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Abstract

Accurate, Automated, and Scalable Identification of RNA

Structure Motifs in Structurome Profiling Data

RNA is a key biopolymer that mechanistically drives many cellular processes. As a

single-stranded molecule with a flexible sugar-phosphate backbone, it can fold into in-

tricate structural conformations. The functions, interactions, and regulations of RNA

are often directly attributable to these structures; as such, understanding structure is

crucial to deciphering the mechanisms of RNA function and dysfunction. High quality

structure models can be obtained with nuclear magnetic resonance (NMR) and X-ray

crystallography. However, these methods are low-throughput, encumbered by technolog-

ical limitations, and lack applicability in vivo. In recent decades, structure profiling (SP)

experiments have emerged as a practical and scalable approach to measure the structures

of RNA transcripts in their in vivo contexts. These methods work by exposing transcripts

to chemical reagents that induce covalent modifications in a structure-dependent manner.

Modifications can be mapped by high-throughput sequencing, resulting in nucleotide-wise

measurements of stereochemical characteristics. SP experiments have now scaled to the

level of the entire transcriptome, enabling structure studies with unprecedented scope

and depth. However, the data from these experiments have been largely underutilized

due to a lack of computational tools capable of readily processing their massive scale

when linking structure to function.

This dissertation focuses on the development of methods to interpret transcriptomic

structure profiling data. I devise a novel statistical model of SP data and couple it to a

data-driven structure recognition algorithm, yielding an accurate, automated, and scal-

able tool for identifying structures and structure-function relationships. Application of

the method to diverse datasets demonstrates its utility in several domains. Specifically,

it reveals novel insights on mRNA structure dynamics, characterizes structures within

viral RNA genomes, profiles the RNA-protein interactome, and links specific structure

motifs to post-transcriptional regulation. The method is adaptable for future types of

profiling experiments and readily scales to the evolving scope of structure studies. Alto-

gether, these results have helped further our understanding of in vivo RNA dynamics and

provide the RNA community with a versatile tool to assess the transcriptomic structural

landscape.
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Chapter 1

Introduction

The diversity of life on Earth is exceptional [129], yet all known organisms follow a re-

markably repetitive recipe of biochemistry as described in the Central Dogma of Biology

[26]. The various shapes, sizes, and forms of life are comprised of cells that control the ge-

netic flow of information via three central macromolecules: DNA (deoxyribonucleic acid),

RNA (ribonucleic acid), and proteins (polypeptides). In this standard summarization,

genetic information is stored as nucleic acid sequences in DNA, which are then tran-

scribed into RNA, and finally translated into proteins. The universality of this dogma

as it applies to all living organisms underpins the relevance and power associated with

understanding these three fundamental biopolymers and the relationships between them.

The standard perspective of the central dogma viewed RNA as an intermediary

molecule that carries genetic information from DNA sequences into their protein prod-

ucts. Since the 1960s, however, our understanding that RNA can serve phenotypic roles

in biology has blossomed significantly. At first, it became apparent that the role of

RNA was far more involved than just carrying genetic information as messenger RNA

(mRNA), as non-coding RNA transcripts with the capability of catalyzing reactions were

identified [87]. In more recent years, RNA has been discovered to serve mechanistic roles

in nearly every domain of the cellular program—it regulates genes, controls splicing,

dictates post-transcriptional modifications, catalyzes reactions, maintains chromosomal

structures, and much more. Recent studies quantifying the total pool of cellular RNAs

estimated that mRNA rarely constitutes more than 15% of cellular RNA mass [141].

Typically, ribosomal RNAs (rRNA), nucleic acid biomachines that are a central compo-

nent of the translation machinery, comprise over 50% of a cell’s RNA, with most of the

remaining 35% comprised mostly of non-coding RNAs (ncRNAs). This large fraction

further emphasizes the functional and complex roles of RNA and underscores its funda-

1



mental evolutionary origins. Pioneering work by Alexander Rich arrived at the discovery

of the RNA double helix, the discovery of polyribosomes, and eventually the hypothesis

of an ancestral “RNA world,” [157, 143] where RNA served as the original biomolecule

responsible on its own for orchestrating all cellular functions, including reproduction,

metabolism, and adaptation. On-going research has refined the description of this hy-

pothesis, expanded the scope of RNA’s functional landscape, and provided theoretical

mechanisms for the formation RNA nucleotides in primordial conditions [63]. Although

the precise role of RNA in the formation of life on Earth is still not well-understood, the

centrality of this biopolymer is difficult to overstate.

1.1 RNA Structure

At the mechanistic core of RNA’s diverse functions is its ability to fold into and in-

terchange between specific structural conformations. RNA structure is hierarchical and

begins with a molecule’s primary structure: its nucleotide sequence. Each nucleotide is

comprised by a nitrogenous base, ribose sugar moiety, and phosphate group (backbone).

There are four nitrogenous bases in RNA: cytosine (C), uracil (U, corresponding to DNA’s

thymine, T), guanine (G), and adenosine (A). Unlike DNA, RNA is exceptionally flexible,

meaning that the directional strand can fold in intricate ways. As such, its secondary

structure is driven by the complementarity of nucleotide bases within transcripts that

allow for hydrogen bonding (i.e., base-pairing) between part of the molecule (see Figure

1.1). Similarly to the DNA “Watson-Crick” base pairs—G-C and A-T—RNA nucleotides

can also interact with their complementary partners. For RNA, which utilizes uracil in-

stead of thymine, G-C and A-U are complementary, and there’s also a third possible base

pair, G-U, that is referred to as the “Wobble” base pair. Intramolecular base-pairing

enables the formation of stable local structure elements, such as hairpin loops and he-

lices (see Figure 1.2). These domains can further interact with each other in the form

of tertiary interactions, and they can also interact with other molecules (other RNAs,

proteins, DNA, ligands, etc.), described as quaternary interactions.

In recent decades, the connection between RNA structure and function has been

demonstrated in a large number of contexts. For example, thermosensors use their struc-

ture to respond to changes in temperature [133, 158], riboswitches enable gene control

changing their structure in response to specific ligands [11, 124, 203], splice sites in RNA

transcripts utilize structure to control alternative splicing [44, 35, 161], long non-coding
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Figure 1.1: Illustration of the RNA structure hierarchy for an example transcript, the
TPP riboswitch. The primary structure of any RNA is simply its linear sequence of
nucleotide bases (left). The secondary structure (center) describes conformations as a
set of base pairs between complementary sequence partners (i, j) within the molecule.
Tertiary structure (right) is described by the three-dimensional arrangement of stems,
loops, and helices within the molecule, as well as the interactions between such local
domains. (PDB: 4NYA) [196]

RNAs like Xist regulate chromosomal silencing [17], mRNAs use structures to facilitate

the RNA-protein interactome [24], viral genomes use structure for packaging, transport,

and self-regulation [113, 155], and much more [168]. As such, understanding RNA struc-

ture will continue to help elucidate the biological functions of RNA transcripts.

1.1.1 Measuring RNA Structure

The biological relevance of RNA and the importance of accurate structure models have

yielded extensive work studying them. Before discussing methods for RNA structure

prediction, it is important to describe the process by which a structure is accurately

determined experimentally. For atomic-resolution structure models, three primary pro-

cedures are used. The first of these is X-ray crystallography [68], which uses crystallized

samples and X-ray diffraction to infer the structural conformation. The second proce-

dure is nuclear magnetic resonance (NMR), during which magnetic fields are utilized to

probe atomic nucleic by perturbing them [99, 46]. Lastly, cryo-electron microscopy (cryo-

EM) enables atomic resolution structure models by combining microscopy with cryogenic

temperatures and software processing to determining structures without the need for
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Figure 1.2: Illustration of some common RNA secondary structure motifs. Shown is
an example structure with paired bases indicated in grey, hairpin loops indicated in
ivory, internal loops indicated in orange, bulges indicated in green, multibranch loops
(or junctions) indicated in pink, and dangling ends (also referred to as exterior loops
or “single-stranded regions”) indicated in cyan. The dot-bracket representation, which
is often how secondary structures are encoded, is provided; nested parentheses match
together to indicate the base-pairing arrangement. Structures can also be represented in
a binary pairing state sequence, which simply indicates the pairing state of each nucleotide
without information on the pairing partner. These notations are sometimes combined to
represent structures with ambiguity in their known structure or interactions like RNA-
protein binding or tertiary contacts.

crystallization [44, 211]. Predicting the structure of an RNA usually amounts to predict-

ing the specific arrangement of base pairs in the molecule. Despite the direct and robust

information acquired via these methods, they come with some critical faults. Namely,

they are difficult, labor intensive, low-throughput, and restricted to short (e.g., 10-300

nt) and stable transcripts. They do not work effectively for RNAs that adopt multiple

conformations. Perhaps most importantly, thought, these methods cannot provide struc-

tural information on RNA molecules within the native in vivo cellular environment. As

a consequence, alternative methods of structure profiling have been developed which are

less direct yet offer high-throughput scalability as well as measurements inside of in living

cells. Such methods are central to this dissertation and therefore given special treatment

in Section 1.1.3.
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1.1.2 Predicting RNA Structure

The difficulties associated with directly measuring RNA structure yielded a variety of

computational approaches to make predictions without the need for low-throughput ex-

periments. After the 1980s, two primary avenues for structure prediction emerged: (1)

sequence-based thermodynamic structure prediction and (2) comparative sequence anal-

ysis. In this section, we give a brief introduction to both.

Thermodynamic Structure Prediction

Sequence-based thermodynamic structure prediction is founded on the objective of ac-

curately determining an RNA’s structure from its sequence alone. Indeed, as the set

of possible base-pairing arrangements in an RNA stems directly from the base-pairing

compatibility of its nucleotides, the nucleotide sequence is the foundation of secondary

structure formation. As such, sequence-based structure prediction is able to achieve

modest accuracy in many contexts; however, as we will see in Section 1.1.3, nucleotide

sequence alone is insufficient for making accurate predictions in a generalized context [48].

Thermodynamic structure prediction algorithms attempt to model the energetic sta-

bility of RNA conformations in terms of overall Gibbs free energy (∆G) [39]. Free energy

is assessed via a nearest-neighbor thermodynamic model (NNTM), which describes the

free energy changes associated with RNA substructures such as hairpin loops, stacked

bases, and dangling ends [186]. These models are informed via optical melting experi-

ments in idealized conditions. Conformations which are more stable have lower overall

free energy, and vice versa. That said, there are a large number of possible conforma-

tions for any feasible RNA sequence (in fact, the number of possible conformations grows

exponentially with the length of an RNA). In practice, the distribution of conformations

for an RNA given an NNTM follows a Boltzmann distribution, which is expressed as

pi =
e−∆Gi/kT

Z
, where Z =

∑
i

e−∆Gi/kT (1.1)

In this equation, pi is the probability of observing an RNA in conformation i, ∆Gi is

the Gibbs free energy of conformation i, k is the Boltzmann constant, and T is the

temperature of the system. Z is referred to as the partition function. The equation

naturally arrives at the conclusion that, for a specific molecule, as the Gibbs free energy

of a structure increases, its probability in the Boltzmann ensemble decreases. Moreover,
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the conformation with the lowest free energy will be the most prevalent. Thermodynamic

structure prediction algorithms leverage this interpretation by aiming to identify the

specific conformation that has the lowest free energy. This structure is referred to as the

minimum free energy (MFE) structure.

In theory, the identification of the MFE structure would be straightforward if the free

energy of all possible conformations was exhaustively known—simply sort the structures

by free energy and select the one with the lowest ∆Gi. In practice, however, this problem

is more challenging. At the center of this challenge is the computational intractability as-

sociated with exhaustively enumerating and modeling all possible conformations. As the

number of possible conformations grows exponentially with the length of an RNA, there

may be more conformations to consider than atoms in the universe. More sophisticated

computational approaches that do not exhaustively model each possible conformation

were warranted.

This difficult problem was solved by dynamic programming [137, 217]. In short, the

dynamic programming solution works by recursively finding the most stable local struc-

tures in sub-fragments of the original strand and then integrating these assessments at

progressively longer scales until the complete RNA structure model is computed. Rather

than scale exponentially, in silico determination of the MFE structure was demonstrated

to scale as O(L3) with the length of a transcript. This cubic scaling is still not ideal

(and still yields a generally computational limitation to transcripts less than 5000 nt in

length), but was a profound improvement over an exponential algorithm associated with

considering every individual possible conformation.

Although MFE structures provide insight on the structural conformation of RNA

transcripts in biological systems, this approach is generally insufficient in accurately pin-

pointing biologically relevant structures or in elucidating biological structure dynamics

[67, 33, 31]. This is especially true for transcripts that do not see a dominant unique

structure in the Boltzmann ensemble. For RNA, which is now understood to often adopt

and interchange between multiple relevant conformations, it quickly became clear that

MFE predictions alone were fundamentally inadequate when modeling biologically rele-

vant structures. Therefore, there was an emergence of structure prediction methods that

explore structures in the suboptimal Boltzmann landscape [206]. Usually, such methods

function by sampling suboptimal structures according to their Boltzmann probability.

As such, this enables the generation of statistically representative structure ensembles in

which alternative conformations and structural dynamics can be more robustly assessed
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[34, 217]. Note, however, that these computations depend on a more intensive calculation

of the partition function, Z, than MFE-folding alone. Despite the computational over-

head, this is currently the state-of-the-art approach used to characterize the structural

tendencies of an RNA sequence.

NNTM-based structure prediction methods yielded modest accuracies when applied

to short and stable RNAs. However, the methods are generally insufficient when ap-

plied in biological contexts. Specifically, the methods are founded on thermodynamic

parameters obtained via in vitro experiments, limiting their applicability in vivo. Be-

yond that, they do not naturally account for biologically relevant interactions like RNA-

protein binding or interactions with other ligands. Moreover, they are poor at resolving

long-range intramolecular interactions, such as tertiary contacts, cyclization bonds, or

pseudoknots. Finally, their computational paradigm results in prohibitively long compu-

tations for longer RNAs, which are prevalent in biology. As such, their most meaningful

applications are restricted to low or medium-throughput analyses in an idealized in vitro

context [48].

Comparative Sequence Analysis

Comparative sequence analysis predicts structures based on sequence homologies of an

RNA across various species [140, 58, 49]. Many methods exist which differ in their al-

gorithmic implementation and objectives, but they all follow a common rationale that

functional RNA structures (i.e., base pairs) should be evolutionarily conserved across a

wide range or organisms. In other words, nucleotides involved in base pairs should see

reduced mutation rates compared to surrounding nucleotides under the assumption that

mutations which affect the structure would yield reduced fitness or non-viability. In prac-

tice, this evolutionary biases can be detected in sequence homologies and computationally

analyzed to arrive at biologically relevant structure predictions.

In all types of comparative sequence analysis, phylogenetic information from multiple

sequences is utilized to construct a structure model. In a simple workflow, homologous

sequences are aligned and mutual information from mutation rates is utilized as an indi-

cator of base-pairing. While this method is successful in arriving at an accurate structure

model, this strategy suffers from a need of a sequence homology both sufficiently large and

homologous to reliably make sequence alignments, yet diverse enough to robustly extract

phylogenetic information from evolutionary changes [85, 9, 66]. Such data are not typ-

ically available when performing targeted studies on individual RNA transcripts. Even
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with such data, the alignment step requires manual oversight, rendering the approach

relatively low-throughput. That said, comparative sequence analyses extract information

that is directly biologically relevant (in that evolutionarily conserved base pairs reflect

a functional biological role). In the context of NNTM-based structure prediction, this

feature cannot be overlooked.

More sophisticated comparative sequence analyses have also been developed, including

a method that simultaneously aligns both RNA structures and sequences when determin-

ing a structure model [163]. This method is particularly fruitful when aligning disparate

sequences that would otherwise be impossible to accurate align by their sequences alone.

However, the method depends on the knowledge of at least some reference structures of

the studied RNA. Despite decades of research and the universal need of accurate struc-

ture models, such references remain rare due to the experimental difficulty associated

with obtaining them.

1.1.3 Structure Profiling Experiments

The low-throughput and specialized nature of RNA structure prediction methods have

yielded an entirely new field of experiments referred to as structure profiling (SP) experi-

ments [84, 184]. The succinct objective of these methods is to experimentally measure the

structural characteristics of RNA molecules at nucleotide resolution by using chemical or

enzymatic reagents. The result of such methods is typically termed a reactivity profile;

more details are provided in the following paragraphs.

Figure 1.3 demonstrates the general schematic behind SP experiments in arriving

at reactivity profiles. The process involves a sequence of several distinct steps which are

referred to here as (1) structure probing, (2) reverse transcription, (3) library preparation

and sequencing, (4) read mapping and stop counting, and (5) reactivity calculation.

In the first step, RNAs are exposed to the structure-sensitive reagent (sometimes

referred to as the probe); see right pathway of Figure 1.3. Although both chemical and

enzymatic probes have been utilized, chemical probes have seen dominant popularity in

recent years [20, 205, 204, 195, 117]. The reagent modifies parts of the RNA in a structure-

dependent manner; typically, unpaired or accessible bases react more strongly than paired

or constrained residues. Nucleotides where the reaction occurs, however, see the formation

of a covalent modification referred to as an “adduct.” As such, unpaired nucleotides tend

to be more likely to experience adduct formation when exposed to the structure-sensitive

reagent. Adducts are subsequently detected via reverse transcription. In short, reverse
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transcriptase (RT) is utilized to synthesize complementary DNA (cDNA) fragments to

the probed RNA molecules. Locations on the RNA which saw adduct formation induce

reverse transcription termination, meaning that cDNA fragments will stop at nucleotides

modified by the reagent (note that in more modern approaches, adducts induce mutations

in cDNA at these sites instead of truncations, creating a more robust signal across entire

molecules). The resulting cDNA fragments are then extracted, processed, and sequenced,

and the number of cDNA fragments ending at each nucleotide is counted (RT stop counts).

These counts are compared to an untreated control experiment (see left pathway of Figure

1.3) in order to detect nucleotide modifications that impacted RT drop off more than is

seen naturally. Excess counts when modifying RNA are indicative of structure-sensitive

modification. The difference in stop counts between the probed and untreated samples

are utilized to finally compute reactivity profiles, which represent the accessibility of

molecule segments at the nucleotide-level.

These experiments offer specific advantages within the context of RNA structure pre-

diction methods described earlier in this chapter. Namely, they can be conducted at small

(targeted analysis of few RNAs) or large scales (tens of thousands of transcripts, or more).

Perhaps most importantly, they can be applied directly in living cells. This enables quan-

titative assessment of in vivo structural dynamics, something for which NNTM-based

structure prediction was shown to be insufficient. As of the time of writing, SP experi-

ments are currently the most practical way to obtain a direct structural snapshot of RNA

transcripts in their natural environments.

Precise experimental details and protocols depend on the probe selected, the structure

probing context (i.e., in vitro or in vivo), their scale and scope, as well as the biologi-

cal species [20]. Generally speaking, all protocols share common principles but differ in

specific chemical mechanisms utilized as well as the specific stereochemistry measured.

Commonly used protocols include FragSeq [188], PARS [81], and a family of chemical

methodologies such as DMS footprinting [184, 216, 185] and SHAPE (2’-hydroxyl acyla-

tion analyzed by primer extension) [126, 205, 200, 177]. As a consequence of this diverse

set of SP methodologies, several strategies also exist for the processing of sequencing data

and computation of reactivities [20]. As such, normalization is a key problem in the field,

as reactivities between experiments have disparate statistical properties and even span

disjoint intervals, sometimes even for the same RNA, occluding fair comparison of data

between studies.

Reactivity profiles contain rich information on the structural landscape of RNAs in-
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cluded in the experiment. As described, higher reactivities are associated with a higher

likelihood of being unpaired, and vice versa for paired bases. Although reactivity data do

not typically indicate the base-pairing arrangement of paired nucleotides, their informa-

tion was shown to be extremely impactful when integrated with NNTM-based structure

prediction methods [29, 59, 109]. In order to integrate SP data with thermodynamic

models, the idea of a pseudo-energy transformation of reactivities was developed. In this

model reactivities are converted into a pseudo-energy term via a log-linear formulation.

For example:

∆Gp
i = m log(1 + yi) + b, (1.2)

where yi is the reactivity at nucleotide i and m and b are the parameters of the log-linear

model (typically set to m = 1.8 kcal/mol and b = −0.6 kcal/mol for SHAPE data [59]).

Pseudo-energies are then included as penalties when using the dynamic programming

algorithm with NNTM to identify the most favorable structures; in other words, high

reactivities yield a large penalty for paired bases, and vice versa for low reactivities.

These terms help coerce the folding algorithm to the specific conformation as measured

in the experiment. Note, however, that reactivities provide a snapshot on the structural

ensemble (i.e., the collection of all conformations for an RNA in the experiment), which is

often not dominated by a single structure. Reactivities are typically viewed as a weighted

average over the ensemble, and as such, incorporation of reactivity in folding algorithms

needs to be considered carefully. In recent years, methods dedicated to ensemble dynamics

have sought to disentangle the structural ensemble from single reactivity profiles with

demonstrated success in some applications [106].

Importantly, the log-linear transformation of reactivity into pseudo-energies is itself

parameterized based on a jack-knife approach that optimized structural predictions when

using SHAPE data to predict a set of highly-structured RNAs. Although it works well

in this case (often yielding structure models with >90% accuracy), it is not generalizable

to all types of SP data. In order to reliably utilize the method in processing reactivi-

ties from different experiments, a computationally intensive calibration step is necessary.

In this step, parameters m and b are re-optimized for the obtained data using reference

structures. Circumventing the calibration step can result in incorrect and unstable predic-

tions. In general, the disparate statistical properties of different SP datasets render their

analysis difficult, and there is a lack of tools capable of automatically making structural
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interpretations from them. This problem was partially solved with a likelihood-based

model of pseudo-energy transformation [39], however this approach still requires its own

form of calibration in the form of a statistical model.

Lastly, it is worth noting here that structure profiling experiments do not circumvent

or alleviate the computational limitations associated with NNTM-based folding. SP

data greatly improve NNTM-based predictions [29, 59], but the computational overhead

associated with folding large numbers of long RNAs with NNTM remains burdensome.

Now that SP experiments have scaled to the level of the human transcriptome (i.e.,

probing tens of thousands of transcripts in vivo simultaneously), experimentalists are

generating massive amounts of rich structural data that are reinventing how we perceive

the RNA structurome [132, 187, 161, 209, 35] and interactome [25]. NNTM-based folding

routines are not designed to scale to data of this size, requiring weeks of compute time

in order to analyze a single transcriptome-wide dataset. The field has typically resorted

to ad hoc local folding schemes to circumvent this limitation, but this can drastically

limit the impact of detected structure trends at both local and global levels. As such,

methods capable of rapidly and automatically assessing structure in massive SP datasets

have been warranted.

1.2 Dissertation Overview

The dissertation contains three core chapters which all relate to the development and

application of a computational tool, patteRNA, which aims to circumvent the computa-

tional challenges associated with folding transcriptome-wide data by opting for an pattern

recognition approach that mines SP data for specific structural elements. Chapter 2 de-

scribes the formulation of several automation-related improvements to the method, which

facilitate comparative and integrative analysis of patteRNA’s predictions across different

datasets and different motifs. Chapter 3 further improves the precision and speed of the

algorithm by devising a novel unsupervised training scheme based on discretized reactivi-

ties. This chapter also introduces a new application of patteRNA’s predictions in the form

of a metric quantifying structuredness of transcripts at the nucleotide-level. Chapter 4

focuses on augmenting and optimizing the method’s scoring routines by incorporating

NNTM-based sequence information in the form of a machine learning classifier. Lastly,

we conclude in Chapter 5 with a brief summary, remarks on the outlook of RNA structure

profiling data analysis, and outlooks on future method development.
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Figure 1.3: Overview of standard structure profiling (SP) experiment workflows. Exper-
iments begin with a pool of RNA transcripts from which one seeks to obtain structural
information. In traditional workflows, the RNAs are exposed to a structure-sensitive
reagent that preferentially interacts with unpaired segments of the molecule. At sites
which chemically interact with the reagent, adducts—covalent modifications—form. Af-
ter exposing RNA to the reagent, transcripts are then processed for sequencing. Reverse
transcriptase (RT) is used to reverse transcribe complementary DNA (cDNA) fragments
along the RNA transcripts; sites which saw adduct formation either stop reverse tran-
scription or induce mutations at the modified site. The number of cDNA fragments
which end at each nucleotide (e.g., “counts”) in the transcript are calculated and then
compared to an untreated control experiment lacking the structure-sensitive reagent in
order to compute final reactivity profiles. In short, nucleotides which saw more RT stop
counts or mutations when compared to the untreated control are deemed reactive. These
profiles quantify the accessibility of RNA segments at the nucleotide-level and provide
rich information on the structural conformation of RNAs. Reactivity profiles can subse-
quently be utilized in a plethora of ways depending on the objective of the study.
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2.1 Introduction

RNA is one of the most important molecules for the formation, evolution, and regula-

tion of life [38, 63]. Although it is known that RNA serves important roles at nearly

all levels of cellular function, the fundamental role of RNA in biological systems has re-

mained constant: to encode genetic information, regulate genes and serve as a catalyst

of biochemical reactions [45, 47, 38, 168]. Within these contexts, the ability of RNAs

to fold into specific structures is critical. For instance, the functions of thermosensors,

riboswitches, aptamers, G-quadruplexes, and protein–RNA complexes all depend on the

formation of intricate secondary and tertiary structures [130, 95]. The continued discov-

ery of such functional elements has necessitated the development of methods to obtain

accurate structure predictions at high-resolution. To this end, X-ray crystallography

and nuclear magnetic resonance are currently the ideal RNA structure characterization
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methods. However, their cost, labor requirements, and limited applicability render them

low-throughput. More recently, structure profiling (SP) experiments have received con-

siderable attention as an alternative approach for probing RNA structure that is more

affordable and suitable for high-throughput applications. By providing a snapshot of the

structural states of an RNA transcript at nucleotide resolution, SP experiments aim to

elucidate the role of RNA structure in biologically relevant contexts [130, 93, 88, 91].

Structure profiling experiments utilize chemical or enzymatic reagents that modify or

cleave nucleotides in a structure-dependent manner. Modifying reagents are sensitive to

the local stereochemistry of the RNA, meaning regions which are flexible are more likely

to be accessible to the reagent. As a result, accessible regions are modified more frequently

compared to regions that are rigid, internalized, or obstructed. Sites of modification lead

to transcription terminations or to mutations, which are then detected by sequencing.

The degree of modification, termed reactivity, is then quantified, providing nucleotide-

resolution information on a transcript’s structure. The sequence of reactivities over a

transcript is termed a structure profile. Structure profiling experiments were recently

scaled to transcriptome-wide levels with the advent of next-generation sequencing. These

advances have revolutionized our ability to study RNA structure at the scale of the entire

transcriptome and in the complex context of a living cell, with new applications and

methods continuing to emerge [95, 91, 216, 43].

Despite the recent breadth and scale of SP datasets, universal and efficient tools

for their interpretation and analysis are generally lacking. There are several reasons

for this, one being the difficulty in integrating nucleotide-resolution measurements to

the level of biologically relevant structural elements [20]. This is critical because RNA

function is typically driven by structural elements that span at least a few and often

tens of nucleotides. Examples of functional elements with available consensus structures

that are impacted by cellular conditions include aptamers and riboswitches, which re-

spond to ligands [11, 124, 203, 60, 212], thermosensors that respond to temperature [72],

G-quadruplexes [189, 95, 57, 160], as well as several non-coding RNAs [207, 202]. Addi-

tionally, RNA modifications, which are prevalent and dynamic, can modulate structures

[62, 104]. Traditional approaches to study such elements often rely on secondary struc-

ture prediction via thermodynamic models and dynamic programming algorithms, fused

with SP data [118, 156, 108, 173, 109]. While powerful, these methods do not scale

well to transcriptome-level analyses [101] and are often inaccurate for long RNAs [49].

More importantly, they are based on modelling assumptions that fail to capture the full
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complexity of the cellular environment [159], in particular inter-molecular interactions

and varying cellular conditions. In addition, RNA structures are dynamic as illustrated

by co-transcriptional folding pathways [198, 73]. In these contexts, it is valuable to be

able to rapidly glean structural information from SP data alone. However, the diversity

of available reagents, signal enrichment strategies, modification detection methods, and

analysis pipelines results in disparate statistical properties of SP datasets. Consequently,

existing SP-based methods are often specialized to the properties of the data at hand

and to the study’s biological objectives [194, 39, 88, 174, 91].

To address these needs, we previously developed patteRNA, a machine learning al-

gorithm for mining RNA structures from SP data directly [101]. Leveraging a sim-

plified representation of RNA structures as chains of paired and unpaired nucleotides,

patteRNA learns the statistical properties of two components that are fundamental to

all SP datasets. The first is RNA structure. Here, patteRNA learns how paired and

unpaired nucleotides come together to form commonly observed structural motifs, such

as hairpins. This is accomplished by training a Hidden Markov Model (HMM) to capture

the probability of adjacent nucleotides transitioning between paired and unpaired states,

and vice versa. The second feature is the SP signal, irrespective of the SP strategy em-

ployed. In this context, patteRNA learns which reactivity values are expected for paired

nucleotides and which values are expected for unpaired ones [180, 30]. These expecta-

tions are formulated in a Gaussian Mixture Model (GMM) of reactivity values. When

fused together, these two features give rise to a GMM-HMM framework [148], which al-

lows patteRNA to bridge between the resolution of reactivity measurements (i.e., single

nucleotide) and that of the sought-after structural elements (i.e., reactivity patterns over

local regions). To implement this, the GMM-HMM statistically links every structure to

every possible data pattern to assess their consistency. Equipped with these statistical

modeling capabilities, patteRNA rapidly scans local data patterns in massive datasets, in

search of regions where the data indicates that a target motif is likely to occur.

While we demonstrated patteRNA’s utility as a tool for automated mining of patterns

in SP data, our previous work focused on detecting highly pronounced structural changes,

and results derived from several datasets were generally considered in isolation [101]. To

improve the algorithm’s robustness and ease-of-use, we present updates to its training

routine, which is now fully automated. To extend the repertoire of patteRNA’s applica-

tions, we introduce improvements to its scoring pipeline, which now utilizes a normaliza-

tion strategy to facilitate integration and direct comparison of search results conducted
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with different target motifs and datasets. Using the revised pipeline, we demonstrate

our algorithm’s refined capabilities of pattern recognition. Specifically, using the human

immunodeficiency virus type 1 (HIV-1) Rev response element (RRE) as an example, we

show that patteRNA can discriminate highly similar structure profiles, identify the precise

location of RRE with high confidence in a whole-genome profile, and capture changes to

ensemble composition in simulated data. Overall, our results suggest that data-driven

models are a promising route for the discovery of functional RNA elements. Our findings

also serve as further validation of patteRNA and its capabilities as an automated and

broadly applicable RNA structure mining engine.

2.2 Materials and Methods

2.2.1 Overview of Structure Profiling Experiments

Structure profiling experiments aim at querying all RNA structures in a sample at nu-

cleotide resolution. Chemical reagents or enzymes are used to modify the RNA in a

structure-dependent manner, i.e., flexible or unpaired nucleotides are more accessible to

the chemical/enzyme and are modified more frequently [173]. A common approach using

chemical reagents is SHAPE (selective 2′-hydroxyl acylation analyzed by primer exten-

sion), where modifications involve the formation of chemical adducts on hydroxyl residues

of the RNA backbone. Commonly used SHAPE reagents include 1-methyl-6-nitroisatoic

anhydride (1M6), 1-methyl-7-nitroisatoic anhydride (1M7), N -methylisatoic anhydride

(NMIA), and 2-methylnicotinic acid imidazolide (NAI) [200, 177]. Chemical adducts

interfere with reverse transcription, leading to either complementary DNA (cDNA) tran-

scription terminations or mutations, which are then read out by DNA sequencing. Using

two experimental conditions, one with the reagent (treated sample) and one without

it (control sample), one can infer from sequencing reads a rate of modification, called

reactivity, at each nucleotide [4, 3, 170, 183, 165, 105, 12]. High and low reactivities

are generally indicative of unpaired (less constrained) and paired (more constrained) nu-

cleotides, respectively. Consequently, a structure profile correlates with the underlying

assayed secondary structure.
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2.2.2 Improvements to patteRNA’s Training Routine

Building the Training Set Using Kullback–Leibler Divergence

To minimize the size of the training set, we start by compiling a histogram of all observed

reactivities. The binning interval is determined automatically using the auto mode in the

histogram function from the Python package numpy [139]. Next, transcripts are sorted

in descending order of their data density, i.e., the proportion of observed values that are

neither zero nor missing. Then, to build the training set, we sequentially add transcripts

to our training set until its properties capture the distribution of the entire dataset.

This agreement is quantified using Kullback–Leibler (KL) divergence [90] between the

histogram of the entire dataset (P) and the one from the training set (Q). Note that

both histograms are built using the same binning intervals to obtain probability density

vectors of identical size. Formally, KL divergence (DKL(P ||Q)) is defined as:

DKL(P ||Q) =
∑
∀i

Pi log
Pi

Qi

. (2.1)

Transcripts are added until DKL(P ||Q) becomes smaller than a pre-set criterion, by

default 0.01. Note that a drastic reduction in training runtime is expected as the com-

putational overhead associated with the computation of the KL-divergence is eclipsed by

the training phase completing significantly faster when using a subset of the data instead

of the full dataset.

Determining an Optimal Number of Gaussian Components

To determine an optimal number of Gaussian components (K) per pairing state, we start

by training the model with a single Gaussian per state (K = 1). We then compute the

model’s Bayesian Information Criterion (BIC), based on the number data points (n),

the number of free parameters (ν) and the log-likelihood (logL) of the model, which is

defined as:

BIC = −2 logL+ ν log n. (2.2)

Note that ν, the number of free parameters, is essentially an indicator of the model’s

“complexity”. The BIC summarizes a model’s performance penalized for its complexity

(the ν log n term) into a single metric and is commonly used in model selection [164].

The same procedure is then repeated with K + 1 components until an increase in BIC

is observed. Such increase indicates that the currently tested model is less appropriate
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than the previous, simpler, model and therefore an optimal K was found. The trained

model derived from this K is then utilized for scoring.

Parameter Initialization

Parameters can be initialized either in a supervised or unsupervised manner. For super-

vised initialization, we use known reference structures to compute both the HMM and

GMM parameters deriving from them. Specifically, for the HMM, we set the initial and

transition probabilities for each pairing state equal to the frequencies observed in the

reference structures. For the GMM, we start by partitioning reactivities based on the

known pairing states of the reference structures, resulting in two data distributions, one

for paired and one for unpaired nucleotides [180, 30]. We then fit a standard GMM, as

implemented in the Python package scikit-learn [142], with a single Gaussian component

(κ = 1) to each state-specific distribution. Next, the BIC is computed for each fitted

distribution and summed into a single metric describing the performance of the fit for

the two pairing states. We then increment κ by 1, repeat this procedure, and stop when

the summed BIC increases. Once an optimal κ is found, we use the resulting means,

variances and weights for each component and pairing state as initial parameters.

For unsupervised initialization, the default initial parameters are listed in the Ap-

pendix. Note that both means and variances depend on the input dataset. Specifically,

under the initial assumption that the proportion of paired and unpaired nucleotides are

identical, we can space Gaussians evenly across the data distribution using the percentiles

of the reactivities distribution as shown in Figure 2.1. For variances, we initialize them

as the variance of the entire data distribution.

2.2.3 Computing Raw patteRNA Scores

Using a trained model, patteRNA rapidly scores sites in the data for consistency with

a target motif. Scoring consists of quantifying the nucleotide-wise agreement between

the target motif and the considered site, using a probabilistic framework [101]. At each

nucleotide in a scored site, we compute the probability ratio of the target path, T , over the

inverse-target path, T ′. The inverse-target path is simply the opposite state sequence of

the target. Because we only consider two pairing states (paired and unpaired), there exists

only a unique T ′ for any given T . The probability ratio is derived from the GMM-HMM

with the GMM capturing the likelihood of the target path given emission probabilities of

reactivity values in the scored site, while the HMM captures the likelihood of the target
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Figure 2.1: Initialization of four Gaussian components using data percentiles. Grey
histograms represent the distribution of example data. In this case, the parameter K = 2
(i.e., two components per pairing state) and each Gaussian component is represented by
a solid line with blue indicating the two components used to model paired nucleotides,
and red, unpaired ones. Gaussian means are spaced at regular percentile intervals, in this
case at 20%, 40%, 60% and 80% of the data distribution density, respectively.

given its state sequence as transition probabilities. It is subsequently log-transformed

to handle nucleotides in the data where one pairing state is highly preferred over the

other. At these nucleotides, the probability ratio would otherwise explode or collapse

to exceedingly large or small values, leading to numerical overflow. The sum of log

probability ratios is computed over nucleotides in the target site to produce a total raw

score. More formally, we define a raw score as:

score(target = T, site = S,model = θ) =
∑
∀i

log
Prob(Si = Ti|θ)
Prob(Si = T ′i |θ)

(2.3)

In practice, posterior probabilities at each nucleotide and for each pairing state are

computed during training, hence scoring is a rapid process that simply involves log-

transformation and summation of pre-computed values.

2.2.4 Sequence-Based Constraints

An important consideration when using patteRNA is the option to use sequence-based

constraints. Simply put, sequence constraints are a set of rules describing which pairs

of nucleotides are allowed to form base pairs. We follow the canonical set of valid base

pairs when enforcing sequence constraints. Base pairs considered valid are G–C and
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Target site: ACGUACGUACGU ACGGACGUACGU
Target motif: .(((....))). .(((....))).
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Figure 2.2: Illustration of sequence constraints. When comparing the target motif to the
nucleotide sequence in Site 1, all base pairings follow the canonical rules (G–C, A–U,
G–U allowed). This site consequently “passes” sequence constraints. On the contrary,
the nucleotide sequence in Site 2 gives rise to non-canonical base pairings. Specifically, a
G–A pairing is deemed invalid. As such, this site violates sequence constraints

A–U (Watson–Crick), as well as G–U (wobble). Note that, when enforcing sequence

constraints, we do not output scores at sites whose sequence violates the constraints

implied by the target structure. Visual examples of sequence-structure comparisons that

pass or violate sequence constraints are summarized in Figure 2.2.

2.2.5 Comparative Motif Scoring

patteRNA normalizes raw scores by comparing them to the distribution of raw scores

under the null hypothesis (H0, defined as sites that do not harbor the target). To build the

null distribution, we randomly sample raw scores from sites violating sequence constraints

(see Section “Sequence-Based Constraints” in Materials and Methods). To do so, we scan

all transcript sequences in a rolling window of the same length as the target path to create

a pool of regions, from which we sample up to 5000 null raw scores (or as many as possible,

if fewer than 5000 sites in the data violate sequence constraints). If sequence constraints

are not enforced, we sample up to 5000 raw scores across the entire dataset.

Once null scores are compiled, we fit null distributions for each target motif using a

skew-logistic (also known as a generalized logistic) probability density function (PDF).

Optimal parameters are determined by maximum likelihood estimation using the imple-

mentation in SciPy [139]. We then normalize each raw score with respect to the target

motif’s null distribution by determining the probability of observing a raw score greater
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or equal to it, also known as the survival function. This probability is log-transformed to

output a c-score, which we write:

c-score = − log10(1− F (score;α, β, γ)), (2.4)

where F (score) is the cumulative PDF of the fitted null for a target motif and {α, β, γ},
the shape, shift (location) and scale parameters, respectively. By definition, c-scores are

always positive and not upper-bounded. Higher c-scores indicate that the considered

site is more likely to harbor the target motif. Importantly, the log-transformation serves

to convert the 1 − F (score;α, β, γ) term, which is diminishingly small for sites likely

harboring the target motif, to an easily interpreted normalized score. Null distributions

with fewer than 100 samples are discarded, and normalized scores for the associated

target motifs are not produced. In such cases, patteRNA outputs a warning to the user

indicating the normalized scores are not computed because the null distribution cannot

be estimated reliably.

2.2.6 Benchmarking patteRNA Scores

To benchmark patteRNA’s normalization procedure against real data, we compiled a col-

lection of 21 reference RNAs, referred to as the Weeks set [101]. This dataset was used to

produce Figures 2.5 and 2.6. In Figure 2.5, we scored the Weeks set for three target motif

kernels: (1) 70% paired (state path: 01111111000011111110); (2) 50% paired (state path:

00011111000011111000); and (3) 30% paired (state path: 00000111000011100000). To

investigate the effects of motif length, scores were also generated for each kernel when

repeated two, three, and four times, as indicated by the 2×, 3×, and 4× labels in Figure

2.5A. Post-processing, statistical analysis, and figure generation were performed using

in-house Python scripts. Training on the Weeks set used log-transformed reactivities

and completed in 13 EM-iterations and in 5 s. Scoring of all benchmarking motifs was

completed in 29 s.

To demonstrate our normalization pipeline, as shown in Figure 2.6, the following

three target motifs were used: (1) hairpin, stem length 3 and loop length 8 (dot-bracket:

(((........)))); (2) hairpin, stem length 4 and loop length 4 (dot-bracket: ((((..-

..))))); and (3) hairpin-internal loop composite (dot-bracket: .....((..((.....)).-

.)).....). Targets were scored using the same trained model obtained with the Weeks

set, as described above in this section. Scoring and normalization to c-scores were com-
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pleted in 8 s.

2.2.7 HIV Rev Response Element Mutant Analysis

Previous work by Sherpa et al. [169] on the structure of the RRE in HIV-1 resulted in

SHAPE profiles for seven variants of RRE. Collectively, these seven SHAPE profiles are

referred to here as the Sherpa set. Two of these variants correspond to isolated isomers of

RRE separated via native polyacrylamide gel electrophoresis (PAGE); they are denoted

5SL (five stem-loop) isomer and 4SL (four stem-loop) isomer. The other five profiles were

generated from five RRE mutants (Mutants A–E) designed to stabilize or disrupt the two

native forms. The seven RRE SHAPE profiles in the Sherpa set, each 232 nucleotides in

length, were used collectively to train patteRNA. It is noted that the predicted structures

of 5SL and 4SL are identical to Mutants A and B, respectively, hence the Sherpa set

is comprised by seven SHAPE profiles with six unique nucleotide sequences predicted

to give rise to five unique secondary structures. The full RRE structures are shown in

Figure 2.3. patteRNA was then used to score the seven profiles for both their full-length

predicted structures (232-nt) and the SL III/IV region (59-nt). Thus, each profile received

five full-length scores as well as five scores at each possible 59-nt window, or a total of

5 + 5 × (232 − 59) = 1326 scores. Data were log-transformed prior to patteRNA’s run,

hence the --log argument was not used. Analysis was performed twice, with and without

sequence constraints enforced. Training converged in 61 iterations and 30 s. Scoring and

normalization was completed in 3 s.

2.2.8 Searching the HIV Genome for Rev Response Element

Motifs

RRE motifs were searched in four whole-genome structure profiles of HIV-1, three of

which were generated by Siegfried et al., who employed high-throughput mutational pro-

filing in conjunction with 1M7, 1M6, and NMIA SHAPE reagents (SHAPE-MaP) [170].

The fourth profile, generated by Watts et al. [199], was obtained with the 1M7 SHAPE

reagent and capillary-based cDNA quantification. patteRNA was trained on each pro-

file independently using log-transformed reactivities. The trained model for each HIV

genome was subsequently used to score sites in the data for similarity to all five full-

length structures of RRE from the Sherpa set as described in HIV RRE Mutant Analysis

(see Figure 2.7). When scoring, sequence constraints were not enforced, thereby generat-
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Figure 2.3: Secondary structures of the in vitro RREs (nt 60-291), as predicted by Sherpa
et al.

ing five scores for every possible 232-nt window. Sequence constraints were not enforced

because we sought to assess how scores compared between the known site of RRE and

other sites in the genome that violate sequence constraints. Training converged in under

100 iterations and 3 min for all profiles. Scoring was completed for all profiles in under

90 s, for a total runtime per genome of approximately 2–4 min.

Each profile was then scored for the presence of the 59-nt SL III/SL IV region as

represented in Figure 2.4. Scoring was performed with and without sequence constraints.

With sequence constraints, the search space was consequently reduced to only the ex-

act location of SL III/SL IV in the genome (nt 7409–7467) (i.e., no other sites in the

genome satisfied sequence constraints). Furthermore, only Paths A, B, and E satisfied

the sequence constraints at this site, so only scores from these paths are reported. With-

out sequence constraints, scores were generated at every possible 59-nt window within

the HIV-1 genome. Using the associated trained model, scoring was completed for each

profile in under 30 s.

To compare c-scores directly between searches in the HIV-1 genome and a larger

dataset, we utilized publicly available in vivo transcriptome-wide PARS data (reference

GM12878) from Wan et al. [194]. The data were processed as described previously, and
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 SL III region     SL IV region 
 5SL AGCAGCAGAACAAUUUGCUGAGGGCUAUUGAGGCGCAACAGCAUCUGUUGCAACUCACA 
 4SL AGCAGCAGAACAAUUUGCUGAGGGCUAUUGAGGCGCAACAGCAUCUGUUGCAACUCACA 

  Mutant A AGCAGCAGAACAAUUUGCUGAGGGCUAUUGAGGCAGCCCAGCAUCUGGGCUAACUCACA 
  Mutant B ACGUUGUCAACAAUUUGCUGAGGGCUAUUGAGGCGCAACAGCAUGACGACGAACUCACA 
  Mutant C AGCAGCAGAACAAUUUGCUGAGGGCUAUUGAGGCAGCCCAGCAUCUGUUGCAACUCACA 
  Mutant D AGCAGCAGAACAAUUUGCUGAGGGCUAUUGAGGCAGCCCAGCAUCUGAACGAACUCACA 
  Mutant E AGCAGCAGAACAAUUUGCUGAGGGCUAUUGAGGCGCAACAGCAUCUGAACGAACUCACA 

    5SL/Mutant A 00111111100001111111000000001111001111111000111111100111100 ß Path A 
    4SL/Mutant B 01111111100000011111000111000001110000111111111111100000000 ß Path B 

 Mutant C 01111111100000011110011111000000001111111111111111100000000 ß Path C 
 Mutant D 00111111100001111111011111000000001111100000000000000000000 ß Path D 
 Mutant E 00111111100001111111011100001011101100001101110100000111000 ß Path E 

nt. 163 

nt. 163 A

B

Figure 2.4: Sequences and pairing state paths of the SL III/SL IV region for RRE variants
in the Sherpa set. (A): Nucleotide sequences for the SL III/SL IV region (nt 163-221) in
RRE included in the Sherpa set. In the 5SL structure, SL III and SL IV fold into distinct
stem-loops (indicated in grey). In the 4SL structure, these two stem-loops rearrange and
merge to form a single larger stem-loop known as SL III/IV. Mutations are highlighted in
yellow with bold text. (B): Binary pairing state representation of the native isomers and
mutants of RRE within SL III/SL IV. Unpaired and paired nucleotides are represented
by 0 and 1, respectively. Secondary structures related to these sequences are illustrated
in Figure 2.3
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the same trained model was used [101]. Using the revised pipeline, we scored the full-

length 5SL and 4SL RRE conformations at 1,114,957 possible sites on 649 transcripts with

at least 75% data density (i.e., ≤25% missing values) from the PARS dataset. Searches

were conducted without sequence constraints and scoring was completed in about 8 min.

We then ranked c-scores obtained at the location of the RRE in all HIV-1 SHAPE profiles

from the Siegfried and Watts sets directly against c-scores obtained with searches in the

PARS data.

2.2.9 In Silico SHAPE Mixtures of HIV-1 Structure Variants

SHAPE profiles were created in silico to emulate mixtures of pure 4SL and 5SL con-

formations, as isolated by Sherpa et al. Synthetic mixture profiles were created in 10%

increments from 100% 5SL to 100% 4SL by taking a weighted average of the 4SL and

5SL reactivities at each nucleotide. Each mixture was then scored against the 5SL and

4SL 59-nt target paths of the SL III/SL IV region (see Figure 2.7 and Figure 2.4), using

a model trained from the seven profiles in the Sherpa set.

2.3 Results

2.3.1 Overview of patteRNA Workflow

patteRNA first reads a dataset to train its HMM-GMM model. After training, the model

can be used to mine for user-specified structures (referred to as target motifs). During

this phase, which we call scoring, patteRNA attributes a score to each considered region

in the input RNAs, which we call a site. The score is computed as the log ratio of

the probability of the target motif over the probability of the target motif’s inverse

(see Section “Computing Raw patteRNA Scores” in Materials and Methods). A higher

score indicates that a site is more likely to harbor the target motif. Central to our

method is a simplified representation of secondary structures (target motifs) as a sequence

of nucleotides in one of two pairing states, namely, paired (denoted by 1) or unpaired

(denoted by 0). We hereby use the term path to refer to a sequence of consecutive

nucleotide pairing states as represented in patteRNA. Note that this is a simplification of

the conventional representation of secondary structures, where the requirement to specify

pairing partners is eliminated, as these are not revealed by SP data.
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2.3.2 Score Normalization for Comparative and Integrative Anal-

yses

When scoring a dataset against a single target motif, it is straightforward to parse which

scores correspond to sites where the motif is more likely to occur: simply rank sites by

their scores and look for top-scoring ones. However, when scoring a dataset against mul-

tiple target motifs and collectively considering the results of these searches, rank-based

analysis is insufficient. At the root of this issue is our observation that scores can be biased

due to properties of the target motif. Each target motif produces a distribution of scores

that might vary greatly in its statistical properties and dynamic range. Such discrepancies

pose a challenge to both integrative and comparative analyses of patteRNA’s outputs, as

they render scores incomparable between distinct searches. This is particularly relevant

when conducting searches for functional elements that can fold into several plausible con-

formations, when comparing a motif and its sub-motifs components, or for comparative

analysis across varying experimental conditions [69, 23, 20, 176, 106]. For example, if

scores for motif A span a different range than scores for motif B, a rank-based analysis

of scores between A and B is not appropriate as these scores originate from different

distributions. To illustrate this point, consider scores for three 20-nt motifs with paths

“01111111000011111110” (70% of nucleotides are paired), “00011111000011111000”

(50% paired), and “00000111000011100000” (30% paired). Figure 2.5A shows raw score

distributions for these target motifs when searching across a reference set of 21 in vitro

SHAPE profiles, which we call the Weeks set [29, 59, 100, 30, 101]. Score distributions

when two (2×), three (3×), and four (4×) repeats of the state-sequences for these motifs

are concatenated and searched are also included in these plots to assess the effects of a

target motif’s length, without affecting state composition (i.e., the proportion of paired

to unpaired states). In this context, the original 20-nt paths (1×) are denoted as the

“kernels” of the concatenated forms (2×, 3×, and 4×). Immediately apparent is a dras-

tic difference in the mean and skew of score distributions associated with each motif in

Figure 2.5A. There are two main issues with this. First, one cannot merge and then rank

scores from multiple searches to infer which sites are likely to harbor any of the sought

targets, as certain searches might dominate the top of the list. This, in turn, warrants

separate analysis of each search. Second, scoring a site of interest against two alternative

targets might not reveal which target is more likely to be present.

The statistical properties of score distributions were found to primarily depend on the

length of the target, its state composition, and the proportion of predicted paired/unpaired
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Figure 2.5: Distributions of raw scores associated with three target motif kernels. (A)
Raw score distributions for three motif kernels of equal length and composed of 70%
paired (top), balanced (middle), and 30% paired nucleotides (bottom). Overlaid are
distributions for longer motifs obtained by concatenating kernels two (2×), three (3×),
and four times (4×). (B) Mean raw scores for each of the distributions (red, blue, and
green). The x-axis represents motif lengths corresponding to kernels repeated 1× (20-nt),
2× (40-nt), 3× (60-nt) and 4× (80-nt). Mean raw scores for distributions obtained when
searching the Weeks set for additional kernels spanning a range of possible pairing state
compositions are denoted in black. Dashed lines indicate a linear regression of the mean
scores observed when extending a kernel’s length.

nucleotides in the data. Firstly, longer targets generally give rise to score distributions

with larger variances. This is because scores are constructed as a sum of log ratios of

probabilities at each nucleotide in the scored region (see Equation (2.3) in Materials

and Methods) [101]. Consequently, scores for longer targets involve summation over a

larger number of terms, each with their own variance, thereby leading to overall increased

spread. This bias can be seen in Figure 2.5A, where distributions of scores expand as

progressively longer motifs are scored. Secondly, shifts to the mean of a score distribution

are driven by an imbalance in the state composition (i.e., paired/unpaired ratio) of the

target motif. To illustrate this point, the means of the score distributions for the target
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motifs described earlier are shown in Figure 2.5B, where each kernel (green, blue, and

red) has a unique composition. Results show that means are influenced by the target’s

length (x-axis) and state composition (individual curves). Note that we also observed

that the magnitude of the shift in the mean is proportional to the composition of pre-

dicted pairing states across all nucleotides in the data (data not shown). Additionally,

although the state composition of the target and the state composition of the data both

influence the mean, we found that if the state composition of the target is balanced (i.e.,

50/50 paired/unpaired), the mean of the distribution will be at zero regardless of the

imbalance in the data.

To allow meaningful comparisons of patteRNA scores across datasets and target mo-

tifs, we developed a normalization strategy that, given a target, accounts for the statistical

properties of its scores in a given dataset. The normalization step results in a comparative

score, termed c-score, which quantifies the statistical significance of a site’s raw score,

given an estimated null distribution of raw scores associated with the target. Hereafter,

the term “raw score” refers to patteRNA scores as described previously [101], while the

term c-score refers to normalized scores. To determine the significance of a raw score,

we require a distribution of raw scores (null distribution) at sites that do not harbor the

motif (our null hypothesis, H0). In practice, we do not know with absolute certainty

where a motif will not occur. However, by using nucleotide sequence information, we

can identify sites that are highly unlikely to harbor a motif because non-canonical base

pairings would be required to give rise to the target motif. Specifically, sites where the nu-

cleotide sequence allows for the formation of the motif via Watson–Crick or wobble base

pairs are considered as putative positives. Conversely, sites that preclude motif formation

are classified as falling under the null hypothesis. This filtering process is hereby called

“sequence-based constraints.” By applying sequence constraints and randomly sampling

null sites, we can approximate the score distribution under the null hypothesis. Given

the null distribution, a c-score for a given raw score, r, is the − log10 of the probability

of observing raw scores that exceed r (in other words, the area under the null distribu-

tion above r). Note that logarithmic transformation is applied to increase the separation

between diminishingly small values which are strongly indicative of the presence of the

target motif, similarly to common practices in genome-wide association studies [123]. As

such, c-scores are always positive and not upper bounded, and a larger c-score is in-

dicative of a stronger match between targets and scored sites. The null distribution is

then fitted using a skew-logistic PDF. The rationale for a parametric description of the
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null is that it allows inferences in situations where the considered raw score falls outside

the range of the null raw scores. The choice of a skew-logistic PDF was motivated by

our observation that null distributions are generally non-Gaussian and often skewed (see

Figure 2.5A). Note that, if sequence constraints are not enforced, the null distribution is

instead constructed using scores from all sites in the data (see Methods). Under these

circumstances, the null distribution will be biased, as it includes scores from true positive

sites. Nevertheless, if the target motif is not widespread in the data, which is commonly

the case, then this bias will only marginally affect c-scores as the null distribution will

still contain a vast majority of negative sites.

An illustration of how our normalization framework converts raw scores at putative

positive sites to final c-scores is shown in Figure 2.6. We illustrate the normalization pro-

cess for three target motifs, namely, a short stem/long loop hairpin, a long stem/short

loop hairpin and a hairpin-internal loop composite (Figure 2.6A). First, patteRNA com-

putes raw scores at sites precluding formation of the target motif. These scores are used to

approximate the true distribution of scores under the null (H0) hypothesis (Figure 2.6B,

left panels). A skew-logistic density function is then fitted to these null scores (black

curve) and used to quantify significance of raw scores at putative sites (Figure 2.6B, right

panels, where the overlaid dashed curve is the fitted null distribution). Finally, raw scores

at target sites are converted into c-scores (Figure 2.6C) using the null distribution.

Differences in null distributions, distributions of raw scores from putative sites, and

c-score distributions convey important observations from our normalization pipeline.

First, null distributions for the three target motifs in Figure 2.6A differ in their sta-

tistical properties, and the skew-logistic PDF models observed data with high fidelity.

Secondly, the distribution of raw scores from putative sites are different compared to

their associated nulls. Namely, putative scores from a 4-nt stem/loop hairpin (Figure

2.6, middle) are noticeably shifted toward positive values compared to the null. In line

with expectations, this shows that sites satisfying sequence constraints are more likely to

emit SHAPE data in agreement with the presence of that hairpin. Although a similar

shift exists for the hairpin with a shorter stem and a longer loop (Figure 2.6, top), the

distinction is less dramatic. We presume that this is due to the longer loop destabilizing

the hairpin more frequently compared to a hairpin with a shorter loop, which is generally

assumed to be more stable. In addition, this can also be driven by sequence constraints

not filtering out sites where a hairpin with a shorter loop would be feasible. In other

words, while we considered a hairpin with a long loop at a site, it is more likely that the
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site harbors a hairpin with a shorter loop and a longer stem if the sequence permits it,

as this would be energetically favorable. The distribution of scores at putative sites for

the third motif, a short hairpin containing an internal loop, closely follows the null dis-

tribution, suggesting that this target is not commonly present in the data and sequence

constraints alone are a weak indicator of the motif’s presence. Finally, the distribution

of c-scores reflect these relative differences. Namely, there is an enrichment of c-scores

greater than 1 for the short-loop hairpin that is more pronounced compared to the long-

loop hairpin (Figure 2.6C, top and center panels). Comparatively, this enrichment is

absent for the third motif (Figure 2.6, bottom panel).

A B C

Figure 2.6: Normalization of patteRNA raw scores to c-scores. (A) Secondary structure
of the target motifs. (B) Raw scores at null sites (H0, left) and raw scores at putative
sites satisfying sequence constraints (right). Null sites refer to sites where the RNA
sequence precludes formation of the target motif. The solid black curves correspond to
a skew-logistic density function fitted on the null scores. On the right panels, the same
fitted density is superimposed (dashed curve) and is used to normalize target scores. (C)
Distributions of normalized putative scores, i.e., c-scores.

In summary, we have demonstrated that patteRNA’s raw scoring scheme is subject

to biases arising from a target motif’s paired/unpaired composition as well as its length.

Moreover, we observed an additional bias due to the proportion of paired/unpaired nu-

cleotides in the dataset. As we highlighted, these biases preclude a direct comparative
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analysis of different target motifs across datasets. To improve our algorithm’s ability to

assess relative significance of target scores, we developed a normalization pipeline that

produces c-scores, which provide a more meaningful metric with which to interpret results

from distinct searches.

2.3.3 Targeted Search of Alternative Motifs in HIV-1

Essential to viral replication and RNA trafficking in HIV is the Rev-RRE regulatory

system [146]. The RRE is an RNA element present in all unspliced and partially spliced

viral mRNA transcripts from an HIV-infected host cell [155]. The viral protein Rev

localizes to the nucleus and binds to RRE in a cooperative manner, forming the Rev-RRE

complex. Next, Crm1 and other host proteins are recruited by the Rev-RRE complex,

which is then exported to the cytoplasm along with its attached mRNA transcript. Due to

its highly-structured nature and implications in HIV replication, RRE has been subject to

extensive structural analysis. Its structure has been characterized by crystallography [32,

75], small-angle X-ray scattering [42, 6], probing experiments [83, 18, 103, 199, 170, 6], and

other methods [28, 76]. Even with the wealth of data collected, the secondary structure

of RRE has remained controversial. Studies have arrived at either a 4SL [18, 115, 103]

or a 5SL [28, 83, 199] structure, although slightly deviant structures have also been

suggested [6]. The two principal structures, 4SL and 5SL, are shown in Figure 2.7A,B.

These competing conformations are largely identical. Both predict the formation of a

central loop, from which a number of stem-loops fold. The specific region of RRE that

has remained controversial is the SL III/SL IV region (nt 163-221, see dashed frames

in Figure 2.7A,B). It is believed that SL III and SL IV either exist as two separate

stem-loops (5SL structure) or combine to form a larger stem-loop, denoted SL III/IV

(4SL structure). Notably, although the mesoscale structural arrangements of these two

conformations are quite different, their pairing state paths are highly similar (see Figure

2.4). As such, this presents an important challenge for analysis by patteRNA, which is

blind to information on pairing partners and only considers the pairing state of each

nucleotide when mining SP data for target structures.

To understand the role of SL III/SL IV in Rev binding, Sherpa et al. isolated two

co-existing structural isomers of wild-type HIV-1 pNL4-3 RRE and performed SHAPE.

From SHAPE-directed predictions, the authors concluded that each isomer corresponded

to the canonical 5SL and 4SL structures [169]. They further produced RRE mutants

intended to strengthen or disrupt specific base pairings in the SL III/SL IV region. Their
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Figure 2.7: Predicted secondary structure of the Rev response element (RRE). (A) Full-
length predicted structure of the five stem-loop (5SL) isomer of RRE. Stem-loops are
indicated by their numeral. The region of interest (SL III/SL IV) is indicated with dashed
lines, and expanded to show base pairings. The structure of RRE Mutant A, a variant
of RRE that prefers the 5SL conformation, is also shown. (B) Full-length predicted
structure of the four stem-loop (4SL) isomer of RRE along with a similar comparison as
made in (A). Shown to the right is the structure of Mutant B, an RRE variant preferring
the 4SL conformation. (C–E) Predicted secondary structure of the SL III/IV region for
three additional RRE mutants. All mutants were produced by Sherpa et al. [169] with
induced mutations highlighted in red.

experiments resulted in seven RRE transcripts with SHAPE profiles: two corresponding

to the 5SL and 4SL wild-type isomers and five corresponding to mutants denoted A to

E. The secondary structures within the SL III/SL IV region (as predicted by Sherpa

et al. using data-directed minimum free energy models) of these seven transcripts are

shown in Figure 2.7A–E, with the induced mutations highlighted in red. The binary

pairing state paths for each mutant are shown in Figure 2.4B. Note that Mutants A

and B share identical secondary structures with 5SL and 4SL, respectively, as they were

designed to stabilize the two wild-type conformations. Moreover, while seven transcripts

are considered, the native 4SL and 5SL isomers share the same underlying nucleotide

sequence. Hence, this dataset, hereby called the Sherpa set, contains seven SHAPE

profiles built from six unique sequences that give rise to five distinct predicted structures.

As patteRNA represents these structures as pairing-state paths, they are denoted Paths

A–E in our subsequent analyses (see Figure 2.4).

To determine patteRNA’s ability to distinguish between highly similar paths, we
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searched for each of the structures illustrated in Figure 2.7 in all seven SHAPE pro-

files. Note that no sequence constraints were enforced. Our results indicate that, for

all but one RRE mutant profile, our algorithm assigns the highest c-score to its corre-

sponding predicted path (Figure 2.8A–E). The exception is Mutant D, where the highest

score was given narrowly to Path C over its expected path, Path D (Figure 2.8D). This

misclassification is driven by high reactivities at locations in Path D where nucleotides

are expected to be paired (nt 170, 181, 182, and 188). As our algorithm depends solely on

data to infer pairing states, Path D is demoted because of direct contradictions between

the predicted path and the observed data.
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Figure 2.8: patteRNA scores on the Sherpa set of RRE SHAPE (selective 2′-hydroxyl
acylation analyzed by primer extension) profiles. (A–E) Each panel corresponds to a
SHAPE profile for an RRE mutant. Grey bars indicate patteRNA’s c-scores for the five
Paths A–E. Highlighted with a star is the score for the predicted path in the tested
profile. (F) c-scores for the two native 5SL and 4SL isomers. Bars correspond to scores
for Paths A–E on the 5SL (black) and 4SL (grey) profiles. Similar to the other panels,
stars highlight scores for the predicted path in each profile, namely Path A for 5SL and
Path B for 4SL. All scores correspond to the SL III/SL IV region (nt 163–221).

Having demonstrated that patteRNA can discriminate between highly similar struc-

tural RRE variants, we proceeded to investigate scores for the 5SL and 4SL native isomers.

Our results show that the 5SL profile scores highest for Path A, and the 4SL profile scores
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highest for Path B (Figure 2.8F). These results are in perfect agreement with Sherpa et

al., as Paths A and B correspond to the sequence of pairing states for the predicted 5SL

and 4SL native structures, respectively. In summary, our results support the conclusion

that the two native isomers are in fact folding into the 5SL and 4SL conformations. Of

the two isomers, the 4SL motif appears to be more readily detected by patteRNA. This is

evidenced by the higher c-score when scoring the 4SL profile for its predicted state path,

Path B, than when scoring the 5SL profile for its predicted state path, Path A. This

difference in c-score magnitude indicates that SP data are in stronger agreement with

the 4SL isomer predicted structure, compared to the 5SL isomer. This originates from

reactivity values in the 5SL profile that contradict the pairing state sequence of Path

A. Specifically, nucleotides 169 and 176 are observed to emit high reactivities, despite

having been predicted to be in paired states within SL III. Nucleotides 195, 196, 215, 216

comprise an unpaired internal loop within SL IV, however these nucleotides emit very low

or zero reactivity. A likely explanation stems from the predicted structure for 5SL having

been obtained using a data-driven thermodynamic-based algorithm (RNAstructure) [29].

Such algorithms [118, 108, 156] consider the possible base-pairing arrangements (not just

paired/unpaired states) in the context of the entire RNA and can subsequently consider

situations in which a stem-loop is likely to fold, despite the underlying sequence necessi-

tating an internal loop, which may or may not be reactive in SHAPE experiments. As

such, it is not surprising to observe deviations between a SHAPE profile and a predicted

structure. Given prior knowledge on the structure of RRE, it is possible that the 5SL

conformation harbors tertiary interactions altering reactivities at nucleotides in the SL

III/SL IV region. We speculate that the 5SL conformation (Path A) could leave the end

of stem-loops SL III and SL IV more exposed, subsequently causing heightened reactiv-

ities for paired nucleotides. Conversely, low reactivities in the SL IV internal loop may

also be explained by the rigidity of the stem-loop. Alternatively, tertiary interactions

from other regions of RRE could prevent the internal loop from behaving as unpaired

nucleotides in SP experiments.

Overall, these results demonstrate patteRNA’s ability to discern structures in SP data,

even when trained on relatively small datasets and when tasked with highly similar motifs

in terms of their nucleotide pairing states. Although the algorithm’s performance in this

situation is not impeccable (i.e., Mutant D is narrowly misclassified as Mutant C), our

results are promising given the inherent limitations of our framework, which uses SP data

alone and is therefore blind to pairing partners. Scores shown here are specific to the SL
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Figure 2.9: patteRNA scores on the Sherpa set of RRE SHAPE profiles when searching
full-length RRE paths. (A-E) Each panel corresponds to a SHAPE profile for an RRE
mutant. Grey bars indicate patteRNA’s c-scores for the five paths A-E. Highlighted with a
star is the score for the predicted path in the tested profile. (F) c-scores for the two native
5SL and 4SL isomers. Bars correspond to scores for paths A-E on the 5SL (black) and
4SL (grey) profiles. Similar to the other panels, stars highlight scores for the predicted
path in each profile, namely path A for 5SL and path B for 4SL. Note that y-axes start
at 1 to better highlight differences in c-scores between paths, which relate primarily to
differences in 59 out of 232 nucleotides when searching the full-length path.

III/SL IV region (nt 163–221), however the performance of the algorithm when searching

for the full-length versions of Paths A–E convey the same conclusions (Figure 2.9).

Having observed patteRNA’s ability to resolve similar variants of RRE from different

SHAPE profiles, we set out to investigate how well it can recognize RRE in the entire

HIV-1 genome. At first, this task might seem less challenging in comparison to previous

analyses we performed on human transcriptomes [101] due to the relatively small size

of the HIV-1 genome. However, the data analyzed in [101] contained mRNAs that are

believed to be predominantly unstructured whereas the HIV-1 genome comprises numer-

ous highly structured elements. The latter scenario thus poses a greater challenge in

discriminating between signal and background.
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We utilized two HIV-1 pNL4-3 SHAPE datasets from the Weeks Lab. The first one,

by Watts et al. [199], was obtained using the 1M7 reagent and capillary-based cDNA

quantification. The second dataset, by Siegfried et al. [170], comprises three SHAPE-

MaP profiles probed using 1M6, 1M7 and NMIA reagents. This resulted in a total of four

whole-genome profiles, in which we searched for the presence of the five full-length RRE

structures (Paths A–E) included in our analysis of the Sherpa set (Figure 2.3). Note that

patteRNA training and scoring were performed on each profile independently.

Our results show that our algorithm successfully identified the exact location of the

RRE structure in all four profiles (Figure 2.10, see Figure 2.11 for complete scoring

results). This is demonstrated by highest c-scores falling precisely at the expected start

location of RRE (nucleotide 7306, Table 2.1). Table 2.1 contains the highest scoring site

in the whole-genome profiles for each of the five paths, A–E. Interestingly, top scores

at this site are given to either the 4SL or 5SL native structures in all profiles. This

is expected, as Paths C–E correspond to RRE mutants whose mutations were created

artificially to render native conformations unfeasible. Note, however, that Paths C–E are

still detected because we searched for the full-length RRE motif, while induced mutations

are understood to drive structural rearrangements only within the SL III/SL IV region.

In other words, all targets have identical structures outside of SL III/SL IV, meaning

that differences in scores primarily relate to reactivity differences in only 59 out of the

232 nucleotides in RRE.
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Figure 2.10: patteRNA scores when searching for the 4SL native structure of RRE across
human immunodeficiency virus (HIV) genome profiles. (A) c-scores across the entire
HIV-1 RNA genome as probed with N -methylisatoic anhydride (NMIA) by Siegfried
et al. The peak at nucleotide 7306 corresponds to the known start site of the RRE.
Other labeled peaks correspond to known structured elements in HIV-1. Scores end at
nucleotide 8943 as this is the last location in the 9174-nt genome able to accept the 232-nt
target paths. (B) Inset of c-scores around the RRE start site.
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While the true site of RRE is consistently assigned the highest c-score over all sites in

each genome, we also observed signals at other structured regions of HIV. For example,

the dimerization initiation site (DIS), reverse transcriptase pseudo-knot (RTPK), exonic

splicing silencer ESSV junction, and 3′-TAR all give rise to detectable c-score peaks (Fig-

ure 2.10A). Because the searched RRE motif is highly structured (> 65% paired states), it

is not surprising to observe heightened scores at other highly structured regions. Interest-

ingly, the structure of the ESSV junction is not well characterized, however, recent studies

have identified this region as structurally conserved across HIV and simian immunode-

ficiency virus (SIV) [100]. Our observations suggest that this region, readily known to

influence transcription and replication [10, 80], may harbor an intricate structure related

Table 2.1: Highest patteRNA scores when searching Rev response element (RRE) mo-
tifs across four whole-genome human immunodeficiency virus type 1 (HIV-1) SHAPE
(selective 2′-hydroxyl acylation analyzed by primer extension) profiles. Genomes were
searched for the five RRE structures reported in the Sherpa set. All top c-scores occur
at the known site of RRE in the HIV-1 pNL4-3 genome (nt 7306–7537).

Dataset Reagent Search Target Top c-Score

Path A (5SL) 10.6
Path B (4SL) 11.4

NMIA Path C 11.0
Path D 10.6
Path E 11.4

Path A (5SL) 12.2
Path B (4SL) 12.4

Siegfried Set 1M6 Path C 11.5
Path D 12.4
Path E 12.4

Path A (5SL) 11.5
Path B (4SL) 13.0

1M7 Path C 12.2
Path D 11.8
Path E 11.9

Path A (5SL) 12.9
Path B (4SL) 13.2

Watts Set 1M7 Path C 12.7
Path D 11.9
Path E 12.6

NMIA: N -methylisatoic anhydride

1M6: 1-methyl-6-nitroisatoic anhydride

1M7: 1-methyl-7-nitroisatoic anhydride
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to its roles in splicing.

Large fluctuations in c-scores were also observed in the vicinity of the known location

of RRE (Figure 2.10B). These are due to pairing state agreements and contradictions

when sliding the target motif’s path around the true site of RRE. Because RRE is com-

prised by stretches of paired and unpaired nucleotides, the overlap between pairing states

of the target path and those of the underlying structure of RRE will vary greatly as the

target path is considered near the true site. Finally, we observe that the 4SL structure

consistently ranks as the top scorer, indicating that it may be the dominant conformation

in the HIV-1 genomes probed in these studies.

In addition, to place these results in the context of searches in larger datasets, we con-

ducted a search for the two native conformations of the full-length RRE (5SL/Path A and

4SL/Path B) in a subset of highly data-dense transcripts from a human transcriptome-

wide PARS dataset [194]. Searches were conducted without sequence constraints. To

establish the theoretical rank that the RRE would be assigned if present in human data,

c-scores obtained at the location of the RRE in all HIV-1 SHAPE profiles (see Table 2.1

for details) were ranked against the c-scores from the PARS searches for both 5SL and

4SL. Our results indicate that both conformations would rank first out of 1,114,957 sites

in the PARS dataset for all HIV-1 genomes (see Figure 2.12). This suggests that the RRE

would be easily identified even at a scale much larger than a 9kb viral genome. In addi-

tion, note that the distribution of c-scores is skewed towards high values for searches in the

HIV-1 genome, as viral genomes are understood to be generally much more structured

compared to mRNAs. Such statistical differences underscore the additional challenge

faced by searches in relatively structured domains.

Having observed that patteRNA can find the RRE motif in whole-genome SHAPE

profiles, we performed a similar search, but instead, we considered the SL III/SL IV region

exclusively. This search provides a more specific measure of the structural nature of SL

III/SL IV without overwhelming signal from the rest of the full-length RRE. The results

of this search (Table 2.2) are in line with our full-length search results. Depending on the

reagent used, c-scores indicate the either the 4SL conformation is dominating (Siegfried

set, NMIA and 1M7) or both the 5SL and 4SL conformations co-exist (Siegfried set,

1M6; Watts set, 1M7). When searching the smaller 59-nt motif, less information on the

target results in a reduced signal at the true positive site of SL III/SL IV (nt 7409–7467)

compared to the rest of the genome. Subsequently, this site is not assigned the highest

c-score across all sites. As such, we include in Table 2.2 the percentile of c-scores to
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highlight the ranking of the site relative to the rest of the data. We also repeated this

search with sequence constraints enforced, to prune scores corresponding to sites with

nucleotide sequence precluding formation of the target path. Despite the shorter length

of the SL III/SL IV target paths, the true site of RRE is nevertheless the only site in the

data satisfying sequence constraints. Paths A, B, and E satisfy sequence constraints at

this site only, while Paths C and D are rendered invalid because of base pairings deriving

from induced mutations. Moreover, Path E, which satisfies sequence constraints at the

true site in the data, is assigned a relatively low c-score compared to the native isomers

5SL/4SL. Taken together, these results support previous work concluding that 5SL and

4SL are the true underlying structures of RRE.

Table 2.2: patteRNA scoring of the SL III/SL IV RRE region (nt. 7409-7467) in genomic
SHAPE data against the candidate paths A–E described in the Sherpa set. c-scores
with and without sequence constraints are included. Paths C and D violate sequence
constraints and are not reported. c-score percentiles are included to gauge the significance
of the reported values. Percentiles correspond to the percentage of scored sites falling
below the reported c-score.

Dataset Reagent Search Target c-score (Percentile) c-score
no sequence constraints sequence constraints

5SL/Path A 0.75 (81st) 0.75
4SL/Path B 1.58 (97th) 1.52

NMIA Path C 1.18 (93rd) invalid
Path D 0.23 (41st) invalid
Path E 0.83 (84th) 0.78

5SL/Path A 1.39 (95th) 1.39
4SL/Path B 1.22 (94th) 1.22

Siegfried Set 1M6 Path C 0.55 (71st) invalid
Path D 0.50 (67th) invalid
Path E 0.65 (77th) 0.65

5SL/Path A 1.42 (96th) 1.48
4SL/Path B 2.77 (99th) 2.75

1M7 Path C 2.02 (99th) invalid
Path D 0.81 (84th) invalid
Path E 0.98 (89th) 0.99

5SL/Path A 2.60 (99th) 2.60
4SL/Path B 2.50 (99th) 2.50

Watts Set 1M7 Path C 2.18 (99th) invalid
Path D 0.16 (31st) invalid
Path E 0.45 (63rd) 0.45
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Having established that patteRNA distinguishes between 5SL and 4SL structures,

we investigated its ability to resolve them from profiles of heterogeneous samples where

they co-exist. Sherpa et al. concluded that RRE could exist as a mixture of these two

structures and demonstrated that they are not functionally equivalent. More generally,

the ability of structural elements to assume more than one conformation is often critical

for regulatory flexibility and sensitivity. Detecting changes in the relative abundances of

alternative structures is therefore an important, yet challenging problem in biology.

To explore patteRNA scoring of ensembles of RRE, we simulated SHAPE profiles

for mixtures of the 5SL and 4SL isomers ranging from 100% 5SL to 100% 4SL, in 10%

increments. Each mixture was generated by summing the desired weight fraction of the

Sherpa set profiles at each nucleotide.Because we generated mixtures from the pure isomer

profiles, these data essentially emulate SHAPE profiles for ensembles comprised of varying

proportions of 5SL/4SL structures. Mixtures were then scored against the 5SL and 4SL

motifs, similar to the analysis performed in Figure 2.8. Here, results are considered as

c-score ratios between the 5SL and 4SL targets (c5SL/c4SL). This ratio is indicative of the

relative likelihood of the two targets given their respective c-scores. Starting with 100%

5SL (Figure 2.13), our results reveal that scores evolve monotonically from favoring 5SL

until 30% of the profile is comprised of the 4SL SHAPE data, at which point scores favor

4SL, as indicated by ratios below 1. This demonstrates that c-scores reflect the gradient

of mixture composition underlying the simulated data.

Although patteRNA was not developed to decipher ensemble dynamics, our results

suggest that it can readily detect composition changes in simulated data. This also hints

at further applications to statistically quantify changes in structural ensembles over a

time series or differing experimental conditions. Importantly, while our results suggest

patteRNA could be utilized as a tool to detect relative changes in ensemble composition,

the exact estimation of underlying population fractions remains a challenge currently

beyond the algorithm’s capabilities. We therefore recommend the use of other data-

directed methods designed to determine ensemble compositions when approaching this

problem [23, 176, 106]. Nevertheless, the utility of patteRNA in differential analyses of

ensemble composition is promising.

In summary, we have demonstrated that patteRNA is capable of discerning subtle

structural variation directly from SHAPE data. At the same time, it can also detect

structural motifs in the larger context of a whole viral genome. Beyond basic structure

characterization and search, we have shown that patteRNA can glean quantitative insights
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on changes in ensemble compositions of native RRE isomers. Notably, all results were

obtained using a standard laptop (Intel 3.1 GHz i7 CPU and 16 GB of RAM) and

completed in just a few minutes, even for whole-genome HIV datasets.

2.3.4 Automating patteRNA’s Training Routine

Expectation-Maximization training algorithms sometimes suffer from slow convergence.

To reduce runtime, a trivial solution is to reduce the size of the training set to its bare

minimum. We previously noted that patteRNA can be trained on a subset of the data

as long as it is statistically representative of the full dataset [101]. However, we did not

provide specific guidelines regarding the exact number of data points, or transcripts, to be

used for training, as those could vary widely based on the probing technique, sequencing

approach, and data quality [22]. To circumvent this issue, we implemented an automated

procedure to build the training set based on a KL divergence criterion. Briefly, transcripts

are added sequentially to the training subset and the KL divergence computed. We stop

adding transcripts when the reactivity distribution of the training set is sufficiently close

to the distribution of the entire dataset, as indicated by a small KL divergence. The

resulting training set is generally much smaller compared to the entire dataset, thereby

reducing computational requirements considerably, while arriving at a trained model still

representative of the whole data as demonstrated in Figure 2.14.

Next, a central parameter in patteRNA is the number of Gaussian components (K)

used by the GMM to link reactivities to pairing states. K controls the smoothness of the

model and if K is too small for the considered data, then the model will not capture all

the statistical characteristics of the data, thereby leading to prediction inaccuracies. On

the other hand, as K increases, the model requires more computational resources, both in

runtime and in memory. In the original implementation of the algorithm, K was a user-

defined parameter, as an optimal K depends on the considered data and can thus vary

greatly. However, determining an optimal K is difficult as a grid-like search over selected

K values is required, followed by a manual inspection of the model’s goodness-of-fit. To

alleviate these issues, we implemented an automated detection of K which utilizes BIC

to select among models with increasing K (see Methods).

Finally, we implemented the option to initialize the model in a supervised manner.

Briefly, if reference structures are provided, we utilize them to find the best estimates

of the initial parameters of the GMM-HMM model. In the more common scenario of

unsupervised training, we modified parameter initialization so that both the GMM and
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HMM part of patteRNA are more representative of a biologically meaningful solution.

For this, we use initial HMM parameters derived from the Weeks set that we described

previously [101]. For the GMM, we use the percentiles of the reactivity distribution to

gauge the initial location (i.e., the mean) of the Gaussian components (see Parameter

Initialization in Materials and Methods).

2.4 Discussion

The emergence of high-throughput SP experiments offers new opportunities to study the

functional roles of RNA structures at the transcriptome level and in both in vitro and in

vivo conditions. This new wealth of data has given rise to a critical need for methods that

facilitate rapid data-driven inference of structures in large datasets. patteRNA is a first

step toward closing this gap. We envision our algorithm’s utility to be twofold. First,

it provides a novel approach to identifying RNA elements, which scales well with both

RNA length and the number of analyzed transcripts. This means that any functional

RNA element with a known or predicted secondary structure can be mined and studied

quantitatively in the context of the entire transcriptome. Specific applications include

identifying de novo sites harboring a functional motif (for example, identifying regulatory

elements such as splice sites, riboswitches, or thermosensors), quantifying that motif’s

prevalence globally or its enrichment in defined RNA regions (e.g., 5′-UTR or 3′-UTR),

and quantitatively studying the impact of varying experimental conditions on the pres-

ence of said motif. When considered in the context of other structure analysis tools, our

algorithm could be useful in maximizing insights derived from these tools. Specifically,

for large datasets, patteRNA can be used to select a small list of candidate regions that

can then undergo more careful characterization with targeted probing, thermodynamic

modeling, or phylogenetic analysis. Additionally, while we believe these capabilities are

valuable for basic research, they may prove useful for the design of RNA-based therapeu-

tics [191, 190, 1] by identifying putative target and off-target sites of drugs designed to

bind RNA or by identifying RNA designs that bind a target molecule. Second, our prob-

abilistic framework can be applied universally across SP methods and probes, bridging

their differences and standardizing the interpretation of SP data as probability estimates

of nucleotide pairing states. Importantly, we do not foresee patteRNA replacing existing

methods for secondary structure prediction [118, 108, 156] or for functional RNA element

mining from homologous sequences. We rather intend it to complement these tools. Of
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particular relevance are covariance models, which are built from a stochastic context-free

grammar framework trained on phylogenetic sequence information [135, 134]. Previously

trained covariance models of RNA families can additionally be utilized to search for sim-

ilar structures within genomic datasets. This approach is analogous to patteRNA, in

that a statistical model is trained and subsequently utilized to search and score possible

matches in large datasets. While patteRNA aims to capture structural information from

SP data alone, covariance models aim to capture it from just nucleotide sequence. As

such, these approaches capture structural information at distinct levels. The prospect of

a unified probabilistic framework capturing information from both sequence and probing

data therefore presents an intriguing challenge for the field.

A central requirement for comparing results across distinct structural motifs and

datasets is the assurance that scores convey the same information about the presence

or absence of a target motif at a site, regardless of the chosen target and dataset. A

robust training routine is the first means by which to ensure fair comparison of results

between datasets. This can be achieved by defining strict procedures on the determina-

tion of initial model parameters that require no user inputs and promote convergence of

the model to biologically relevant solutions. To this end, we implemented several improve-

ments and routines that fully automate patteRNA, enhancing its ease-of-use and training

robustness. We next aimed to assure that inherent properties of the target motif would

not bias results. In practice, this requirement was not always met, as scores displayed

dependencies on motif length and paired/unpaired composition. Moreover, the propor-

tion of paired/unpaired nucleotides in the considered dataset might also impact scores,

furthering the discrepancies between searches. Put simply, scores might be incomparable

between distinct searches. To alleviate this issue, we implemented a normalization routine

that converts raw scores into c-scores. To this end, we used sequence information to clas-

sify scored sites as either putative positives or not harboring the target motif (null sites).

Scores at null sites are then used to build a null distribution of scores, against which we

referenced scores for putative positive sites. Intuitively speaking, a c-score is simply the

−log10 of a p-value, thereby converting raw scores to a generalized measure of significance.

While our strategy remedied the biases inherent to searching different motifs, it should

be noted that the presence of missing reactivities in the data might nevertheless lead to

additional biases. This arises from the bias inherent to motif length. Specifically, missing

values are treated as “no information” and hence marginally contribute to raw scores.

Scoring a region with sparse data is thus analogous to scoring a shorter motif. Con-
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sequently, sites containing missing reactivities tend to span a narrower range of scores,

compared to sites with complete observations. This in turn reduces their likelihood to

emerge as top candidates in searches. This issue should be kept in mind when using

patteRNA to search sparse datasets or poorly covered transcripts [22]. Furthermore, note

that this bias cannot be easily corrected for as this necessitates considering all possible

missing data patterns, a combinatorial problem that is computationally prohibitive.

Another consideration when mining large datasets for a motif is the vast number of

negative sites which can often lead to signal depletion and obfuscate correct classifica-

tion of true positives. As such, the pronounced signal for RRE detected by patteRNAis

promising even in the context transcriptome-wide searches. It should be noted that se-

quence constraints can significantly enhance accuracy and precision during these searches

because a significant number of negative sites will be pruned, henceforth enriching the

scored data for true positives. This filtering is often helpful in the context of high-

throughput SP data, where the overwhelming majority of sites are expected to be true

negatives. However, sequence constraints might not always be relevant.

This mainly stems from patteRNA’s broad applicability to search target structures

that are not necessarily nested, or may not be captured by the traditional prediction

paradigm of secondary structure. For example, a data signature could capture not only

canonical base-pairing interactions but also inter-/intra-molecular interactions [94]. In

such cases, the sequence of pairing states in the target would be representative of un-

reactive/reactive nucleotides rather than paired/unpaired ones. Additional situations

where sequence constraints are not applicable include searches for regions that are highly

accessible (e.g., loops) [107] or highly structured [170].

Finally, we considered several conformations of the RRE element in HIV-1 to assess

the discriminatory power of our revised pipeline. RRE is essential for viral replication

and its structure has been extensively studied, providing a well-characterized element by

which to benchmark our algorithm. We showed that patteRNA successfully identifies RRE

structure variants—a non-trivial task considering the high similarity between their pair-

ing state sequences (Figure 2.7, Figure 2.4). These results also indicate that high-quality

SHAPE data alone could suffice to resolve alternative target motifs at a site, even when

the targets share many similarities. We then used simulations to demonstrate the capa-

bility to discern changes in ensemble composition as such analyses do not directly depend

on a precise determination of the proportion of each underlying conformation. Next, we

searched for RRE across whole HIV-1 profiled genomes and demonstrated that patteRNA
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easily and consistently finds its known location across four independent SHAPE profiles.

Importantly, different SHAPE reagents were used and analyzed separately, thereby high-

lighting the algorithm’s robustness. Of note is the remarkable signal-to-noise ratio be-

tween the location of the RRE compared to the rest of the HIV genome. This is likely

because the RRE is quite large (232-nt), such that sufficient conclusive information can

be gleaned to confidently discriminate between its presence and absence. Interestingly, we

detected additional signals at other well-characterized and highly structured HIV-1 ele-

ments, such as the DIS, reverse-transcriptase pseudoknot (RTPK), and 5′-TAR. Moreover,

our search revealed a highly structured context around the exonic splicing silencer ESSV,

which to our knowledge has not previously been subjected to targeted structure probing

outside of whole-genome studies. Taken together, our results highlight that future appli-

cation of data-driven methods to other RNA viruses [197, 92] and whole-transcriptomes

has the potential to detect novel structured elements and changes to them.

2.5 Appendix

2.5.1 Author Contributions

P.R., M.L. and S.A. developed the method, analyzed the data and wrote the manuscript.

2.5.2 Deposited Resources

Data and analysis scripts supporting the conclusions of this article are freely available at

https://doi.org/10.5281/zenodo.1256866 [150].

2.5.3 Initial Parameters of patteRNA

Initial parameters of patteRNA’s Gaussian Mixture Model-Hidden Markov Model (GMM-

HMM) when no reference structures are provided, i.e., under unsupervised initialization:

• Number of Gaussian components per pairing state (K): Auto-detected using Bayesian

Information Criterion (BIC)

• Transition probabilities (derived from the Weeks set):

Unpaired Paired

Unpaired

Paired

0.71020019 0.28979981

0.19677996 0.80322004


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• Initial probabilities:

Unpaired Paired[
0.5 0.5

]
• Gaussian means: Based on data percentiles

• Gaussian variances: Equal to the variance of the data

• Gaussian weights: 1
K
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Watts Set (1M7) 
Target: Path B (4SL)

Siegfried Set (1M6) 
Target: Path A (5SL)

Siegfried Set (1M6) 
Target: Path B (4SL)

Watts Set (1M7) 
Target: Path A (5SL)

Siegfried Set (1M7) 
Target: Path A (5SL)

Siegfried Set (1M7) 
Target: Path B (4SL)

Siegfried Set (NMIA) 
Target: Path A (5SL)

Siegfried Set (NMIA) 
Target: Path B (4SL)

Figure 2.11: patteRNA scores for RRE motifs across four whole-genome HIV-1 structure
profiles. c-scores for full-length paths A (5SL structure, left panels) and B (4SL structure,
right panels) across all sites in the HIV-1 genome. Dataset and modifying reagents used
are indicated in each panel and include the Watts set (SHAPE assayed with 1M7) and
three profiles from the Siegfried set (SHAPE-MaP assayed with 1M6, 1M7, and NMIA,
respectively). Peaks at nucleotide 7306 correspond to the known start location of the
RRE.
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Figure 2.12: Survival functions of c-scores for the 5SL and 4SL native structure of RRE
across human transcriptome-wide PARS and HIV1 SHAPE datasets. We report c-scores
for searches conducted across 649 transcripts in the PARS set with data density above
75% (i.e. ≤ 25% missing data), as well as c-scores from the entire HIV-1 RNA genome as
probed with 1M7 by Siegfried et al. The y-axis represents the proportion of data points
with c-scores above the cutoff reported on the x-axis, i.e. the survival function defined as
1 − CDF(c), where CDF(c) is the cumulative distribution function. The grey rectangle
highlights the dynamic range of c-scores (10.6 to 13.2) obtained at the location of the
RRE for all considered RRE paths and HIV-1 SHAPE profiles (see Table 2.1 for details).

10
0%

 5S
L

90
/10

80
/20

70
/30

60
/40

50
/50

40
/60

30
/70

20
/80

10
/90

10
0%

 4S
L

SHAPE Ratio

0

1

2

c5SL
c4SL

Figure 2.13: patteRNA score ratios (5SL/4SL) for mixtures of the 5SL and 4SL native
isomers of the RRE. The x-axis corresponds to SHAPE profiles emulating various mix-
tures of the 5SL/4SL conformations. The y-axis corresponds to c-score ratios between
the 5SL and the 4SL paths (c5SL/c4SL). Results indicate a stable progression of -score
ratios initially favoring the 5SL structure until the SHAPE data is comprised by 30%
4SL, at which point the 4SL structure receives higher scores.
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A B

Unpaired Paired
Initial probabilities: 0.41 0.59

Unpaired Paired

Transition probabilities:
Unpaired 0.83 0.17
Paired 0.13 0.87

Unpaired Paired
State probabilities: 0.41 0.59

Unpaired Paired
Initial probabilities: 0.36 0.64

Unpaired Paired

Transition probabilities:
Unpaired 0.83 0.17
Paired 0.12 0.88

Unpaired Paired
State probabilities: 0.44 0.56

Optimal	K:	2 Optimal	K:	2

Figure 2.14: Comparison of trained models using an entire dataset and a reduced train-
ing subset. The input data are based on the HIV-1 genome probed with 1M7 from
the Siegfried set and partitioned into 100 bp fragments to mimic multiple transcripts.
Gaussian Mixture Models (black lines) learned by patteRNA as well as Hidden Markov
Model parameters for (A) the entire dataset and (B) a training subset determined using
KL-divergence. Grey histograms represent the distribution of the SHAPE data. Distri-
butions associated with paired and unpaired nucleotides are shown in blue and red solid
lines, respectively(solid colored lines). Individual Gaussian components are highlighted
by dashed colored lines (two for each pairing state as the optimal K = 2 for this dataset).
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Chapter 3

Rapid structure-function insights via

hairpin-centric analysis of big RNA

structure probing datasets

Acknowledgement: This chapter is reproduced from an article in peer-review for publi-

cation in the journal NAR Genomics and Bioinformatics (Radecki P., Uppuluri R., and

Aviran S. 2021) [151]. Pierce Radecki was lead author on this manuscript. Rahul Uppu-

luri was an undergraduate volunteer in the Aviran Lab. Author contributions are listed

at the end of the capture. Reprinted in accordance with terms of the Creative Commons

Attribution 4.0 International License.

3.1 Introduction

RNA structure is driven primarily by the complementarity of nucleotide bases compris-

ing it, which allows for hydrogen bonding between various segments of the molecule.

Intramolecular base pairing, combined with the flexible and single-stranded nature of

the molecule’s backbone, allows for intricate secondary and tertiary structural elements.

These structures, as well as their ability to dynamically change between relevant con-

figurations, are known to play central roles in almost every facet of cellular regulation

[48, 131, 44, 27, 166, 41]. Understanding the structures of RNA is therefore important,

which has led to an explosion of methods which probe [177, 175, 195, 111, 185, 214, 53,

19, 68, 46, 211], computationally predict [59, 65, 156, 172, 127, 147, 106, 109, 40, 37, 100],

and interpret them in various contexts [145, 48, 132, 86, 25, 114, 138, 166, 61]. Structure

profiling (SP) experiments currently provide the most practical approach for measur-
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ing RNA structures in their natural environment. These experiments work by expos-

ing RNA to chemicals, enzymes, or photons which react differentially with parts of the

molecule depending on their structural context (for example, paired/unpaired nucleotides

or ds/ssRNA) [177, 175, 195, 111, 213, 204, 214, 185]. Specific protocols vary, but typ-

ically the probing reaction induces changes to the RNA bases or backbone which are

detected via sequencing or electrophoresis as mutations or truncations [200, 112]. The

rate of mutation or truncation at a particular nucleotide is used to summarize that nu-

cleotide’s reactivity with the probe [4]. These data contain critical information on the

structural conformation of an RNA, and incorporating them as soft constraints within

thermodynamics-based folding algorithms greatly improves their accuracy [29, 59, 109].

Next-generation sequencing has allowed SP experiments to scale to the level of the

whole cell (i.e., transcriptome-wide). Exploration of these data have typically begun with

straightforward global-level quantifications and simple comparisons [188, 81, 178, 35, 194,

111]. More recent studies expanded the intricacy of structural analysis to disentangle

the dynamic functional roles of RNA structure in fundamental cellular processes [20].

For example, Saha et al. compared reactivity profiles in the vicinity of spliced introns

and retained introns, and found evidence of increased structure upstream and decreased

structure downstream of retained introns [161]. Yang et al. characterized structural

impacts on miRNA-mediated mRNA cleaving by computing mean reactivity and mean

base-pairing probability profiles around miRNA target sites, which illuminated a strong

connection between transcript cleavage and unpaired bases immediately downstream of

the miRNA target site [209]. Work by Mustoe et al. [132] and Mauger et al. [122]

have linked changes in gene expression within E. coli and human cells to the structural

dynamics within coding sequences and UTRs as quantified by local median reactivities.

A slew of recent works have investigated the role of RNA structure within the interplay

between RNA helicases and transcription termination, alternative splicing, translation

initiation, and translation efficiency [96, 56, 193, 102]. Twittenhoff et al. [187] performed

structure probing of Y. pseudotuberculosis at different temperatures and used averaged

reactivity scores to highlight differential structure changes due to temperature in 5’UTRs

versus coding regions in addition to using condition-wise reactivity differences to identify

temperature-sensitive genes.

A common theme to such studies is the quantification of local “structuredness” and

comparisons of it at global scales. To this end, measures of structure are typically founded

on basic statistical summarization of reactivities, sometimes combined with data-directed
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thermodynamics-based folding algorithms to quantify base-pairing probabilities. Current

state-of-the-art algorithms for predicting base-pairing probabilities (and specific RNA

structures) are founded on dynamic programming strategies and a nearest neighbor ther-

modynamic model (NNTM) [137, 119]. Although relatively efficient, these scale as O(L3)

with the length of an RNA, meaning that complete folding analyses of long RNA tran-

scripts are often computationally infeasible. NNTM-based processing (i.e., RNA folding

and computation of base-pairing probabilities) of the massive data associated with recent

studies is thus challenging. As a consequence, transcriptome-wide studies have typically

utilized ad-hoc folding strategies which attempt to strike a balance between computa-

tional overhead and prediction quality by locally folding pre-screened candidate regions

or rolling windows of long transcripts. Even with such compromises, in silico analyses

can take days to complete, depending on the scale of the experiment. The process itself

is also susceptible to high error rates especially in molecules with multiple stable con-

formations [49]. It is worth noting that some of the aforementioned experiments relied

solely on simple reactivity summarization; nevertheless, even in such situations, detec-

tions are typically limited to the most pronounced effects. More sophisticated analysis

which accounts for structure in addition to reactivity has the potential to refine such

findings and expand on them [21, 116]. This highlights a need for methods capable of

rapidly extracting pertinent structural information from reactivity data.

Motivated by this need, we harnessed patteRNA, an NNTM-free method we previ-

ously introduced for rapidly mining structural motifs [101, 149], to quantify global trends

in RNA structure dynamics from SP data. Briefly, the method works in two phases:

training and scoring. The training phase learns a hidden Markov model (HMM) of sec-

ondary structure and a Gaussian mixture model (GMM) of the reactivity distributions

of paired and unpaired nucleotides. The learned distributions are used to score sites for

their likelihood to harbor any target structural motif (see Figure 3.1A). patteRNA can

automatically process data from any type of SP experiment. Although we previously

demonstrated that patteRNA accurately detects structural motifs in diverse datasets,

we found that there was nevertheless room for significant improvement. Namely, there

was a need for improved precision of motif detection, particularly pertaining to the vast

search space encountered in transcriptome-wide experiments. Additionally, we found that

our method, although suitable for comparative analysis of motifs [149], did not provide

a clear quantitative framework for making practical and direct structural inferences in

large datasets.
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Figure 3.1: Identification of structural motifs in probing data and representation of hair-
pins in structures. (A) Schematic illustrating reactivity profile (black, yellow, red) for a
region against the corresponding patteRNA c-score profile (blue) when mining for a hair-
pin with loop length 5 and stem length 5 (dot-bracket: “(((((.....)))))”). The score
profile represents the likelihood of the target motif occurring at the site corresponding
to using the current nucleotide as the start (left side) of a sliding window. This profile
achieves a maximum at the true positive site of the mined hairpin (score indicated with
star, site indicated as green box). Locations which satisfy sequence constraints neces-
sary for the base pairs of the motif are denoted by triangle-shaped markers on the score
profile, and vice versa for x-shaped markers (thus, only sites denoted with triangles are
considered by patteRNA when scoring). The precise bounds of the sites which satisfy the
sequence constraints of the motif are also indicated with black arrows. . Data shown are
SHAPE-Seq reactivities from the 23S rRNA of E. coli (nt 2531-2576) [29]. Reactivities
are color coded according to their magnitude (high: > 0.7; mid: > 0.3 and ≤ 0.7; low:
≤ 0.3). (B) Distribution of hairpin stem and loop lengths in a diverse set of structured
RNAs (referred to as the Weeks set; see Methods). The vast majority of hairpins have
stem lengths shorter than 15 nt and loop lengths between 3 and 10 nt. (C) Fraction of
paired nucleotides in the Weeks set which can be represented as belonging to a regular
hairpin (red), a regular hairpin with up to one or two bulges of length 1–5 nt (blue), or
any/all type of hairpin and associated stems (black).
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In this article, we expand and improve the capabilities of patteRNA and demonstrate

that motif detection can be used to rapidly quantify RNA structuredness in SP datasets.

As a first step, we investigate the properties of hairpin elements in RNA structures and

their prevalence among all structural elements, revealing that hairpins readily detectable

by patteRNA (hairpins without bulges) constitute over 30% of paired nucleotides. We

then present an improved unsupervised training approach which yields more accurate

motif detection, especially for hairpins, and benchmark it against diverse types of data.

Next, we describe a novel measure, the hairpin-derived structure level (HDSL), which

uses patteRNA’s detected hairpins to quantify the local structure context around nu-

cleotides. We apply HDSL to three recent large-scale SP datasets to demonstrate that

our hairpin-driven analysis is 1) capable of recapitulating, strengthening, and expanding

on previously detected structural effects and 2) orders of magnitude faster than compa-

rable NNTM-based routines. Simply put, our method bridges the gap between quick but

näıve data summarization and intensive but more sophisticated folding-based analysis to

provide rapid structure-aware interpretations. Overall, the results of our work also serve

to further our understanding of the ways in which diverse SP datasets can be automati-

cally quantified and interpreted without dependence on the assumptions driving NNTM

predictions and the complexities associated with them.

3.2 Materials and Methods

3.2.1 Data

Details about the datasets used throughout this study are compiled in Table 3.1. In

short, six datasets were used. Central to the development of our method is the Weeks

set, a diverse dataset of 22 non-coding RNAs with high-quality in vitro SHAPE data and

known structures (∼10,000 nt total) [101]. We used this dataset to perform benchmarks

as well as to query the structural properties of structured RNAs (i.e., the representation

of hairpins within them). Reference structure models were also obtained from the RNA

Secondary Structure and Statistical Analysis Database (RNA STRAND) [2] and Rfam

[79] to provide a more expansive set of data by which to query hairpin representation and

characteristics. The remaining three datasets are recent SP datasets on which we applied

patteRNA to demonstrate its suitability for obtaining biologically relevant insights in

various contexts. This includes transcriptomic data for mRNAs in vitro and in vivo in E.

coli [132], in vitro and in vivo reactivities for the SARS-CoV-2 genome [114], and in vitro
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and in vivo transcriptome-wide reactivities for two human cell lines, K562 and HepG2

[25]. References for the sources of each dataset are provided in Table 3.1 with accession

numbers included where applicable.

Note that for RNA STRAND data, the entire collection of structure models was not

utilized. STRAND houses 4666 high-quality RNA structures as determined from NMR,

X-ray crystallography, or comparative sequence analysis. For our work, we heuristically

pruned the number of structures significantly (to 797 structures) to account for unequal

representation of RNA classes within the database (specifically, the over-representation of

ribosomal RNA structures). This pruning was achieved by sampling a defined number of

structures from each RNA type in the database. The total numbers of original structures

within each RNA type, as well as the corresponding numbers of RNA structures sampled,

are given in Table 3.2. A simple visualization of the fraction of (1) transcripts, (2)

nucleotides, and (3) hairpins in the pruned data coming from each RNA class is given

in Figure 3.2. The numbers used for sub-sampling were heuristically determined but

were guided by the composition of pruned data as observed in visualizations like the one

shown in Figure 3.2. We found that the utilized values led to a fairly balanced set of

data from the perspective of transcript composition, nucleotide composition, and hairpin

composition.

3.2.2 Hairpin Counting and Quantification in Known Struc-

tures

To better understand the representation of hairpins with RNA structures, we parsed sets

of reference structures and denoted hairpin elements according to three schemes: (1) all

hairpins (hairpins and associated stems, with or without bulges), (2) regular hairpins

(hairpins without bulges or internal loops), and (3) regular hairpins with or without

bulges. The specific definitions used for each scheme are as follows (see Figure 3.3 for an

example structure with defined hairpin motifs indicated).

All hairpins (hairpins and associated stems, with or without bulges)

Hairpins in reference dot-bracket structures were retrieved by first identifying hairpin-

loops, and then backtracking to determine the full stem length. Hairpin loops are defined

as locations in the dot-bracket structures where a base pair flanks a sequence of unpaired

states of any length (for example, “(...)” or “(.......)”). Once a hairpin loop is

identified, the stem length is determined by walking along the structure in both directions
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Dataset 
Name Description Size References 

Weeks set 
22 well-studied RNAs with 
reference structures and high-
quality SHAPE data 

11,070 nt 
Hajdin 2013, 
Deigan 2009, 
Ledda 2018 

STRAND data 

797 diverse RNAs with 
experimentally determined 
structures (via NMR, 
crystallography, or comparative 
sequence analysis) [no probing 
data] 

276,290 nt This work, 
Andronescu 2008 

Rfam data 

Secondary structure models 
information by covariance 
models for 3,935 RNA families 
[no probing data] 

526,608 nt Kalvari 2020 

Manfredonia 
data 

SARS-CoV-2 genome probed 
by: 
• In vitro DMS-MaP
• In vitro SHAPE-MaP
• In vivo SHAPE-MaP

3 x 29,903 nt Manfredonia 2020 
GSE151327 

Mustoe data 

194 E. coli mRNA transcripts 
probed by SHAPE across three 
conditions (each condition is the 
average of two replicates) 
• Cellfree (in vitro)
• Incell (in vivo)
• Kasugamycin (in vivo + 10

mg/mL kasugamycin)

3 x 442,421 nt Mustoe 2018 
PRJEB23974 

Corley data 

In vivo and in vitro icSHAPE 
data (as well as fSHAPE data, 
not included in the dataset size) 
for RNA transcripts in two 
human cell lines: K562 and 
HepG2 
(each condition is the average of 
two replicates) 

2 x 40.8 million nt 
(K562) 
2 x 35.4 million nt 
(HepG2) 

Corley 2020 
GSE149767 

Table 3.1: Summary of datasets used throughout this study.

until a branching base pair is detected (i.e., a “)” to the left of the stem-loop or a “(“

to the right). At this point, the stem length is called as the number of nested base pairs

before the first branching base pair on either side of the stem. As a consequence, bulges
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RNA Class 
Total Transcripts 

in STRAND 
Database 

Transcripts 
Sampled for 

STRAND Dataset 

5S rRNA 148 70 
16S rRNA 621 30 
23S rRNA 102 20 

Signal Recognition Particle RNA 388 60 
Transfer Messenger RNA 637 50 

Sm
al

l 
R

N
As

 Synthetic RNA 140 100 
Transfer RNA 48 10 

Small Nuclear RNA 4 4 

R
eg

ul
at

or
y 

El
em

en
ts

 

Group I Intron 139 60 
Group II Intron 42 30 

Cis-regulatory Element 41 40 
7SK 1 1 

IRES 3 3 
RNAIII 4 4 

RNase E 5’UTR 6 6 
Ciliate Telomerase RNA 18 18 

Vertebrate Telomerase RNA 6 6 

R
ib

oz
ym

es
 Hairpin Ribozyme 1 1 

Hammerhead Ribozyme 136 70 
Hepatitis Delta Virus Ribozyme  7 7 

Other Ribozyme 23 10 
Ribonuclease P RNA 455 100 

O
th

er
 

Viral and Phage RNA 13 13 
Y RNA 14 14 

Other rRNA 136 50 
Other 20 20 

 
 
 
 
 

Table 3.2: Number of RNA transcripts from each class of the full STRAND database
included in the STRAND dataset used in this study.

and internal loops are generally ignored, so long as they occur before a branching base

pair. Loops which are involved in pseudo-knotted base-pairing are treated as unpaired

loops for the purpose of hairpin identification.
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5S rRNA
8.8%

16S rRNA

3.8%

23S rRNA

2.5%

Small RNAs

14.3%
Regulatory Elements

21.1%

Ribozymes

22.3%

SRP RNA

7.5%

tmRNA

6.3%
Other

13.4%

Transcripts (Total = 797)

5S rRNA3.0%

16S rRNA

16.8%

23S rRNA

18.4%
Small RNAs

1.7%

Regulatory Elements

32.6%

Ribozymes

13.1%

SRP RNA

5.1% tmRNA

6.5%
Other2.8%

Nucleotides (Total = 276290)

5S rRNA2.4%

16S rRNA

17.3%

23S rRNA

24.1%

Small RNAs

3.0%

Regulatory Elements

21.5%

Ribozymes

17.0%

SRP RNA

3.7% tmRNA

7.9%

Other3.0%

Hairpins (Total = 5686)

dataset.dot (N=797)

Figure 3.2: Fractional representations of transcripts, nucleotides, and hairpins for each
RNA class in the STRAND data. Shown are the compositions of the data by each RNA
class for transcript counts (top), nucleotide counts (middle), and hairpin counts (bottom).
Hairpins are counted ignoring bulges and internal loops (see Methods: Hairpin Counting
and Quantification – All Hairpins).

Regular hairpins (hairpins without bulges or internal loops)

We defined regular hairpins as hairpins having a stem length between 4–15 nt and loop

length between 3–10 nt with no bulges or internal loops within the helix. For these motifs,
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Regular Hairpins

Regular Hairpins with Bulges

All Hairpins and Associated Stems

Internal Stems

Internal Stem

External Stem

Figure 3.3: Example structure illustrating hairpin structures as defined for our analyses
versus internal stems beyond the current scope of the method. Regular hairpins (dark
green boxes), regular hairpins with bulges (light green boxes), and all hairpins and asso-
ciated stems (yellow boxes) are indicated. External stems (helices that do not terminate
in a hairpin loop but nevertheless fall within a local hairpin context outside of any bifur-
cations, marked within figure) are in principle within the scope of patteRNA’s analysis,
but general searches that consider such motifs carry significant computational overhead.
This is due to the combinatorial explosion of considered motifs when enumerating all
combinations of internal loop sizes and positions and/or bulge sizes and positions. Inter-
nal stems (red box) do not fall into any of the defined hairpin categories and are beyond
the scope of patteRNA’s analysis as they are underpinned by non-local base pairing.

identifying their locations amounts to simply searching the dot-bracket data for the exact

dot-bracket sequence defined for each hairpin size. For example, a regular hairpin with

stem length 4 and loop length 4 has dot-bracket sequence

“((((....))))”;

a regular hairpin with stem length 7 and loop length 5 has dot-bracket sequence

“(((((((.....)))))))”.

As before, loops which are involved in pseudo-knotted base pairing are treated as unpaired

loops for the purpose of hairpin identification.

Regular hairpins with or without bulges

Identifying locations of regular hairpins that may also have one or two bulges was per-

formed similarly to the identification procedure used for regular hairpins. However, due
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to the increased flexibility of dot-bracket sequences and combinatorial explosion of quali-

fied motifs when allowing for bulges, we used a regular expression scheme to perform the

search. The regular expression has the form

“({2,10}.{0,5}({3,10}.{3,MAXLOOP}){3,10}.{0,5}){2,10}”,

where MAXLOOP is the maximum loop length to include in the search. This regular ex-

pression, in order to permit flexibility for the position of bulges along the stem when

identifying hairpins with bulges, also matches some motifs with stem lengths longer than

15 nt. As such, any constructed structure patterns with a stem longer than 15 nt through

were discarded prior to the search. As before, loops which are involved in pseudo-knotted

base pairing are treated as unpaired loops for the purpose of hairpin identification.

3.2.3 Discretized Observation Model (DOM)

The discretized observation model serves as an alternative approach for describing the

probabilities of a particular state (unpaired/paired) to yield a particular reactivity value

(state emission distributions). Typically, the emission distributions are modeled as con-

tinuous distributions, as is the case when patteRNA uses a GMM of reactivity. However,

the DOM framework instead discretizes reactivities based on percentiles, then constructs

probability mass functions (PMFs) over the discrete reactivity classes for the two pairing

states. The state PMFs are then learned in an unsupervised fashion by coupling the

emission model to an HMM and performing expectation-maximization (EM) optimiza-

tion of parameters, analogously to the original GMM implementation. Also analogous to

the GMM’s number of Gaussian kernels, the resolution of bins used in the DOM is grad-

ually increased until an optimal model is reached via a minimum in Bayesian information

criteria (BIC) [149]. Typically, 7–10 bins are deemed optimal.

A more complete description of the mathematical formulation behind the DOM, in-

cluding initialization and M-step parameter updating, is available in the Appendix of this

chapter.

3.2.4 Scoring with patteRNA

patteRNA mines structural elements as represented in dot-bracket notation. In the con-

text of patteRNA, this representation of a structure is referred to as a target motif. To

mine for a motif, patteRNA first encodes the structure as a sequence of pairing states

(states denoted as i ∈ 0, 1, where 0 is unpaired and 1 is paired), called the target path.

Then, all possible locations in the data are scored for the presence of the target path.
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With sequence constraints enforced, this amounts to all sites in an RNA where the nu-

cleotide sequence permits folding of the target motif via Watson-Crick and Wobble base

pairs. Sequence constraints can also be disabled, and in such situations all windows of

length equal to the length of target motif are considered. (i.e., a full sliding window

approach). Regardless of sequence constraints, the patteRNA score for a site (a window

of length n beginning at nucleotide m) is defined as the log ratio of joint probabilities

between the target path and its inverse path (i.e., the opposite binary sequence) [101].

More specifically,

score(z) = log
Pr(y, z|θ)
Pr(y, z′|θ)

. (3.1)

Here, y is the reactivity profile at a site, z is the target binary state path, z′ is

the inverse path, θ represents the parameters of a trained GMM/DOM-HMM model.

The parameters of the trained model include the transition (ai,j for states i and j) and

initial probabilities for paired and unpaired states within the Markov model, as well as

an emission model (either a GMM or DOM) that described the likelihoods of paired

and unpaired states to yield specific reactivity values. For a GMM [101], the emission

model is parameterized by Gaussian weights, means and variances (wi,k, µi,k, and σi,k

respectively, where k corresponds to an individual Gaussian kernel in the learned mixture

distributions). For a DOM, the emission model is simply parameterized by the learned

discrete probability mass function of paired and unpaired nucleotides (pi,k, where k is a bin

in the discretization scheme). A trained GMM/DOM-HMM model enables computation

of bi,t (the emission likelihood for state i and nucleotide t) as well as αi,t and βi,t (the

forward and backward probabilities for state i at nucleotide t, respectively, as computed

via the forward-backward algorithm [148]). For the full formulation of emission likelihoods

when using GMMs and DOMs, see the Appendix of this chapter.

The expanded score formulation as the joint probability ratio between the target path

and its inverse stems naturally from the Markov model of pairing states–specifically, the

probability of a particular path is the product of the probability of reaching the beginning

of the path and observing upstream data (αi,t), the probabilities of transitioning between

each pair of consecutive states in the path (ai,j), the likelihoods of states in the path

emitting the observed site reactivities (bi,t), and the probability of observing downstream

data given the final state of the target path (βi,t). In other words,
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log
Pr(y, z|θ)
Pr(y, z′|θ)

= log

[
αzm,m

αz′m,m

βzm+n,m+n

βz′m+n,m+n

m+n∏
t=m+1

azt−1,ztbzt,t
az′t−1,z

′
t
bz′t,t

]
. (3.2)

A score of zero indicates the target path and inverse path are equally likely, and a

positive score indicates the target path is more likely (and vice versa). Locations with

the highest scores are subsequently deemed most likely to harbor the target motif.

To facilitate the comparative analysis of scores between different motifs and datasets,

scores were further processed into c-scores as previously described [149] by normalizing

against a null distribution of scores estimated via sampling of scores from locations which

violate the sequence compatibility necessary for the motif’s base pairs (and therefore can

be presumed to not harbor the target motif) [149]. The resulting c-scores are the − log1 0

of a p-value, meaning they are strictly positive and theoretically have no upper bound.

That said, a c-score above 2 is intuitively considered a strong indicator of the motif

(corresponding to a p-value of 0.01), with c-scores between 0.5 and 2 providing moderate

evidence in favor of the motif. Example SP data with real patteRNA scores superimposed

is illustrated in Figure 3.1A.

3.2.5 Posterior Pairing Probabilities

patteRNA computes pairing probabilities as described [101]. Briefly, a parameterized

GMM-HMM or DOM-HMM model is utilized to compute emission likelihoods for each

nucleotide, followed by the forward and backward probabilities via the forward-backward

algorithm. Posteriors are then computed as the product of the forward and backward

probabilities and appropriately scaled such that P(paired) + P(unpaired) = 1 for each

nucleotide.

3.2.6 Hairpin-Driven Structure Level (HDSL)

The hairpin-driven structure level (HDSL) is a nucleotide-wise measure quantifying the

local level of structure from SP data. HDSL is initialized using posterior probabilities

to be paired as computed by patteRNA. Then, the profile is augmented using hairpin

c-scores calculated by patteRNA. For each detected hairpin with c-score greater than 0.5,

the value 0.2 × (c-score − 0.5) is added to the profile at all nucleotides covered by the

hairpin. After profile augmentation, profiles are clipped to the interval [0, 1], and then

profile smoothing is achieved via a 5 nt sliding-window mean followed by a 15 nt sliding-

window median to give the final HDSL profile. Analogous approaches using just a sliding
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mean or just a sliding median were also tested, but we found that the best results were

obtained when coupling the two summary statistics together (data not shown).

The parameter values used in profile augmentation (e.g., a slope of 0.2 and a c-score

threshold of 0.5) were determined by a grid-based optimization scheme seeking to max-

imize the observed difference between HDSL for nucleotides in well-folded segments of

the SARS-CoV-2 genome and HDSL for nucleotides outside of these regions (see Figure

3.4). In this context, well-folded segments were defined as low SHAPE, low Shannon

entropy regions as called by Manfredonia et al. [114]. The SARS-CoV-2 genome was

selected for this optimization as it is distinguished from the other datasets by having

both regions of high structure and un-structuredness (compared to the Weeks set, which

is generally highly structured) in addition to a partially validated preliminary reference

structure model (compared to the Mustoe or Corley data, which lack reliable structure

models). Note that the results shown in Figure 3.4 demonstrate a large region of HDSL

parameterizations which greatly improve the distinction between well-folded and less-

folded segments over posteriors alone (see top left cell of each heatmap in Figure 3.4 as

approximately representing the use of posteriors alone). In other words, other parameter-

izations arrived at similar results to the parameterization used here. Generally speaking,

we observed that as the c-score threshold is increased, the slope of augmentation must

also be increased in order to allow the reduced number of considered sites to sufficiently

impact the final HDSL signal.

A flow chart illustrating the flow of information as handled by patteRNA, including the

relationship between HDSL and the training and scoring phases, is included as Figure 3.5.

In summary, HDSL integrates patteRNA’s normalized scores (c-scores) for hairpins with

posterior pairing probabilities to arrive at a nucleotide-wise measure of structuredness.

Whereas c-scores (and non-normalized scores) are assigned only at specific sites in the

data which satisfy the sequence base pairing requirements of a motif–e.g., a type of

hairpin–HDSL is computed at all nucleotides. This is because all nucleotides are assigned

a posterior pairing probability via the GMM/DOM-HMM. Hairpin scores are used to

augment this profile to improve its relevance to local structure elements, but regions

lacking any strong hairpins scores are still assigned pairing probabilities and as such are

assigned HDSL based on those outputs.
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In vitro data In vivo data

Figure 3.4: Optimization of HDSL augmentation parameterization scheme using SP data
from the SARS-CoV-2 genome. Shown are Kolmogorov-Smirnov statistics between nu-
cleotides in low SHAPE, low Shannon entropy (LS/LSE) regions and nucleotides outside
of them for tested parameterizations of the HDSL augmentation scheme. Indicated in
red is the parameterization selected for use in the final HDSL metric applied in the
manuscript. Note that all parameterizations tested yield a statistically significant dif-
ference in HDSL between LS/LSE regions and nucleotides outside of them (p < 10−200,
2-sample Kolmogorov-Smirnov test). This significance exists for all parameterizations as
the basis of HDSL is pairing probabilities, which, on their own, are significantly different
between the tested regions. As such, parameterizations of HDSL augmentations serve
primarily to enhance the distinction between such regions by considering the presence of
hairpin elements.

3.2.7 Computation of Statistical Performance Metrics

The accuracy of patteRNA to detect motifs is primarily assessed through the receiver

operating characteristic (ROC) and precision-recall (PR) curves. These curves were com-

puted by varying a theoretical c-score threshold between called positives and negatives

and, at each threshold, computing the true-positive rate (TPR/recall), false positive rate

(FPR), and precision (also referred to as positive predictive value, PPV). A site is deemed

a positive if all base pairs in the target motif are also present in the corresponding location

of the reference structure. These performance profiles are then visualized (ROC: FPR vs.

TPR, PR: TPR vs. PPV) and summarized using the area under the curve (AUC) of the
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Figure 3.5: Overall flow of data and computing behind patteRNA and hairpin-derived
structure level (HDSL). The measure is initialized as the pairing probability profiles,
which are then augmented by boosting values at sites covered by highly scored hairpins
(see Methods). The subsequent profile is clipped to the interval [0, 1] and local smooth-
ing is achieved with sliding window mean and sliding window median approaches with
windows of size of 5 nt and 15 nt, respectively.

ROC and average precision (AP) of the precision-recall curve. The Scikit-learn Python

module (v0.24) was utilized to perform these computations.

3.2.8 Simulated Datasets and Benchmarks

We generated simulated data for RNAs in the Weeks set by sampling reactivities accord-

ing to various state distributions schemes (see Table 3.3). 50 replicates of each scheme

were generated for the performance benchmarks using in-house Python scripts. patteRNA

was then used the train and mine the replicates for regular hairpins using the “patteRNA

$SHAPE $OUTPUT -f $FASTA [--GMM or --DOM] --hairpins” command. The “-l” flag

was added to use log-transformed data where applicable; training was performed inde-

pendently for each replicate. Overall performance for a scheme was summarized as the

mean of average precisions for the 50 replicates.
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Scheme Name Paired Distribution Unpaired Distribution 

Heitsch distributions 
(Sükösd 2013) 

Helix-end:  
GEV(µ = 0.09, s = 0.114, 
         x = -0.821) 

Stacked: 
GEV(µ = 0.04, s = 0.040, 
         x = -0.763) 

Exponential distribution 
with l = 1.468 

Gaussian / Gaussian (poor) Gaussian distribution with 
µ = 0, s = 1 

Gaussian distribution with 
µ = 0.5, s = 1 

Gaussian / Gaussian (medium) Gaussian distribution with 
µ = 0, s = 1 

Gaussian distribution with 
µ = 1, s = 1 

Gaussian / Gaussian (high) Gaussian distribution with 
µ = 0, s = 1 

Gaussian distribution with 
µ = 2, s = 1 

Exponential / Gaussian Exponential distribution 
with l = 2 

Gaussian distribution with 
µ = 2, s = 1 

Exponential / Exponential Exponential distribution 
with l = 2 

Exponential distribution 
with l = 1/2 

Table 2. Parameters of state distributions used to generate artificial data on the Weeks set. GEV: 

generalized extreme value. 

Table 3.3: Parameters of state distributions used to generate artificial data on the Weeks
set. GEV: generalized extreme value.

3.2.9 Averaging and Integrating HDSL over mRNA Coding Se-

quences

We delineated the regions surrounding the 432 genes in the Mustoe data into 4 groups:

(1) start site; ±30 nt around AUG, (2) 5’UTR; -70 to -31 nt from AUG, (3) 3’ UTR;

+1 to +40 from STOP codon, and (4) coding sequences; +31 nt from AUG to the

STOP codon. For the start site, 5’UTR, and 3’UTR, averages were taken at each aligned

position as these groups each have a constant length. For situations where all regions

might not exist for a gene, aligned HDSL profiles were included in the analysis as far

as the nucleotide sequence allowed, and remaining positions were treated as missing

values and omitted from subsequent averaging. For instance, if the 5’UTR was 50 nt

(i.e., less than 70 nt), those 50 nt were aligned with the corresponding locations and
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the missing 20 nt upstream were treated as missing values. For coding sequences (which

inherently have a non-constant distribution of lengths), the profiles were interpolated

to a vector of length 300 to allow for aligned averaging relative to the beginning and

end of the window. 99% confidence intervals were computed using the Wald formulation

(mean HDSL± 2.576× SE).

3.2.10 Hairpin Mining Performance of NNTM Partition Func-

tion Approach

We benchmarked the performance of partition function approaches to detect hairpins in

the Weeks set by using the “RNAsubopt” command from ViennaRNA to generate 1000

structures for each transcript in the Weeks set, using that transcript’s SHAPE data

as soft constraints (“RNAsubopt -p 1000 --shape $SHAPE FILE < $SEQUENCE”). For

each hairpin in the generated structural ensemble, a “score” was assigned as the fraction

of structures in the structural ensemble which contain the base pairs comprising that

hairpin. Predicted hairpins and their scores were organized into a single list which was

then processed into a receiver operating characteristic and precision-recall curve as done

for patteRNA’s predicted hairpins (see Computation of Statistical Performance Metrics).

3.2.11 Local Folding Calculations

Windowed partition function calculations were performed using the “RNAfold -p” com-

mand from ViennaRNA [65]. Three schemes were utilized: windows of length 3000 nt,

spaced 300 nt apart; windows of length 2000 nt, spaced 150 nt apart; and windows of

length 150, spaced 15 nt apart. In each case, sequences within each window were parsed

using custom Python scripts and then processed sequentially with RNAfold. Only the

time required to run RNAfold commands was measured in timing benchmarks (no integra-

tion of windowed outputs or post-processing were accounted for). RNALfold benchmarks

were performed using the default arguments of the command to process all sequences in

the Corley data sequentially. All timing comparisons in this study were performed on an

AMD Ryzen 9 5900X CPU running Ubuntu 20.04 LTS.

3.2.12 patteRNA Training and Scoring

Unless otherwise noted, all patteRNA analyses were performed with default training pa-

rameters (KL divergence for training set: DKL = 0.01, convergence criterion ε = 0.0001,
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automatic determination of model complexity, k, via Bayesian information criteria) [149].

With the exception of benchmarks investigating the effect of log-transforming data,

log-transformed data were always used when using a GMM and non-transformed data

were used when using a DOM. Scoring for regular hairpins was achieved using the

“--hairpins” flag and computation of HDSL profiles was achieved with the “--hdsl”

flag.

3.3 Results

3.3.1 Overview of patteRNA Mining

To mine structure elements from SP data, patteRNA first learns the statistical properties

of the data via the training phase. The purpose of this procedure is to estimate the

distributions of reactivities associated with paired and unpaired nucleotides, respectively.

Training is unsupervised and has been shown to accommodate diverse data distributions

(see Ledda et al. [101] for a complete description). With the dataset characterized

via its statistical model, patteRNA can then mine for structural motifs. Figure 3.1A

demonstrates key concepts related to patteRNA’s motif mining. When mining a particular

structural element (i.e., the target), sites which satisfy the sequence constraints necessary

for the target’s secondary structure are scored for their probing data’s consistency with

its pairing state sequence [101, 149]. Sites which do not satisfy sequence constraints can

also be scored, however these sites are almost certainly all negatives and can therefore

be discarded (the only exception being the possibility of non-canonical base pairs). Sites

which harbor the target motif presumably have SP data consistent with the desired state

sequence and therefore score highly. patteRNA’s overall objective is to identify sites

harboring particular structural elements, such as hairpins, as accurately as possible.

3.3.2 Hairpins Comprise a Significant Portion of Structural El-

ements

To assess the plausibility of a hairpin-centric approach in making general assessments of

structure, we examined a diverse dataset of 22 RNAs with known structures (∼10,000 nt)

[101] to quantify the distribution of hairpins present as well as the proportion of base pairs

contained within hairpins. We refer to this dataset as “the Weeks set.” Analyzing the

278 distinct hairpins in the Weeks set reveals that a majority fall within a narrow range
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of stem and loop lengths (Figure 3.1B). Specifically, hairpins most frequently have loop

lengths between 3 and 10 nt, and stem lengths 15 nt or less. In other words, although

their properties are diverse, there is a range of stem and loop sizes which represents

a majority of hairpins (83%). Later in the study will we leverage these characteristic

properties to focus our searches on this most representative subset of hairpins.

Our results also illustrate that hairpins comprise a large fraction of structural el-

ements. We first focused on hairpins with no bulges or internal loops (i.e., unpaired

stretches flanked by some number of base pairs), which we call regular hairpins, and

found that around 35% of paired nucleotides reside in such structures (Figure 3.1C). If

you also consider hairpins with up to two bulges each with length up to 5 nt, this coverage

increases to over 50%. This suggests that, although hairpins are only a subset of RNA

structural elements, they are indeed the most prevalent, and therefore identifying them

in SP data could provide a strong quantification of general structural trends.

Understanding that the Weeks set is a small sample of structures to draw conclusions

from, we repeated this hairpin counting and quantification on a diverse set of 797 refer-

ence structures from the STRAND database [2] and 3,935 reference consensus structures

for RNA families in Rfam [79], representing a more complete profile of structured RNA

properties. The distributions of hairpins in these datasets are shown in Figure 3.6 and

recapitulate the observations from the Weeks set. The STRAND data suggests that reg-

ular hairpins specifically comprise a slightly larger fraction (40%) of structural elements

than is seen in the Weeks set (35%), while the Rfam data suggest this fraction is slightly

less (30%). We noted that Rfam data was slightly biased by an overrepresentation of

microRNA families, typically comprised by long (¿20 nt) stem-loops. As such, Figure 3.6

also shows the representation of hairpins in Rfam when microRNAs are removed. In this

case, we observe the the hairpin trends align closely to what is observed with STRAND

and the Weeks set, with approximately 35 to 40% of paired nucleotides residing in regular

hairpins.

One can further expand the definition of a hairpin to also include the associated stems

that extend from a hairpin element up to the first nucleotide that base pairs outside of

the nested context of this element (see Figure 3.3 for examples). We refer to these helices

as external stems and note that such motifs are prevalent in structured RNAs. Figure

3.1C shows that relaxing the definition of a hairpin to include external stems leads to over

80% coverage of paired nucleotides, with the remaining 20% of base pairs described by

longer-range interactions—e.g., internal stems (see dashed red frame in Figure 3.3) and
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pseudoknots. Although external stems are nevertheless the scope of the patteRNA-based

analysis that follows, this high coverage indicates that a large majority of RNA structure

can be represented as simple motifs with local base pairing. Moreover, it’s important to

note that virtually all types of canonical RNA structure motifs necessarily exist in the

context of hairpin elements—internal stems, multi-branch junctions, etc., only exist in

the presence of hierarchical domains which all terminate in a hairpin-like fashion.

In the context of patteRNA, we note that there are practical limitations on the types

of searches that can be performed. Specifically, although structures comprised by inter-

nal loops, bulges, and external stems are within the permitted scope of minable motifs

described solely by local base-pairing, the automated identification of such motifs in SP

data is computationally burdensome. This is due to the combinatorial explosion of con-

sidered motifs associated with allowing for flexibility in the position and size of internal

loops and bulges. For instance, regular hairpins are comprised by 96 distinct motifs (12

stem lengths and 8 loop lengths), but regular hairpins with bulges (as defined in this

work) are comprised by a set of motifs with size larger than 20,000 due to the many

possible bulge locations and sizes within each regular hairpin motif. Allowing for the

presence of various internal loops further increases the space of motifs by orders of mag-

nitude. Although permitted by patteRNA, such more comprehensive searches scale poorly

to transcriptome-wide applications. As such, the analyses that follow generally focus on

mining and assessment of regular hairpins.

3.3.3 Simplified Reactivity Model Improves Accuracy of Motif

Detection

In an attempt to improve patteRNA’s performance, we investigated alternative statistical

models of reactivity and their downstream effects on scoring accuracy. While the GMM

approach performs well, especially at the task of approximating the underlying state

distributions, we encountered issues in motif scoring. Namely, reactivities from the tails

of the overall data distribution would be strongly predicted to be paired or unpaired.

This isn’t an inherent problem, as the most extreme reactivities should theoretically be

the best candidates for confident prediction. However, these reactivities present problems

during scoring as they have the propensity to dominate the score for sites they fall into.

In other words, a single extreme reactivity consistent with the target state sequence could

yield a high score for a site, even if data within that site is otherwise inconsistent with

the target (and vice versa). Generally speaking, for SP data such as SHAPE, the most
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STRAND data

Rfam data (miRNA removed)

Rfam data

Figure 3.6: Hairpin stem and loop lengths (stacked histograms) and structural coverage
of hairpins (right plots) in diverse sets of representative RNA structures obtained from
STRAND and Rfam (see Methods). Results are also shown for Rfam data when omitting
microRNAs.
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extreme reactivities are only about 3-5 times more likely to be in one state over the

other [39], yet the GMM often arrives at likelihood ratios 10 or 100 times larger than

this empirical ratio. Such predictions have negative consequences on the interpretation

of scores.

Motivated by these issues, we devised a simplified framework for unsupervised learning

of the state reactivity distributions. It entails a discretized observation model (DOM)

which substitutes for the GMM component of the statistical model (i.e., the emission

probabilities), resulting in a DOM-HMM model of SP data. The DOM entails modeling

reactivities as a discrete distribution where they are binned into classes based on per-

centiles. During training, pseudo-counts are estimated for each class (E-step) and then

utilized in the M-step to infer the discrete reactivity distribution for paired and unpaired

states. A schematical comparison of the GMM and DOM approaches is shown in Figure

3.7A (see Methods and Appendix for a complete mathematical formulation).

AUC: 0.83
AUC: 0.87
AUC: 0.94

AP: 0.48
AP: 0.64
AP: 0.73

A B

GMM

DOM

Unsupervised
Training

C

GMM DOM NNTM+SP (Ensemble)

Paired Unpaired

Figure 3.7: A discretized observation model (DOM) of reactivity improves hairpin de-
tection precision when compared to a Gaussian mixture model (GMM). (A) Schematic
illustration of GMM and DOM approaches in the content of patteRNA’s unsupervised
learning scheme. The DOM is founded upon a percentile-based discretization of reac-
tivities which yields a discrete emission probability scheme. The discretization scheme
it itself optimized during training based on Bayesian information criteria (BIC) of mod-
els using progressively smaller bins. (B) Receiver operating characteristic curves and
precision-recall curves when mining regular hairpins in a reference dataset (“the Weeks
set,” see text) with patteRNA using either GMM (blue) or DOM (orange) approaches,
or when using data-driven NNTM-based folding (green). (C) Timing benchmarks of
unsupervised training via GMM and DOM on the Weeks set. Shown are the number of
EM iterations required for convergence on the Weeks set and time required for a single
EM iteration. 5 repetitions were used when measuring EM cycle times.

We benchmarked the capacity of patteRNA to identify regular hairpins in the Weeks

set via the GMM and DOM. We assessed their discriminatory power primarily via the re-
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ceiver operating characteristic (ROC) and precision-recall curve (PRC), which are shown

in Figure 3.7B. Our results indicate that the DOM approach improves both the area-

under-the-curve (AUC) of the ROC and the average precision (AP) of the PRC. Although

the improvement to AUC appears minor, average precision was increased from 0.48 with

a GMM to 0.64 with a DOM. Precision is a crucial performance metric in structure

motif mining where the vast majority of scored sites are negatives (even with sequence

constraints applied), so the improvements seen in the DOM are important through this

perspective. Notably, precision at the highest scores is much better in the DOM com-

pared to the GMM, which is susceptible to numerous negatives at the highest hairpin

scores despite decent precision at moderate scores. This is evidenced by the large fluctu-

ations in precision at low levels of recall for the GMM (see the top left of precision-recall

plot in Figure 3.7B). The DOM approach, on the other hand, is far more reliable for

returning positive hits at the highest scores. Figure 3.7B also includes a benchmark for

data-directed NNTM folding algorithms which shows that patteRNA is, although im-

proved via the DOM, generally unable to match the precision of RNA folding. Notably,

NNTM folding was performed with an ensemble-based approach, which, although much

slower, outperforms a single MFE calculation [101].

Importantly, the presented results show overall performance on the collection of all

regular hairpins, which is comprised predominantly by motifs with shorter stems. Shorter

stems present a challenge to patteRNA, as fewer base pairs render sequence constraints

less effective in controlling the number of negative sites considered in the analysis. When

comparing performance on individual motifs, however, we find that patteRNA matches the

precision of NNTM-ensemble methods for longer stems. In some cases, such as hairpins

with stem length 6 and loop length 7, it even surpasses the performance of the NNTM

approach (see Figure 3.8). We also observe a universal trend for the DOM to outperform

the GMM at the motif-level, further validating its superior performance.

Not only does the DOM improve precision, but the model itself is described by fewer

parameters and trains faster than a GMM. As seen in Figure 3.7C, faster training is

achieved in two distinct ways. First, the DOM generally requires fewer EM iterations to

converge. Second, EM iterations are significantly faster. The latter is presumably due to

the DOM’s simpler M-step formulation, which reduces to simple counting as opposed to

the GMM which requires multiplication and squaring to update the means and variances

of each Gaussian kernel.

Given the rapidly evolving field of structure probing and disparate statistical proper-
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Figure 3.8: Performance of patteRNA (GMM), patteRNA (DOM), and NNTM+SP (En-
semble) approaches on identifying locations of individual motifs.

ties of SP datasets [20], we also investigated whether the benefits from the DOM generalize

to other data distributions. Different probes have different quality [13, 20], different con-

ditions yield different quality [20], and the quality of probes is constantly improving [117];

therefore, adaptability of methods is crucial. Benchmark datasets like the Weeks set are

not currently available for the plethora of probes used, so we resorted to simulations. We

constructed several artificial datasets and benchmarked patteRNA’s performance via the

GMM or DOM approaches. We sampled reactivities for the underlying structures in the

Weeks set according to various state distributions, including empirically-fitted distribu-

tion models from Sükösd et al. [180], referred to as the Heitsch distributions, as well as a

collection of mock distributions with varying classification power (i.e., various degrees of

separation between the state distributions). For each scheme, 50 replicates were created,

and we benchmarked performance against both the regular and log-transformed data. We

note that the fidelity of the GMM is dependent on the Gaussianity of the data, presenting

a weakness of this approach as the decision to log-transform can have a major impact on

scoring efficacy.

The results of the benchmarks are shown in Table 3.4. Generally speaking, the DOM

matches or exceeds the performance of the GMM. Depending on the data properties,

the DOM’s performance gain ranges from minute to transformative. In only one of the

benchmarks did the GMM outperform the DOM (poor quality Gaussian/Gaussian data),

and only by a small margin. This specific outcome might be explained by the DOM’s
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simplification of SP data which effectively clips extreme reactivities when discretizing

the data. In datasets of poor quality, the most extreme reactivities likely provide the

only opportunity for reliable inference on pairing state, so it’s possible that the relatively

coarse discretization scheme reduces the information content of the data. Regardless,

it’s worth noting that data of such poor quality is uncommon, especially in light of on-

going improvements to experimental protocols and probe quality [117, 195, 167, 175].

Our results also demonstrate the adaptability of the DOM and its robustness to non-

Gaussian data, which render the method broadly applicable. When using the DOM, log-

transforming is largely irrelevant to model performance, as the discretization scheme is

founded on data percentiles. The lone exception to this rule is when handling reactivities

below zero, which are necessarily binned together if data is log-transformed.

Overall, these results demonstrate the benefit of the DOM approach in more efficiently

and effectively mining structures from SP data. Note, however, that the GMM still pro-

vides a specific utility when one’s objective is to arrive at continuous models of the state

reactivity distributions (e.g., to use for simulations, or for data inspection). patteRNA

includes both implementations such that the respective approach can be used depending

on the intended use-case.

 Mean AP 

Data Scheme GMM GMM 
(log data) DOM DOM 

(log data) 

Heitsch Distributions  
(Sükösd 2013) 0.43 0.58 0.63 0.63 

Gaussian / Gaussian (poor) 0.32 0.36 0.34 0.34 

Gaussian / Gaussian (medium) 0.48 0.48 0.49 0.49 

Gaussian / Gaussian (high) 0.65 0.62 0.72 0.72 

Exponential / Gaussian 0.58 0.55 0.71 0.71 

Exponential / Exponential 0.52 0.57 0.57 0.57 

 

Table 3. Average precisions of patteRNA for hairpin mining when utilizing a Gaussian mixture model 

(GMM) or discretized observation model (DOM) of reactivity against various artificial data schemes. For 

all benchmarks, average precision was averaged over 10 replicates. Bold entries highlight the best 

performing approaches for each scheme. AP: average precision. 

 

Table 3.4: Average precisions of patteRNA for hairpin mining when utilizing a Gaussian
mixture model (GMM) or discretized observation model (DOM) of reactivity against
various artificial data schemes (see Table 3.3). For all benchmarks, average precision was
averaged over 10 replicates. Bold entries highlight the best performing approaches for
each scheme. AP: average precision
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3.3.4 Summarizing Structuredness in RNAs from Hairpin De-

tection

As hairpins comprise a large fraction of structural elements, we sought to utilize patteRNA

to quantitatively summarize local “structuredness.” Due to the plethora of cellular pro-

cesses affected by RNA structures, there are numerous contexts in which summarizing

local structure is important. To name a few examples, one might wish to find struc-

tural domains and druggable pockets in viral genomes [121, 145, 114], quantify connec-

tions between mRNA structure and gene regulation [81, 101, 171, 161, 154, 64], identify

transcriptome-wide where RNA is differentially affected by particular stimuli [25, 125],

or compare structure between conditions and/or logical regions of genomes [132, 48, 50].

The most popular approach for quantifying structuredness relies on a combination of two

metrics: local reactivity and local Shannon entropy. Local reactivity is generally com-

puted via a rolling mean or median with windows ranging 25-500 nt, while local Shannon

entropy derives from base pairing probabilities computed via NNTM folding routines.

The combination of these two metrics yields regions which are largely unreactive (i.e.,

base paired) and stable (i.e., tending to adopt one conformation). We note that each

metric by itself is generally insufficient in this context, as low reactivity regions some-

times include regions which see multiple competing conformations (but are nevertheless

highly paired), and low Shannon entropy can also be observed for regions which are

preferentially single stranded.

To integrate patteRNA’s results into a quantification of structuredness, we propose

a nucleotide-wise measure we term the hairpin-derived structure level, or HDSL. At the

highest level, HDSL combines patteRNA’s computed base pairing probabilities with infor-

mation from hairpin searches. This allows us to consider the locations of stable hairpins

in addition to the overall pairing propensity of regions, the former of which typically does

not account for all structured regions (e.g., external stems, stems with numerous bulges,

or stems with non-canonical base-pairing). Briefly, the posterior pairing probabilities are

used as a starting point. They are then amplified at nucleotides covered by highly scored

hairpins, depending on the hairpin c-score—the higher a hairpin is scored, the larger the

boost. Next, the profile is clipped to [0, 1] and locally smoothed by taking a 5 nt rolling

mean followed by a 15 nt rolling median (see Figure 3.5 and Methods for a complete

description). In summary, HDSL integrates posterior pairing probabilities with the loca-

tions of detected regular hairpins to arrive at a nucleotide-wise measure of structuredness

that is mindful of local structure elements. Whereas c-scores quantify the likelihood for
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specific sites in the data to harbor a specific structure motif, HDSL is computed at all

nucleotides and considers a representative collection of hairpins simultaneously. This is

because all nucleotides are assigned a posterior pairing probability via the GMM/DOM-

HMM, and as such, all nucleotides can be assigned HDSL. This is distinct from c-scores

which are only assigned at sites in the data which satisfy the sequence constraints nec-

essary for the considered targets. We explored the properties of HDSL and validated its

utility as an indicator of local structure by applying it to three recent datasets that were

previously used to assess local structuredness in diverse contexts.

3.3.5 Trends in Detected Hairpins Recapitulate Known mRNA

Dynamics in E. coli

We analyzed the set of 197 mRNA transcripts (comprising 432 genes) in E. coli probed

in vitro, in vivo, and in vivo + kasugamycin with SHAPE-MaP by Mustoe et al. [132].

In addition to Mustoe et al.’s analysis, previous studies have demonstrated that mRNAs

fold differentially in cells compared to in vitro [171, 159, 50, 122]. In vivo mRNAs have

been observed to be less structured than their in vitro counterparts, with the magni-

tude of structural changes correlated with translation [8, 86]. These effects have been

observed most strongly in the context of the 5’UTR and CDS of highly expressed genes.

Conversely, structural changes have also been observed around the 3’UTR, but evidence

demonstrating both a decrease [159] and increase [8] in structures has been published

in the literature, possibly correlating to the degree of post-transcriptional regulation of

transcript decay [8]. We applied HDSL to Mustoe et al.’s data and investigated to what

degree our measure reveals structural changes along mRNA transcripts in a prokaryotic

organism like E. coli.

The results of our analysis are compiled in Figure 3.9. In Figure 3.9A, we compare

averaged HDSL profiles over the 432 genes included in the study between in vitro and in

vivo conditions. The averaged HDSL profiles are delineated into 3 groups: nucleotides

near the start site (AUG ± 30 nt), nucleotides within the coding sequence (at least

31 nt downstream of AUG), and nucleotides in UTRs (5’UTR: 31–70 nt upstream of

AUG; 3’UTR: first 40 nt after STOP). Our results demonstrate that, as expected, UTRs

are generally the most structured regions of the transcripts. They also show a strong

intrinsic effect for mRNA to be relatively less structured around the start codon in both

conditions. Moreover, in vivo data show that factors in this condition work to further

unfold structures around the start site, as HDSL is significantly lower around the start
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codon in vivo than in vitro. Interestingly, we did not detect a strong signal for structures

in coding sequences (AUG+31 nt onward) to be de-structured overall when accounting

for the region around the start codon separately. It is worth noting that the reduction of

HDSL around the start of coding sequences in the in vivo condition is only detected if

the area around the start codon is delineated separately from the UTRs and CDS. Figure

3.9B shows the global HDSL trends in logical mRNA regions when (1) delineating start

sites from UTRs and CDS and (2) delineating based solely on CDS/UTR boundaries.

Our results indicate that HDSL is significantly different between the conditions only in

the region proximal to start codons. This contrasts with the original analysis by Mustoe

et al. which did not consider start sites separately (i.e., considered only CDS versus non-

CDS), concluding that coding sequences are relatively less structured in cells based on a

slight increase in reactivities in vivo versus in vitro for nucleotides in CDS (demonstrated

via reactivity scatterplot comparison of the two conditions and a fitted linear model slope

greater than 1). Our analysis suggests that global changes to reactivity profiles within

CDS between conditions are not significant, yet effects specific to the start codon region

are significant. These effects are likely partially responsible for previous inferences on in

vivo structure dynamics. Notably, the specific relevance of structure around this region

of mRNA transcripts has been observed and recognized as important in several other

studies on organisms of varying genetic complexity [14, 35, 194, 122].

To further substantiate the effects we observed, we checked the similarity of pat-

teRNA’s detected hairpins for each pairwise comparison of the three conditions included

in the original study. Ideally, in the absence of significant structural remodeling be-

tween two conditions, we expect to find the same hairpins in both. On the other hand,

if two conditions are substantially different, we expect to see larger differences in the

hairpins detected by patteRNA. Searching for the aforementioned set of regular hairpins

(see Hairpins Comprise a Significant Portion of Structural Elements) and using a c-score

threshold of 1 to indicate a “detected” hairpin, we computed the fraction of hairpins

reproducible in both conditions of each comparison (Figure 3.9C). We see that in vivo

and in vivo + kasugamycin have the highest level of hairpin conservation (less than 10%

of detected hairpins are not present in both conditions, meaning >90% similarity in de-

tected hairpins). This high similarity serves as a basic quality control measure, as the in

vivo + kasugamycin condition, although affected by changes to translation initiation, is

nevertheless highly similar to the in vivo condition. On the contrary, comparing in vivo

to in vitro data shows that 20% of detected hairpins are unique to one condition. The
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Figure 3.9: Hairpin-derived structure level (HDSL) demonstrates regional differences in
structure changes between in vivo and in vitro structures for mRNA transcripts in E.
coli (probed by Mustoe et al. [132]). (A) Averaged HDSL profiles across all genes (N
= 432) for nucleotides around the start codon (±30 nt, red), within the coding sequence
(AUG+31 to STOP), and 5’/3’UTRs (black). Grey area indicates the 99% CI of mean
HDSL (Wald interval, see Methods). Dot-dashed lines indicate mean HDSL over all
nucleotides in each condition. (B) HDSL trends between in vitro and in vivo conditions
with delineating mRNA regions by UTRs and CDS (right) versus accounting for the
region around the start codon separately (left). Delineating the region around start
codons separately from CDS and UTRs reveals a signal occluded by the other delineation
scheme. (C) Hairpin divergence (fraction of patteRNA-detected hairpins unique to one
condition) for the three pairwise comparisons between in vivo, in vitro, and in vivo +
kasugamycin conditions. Error bars represent the exact binomial (Clopper-Pearson) 99%
CI. (D) 2D density plot of HDSL between the two conditions shown in (A) indicates a
bias for weakly structured regions in vitro to become more unstructured in vivo. (E)
Histograms of HDSL at the adenosine of start codons for both conditions in (A). (F)
Histograms of HDSL at the fifth nucleotide after the STOP codon for both conditions in
(A). Stars indicate Wilcoxon signed-rank tests for mean HDSL at the noted positions to
be equal in both conditions. ** indicates p < 1× 10−60, *** indicates p < 1× 10−100.
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very high level of similarity between in vivo and in vivo + kasugamycin reaffirms that

the differences observed in Figure 3.9A between in vivo and in vitro reflect real differ-

ential effects, rather than the impact of biological variation or artifacts from patteRNA’s

imperfect hairpin detection scheme.

To further investigate the differences between the conditions around start codons, we

visualized the condition-wise correlation of HDSL for all nucleotides within this region

(Figure 3.9D). We detected a tendency in this area for the most structured regions in vitro

to remain structured in vivo (see top right of distribution, which is tightly concentrated

around the diagonal). The density of HDSL in Figure 3.9D does reveal a tendency for

HDSL to be reduced in the in vivo condition, but mostly for regions with moderate

HDSL in vitro. Thus, the overall de-structuring effect from Figure 3.9A appears to be

driven by unfolding of moderately structured regions. Figure 3.9E compares the HDSL

distribution between in vitro and in vivo at the adenosine residue of the start codon.

There is a noticeable reduction in HDSL in the in vivo condition (p < 1×10−60, Wilcoxon

signed-rank test), presumably driven by translation and possibly other cellular effects

destabilizing mRNA structure, as discussed above. There is also a noticeable reduction

in HDSL near the start of the 3’UTR (Figure 3.9F, p < 1× 10−60, Wilcoxon signed-rank

test), although this effect disappears on average for nucleotides farther away from the end

of the coding sequence (see Figure 3.9A). Overall, our results demonstrate that HDSL

can rapidly measure local structure and gives results consistent with prior analyses.

3.3.6 HDSL Correlates Strongly with Structured Regions of

SARS-CoV-2

To further explore the properties of HDSL, we applied it to the SARS-CoV-2 genome.

Recently, multiple labs have independently probed the genome with SHAPE [114, 71]

and dimethyl sulfate (DMS) [114, 97]. These works have resulted in a complete structure

model of the genome, highlighted by the identification of structured elements across its

entire length. Here, we focus on SP data generated by Manfredonia et al. [114], which

contained SHAPE data both in vitro and in vivo. Other studies either had data for only

one condition or relied on DMS, which only reports reactivity for A and C nucleotides.

We first characterized the consistency of patteRNA’s detected hairpins with the com-

plete structure model proposed by Manfredonia et al. We took the published structure

model as ground-truth, searched for all predicted regular hairpins, and quantified the

accuracy of patteRNA via the ROC (Figure 3.10A) and PRC (Figure 3.10B). Our results

81



reveal good consistency between detected hairpins and hairpins in the predicted genome

structure, as evidenced by AUCs around 0.88 and APs above 0.65 from analyses for both

conditions.

Next, we used patteRNA to generate in vivo and in vitro HDSL profiles. Inspecting

them in the 5’UTR reveals trends consistent with the currently accepted structure mod-

els (see Figure 3.10C) [113, 71, 215, 97, 114]. Namely, HDSL is high at known stable

stem-loops, such as SL2, SL4, SL5A/C, SL7, and SL8. A weaker signal is found at SL6,

which also shows differential structuredness between in vitro and in vivo data. Compar-

ative analysis [162], in vivo RNA-RNA interactions [215], and multiple probing datasets

[71, 114, 97] support the presence of this element. However, mutagenesis studies on a

related coronavirus, murine coronavirus (MHV), demonstrated that disrupting this stem

loop did not significantly affect virus viability [208]. Given that SL6 is within ORF1ab,

it is possible that the element is transient in nature. That said, NMR experiments con-

cluded SL6 stably forms and additionally measured a significantly larger internal loop

than was predicted with in silico structure models [192]. The internal loop, also iden-

tified as a major binding site for the N protein [74], appears to be responsible for high

reactivities and the observed differential structuredness of SL6 between in vitro and in

vivo data. Similarly, for SL3, although comparative sequence analysis and NNTM-based

folding with in vitro data suggest the presence of this stem-loop, in vivo data does not

agree with its presence [114, 71, 97]. NMR investigations concluded that the stability of

the element is strongly influenced by ionic conditions [192], and studies on RNA-RNA

interactions suggest that this stem-loop is unfolded in vivo to facilitate genome cycliza-

tion, as the region is involved in a long-range interaction with the 3’UTR [215]. As such,

differential structuredness between in vitro and in vivo conditions is consistent with cur-

rent understandings of the stem-loop element. Finally, we observe relatively low HDSL

for SL5B, and element confirmed via RNA-RNA interactions [215] and NMR [192]. NMR

studies, however, suggest that the upper part of the stem is destabilized at physiological

temperatures by the presence of SL5C. The presence of a bulge and high reactivities near

the apical loop of SL5B subsequently result in attenuated HDSL observations around

this element, as the structure scores poorly for the regular hairpin motifs considered by

patteRNA when summarizing structuredness. Although a complete analysis of the SARS-

CoV-2 genome is beyond the scope of this study, full HDSL profiles for the two conditions

are included in Figure 3.11.

Generally speaking, there is a reasonable correlation between HDSL in vitro and

82



A

B

C

D E F

SL2
SL5B

SL5C
SL5ASL4

SL3

SL6

SL7
SL8ORF1a start

Figure 3.10: HDSL demonstrates correlated and differential structuredness between in
vitro and in vivo SHAPE experiments on SARS-CoV-2 by Manfredonia et al. [114]. (A,
B) Receiver operating characteristic curves and precision-recall curves for patteRNA’s
detected hairpins. (C) HDSL profiles for the 5’UTR of SARS-CoV-2 in vitro and in
vivo with low SHAPE, low Shannon entropy (LS/LSE) regions (called by Manfredonia
et al.) indicated in red. Grey regions indicate no data. (D) Scatterplot of HDSL in vitro
and HDSL in vivo for all nucleotides of the genome. (E) Scatterplot of HDSL in vitro
and HDSL in vivo for nucleotides in LS/LSE regions. (F) Boxplot comparison of HDSL
profiles within LS/LSE regions and outside of them for both conditions.
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HDSL in vivo (Figure 3.10D), although some deviation is expected given that in vivo

contexts alter RNA dynamics. We also compared the properties of HDSL within Man-

fredonia et al.’s called “low SHAPE, low Shannon entropy” regions (regions with locally

low SHAPE and Shannon entropy). Inspecting HDSL properties within these regions

confirms they are characterized by very high HDSL levels, as seen in Figure 3.10E and

Figure 3.10F. We investigated this association in more detail by correlating Shannon en-

tropy with the following: SHAPE reactivity, pairing probabilities from patteRNA, and

HDSL (see Figure 3.12). Our results show that reactivity is loosely correlated with Shan-

non entropy, but pairing probabilities correlate slightly better. However, HDSL shows

an even stronger correlation, suggesting that it captures structuredness better than the

former measures. Lastly, our results on the SARS-CoV-2 genome indicate that HDSL

profiles retain sufficient resolution to capture locations of specific structural elements

(e.g., individual stem-loops in the 5’UTR), boding for the plausible use of our measure to

assist in more detailed analyses of regions in addition to quantifying local structuredness.

The application of HDSL on these data allows for the unique opportunity to bench-

mark it against a previously characterized transcript with both structured and unstruc-

tured regions. In that context, we remark that HDSL was developed with the intention of

assisting in global structure quantifications and comparisons (e.g., the analysis presented

on the Mustoe data) rather than a tool for de novo detection of structured regions. Nev-

ertheless, our results suggest it could also provide utility for de novo applications. In such

cases, structured regions could be detected by defining criteria based on high HDSL that

persists across long spans of nucleotides (e.g., over 50 nt). As seen in Figure 3.10, struc-

tured elements of the SARS-CoV-2 genome are typically associated with long stretches

of HDSL greater than 0.8. We recommend thresholds around this value when seeking to

identify structured regions. When quantifying changes in structure, however, the use of

HDSL is more flexible. Depending on the specific application and degree of structure in

the RNAs being studied, the magnitude of HDSL should be considered in addition to any

relative changes in it across differing cellular conditions or logical transcript regions.

3.3.7 RBPs Bind RNA at Structured Regions

Corley et al. [25] devised a novel experimental procedure called fSHAPE which can de-

tect RNA nucleotides engaging in hydrogen bonding with RNA binding proteins (RBPs).

fSHAPE works by chemically probing RNA transcripts in the presence and absence of

native binding factors, then quantifying the degree of modification change between the
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Figure 3.11: Complete HDSL profiles from in vitro and in vivo SHAPE data probing the
SARS-CoV-2 genome from Manfredonia et al. Brown areas represent locations of missing
data.

two conditions. Nucleotides bound by RBP would presumably be more reactive in the

absence of binding factors, which translates to a high fSHAPE score. Integrating fSHAPE

information with standard reactivity profiles therefore allows one to examine the struc-
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Figure 3.12: Bivariate histograms of Shannon entropy for nucleotides in the SARS-CoV-2
genome (as computed by Manfredonia et al using in vitro SHAPE data) against reactivity
(left), posterior probability to be paired as computed by patteRNA under a DOM model
(center), and hairpin-derived structure level (HDSL) (right).

tural context of RBP binding sites. In this regard, Corley et al. performed icSHAPE in

tandem with fSHAPE to perform such analyses transcriptome-wide on human cell lines

(K562, HepG2, and HeLa). Their work showed that nucleotides with high fSHAPE scores

tend to fall in areas with relatively low Shannon entropy when compared to the regions

flanking them, allowing them to conclude that RBP tend to associate with RNA in the

general context of stable structured regions.

We sought to use HDSL to address the same question, namely, is there a structural

context characteristic to RBP binding? To this end, we processed their icSHAPE data

with patteRNA, mined for regular hairpins, and computed HDSL profiles. We first in-

vestigated what association exists, if any, between high fSHAPE nucleotides and pairing

probabilities as computed by patteRNA’s DOM-HMM. Simply put, we found that nu-

cleotides with high fSHAPE (fSHAPE > 2) are almost unanimously unpaired (Figure

3.13A), while nucleotides with lower fSHAPE follow a distribution encompassing both

states yet biased towards paired states (p < 10−307) for all low/high fSHAPE comparisons

in Figure 3.13A, Mann-Whitney U test). The association of high fSHAPE with unpaired

nucleotides recapitulates what Corley et al. demonstrated with pairing probabilities com-

puted via partition function approaches.

However, despite the increased accessibility observed at single nucleotides with high

fSHAPE, when one expands the context to the nucleotides’ local neighborhood (i.e., via

HDSL analysis), one observes significantly more local structure around nucleotides with

high fSHAPE compared to nucleotides with low fSHAPE (Figure 3.13B). This result is
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A

B

in vitro in vivo in vitro in vivo

in vitro in vivo in vitro in vivo

Figure 3.13: patteRNA demonstrates a strong association of RNA structure and RBP
binding sites in human cell lines probed as by Corley et al. (Corley et al. 2020). (A) Un-
paired probability boxplots (determined from icSHAPE reactivity via patteRNA’s DOM-
HMM) for nucleotides with low fSHAPE (fSHAPE < 0) and high fSHAPE (fSHAPE > 2).
Within each of the two cell lines, K562 and HepG2, results are presented for both in vitro
and in vivo SHAPE data. (B) HDSL boxplots for nucleotides under the same conditions
as (A). Although reactivities indicate that nucleotides likely involved in RBP binding
(i.e., nucleotides with high fSHAPE) are remarkedly accessible and therefore likely un-
paired, HDSL demonstrates that these reactive nucleotides more frequently occur in the
general context of structured regions when compared to nucleotides with low fSHAPE.
p < 10−307 for all low/high fSHAPE comparisons in panels (A) and (B) (Mann-Whitney
U test).

consistent with results from NNTM analyses performed by Corley et al., whose inter-

pretation again depended on the computation of Shannon entropy. Our results were

achieved without any folding steps and are more statistically significant (p < 10−307) for

all low/high fSHAPE comparisons in Figure 3.13B, Mann-Whitney U test) than originally

demonstrated. They were also generated orders of magnitude faster than a comparable
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NNTM approach, as we will show next. We note that current approaches for summarizing

local structuredness from SP data alone, specifically local median reactivity, are generally

insufficient for reaching this conclusion (see Figure 3.14). This highlights the capability

of our method to extract more information from big SP datasets without relying on the

additional assumptions and computational overhead of thermodynamic modeling.

in vitro in vivo in vitro in vivo

Figure 3.14: Boxplots of local median (51 nt windows) icSHAPE reactivity for nucleotides
in the Corley et al. data, as classified by high fSHAPE (fSHAPE > 2) and low fSHAPE
(fSHAPE < 0).

3.3.8 patteRNA Processes Large Data Rapidly

An especially appealing property of patteRNA is its ability to process big datasets rapidly.

To demonstrate its speed in the context of existing methods, we timed our analyses and

compared to partition function-based assessment of structure. To this end, we processed

the Weeks set, SARS-CoV-2 genome, Mustoe data, and Corley data with three sliding-

window partition function analyses of varying computational overhead: partition function

calculations with windows of length 3000 nt, spaced 300 nt apart; windows of length 2000

nt, spaced 150 nt apart, and windows of length 150 nt, spaced 15 nt apart. The results

of the benchmarks are in Figure 3.15. We observe that patteRNA is orders of magni-

tude faster than sliding-window partition function analysis for massive datasets (e.g., SP

data on human transcriptomes). Specifically, patteRNA processed the largest dataset

included in this study, the Corley data, in less than 1 hour when using a single-threaded

implementation (compared to roughly 1 and 7 days for partition function calculation via

150 nt and 2000 nt windows, respectively; 3000 nt window calculations on the Corley

data were not performed as they could not be completed in reasonable timeframe). Ad-

88



ditionally, our method is natively parallelized, and benchmarks using 12 threads allow

patteRNA to process such data in less than 10 minutes. Analogous parallelization of par-

tition function-based approaches on large batches of RNA transcripts is relatively simple

in theory, but not natively provided “out-of-the-box” for ViennaRNA (meaning it’s up to

the user to program their own parallelized calls to the relevant methods). An alternative

RNA folding package, RNAstructure [156], does provide scalable parallelization out-of-

the-box, but the core folding implementation is about one to two orders of magnitude

slower than ViennaRNA. The method was therefore not included in our comparison.

We also compared our method to RNALfold [67], an optimized routine within the

ViennaRNA package designed to rapidly scan long RNAs for locally-stable structural

elements. As expected, we found that this method is capable of processing large data

significantly faster than the sliding-window partition function approaches, yet it is nev-

ertheless outpaced by patteRNA. Moreover, this method only returns structural elements

with sufficiently low free energy (“significantly low” energies judged via an SVM) and,

to the best of our knowledge, has not been well-benchmarked against reference struc-

tures. Furthermore, RNALfold does not attempt to integrate its results to summarize

local structuredness, which is key to the type of comparative analyses performed in this

study and a central theme of a broad range of recent SP-based studies [25, 159, 8, 20].

Nevertheless, this method arrives at a more specific and comprehensive description of lo-

cal structures (i.e., it can de-novo identify stems with bulges and internal loops), whereas

patteRNA’s analyses here focus specifically on hairpin elements. We note that the incor-

poration of such local folding routines would likely improve the efficacy of future methods

aiming to summarize local structure in large SP datasets, and our results show promising

evidence that localized folding can be incorporated without major sacrifices to computa-

tional speed.

3.4 Discussion

RNA structure probing experiments are rapidly evolving in terms of their design, scale,

and quality. This evolution is accompanied by a need for versatile and scalable methods

capable of extracting information from diverse and massive SP data. patteRNA is one

such tool which was developed to rapidly extract insights from such data. Here, we

have demonstrated reformulation of the patteRNA framework which increases its speed,

adaptability, and precision, enabling it to scale well to data containing millions or billions
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A B

patteRNA
NNTM-PF 
(2000 nt)

NNTM-PF
(150 nt) RNALfold

Single-
Threaded 50m 15s 1w 1d** 1d 1h 1h 35m

Multi-Threaded 
(12 parallel 
processes)

9m 14s
**extrapolated from data in panel A

Compute Times for Corley et al.
K562 in vivo SHAPE

Figure 3.15: Compute times for patteRNA regular hairpin mining and NNTM windowed
partition function (150, 2000 and 3000 nt windows) on the datasets used in this study.
(A) Singled-threaded measured compute times on the Weeks set, SARS-CoV-2 genome,
and Mustoe data. NNTM can process the Weeks set more rapidly than larger datasets due
to the relatively small size of most RNA transcripts (> 1000 nt) in this set. patteRNA, on
the other hand, scales best for larger datasets. (B) Estimated compute times for NNTM-
PF (150 and 2000 nt) on the K562 transcripts from Corley et al. (40.8 million nt) against
measured compute times for patteRNA. To estimate single-threaded compute time for
NNTM-PF, the linear time relationship between the SARS-CoV-2 and Mustoe time points
was extrapolated to 40.8 million nt. Also included in this panel is the compute time for
RNALfold, an optimized approach in the ViennaRNA package for rapidly scanning long
RNAs for structural elements under the constraint of a maximum base-pairing distance
of 150 nt. All times were computed via the arithmetic mean of three replicates.

of nucleotides. Moreover, we have shown that RNA structure can be rapidly quantified

and compared in various contexts by detecting the signatures of hairpin elements. Our

work expands the repertoire of analyses which patteRNA is capable of and demonstrates

the power of simpler schemes when interpreting reactivity information. As seen with

our benchmarks using a DOM approach, relatively low-resolution discretization schemes

(akin to those used to highlight low/medium/high reactivities when visualizing SP data)

are valuable when quantifying and mining motifs.

In the context of RNA structure determination, we note that patteRNA is not envi-

sioned as a competing method or replacement to traditional NNTM-based approaches.

Rather, we view the method as a tool to be used in tandem to RNA folding. As seen

in Figure 3.7, NNTM-based ensemble methods provide a far more accurate prediction of

specific structures and are capable of assessing the entire structure landscape including

bulges, internal loops, and internal stems. The analyses via patteRNA shown here, on

the other hand, intentionally compromise on the type of structures considered in the

analysis in order to maximize the speed and scalability of the approach. This is evi-

denced by the relatively lower sensitivity of our method when compared to NNTM-based
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partition function analyses (Figure 3.7B). It’s worth noting, however, that HDSL han-

dles the low sensitivity of hairpin detection by utilizing posterior pairing probabilities to

quantify structure in regions where no highly scored hairpins are found. In other words,

structured regions which house no detected hairpins are still likely to see high HDSL

assuming local reactivities are moderately low. It’s also worth mentioning that, although

overall sensitivity on the representative set of hairpins benchmarked was relatively lower

than NNTM-based ensemble approaches, benchmarks for individual motifs (Figure 3.8)

reveal that patteRNA’s c-scores are capable of matching and outperforming partition

function analyses for hairpin motifs with longer stems. In summary, although HDSL

considers a partial landscape of detected hairpins as provided by c-scores, the formula-

tion is driven primarily by the most confident hairpin predictions, resulting in a measure

of structure significantly more correlated to Shannon entropy than local reactivities or

pairing probabilities alone (Figure 3.12). Nevertheless, the sensitivity of hairpin detec-

tions underpinning the method leaves room for improvement, for example, by combining

simple thermodynamic assessments of local structure [152]. As a consequence of these

compromises, patteRNA is most useful when assessing structure properties in large-scale

data. For instance, as we demonstrated, it could be utilized to quantify macroscopic

structural trends related to specific regions, or it could be used to identify regions of

RNA which see differential structuredness associated to some factor, which might then

be followed by more intensive RNA folding approaches (e.g., partition function compu-

tation). In this way, patteRNA helps mitigate the computational limitations of such

methods, especially for those who do not have advanced computing hardware at their

disposal. Finally, although analyses in this study generally focus on using patteRNA to

derive information on structuredness via hairpins, the method itself is fundamentally a

versatile structure-mining algorithm which has been demonstrated to effectively search

for putative functional motifs across in transcriptome-wide data [101].

Our analysis of the SARS-CoV-2 5’UTR is distinguished from the others by a com-

parison of HDSL with specific structures that have been validated in a plethora of ways,

including NMR spectroscopy (Wacker et al. 2020). We remarked on a great correspon-

dence of HDSL peaks and stable structural elements, indicating that HDSL captures more

than just local structure—it retains information on specific motifs with high resolution.

This observation is important in the context of our analysis of Corley et al.’s fSHAPE

data. Namely, the increase in HDSL around sites with high fSHAPE (Figure 3.13B)

suggests the possibility that RBP frequently associate not only in the context of stable
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structured regions, but specifically in the context of hairpin-like elements. RBP which

recognize sequence motifs in hairpin-loops have previously been identified [5, 77], but

our results demonstrate the plausibility that the association between hairpin elements

and RBP is more prevalent than previously thought. This is not entirely unexpected, as

RBP are known to bind both dsRNA and ssRNA in a manner that correlates with the

structure of the protein [55]. Moreover, RBP binding ssRNA are observed to associate at

unpaired bases stemming from RNA helix irregularities (e.g., bulges and internal loops)

[78], also placing them in the context of hairpin elements. Recent studies have further

documented that structured RNAs interact with a larger number of proteins than less

structured RNAs [55]. Our result further strengthens the utility of patteRNA in mining

biologically relevant structures transcriptome-wide.

Looking ahead to future development of rapid analysis of SP data, patteRNA is well-

suited to adapt to evolving probing technologies and datasets. That being said, its current

implementation does come with several limitations. First, motif mining depends on the

definition of specific secondary structures, which limits its application to situations where

a specific structure or small collection of similar structures can be defined. For motifs

like hairpins, this means that considering situations where a bulge or internal loop may

or may not be present complicates analyses due to the combinatorial explosion of unique

secondary structures needed to define all possible hairpin architectures through loop

size, bulge size, and bulge position. patteRNA is already capable of exhaustively mining

such motifs, but such analyses come at the cost of significant computational overhead,

generally working against the utility of the method. A more efficient approach for motif

mining which naturally considers alternative similar structures within a region could

theoretically address some parts of this limitation. Secondly, although the circumvention

of RNA folding enables rapid computational analyses, it also handicaps the accuracy of

the approach, as the energetic favorability of sequences within stems and loops is ignored.

The incorporation of an optimized local folding routine could likely assist in this regard,

although the coupling of such models into a statistical model like patteRNA is non-

trivial. Nevertheless, methods like RNALfold [67] bode for the potential incorporation

of NNTM-derived information without sacrificing on speed and scalability. Regardless

of these limitations, however, patteRNA remains a viable computational method for the

rapid assessment and quantification of structural trends in the largest SP datasets.
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3.5 Appendix

3.5.1 Author Contributions

P.R., R.U., and S.A. developed the method and analyzed the data. P.R. and S.A. wrote

the manuscript.

3.5.2 Deposited Resources

Python scripts for generating simulated datasets, computing statistical benchmarks (e.g.,

ROC and PRC), and post-processing of HDSL profiles related to genes in the Mustoe data

will be made available on the online version of the manuscript with which this chapter is

associated [151].

3.5.3 Complete DOM Formulation

The patteRNA Approach and Training Algorithm

The overall objective of patteRNA is to infer the location of RNA structure motifs, such

as hairpins, within SP data. To do this, patteRNA considers a simplified view of RNA

structure as a sequence of hidden states, namely unpaired nucleotides (state 0) and paired

nucleotides (state 1). For a particular RNA transcript in a dataset, the hidden states –

denoted ω = {ω1, ω2, . . . , ωT} – (i.e., the structure) are unknown, but SP data provide

information on these states in the form of values y = {y1, y2, . . . , yT} where T is the tran-

script length. It is easy to see that if y provides perfect information on the structure (e.g.,

if a hypothetical experiment yields 0 and 1 for unpaired and paired states, respectively),

the hidden states can be directly read from the data. In practice, however, the observed

data is an imperfect indicator of pairing state, necessitating statistical processing mindful

of the uncertainty in how observations inform pairing state.

patteRNA applies a simple model of structural context in the form of a Hidden Markov

Model (HMM) to make predictions on nucleotides’ pairing state. The HMM is integrated

with a probabilistic model of observations (GMM), yielding a statistical framework ca-

pable of learning the properties of SP data in an unsupervised fashion. For the specific

details of this implementation, we refer the reader to the original patteRNA study [101].

The overall procedure follows the Expectation-Maximization (EM) algorithm (see Figure

3.16), which works to arrive at a model which best explains the observed data. The final

model can then be used to quantitatively identify loci in datasets which are likely to
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harbor specific RNA structures (referred to as structure motifs).

E-Step M-StepInitialization Trained
Model

Figure 3.16: Expectation-Maximization training procedure of patteRNA. The process
begins with an initial model, θ0, which is constructed using a combination informed
default values and key statistical properties of the dataset. The E-step is comprised
by the Forward-Backward algorithm, which arrives at posterior marginals, γ, of pairing
state given the model. These posteriors are then utilized by the M-step to arrive at a
new model, θ+1, which can subsequently be used to refine the posterior marginals in the
next E-step. The EM-cycle is repeated until convergence criteria are satisfied whence the
final trained model, θ∗ is saved.

Modeling Emissions with a GMM

A Gaussian mixture is a continuous probability distribution constructed by summing

multiple Gaussian distributions (referred to as kernels, each with their respective mean

µk and variance σ2
k), each with an associated weight, wk, such that

∑
K wk = 1 and

therefore
∫
y

GMM(y) = 1, where GMM(y) =
∑

K wkN (x;µk, σ
2
k). K refers to the number

of Gaussian kernels comprising the mixture, and as K increases, so does the flexibility of

the mixture distribution to approximate continuous distributions of arbitrary shape.

Here, we describe the most relevant aspects of the GMM as needed to introduce

the analogous discretized observation model forthcoming in the next section (see Ledda

and Aviran [101] for a complete description of how a GMM is coupled to an HMM to

yield an unsupervised learning framework). This includes the definition of the GMM

likelihood (which is used in conjunction with the HMM during the E-step to compute

state probabilities), how the likelihood function is augmented to account for two cases

of special observations (zeros and missing values) which are given special treatment, and

how the parameterization of the GMM is updated during the M-step.

The GMM primarily serves to provide a model of emission likelihoods (i.e., given that

a nucleotide t has state ωt = i, what is the likelihood of emitting an observation yt), which

are then utilized in conjunction with the HMM to disentangle the statistical properties
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of observations from each state (i = 0 for unpaired states; i = 1 for paired states).

Importantly, this means that there are two GMM distributions within our algorithm—

one for unpaired and paired states, respectively. In other words, the GMM is used to

compute the state emission likelihoods, b0,t and b1,t, where

bi,t = P (yt|ωt = i) (3.3)

=
∑
K

wi,kN (yt;µi,k, σ
2
i,k) (3.4)

However, in order to handle the practical nature of SP data, some augmentation is

required. Specifically, SP data is understood to often contain missing values (denoted

∅), which cannot be processed directly through the GMM distribution. Additionally, SP

data often contain zeros. This is not a problem on its own; however, patteRNA is typically

applied to log-transformed observations, because the log-transform has been observed to

induce Gaussianity (and subsequently improve the quality of training). Because zeros

(and negative values) cannot be log-transformed, they must be handled separately from

the continuous GMM when log-transforming observations. To handle missing values and

zeros, the following modification is made:

bi,t =
∑
K

bi,k,t (3.5)

where

bi,k,t =


φiwk if ∅

νiwk if 0

(1− φi − νi)wkN (yt;µi,k, σ
2
i,k) otherwise

Here, φi = P (yt = ∅|ωt = i) and νi = P (yt = 0|ωt = i). This augmentation of the

emission likelihood accounts for the two additional discrete special cases while ensuring

that
∫
y
bi,t = 1.

Optimizing the parameters of the GMM during the M-step amounts to a pseudo-

counting problem over posterior marginals γ for each kernel at nucleotides with continuous

observations. Specifically,

µ̄i,k =

∑
Q

∑
T γ
∗
i,k,tyt∑

Q

∑
T γ
∗
i,k,t

(3.6)
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σ̄i,k =

∑
Q

∑
T γ
∗
i,k,t(yt − µi,k)2∑

Q

∑
T γ
∗
i,k,t

(3.7)

w̄i,k =

∑
Q

∑
T γ
∗
i,k,t∑

Q

∑
K∗

∑
T γ
∗
i,k∗,t

(3.8)

where

γ∗i,k,t =

γi,k,t if yt ∈ 0,∅

0 otherwise

and Q represents the number of transcripts in the training set.

Finally, it is worth considering the number of parameters necessary to describe the

GMM (and the two discrete cases). For each state, we have a GMM with K kernels,

a likelihood for zero, and a likelihood for missing values. Each GMM kernel itself is

described by three parameters (mean, variance, and weight), so the total number of

parameters is

Nparams = Nstates(3K + 2) = 6K + 4 (3.9)

For a typical training procedure using three kernels, this amounts to 22 parameters.

The Discretized Observation Model

The discretized observation model (DOM) serves to replace the GMM implementation by

providing an alternative approach for describing emission likelihoods. The model works

by discretizing the observed SP data, y, into some number of bins, each of which can

then be treated as a discrete class. The emission likelihood function therefore becomes a

discrete probability mass function lacking any specific architecture constraining the shape

of the distribution. In other words, we define emission likelihoods not directly on yt, but

rather on a discretization transformation of the observations D(yt).

bi,t = P (yt|ωt = i) = P (D(yt)|ωt = i) (3.10)

Assuming the boundaries of a binning strategy with K bins are represented by B =

{B(1), B(2), . . . , B(K−1)}, the discretization function is defined in the following manner.
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D(yt) =



1 if yt < B(1)

2 if B(1) ≤ yt < B(2)

3 if B(2) ≤ yt < B(3)

...

K − 1 if B(K−2) ≤ yt < B(K−1)

K if B(K−1) ≤ yt

K + 1 if yt = ∅

(3.11)

or, more succinctly,

D(yt) =
K+1∑
k

kH(k)(yt) (3.12)

where

H(k)(yt) =


1 if B(k−1) ≤ yt < B(k)

1 if yt = ∅ and k = K + 1

0 otherwise

For convenience, we also define B(0) = −∞ and B(K) = ∞. This means that for

log-transformed data, observations which were originally less than or equal to zero are

automatically placed into their own class (H(k)(yt) = 0) and processed separately, as done

in the GMM.

We now have a finite number of classes, and the emission likelihoods are just discrete

probabilities which can be (1) initialized in a simple and reasonable fashion (see Figure

3.17) and (2) optimized according to a very simple scheme during the M-step:

P (k|ω = i) = pi,k =

∑
Q

∑
T γi,tH

(k)(yt)∑
Q

∑
T γi,t

(3.13)

This single equation represents the entire M-step for updating the emission likelihoods

for all bins, and can computed extremely quickly due to the vectorized nature of the arith-

metic. Moreover, this model tends to require fewer parameters than a comparable GMM.

Two parameters are required for each of the K bins, plus two more for an additional bin

to handle missing data. Thus, the number of parameters describing the DOM is given by
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Nparams = (K + 1)Nstates = 2(K + 1) (3.14)

For a DOM model with K = 7, this amounts to 16 parameters.

Figure 3.17: Illustration of an example initial parameterization of the DOM approach
and training results.

Binning Strategies

he locations of the bins underpinning DOMs are determined based on the quantiles/percentiles

of the data. In this way, data without zeros or negative values are guaranteed to be binned

(and trained on) identically regardless of whether the data are log-transformed or not.

The specific bin edges for a given number of bins, K, are computed from a linear

space of percentiles. For instance, if K = 2, a single bin edge is placed at the 50th

percentile of the data. In other words, B(0) = −∞, B(1) = P50, and B(2) = ∞, where

P50 is the 50th percentile of the data. For K = 3, the two finite bin edges would be

B(1) = P33.3 and B(2) = P66.7. This linear spacing of bins logically continues for larger

values of K. Data percentiles are computed via the percentile method of the NumPy

Python module using linear interpolation of non-integer percentiles where appropriate.

When modeling SHAPE data, we found that model efficacy during the scoring phase

could be further maximized by constraining the binning interval to only within the range

of observations falling between the 35th and 65th percentiles. Thus, the bin edges are

computed as a linear space of percentiles between 35 and 65 instead of 0 and 100. Due

to the improved scoring performance observed with this approach, this is the default

behavior of patteRNA. We recommend using this default approach when mining SHAPE

data for motifs, but the bounds can be turned off by using the --no-bounds flag when

calling the patteRNA command. This flag may yield better results for probing data which

is statistically dissimilar from SHAPE.
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Model Selection

The number of bins in the DOM (and analogously, the number of kernels of the GMM),

is iteratively increased until a minimum in Bayesian information criteria (BIC) is found

[149]. BIC is defined as

BIC = −2 logL+ ν log n (3.15)

where logL is the log-likelihood of the model, ν is the number of parameters describing

the model, and n is the number of observations used during training.

Within patteRNA, K is initially set to be 4 bins for the DOM approach, as fewer bins

were almost always found to yield higher BIC in both real and simulated SP datasets.

Typically, patteRNA converges to a trained model comprised by between 5 and 10 bins.

The number of bins can also be manually controlled by the user using the -k flag.
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Chapter 4

Accurate detection of RNA

stem-loops in structurome data

reveals widespread association with

protein binding sites

Acknowledgement: This chapter is reproduced from an article in preparation for sub-

mission to the journal RNA Biology (Radecki P., Uppuluri R., Deshpande K., and Aviran

S. 2021) [152]. Pierce Radecki was lead author on this manuscript. Rahul Uppuluri and

Kaustubh Deshpande were undergraduate volunteers in the Aviran Lab. Author contri-

butions are listed at the end of the capture. Reprinted in accordance with terms of the

Creative Commons Attribution 4.0 International License.

4.1 Introduction

Beyond serving as a carrier of genetic information, RNA plays key mechanistic roles

in diverse cellular processes. These functions are regularly attributed to the molecule’s

ability to fold into specific structures [48, 131, 44, 27, 166, 41, 7]. Driven by its flexi-

ble backbone and the complementarity of nucleotide bases comprising it, the structures

of RNA are intricate and dynamic [179, 48]. Although high-quality structure models of

RNA transcripts are important in understanding their function and dysfunction, accurate

determination of structures, especially in vivo, is challenging. High-resolution structure

models can be obtained with experimental measurements from X-ray crystallography

[68], nuclear magnetic resonance [46], and cryo-EM [44, 211], yet these methods are low-
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throughput and incapable of measuring structures in living cells. Comparative sequence

analyses can also glean structural information from sequence homologies, but this pro-

cess depends on a sufficiently large set of related sequences, which limits the scope of

their application [140, 58, 98]. The advent of nearest-neighbor thermodynamic models

(NNTM) combined with efficient energy minimization algorithms were a critical step in

increasing the throughput of structural predictions by enabling computational folding

based on nucleotide sequences [137, 217]. Despite their popularity, however, the accuracy

of predictions is generally poor, especially when applied in vivo or to long transcripts [49].

structure profiling (SP) experiments have emerged as a practical and high-throughput ap-

proach to measuring the structure of RNA molecules [84, 205]. Although these methods

are diverse, they help inform structure models by providing nucleotide-level measure-

ments of conformational characteristics. Importantly, they can be applied in vivo, and,

with the advent of next-generation sequencing, are scalable.

SP experiments follow common principles [20]. Briefly, they expose RNA to chemi-

cal reagents or enzymes that react with parts of the molecule in a structure-dependent

manner (e.g., when using common acylation reagents, single stranded nucleotides react

more strongly than double stranded regions). This reaction induces the formation of

adducts or cleavages [84, 205, 204, 117], which can then be detected during sequencing

as either truncations or mutations in reverse-transcribed cDNA fragments. The rate of

truncation or mutation at each nucleotide is then quantified and converted into a mea-

sure called reactivity that summarizes the nucleotide’s structural context; the reactivities

across a transcript are termed its reactivity profile [4]. The incorporation of these data in

NNTM-based folding algorithms was shown to greatly improve their accuracy [29, 109].

In this regard, SP data have served to supplement the thermodynamic models by provid-

ing direct information on the measured conformation, which is especially relevant when

predicting structures in vivo. That said, SP experiments have scaled massively, enabling

the profiling of an entire transcriptome, termed the structurome. NNTM-based folding,

however, is a computationally intensive process that scales as O(L3) with the length of

an RNA in most applications. For transcriptomes, which contain many tens of thousands

of transcripts—each of which may be thousands of nucleotides long—the computational

cost associated with folding has begun to inhibit comprehensive NNTM-based analyses

of structurome data. This has warranted the development of methods designed to accom-

modate the growing scale of SP data in making structural assessments. Such methods are

useful when seeking to inspect and quantify biologically relevant changes in the structur-
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ome—for instance, to highlight structural changes between different cellular conditions

[132, 187], inspect the structural context of relevant regions, such as splice sites, miRNA

targets, or alternative polyadenylation sites [161, 209, 35], profile the degree of structure

across different types of mRNA [35], or explore the interplay between the structurome

and RNA-protein interactome [25].

We previously introduced patteRNA as a method to address this need for scalable

analysis of SP data [101]. Rather than perform complete RNA folding, it was developed

to rapidly mine local structure elements from reactivity profiles via an unsupervised,

versatile, and NNTM-free approach. In short, the method couples a statistical reac-

tivity model—e.g., a Gaussian mixture model (GMM) or discretized observation model

(DOM)—to a Hidden Markov model of structure [101, 149, 151]. A parameterized model

subsequently enables quantitative scanning for locations that are likely to harbor a specific

structure element. Versatility is a key characteristic of the method; namely, it leverages

an unsupervised training step to learn the properties of any dataset (i.e., to parameterize

the reactivity-structure model) before mining it. This is crucial for the automated han-

dling of data from diverse SP experiments that consequently have disparate statistical

properties [30]. Moreover, the NNTM-free nature of patteRNA helps it scale to the struc-

turome level and also confers flexibility to rapidly mine complex structural elements such

as pseudoknots or self-contained tertiary interactions without any significant increase in

computational complexity [101]. In short, any target that can be defined via a local

reactivity pattern or base-pairing arrangement can be quickly mined.

By scanning reactivity profiles alone, patteRNA was able to achieve reasonable ac-

curacy when mining canonical motifs, such as hairpins/stem-loops [101, 151]. However,

there was room for improvement via integration of NNTM-derived sequence information,

which we believed could likely assist in situations where SP data is inconclusive. However,

effective integration of NNTM with the statistical framework underpinning our approach

is itself a non-trivial problem—we sought to not only improve performance, but also to

maintain speed and versatility. To address this problem, we took a data-driven approach

in which a large set of reference structures guided the construction of an integrative

scoring classifier which considers statistical characterization of SP data in additional to

local thermodynamics. This is a deviation from the unsupervised nature of our approach;

nevertheless, we aimed to ensure that the classifier maintains the method’s automated

adaptability in analyzing any type of SP dataset. The impact of including thermody-

namics on the method’s efficiency was also carefully considered, as we sought to maintain
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a balance between improvements to prediction quality and the increased computational

overhead triggered by thermodynamic modeling.

Our results describe the development a data-driven logistic regression classifier to

more accurately identify the locations of target structural elements. It considers the

thermodynamic properties of local regions in addition to reactivity profiles when making

predictions, which strongly improves precision, especially for shorter structure motifs.

The classifier is suitable for all types of canonical local structure motifs and maintains

the versatility of patteRNA in handling diverse types of SP data. In this process, we

also create a large-scale set of RNAs with known structures from RNA STRAND [2] and

use it in conjunction with a data simulation scheme to extensively train and validate our

approach. Although underpinned by simulated data, we find this resource to be more

effective at training data-driven classifiers than smaller sets of real data and believe it can

serve as a useful resource for method development. Moreover, we apply the classifier to an

integrative transcriptomic dataset on K562 and HepG2 cells that quantifies both structure

and RNA binding protein (RBP) interactions [25]. We demonstrate that stable stem-loops

are almost always associated with evidence of RBP binding, and that this association

exists across a diverse set of stem-loop configurations. In the context of the latest RBP

studies, our results expand on previous observations of the RNA-protein interactome

and refine our understanding of the roles played specifically by stem-loops. This also

highlights the power stem-loop profiling, where relevant tools are lacking. Overall, our

work provides a major improvement to patteRNA while simultaneously strengthening our

understanding of the functional roles played by canonical structure elements.

4.2 Materials and Methods

4.2.1 patteRNA Overview

patteRNA works in two phases: training and scoring. The training phase involves the uti-

lization of an unsupervised Expectation-Maximization (EM) scheme coupled to a Hidden

Markov Model (HMM) to estimate the reactivity distributions for unpaired and paired

states, respectively. With these distributions in hand, patteRNA searches for a target

motif in SP data as previously described [101, 149]. Briefly, all subsequences (referred to

as sites) which satisfy the sequence constraints underlying the base pairing arrangement

of the target motif are considered. These sites are then each assigned a score, which quan-

tifies the overall consistency of the reactivity data within the site with the pairing state
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sequence of the target (a higher score indicates a better agreement between the reactivity

profile and target motif). Scores are further processed into c-scores via a normalization

scheme based on an estimated distribution of scores associated with null sites (sites that

do not harbor the target motif). For details on the core patteRNA algorithm, see [101]

and [151]; for details on score normalization, see [149].

All applications of patteRNA in this study used default hyperparameters unless other-

wise noted. When mining hairpins, the “--hairpin” flag was used, which searches for all

hairpins with stem length between 4 and 15 nt and loop length between 3 and 10 nt. This

representative collection of motifs is referred to as regular hairpins or regular stem-loops

throughout our work. When mining loops, the “--loops” flag was used, which searches

for runs of unpaired nucleotides length 3 to 10 nt flanked by one base pair.

4.2.2 The Weeks Set

The Weeks set is a dataset of 22 diverse RNA transcripts (totaling 11,070 nt) with

high-quality SHAPE data and known reference structures. We use the Weeks set in

this study as a reference set to benchmark the performance of patteRNA’s analyses and

related methods on real data. This dataset was initially introduced in [101] and contains

reactivity data from [29, 59, 100], see Table 4.1 for further details on the RNA molecules

in the Weeks set.

4.2.3 Classifier Training Data

In order to construct a larger set of reference data by which to develop a scoring classi-

fier, we compiled all RNA secondary structures from RNA STRAND (4,666 transcripts).

Due to the presence of highly similar sequences within the data, we used CD-HIT-EST

[70] to remove redundant sequences at an 80% similarity threshold, yielding 1,191 final

transcripts (totaling 706,306 nt). In order to utilize these secondary structures for pat-

teRNA-related analyses, we generated artificial SP data for the transcripts according to

a three-state reactivity model (0: unpaired, 1: paired, 2: helix-end) with associated state

reactivity distributions devised in (Sükösd et al. 2013), which we refer to as the Heitsch

distributions. The distributions are defined as follows; unpaired states: exponential dis-

tribution with λ = 1.468, paired state: generalized extreme value distribution with µ

= 0.04, σ = 0.040, ξ = -0.763, helix-end state: generalized extreme value distribution

with µ = 0.09, σ = 0.114, ξ = -0.821. Five replicates of SP data were produced. The

Python module SciPy was used to sample reactivities from the corresponding distribu-
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RNA name Length (nt) Reference 

5S rRNA (E. coli) 120 Hajdin 2013 

5’-domain 16S rRNA (E. coli) 530 Hajdin 2013 

5’-domain 23S rRNA (E. coli) 511 Hajdin 2013 

Adenine riboswitch (V. vulnificus) 71 Hajdin 2013 

Fluoride riboswitch (P. syringae) 66 Hajdin 2013 

Group II intron (O. iheyensis) 412 Hajdin 2013 

Group I intron (T. thermophilia) 425 Hajdin 2013 

Group I intron (Azoarcus sp.) 214 Hajdin 2013 

Hepatitis C virus IRES domain 336 Hajdin 2013 

Lysine riboswitch (T. maritime) 174 Hajdin 2013 

M-Box riboswitch (B. subtilis) 154 Hajdin 2013 

Cyclic di-GMP riboswitch (V. cholerae) 97 Hajdin 2013 

TPP riboswitch (E. coli) 79 Hajdin 2013 

Pre-Q1 riboswitch (B. subtilis) 34 Hajdin 2013 

SAM I riboswitch (T. tengcongensis) 118 Hajdin 2013 

16S rRNA (C. difficile) 1504 Lavender 2015 

23S rRNA (E. coli) 2904 Deigan 2008 

16S rRNA (E. coli)  1542 Deigan 2008 

16S rRNA (H. volcanii) 1474 Lavender 2015 

P546 domain, bl3 Group I intron 155 Deigan 2008 

Asp. tRNA (S. cerevisiae) 75 Deigan 2008 

Phe. tRNA (E. coli) 76 Hajdin 2013 

 
Supplementary Table S1: RNAs in the Weeks set. 
 

Table 4.1: RNAs in the Weeks set.

tions. The scripts used to sample reactivities for STRAND transcripts in addition to the

STRAND data itself (including the sampled reactivities used in this work) are available

at https://doi.org/10.5281/zenodo.4667909 [153].

To assist in verification and benchmarking of classifiers, additional datasets were also

generated by resampling (with replacement) the empirical reactivity distributions ob-

served in the Weeks set.
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4.2.4 Feature Generation

Several features were investigated insofar as their potential to provide additional infor-

mation on the presence of target motifs during scoring. After preliminary investigations,

we focused on the following features, in addition to the patteRNA c-score: cross-entropy

loss (CEL) between patteRNA posteriors and the target state sequence, Gini coefficient

of SHAPE data in a site, the local minimum free energy (LMFE), the local constrained

minimum free energy (LCMFE; the local MFE with the target motif enforced as a folding

constraint), and the motif energy loss (MEL; the difference between LMFE and LCMFE).

Cross-entropy loss was computed as

CEL =
∑
i

−(yi log pi + (1− yi) log(1− pi)) (4.1)

where yi is the pairing state of the target motif (e.g., yi = 0 for unpaired states and yi = 1

for paired) and pi if the posterior pairing probability at nucleotide i of a scored site. The

Gini coefficient was computed as

Gini =

∑n
i

∑n
j |xi − xj|

2n2x̄
(4.2)

where xi is the reactivity at nucleotide i of a site and n is the length of the target

motif. The remaining three features (LMFE, LCMFE, and MEL) all depend on the

thermodynamic model employed in RNA structure prediction and were computed using

the ViennaRNA package (version 2.4.17) Python interface using a local window extending

40 nt in both directions from the boundaries of the target site (c = 40).

4.2.5 Feature Selection

To identify the set of features which best predict the presence of a target motif, we used

a combinatorial approach to test various combinations of features and their potential

scoring efficacy. To do this, we used the scoring feature set generated from the Weeks

set hairpins. We used the c-score as a base feature in all experiments while iterating

through pairwise combinations of the other features on top of it (see 4.3). Specifically,

we tested all of the 2-feature approaches underpinned by the c-score and one of the other

features. We then tested all of the 3-feature approaches underpinned by the c-score and

all of the pairwise combinations of the other features. To quantify scoring efficacy, a

logistic classifier was trained on the feature combinations and the average precision of its

fitted motif probability was used to assess scoring potential.
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4.2.6 Classifier Selection

After converging on a 3-feature set of c-score, CEL, and MEL, we explored the capacity of

various binary classifiers to precisely identify true positive sites from these features as well

as their ability to generalize to other datasets and target motifs beyond hairpins. After

a preliminary analysis of an initial collection of standard classifiers, we explored in more

detail logistic binary classification (LBC; “LogisticRegression” object in Scikit-learn),

random forest classification (RFC, “RandomForestClassifier” object in Scikit-learn),

linear discriminant analysis (LDA, “LinearDiscriminantAnalysis” object in Scikit-

learn), and quadratic discriminant analysis (QDA, “QuadraticDiscriminantAnalysis”

object in Scikit-learn). In all cases, default parameterizations were used as provided by

Scikit-learn.

The set of hairpins mined from the STRAND dataset was used to train each classifier,

and the average precision of their trained predictions was computed. Trained classifiers

were then tested against the generated feature set for Weeks set hairpins and for Weeks

set loops. Lastly, the classifiers were verified against feature sets obtained when mining

5 resampled replicates of the empirical data in Weeks set (for hairpins and for loops) and

when mining 5 replicates of simulated STRAND sets (for hairpins and for loops). In all

cases, performance was assessed by the average precision of the classifier.

4.2.7 Final Scoring Classifier Training and Selection

To train the definitive classifier used in patteRNA, we utilized the 5 replicates of Heitsch-

simulated reactivity data for the pruned STRAND transcripts and used each replicate to

generate a scoring feature set at the sites scored when mining for hairpins. These scoring

feature sets were each used to train an associated logistic classifier—i.e., 5 distinct clas-

sifiers were trained simultaneously, 1 for each replicate of simulated data. Each resulting

classifier was then used to process the other four feature sets (i.e., the other simulations

not used to train that classifier) as well as the feature set associated with the empirical

Weeks set data. The overall performance of the classifiers was assessed as the sum of the

performance on the other 4 STRAND replicates (computed as the mean average preci-

sion for hairpins across the 4 replicates) and the performance on the Weeks set (average

precision for hairpin mining). The classifier with the greatest total performance via this

assessment was selected as the final model to utilize for distribution in the patteRNA

method.

107



4.2.8 Performance Benchmarks and Verification

The accuracy of patteRNA and tested binary classifiers was primarily assessed via the

area-under-the-curve of the precision-recall (PR) curve, referred to as the average preci-

sion (AP) of the classifier. Precision-recall curves were computed by varying a theoretical

score threshold between positives and negatives, then computing the true-positive rate

(recall) and precision (PPV) at each threshold. Sites were deemed true positives if all base

pairs in the target motif are also present in the corresponding location of the reference

structure. The Scikit-learn Python module was utilized to perform these computations.

Scripts that perform this quantification (and others, including the receiver-operating

characteristic) are available in [151].

4.2.9 Partition Function Analysis

We benchmarked the performance of partition function approaches to detect hairpins in

the Weeks set by using the “RNAsubopt” command from ViennaRNA to generate 1000

structures for each transcript in the Weeks set, using that transcript’s SHAPE data

as soft constraints (“RNAsubopt -p 1000 --shape $SHAPE FILE < $SEQUENCE”). For

each hairpin in the generated structural ensemble, a “score” was assigned as the fraction

of structures in the structural ensemble which contain the base pairs comprising that

hairpin. Predicted hairpins and their scores were organized into a single list which was

then processed into a precision-recall curve as was done for patteRNA’s predicted hairpins.

4.2.10 Analysis of Structurome and RBP Binding Data

We used patteRNA with the latest logistic scoring classifier described above to mine

hairpins in the in vitro and in vivo icSHAPE data from K562 and HepG2 cells published

by Corley et al. [25]. patteRNA was trained on each dataset/condition independently

(e.g., K562 in vitro icSHAPE, K562 in vivo icSHAPE, HepG2 in vitro icSHAPE, etc.) and

then used to mine them for hairpins (referred to in this analysis as stem-loops) using the

“--hairpins” flag and default hyperparameters. We then cross-referenced the locations

of high-scoring stem-loops with the fSHAPE profiles (interpreted as RBP binding signal)

obtained by Corley et al. on the same cell lines.

To combine and visualize the fSHAPE profiles from searched sites which differ in terms

of their stem and loop lengths, we utilized an interpolation scheme to bring fSHAPE

profiles to a common length basis. fSHAPE profiles from the left and right sides of
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the stem (which vary from 4 to 15 nt in length) were each processed to a length of 10,

respectively. fSHAPE profiles from the loop regions were processed to a length of 6. This

processing was achieved by linearly interpolating the fSHAPE profiles to a number of

equally spaced points (e.g., 10 points for stems and 6 points for loops). For example,

a stem of length 6 nt would be linearly interpolated to the local coordinates (1, 1.56,

2.11, 2.67, 3.22, 3.78, 4.33, 4.89, 5.44, 6), where 1 and 6 denote beginning and end of the

fSHAPE profile along the stem, respectively.

Motif scores from both conditions were then combined and used to train a perceptron

classifier processing condition-wise paired scores from the LBC into a predictor of strong

RBP binding signal in the loop (defined as sites where fSHAPE > 2 in the stem-loop).

Only sites that received a valid score in both conditions were considered in this analysis.

The multi-layer perceptron (MLP) classifier object (MLPClassifier) from Scikit-learn

was utilized to construct and train the classifier; the default model parameterization

was used, which is defined by a single hidden layer of 100 nodes with ReLU activa-

tion following the Adam optimization algorithm [82]. Cross-validation during perceptron

training was achieved by randomly setting aside 20% of the samples and using them to

terminate training when convergence was observed (this behavior was defined with the

hyperparameters “validation fraction=0.2” and “early stopping=True” when call-

ing MLPClassifier. Note that the purpose of the perceptron in this case is, essentially,

to fit the joint distribution of condition-wide scores as an indicator of high loop fSHAPE.

We found that this non-linear relationship of scores between conditions was best captured

by a simple perceptron instead of simpler linear models like logistic regression and LDA.

patteRNA was also used to mine the icSHAPE data for hairpins with bulges, which

we defined as hairpins with stem length between 5 and 15 nt with one bulge (of 1-2nt)

on either side of the stem. Locations of high scoring motifs were then cross-referenced

against the locations of high fSHAPE, as was done for the hairpin search.

The proportion of strong RBP binding signals (defined as fSHAPE > 2) which can

be explained as occurring within the loop of a detected stem-loop was quantified. In

this quantification, only fSHAPE observations which coincide with valid reactivity data

were included. In other words, fSHAPE data at locations lacking reactivity information

was omitted, as such regions are not processed by patteRNA when scoring. Three score

thresholds for calling detected stem-loops were used: 0.9, 0.7, and 0.5.

109



4.2.11 Code Availability

The latest version of patteRNA, version 2.1, was used for all analyses in this study.

patteRNA is an open-source Python 3 module and is freely available at www.github.

com/AviranLab/patteRNA under the BSD-2 license.

4.3 Results

4.3.1 patteRNA Overview

The overarching objective of patteRNA is to accurately mine structure elements from

SP data in an automated fashion. To do this, patteRNA follows a two-step process (see

Figure 4.1). The first step is the training phase, during which reactivities are utilized

to iteratively optimize a joint reactivity-structure statistical model (e.g., a GMM-HMM

[148, 101] or a DOM-HMM [151]). This results in an estimate of the distributions of

reactivities associated with paired and unpaired nucleotides, respectively, as well as tran-

sition probabilities between paired and unpaired nucleotides. Training is unsupervised

and capable of accommodating diverse data types; see [101] for a complete description of

the mathematical framework.

Once the data properties have been learned, patteRNA mines for structural motifs

in the data via a scoring step. Scoring requires the description of a specific secondary

structure motif (or collection of motifs) which defines the target of patteRNA’s pattern

recognition scheme. Typically, the user provides this motif in dot-bracket format, but

patteRNA also has built-in routines to automatically mine some canonical motifs. For

instance, patteRNA can automatically mine a representative set of hairpins (referred to

as regular hairpins or regular stem-loops; defined as stem-loops with stem length be-

tween 4 and 15 nt, and loop length between 3 and 10 nt) via the “--hairpins” flag

[151]. When mining a particular structural element, only loci in the provided transcripts

which satisfy the sequence constraints necessary for the target’s secondary structure (via

Watson-Crick and Wobble base pairs) are considered during scoring; these loci are hence-

forth referred to as “sites.” patteRNA scores sites by computing the log ratio of joint

probabilities between the target’s pairing sequence and its inverse. By default, scores are

further processed into c-scores (comparative scores) which are a statistically-normalized

measure computed by considering the significance of a score in the context of a null-score

distribution constructed for each target [149]. Intuitively speaking, c-scores are simply
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Figure 4.1: patteRNA workflow in achieving automated detection of structural elements
in diverse SP data types. The statistical model used by the method is a hybrid model
Reactivities are first processed in the training phase, which uses iterative optimization
(EM algorithm) to learn the properties of the reactivities and structural tendencies. This
process arrives as estimations of the state reactivity distributions (modeled with either a
DOM or GMM) in addition to state transition probabilities and other parameters under-
pinning the HMM. Once a trained model has been formed, patteRNA can quantitatively
mine the data for target motifs provided by the user. Mining is achieved by scanning the
provided transcripts for loci which are compatible with the base-pairing of the motif, then
scoring such sites for consistency between their reactivity profiles and the target. DOM,
discretized observation model; GMM, Gaussian mixture model; HMM, Hidden Markov
model.

the −log10 of a p-value, facilitating comparative analysis of scores from different target

searches. Higher scores indicate a higher likelihood of the target motif, with a c-score of

2 (corresponding to a p-value of 0.01) generally interpretable as a strong signal.

In addition to scoring, patteRNA can also use a trained statistical model to compute

posterior pairing probabilities (i.e., for each nucleotide, the probability that it is paired or

unpaired), Viterbi paths (the most likely sequence of pairing states for each transcript),

and hairpin-derived structure level (HDSL) profiles (a nucleotide-wise measure of local

structuredness [151]).
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4.3.2 Supervised Context-Aware Scoring

patteRNA was developed as an NNTM-free method. It inspects and quantifies patterns

in reactivity profiles to identify sites consistent with the presence of a sought structure

motif. Sequence information is only taken into account when determining whether sites

are compatible with a target motif, i.e., satisfying the sequence constraints associated

with base pairs in the target. This approach has facilitated the algorithm’s rapid speed

when mining transcriptomic data, however, information encoded in the sequence has the

potential to improve its predictions. Here, we aimed to improve patteRNA’s accuracy

by including an assessment of information in nucleotide sequences (e.g., NNTM-based

quantifications of sequence energetics). We also explored the use of additional SP data-

related metrics in improving performance.

The integration of NNTM-based predictions with a statistical metric like the c-score

is non-trivial. Therefore, we pursued the development of a data-driven scoring classifier,

through which multiple features from sites would be processed in assessing the likelihood

of a motif. This is a departure from the unsupervised nature of patteRNA. Despite this

departure, we sought to maintain the broad applicability of the method to diverse data

types. As such, we focused on features that we believed to generalize well across SP

datasets (i.e., are data invariant).

We explored various features in conjunction with the c-score to underpin the classifier.

Five features emerged as promising candidates and their potential was further explored

in a combinatorial set of experiments. The first was the cross-entropy loss (CEL) be-

tween the target motif’s pairing sequence and patteRNA’s computed posterior pairing

probabilities (see Methods). This feature relates closely to the c-score but highlights

the cumulative disagreement between the data and the motif more explicitly. Specifi-

cally, CEL is influenced more strongly by nucleotide-level disagreements (compared to

agreements, see Figure 4.2) which may otherwise be masked by the c-score. As such,

we speculated that this metric could assist scoring as it helps discriminate between sites

that score moderately well across their entire span and sites that score strongly for some

nucleotides but have strong disagreement in others. This is particularly relevant in the

context of RNA structure where distinct motifs are often highly similar outside of a small

number of decisive nucleotides. For example, when determining the length of a loop

within a stem-loop, nucleotides near the end of the stem may inform the precise extent

of the loop (e.g., a loop length of 4 nt versus 6 nt). Local disagreement can distinguish

between such competing structures.
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Figure 4.2: Graph of pairing probability versus cross-entropy loss. For paired target
states, a pairing probability of 0.5 yields a loss of 0.7. Higher pairing probabilities reduce
this loss—e.g., a pairing probability of 0.9 yields a loss of 0.1. However, due to the
nonlinear nature of the loss function, lower pairing probabilities yield disproportionately
larger loss—e.g., a pairing probability of 0.1 yields a loss of 2.3 (a change in loss of 1.4
from a pairing probability of 0.5, compared to the change in loss of 0.6 associated with
the analogous change in loss for a pairing probability of 0.9). Thus, total CEL for a site
(the sum of loss across all nucleotides in a site) is measure that is influenced most by the
presence of strong disagreements within it.

The second feature was the Gini index of the reactivities at the target site, which is

often used in the context of reactivity analysis [159, 20]. Gini index has previously been

used to assess structural homogeneity. For instance, we expect stable conformations to

yield more distinct reactivities between paired and unpaired states (high Gini index)

and less stable structures or regions characterized by multiple conformations yield more

intermediate values (low Gini index) [106]. As such, we speculated that Gini index could

serve as a simple proxy for data quality and structural homogeneity in a site, and therefore

might assist in informing where a c-score is more or less meaningful.

The third, fourth, and fifth features relate to the thermodynamic prediction of the lo-

cal region’s minimum free energy (MFE) structure. It has been shown that incorporating

113



thermodynamic models with SP data tends to improve predictions [29, 34, 30]. There-

fore, we utilized their predictions in different ways to potentially assist as features in a

scoring classifier. As such, the third feature was the local minimum free energy (LMFE)

of the region around a site, where local is defined as the target site window extended

in both directions by some distance (e.g., 40 nt; see Figure 4.3A). The fourth feature

was the local constrained minimum free energy (LCMFE) of the region around the site,

which amounts to folding with the target motif strictly enforced as a hard constraint. We

thought that these two metrics, or perhaps their combination, could assist in interpreting

the stability of the local region and the motif’s influence on it. We also considered a

fifth feature, which was the difference between LMFE and LCMFE, which we termed the

motif energy loss (MEL). This measure summarizes the energetic favorability associated

with the presence of the motif.

4.3.3 Feature Selection

To test the scoring potential of various feature combinations, we established a simple

train-and-test pipeline for mining hairpins in a reference dataset (the Weeks set, see

Methods). Various feature combinations were used to train a logistic classifier whose

scoring precision was then quantified (using an 80%/20 test/train split). For each feature

combination, this procedure was repeated 5 times. Mean scoring precision on the test

sets was then used to assess the scoring potential of that feature combination.

We performed benchmarks in a simple combinatorial manner to investigate which

features and feature combinations were most effective. The c-score was used as a base

feature in our analysis, meaning that it was included in all combinations. The results

of our preliminary feature analysis are in Figure 4.3B. In the 2-feature experiments, all

candidate features except Gini index yielded a detectable improvement in precision over

just using the c-score (which achieves an average baseline precision of 0.62), and we found

that MEL yielded the strongest enhancement (to an average precision of 0.69, an 11%

improvement over baseline). The 3-feature experiments were only able to incrementally

improve scoring precision beyond this level. The best 3-feature combination was c-score,

CEL, and MEL, which yielded an average precision of 0.70. Interestingly, the combination

of c-score, LMFE and LCMFE yielded an average precision approximately equal to the

observed precision with c-score and MEL. We also observed that none of the 4, 5, or

6-feature classifiers significantly outperformed the best 3-feature classifier on any of the

benchmarks (data not shown), further validating the efficiency of the chosen scheme. We
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Figure 4.3: Auxiliary feature development for assisting in structure motif mining
from SP dataset. (A) Illustration of the local window considered when computing
thermodynamics-based features for scoring, such as motif energy loss (MEL). The con-
sidered window extends a distance, c (the local context size), from the boundaries of the
scored site. (B) Preliminary scoring performance of considered feature sets. A combina-
torial approach was used to test the performance of feature combinations. Features were
benchmarked by using them to train a logistic classifier and then computing their aver-
age precision on a hairpin test set across five replicates; mean average precision is shown.
(C) Determination of a suitable context size to use for MEL computations in patteRNA.
Shown is the scoring precision when using a logistic classifier with c-score, cross-entropy
loss (CEL), and MEL across various context sizes. Also shown is the measured runtime
at each context length. Highlighted in red is the chosen default context size (40 nt),
which strikes a balance between scoring precision and computational overhead relative to
patteRNA’s original speed on the utilized data.
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chose this set of features to use as inputs when developing and optimizing the scoring

classifier to utilize in patteRNA’s scoring pipeline.

To determine an appropriate local context size to use for MEL, we investigated the

precision of the selected feature set at regular intervals of local context length from 20 nt

to 100 nt (note that the full context size used for folding is 2c+n, where c is the context

length and n is the motif length). We simultaneously measured the respective compute

times. Our results, shown in Figure 4.3C, demonstrate a trade-off between feature quality

and compute time as one increases the local context size. We observe that the scoring

quality plateaus approximately at c = 40, yet the extra compute time (relative to NNTM-

free scoring) rapidly grows for longer context lengths. For this reason, we decided to use

c = 40. We note, however, that larger contexts do provide a slightly better structural

interpretation. Thus, although a length of 40 nt is used for the remainder of our work in

the manuscript, this parameter may to be tuned by the user.

4.3.4 Classifier Selection and Optimization

Having converged on using c-score, CEL, and MEL, we devised a more intensive classifier

training pipeline and used it to investigate a set of standard binary classifiers for their

ability to robustly model these features. Specifically, we examined logistic binary classi-

fication (LBC), random forest classification (RFC), linear discriminant analysis (LDA),

and quadratic discriminant analysis (QDA).

Our classifier training pipeline was underpinned by the use of RNA STRAND [2].

STRAND has 4,666 high-quality secondary structure models spanning a large set of RNA

families, including regulatory elements, ribosomal RNA, ribozymes, synthetic RNAs, and

more. After removal of highly redundant sequences with CD-HIT-EST [70], 1,191 tran-

scripts remained, providing a much more expansive structural snapshot to use for classi-

fier training than the Weeks set, which comprised 22 transcripts. Importantly, STRAND

transcripts do not generally have SP data associated with them. Thus, we utilized simu-

lations to generate artificial data. Reactivities were modeled as (and sampled from) the

three-state model (unpaired, stacked, and helix-end) devised in [180].

Figure 4.4A demonstrates the interplay between the Weeks set data and the STRAND

transcripts as used in our analysis. In short, we used simulated data on STRAND tran-

scripts for classifier training. The Weeks set was then used to benchmark the performance

of classifiers trained from STRAND simulations. We found that using STRAND tran-

scripts (with simulated data) yielded the best results in terms of performance on the
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Weeks test set benchmarks, even outperforming classifiers trained on the Weeks set di-

rectly. Verification sets were also generated by resampling additional replicates of the

Weeks set and simulating additional replicates on STRAND (see Methods for details).

The overall objective was to identify the best possible motif classifier for the 3 investigated

features (Figure 4.4B).

Weeks Set 
Reference Data

Secondary structures 
and SHAPE data

22 transcripts

STRAND Set 
Reference Data

Secondary structures 
without SHAPE data

1191 transcripts

Scoring Feature
Set (Benchmark)

SP Data
Simulations

Scoring Feature
Sets (Training)

Scoring Feature
Sets (Verification)

c-score

CEL

MEL

Binary Classifier

Motif 
Probability

A B

Figure 4.4: Data processing scheme for feature set generation in training, verifying, and
benchmarking a binary motif classifier. (A) Data sources and computational flow for
generating features sets used for training, benchmarking, and verification. Transcripts
in RNA STRAND were used for classifier training; however, because these transcripts
lack SP data, simulations were used to generate artificial reactivities on known secondary
structures. The original Weeks set was used to benchmark classifiers as it contains RNAs
with known structures and high-quality real-world reactivity data. The reactivities in the
Weeks set were also resampled to generate additional replicates, which were also used for
verification steps in addition to replicated simulation on RNA STRAND. (B) Schematic
of the binary classification approach utilized in patteRNA. c-score, CEL, and MEL were
used as the features driving assessments of motif probability.

Our results are presented in Figure 4.5. Overall, we found that the LBC provided the

best results in terms of scoring consistency and translatability to verification benchmarks

against other data and other motifs. Generally, we observed similar results for LBC, LDA,

and QDA—-all classifiers strongly improved scoring when compared to c-scores on the

benchmark and verification sets—yet the LBC slightly exceeded the others’ performance

on all tests. We also observed that the LBC was the fastest of the tested classifiers

(data not shown). Interestingly, we observed that a random forest classifier was able to

achieve remarkable performance on the training set but did not translate effectively to

other benchmarks or validations. We presume that the classifier was overfitted due to its

parameterization (described by a large number of decision trees); efforts to reduce the size

and complexity of the parameterization (e.g., by reducing the number of estimators) were
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unsuccessful in improving performance beyond what was observed with logistic regression.

Moreover, we found the compute time in applying random forest classification to scale

poorly in situations where a large number of sites (i.e., more than tens of thousands)

were scored.

A

B

Figure 4.5: Results of experiments testing the ability of standard classifiers to fit the
training set and generalize to various benchmarks and verifications. (A) Results on
classifier performance on the training set (hairpins in RNA STRAND) and benchmark
sets (hairpins and loops in the Weeks set). (B) Performance of trained classifiers on 5
resampled replicates of the Weeks set and 5 simulation replicates on RNA STRAND.
LDA: linear discriminant analysis; QDA: quadratic discriminant analysis.

Due to these results, we decided to use an LBC trained on c-scores, CEL, and MEL

from STRAND hairpin sites. We developed the final classifier by generating five replicates

of SP data for the STRAND transcripts and using each to train a respective LBC. We

benchmarked the classifiers against the Weeks set hairpins and STRAND hairpins in

the other replicates and assessed their overall performance as the sum of (1) average

precision on the Weeks set and (2) mean average precision on the other STRAND hairpin

replicates. The classifier with the highest cumulative performance was chosen as the

specific parameterization to use in patteRNA’s scoring, although there was little difference

between the five candidates.

The final LBC performance is compiled in Figure 4.6. In short, when benchmarking

on the Weeks set, we observe an increase in average precision from 0.62 with c-scores to

0.74, a relative improvement of almost 20%. Importantly, the precision at the highest
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scores (i.e., when recall is low), is significantly increased compared to c-scores, and roughly

matches the performance seen when utilizing full transcript folding (i.e., full-length tran-

script partition function analysis) (see Figure 4.6A, dashed box). We confirmed that the

LBC yielded slightly improved scoring when using larger contexts in computing MEL,

similar to that observed in 4.3C. We also utilized the entire 4,666 STRAND transcripts

to benchmark patteRNA’s performance on various RNA classes (Figure 4.6B). As the

structural properties of RNA are diverse, we observe differential performance at hairpin

mining for different types of RNA. Structured transcripts defined by a high prevalence of

hairpins score the best, for example, regulatory elements, small RNAs, and ribozymes.

Other classes which tend to be less structured or a have large proportion of non-local

base paring score relatively worse, for example, tmRNA, SRP RNA, and 5S rRNA.

A B

Figure 4.6: Performance of patteRNA when using the finalized iteration of a logistic binary
classifier (LBC) natively during its scoring phase. (A) Precision-recall curves for hairpin
detection in the Weeks set for LBC probabilities, full NNTM-Ensemble predictions, and
regular c-scores absent any additional classifier processing. Dashed box indicates the
region associated with the highest scores, where the LBC is able to match the precision
of full-length partition function analyses. Also indicated are the performance points
associated with thresholding to c = 2 and Prob(SL) = 0.9. (B) Average precision by
RNA class when mining 5 replicated simulations on RNA STRAND transcripts. Error
bars indicate standard error of the mean.

Runtime benchmarks demonstrate that our approach scales linearly and allows for

transcriptome-wide mining of hairpins within an hour (see Figure 4.7). This speed is one

to two orders of magnitude faster than processing the data via local partition function

workflows with windows of length 150 or 3000 nt.
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Figure 4.7: Compute timing benchmarks for patteRNA using a logistic binary classifier
with MEL at various context lengths versus benchmarks using NNTM-Ensemble analysis.

4.3.5 Mining Structurome Data Reveals Strong Association be-

tween Stem-Loops and RBP Binding Signals

The interplay between RNA structure and RBPs has been of significant interest for

several decades [24]. Such interactions are widespread, dynamic, and known to underpin

important regulatory processes like splicing, trafficking, and translation [182, 51, 201,

16, 52]. Although it is believed that many RBPs prefer to associate in unstructured

regions, recent in vitro and in vivo experiments have indicated that a significant portion

of RBP binding occurs in structured contexts and in a structure-dependent manner [36,

136, 25, 151, 181]. That said, a mechanistic understanding of RBP binding exists only

for a very small number of RBPs which have been subject to targeted research. The

global trends and dynamics of RNA-protein interactions are still poorly understood, and

as such, significant efforts have been directed at disentangling the complex relationships

between RNA transcripts, their regulation, and the proteins which interact with them.

Corley et al. recently harnessed structure profiling to detect RBP binding sites in an

experiment called fSHAPE and applied it transcriptome-wide to human cell lines [25].

The result of their work is a large set of data encompassing in vivo and in vitro icSHAPE

reactivities and fSHAPE scores, the latter of which capture differential reactivity in the

presence and absence of RBPs. They demonstrated that strong fSHAPE signals are

highly correlated to RNA nucleotides that are unpaired and known to engage in hydro-

gen bonding with proteins, meaning that high fSHAPE signals are strong evidence of
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RBP binding. These data enable quantitative comparisons between RNA structure (via

icSHAPE reactivity profiles) and RBP binding (high fSHAPE signals).

Corley et al.’s analysis further demonstrated that strong fSHAPE signals preferentially

occur in structured contexts, and our previous work harnessing patteRNA expanded on

this result by indicating a global association between a nucleotide-wise measure of struc-

turedness (HDSL) and high fSHAPE [151]. Both of these results, however, were obtained

from “bird’s-eye view” approaches in which low-resolution global trends were utilized

to elucidate general properties of RNA-protein interactions. In this work, we sought to

utilize patteRNA to associate specific structure motifs with RBP binding in a more mech-

anistic “bottom-up” approach. Specifically, we sought to address the questions, “to what

extent does RBP binding occur in the context of stable hairpins?” and “what fraction of

stable hairpins can be associated with RBP binding?”

We used the LBC to score Corley et al.’s icSHAPE data as a means of exploring the

association between hairpins (also referred to as stem-loops) and RBP binding signatures.

Specifically, we mined two transcriptomes (K562 and HepG2 cells) for the representative

set of stem-loops introduced earlier (stem lengths between 4 and 15 nt, loop lengths

between 3 and 10 nt) and cross-referenced the locations of highly scored sites with the

fSHAPE data to elucidate any connections between them. The results of our analysis

are compiled in Figure 4.8, where we present findings from both in vitro and in vivo

icSHAPE data (K562 results shown; results for HepG2 data were very similar and are

shown in Figure 4.9). We first examined the locations of a highly prevalent stem-loop

motif described by a stem of 6 base pairs and a loop length of 4. Figure 4.8A depicts

the mean fSHAPE signal of highly-scoring sites (black) versus poorly-scoring sites (blue).

It shows that sites which scored highly for this motif (Prob(SL) > 0.9) often display a

high fSHAPE signal, interpreted as evidence of RBP binding, localized to the loop region.

Specifically, greater than 70% of these high-scoring sites in vitro displayed strong evidence

of RBP binding in the loop (defined as fSHAPE > 2, the same threshold used by Corley

et al.). A threshold of 0.9 was chosen as it is associated with near-perfect precision in our

benchmarks on the Weeks set (see Figure 4.6A, orange dot). Interestingly, analysis of in

vivo data arrives at a similar association, suggesting that data from one condition may

suffice in determining relevant structures. A comparable signal was also detected when

examining highly scored sites for a similar motif with a 6 base pair stem and a 3 nt loop

(Figure 4.8B).

We expanded the scope of our analysis by inspecting the highly scored sites across
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all stem-loop motifs included in our search (motifs with stems of length 4 to 15 nt and

loop length 3 to 10 nt) (see Figure 4.8C). For the in vitro icSHAPE data (left side of

panel C), patteRNA identified 12,969 high scoring stem-loops out of 289,764 considered

putative sites (i.e., those which satisfy sequence constraints associated with the searched

motifs), which amounts to less than 5%. To visualize the fSHAPE data from these sites,

which have different sizes, fSHAPE profiles were interpolated to a constant stem and

loop length (10 nt and 6 nt, respectively; see Methods). When examining this larger

representative set, we continued to observe a strong fSHAPE signal in loops and a low

signal in stems of stable motifs. Moreover, an inspection of sites which score Prob(SL)

< 0.5 shows complete depletion of this signal, thereby providing a negative control that

strengthens the conclusions drawn from high-scoring sites.

Given the seemingly universal association between highly scored stem-loops and RBP

binding signal, we sought to investigate it at the motif level for each considered target.

In other words, we examined if particular stem-loops have a stronger association with

RBP binding than others. Figure 4.8D shows the fraction of highly scored sites for

each considered motif that also have high fSHAPE signal in their loop. Examining

this association across all motifs reveals that this notable propensity of RBP binding

signal within loops generally applies to all of them. Nevertheless, the association appears

significantly stronger for in vitro than for in vivo scores. This is presumably due to the

effect RBPs have on reactivities for unpaired nucleotides engaging in RBP binding (i.e.,

reduces their accessibility) and/or lower data quality in vivo. Adding to our previous

conclusion that one condition may suffice for determining relevant structures (Figure

4.8C), our results indicate that in vitro structure mining is in fact preferable in some

contexts when identifying motifs functionally relevant in an in vivo context. For example,

differences between conditions are particularly stark when motif loops are short (e.g., top

three rows of in vivo heatmap). We speculate that this difference is due to RBP occlusion

of loop reactivities which is more detrimental to patteRNA’s scoring when loops are

short. The differences between the conditions are further illustrated as a function of the

threshold by which stem-loops are declared stable by patteRNA (Figure 4.8E). Notably,

the observed associations were even stronger in HepG2 cells (Figure 4.9).

Although both in vitro and in vivo detected stem-loops strongly associated with high

fSHAPE signals, there were some differences between the conditions. As such, we at-

tempted to fuse both scores into a single, more powerful predictor of stem-loops with

RBP binding signals. To this end, we fitted a simple perceptron model to predict from a
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site’s in vitro and in vivo LBC scores whether or not the site has high fSHAPE (fSHAPE

> 2) in the loop (see Methods). Using the perceptron to predict motifs with high loop

fSHAPE resulted in a slightly stronger association (as quantified by average precision for

indicating sites with high loop fSHAPE) between its predictions than using the in vitro

or in vivo scores alone (Figure 4.8F), suggesting that changes between the two conditions

can offer additional insight into RBP-motif interactions.

We attempted to interpret the perceptron’s model to gain insights into scoring pat-

terns associated with RBP binding. Its predictions are seen in Figure 4.8G and reveal

two distinct patterns. The first pattern is a high in vitro score (irrespective of in vivo

score, yellow region on right side of heatmap), which recapitulates key results from Figure

5A–E. However, the second pattern is associated with sites that score poorly in vitro but

strongly in vivo (top left corner). These sites appear to fold into stem-loops only in the

in vivo condition. We speculate that this pattern reflects motifs that are functional (i.e.,

engage in RBP binding) but only fold or become stabilized in the in vivo cellular context.

Note, however, that this pattern is far rarer than the former. Whereas over 9900 sites

fall into the first pattern (Prob(SL) > 0.9 in vitro with high loop fSHAPE), only 66 sites

were found in the second (Prob(SL) > 0.7 in vivo, Prob(SL) < 0.2 in vitro, with high

loop fSHAPE). More work is needed to investigate the association of these sites with

RBP binding. Note, however, that while the second pattern appeared in our analogous

analysis of HepG2 data, it was not as pronounced (Figure 4.9).

Next, we expanded the scope of our motif search to include stem-loops with bulges

of 1 or 2 nt on either side of the stem. This greatly broadens the space of considered

motifs and therefore increases the required computational overhead, as searching for

regular stem-loops mines for 96 targets but allowing for bulges increases this number to

2,640. Overall, approximately 7.2 million sites were considered as satisfying sequence

constraints for a searched motif (either a regular stem-loop or stem-loop with a bulge),

27,769 of which received a score greater than 0.9. We compiled the fSHAPE profiles of

high scoring stem-loops with bulges and quantified their properties in a manner similar

to our hairpin analysis. However, in addition to distinguishing loops from stems, we also

distinguished bulges into their own group when quantifying fSHAPE tendencies. Our

results are given in Figure 4.10 and demonstrate a similar enrichment of high fSHAPE in

apical loops of stem-loops with bulges to that which was observed for stem-loops without

bulges. Moreover, we also detected a marked fSHAPE increase within bulge nucleotides,

also implicating them in RBP interactions. These results expand the context of our
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demonstrated association between structure motifs and RBP binding signal.

Stems Loops Stems Loops Bulges

2

0
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4

6

8
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ea

n 
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E

Regular stem-loops Stem-loops with bulges

Prob(SL) < 0.5 Prob(SL) > 0.9

Figure 4.10: Association between RBP binding and structure motifs persists when con-
sidering stem-loop motifs with bulges in their stems. Hairpins with bulges were defined
as hairpins with stem length 4 nt to 15 nt, loop length 3 nt to 10 nt, and one bulge of 1
or 2 nt on either side of the stem.

Our analysis suggests that a significant majority of stable stem-loops are likely to

interact with RBPs. This naturally raised the question of what fraction of RBP binding

sites can be explained as occurring in the context of a stem-loop. We estimated this

fraction by computing the proportion of nucleotides with fSHAPE > 2 which occur in

the loop segment of a highly scored SL motif in the in vitro data. The results are given

in Table 4.2, showing that, of the fSHAPE data that was included in our motif searches,

19% of nucleotides with fSHAPE > 2 fall within a stem-loop motif scored Prob(SL) >

0.9. Upon relaxing the threshold to 0.7, this proportion increases to 33%. Interestingly,

this result is comparable to previous estimates of the proportion of RBPs interacting with

stem-loop motifs versus linear motifs [77]. Similar results were observed in vivo and in

HepG2 cells (see Table 4.3) and when using NNTM-free patteRNA c-scores (see Table

4.4). Nevertheless, the scope of our search remains somewhat limited. For example, we

did not exhaustively consider all feasible bulge types (e.g., bulges larger than 2 nt or stem-

loops with bulges on both sides of the stem), nor did we consider internal loops. Both

types of motifs have been previously associated with RBPs [120, 24]. Despite the com-

putational overhead associated with mining such complicated motifs, their consideration

is likely to significantly increase the proportion of high fSHAPE observations explainable

as occurring in a structured element.
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Table 1: Fraction of high fSHAPE sites in K562 cells accounted for by hairpins (without bulges) and hairpins 
(with or without bulges) as detected in in vitro icSHAPE data. Although the identified sites do not account 
for a majority of the high fSHAPE data, the results demonstrate that a sizable portion of RBP binding can 
be associated with canonical hairpin motifs. 
 

Fraction of high fSHAPE 
nucleotides explained by 
motif sites 

Motif Probability 
Threshold = 0.9 

Motif Probability 
Threshold = 0.7 

Motif Probability 
Threshold = 0.5 

Hairpins without bulges 16% 30% 49% 

Hairpins with or without 
bulges 19% 33% 55% 

Table 4.2: Fraction of high fSHAPE sites in K562 cells accounted for by hairpins (without
bulges) and hairpins (with or without bulges) as detected in in vitro icSHAPE data.
Although the identified sites do not account for a majority of the high fSHAPE data,
the results demonstrate that a sizable portion of RBP binding can be associated with
canonical hairpin motifs.

We further investigated the association between stable stem-loops and RBP bind-

ing signals within logical regions of mRNA transcripts—5’ UTRs, CDS, and 3’ UTRs

(noncoding RNAs were treated as their own group). Interestingly, we observed that the

association is remarkably consistent between regions (Figure 4.11). Across all considered

regions, approximately 75-80% of detected stem-loops had a loop which coincided with

strong RBP binding signal (values indicated for K562 data; percentages were approxi-

mately 80-85% for HepG2 data). Nevertheless, we did observe large differences in the

density of detected stem-loops between these regions. In all cell lines and conditions, 3’

UTRs have a significantly higher rate of stable stem-loops than other regions (see Table

4.5). For instance, in K562 in vivo icSHAPE data, patteRNA identified 9.57 stem-loops

per 1000 nt in 3’ UTRs, compared to 4.86 and 4.07 in 5’ UTRs and CDS, respectively.

In the context of post-transcriptional regulation, stem-loops are known to be mechanis-

tically involved with polyadenylation and degradation [89, 144, 54]; however, this is the

first stem-loop profile of a human structurome that detects the effect at a global level.

4.4 Discussion

The evolution and growing scale of RNA structure profiling experiments has warranted

methods well-suited to the analysis of millions to billions of nucleotides. patteRNA is

one such tool which was developed with the specific aim of rapidly extracting biologically

relevant insights from such data. For genome-wide analyses, high precision is often a

specific objective yet challenging to achieve due to the large number of negative sites
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Supplementary Table S2: Fraction of high fSHAPE sites accounted for by hairpins (without bulges) and 
hairpins (with or without bulges) for the datasets analyzed in this study. Although the identified sites do not 
account for a majority of the high fSHAPE data, the results demonstrate that a sizable portion of RBP 
binding can be associated with canonical hairpin motifs. 
 

 
Fraction of high 
fSHAPE 
nucleotides 
explained by motif 
sites 

Motif Probability 
Threshold = 0.9 

Motif Probability 
Threshold = 0.7 

Motif Probability 
Threshold = 0.5 
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 c
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Hairpins without 
bulges 16% 30% 49% 

Hairpins with or 
without bulges 19% 33% 55% 

K5
62

 c
el

ls
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Hairpins without 
bulges 8% 35% 60% 

Hairpins with or 
without bulges 12% 37% 61% 
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In

 v
itr

o 
ic

SH
AP
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Hairpins without 
bulges 10% 33% 60% 

Hairpins with or 
without bulges 15% 36% 62% 

H
ep
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ce
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o 
ic

SH
AP

E  

Hairpins without 
bulges 6% 28% 58% 

Hairpins with or 
without bulges 12% 31% 62% 

Table 4.3: Fraction of high fSHAPE sites accounted for by hairpins (without bulges)
and hairpins (with or without bulges) for the datasets analyzed in this study. Although
the identified sites do not account for a majority of the high fSHAPE data, the results
demonstrate that a sizable portion of RBP binding can be associated with canonical
hairpin motifs.

considered [39]. In this work, we took a machine learning approach to improve the scoring

precision by developing a classifier that accounts for local sequence energetics in addition

to patteRNA’s statistical characterization of reactivities. To ensure broad applicability,

we created a high-quality, non-redundant, and large-scale set of transcripts with known

structures from RNA STRAND and used it in conjunction with a data simulation scheme

to extensively train and validate our approach. Our work indicates this simulated data

provide a strong suite of structural information by which to develop methods, which can

augment real datasets that are currently much smaller in size. We believe this resource

will be useful for others seeking to develop data-driven methods. Application of the

classifier transcriptome-wide revealed that stable stem-loops are strongly associated with
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Supplementary Table S3: Fraction of high fSHAPE sites accounted for by hairpins (without bulges) and 
hairpins (with or without bulges) for the datasets analyzed in this study when using an NNTM-free scoring 
approach (c-scores only). 
 

 
Fraction of high 
fSHAPE 
nucleotides 
explained by motif 
sites 

c-score 
 Threshold = 2 

c-score 
Threshold = 1 

K5
62

 c
el
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Hairpins without 
bulges 16% 47% 

Hairpins with or 
without bulges 24% 55% 

K5
62

 c
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Hairpins without 
bulges 8% 40% 

Hairpins with or 
without bulges 20% 54% 
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Hairpins without 
bulges 8% 39% 

Hairpins with or 
without bulges 14% 45% 

H
ep
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E  

Hairpins without 
bulges 5% 33% 

Hairpins with or 
without bulges 14% 43% 

Table 4.4: Fraction of high fSHAPE sites accounted for by hairpins (without bulges) and
hairpins (with or without bulges) for the datasets analyzed in this study when using an
NNTM-free scoring approach (c-scores only).

fSHAPE RBP binding signals across cell lines. This association has been previously

documented for individual RBPs [36, 77, 120], however the ubiquitous nature of stem-

loops to interact with RBPs in vivo has not been previously shown. Not only does this

implicate common and canonical structural elements with RBPs, it also reinforces the

notion that mining local structure elements can provide biologically relevant insights.

The results of our perceptron analysis of condition-wise paired scores demonstrated
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K562

HepG2

A

B

Figure 4.11: Association of RBP binding signal to detected stem-loops within logical
mRNA regions. (A) Associations for K562 in vitro detected stem-loops. (B)Associations
for HepG2 in vitro detected stem-loops. Proportions of sites above a score threshold of
Prob(SL) > 0.9 with RBP binding signal (fSHAPE > 2 in loop) are indicated for each
graph.

 
Region K562 HepG2 

In
 v

itr
o 

ic
SH

AP
E  5’ UTRs 7.33 4.84 

CDS 8.71 5.71 

3’ UTRs 11.63 8.61 

ncRNAs 9.78 6.31 

In
 v

iv
o  

ic
SH

AP
E 5’ UTRs 4.86 4.52 

CDS 4.07 3.99 

3’ UTRs 9.57 6.98 

ncRNAs 6.74 4.71 

 
Table 2: Density of stem-loop detections in logical regions of mRNA transcripts from in vitro and in vivo 
icSHAPE data. Values are given as stem-loops per 1000 nt. 
 

Table 4.5: Density of stem-loop detections in logical regions of mRNA transcripts from
in vitro and in vivo icSHAPE data. Values are given as stem-loops per 1000 nt.

that some patterns could be leveraged to identify functional stem-loops beyond inspect-

ing each condition independently. We found that stem-loops detected in vitro explain

a significant (greater than 30%) fraction of RBP binding signals in Corley et al.’s data.
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Another pattern that emerged was the presence of stem-loops that score poorly in vitro

(Prob(SL) < 0.2), but highly in vivo (Prob(SL) > 0.8), although the prevalence of such

sites was much lower than sites associated with the former pattern. We note that the per-

ceptron analysis was primarily performed to assist in the interpretation of score changes

between conditions (e.g., Figure 4.8G), and that analogous statistical analysis (i.e., via

bivariate data fitting) could arrive at similar conclusions. Lastly, it is possible that a

more advanced perceptron approach could better disentangle the relationship between

the two conditions. For instance, a perceptron or deep neural network trained on the

underlying features from each site in each condition (i.e., c-score, MEL, CEL, etc.) might

yield more precise predictions on the identification of structure motifs with RBP binding

signal.

The LBC developed in this work was demonstrated to be significantly more accu-

rate than patteRNA’s c-scores alone. Nevertheless, we were curious to what degree using

c-scores (i.e., an NNTM-free approach) could recapitulate the stem-loop/RBP results ob-

tained with the LBC. We re-analyzed the data, but used a threshold of c > 2 to determine

stable stem-loops instead of Prob(SL) > 0.9 (see Figure 4.12). As indicated on Figure

4.6A, this threshold is roughly comparable to an LBC threshold of 0.9, although it yields

slightly lower precision and recall. We found that the use of c-scores arrived at similar

conclusions to those which were obtained with the LBC, but the observed association was

slightly weaker. Specifically, we observed that the association was significantly weaker for

stem-loops with shorter stems (6 or 7 nt) and longer loops (5 nt or longer), especially for

the in vivo data (Supplementary Figure 4.12F). We believe that such motifs benefit most

from the thermodynamic information contained in MEL, as sequence constraints are less

effective in pruning the number of negative sites considered during scoring. Nevertheless,

this result recapitulates that patteRNA’s NNTM-free implementation provides accurate

detections, especially for high-quality data. We believe that the LBC assists most in

situations where motifs are short, or data quality is low.

patteRNA was developed with a specific aim of addressing the need for universal and

efficient tools for analysis of a growing breadth, scale, and diversity of SP experiments.

Universality is important because different experiments yield reactivities with disparate

statistical properties, meaning one-size-fits-all approaches are generally suboptimal. As

such, the versatility of patteRNA is a central characteristic of the method. In the devel-

opment of a data-driven scoring approach, we sought to maintain this trait. We found

that the c-score naturally lends itself to ensuring an automatically adaptable classifier,
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as it provides a normalized measure of a site’s consistency with the target motif. Serving

as a measure of statistical significance against a null distribution that captures data-level

and motif-level biases, this metric can be considered largely data-invariant. Moreover,

the MEL feature only depends on the local nucleotide sequence, meaning that it is invari-

ant to different reactivity distributions. The decoupling of MEL from the SP data also

enables insight on the contributions of NNTM to SP data interpretation. For example,

although we observed the LBC improves precision across a range of motifs, the largest

relative improvement was observed for motifs with few base pairs, such as loops flanked

by single base pair (see Figure 4.5). This trend was also observed in our analysis of

the Corley data, where the largest differences between using c-scores (NNTM-free) and

the LBC (NNTM-dependent) was observed for the shortest stems. Our results suggest

that, when searching for motifs harboring many base pairs, folding with NNTM may not

provide a significant benefit over using c-scores alone.

From its initial development, patteRNA was not envisioned as a replacement or com-

peting method to traditional NNTM-based approaches typically used in RNA structure

analyses. Rather, it was developed as a tool to be used in tandem to NNTM-based ap-

proaches. For example, it can be used to identify candidate sites for a motif of interest

(e.g., broadly defined motifs, such as stem-loops, or specific structural elements, such as

iron response elements), which could then be subject to more intensive structural analy-

sis with NNTM and targeted SP experiments. In any case, the advantages of patteRNA

emerge when analyzing large-scale data. By focusing specifically on sites that satisfy the

sequence constraints for a target motif and performing minimal local MFE calculations

for the LBC, our method arrives at structuromic insights orders of magnitude faster than

partition-function based analyses. This speed helps mitigate the computational over-

head associated with partition-function analysis of massive SP datasets, especially for

those without access to cutting-edge computational hardware. In considering the future

development of a method like patteRNA, we believe more work remains to be done, de-

spite patteRNA’s demonstrated capabilities and strengths relative to transcript folding

or partition function analysis. The primary limitation of our method is the dependence

on the definition of specific local secondary structure motifs to use for mining. This

dependence enables rapid scans in large datasets but limits the scope of the method’s

analysis to elements with a previously known or suspected structure. One may specify a

large set of related motifs to circumvent this limitation, but this comes at an increased

computational cost. The current implementation is capable of mining thousands of dis-
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tinct structures in a human transcriptome within several hours (e.g., mining stem-loops

with bulges), however searches with increased flexibility (e.g., accounting for more diverse

bulges, longer loops, and internal loops) result in a combinatorial explosion of considered

motifs to counts larger than 10,000 or 100,000. This renders such searches impractical.

Nevertheless, when specifically focused on canonical local motifs, for example stem-loops

or stem-loops with bulges, patteRNA provides rapid, accurate, and biologically relevant

motif mining capabilities on structurome data.

4.5 Appendix

4.5.1 Author Contributions

P.R., R.U., K.D., and S.A. developed the method. P.R. and S.A. analyzed the data and

wrote the manuscript.

4.5.2 Deposited Resources

Data and analysis scripts supporting the conclusions of this article are freely available at

https://doi.org/10.5281/zenodo.4667910 [153].
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Chapter 5

Conclusion

5.1 Dissertation Summary

The central role of RNA in biology is difficult to overstate, and the functionalities of

the molecule often stem directly from its ability to adopt and interchange between rel-

evant structures. The advent of next-generation sequencing combined with structure

profiling (SP) experiments have yielded an explosion in transcriptome-wide SP studies

which are reinventing our understanding of the RNA structurome and interactome. New

methodologies are continuing to emerge at a rapid rate, warranting the development

of methods capable of rapidly and automatically assessing structure in massive and di-

verse SP datasets. This dissertation addressed the need for such methods by describing

improvements to a statistical pattern recognition algorithm, patteRNA, that rapidly iden-

tifies target structural elements in probing data. Importantly, the work presented here

improved nearly every facet of the algorithm. Initially, we facilitated the comparative

analysis of structural predictions by developing the c-score and considering in more depth

the versatility of the algorithm to diverse datasets. Then, we re-formulated the training

phase of the algorithm using a discrete approach to be faster, more reliable, and more

accurate than before. Lastly, we utilized a machine learning approach to greatly improve

the precision of the method’s scoring phase and target motif predictions. Throughout

all this work, we regularly demonstrated the tool by using it to analyze state-of-the-art

SP datasets. In this regard, the predictions from patteRNA were used to disentangle

mRNA structure dynamics, characterize viral RNA genome structures, and elucidate the

interplay between the RNA structurome and RNA-protein interactome.

First, we described the automated recognition of structure motifs by their SHAPE

data using patteRNA [149]. This work built upon the initial description of patteRNA
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[101] in several ways. The most significant result was the introduction of a novel metric,

termed the c-score, that uses a comparison of a score against a measured null distribution

to quantify its statistical significance. This work also resulted in numerous improvements

to the method’s automation routines. The most impactful of these improvements was the

use of KL-divergence [90] when constructing the training set in order to more rapidly train

on a minimally-representative set of transcripts. The result of this work was accurate

discrimination of competing conformations of the Rev response element (RRE) in HIV-1

as well as improved accuracy on transcriptome-wide benchmarks.

Next, we reformulated the unsupervised training routine of our method with a dis-

cretized observation model (DOM) [151]. The implementation of this approach resulted

in significantly faster training, more accurate estimations of the underlying state distribu-

tions, and more accurate predictions on the locations of target structural elements. The

improvements to the precision of hairpin mining specifically enabled the development

of a novel measure, the hairpin-derived structure level (HDSL), which integrates hair-

pin predictions with local reactivity trends to quantify structuredness as the nucleotide-

level. Application of this measure to diverse datasets recapitulated, expanded on, and

strengthened results previously obtained either with reactivity summarizations alone or

NNTM-assisted quantifications.

Lastly, we devised a data-driven classifier using a machine learning approach to more

precisely identify target structures. In addition to utilizing patteRNA’s statistical charac-

terization of reactivity profiles, the classifier also incorporated local NNTM-based ener-

getic information. This augmentation again improved scoring significantly without sacri-

ficing computational speed. Our classifier development also included the construction of

a large set of reference RNA structures with artificial reactivity data that we believe will

be useful to others in the field seeking to develop data-driven methods of RNA structure

interpretation. Applying the latest version of patteRNA to transcriptome-wide data re-

vealed a marked association between stem-loops and RNA binding protein (RBP) binding

sites. Not only did this serve as a general validation of our method, but it also highlighted

the powerful biological relevance of identifying local structure motifs like stem-loops. We

believe that the insights and methods developed in our work will facilitate the character-

ization and discovery of novel structural elements in high-throughput SP studies.
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5.2 Future Work and Research Directions

The results of the work contained in this dissertation naturally yield promising avenues for

the future of structure analysis in both smaller-scale and transcriptome-wide data. The

current formulation of patteRNA is highly optimized, thus any future improvements to it

and related methods will likely stem from fundamental reformulations of the statistical

model and pattern recognition schemes instead of iterative improvements to its sub-

routines.

5.2.1 Statistical Extensions of patteRNA

patteRNA uses a simplified model of reactivities in which pairing partners are ignored

during training; thus, two states are considered: paired and unpaired. Although this

facilitates rapid unsupervised training, it also limits the sophistication of the statistical

disentangling of the state reactivity distributions. That said, the core optimization im-

plementation in patteRNA (i.e., the EM algorithm), is versatile and naturally suited to

couple with virtually any parameterizable statistical model. As such, the utilization of

a more intricate model, such as a stochastic context-free grammar (SCFG), is a natu-

ral extension to the method that would likely yield significant improvements. SCFGs

have previously been applied in RNA structure prediction and alignment with impressive

results [135, 37, 40]. Such models more naturally allow for RNA to be represented as

meaningful components, such as stems, hairpin loops, and bulges. Although there is some

computational overhead associated with their implementation when compared to a sim-

plistic model like patteRNA’s 2-state approach, such impacts are unlikely to inhibit the

analysis of transcriptome-wide data. Moreover, although these models require more data

to train (due to the much larger set of parameters), the scale of high-throughput SP data

should be more than sufficient to arrive at robust models. When processing smaller sets

of data, smart initialization of parameters (i.e., to values observed on standard datasets)

would also help alleviate any issues associated with a high parameter count to data size

ratio.

5.2.2 Thrashing Conventional Sequence Constraints for Faster

and More Comprehensive Searches

A key aspect of patteRNA is the requirement for the definition of target secondary struc-

ture motifs when mining data. Typically, targets take the form of either an individual
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Figure 5.1: Approaches for more rapidly checking sequence constraints. (A) In the
patteRNA implementation, each motif is processed separately of the others. Thus, for a
given RNA, each motif is exhaustively checked against every sub-window of the transcript.
(B) In a more optimized approach, results from nested motifs are utilized to omit the
checking of almost all sites. Sites which satisfy sequence constraints for the shortest stem-
loop are identified first, then each putative site is used to inform the sites to be checked
for the next-longer stem. For that motif, only the next flanking base pair needs checked.

motif (e.g., a specific structure known to interact with a ligand) or a collection of mo-

tifs (e.g., a collection of representative hairpins). That said, most analyses presented in

this dissertation utilized a collection of motifs. When mining for a collection of motifs,

patteRNA follows a straightforward process for enumerating and checking the sequence

constraints of all loci in the data. The approach is abstractly illustrated in Figure 5.1A.
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Essentially, the method uses a brute-force strategy. Sequence constraints for individ-

ual motifs are checked independently. For a given secondary structure motif and RNA

sequence, all windows in the RNA with length equal to the length of the motif are con-

sidered. For each window (i.e., loci), the sequence constraints of the motif on the local

sequence are checked. If the sequence is compatible with the base pairs of the motif,

that window is deemed a putative site and saved for scoring. If not, it is discarded. As

such, each motif is assigned a set of sites for each RNA indicating where the sequence

is compatible its formation. When searching a collection of stem-loops with loop length

4 nt and stem length 4 through 8 nt (Figure 5.1A), each motif is checked against every

corresponding loci on every RNA.

Note that because the structures of some motifs exist as a substructure within another

motif, redundant work is being done when checking each motif individually. For example,

when checking a stem-loop with loop length 4 and stem length 5 (N + 1), you could

automatically omit any site that failed to satisfy the sequence constraints for a stem-loop

with loop length 4 and stem length 4 (N). Thus, you skip a majority of sites without

having to check a single base pair. The same logic can be applied to the next stem of the

collection, a stem length of 6 (N + 2). Only sites that satisfied the sequence constraints

for the stem length of 5 (N + 1) need to be checked. Moreover, at those sites, only one

additional base pair needs to inspected.

A slightly more sophisticated scheme is illustrated in Figure 5.1B. Instead of exhaus-

tively considering all possible windows for each motif, we start with the stem-loop with

the shortest stem length. For this motif, we check all windows on each RNA to identify

putative sites. Then, for motifs with the longer stems, we walk through the set of sites

identified for the shorter stem. At each site, we check if the flanking bases are also com-

patible with an additional base pair. If so, that site is added as a putative site for the

stem-loop with stem length N + 1. This process is repeatedly for subsequently longer

stem lengths. The entire process would be repeated for different loop lengths, although

further optimizations could be enabled over the space of loop lengths by considering that

even- and odd-sized loops have some redundant information for each other (e.g., a stem-

loop with loop 4 nt and stem 5 nt has all of the base pairs in a stem-loop with loop 6

nt and stem 4 nt, plus one additional base pair at the top of the stem; a stem-loop with

loop 5 nt and stem 5 nt has all of the base pairs in a stem-loop with loop 7 nt and stem

4 nt, plus one additional base pair at the top of the stem).

Although the process of checking sequence constraints is not very computationally
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intensive, this schematic would likely lead to a detectable improvement in patteRNA’s

runtime. The relative improvement would depend on the precise collection of motifs

considered as well as the size of the data. For the standard set of hairpins searched

via the “--hairpins” flag on the Weeks set benchmarks, the time to check sequence

constraints would be cut by over 95%, as over 99% of windows are simply ignored for the

stems longer than 7 nt. That said, checking sequence constraints only amounts to a small

portion of the total scoring phase. Actually computing scores at sites is responsible for

most of the runtime. For this reason, although the described methodology would solve

the sequence constraints problem in far more scalable manner, the impact on overall

compute time would not be transformative.

The transformative benefits of such a method for checking sequence constraints do not

come with the improvement in compute time, but rather with the opportunity to define

an entirely new search process that doesn’t depend on the definition of specific motifs.

For instance, with a minimum stem length defined, one can arbitrary continue to check

longer and longer stems with virtually no additional computation cost. In this sense,

it does not make sense to define an upper limit to stem-loop length, as one can simply

extend each putative stem loop by checking additional flanking base pairs until either

an invalid base pair is encountered or the end of the transcript is reached. Additionally,

this approach can be naturally extended to allow for bulges when checking base pairs to

extend the stem of a motif (see Figure 5.2). When checking additional base pairs, one

could check not only the next flanking base pair (i, j), but also the base pairs associated

with a left (i − 1, j) and right bulge (i, j + 1). If either bulge base pair is satisfied,

those motifs spawn their own branches of continued base pair checking conditioned on

the presence of their bulge. Some rules would need to be enforced, such as a maximum

number of allowed bulges before exploring “perfect” stem continuations only, bulge size

considerations, and the allowance of internal loops. The space of considered motifs would

be as expansive as the search rules permit it to grow. More restrictive rules would yield

faster scoring but fewer putative sites; less restrictive rules would require more time but

yield a more comprehensive assessment of local structure elements.

With a relational map of sites with motifs as related to the substructures they contain,

the door would also be opened to reformulate the scoring computations themselves. Scor-

ing time could be saved by reusing information from sub-sites. For instance, the working

sum of log emission probability ratios (the core of the patteRNA score) can be tracked

at each level, such that scores can be computed simply by modulating this sum with the
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N + 2
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Figure 5.2: Illustration of a novel method to search for putative elements. Rather than
beginning with a list of structures to search for, this approach only requires the definition
of a stem-loop starting point (e.g., 4 base pairs with some loop length) then uses the
sequence to guide the structural search. For each motif, the next flanking base pair (i,
j) is considered. If it’s compatible with the motif, the stem length is extended and the
process repeats. A scheme could also allow for the presence of bulges when checking each
additional stem length; for instance, one could check not only the next flanking base pair,
but also the base pairs associated with a left (i− 1, j) and right bulge (i, j+ 1). If either
bulge base pair is satisfied, those motifs spawn their own branches (indicated in orange)
of continued base pair checking conditioned on the presence of their bulge. This process
is iteratively repeated until some stop condition is met.

log emission probability ratios of the flanking nucleotides contained in each longer motif,

as well as the new forward and backward log probability ratios. Such an implementation

could be transformative in terms of its speed and comprehensiveness. One caveat to this

approach is the question of how to compute c-scores, given that your search may arrive at

thousands of different secondary structure arrangements, each of which require a sampled

null distribution. This problem could be solved by deriving the parameters of the null

distribution according to the properties of the data and target motif instead of sampling

them.

Recent work by Cao et al. [15] was able to identify characteristic SHAPE profiles

associated to specific loop topologies, and they developed a novel method, SHAPELoop,

that improves structure prediction by refining secondary structure models based on the

locations of detected loop elements. The characteristic SHAPE profiles they identified

could presumably be used within the schematic described in this section; when first
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identifying putative loops with the shortest stem length, reactivities in the loop could

be inspected for their consistency with the quantified reactivity pattern for the sought

loop length to reinforce or prune the search space. Sites that have conflicting SHAPE

data in the loop could be discarded from further analysis. Alternatively, the specific

SHAPE patterns associated with certain loops could be utilized during the scoring phase

to more accurate score putative sites. Regardless of the implementation, however, the

versatility of the method warrants more consideration. The work by Cao et al. is specific

to SHAPE data, and it is unclear how well their detected profiles would translate to

other probes and SP experiments. It might be possible to reformulate their patterns into

a likelihood model, but it is also likely that different probes—which measure different

types of stereochemistry—would have fundamentally different biases in their expected

loop profiles. The proper incorporation of probe-specific biases is a non-trivial problem.

5.2.3 Deep Learning

Recent studies have demonstrated that deep learning can accurately identify diverse struc-

tural patterns in SP data [210, 181]. Given the complexities associated with RNA struc-

ture dynamics, highly parameterized models like deep neural networks are likely to assist

in making accurate assessments of structure. Indeed, in this work, even a simple single-

layer perceptron was able to help discern stem-loops that engage in RBP binding from

stem-loops that don’t engage in RBP binding by just considering their differential scores

between in vitro and in vivo conditions. Despite their popularity across many fields of sci-

ence, deep learning methods in RNA structure prediction have remained relatively näıve.

This can be partially attributed to a lack of high-quality reference data (e.g., structures)

to use for training. Fewer than 10,000 non-redundant reference structure exist, which

severely limits the scale and scope of deep learning applications. For transcriptome-wide

datasets specifically, perhaps the most impactful use of SP, virtually no reference struc-

ture information exists. Additionally, there are difficulties associated with developing

a neural architecture well-suited for versatile RNA sequence and structure processing.

Convolutional and recurrent networks have seen the most use in published literature

[210, 181, 110], but our understanding of the ideal architectures by which to process

nucleotide sequence data will likely evolve in coming decades. Another issue with their

general use is the interpretability of their predictions; in addition to accurate predictions,

it is often desirable to understand why and how a model arrived as a specific conclusion.

When using deep neural networks, interpretability is a challenge and an issue often en-
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countered with ample literature describing potential solutions (see [128]). For example,

Sun et al. [181] used their deep learned model of RNA-protein interactions to create

saliency maps over any input data, which allowed for some interpretations on the details

of specific interactions. The impact of future deep learning methods would be enhanced

if they can also arrive at an interpretable system model. At any rate, careful work is

needed to consider the specific predictions addressable by deep learning models in RNA

structure biology and the best architectures by which to construct them.

5.3 Closing Remarks

The future of RNA structure research is almost certainly going to depend on advanced

computational methods capable of integrating structural information from diverse types

of data in making holistic interpretations on the function and dynamics of in vivo RNA.

As our ability to characterize SP data matures, it will become more important to asso-

ciate structures to functional processes such as RBP binding, polyadenylation, and splic-

ing. As such, integrative methods that aim to link structural tendencies to function are

poised to blossom in the coming decades. Utilizing patteRNA to profile stem-loops that

bind with RBPs was one such integrative analysis highlighted here. Future methods will

likely be capable of directly integrating SP data with functional data (i.e., RBP signals,

chromosome interactions, ligand interactions, etc.) to automatically disentangle struc-

tural trends associated with a specific function; that said, such high-dimensional analyses

might be restricted to super-computing pipelines for the foreseeable future. Nevertheless,

such analyses will undoubtedly uncover the mechanistic sources of countless processes

across RNA biology, and it is clear more work is needed to devise the next generation of

structuromic tools.
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[180] Sükösd, Z., Swenson, M. S., Kjems, J., and Heitsch, C. E. Evaluating the

accuracy of SHAPE-directed RNA secondary structure predictions. Nucleic Acids

Research 41, 5 (2013), 2807–2816.

[181] Sun, L., Xu, K., Huang, W., Yang, Y. T., Li, P., Tang, L., Xiong, T.,

and Zhang, Q. C. Predicting dynamic cellular protein–RNA interactions by deep

learning using in vivo RNA structures. Cell Research (2021), 1–22.

[182] Sysoev, V. O., Fischer, B., Frese, C. K., Gupta, I., Krijgsveld, J.,

Hentze, M. W., Castello, A., and Ephrussi, A. Global changes of the RNA-

bound proteome during the maternal-to-zygotic transition in Drosophila. Nature

Communications 7, 1 (2016), 12128.

[183] Tang, Y., Bouvier, E., Kwok, C. K., Ding, Y., Nekrutenko, A.,

Bevilacqua, P. C., and Assmann, S. M. StructureFold: genome-wide RNA

secondary structure mapping and reconstruction in vivo. Bioinformatics 31, 16

(2015), 2668–2675.

[184] Tijerina, P., Mohr, S., and Russell, R. DMS footprinting of structured

RNAs and RNA-protein complexes. Nature Protocols 2, 10 (2007), 2608–2623.

[185] Tomezsko, P., Swaminathan, H., and Rouskin, S. DMS-MaPseq for

Genome-Wide or Targeted RNA Structure Probing In Vitro and In Vivo. Methods

in Molecular Biology 2254, 1 (2021), 219–238.

[186] Turner, D. H., and Mathews, D. H. NNDB: the nearest neighbor parameter

database for predicting stability of nucleic acid secondary structure. Nucleic Acids

Research 38, suppl 1 (1 2010), D280–D282.

[187] Twittenhoff, C., Brandenburg, V. B., Righetti, F., Nuss, A. M.,

Mosig, A., Dersch, P., and Narberhaus, F. Lead-seq: Transcriptome-wide

163



structure probing in vivo using lead(II) ions. Nucleic Acids Research 48, 12 (7

2020), E71–E71.

[188] Underwood, J. G., Uzilov, A. V., Katzman, S., Onodera, C. S.,

Mainzer, J. E., Mathews, D. H., Lowe, T. M., Salama, S. R., and

Haussler, D. FragSeq: Transcriptome-wide RNA structure probing using high-

throughput sequencing. Nature Methods 7, 12 (2010), 995–1001.

[189] Vasilyev, N., Polonskaia, A., Darnell, J. C., Darnell, R. B., Patel,

D. J., and Serganov, A. Crystal structure reveals specific recognition of a

G-quadruplex RNA by a β-turn in the RGG motif of FMRP. Proceedings of the

National Academy of Sciences 112, 39 (2015), E5391–E5400.

[190] Velagapudi, S. P., Cameron, M. D., Haga, C. L., Rosenberg, L. H.,

Lafitte, M., Duckett, D. R., Phinney, D. G., and Disney, M. D. De-

sign of a small molecule against an oncogenic noncoding RNA. Proceedings of the

National Academy of Sciences 113, 21 (2016), 5898–5903.

[191] Velagapudi, S. P., Gallo, S. M., and Disney, M. D. Sequence-based design

of bioactive small molecules that target precursor microRNAs. Nature Chemical

Biology 10, 4 (2014), 291–297.

[192] Wacker, A., Weigand, J. E., Akabayov, S. R., Altincekic, N., Bains,

J. K., Banijamali, E., Binas, O., Castillo-Martinez, J., Cetiner, E.,

Ceylan, B., Chiu, L. Y., Davila-Calderon, J., Dhamotharan, K.,

Duchardt-Ferner, E., Ferner, J., Frydman, L., Fürtig, B., Gallego,
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