The Consensus Service proposed by Guerraoui and Schiper utilizes
this concept [23]. Their failure model, however, still assumes ¢ of n process failures, and
consequently the subset used to reach agreement is not chosen based on information about
correlated failures. This is the main point where our work differs.

Before presenting a pseudo-code of the algorithm, we show a table describing the
variables used in the protocol. Table 1 describes the variables, and the pseudo-code of
SyncCrash is presented in figure 1.

12

d-core € Cp Core set chosen as the one responsible for the

decision.
dec; e VU{L} A process p; decides once it sets dec;.
d € {true, false} Boolean variable indicating whether the
process decided in the previous round or not.
py;[1---|d-core|], py;[j] € V Vector of proposed values.

ei[l--- (|d-core| — 1)], e;[r] C d-core | Array of failed processes. e;[r] stores subset of
processes detected by p; as crashed at round r.

Table 1: Variables used in the algorithm SyncCrash

We now present a proof of correctness for SyncCrash in the synchronous model with
crash failures. Before proving the theorems showing that our algorithm satisfies the three
Consensus properties, we prove a few lemmas that are used in the proofs of the theorems.
Consider the following definition first.

Definition 4.2 Let « be an execution of SyncCrash. We denote «(ijwk) as the value
PV, (k] that process p; receives in a message from process p; at round |jwk|. U4z

Lemma 4.3 Let a be an execution of SyncCrash and p;,p; be two processes such that
pi € d-core, p; € II, i # j. Let w € Pid" be the shortest sequence of processes such
that a(iwj) = x, x € V, © #L, assuming such a sequence exists. For every round r,
1 <r < |iwj| — 1, the value stored in pv,[j] is L. For every round r, |iwj| < r < |d-core|,
f = |d-core| — |(d-core N Correct(a))|, the value stored in pv;[j]| is x, and z is the initial
value of p;j.

Proof: We prove this lemma by induction on the length of w. The base case consists
of lw| = 0. If |w| = 0, then, at round 1, process p; receives a message from process p;
containing its initial value z, and it stores this value in pv;[j]. Observe that every message
my, sent in this round by a process py, # p; is such that my.pv,[j] =L, and by the algorithm
p; does not update py;[j].

Now assume the lemma is valid for all w', |w'| < |w|. We prove it for |w|+ 1. Suppose
that process p; receives a message from process py, such that a(ikwj) = ', 2’ € V. Con-
sequently, from the algorithm, process p; makes pv;[j] = 2’. By the induction hypothesis,
we have that =/ = z, the initial value of p;. Moreover, for every other process p; € d-core,
1 # Pk, we have that either py;[j] = z or py[j] =L at the end of round |kwj|. Oy 3

From lemma 4.3 we can extract the following corollary.

Corollary 4.4 Let « be an execution. Vp; € d-core N Correct(c),p; € Correct(wr), Vr €
{1---|d-core|}, we have that pv,[i] = x at the end of round r, for z € V being the initial
value of process pv,.

Proof: If p; € d-core is correct, then for every correct process p;, we have that a(ji) = .
From lemma 4.3, for every round r, r > 1, we have that pv;[i] = z. O44

The next three lemmas form a substantial part of the proof that SyncCrash satisfies
agreement. The following definition is used in the statement of the three lemmas.

13

Algorithm SyncCrash for process p;:
Input: set II of processes; set Cpy of cores; initial value v; € V

Initialization:
d-core € Crr; dec; < L; d « false
py;[1 -+ |d-core|], py;[k] =L, Vk € [1---|d-corel|], k #i. If p; € d-core, py[i] < v;
e;[l---(|d-core] — 1)], e;[k] = d-core, Vk € [1---(|d-core| — 1)]

Round 1 < r < |d-core|, Vp; € d-core:
if (d = false) then
send (i, pv;) to all process in d-core
send (i, pv;) to all process in IT — d-core
else
send(Decide,dec;) to all processes in d-core
send(Decide,dec;) to all processes in II — d-core
halt
upon reception of (m = (Decide,dec;)) do
dec; + dec;
d + true
upon reception of (m = (j, pv;)) do
eilr] « eilr] = {j}
for £ =1 to |II| do
if (pv;[k] #L1) then pv;[k] < pv;[k]
if (((e;[r — 1] = e;[r]) A (d = false)) V (r = |d-core| — 1)) then
dec; < min(py;[k])
d < true

Round |d-core|, Vp; € d-core:

send(Decide,dec;) to all processes in II — d-core
halt

Round 1 < r < |d-core|, Vp; € II — d-core:
upon reception of (m = (Decide,dec;)) do
dec; + dec;
halt
upon reception of (m = (j, pv;)) do
eifr] « eilr] U {5}
for k =1 to |II| do
if (pv;[k] #L1) then pv;[k] < pv;[k]
if ((e;[r — 1] = ¢;[r])) then
dec; < min(py;[k])
halt

Figure 1: Synchronous Consensus for Dependent Crash Failures

Definition 4.5 Let:
l. @ =(Fy,1,,Sq,Ty) be an execution of SyncCrash,;
2. pi, pj be two processes in Il — Crashed(«,r), where r is a round of «;
3. e; € S, be a step of p; such that p; receives its last message of round r at step e;;

4. ej € S, be a step of p; such that p; receives its last messages of round r at step e;;

14

5. e}, €} € S, be any two steps of p; and pj, respectively, at round r, such that T'(e}) >
T'(e;) and T'(ej) > T'(e;).

We say that processes p; and p; have identical vectors at round r if and only if for every
pr € d-core and, pv;[k] = pu;[k], where pv; is the vector of proposed values of p; after
taking step e} and pv; is the vector of proposed values of p; after taking step e;-. Og5

Lemma 4.6 Let o be an execution of SyncCrash. If r is a round of a in which no
process crashes, then for every p;,p; € (Il —Crashed(c, 7)) p; and p; have identical vectors
mr.

Proof: If no process crashes in r, then every process p; € (Il — Crashed(a, 1)) receives
the same set of messages M. A message m; € M contains the vector of proposed values
of process p;. From the algorithm, for every entry m;.pv; [k] with a value v, v € V and
v #1, p; updates pv;[k] with the same value v. Note that for every entry k, there are
no two messages in M indicating distinct values v,v’ € V, by Lemma 4.3. Thus, once
a processes p; and p; receive every message sent to them at round r and update their
respective vectors pu; and pv; accordingly, we have that pv;[k] = puv;[k] for every k € Pid.

An alive process pi in r decides if it either receives messages from the same subset
of processes in both rounds r — 1 and r, or it receives a decide message. Otherwise, it
moves on to round r + 1 by the end of round r. An important observation is that py
cannot receive at round r a message from some process p; from which p; does not receive
a message at round r — 1. This is due to the assumptions that channels are reliable and
processes only fail by crashing.

By assumption, no process crashes in 7. Processes p; and p; have to receive all the
messages sent to them at round r and updating their respective vector of proposed values
before either deciding in r or moving to round r + 1. We conclude that p; and p; have
identical vectors at r. Oy

Lemma 4.7 Let a be an execution of SyncCrash, r > 1 be a round in which every
process in 11 — Crashed(a, r — 1) has an identical vector of proposed values before receiving
any messages in r, and p;,p; € (II — Crashed (e, 7)) be two processes that do not receive a
decide message at round . Processes p; and p; have identical vector at round r.

Proof: By assumption, every two processes pr and p; that send at least one message in r
do so with the same array of proposed values. Thus, even if two alive processes p; and p;
in r receive different sets of messages, no updates at the vector of proposed values occur
in none of the processes. In such a round, for every message my an alive process p; in r
receives, we have that my.pv, = pv;, and consequently no entry in pv; changes its value
after p; receives every delivered message at round r. Process p; is some arbitrary alive
process in 7, and hence the previous observation generalizes to every alive process in 7.

Because there are no updates in the vector of proposed values of any alive process
and by assumption these vectors are the same in the beginning of round r, we have that
pv; = pv; before deciding at round r’ or moving to round 7’ 4+ 1. Processes p; and p;
therefore have identical vectors at round r. Oy 7

Lemma 4.8 Let « be an execution of SyncCrash, r be the first round of « in which no
process crashes. For every round v’ > r, if p; and p; are alive processes at round r', then
pi and p; have identical vectors at round r'.

15

Proof: We prove this lemma with a simple induction on the round numbers. Let the base
case be round r. From lemma, 4.6, every alive process at round r has the same vector of
proposed values before deciding at round r or moving to round r + 1. Assume now that
the proposition is true for every r’ > r. We prove for 7’ + 1. By assumption, we have that
pi and p; have identical vectors at round 7/, for where p;,p; € (II — Crashed(c, 7’ 4 1)).
Thus, both p; and p; begin round r' + 1 with the same vector of proposed values. From
lemma 4.7, p; and p; have identical vectors at round r'+1. Oyg

Lemma 4.9 Let a be an ezxecution and f = |d-core| — |(d-core N Correct(a))|. For every
pi € II N Correct(a), if p; € d-core, then p; decides in at most min(|d-core| — 1, f + 1),
otherwise p; decides in at most f + 1 rounds.

Proof: Suppose that f processes in d-core fail in execution «, where 0 < f < d-core| — 1.
For every process p; in Correct(c), p; decides either when it detects a round without
failures or when it receives a decide message. In the former case, p; cannot detect f + 1
rounds with failures, because there are f failures by assumption. Thus, it has to decide
in some round 7, 1 < r < f 4 1. On the other hand, if p; decides due to the reception
of a decide message this cannot happen at a round r’ > (f + 1), otherwise p; decides by
detecting a round with no failures.

Consider now the special case of f = |d-core| — 1. If a correct process in d-core detects
|d-core| — 1 rounds with failures and it receives no decide message in a previous round,
then it knows at round |d-core| — 1 that every other process in d-core has failed. It is safe
then to decide and to send a decide message at the last round |d-core|. Note that this
is only true because a process in d-core sends messages to the other processes in d-core
first. This implies that no correct process in Il — d-core knows about more initial values of
processes than the correct processes in d-core. A consequence of this implication is that a
correct process p; in IT — d-core cannot do the same in the case it has detected |d-core| —1
rounds with failures. Process p; has to wait until round |d-core| to decide. Thus, a correct
process in II — d-core again decides in at most f + 1 = |d-core| rounds.

To conclude, let p; be a process in Correct(«). If p; € d-core, then it decides in at most
min(|d-core| — 1, f + 1). Otherwise, p; decides in at most f + 1 rounds. Oy g

We now show that SyncCrash satisfies the three Consensus properties. Before stating
and proving the theorems, we introduce some useful notation. For a given execution «,
suppose some process p; decided upon a value received in a decision message from process
pj. Let a(w, Decide, w € Pid*, be a sequence of processes such that a process py in w
decides upon the value it receives in a decision message from the process p; that precedes
pr in w. The only exception is the rightmost process in w, which decides dues to the
detection of a round without failures. For example, suppose p; decides upon the value it
receives from p; in a decision message, p; decides upon the value it receives from py, and
Pk 1s the first process to generate a decision message. With our notation, this is expressed
as «a(ijk, Decide.

Theorem 4.10 Let « be an ezxecution of SyncCrash. SyncCrash satisfies Validity in
Q.

Proof: From the algorithm, every correct process in II decides either when it detects a
round without crashes or when it receives a decision message. If a process decides in a
given execution a because it detected a round r without crashes, then it decides on the
first value of the array that is different from 1. By assumption, there is at least one correct

16

process p; in d-core in any execution «. From corollary 4.4, pv;[i] has the initial value of
pi, for every correct process p; € Correct(e). Thus, there is no execution such that a
correct process decides on L. It remains to show that if a correct process p; decides on the
value puv;[k], then py;[k] contains the initial value of py even if py is faulty. From lemma
4.3, py;[k] is either L or the initial value of px. According to the algorithm, no process
decides on the value L, consequently, pv;[k] has to be the initial value of py.

In the second case, a process p; decides when it receives a decision message with a
decision value dec; from some process p; € d-core. Thus, we assume there is a chain of
decide messages «a(ijw, Decide), where: 1) w € Pid"; 2) i,7 € Pid. In the suffix jw, let k
be the id of the first process that sends a decide message. Because py is the first process
in the chain, it does not decide upon a value received in a decide message. Process py
decides because it detects a round without failures. From the first case, p; decides in a
value v € V proposed by some process in d-core. As the value decy is forwarded along
the chain, every process in ¢jw decides on deci. Process p; therefore decides upon decy, as
well. We conclude that validity is satisfied. U4 19

Theorem 4.11 Let a be an execution of SyncCrash. SyncCrash satisfies Agreement
m Q.

Proof: Let r be the earliest round in which some process p; € II decides in «. By the
algorithm, if p; decides in 7, then p; receives messages from the same subset of processes
in both rounds » — 1 and r. From the assumptions for the failure model, we have that no
process crashed either in round r or in round r — 1. By Lemma 4.8, for every round r’ > r
and pj, px € II — Crashed(a, "), we have that p; and py have identical vectors.

If any process p; € II decides in a round ' > r, then either p; detects that there was
no failure at the previous round or p; receives a decision message from some other process
Pk € d-core — Crashed (o, 7' —1). In the former case, process p; decides on the same value
as p;j, because pv; = pv; and the strategy to choose the decision value from the array is
deterministic.

If p; decides upon the value dec; received in a decision message from some process
pr € d-core, then there is a chain of decide messages a(jkw, Decide), where w € Pid",
and 7,k € Pid. In the suffix jkw, let [be the id of the first process that sends a decide
message. Note that [can be either £ or the id of some other process. Because p; is the first
process in the chain, it does not decide upon a value received in a decide message. Process
p; decides because it detects a round without failures. From the first case, p; decides upon
the same value as p;. As the value dec; is forwarded along the chain, every process in jkw
decides on dec;. Thus, p; decides upon dec;, which is the same value as dec;. We conclude
that agreement holds in «. Oy 13

Theorem 4.12 Let « be an execution of SyncCrash. SyncCrash satisfies Termination
m Q.

Proof: From lemma 4.9, every correct process eventually decides. Oy 19

By characterizing correlated process failures with cores and survivor sets, we improve
performance both in terms of message and time complexity. For example, consider again
the six process system described in Example 2.2. By assuming ¢ of n failures, { must
be as large as the maximum number of failures among all valid executions, which is five.
Thus, it is necessary to have at least five rounds to solve Consensus in the worst case.

17

By executing SyncCrash with a minimum-sized core as d-core, only three rounds are
necessary in the worst case. In addition, no messages are broadcast by the processes in
IT — d-core. This is different from most protocols designed under the ¢ of n assumption
[20, 18, 21], although the same idea can be applied by having only a specific subset of ¢t + 1
processes broadcasting messages.

5 Asynchronous Consensus with Crash Failures

Given a system representation (II, Cyy, Stp), suppose the following properties for this sys-
tem:

Property 5.1 (Crash Partition) Any partition (A, B) of II is such that either A or B
contain a core. O 1

Property 5.2 (Crash Intersection) Sy forms a coterie. 055
Claim 5.3 Crash Partition = Crash Intersection.

Proof:

e Crash Partition — Crash Intersection

We need to prove that the following properties hold:

5.3.1: If sy, 89 € Sy, then sy N sy # 0;

5.3.2: There are no sy, so € Sy such that s; C so.

First, we prove 5.3.1 by contradiction. Assume a system configuration in which Crash
Partition holds and there are two survivor sets s;,s; € Sp such that s;Ns; = 0. In
any partition (A, B), either A or B contain elements from all survivor sets. Now
suppose the following partition (A4, B): A = 51, and B = (Uy,e5_{4,}5i). In this
partition, neither A nor B contain elements from all survivor sets. Consequently,
neither of them contains a core, contradicting our assumption that property 5.1
holds.

The proof for property 5.3.2 follows directly from the definition of survivor sets.
Survivor sets are minimal by construction.
e Crash Intersection — Crash Partition

We prove by contradiction. Assume a system configuration in which Crash Intersec-
tion holds and there is a partition (A, B) of IT such that none of A and B contains a
core. For every pair of survivor sets sq, so € Sy, we have that s;Nse # (). In order to
construct a partition (A, B) such that there is no core in none of the subsets, these
properties have to hold for both A and B:

5.3.3: For every s; € St, we have that s; € A and s; € B;
5.3.4: There exist survivor sets s;,s; € S, s; # s, such that ANs; = and BNs; = 0.

By showing that both cannot be satisfied at the same time, we reach our contradic-
tion. If we construct a partition (A, B) of II such that this partition satisfy 5.3.3,
then both A and B contain at least one element of every survivor set s; € S and

18

consequently both A and B contain cores. On the other hand, if we construct a
partition (A, B) that satisfy 5.3.4, then we have that s; C B. In this case, B con-
tains a core. Thus, 1 and 2 cannot be satisfied at the same time by any partition.
Consequently, any partition (A, B) is such that either A or B contains a core.

Us.3

5.1 Lower bound on process replication

Chandra an Toueg showed that n > 2¢, for n being the number of process and ¢ the
maximum number of crashed processes in any execution, is the lower bound on process
replication for solving Consensus in an asynchronous system extended with a failure detec-
tor of the class &S [2]. This lower bound assumes independent and identically distributed
process failures. In our failure model, the Crash Intersection (Crash Partition) prop-
erty happens to be the generalization of the n > 2¢ lower bound. The proof idea is similar
to the one used by Chandra and Toueg.

Assume there is an algorithm 4 that solves Consensus in some system sys= (II, Crr, St1).
In addition, suppose that there is a partition (A, B) of the processes in IT such that neither
A nor B contains a core. Thus, we build an execution in which the agreement property is
violated, no matter what the algorithm does. We build two preliminary executions, o and
B, in the process of building an execution «y that violates agreement. For execution « of A,
suppose that all the processes in A are correct and the processes in B crash before sending
a single message. From the termination property, every process in A eventually decides,
and they all have to decide upon the same value v in order to satisfy agreement. Suppose
that all the processes in A have the same initial value v,. By the validity property, we
have that v = v,.

The execution S is analogous to «. For 3, however, all the processes in B are correct
and all the processes in A crash before sending a single message. We assume also, that
all the processes in B have the same initial value vy, and v, # v,. Again from the three
Consensus properties, every correct process p; € B eventually decides, and p;, decides upon
Vp-

Now suppose an execution in which every process in II is correct. We describe an
execution v that looks the same as « for the processes in A, and the same as 8 for the
processes in B. In «y, the initial value for every process in A is v, and for every process
in B is vy. Let t, be the time by which all processes in A have decided in «, and t; the
time by which all processes in B have decided in 8. We use t, and ¢, to define message
schedule and failure detector history. The messages sent among process in A are scheduled
as in o, whereas the messages among processes in B are scheduled as in 5. The messages
from processes in A to processes in B, and from processes in B to processes in A are only
delivered after time ¢ > max(t,,t,). The failure detector history follows the same pattern.
For the processes in A, the failure detector history is the same as in « up to time t,.
Processes in B have the same history as in 8 up to time t.

Considering the previous definitions for executions «, 8, and <y, processes in A and
processes in B cannot distinguish executions « and (, respectively, from execution .
Hence, processes in A decide v,, albeit processes in B decide vp. Execution - therefore
violates agreement independently of what algorithm A does.

We now prove our proposition more formally.

Theorem 5.4 Let an asynchronous system sys extended with a failure detector of the
class ©S be represented by (11, Crr, Str) be a system. If Consensus is solvable in sys, then

19

sys satisfies the crash partition property.

Proof: We prove this theorem by contradiction. Assume that there is an algorithm A
that solves Consensus in sys, albeit sys does not satisfy the crash partition property.
That is, there is at least one partition (A, B) of the processes in II, such that none of A or
B contains a core. We show that there is an execution < in which the agreement property
is violated.

We define first two other executions, o and [, which are used to build 7. Let a =
(Foy Hay Lo, Say To) be as follows:

F,(t) = B,Vt>0
Ho(t,i) = B,VE>0,¥p; € A
I,(i) = wa,vq €V,Viell

The sequence of steps S, and timestamps T, are dependent on the algorithm, and
hence we do not specify them in order to keep the definition compliant with any possible
algorithm. The only assumption we make is that there is a finite time ¢, such that for
every p; € Correct(a), there is a step e € S, of p; in which p; decides, Ty(e) < t,. By
assumption, algorithm A4 solves Consensus and therefore it has to satisfy the termination
property. Thus, such a ¢, has to exist.

Now let 8 = (F3,Hg,I3,Ss,Ts) be as follows:

Fg(t) = AVt>0
Hp(t,i) = A,Vt>0,Vp, € B
Is(i) = wvg,Viell,vg € V,ug # v,

By the same argument presented before, we do not define Sg and T}, although we
assume that there is a time ¢, such that, for every p; € Correct(f3), there is a step e € Sg
of p; in Sg in which p; decides, T(e) < ty.

F,(t) = 0,vt>0
Hp(t,i) Vt<t,Vp, €B

Hy(t, i) = Ha(t,i) VE<t,Vp, €A
0 Ve >t Vp, €11

N Vo ,Vp; €A

L/(Z) o { g ,Vpi € B

S, and T’, are defined algorithmically as follows:

e For every e, € S, such that Ty (e,) < max(tq,ts), we have that e, € Sy and T',(eq) =
Ts(ea);

e For every e, € S such that Ts(ep) < max(t,,t), we have that e, € Sy and T, (ep) =
Ts(eb);

e Ife € Sy and T, < max(ts,1t), then either e € S, or e € S,. If e € S,, then
To(e) < max(t,,tp), otherwise Tg(e) < max(tq,ts);

20

e Let e € S, be a step in which a process p; € A receives a message from a process
pj € B. We have that for every such a step, T, (e) > max(t,, tp);

e Let e € S, be a step in which a process p; € B receives a message from a process
pj € A. We have that for every such a step, T’,(e) > max(tq,);

A process p; € A cannot distinguish execution « from execution -y, whereas process
pj € B cannot distinguish execution 8 from execution. Thus, p; and p; have to decide
upon v, and vy, respectively, therefore violating the agreement property of Consensus.

Us.a

5.2 An algorithm to solve Consensus

As discussed before, Consensus is not solvable in a pure asynchronous system. An ap-
proach to overcome this impossibility is to extend the asynchronous model with a failure
detector. Here we assume a failure detector D of the class ¢S, which satisfies the strong
completeness and eventual weak accuracy properties. The algorithm we describe uses this
failure detector to guarantee liveness.

As the algorithm proposed by Chandra and Toueg [2], our algorithm AsyncCrash
is based on the rotating coordinator paradigm and proceeds in asynchronous rounds. In
every asynchronous round, one process is chosen as the coordinator of that round. The
knowledge of which process is the coordinator of some round is pre-determined, and hence
there is no need to use leader-election algorithms or similar approaches. The coordinator
of a round is responsible for gathering the estimates of some survivor set S € Sy and for
choosing a value out of the ones received from the processes in this survivor set. In the
algorithm, the coordinator chooses the value from the process that updated it in the latest
round among all the estimates received from the processes in S. Once the coordinator
chooses a value, it sends a message to informed all the processes of its estimate. A process
that receives this message from the coordinator echoes the coordinator estimate to all the
other processes. A process decides as soon as it receives an echo from all the processes in
some survivor set S’ € Sy, not necessarily the same as S.

So far, we assumed that the coordinator is correct. If the coordinator crashes and no
correct process receives an estimate from the coordinator, then eventually all the processes
in some survivor set containing only correct processes suspect that the coordinator crashed.
This is guaranteed by the strong completeness property of the failure detector. Once a
process p; suspects that the coordinator of its current round has failed, p; sends a message
to all the other processes suggesting the others to move on to the next round. If a process
receives a message to move on from all the processes in some survivor set, then it re-
initializes its variables and moves on to the next round.

The use of echo messages is not really necessary, but it may anticipate decision when
the coordinator ¢, of round r crashes at r and at least one correct process, say p;, receives
either a message from the coordinator or an echo message from some other process p;.
The echo messages from p; induce other processes to send echo messages as well, and
eventually non-crashed processes executing round r decide. Without the echo messages,
every non-crashed processes would need to wait until all the processes in some survivor
set containing only correct processes suspect the coordinator and send moveon messages.
Furthermore, decision would be postponed, thereby delaying termination. Because the
time to suspect the coordinator may be arbitrarily long, this mechanism prevents unnec-
essary wait in making a decision. Therefore, the argument in favor of echo messages is
not correctness, since it is not hard to modify the algorithm to work without it. Its use,

21

however, may reduce the latency in reaching agreement among the correct processes in a
real implementation. Schiper proposed originally the utilization of echo messages as an
optimization to have a coordinator-based algorithm less dependent on the coordinator in
an asynchronous round [17, 24].

Figure 2 shows the pseudo-code of AsyncCrash. Every process executes the same
algorithm in a run of the system, although processes have different roles in a round.
The algorithm is structured in stages, and every process initiates an execution at stage
StartRound. In the first round, round 0, pg is the coordinator. After sending an Esti-
mate message to itself, it changes stages, from StartRound to WaitForEstimates. Once
it receives an Estimate message from every process in some survivor set, then it sends a
CoordEstimate message with its proposed value to all the processes. After sending Co-
ordEstimate messages, the coordinator changes to stage Echoes and behaves as the other
processes for the rest of this round. All the other processes go to stage Echoes right after
sending an Estimate message at stage StartRound. At stage Echoes, every non-crashed
process waits for either an Echo message or a MloveOn message from all the processes in
some survivor set S € Sp. By receiving Echo messages from the processes in S, a process
p; decides, whereas it moves to stage GoToNextRound upon reception of MoveOn mes-
sages from the processes in S. At the GoToNextRound stage, no messages are involved. A
process only re-initializes the variables, assigns a new coordinator, and moves on the next
round by changing back to stage StartRound. This cyclic process continues until all the
correct processes eventually decide.

Stage Indicates the stage the process is in the current round.
Echoes Set with Echo messages received in the current round.
Estimate Current estimate of process p;.

EstUpdate Round in which Estimate is updated.

CurEstimates | Set with the Estimate messages received by the coordinator.
r Keeps track of the current round.

Table 2: Variables used in the algorithm AsyncCrash

We now provide a proof of correctness for the algorithm AsyncCrash. Before stating
and proving the theorems that actually show that AsyncCrash satisfy the three Consen-
sus properties, we show some preliminary lemmas. The theorems then are easily shown
from these lemmas.

Lemma 5.5 Let a be an execution of AsyncCrash and p; be some correct process that
does not decide at round r, r > 0. FEventually p; moves on to round r + 1.

Proof: If a process p; does not decide at round r, then it neither receives a Decide message
nor receives an Echo message from all processes in some survivor set. If p; does not receive
a Decide message, then there is no chain of Decide messages (iwj) popide € C-Decide(a),
j € Pid, w € Pid", such that p; received an Echo message from all processes in some
survivor set.

By assumption, at least one survivor set S € Sy contains only correct processes, and
every message sent by a correct process to another process is eventually received. Accord-
ing to the algorithm, the processes in S send an Echo message upon reception of either the
first Echo message or a CoordEstimate message. If none of these messages is received
by any of the processes in S, then the coordinator is faulty. Eventually the elements of
S suspect the coordinator and send MoveOn messages. The eventual suspicion of the

22

Algorithm AsyncCrash for process i:
Input: set IT of processes; set Cr of cores; set Sy of survivor sets; initial value v; € V'

Variables: Stage< StartRound; Echoes < (); CurEstimates < 0; Estimate < v;;
EstUpdate < 0; r < 0

Stages: StartRound; DecisionTentative; GoToNextRound;

Transition function:
When (Stage = StartRound)
Send(Estimate, i, r, Estimate, EstUpdate) to the coordinator p,,
if(c; = i) then Stage < WaitForEstimates
else Stage < WaitForCoordEstimate

When (Stage = DecisionTentative)
upon reception of (Estimate, j, r , vj, r;)
CurEstimates < CurEstimates U{(vj,r;)}
if(3S € Sy such that Vp, € S, (Estimate, k, r , v, ri) € CurEstimates)
then rj, < max(ry|(vy,r,) € CurEstimates)
Estimate < vy, (vg,) € CurEstimates; EstUpdate < r
Send(CoordEstimate, i, 7, Estimate.v) to all processes in II
Stage < FEchoes
upon reception of (CoordEstimate, j, r , v;)
if(Echoes = ()) then
Send(Echo, j, r, vj) to all processes in II
Estimate < v;; EstUpdate < r
upon reception of (Echo, j, r, vj)
if (Echoes = }) then
Send(Echo, j, r, vj) to all processes in II
Estimate < (vj,r)
Echoes < Echoes U (Echo, j, r, v;)
if(3S € Sy such that Vp, € S, (Echo, k, r , v) € Echoes, v € V) then
Decide upon value v
Send(Decide, i, v) to all processes in II
halt
upon suspicion of ¢;
Send(MoveOn, j, r) to all processes in II
upon reception of (MoveOn, j, r)
MoveOn < MoveOn U (MoveOn, j, r)
if (35S € Sir such that Vp, € S, (MoveOn, k, r , v) € Echoes, v € V) then
Stage <+ GoToNextRound

When (Stage = GoToNeztRound)
r <7 +1;¢; < (¢; +1) mod |II]
Echoes < 0; MoveOn < 0
Stage < StartRound

When (Stage = *)
upon reception of (Decide, j, v)
Decide upon value v

Send(Decide, i, v) to all processes in II
halt

Figure 2: Asynchronous Consensus with Crash Failures

23

coordinator by all the processes in S is guaranteed to happen by the strong completeness
property of the failure detector. Once process p; receives a MoveOn message from every
process p; € S, p; moves to stage GoToNextRound and proceeds to round r + 1. O 5

Lemma 5.6 Let o be an execution of AsyncCrash and r be the first asynchronous round
in which some correct process p; decides. If p; decides upon value v, then for every asyn-
chronous round r' > r, v is the estimate value proposed by the coordinator of r'.

Proof: We prove this lemma by induction on the round numbers. Initially, we prove for
r" =r + 1, and then for r' + 1, assuming the lemma is true for r'.

Let v = r + 1. By assumption, we have that some correct process p; decides at round
r. If p; decides at round r upon value v, then it receives one Echo message from every
process in some survivor set S € Sp. An alive process p; sends an Echo message to all
the processes, including itself, upon reception of either a CoordEstimate or an Echo
message for the first time from some other process. Moreover, p; updates its estimate
upon reception of the first Echo message. Because p; does not crash at round r + 1 by
assumption, if it sends an Echo message, then it eventually updates its estimate. From
lemma 5.5, every correct process that does not decide at round r eventually moves on to
round r + 1. At the beginning of round r + 1, the coordinator of that round waits for
the estimate of all the processes in some survivor set S’ € Si;. Upon reception of all the
Estimate messages sent by processes in S’, the coordinator chooses the estimate generated
at the latest round. By the intersection property assumed for S, there is at least one
process p; € S” such that p;’s estimate is v and it is updated at round r. Consequently,
the coordinator of r + 1 chooses v as its estimate.

Now, assume that the proposition is true for every r”” < r’. We prove the proposition
for v + 1. From the inductive assumption, the coordinator of round r’ proposes v as
its estimate for round r’. Note that the choice of the value v by the coordinator as its
estimate for round ' has to be independent of the subset of processes from which it received
Estimate messages from. In other words, any survivor set containing processes that have
not crashed at asynchronous round 7/ must be capable of inducing the coordinator to choose
v as its estimate for that round. We now show that the coordinator ¢, y; of round r' + 1
has to choose v as its estimate for this round. There are two cases to be analyzed. First,
suppose that ¢,711 receives Estimate messages from a survivor set .S € Sy which contains
no processes that updated their estimates in the previous round. From the inductive
assumption, ¢ 41 has to choose v as the coordinator estimate for this round. For the
second case, let S € St be the survivor set from which ¢,/ received Estimate messages
before choosing the coordinator estimate value for round r’ + 1. Suppose that at least one
process p; updated its estimate in the previous round /. This value has to be v, by the
inductive assumption. From the algorithm, c¢,»4; has to choose the estimate updated at
the latest round, and consequently the coordinator estimate for round r’ + 1 has to be v.
Us.6

Lemma 5.7 Let a be an execution of AsyncCrash and p; be some correct process that
decides at round r. Process p; decides upon the value v € V' proposed by the coordinator
of round r.

Proof: A process decides either when it receives an Echo message from every process in
some survivor set S € Sy or when it receives a Decide message from some other process.
If p; receives one Echo message from every process p; in some survivor set S € Sy, then

24

for all p; € S there is a chain of Echo messages (jwk)p.p,, € C-Echo(a), j,k € Pid,
w € Pid", such that py received a CoordEstimate from c,. Thus, every Echo message
p; receives contains the value proposed by the coordinator c,..

If p; receives a Decide message, then there is a chain of Decide messages (iwj) pecide €
C-Decide(), 4,5 € Pid, w € Pid*, such that p; received an Echo message from all pro-
cesses in some survivor set. Two cases are possible: the Decide message is sent in some
previous round 7' > r or the Decide message is generated by some process at round r.
Suppose the former case first. According to lemma 5.6, once some process decides upon a
value v at some round 7’ < r, the value proposed by the coordinator of round r > ' has
to be v'. Therefore, in this case, p; decides upon the value proposed by c,.. In the second
case, the Decide message is generated at this round. Thus, p; received Echo messages
from all the processes in some survivor set, and, from the argument above, p; decides on
the value proposed by the coordinator c,. Os 7

Lemma 5.8 Let a be an evecution of AsyncCrash. For every process p;, if p; updates
its estimate at asynchronous round r, then it does so with the initial value of some process
p; € 11

Proof: We prove this lemma with an induction on the asynchronous round numbers. For
the base case, suppose r = 0. From the algorithm, there are two ways for a process p; to
change its estimate. First, if j = 0 (p; is the coordinator), then it receives an Estimate
message from every process in some survivor set S € Sy. Because this is the first round,
all the Estimate messages contain the initial values. More specifically, if process py is
not crashed at round 0 and it sends an Estimate message, then this message contains
the initial value of py. Thus, the coordinator py chooses arbitrarily among the Estimate
messages, since they are all tagged with round number 0, and updates its estimate variable
accordingly. For the second case, p; is not the coordinator. If p; does not receive a single
Echo message, then it proceeds without updating its estimate. The estimate continues
hence to be its initial value v;. On the other hand, if p; receives at least one Echo
message, then it updates its estimate. On the other hand, if p; receives an Echo message
from some process py, first, then it updates with the value v; sent in the Echo message.
Since pi sends an Echo message at round 0 by assumption, there is a chain of messages
(kwl) geho € C-Echo(a), w € Pid*, k,l € Pid, such that p; sent the first Echo message of
this chain. According to the algorithm, py received a CoordEstimate with the estimate
of the coordinator p;, and consequently all the messages in this chain contain the estimate
of the coordinator. The estimate of the coordinator at round 0 is the initial value of some
process as we showed before.

Now assume that the proposition is true for every round r’ < r. We prove for asyn-
chronous round r + 1. Suppose p; is the coordinator of round r. Process p; then updates
its estimate based on the values received in the Estimate messages sent by every process
in some survivor set S € Sy. Observe that every process p; in S has as its estimate the
initial value of some process. For every p; € S, if p; has not updated its estimate in any
previous round, then its estimate is still v;. Otherwise, from the inductive assumption, p;
has as its estimate the initial value of some process p; € II. Consequently, p; updates its
estimate with the initial value of some process. In the case p; is not the coordinator, it
updates its estimate if and only if it receives at least one Echo message. If p; receives a
Echo message from some other process py, then there is a chain (kwl) g.p,, € C-Echo(a),
w € Pid*, k,l € Pid, such that p; sends the first Echo message. According to the algo-
rithm, p; receives a CoordEstimate and sends the Echo messages with the estimate of

25

the coordinator. As we showed before, the estimate of the coordinator is the initial value
of some process p; € II. Osg

Lemma 5.9 Let a be an execution of AsyncCrash. FEvery p; € Correct(a) eventually
decides in a.

Proof: From lemma 5.5, every correct process that does not decide in a round r, r > 0,
moves on to the next round. A process moves on by receiving one MloveOn message from
every process p; in some survivor set S € Sti. According to the algorithm, a process sends
a MoveOn message to all the other processes when it detects that the coordinator ¢, has
failed. From the eventual weak accuracy property of the failure detector, however, there is
a time t after which there is some correct process pi that is permanently not suspected by
any other correct process. Therefore, there is time ¢’ > ¢ that p; becomes the coordinator
of some asynchronous round 7’ and no correct process suspects py. No correct process
then sends a MoveOn message at this round, and consequently no correct process moves
on to the next round. Eventually, every correct process receives either an Echo message
from every process in some survivor set or a Decide message and finally decides. Oz 9

We now show three theorems to conclude our proof that AsyncCrash solves Consensus
in the asynchronous model with crash process failures. In order to accomplish this, we
present three theorems, each one showing that one of the Consensus property is satisfied
by AsyncCrash in every possible execution «a.

Theorem 5.10 Let « be an execution of AsyncCrash. AsyncCrash satisfies Validity
mn .

Proof: From lemma 5.7, every correct process that decides at round r decides upon
the value v proposed by the coordinator. Before sending a CoordEstimate message, the
coordinator updates its estimate with v. By lemma 5.8, v has to be the initial value of
some process p; € II. Os 19

Theorem 5.11 Let a be an ezxecution of AsyncCrash. AsyncCrash satisfies Agree-
ment in «.

Proof: If Correct(«) contains only one process, then agreement is trivially satisfied. Thus,
suppose Correct(a) contains at least two processes. From lemma 5.9, every correct process
eventually decides. Let p;,p; € Correct(cr), p; # pj, decide at round r; and r; respectively.
If r; = rj, then both decide upon the value v proposed by the coordinator of round
r = r; = rj, by lemma 5.7. In the case that r; # r;, they also have to decide upon the
same value. Assume without loss of generality that r; < r;. From lemma 5.7, p; decide
upon the value v proposed by the coordinator, and from lemma 5.6, the coordinator of
rj has to update its estimate with the value v and propose v in the CoordEstimate
messages it sends. Again from lemma 5.7, if p; decides at round r;, then it decides on v.

Os.11

Theorem 5.12 Let « be an execution of AsyncCrash. AsyncCrash satisfies Termi-
nation in «.

Proof: This result follows directly from lemma 5.9. O 1o

26

6 Synchronous Consensus with byzantine failures

Given a system representation (I, Cyy, Sip), suppose the following properties for this sys-
tem:

Property 6.1 (Byzantine Partition) For every partition (A, B,C) of II, at least one
of A, B, or C contains a core.

Property 6.2 (Byzantine Intersection) Vs;,s; € S, Jci € Cr, such that ¢, C (s; N
Sj).

We want to show that these two properties are equivalent. Before doing so, we prove
two preliminary lemmas, which are useful in the proof of the equivalence between properties
6.1 and 6.2. For convenience, we define f : € IT — {s1,59,---,sx} C S as a function
that evaluates to the survivor sets = belongs to. Thus, given a subset of processes X, we
define Sx as follows:

Sx = Ugex f(z) (1)

Lemma 6.3 Let (A, B,C) be a partition of 11 such that none of A, B, or C contains a
core. Suppose that for all s € Sy, there is a ¢ € Cyy such that ¢ C s. Then, we have that
forall s € Sp;, (sZ A)AN(sZ B)A(s Z C)

Proof: The proof is straightforward. If one of A, B, or C contains a survivor set, then
it also contains a core, because all survivor sets contain a core. This contradicts our
assumption that none of the partitions contains a core. g 3

Lemma 6.4 Let Sy be such that Vs; € Sy, dcj € Cn such that ¢; C s;. Given a partition
(A, B,C) of I, such that none of A, B, or C contain a core, the following properties hold:

6.4.1 VI € {A,B,C}, (Su € Si);

6.4.2 For all permutations I, J, K of {A, B,C}, 3s; € St, such that (s; € ((StNSy)—
Sk)).

Proof:

e 6.4.1: Suppose we have a subset I' C IT such that for all s € S we have that
RNs # (). By the defined relation between cores and survivor sets, there is a subset
of processes ¢ € Cp such that ¢ C I'. Thus, if Sy = Sy, then by our previous
observation, I contains a core.

e 6.4.2: we prove this property by contradiction. Suppose without loss of generality
that ((S4 N Sp) — Sc) = 0. We prove that for all s € Sy, we have that s € Se.
There are three cases to be considered:

1. if s € (S4 N Sp), then by assumption it is in S¢;
2. if (s € Sa) A (s € Sg), then by lemma 6.3 s € S¢;
3. if (s€Sa) N (s ¢ Sp), then s C C, which violates lemma, 6.3.

27

If C contains at least one element from every survivor set, then, by property 6.4.1, C
contains a core. This contradicts our assumption that none of the partitions contains
a core.

Ug.4

Claim 6.5 Byzantine Partition = Byzantine Intersection.

Proof:

e Byzantine Partition — Byzantine Intersection

We prove this implication by contradiction. Assume that property 6.1 holds and
there are two survivor sets s;,s; € S such that (s; Ns;) does not contain a core.
We need to build a partition (A, B, C') such that none of the subsets contain a core.
Suppose the following partition: A =II—s;, B = (5;Ns;), and C = (s; — B). Subset
A cannot contain a core, because it has no element from s;. By assumption, B does
not contain a core either. Because C contains no elements from s;, we have that C'
also does not contain a core. Thus, none of A, B, or C contain a core, contradicting
our assumption that property 6.1 holds.

e Byzantine Intersection — Byzantine Partition

We prove this implication also by contradiction. Assume that property 6.2 holds and
there is a partition (A, B, C') such that neither A, B, nor C' contain a core. From
lemma 6.4, we have that:

Jdzy € Sy, such that z; € (S4 N Sp) — Sc (2)
Jzy € Sy, such that z9 € (S4 N S¢) — Sp (3)

Because z1 € S¢ and z9 ¢ Sp, we have that (z; N zy) C A. By assumption, A
does not contain a core, and consequently x; N zo does not contain a core. This
contradicts, however, our assumption that property 6.2 holds.

Us.5

6.1 Lower bound on process replication

The intersection (partition) property is necessary and sufficient for solving Strong Con-
sensus in a synchronous system with byzantine failures. First, we prove that this property
is necessary. The proof we provide is based upon the one by Lamport for independent and
identically distributed process failures [25, 26]. We show that if there is a partition of the
processes in three non-empty subsets, such that none of them contains a core, then there
is at least one run in which agreement is violated, for any algorithm 4. This is illustrated
in figure 3, where we have three executions: «, 3, and . Suppose that we have a system
representation (IT, Cyp, Syp) and a partition of IT in three non-empty subsets (A4, B, C') such
that none of them contains a core. In addition, suppose by way of contradiction that we
have an algorithm A that solves Strong Consensus in such a system.

In execution «, the initial value of every the processes is the same, let’s say v. Moreover,
all the processes in subset B are faulty, and they all lie to the processes in subset C' about

28

their initial values and the value received from processes in A. Thus, running algorithm A4
in such a execution results in all the processes in subset C' deciding v, by the strong validity
property. Execution S is analogous to execution A, but instead of every process beginning
with a initial value v, they all have initial value v’ # v. Consequently, by the strong
validity property, all processes in B decide v’ in this execution. Lastly, in execution ~, the
processes in subset C' have initial value v, whereas processes in subset B have initial value
v'. The processes in subset A are all faulty and behave for processes in C' as in execution .
For processes in C, however, processes in B behave as in execution . Because processes
in C cannot distinguish executions « from -y, processes in C' have to decide v. At the same
time, processes in B cannot distinguish executions 3 from ~, and therefore they decide v'.
Consequently, there are correct processes which decide differently in execution v, violating
the agreement property of Strong Consensus.

-~ ’ .L
AV, BV @
A:v, Cv

Scenario a

AV, BV
A, Cv
Scenario y

Figure 3: Executions illustrating the violation of Consensus. The processes in shaded
subsets are all faulty in the given execution

We now provide a more formal argument by proving the following theorem. Before
proceeding in the statement and proof of the theorem, we introduce some useful notation.
Let a be an execution. We assume that a(ipiz - - - i) is the value that process p;, receives
from process p;,;, which claims that this value is the initial value of p, passed by every
process p; to process p;_1 in this k-process chain. For example, «(ijk) is the value that
process p; receives from process p;, which is the value that supposedly py has sent to p; as
its initial value. If the k-process chain contains only correct process, k > 1, then the value
a(igiz - - - 7x) is the initial value of pg. Otherwise, this property is not guaranteed. In the
case that k = 1, we have that «(7) is the initial value of process p;.

Theorem 6.6 Let sys = (II,Cyy, Str) be a system representation. If there is a partition
(A, B,C) of I1 such that none of A, B, or C contains a core, then there is no algorithm
which solves Strong Consensus in such a system.

Proof: We assume without loss of generality that none of A, B, or C is empty.
Suppose there is an algorithm A which solves Strong Consensus in sys. We construct
recursively an execution in which two correct processes decide differently. Moreover, the

29

agreement violation in this execution is independent of the number of rounds the algorithm
runs. Even if the algorithm runs for an infinite number of rounds, it cannot prevent
agreement violation.

By assumption, there is a partition (A, B, C') of I in three non-empty subsets such that
none of A, B, or C contains a core. Let’s start by describing two preliminary executions
that are used to construct the one in which agreement is violated. We construct executions
« and (§ as follows:

Leta€e A,beB,ceC,veV,v eV, v #£v
ala) = a(b) = alc) =v
Bla) = B(b) = Bc) =v'

Let w € IT* and p € 11

a(paw) = a(aw)
alabw) = a(bw)
a(cbw) = p(bw)
a(pcw) = alcw)
Blpaw) = Haw)
Bpbw) = B(bw)
Blacw) = lcw)
B(bcw) = a(cw)

Based on executions « and (3, we constructed execution «y as follows:

Let a, b, ¢, v, v', p, and w be as in definition of executions « and /3

It remains to show that a(cw) = y(cw) and B(bw) = vy(bw), for b € B, ¢ € C, and
w € IT*. We prove these equivalences by a simple induction on the length of w.

e Base case: |w| =0
For |w| = 0, we have that a(c) = v = y(c) and that 8(b) = v' = (b).

e Induction step: the induction hypothesis is that the proposition is valid for all w
such that |w| < i. We need to prove that the proposition is true for all w of length

30

i + 1. That is, we need to show that a(cpw) = y(cpw) and B(bpw) = y(bpw) for
every p € II. There are three cases to be analyzed: p =a, p = b, and p = c. We
show below these three cases separately:

1. p = a: by the definitions of «, 3, and ~:

Because processes in C' cannot distinguish between executions « and -y, these processes
have to decide v in 4. On the other hand, processes in B cannot distinguish execution
B from execution «y, and consequently they have to decide v’ in . By assumption, in
execution 7y, the processes in both subset B and subset C' are correct. Therefore, the
agreement property of Strong Consensus is violated in this execution.

Ue.6

6.2 An algorithm to solve Strong Consensus

We describe an algorithm that solves Strong Consensus in a system sys= (II, Cyy, Si)
which satisfies the intersection property. This algorithm is based on the one described by
Lamport to demonstrate that it is sufficient to have 3t 4+ 1 processes (¢ is the maximum
tolerated number of faulty processes) to have interactive consistency in a setting with
byzantine processes [25].

In our algorithm, all the processes run the same state machine. Every process creates
a tree where every node is labeled with a string w of process id’s and stores a value. Every
label is composed of a sequence of process id’s and each id appears at most once in a given
label w. The value stored at a given node labeled w corresponds to the value forwarded
by the chain of processes with id’s on the string, following the sequence determined by
the string. Thus, at round r, every correct process p; sends a message containing the
values stored at depth r of the tree to all the other processes. Every correct process p;
that receives this message at round r + 1 stores the values contained in it in the following

31

manner: for every node labeled wi, with w € Pid*, |w| = r, make the value of node equal
to the value in the message sent by p; corresponding to w.

A simple example will help to clarify the use of the tree. Suppose that a correct process
p receives at round 3 a message from process pi, which contains the string 75 and the value
v associated to this string. Process p hence stores the value v at the node labeled ik and
forward a message containing 4jk associated to the value v to all the other processes.

An important observation about the tree built by the algorithm is that the last
level is composed of survivor sets. More specifically, a Node(w)* is a leaf if and only
II— Processes(w) does not contain a survivor set . Consequently, if Node(wp) is a leaf,
then Child(w)® is a survivor set 7. A property that every node of the tree labeled w satis-
fies is that IT — Processes(w) has to contain a survivor set. A consequence of the previous
observations is that the depth of tree is |II| — min |s;||s; € Sp + 1. An example of a tree is
presented in figure 4, for a system a characterized by the following sets:

b H = {a7b’c7d’e}
e O = {ab,ac,ad,ae,be,bd, cd, ce,de}
e S = {abce, abde, acd, bede}

Figure 4: An example of a tree built by each process in the first stage of the algorithm.

Building and initializing the tree corresponds to the first stage of the algorithm. The
second stage consists in running several rounds of message exchange. In the first round,
each process broadcast its initial value. In the subsequent rounds, each process broadcast
the values it learned in the previous round. As the processes receive the messages con-
taining values learned in previous rounds, each node fills out the nodes of its tree with
these values. Because the depth of the tree is |II| — min|s;||s; € S + 1, this is exactly
the total number of rounds required for message exchanging. An important observation is
that this matches the lower bound on the number of rounds necessary to solve Consensus
in a byzantine setting. As shown in [9], if ¢ is the maximum number of process failures
assumed, ¢t < (|II] — 2), then at least ¢ + 1 rounds are necessary. Furthermore, the proof
presented does not assume independent and identically distributed process failures, and
therefore it accommodates a more general model as ours. A question that may strike one’s
mind is why we cannot use a trick of using a subset of cores or survivor sets to design

4 Node(w) is defined as the node of the tree labeled with the string w.

% Processes(w)= {p|p.id is in w}

® Child(w)= {p;|node labeled wi is a child of node labeled w}.

"Observe that the tree structure is the same for all correct processes, and hence none of Pro-
cesses(-),Node(-), or Child(-) need to be associated with any particular process.

32

an algorithm that runs in fewer rounds, as we did for the synchronous crash model. The
answer is simple: from our previous results on the lower bound for process replication,
this subset would need to satisfy the byzantine intersection property. If we take a core as
an isolated system, for instance, then it clearly does not satisfy this property.

Finally, in the last stage, each process traverses the tree visiting the nodes in postorder
to decide on a value. We show later in this section that all processes decide on the same
value after traversing the tree.

Before presenting the pseudo-code of the algorithm, a few words about the notation.
We define Pid to be the set of process id’s, i.e., Pid= {i|(i = p.id) A (p € II)}. This
is convenient, because we label the nodes of the trees with strings of process id’s. The
function z. Value(w) evaluates to the value v associated to the string of id’s w. Because v is
provided either by a message or a node of the tree, the value x represents either a process or
a message. Thus, m. Value(w) evaluates to the value v that message m carries associated
to string w, whereas p;. Value(w) evaluates to the value v stored by node labeled w at
process p;. This is a slight abuse of notation, but it is convenient and the differentiation
between the cases will be clear from context.

A pseudo-code of the algorithm is presented below.

We now prove that the algorithm SyncByz satisfy the properties of Strong Consensus.
First, we state and prove three preliminary lemmas that we are useful in demonstrating
that these properties hold for SyncByz.

For the following lemmas, suppose that Sy, is a minimum-sized survivor set in Sy.
That is, there is no survivor set in S|} with fewer elements than Sy,;,.

Lemma 6.7 Let a be an execution of SyncByz, p; be a correct process in a, and w € Pid*
be the label of some non-leaf node. At the end of round r = (|II| — |Smin| + 1), for
every pg,pj € Correct(cr), p;.Value(wi) = py.Value(wi) = v¥, where vy’ € V is the value
p;.Value(w) at round |w|.

Proof: Let s. € Sy be a survivor set containing only correct processes in «.

We prove this lemma by recursion on the length of node label w, 1 < |w| < (|II| —
|Smin| + 1). For the base case, suppose that wi is the label of a leaf. If p; is correct,
then it forwards the same value v;” € V it has for w to all the other processes at round
|lw| + 1. Notice that if w = (0, then p; sends its initial value. Thus, for every process
pj € Correct(), pj. Value(wi) = v}’ at the end of round r = |w| + 1, where v € V is the
value p;. Value(w) at round |w| + 1.

We now assume that for every p;,p; € Correct(ar), p;. Value(wi) = v, |wi|] < |w'| <
(III] — |Smin| + 1), where v’ € V is the value p;. Value(w) at round |w| + 1. We need
to prove the proposition for the labels of length |w|. Suppose that w = w'i. Let s; be
such that s; C Child(w). From the inductive assumption, for every process p;, € s N sy
and p; € Correct(«), we have that p;.Value(wi,) = v, where v € V is the value
pi. Value(w') at round |w'| 4 1. Moreover, suppose that there are two survivor sets sg, s3 €
St, (s2 Ns3) # (s1Ns¢), such that (sp N s3) € Child(w). From the byzantine intersection
property, there is ate least one correct process p;, € (s2 N s3). Consequently, if for every
process pj, € S¢ NS4, pj. Value(wis) = v’, then v’ has to be equal to v. Otherwise, the
value p;. Value(wis) # vy, contradicting the inductive assumption.

According to the algorithm, we have that for every p; € Correct(c), p;. Value(w'i) =
v where v’ € V is the value p;. Value(w') at round |w'| + 1. Og.7

Before stating and proving the following lemma, we need to introduce some more
notation. We define RLeaves(w) as the set of labels ww’, such that Child(ww') = @ and
w' € Pid*.

33

Algorithm SyncByz for process p;:
Input: a set of processes II; a set of cores Cpy; a set of survivor sets Spp; an input value v; € V/

Variables:

Let s;,in be a smallest survivor set in S

Let r be the current round number

Let root be a reference to the root of process i’s tree

Let M be a set of messages

Let P, P’ be sets of pairs (w,v), where w € Pid*, and v € V

initialization:
root < CreateNode(, v;)
Build Tree(root)
P {(0,vi)}

rounds 1 <7 < (|II| — |Spmin| + 1):
SendAll(i, P)
let M be the set of messages received by p; at round r
P«
for every message m = (j, P') € M do
for every node at depth r labeled wj, w € Pid*, |w| =r do
p;. Value(wyj) < m. Value(w)
if node labeled wj is not a leaf then P < P U {(wj, m. Value(w))}

round r = (|II| — |smin| + 1):
SendAll(i, P)
let M be the set of messages received by p; at round r
for every message m = (j, P') € M do
for every node at level r labeled wj, w € Pid*, |lw| = r, do
pi. Value(wj) + m. Value(w)

Traverse Tree in postorder, executing the following steps when visiting a node labeled w:
if Child(w)# 0
then let I < Child(w)
if(ds1, 82 € S such that ((s1 N's2) CI) A (Vp; € (51N s2),p;. Value(wj) = v, v € V)))
then p;. Value(w) v
else p;. Value(w) + L

Auxiliary function
Function BuildTree(w)
let T + Processes(w)
Vp; € Il such that p; ¢ T
if (3s; € S such that s; C (II - T))
then node < CreateNode(wj, 1)
Child(w) < Child(w) U {node}
BuildTree(wy)

Figure 5: Synchronous Consensus for Dependent Arbitrary Failures

Lemma 6.8 Let a be an execution of SyneByz, and u be a node labeled wi, w € Pid*, p; €
II. If for every wiw' € RLeaves(wi), it is the case that Correct(a) N Processes(iw') # 0,
then pj.Value(wi) = py.Value(wi) for all pj,pp € Correct(c) at the end of round r =

34

(] = |$min| + 1).

Proof: We prove this lemma by induction on the height of the tree, starting from the
leaves.

The base case occurs when u is a leaf. By assumption, p; is correct. Thus, we have
that py. Value(wi) = p;. Value(wi), from lemma 6.7.

The induction hypothesis is that the proposition is valid for all the nodes at depth d,
starting from the leaves. We need to prove the proposition for a node v at depth d — 1.
We have two cases to analyze: p; is correct and p; is faulty. If p; is correct, then the proof
is straightforward from lemma 6.7. We need to analyze the case in which p; is faulty.

Suppose that p; is faulty and that every leaf labeled wiw' is such that Processes(iw') N
Correct(a) # (). In this case, for every child labeled wiiy, we have that for all wii;w" €
RLeaves(wiiy), Processes(iyw”) N Correct(a) # (. By the induction hypothesis, it is the
case that p;. Value(wiii) = py. Value(wiiy) for every p;; € Child(wi). From the algorithm,
it has to be the case that py. Value(w) = p;. Value(w), for all p;,py, € Correct(or). Ugg

Lemma 6.9 Let « be an execution of SyncByz. SyncByz satisfies Strong Validity in
a.

Proof: By the definition of Sy, in every execution there is at least one survivor s; set
containing only correct processes. From lemma 6.7, for every process p; € s,, we have
that p;. Value (i) is the initial value of p;, assuming p; is correct. If all the processes start
an execution with the same initial value v, then, from the algorithm and the assumption
that the intersection property holds, p;. Value(@)=v. Og g

Lemma 6.10 Let « be an execution of SyncByz. SyncByz satisfies Agreement in a.

Proof: Let p; be a process in II, and « be some execution of SyncByz. We need
to prove that for every process p; € Correct(a), p;. Value(d) = v, for some decision value
v € VU{L}. By the construction of the tree, for every leaf labeled iwj, w € (Pid —{i,5})*,
there is at least one correct process p;, € Processes(iwj). From lemma 6.2, we have that
by the end of round r = (|II| — |z| + 1) , for some v € V U {L}, p;,. Value(i) = v, for all
pi, € Correct(a).

From the previous argument, we have that for every p;,,p;, € Correct(«) and every
piy, € 1, pi,. Value(is) = pi,. Value(iq). According to the algorithm, the decision value
of every correct process therefore has to be the same. This proves that the agreement
property holds for SyncByz. g 19

Lemma 6.11 Let « be an execution of SyncByz. SyncByz satisfies Termination in .

Proof: The absence of infinite loops in the algorithm makes it straightforward to observe
that it eventually terminates and every process eventually decides. Og 11

7 Asynchronous Consensus with Arbitrary Failures

Under Construction

35

8 Final Remarks

The results we showed in this paper encourage one to use cores and survivor sets in the
design of fault-tolerant algorithms. There are a few questions, however, that remain to
be answered. First, it is not clear that cores or survivor sets are a good way of modeling
failure correlation. In the worst case, there is an exponential number of such subsets.
Representing and finding cores or survivor sets in these system configurations may not
be practical. Some of our results show that even in the case that there is an exponential
number of cores in a system, just a subset of cores are necessary to satisfy replication
requirements. For example, in the case of Consensus for synchronous systems with crash
failures, processes need to know about a single core. For asynchronous systems with crash
failures, all is needed is a set of survivor sets that is a coterie. Both cases imply that not
all subsets are needed, but just some of them.

A second question is how to extract the information about cores. One has to know how
to correlate failures in order to determine cores. An obvious approach is to consider failure
probabilities. This may not be as practical as assuming independent failure probabilities,
because in general one has to deal with equations with an exponential number of terms.
Alternatively, one can use intrinsic properties of the system to correlate process failures.
For example, if there are two PC’s in the same room, then a power failure can make
both crash at the same time. Another example is having implementations using the same
buggy code. Processes running such a software may present the same arbitrary behavior
and consequently present correlated failures. Thus, it is not necessary to quantify failure
correlation in order to determine cores in a system. Although we do not have a nice and
closed formula to compute cores in the general case, there are heuristics that can be used
on a per-case basis. We present two heuristics in [27].

In more dynamic systems, there is the issue of correlating failures on-line. Suppose
the case of mobile nodes. Assuming each mobile node is a process, processes close to
each other may be subject to the same unfortunate events. In this case, it is necessary
to know the position of the nodes to determine cores. Furthermore, cores are constantly
changing. Thus, a probing mechanism is necessary to determine positioning information.
This information is then used to extract cores. A probing mechanism, however, is not
sufficient. It is also necessary to have either an agreement protocol so that processes agree
on the cores at a given point of an execution, or protocols should be designed to cope with
inconsistencies in the set of cores across all processes.

Generalizing the results we have is also one of our goals. It seems that the idea of
using protocols proposed in the literature modified to consider cores or survivor sets is not
applicable only to Consensus. So far we have investigated the application of our model only
to Distributed Consensus yet we plan to do the same for other problems in FT distributed
computing. By doing this, we will gain more intuition on the applicability of our model.

To conclude, we believe that all questions we posed here are important and that we
will have answers for most of them only after applying to the designing of real systems.
We are optimistic about our results, because the ones we have so far show several benefits
in using failure correlation in the design of algorithms and the preliminary results we have
about cores in real systems show that tha approach is not unrealistic.

References

[1] I. Keidar and S. Rajsbaum, “On the Cost of Fault-Tolerant Consensus When There
Are No Faults - A Tutorial,” Tech. Rep. MIT-LCS-TR-821, MIT, May 2001.

36

2]

3]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

T. Chandra and S. Toueg, “Unreliable Failure Detectors for Reliable Distributed
Systems,” Journal of the ACM, vol. 43, pp. 225-267, March 1996.

J. von Neumann, “Probabilistic Logics and the Synthesis of Reliable Organisms from
Unreliable Components,” in Automata Studies, pp. 43-98, Princeton University Press,
1956.

J. Wensley, “SIFT: Design and Analysis of a Fault-Tolerant Computer for Aircraft
Control,” in Proceedings of the IEEE, vol. 66, pp. 1240-1255, October 1978.

R. Rodrigues, B. Liskov, and M. Castro, “BASE: Using Abstraction to Improve Fault
Tolerance,” in 18th ACM Symposium on Operating Systems Principles (SOSP’01),
vol. 35, (Chateau Lake Louise, Banff, Alberta, Canada), pp. 15-28, October 2001.

Y. Ren and J. B. Dugan, “Optimal Design of Reliable Systems Using Static and Dy-
namic Fault Trees,” IEEE Transactions on Reliability, vol. 47, pp. 234244, December
1998.

P. Thambidurai and Y.-K. Park, “Interactive Consistency with Multiple Failure
Modes,” in IEEE 7Tth Symposium on Reliable Distributed Systems, (Columbus, Ohio),
pp- 93-100, October 1988.

D. Malkhi and M. Reiter, “Byzantine Quorum Systems,” in 29th ACM Symposium
on Theory of Computing, pp. 569-578, may 1997.

H. Attiya and J. Welch, Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill, 1998.

K. Kihlstrom, L. Moser, and P. M. Melliar-Smith, “Solving Consensus in a Byzan-
tine Environment using an Unreliable Failure Detector,” in Proceedings of the Inter-
national Conference on Principles of Distributed Systems (OPODIS’97), (Chantilly,
France), pp. 61-76, December 1997.

D. Malkhi and M. Reiter, “Unreliable Intrusion Detection in Distributed Com-
putations,” in Proceedings of the 10th Computer Security Foundations Workshop
(CSFW97) , (Rockport, MA), pp. 116-124, June 1997.

D. Dolev, C. Dwork, and L. Stockmeyer, “On the Minimal Synchronism Needed for
Distributed Consensus,” Journal of the ACM, vol. 1, pp. 77-97, January 1987.

S. Mullender, ed., Distributed Systems, ch. 5. Addison-Wesley, 2nd ed., 1995.

B. Charron-Bost, R. Guerraoui, and A. Schiper, “Synchronous System and Perfect
Failure Detector: solvability and efficiency issues,” in IEEE International Conference
on Dependable Systems and Networks (DSN’00), (New York, NY), pp. 523-532, June
2000.

M. Fischer, N. Lynch, and M. Paterson, “Impossibility of Distributed Consensus with
One Faulty Process,” Journal of the ACM, vol. 32, pp. 374-382, April 1985.

T. Chandra, V. Hadzilacos, and S. Toueg, “The Weakest Failure Detector for Solving
Consensus,” Journal of the ACM, vol. 43, pp. 685-722, July 1996.

37

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

A. Doudou and A. Schiper, “Muteness Detectors for Consensus with Byzantine Pro-
cesses,” in Proceedings of the 17th ACM Symposium on Principle of Distributed Com-
puting, (Puerto Vallarta, Mexico), p. 315, July 1998. (Brief Announcement).

B. Charron-Bost and A. Schiper, “Uniform Consensus is Harder Than Consensus,”
tech. rep., Ecole Polytechnique Fédérale de Lausanne, Switzerland, May 2000.

D. Skeen, “Determining the Last Process to Fail,” ACM Transactions on Computer
Systems, vol. 3, pp. 15-30, February 1985.

L. Lamport and M. Fischer, “Byzantine Generals and Transaction Commit Proto-
cols,” tech. rep., SRI International, April 1982.

D. Dolev, R. Reischuk, and H. R. Strong, “Early Stopping in Byzantine Agreement,”
Journal of the ACM, vol. 37, pp. 720-741, October 1990.

F. Junqueira and K. Marzullo, “Lower Bound on the Number of Rounds for Syn-
chronous Consensus with Dependent Process Failures,” tech. rep., UCSD, La Jolla,
CA, September 2002. http://www.cs.ucsd.edu/users/flavio/Docs/lb.ps.

R. Guerraoui and A. Schiper, “Consensus Service: A Modular Approach for Building
Fault-tolerant Agreement Protocols in Distributed Systems,” in 26th International
Symposium on Fault-Tolerant Computing (FTCS-26), (Sendai, Japan), pp. 168-177,
June 1996.

A. Schiper, “Early Consensus in a Asynchronous System with a Weak Failure Detec-
tor,” Distributed Computing, vol. 10, pp. 149-157, April 1997.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM
Transactions on Programming Languages and Systems, vol. 4, pp. 382—401, July 1982.

M. Pease, R. Shostak, , and L. Lamport, “Reaching Agreement in the Presence of
Faults,” Journal of the ACM, vol. 27, pp. pp. 228-234, April 1980.

F. Junqueira, K. Marzullo, and G. Voelker, “Coping with Dependent
Process Failures,” tech. rep., UCSD, La Jolla, CA, December 2001.
http://www.cs.ucsd.edu/users/flavio/ Docs/JuMaVo2001.ps.

38

