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Linguistic Structure Evolves to Match Meaning Structure  
 

Mónica Tamariz (monica@ling.ed.ac.uk) 
Language Evolution and Computation Research Unit, The University of Edinburgh,  

3 Charles Street, Edinburgh, EH8 1AD, UK 
 
  
 

Abstract 

Quantitative analysis has usually highlighted the random 
nature of linguistic forms (Zipf, 1949). We zoom in on three 
structured samples of language (numerals; playing cards; 
and a corpus of artificial languages from Kirby, Cornish & 
Smith 2008) to quantitative explore and illustrate the idea 
that linguistic forms are nonrandom in that their structure 
reflects the structure of the meanings they convey. A novel 
methodology returns frequency spectra showing the 
distribution of character n-gram frequencies in our language 
samples. These spectra, purely derived from linguistic form, 
clearly reflect the quantitative structure of the underlying 
meaning spaces, as verified with a new information 
theoretical metric of compositionality. Moreover, analyses 
of a diachronic corpus of languages show that linguistic 
structure gradually adapts to match the structure of 
meanings over cultural transmission.  

Keywords: frequency distributions; form-meaning 
systematicity; cultural language evolution. 

Introduction 
Linguistic forms are quantitatively structured as illustrated 
by the facts that lexical item frequency and regularity are 
inversely correlated (e.g. Bybee & Hopper, 2001); that the 
frequency of a word is inversely proportional to its 
frequency rank following a power law (Zipf, 1949); or that 
word type-token ratios and lexical diversity are used to 
measure text complexity (Laufer & Nation, 1995). The 
structure of linguistic forms has also been shown to reflect, 
to small but statistically significant extents, the structure of 
the meanings that language conveys. This is most obvious in 
morphosyntactic paradigms, where words that share an affix 
also share a grammatical meaning such as tense, aspect, 
gender or number. However, lexical phonology has also 
been shown to reflect semantic structure in phonaesthemes 
(Bergen, 2004) or through sound symbolism (Sapir, 1929; 
Hinton, Nichols, and Ohala, 1994). Moreover, the 
phonology of lexical roots has also been shown to predict 
their syntactic categories (Monaghan, Christiansen and 
Chater, 2007) and, for the whole language, words that sound 
similar tend to have similar distributional (syntactic and 
semantic) properties in speech (Shillcock et al., 2001, 
Tamariz, 2008). The systematic relationship between forms 
and meanings means that, given access to the structure of 
forms, we can know something about the structure of the 
corresponding meanings. The first novel method introduced 
in this paper specifically seeks to discover quantitiative 

information about meaning spaces by looking at the 
frequencies of n-grams in linguistic forms.  
    The correlation between form and meaning structure is in 
many cases compositional in nature. In a compositional 
system, the meaning of a complex signal depends on the 
meanings of its component simplex signals and the rules 
used to combine them, e.g. the meaning impenetrable 
depends on the meanings of root penetr and affixes im and 
able as well as the way these are put together. Cornish, 
Tamariz & Kirby (2010) introduced a method to quantify 
the details of compositionality of artificial languages. The 
second novel method we introduced is a metric yielding a 
single measure of the compositionality of a system. This is 
used to quantify, from form and meaning information, the 
compositionality of a language.   
    The two above-mentioned methods are applied to two 
samples of natural language and one corpus of artificial 
languages where the highly structured meaning space is 
known. First, numerals 1-999 and the names of playing 
cards are analyzed to illustrate (a) how the distribution of n-
gram frequencies can reveal meaning structure based on 
form structure in extant language and (b) the metric of 
compositionality. Second, a diachronic corpus of artificial 
miniature languages (from Kirby, Cornish & Smith, 2008) is 
analyzed to show the process of change of linguistic form 
structure to match meaning structure, thus directly testing 
the hypothesis that languages adapt to the structure of 
meanings over cultural transmission.  

1. Spectral and Compositionality analysis 
of extant language samples 

Methods 
The frequency spectrum of a linguistic sample will reveal 
quantitative structure in linguistic forms. We obtain the 
spectra of numeral types 1-999 and playing card names to 
illustrate the method. These samples refer to meanings with 
known clear quantitative structure; additionally, in the 
samples, certain characters strings occur very frequently, 
e.g. “six” or “hundred” in the numerals and “queen” or 
“spades” in the card names. Knowing the meaning spaces, 
we expect the string “queen” to occur four times in the card 
name list, and the string “spades” to occur thirteen times. 
Indeed, frequencies four and thirteen should be very 
prevalent in the list of playing card names, because in a real 
deck of cards there are four suits and thirteen number and 
face cards. In contrast, in a matching list of words referring 
to 52 random objects we would not expect particular strings 
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to recur to the same extent; we would be even more 
surprised to find particular string frequencies being 
especially prevalent. In fact, for the random list we would 
expect low frequencies to be very prevalent (frequent) and 
high frequencies to be very rare, and this inverse 
relationship should follow a power law (Manning & 
Schütze, 1999). This prediction is tested by looking at the n-
grams (uni-, bi- and tri-grams aggregated) in the words: For 
the frequencies of n-gram frequencies of a set of random 
words, the resulting spectrum should follow a power law. 
But for one of our special samples, the resulting spectrum 
should reflect the structure of the meanings that the lexical 
set refers to. A Monte Carlo analysis is used to calculate 
how different the spectra obtained with our language 
samples are from those obtained with random words.  
    Additionally, we have full knowledge of the meaning 
spaces underlying these two samples, and of the mappings 
between those meanings and the forms are in use (e.g. the 
form “ace of spades” is used to refer to the card depicting a 
single spade). We expect that, for these highly structured 
meaning spaces, the mappings between forms and meanings 
will be compositional in nature. Another Monte Carlo 
analysis tells us whether the mappings between signals and 
meanings are significantly compositional.  
Materials 
The first sample comprises English numerals for 1-999, 
removing any spaces between words; for instance, 541 is 
“fivehundredandfortyone”. For the playing cards, similarly, 
the names with no spaces are also used, e.g. “jackofspades”.  
    The random language samples for the Monte-Carlo 
analyses contain the same number of items as the 
corresponding target list (numerals or cards). Each item 
starts with one word randomly selected from the spoken 
section of the British National Corpus1. It continues with the 
following word in the corpus, then the next one and so on 
until the item has the same number of characters as the 
corresponding item in the target list (no spaces here either).  
Spectral analysis 
For the spectral analysis, all n-grams were extracted from 
each sample and their frequencies counted. The frequencies 
of frequencies were then computed. First, we examine the fit 
to a power law by comparing the fit (R2) and slope (b) of the 
power law regressions of the target versus the random 
language samples. Regressions are calculated on the set of 
n-gram frequencies (x) and their frequencies (y). We expect 
significantly lower R2 and higher b values for the target 
samples, indicating that their frequency structure is different 
from those in random linguistic items. Second, we construct 
a spectrum based on the n-gram frequency structure of the 
sample. For each n-gram frequency, we obtain ands plot its 
z-score by comparing its frequency in the sample against 
1,000 random samples; (z-scores are used throughout the 
paper since all random distributions in the Monte Carlo 
analyses were approximately normal). Spectra thus show, 
for each n-gram frequency, how divergent it is from what 
                                                             
1 Data extracted from the British National Corpus Online service, managed by Oxford University 

Computing Services on behalf of the BNC Consortium. All rights in the texts used are reserved. 

would be expected in random linguistic sample. If our 
hypothesis is correct, these z-scores should match aspects of 
the quantitative structure of the meaning space expressed by 
the forms in the sample. 
Compositionality analysis 
For the compositionality analysis, RegMap (Tamariz & 
Smith, 2008; Cornish, Tamariz & Kirby, 2010; Tamariz, 
2011) was used. This metric of the Regularity of the 
Mappings involves, crucially, segmenting the meanings and 
signals. Meanings are segmented into simplex meaning 
features (for the numerals, hundreds, tens, units; for the 
playing cards, suit and number). Signals are divided into 
meaningful segments (numerals are divided into three 
segments, one each for units, tens and hundreds, so for 
“twentyseven” we have Ø, twenty and seven; playing card 
names are divided into two segments, just before “of”, so 
for “queenofhearts” we have queen and ofhearts). Then, we 
obtain RegMap for each meaning feature - signal segment 
pair. 

(1)    
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RegMap =
1− H (s | m)
log(ns )
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log(nm )

 

 
 

 

 
    

    RegMap (Eq. 1) is based on information theory 
conditional entropy H(A|B), which yields the amount of 
uncertainty, or surprise, that two features are associated; in 
this case, for instance that a form segment s (e.g. the first 
segment in the numeral) is associated with a meaning 
feature m (e.g. the units), after having seen all the system 
(e.g. after having learned the name of all playing cards).  
The conditional entropy of signals given meanings and of 
meanings given signals are both taken into account, since 
they are not symmetrical; they are normalized and 
subtracted from 1 to return levels of confidence or reliability 
of the association, rather than of uncertainty.  
    For a language with N meaning features and M signal 
segments, we obtain an N x M matrix of RegMap values. 
Fig. 1 illustrates this for the numerals. High values indicate 
that variants of the segment reliably predict the variants of 
the meaning feature. So, for the pair (Segment 1, hundreds) 
we obtain the highest value, since the first segment {nil, 
onehundred, twohundred, …, ninehundred} perfectly 
predicts the hundreds {0, 1, 2,… 9}. For (Segment 3, units) 
RegMap is somewhat lower, reflecting the presence of 
exceptions – 11 to 19 are irregular in this respect, the last 
segment of the numerals does not express the units. Low 
values indicate low predictability. 

 hundr tens units 
Segm1 1.000 0.018 0.017 
Segm2 0.000 0.959 0.175 
Segm3 0.127 0.000 0.910 

Figure 1. Matrix of RegMap values for the three signal 
segments and the three meaning features in the numerals 1-

999. As expected, the first segment reliably predicts the 
hundreds, the second the tens and the third the units. While 
RegMap is perfect for the hundreds, the values for tens and 

units indicate the presence of exceptions there. 
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     Compositionality is calculated by applying the same 
algorithm to the matrix of RegMaps obtained for all 
combinations of meaning features and signal segments (e.g. 
for the numerals, to the matrix shown in Fig. 1). In a highly 
compositional system, each segment is reliably associated 
(high RegMap) with one and only one meaning feature, and 
badly with the others, and this is reflected in Comp 
(Equation. 2).  

(2) 
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Comp =
1− H (S | M )
log(nS )

 

 
 

 

 
 ×

1− H (M | S)
log(nM )

 

 
 

 

 
     

    Here S refers to signals and M to meanings in the 
language; Comp measures the reliability of the one-to-one 
association between the signal segments and the meaning 
features in the language overall. The significance Comp 
values is assessed with a Monte Carlo analysis. 

Results 
Table 1. Results of the Monte Carlo analysis, showing the 
fit (R2) and beta coefficient (b) of a power law regression 
for the n-gram frequency distributions in the numerals and 
playing card names. 

 R2  b 
 Num Cards  Num Cards 

Value 0.208 0.372  -0.290 -0.773 
Mean (N=1,000) 0.722 0.801  -0.971 -1.365 
S.D. (N=1,000) 0.020 0.032  0.022 0.032 
z-score -26.395 -13.320  30.394 18.600 
p value .000 .000  .000 .000 

     
    The frequency-of-frequency distributions both in the 
random samples and in our structured samples were best 
explained by power law regressions than by linear, 
logarithmic, polynomial or exponential regressions. Table 1 
shows, however that the distributions in our target samples 
are significantly worse fitted by power law regressions than 
the random samples and their regressions have also 
significantly different b values, indicating that the structured 
samples have flatter regression curves, with less frequent 
low frequencies (e.g. no n-grams occur only once in the card 
name list) and more frequent high frequencies (e.g. the 
frequencies of the n-grams in “spades” in the cards) than in 
the random samples. 
 

 
Figure 2. Spectra of the numerals and playing card name 

samples: Z-scores2 of the n-gram frequencies. 
 

                                                             
2 Absolute z-score values greater than 1.96 correspond to a 0.95 
confidence level and greater than 3.29, to a 0.999 confidence level. 

The spectra in Fig. 2 shows that, in the playing card list, n-
gram frequency values 13, 4, 73, 21, 52, 12, 70, 60 and 8 
return significantly positive z-scores. These values are 
clearly related to the underlying meaning space. Inspection 
of the n-grams with frequency 13, for instance, illustrate 
their significance in the meaning set of playing cards: (ofs, 
fs, fsp, sp, p, spa, pa, pad, ad, ade, d, de, des, es, es); (ofc, 
fc, fcl, cl, c, clu, lu, lub, ub, b, bs, bs); (ofh, fh, fhe, he, hea, 
ea, ear, ar, art, rts, rt, ts, ts); (ofd, fd, fdi, di, dia, ia, iam, 
am, amo, m, mo, mon, on, ond, nd, nds, ds, ds). The 
spectrum of the numerals is analyzed in Table 2.  
 
Table 2. N-gram frequencies with significant positive z-
scores in the numerals. 
 

Freq z Freq z Freq z Freq z 
891 31.62 400 14.36 108 9.16 680 5.89 
900 31.62 490 13.79 112 8.87 180 5.79 
300 29.27 200 13.75 160 8.33 710 5.59 
800 21.07 110 13.71 310 8.03 224 5.36 
100 19.33 80 12.57 216 8.00 210 4.14 
190 19.28 1090 11.91 225 7.61 370 3.82 

1500 19.06 1100 11.91 600 7.39 260 2.89 
1310 18.23 510 11.00 90 7.35 220 1.99 

 
    A first glance at Table 2 shows the abundance of 
multiples of 10, indicating a reflection of the decimal 
system. However, a closer inspection reveals subtleties 
relating to the precise structure of the sample, including the 
fact that it goes up to three levels (units, tens and hundreds). 
At the top of the rank we find n-gram frequencies 900, 891 
and 300. A closer look at the precise n-grams that have 
these frequencies illustrate their significance. Nine n-grams 
have frequency 900 (hu, hun, un, und, ndr, dr, dre, red, ed); 
six n-grams have frequency 891 (eda, da, dan, a, an, and); 
and 22 n-grams have frequency 300 (tw, w; fo; fi; so, six, ix, 
x; se, sev; ei, eig, g, igh, ig, gh, ght, th; ni, nin, in, ine). This 
tells, us, for example, that exactly one word, “hundred” 
occurs precisely 900 times in the numeral sample; the 
sequence “edand”, a subset of “hundred and” occurs 891 
times; and the unique digit roots for 2, 4, 5, 6, 7, 8 and 9 
occur 300 times each (100 times as units plus 100 times as 
tens plus 100 times as hundreds).  
 
Table3. Compositionality values for the numerals and 
playing card names and their significance values. 

 Num Cards 
Comp 0.672 1.000 
Mean (N=1,000) 0.035 0.154 
S.D. (N=1,000) 0.031 0.049 
z-score 20.581 17.271 
p value 0.000 0.000 

 
    Table 3 shows the results of the RegMap-
Compositionality study. As expected, these two samples 
return much higher compositionality levels than chance 
would predict.  
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Discussion 
These results show how the structure of meanings in highly 
organized, closed semantic sets can be detected in the 
quantitative structure of the linguistic items that refer to 
them. Significant departures from a power law distribution 
of the frequencies of character n-gram frequencies indicate 
structure in the samples, and this is confirmed by their 
highly significant compositionality values. Finally, 
inspection of the n-grams with high-frequency frequencies 
in the spectra confirms that the structure found in the 
linguistic form samples corresponds to structural features of 
the meaning space.  
    The frequency analyses of the two language samples 
share three features. First, the most salient frequencies in the 
spectra give us an idea of the quantitative structure of the 
underlying meaning space. Second, we find few low 
frequency n-grams, in fact a lot fewer than expected by 
chance in random samples. This indicates that existing n-
grams tend to be reused. A structured meaning space, by 
definition, is organized along features (such as number, suit, 
but also tense, case etc) that are shared by several items. 
Correspondingly, the forms associated to such a meaning 
space contain many repetitions of the n-grams expressing 
the common features. Third, the language samples tend to 
be efficiently structured. We find little ambiguity, with 
many of the n-grams corresponding to meaning features 
being unique to them, suggesting that the systems are 
adapted to allow maximal distinction between variants of 
the same feature (e.g. numerals for 0-9 are maximally 
distinct). On the other hand we find n-grams occurring 
exactly once in every item in the list, such as “of” or final s 
in the card names. These may help identify members of the 
meaning space: the template “x of xs” in the appropriate 
context signals the name of a card – any card. 
    Our samples are admittedly extreme cases unequivocally 
quantitatively structured meaning sets. Nevertheless, these 
results suggest an avenue to explore form-meaning 
correspondence quantitatively. The methods can arguably be 
adapted, refined and extended to detect subtler correlations 
in larger, less organized language samples. 
    We now turn to the question of how this correspondence 
could have come about. 

2. The evolution of meaning-form 
compositionality 

The previous studies provided evidence for a measurable 
match between linguistic form and meaning structure. Such 
nonrandom, efficient and economical correlations are likely 
to be the product of either intentional design or a selection 
process. We cannot rule out intentional design in the two 
analyzed samples. We can, however, investigate whether a 
process of selection and adaptation could result, over time, 
in such well matched form-meaning systems.  

Materials 
The novel methods described above were applied to data 
collected by Kirby, Cornish and Smith (2008) (henceforth, 
KCS). They carried out an artificial language learning study 
involving a highly structured meaning space. In the 
experiments reported in that paper, participants had to learn 
artificial languages used to name 27 objects, which 
combined three shapes, three colours and three motions. The 
initial names for those objects were randomly constructed 
out of CV syllables, and consequently there was no strong 
match between the structure of forms (names) and the 
structure of meanings (objects). One participant was trained 
with 14 items out of this “random” system and then tested in 
the following way: when presented with each of the 27 
objects they had to type the name they thought corresponded 
to it. Importantly, each participant would be trained on half 
of the items produced by the previous one. The languages 
change and, after ten such iterations, the names are no 
longer random but their structure reflects the structure of the 
meanings. They collected in this way eight language chains 
which constitute a perfect corpus to track the process of 
adaptation of linguistic forms to the structure of the 
meanings. The output languages produced by each of the 
participants (at each “generation”) are analyzed.  
    KCS reported two experiments, the second of which 
introduced an extra manipulation. The selection of the 14 
items of a language to go in the next participant’s training 
set was not random, but explicitly excluded homonyms, that 
is, items that had been given the same name. The four 
language chains in the first experiment evolved to display 
“structured underspecification”, with high degrees of 
homonymy (in the extreme, a couple of language chains 
ended up with only two words to name all 27 objects). The 
four language chains in the second experiment, having 
undergone the “homonymy filter”, evolved to display 
compositionality. Our n-gram analyses were applied to all 
eight languages chains; the Comp analyses, for reasons 
explained in the following section, were only carried out on 
the four language chains in the filtered condition.  

Methods 
We performed a spectral analysis (see page 2 above) on all 
languages in KCS’s studies. The fit to a power law 
regression is expected to decrease over generations, 
reflecting a progressive departure from randomness. Given 
the structure of the meaning space, where each feature (each 
of the three colours, motions and shapes) is present in nine 
objects, n-gram frequency 9 is predicted to be the most 
salient in the spectrum for the final, more adapted 
languages. For the Monte Carlo analysis, we compare the n-
gram frequencies in the language at each generation with 
those in 5,000 random languages, generated in the same way 
as KCS created their initial, random languages. 
    The RegMap-Comp analysis is carried out only for the 
languages in the filtered condition of KCS’s studies to 
quantitatively reveal the process of gradual adaptation of the 
language structure to the meaning space structure. The 27 
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words in each language are segmented into three meaningful 
chunks following the methods set up in in Cornish, Tamariz 
and Kirby (2010); three meaning space dimensions (colour, 
shape and motion) are considered. RegMap analyses are run 
to measure the regularity of the mappings between each 
segment and each meaning dimension at each generation. 
Comp is then calculated at each language-generation to 
reveal the evolution of compositionality. The four language 
chains in KCS’s unfiltered condition were not used for these 
analyses because words were not amenable to any 
meaningful segmentation. The significance of Comp is 
assessed, as before, with a Monte Carlo analysis involving 
1,000 randomisations of the target language. Random 
languages were constructed by scrambling the mappings 
between the signals and meanings. 

Results 
The results in Fig. 3 (left) indicate that the frequency of 
frequency distributions in the initial, random languages have 
good fits to power law regressions, with R2 values close to 1 
(indicating that they are indeed random). As expected, these 
values decrease as the languages are learned and reproduced 
by successive participants (generations), suggesting that 
they become more structured. In Fig. 3 (right) it is apparent 
that the slopes of these regressions tend to flatten out in the 
later generations, indicating as before that there are less n-
grams with lower frequencies and/or more with higher 
frequencies than in the early languages. Paired t-tests return 
significant differences between the R2 and b values in the 
initial and final generations (for R2, t=7.54, p=0.000; for the 
slopes t=7.30, p=0.000). 
 

 

Figure 3. R2 and b values for the power law regressions of 
the n-gram frequency of frequency distributions in the eight 

languages from KCS. 
 
 

 
Figure 4. Three spectra illustrate evolution of form structure 
over time: Average Z-scores of the n-gram frequencies from 

all eight languages in Cornish, Kirby and Smith (2008) at 
generations 0 (initial languages), 5 and 10. 

 
    Fig. 4 shows how the spectra based on n-gram frequency 
distributions in KCS’s languages change over the 
generations. Initial spectra show no significant departures 
from chance (no z-score has an absolute value greater than 
1.96). At later generations, lower n-gram frequencies 
become significantly lower than expected by chance, while 
a few higher frequencies (namely 18, 9 27 and 26) have 
significantly positive z-scores. This result confirms the 
expectation that frequency 9 would be the most salient for 
these forms because each meaning feature appears in 9 items 
in the language. It also indicates high re-use of units and, 
more importantly, a gradual process of adaptation of the 
language from randomness towards a good match of the 
meaning space structure. 
 

 
Figure 6. Z-scores of Comp values at each generation of the 
four language chains from Kirby, Cornish and Smith (2008), 

(filtered condition). 
 

    Fig. 6 shows that Comp tends to increase over time to 
reach significantly high levels. Initially random, the 
mappings between features of form and features of meaning 
become more one-to-one as the languages are repeatedly 
learned and produced. This strongly suggests that the 
linguistic form structure in the later generations revealed in 
the fit to power-law regressions and the spectra is actually 
related to meaning structure.  

Discussion 
The spectral analysis of the KCS data reveals how initial, 
randomly constructed lexical items gradually acquire a 
quantitative structure that matches the structure of the 
meanings that those lexical items denoted. This happens 
progresssively, as the language is repeatedly transmitted to 
new participants. By generation 10 the spectra share the 
three features observed in the numeral and playing-card 
names spectra. First, the relationship between the most 
salient frequencies and the meaning space: KCS’s meaning 
space is comparable to playing cards in the sense that it 
comprises all possible items given the three colours, shapes 
and motions. The most significant frequencies, 18, 9, 27 and 
26, reflect on the one hand the fact that there were nine 
items of each colour, shape and motion and that sometimes 
only one of those values was expressed in the language, 
with e.g. the 9 red objects denoted by a name starting with 
“po” and all other 18 denoted by a name strating with “wa”. 
On the other hand, frequencies 27 and 26 indicate that 
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(nearly) all 27 names in a language shared some n-grams. 
For instance, in language chain 1, which attained a high 
degree of compositionality, the penultimate character was 
“k” in all words. This character could be said to have taken 
on the function of identifying membership of the language. 
    Second, the final languages have significantly fewer low-
frequency n-grams than expected by chance, again 
indicating repetition of a small number of n-gram types. 
Third, efficient structure: repeated n-grams are not 
randomly distributed. At generation 10, languages tend to 
have a unique n-gram devoted to each meaning feature, and 
these n-grams are re-used and recombined according to the 
features of the object to be named.  

Discussion and conclusions  
Frequency analyses of large linguistic corpora have stressed 
the random, unpredictable nature of language structure, as 
reflected in power-law distributions (Zipf, 1949). By 
zooming in on small language samples whose associated 
meanings are very structured, we asked: Does the frequency 
distribution of sublexical units in a word sample reflect 
quantitative properties of the meaning space associated with 
those words? In our selected samples, as expected, this 
seemed to be the case. Discovering quantitative regularities 
in linguistic forms may therefore indicate that the 
corresponding meanings are quantitatively structured. 
Conversely, we can predict that when a quantitatively 
structured meaning space is expressed linguistically, traces 
of that quantitative structure should be detectable in the 
linguistic forms.  
    Adding an evolutionary dimension, we asked: How did 
linguistic form-meaning mappings become compositional? 
Our analyses of diachronic samples of artificial language 
chains suggest that the strong correlation between form and 
meaning structure is, at least in part, the result of a process 
of adaptation of forms to the structure of the meaning space. 
    This highlights meanings as a causal factor in linguistic 
structure and emphasizes the interplay between meaning and 
form structure during language learning and evolution. The 
information-theoretical basis of the RegMap and 
Compositionality metrics indicates the important role of 
learning principles such as efficiency and economy in the 
adaptation process. The resulting languages tend to be 
optimally compressible: they contain the minimum number 
of distinct meaningful units and recombination rules 
required to express all the meanings.  
    The evidence presented also highlights the fact that 
inference of linguistic structure by learners is driven by 
regularities in their input. Structure in the forms, such as 
repetition of the same n-gram in all words and a nonrandom 
n-gram spectrum, and structure in the form-meaning 
mappings, such as consistent cooccurrence between n-grams 
and meaning dimensions, seem to be especially salient to 
learners. Regularities are then not only well remembered 
and employed to name learned items, but also generalized to 
name novel items.  

    Finally, one word on the methodology. Spectral analyses 
capture and can help visualize frequency structure in 
linguistic forms not just with character n-grams, but at any 
level. RegMap and Compositionality metrics are also able to 
capture meaning-form regularity at any degree of analysis, 
by defining the form segments and meaning features 
relevant to our research questions.  
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