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Covariance-Domain Dictionary Learning for
Overcomplete EEG Source Identification

Ozgur Balkan*, Student Member, IEEE, Kenneth Kreutz-Delgado, Fellow, IEEE, and Scott Makeig

Abstract—We propose an algorithm targeting the identification
of more sources than channels for electroencephalography (EEG).
Our overcomplete source identification algorithm, Cov-DL, lever-
ages dictionary learning methods applied in the covariance-
domain. Assuming that EEG sources are uncorrelated within
moving time-windows and the scalp mixing is linear, the forward
problem can be transferred to the covariance domain which has
higher dimensionality than the original EEG channel domain.
This allows for learning the overcomplete mixing matrix that
generates the scalp EEG even when there may be more sources
than sensors active at any time segment, i.e. when there are non-
sparse sources. This is contrary to straight-forward dictionary
learning methods that are based on the assumption of sparsity,
which is not a satisfied condition in the case of low-density EEG
systems. We present two different learning strategies for Cov-
DL, determined by the size of the target mixing matrix. We
demonstrate that Cov-DL outperforms existing overcomplete ICA
algorithms under various scenarios of EEG simulations and real
EEG experiments.

Index Terms—Dictionary Learning, Independent Component
Analysis

I. INTRODUCTION

AS a non-invasive brain imaging modality, electroen-
cephalography (EEG) provides high temporal resolution,

applicability in mobile settings, and direct measurement of
electrical brain activity as opposed to other brain imaging
modalities such as BOLD activity measured in fMRI. How-
ever, a major issue in EEG signal processing is that signals
measured on the scalp surface do not each index a single
localized cortical source of brain activity. Because of the broad
point spread function of generated potentials in the brain, EEG
data collected on scalp channels is a mixture of simultaneously
active brain sources distributed over many different brain
areas. In addition, non-brain sources such as eye and muscle
movements contribute to the mixing process as well, which
makes direct channel-level EEG analysis problematic. For
accurate brain activity monitoring, individual sources involved
in the mixture have to be identified and extracted from scalp
channel data.

Because of the fact that volume conduction and mixing at
the sensors is linear [1], EEG mixing can be formulated as
follows

Y = AX (1)

This work was supported by The Swartz Foundation (Old Field, NY). O.
Balkan and K. Kreutz-Delgado are with the Department of Electrical and
Computer Engineering, University of California San Diego, La Jolla CA,
92093 USA e-mail: (obalkan@ucsd.edu, kreutz@eng.ucsd.edu). S. Makeig
is with the UCSD Swartz Center for Computational Neuroscience email:
(smakeig@ucsd.edu).

where Y ∈ RM×Nd is the matrix containing collected EEG
data at M sensors for Nd data points. The matrix A ∈ RM×N

is the unknown mixing matrix, and X ∈ RN×Nd contains
the activations of N sources. The i-th column of A, denoted
as ai, represents the relative projection weights of the i-th
source to each channel. The so-called EEG inverse problem is
to identify both A and X, given sensor data Y [2]. Learning
the columns of A, namely the scalp maps, can further enable
source localization in the cortex through methods such as
DIPFIT [3] or sLORETA [4]. Identifying the rows of X can
enable the computing of time-series measures such as event-
related potentials (ERPs), event-related spectral perturbation
(ERSPs), and spectral components [5].

A commonly applied method to solve the EEG inverse prob-
lem has been to use independent component analysis (ICA)
[2], [6]. Assuming statistical independence between source
activities, ICA can separate the scalp mixture into underlying
source time-series X and identify the mixing matrix A. It was
shown in [7] that ICA methods are well suited for solving
the EEG inverse problem since independence among sources
was found to be positively correlated with the number of
brain sources that can be extracted from data. ICA has been
extensively applied on EEG for artifact rejection and source
separation [8], [9] and has been shown to increase accuracy in
brain-computer-interface paradigms [10]. However, one major
drawback of ICA is that the number of mixed sources is
assumed to be less than or equal to the number of sensors
(N ≤ M ). This assumption undermines the reliability and
utility of ICA, especially in low-density EEG systems (< 32
number of channels).

There are multiple reasons why an EEG source identifica-
tion algorithm should be able to handle more sources than
sensors. A main motivation is to increase the capabilities of
EEG systems to handle large number of artifacts. Depending
on the experiment settings and the length of recording, the
number of distinct artifact sources could possibly outnumber
the brain sources or even exceed the number of channels.
In those cases, ICA solution matrix is occupied by artifact
sources and only a few brain sources can be extracted from
data, which limits further analysis of brain activity. Even
in ideal conditions, i.e, when there are no artifacts, higher
resolution is desired to better capture true brain dynamics,
taking into account the possibility of more than M sources
being simultaneously active and/or changing brain source
locations throughout the experiment.

It is also desirable to enhance the capabilities of low-density
EEG devices that are becoming increasingly popular due to
their relative low-cost and ease of use. Low-density EEG
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allows for a wide range of applications by facilitating EEG
recording of mobile and possibly long duration experiments.
However, because they are targeted for low-cost research and
consumer markets, these systems usually contain about 8-19
channels for which the results of traditional ICA results would
be insufficient for reliable brain source monitoring. Extracting
more sources than channels may benefit low-cost clinical
research and improve consumer-oriented BCI applications.

Here, we propose a covariance-domain dictionary learn-
ing algorithm, Cov-DL, that can identify more sources than
number of channels for the EEG inverse problem. We note
that our algorithm does not learn the explicit source time-
series activity X but learns the overcomplete mixing matrix
A (projection of sources to scalp sensors) and the power of
individual sources in a given data segment. In this sense,
our algorithm is categorically placed between blind source
identification and source separation methods.

II. RELATED WORK

An important family of blind source identification methods
is comprised of cumulant-based algorithms that incorporate
second order (SOBI) [11] or fourth order statistics (FOOBI)
[12]. In non-EEG settings, it was shown that FOOBI can
identify a number of sources that are roughly quadratic in
the number of sensors [12]. However, multiple studies [7],
[13] showed that cumulant-based methods perform relatively
poorly in EEG source separation tasks compared to maximum
likelihood based methods such as Infomax [14]. Among all
methods, AMICA, an EM-based maximum likelihood ICA
framework with flexible source densities, [15], performed
best in terms of extracting the most number of plausible
brain sources while providing the highest independence among
sources [7].

An extension of traditional ICA for the overcomplete case is
provided by the ICA mixture model [16], [15]. This approach
learns Nmodel mixing matrices, Ai ∈ RM×M , instead of
learning one overcomplete mixing matrix A, in order to
provide tractable computation. An adaptation of this method
with AMICA, Multiple Model AMICA, was shown to be
successful in identifying more sources than electrodes in some
non-stationary EEG paradigms [15]. However, the mixture
model has some drawbacks; because it assumes that at most M
sources are active at any given time and there are only a few
disjoint sets of simultaneously active sources (Nmodel). This
is problematic especially when M is low. An ideal algorithm
should be able to handle cases where any of

(
N
k

)
sources,

1 ≤ k ≤ N , can be jointly active. Our algorithm targets this
case.

Another set of overcomplete ICA algorithms [17], [18]
model the source estimates as X̂ = WY, where W ∈ RN×M

is a tall unmixing matrix with full column rank. These algo-
rithms optimize W and return the mixing matrix as A = WT.
One of the recent algorithms of this type is RICA [18],
an efficient method used for unsupervised feature learning
in neural networks. We have found that in the complete
mixing matrix case (M = N ), RICA gives almost identical
results with Infomax on EEG data. In this paper, we are

considering the overcomplete setting for RICA and multiple
model AMICA for comparison with our overcomplete method
Cov-DL.

Dictionary learning-based sparse coding algorithms are
closely related to overcomplete ICA methods. In the dictionary
learning framework, the inverse problem is formulated as the
following optimization problem,

min
A,X

1

2

Nd∑
t=1

‖Y −AX‖2F + λ

Nd∑
t=1

g(xt) (2)

where g(·) is a function that promotes sparsity of the source
vector xt at time index t and λ is the regularization param-
eter controlling the sparsity of the sources. Optimization is
generally performed on A and X iteratively, namely learning
X while keeping A fixed, and vice versa [19], [20]. Given a
fixed dictionary Â, the sources X̂ are learned by solving the
following optimization

min
X

1

2

Nd∑
t=1

‖Y − ÂX‖2F + λ

Nd∑
t=1

g(xt) (3)

The true dictionary can be recovered if the sources xt are
sparse (kt < M ), where kt is the number of active sources
at time t. The accuracy of recovery is strongly dependent on
the level of sparsity as higher accuracy is achieved if k �M .
It was shown for various dictionary learning algorithms that
the performance significantly drops as k approaches M [21].
Indeed, when k ≥ M , any full-row rank dictionary can
provide a source decomposition with sparsity k and zero
representation error ‖Y −AX‖2F for (2), thus the true mixing
matrix becomes unrecoverable. In the case of EEG, this allows
at most k = O(M) EEG sources to be simultaneously active
which limits direct applicability of dictionary learning to low-
density EEG systems.

Recently it was shown that given the true dictionary A, and
a data segment Ys ∈ RM×Ls , where Ls is the length of the
segment in data frames, M-SBL (multiple measurement Sparse
Bayesian Learning) applied directly on Ys can identify active
sources under the assumption that sources are uncorrelated
in the time segment [22]. The number of sources identified
in this case is not limited by the number of channels M ,
1 ≤ k ≤ M(M + 1)/2. This finding is supported by
[23], where LASSO is applied on the covariance matrix off
the data segment Ys to obtain probability bounds on the
identification of active sources. Under the assumption of un-
correlated sources Xs, the sample-covariance matrix 1

Ls
XsX

T
s

is assumed to be nearly diagonal (“pseudo-diagonal”) and
expressible as ΣXs = 1

Ls
XsX

T
s = ∆ + E, where ∆ is a

diagonal matrix composed of diagonal entries of ΣXs . Hence
in [23], Ys = AXs is modeled as

YsY
T
s = AXsX

T
s AT

ΣYs = AΣXsA
T

ΣYs = A∆AT + E =

N∑
i=1

∆iiaia
T
i + E. (4)
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Y1 Y2 Y3,	   ,	   ,	  

Extract EEG segments 

Compute vectorized 
outer product on 

each segment 
{vech(Y1Y1

T ), vech(Y2Y2
T ), vech(Y3Y3

T ), 

Learn D with dictionary 
learning 

Infer columns of A from 
columns of D, in a one-to-
one manner 

Learn N-dimensional 
subspace R(U) that 

“vectorized outer products” 
live in. 

Find A such that D spans the 
same subspace as R(U) . 

Ys = AXs

vech(YsYs
T ) = Dδ s + e

di = vech(aiai
T )

N ≥ M (M +1)
2

N < M (M +1)
2

Cov-DL-1 

Cov-DL-2 

Fig. 1: The summary of two different strategies of Cov-DL for overcomplete EEG source identification. Cov-DL-1 involves a
dictionary learning stage requiring the assumption that k < M(M + 1)/2 sources are active at any given segment. Cov-DL-2
does not require sparsity of sources.

Since the covariance matrix is symmetric, we can vectorize
the lower triangular part of both sides and obtain,

vech (ΣYs) =

N∑
i=1

vech
(
aia

T
i

)
∆ii + vech (E)

vech (ΣYs
) =

N∑
i=1

di∆ii + vech (E)

vech (ΣYs) = Dδ + vech (E) (5)

where D = [d1,d2, . . . ,dN], di = vech
(
aia

T
i

)
and vech(·)

is a function that maps a symmetric matrix S ∈ RM×M to
its vectorized lower triangular matrix, of size M(M+1)

2 . Here,
we also define the inverse function vech−1(·), which takes
as an input an M(M+1)

2 dimesional vector v and outputs a
symmetric matrix of size M × M whose lower triangular
matrix consists of entries in v. Thus, for any vector v, we
have v = vech

(
vech−1 (v)

)
.

It was shown in [23] that this formulation, together with the
correlation constraint (4) can identify O(M2) sources given
the true dictionary. We leverage this idea to also learn the
dictionary A from EEG data considering multiple segments
from the overall recording. We also note that assumption
of uncorrelated sources, albeit being a weaker constraint, is
implied by the independence of sources, an assumption which
was shown to be successful for EEG source separation [7].

III. COVARIANCE-DOMAIN DICTIONARY LEARNING
(COV-DL)

Here, we describe our covariance based dictionary learning
algorithm that leverages the assumed uncorrelated nature of
EEG sources. We start by segmenting the overall EEG data
matrix Y ∈ RM×Nd , sampled with frequency Sf , into
possibly overlapping segments Ys ∈ RM×tsSf of ts seconds,
where s denotes the index for the corresponding segment. For
each segment, the following equation holds under the linear

mixture model of EEG,

Ys = AXs,∀s (6)

and thus, YsY
T
s = AXsX

T
s AT. Then, we calculate the sam-

ple data covariance ΣYs = 1
Ls

YsY
T
s , for each segment s. We

have,

ΣYs = A∆sA
T + Es

vech (ΣYs) =

N∑
i=1

∆siivech
(
aia

T
i

)
+ vech (Es),

vech (ΣYs) = Dδs + vech (Es) ,∀s. (7)

where the vector δs contains the diagonal entries of the source
sample-covariance matrix ΣXs = 1

Ls
XsX

T
s , and the matrix

D ∈ RM(M+1)/2×N consists of columns di = vech
(
aia

T
i

)
.

Note that, for each segment, the left hand side of the equations
are obtained from data while D and δs are not known. Our
goal is to first learn D and then find the associated matrix
A. We propose two different approaches to recover D and A
which depend on the relation between the target number of
total sources N and the number of channels M . See Fig. 1.

A. Overcomplete D (Cov-DL-1)
When N , the number of total sources to be identified for the

whole EEG session, is larger than or equal to M(M+1)/2, D
in (7) is overcomplete. If we assume that at any given segment
s, there are less than M(M+1)/2 active sources, namely δs is
sparse, then we can learn D by applying traditional dictionary
learning methods on the set of data points {vech (ΣYs) ,∀s}.
Note that, the sparsity constraint imposed here, that is k <
M(M + 1)/2 is much weaker than the traditional sparsity
constraint k < M and is not necessarily violated when k > M .

After learning dictionary D, we can find the mixing matrix
A that generated D through the relation di = vech

(
aia

T
i

)
.

For each column of the dictionary we optimize,

min
ai

‖di − vech
(
aia

T
i

)
‖22 (8)
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or equivalently,

min
ai

‖vech−1 (di)− aia
T
i ‖2F (9)

The global minimum for this optimization problem is âi =√
λ1b1, where λ1 is the largest eigenvalue of vech−1 (di),

and b1 is the associated eigenvector. For a visualization of
the algorithm, see Fig. 2a.

B. Undercomplete D (Cov-DL-2)

When, N < M(M+1)/2, the data points {vech (ΣYs) ,∀s}
live on or near a subspace of dimension N , which is spanned
by the columns of D. We denote this subspace as R(D). We
can learn R(D) with methods such as Principal Component
Analysis (PCA) without imposing any sparsity constraints
on δs. However, the set of basis vectors U that a subspace
learning algorithm, such as PCA, returns only guarantee
R(D) = R(U), not U = D. Therefore, we can extract R(D)
but there is an ambiguity about the basis vectors D. Note,
however, that we can enforce the conditions that the columns
of D satisfy di = vech(aia

T
i ) and also span R(U) as closely

as possible. Furthermore, since the projection operator for a
given subspace is unique, namely R(D) = R(U) if and only
if D(DTD)−1DT = U(UTU)−1UT, we can obtain A by
solving the following optimization problem.

min
ai

‖D(DTD)−1DT −U(UTU)−1UT‖2F

s.t di = vech(aia
T
i ) (10)

where U is learned through a subspace learning algorithm
on data points {vech (ΣYs) ,∀s}. We compute the above
cost function’s gradient w.r.t A using the chain rule and can
minimize the cost function using quasi-Newton optimization
methods. We emphasize that although D is not overcomplete
in this case, the mixing matrix A, which relates the cortical
sources to the scalp EEG sensors, can still be complete or
overcomplete. For a visualization of the algorithm, see Fig.
2b.

C. Remarks

We provide some comments about important aspects of
above described algorithms. First, notice that the number of
data points that Cov-DL is trained on is substantially reduced
because of segmenting and learning in the covariance-domain
(there is now effectively one data point per segment). For
example, if ts is 4 seconds and sampling rate is 250Hz, the
total number of data points used is 1

1000Nd if the segments
are non-overlapping. The number of data points for Cov-
DL will increase as the overlap ratio increases. However
we have found that algorithm performance does not improve
when the overlap ratio of consecutive segments increases
beyond 0.5. The reduced number of data points in the Cov-
DL-1 framework linearly speeds up the dictionary learning
computation time and makes its application to EEG feasible.

The segment length ts is an important parameter that affects
the performance of the algorithms. If the segment length ts is
short, the sample-covariance 1

Ls
XsX

T
s is no longer pseudo-

diagonal and thus the derivation in (7) is not accurate. On the

other hand, as ts gets longer, the number of active sources in a
segment increases (becomes less sparse), thus the performance
of Cov-DL-1 will decrease. We have found that the choice
ts ∈ [2, 4]sec. provides a good compromise in our experiments.

We also note that for both algorithms to succeed, the
power of the individual sources in segments δs should not
stay constant throughout the recording. This is required to
ensure that D is identifiable for algorithm Cov-DL-1 and
that the data points ΣYs obtained by Dδs fill the space
spanned by D for Cov-DL-2. This requirement holds for most
EEG sources, including event-related potentials/oscillations
and eye/head movement related artifact sources. To the best of
our knowledge, the only EEG source that has constant power
across the whole recording is electronic noise/line noise. Yet,
the characteristics of this source is available (a 50Hz/60Hz
sine wave) and can be filtered in the pre-processing step of
EEG analysis.

Finally we note that for algorithm Cov-DL-1, one can
choose any dictionary learning algorithm for learning D.
Here, we use Bilinear Generalized Approximate Message
Passing (BiGAMP-DL) [21], an EM-based bayesian dictionary
learning method leveraging approximate message passing.
This method has the advantage of automatically learning the
sparsity level and signal-to-noise ratio (SNR). For Cov-DL-2,
we have used the robust PCA method described in [24] to
identify U.

IV. EXPERIMENTS

A. EEG Simulation
First we test our algorithm on three simulated data sce-

narios, for which we exactly know the ground truth mixing
matrix Atrue. We simulate the placement of 32 electrodes on
the scalp as shown in Fig. 3b. To generate the mixing matrix,
we place dipolar sources in the brain using the Montreal
Head Institute (MNI) head model. We assign random locations
and random orientations for each dipole. Using the FieldTrip
toolbox [3], we compute the projection weights of the i-th
dipole to each channel (scalp maps) and obtain the true ai.
See Fig. 3b. For realistic source activations X, we generate
an AR (auto-regressive) model via Source Information Flow
Toolbox (SIFT) [25] under EEGLAB [26] and obtain super-
Gaussian source activations of duration 66 minutes with 100Hz
sampling rate. We choose a segment length ts = 2sec. (200
frames) and scale the sources in each segment with a random
weight uniformly assigned in the continuous interval [1,2] to
model the possibly varying power dynamics of brain sources
across the recording.

For the first scenario, we first test and compare algorithms
for the case of a complete mixing matrix (M = N ). We
select M = N = 32, for an overcompleteness ratio of
N/M = 1. We also let k = N = 32, so that all the sources
are active in any given segment. We generate scalp EEG with
Y = AtrueX and apply Cov-DL-2 on Y with ts = 2sec non-
overlapping segments. The accuracy of the result is measured
as the ratio of the number of scalp maps that are recovered
(having correlation higher than 0.99 with true scalp maps) to
N. We compare our algorithm with the 1-model AMICA [15]
and RICA [18].
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z
d1 = vech(a1a

T
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d2 = vech(a2a
T
2 )

d3 = vech(a3a
T
3 )

(a)

z

xy

d1 = vech(a1a
T
1 )
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T
2 )

u1
u2

(b)

Fig. 2: A geometrical explanation of Cov-DL for M = 2, k = 2. (a) If N = 3, then A ∈ R2×3, and D ∈ R3×3. In this case
d1,d2,d3 are identifiable with a dictionary learning algorithm applied on the data of vectorized outer products of segments.
Associated a1,a2,a3 can then be found via solving Eg. (9) (Cov-DL-1). (b) If N = 2, then D ∈ R3×2, and data is not sparse
since k = N = 2. D is not identifiable through learning the 2-dimensional subspace (PCA results in u1,u2). In this case, we
solve Eq. (10) to directly find A such that D will span R(U) (Cov-DL-2).

For the second scenario, we have M = 32, N = 64, and
overcompleteness ratio N/M = 2. We also let k = N = 64,
and again all the sources are active in any given segment. We
generate scalp EEG with Y = AtrueX and apply Cov-DL-2 on
Y with ts = 2sec non-overlapping segments. We compare our
algorithm with the overcomplete ICA method RICA [18] and
concatenated dictionary obtained from multi-model AMICA
(N/M = 2 models in this case) [15].

For the third scenario, we have M = 8, N = 40, k = 10,
and overcompleteness ratio N/M = 5. In each segment a
randomly selected k out of N sources are retained and N −k
sources are assigned no activation. At any given segment there
are more active sources than channels (k > M ) and the set
of active sources are changing throughout the recording. We
select M = 8 channels out of the 32 channels shown in Fig.
3b such that we uniformly cover the whole head. In this case,
since N ≥M(M + 1)/2 and k < M(M + 1)/2, we use Cov-
DL-1. We compare with the results obtained from RICA and
5-model AMICA (N/M = 5).

The results of three scenarios are shown in Fig. 4. It can be
seen that when M = N , single model AMICA shows perfect
source identification whereas Cov-DL performs slightly worse
but still has accuracy of 0.9687 (recovers 31/32 components).
This might be because fewer number of data points (number
of segments) are fed to Cov-DL compared to AMICA and
AMICA has the ability to model arbitrary source probability
densities in an adaptive way. RICA performs the worst with
an identification ratio of 0.9375 even under ideal complete
conditions. This is likely due to the high coherence of the
realistic mixing matrix, since other experiments showed that
RICA demonstrates perfect recovery with random mixing
matrices (a low coherence situation). In the overcomplete
scenarios, we see that there is a drop in the performance

of all algorithms. AMICA and RICA perform poorly due to
their differences in modeling the overcompleteness. Multi-
model AMICA considers a mixture ICA model which has
only few distinct states and can handle at most M sources
active at a given time. RICA fits a super-Gaussian distribution
to sources obtained as WY where W is a tall unmixing
matrix. However, sources derived in this form cannot be truly
independent simply due to the necessary linear dependence of
the rows of a tall matrix. Cov-DL is free of these drawbacks
of existing ICA algorithms, and can handle more sources than
sensors without requiring sparsity of any form as opposed to
traditional dictionary learning algorithms which prohibit their
use when k > M .

B. Experiments on Real EEG

Unlike simulated EEG, the true mixing matrix for real EEG
is not known beforehand. In order to test our algorithm’s per-
formance on real EEG data, we follow the strategy proposed
below.

Suppose we have an actual dataset that has Morig channel
recordings. After rejection of the artifact windows and contam-
inated channels, suppose that N channels remain. Then, we
apply Extended Infomax ICA and extract N sources and their
associated scalp maps. We regard these scalp maps as ground
truth mixing matrix and measure how well the proposed
algorithms recover these scalp maps from using only a subset
of M channels out of N (M < N ). We choose M channels
in a spatially uniform manner as in the previous section.
We compare algorithms on 3 different types of datasets; 1)
EEGLAB sample data, 2) a Motor Imagery task, 3) a Arrow
Flanker task. The results are shown in Fig. 5. The segment
length for Cov-DL is ts = 2sec, with an overlap ratio of



6

(a) (b)

(c)
(d)

Fig. 3: (a) Randomly located and oriented N = 64 dipoles/sources in the MNI head model that generate the simulated EEG.
(b) Some of the scalp maps (with 32 channel locations) associated with the dipoles in (a). These constitute columns of true
mixing matrix Atrue ∈ R32×64. Dictionary Atrue has maximum spatial coherence of 0.9888. (c) Outer product of the source
matrix in a 2sec. segment (sample-covariance) from Scenario 1; M = 32, N = 64, k = 64, all the sources are active at any
give time. (d) Outer product of the source matrix in a 2sec. segment (sample-covariance) from Scenario 2; M = 8, N = 40.
k = 10 sources are active at any given segment.
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Fig. 4: Simulation results for three cases: complete, two times
overcomplete, five times overcomplete. In the complete case.
M = 32, N = 32, k = 32, Cov-DL-2 is used. In the second
scenario M = 32, N = 64, k = 64, Cov-DL-2 is used. Third
case: M = 8, N = 40, k = 10, Cov-DL-1 is used.

0.5 between consecutive segments. We plot the the sorted
correlation values of resulting scalp maps with the best column
match in the ground truth mixing matrix. In all 3 datasets, Cov-
DL shows consistently higher correlations than multi-model
AMICA and RICA. We also plot the correlation results of
complete extended Infomax applied on M channels to show
the importance of overcomplete approaches for accurate source
identification in low-density EEG systems.

V. CONCLUSION

We proposed a dictionary learning framework, Cov-DL, that
incorporates the presumed uncorrelated nature of EEG sources,
which is a related but a weaker assumption than EEG source
independence [2], [7]. Identification of the mixing matrix is
carried to a higher dimensional covariance-domain, which
enables source identification even if the number of sources
active at any time is larger than the number of sensors -
sparsity is not required. We proposed two different algorithms
which depend on the relation between the number of sources
targeted and number of sensors available. We have shown
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Fig. 5: (a) EEGLAB sample data. M = 5, N = 30. AMICA
is trained with 6 models. Cov-DL-1 is performed. (b) Motor
Imagery Task, M = 5, N = 30. Cov-DL-1 is performed. (c)
Arrow Flanker task. M = 11, N = 30. AMICA is trained
with 3 models. Cov-DL-2 is used.

that the proposed algorithm Cov-DL is more successful than
existing overcomplete ICA algorithms for finding the true gen-
erating matrix in EEG simulations. We have also demonstrated

the power of Cov-DL on real data. The proposed algorithm,
because of its ability to provide higher resolution than the
number of sensors, can potentially increase the applicability
of low-cost, low-density EEG systems in biomedical research.
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