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Abstract

Johansson showed that people can recognize human
gaits from brief presentation of only a few moving
dots. A recently constructed connectionist model,
MARS, is the first program of any type to model this
phenomenon. One of the key ideas is that an associ-
ation is formed between visual actions and spatial lo-
cations. Simulations show that in MARS the associa-
tion mechanism is necessary for reliable recognition of
multiple actions, and that the action-recognition pro-
cess and the location association process act in con-
sort to arrive at a stable interpretation of the image
sequence. Association between location and action is
performed in a spatiotopic network of cells that spe-
cialize in detecting temporal synchrony between vi-
sual events in the scene and predictions generated by
active models of actions held in memory. The model
suggests that such a mechanism may be used to build
and maintain associations acquired sequentially.

Action Recognition

Perception of articulated motion from impoverished
image sequences has been repeatedly demonstrated
by psychologists (e.g., (Johansson, 1973)). Common
actions such as walking and running can be recog-
nized with 500 msec presentation of these image se-
quences. Action recognition is a primary visual abil-
ity, yet it has received little attention in the modeling
literature. In (Goddard, 1992) I presented a cognitive
model of this recognition ability, called MARS. Here I
describe in detail the one of the major connectionist?
mechanisms used in MARS and demonstrate its func-
tion in the recognition process. This attention-like

1Unlike many connectionist models, this one in-
volves no learning, links between connectionist units
are labeled, there are several classes of unit func-
tions, and each unit has a significant amount of state
information.
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Figure 1: MARS Architecture

mechanism gives MARS the capability to identify
multiple actions occurring simultaneously in a se-
quence of “retinal” images. Because of capacity lim-
itations, MARS requires the mechanism to associate
each action with a particular visual location. Neu-
rological evidence suggests that the inability to rec-
ognize simultaneously presented objects (simultanag-
nosie) may be related to the impairment of such an
association mechanism (Coslett and Saffran, 1991).
MARS’s (Figure 1) consists of three modules: 1)
a visual feature hierarchy that analyzes image se-
quences for static and motion parameters, 2) a high
level representation of actions, the scenario hierarchy
and 3) an association map (AM) which associates ac-
tions with spatial locations. Consider the example
of presentation of a Johansson-like display of a per-
son walking. These displays consist merely of a dot
at the location of each limb joint (hip, knee, ankle,
etc). The image sequence can be analyzed to recover
trajectories of the dots (Olson, 1989), and the tra-
jectories analyzed to recover the connected limb seg-
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ments(Rashid, 1980). These transformations and fur-
ther combinations in the feature hierarchy produce
as output complex visual features representing unin-
terpreted features in the scene, for example a pair
of connected line segments moving relative to each
other. Their location is represented explicitly using
an interpolation coding. The visual features index
a hierarchical database of models of action, known
as scenarios. Scenarios represent named actions that
constitute a gait or other complex movement, for ex-
ample “biped-walking”. Recognition involves the sce-
nario becoming synchronized with the action in the
scene. The scenario representation does not encode
location information. The AM uses input from the vi-
sual features that index the scenarios, together with
the response of the scenarios, to bind each partially
active scenario with a spatial location. This binding
allows location- and scenario-specific focus of process-
ing, including top-down priming of expected features.
The scenario database indicates the system’s inter-
pretation of what is happening in the scene, and the
AM indicates where it is happening.

For the purposes of this study I implemented a mo-
tion feature analyzer and constructed scenarios rep-
resenting three gaits using a structured connectionist
network. The representation of scenarios and motion
features is described in detail in (Goddard, 1992).
Here I provide the brief summary that is necéssary for
understanding the unique nature of the AM. The mo-
tion feature pathway consists of a hierarchy of retino-
topic maps with a set of feature detector cells dupli-
cated at each location. Receptive field size increases
with the level in the hierarchy, thus conforming to one
of the fundamental structural aspects of the primate
visual system: retinotopic maps of cells with local re-
ceptive fields that increase in size with distance from
the retina.

Scenarios are active memory structures in the sense
that they have internally varying activity that pro-
vides specific predictions of what will occur next, and
when it will occur. A scenario is conceptualized as a
list of labeled visual events (based on the work in
(Rubin, 1986)), and the parameterized time intervals
between consecutive events. For cyclic actions such as
human gaits, the list is circular. A scenario is imple-
mented using two types of connectionist processing
units: 1) the event unit, which combines prior infor-
mation with current evidence for the detection of a
particular visual event and 2) the interval unit which
uses an adaptive temporal delay and smoothing fil-
ter to represent the time between two events in an
action.

Figure 2 shows a simple scenario representing the
swinging of a pendulum. There are two event units

visual features

Figure 2: Scenario Network

(circular), which detect, respectively, the clockwise
and anti-clockwise reversal of direction of rotation
about the pivot, and two interval units (elliptical),
arranged in a cyclic network. Suppose there is pen-
dular motion in the input. Unit A detects the onset
of clockwise rotation and responds with transient ac-
tivation. The interval unit B detects this transient,
initiates its internal clock, and passes the transient
through a temporal delay and smoothing function,
producing output at approximately the time the next
event is expected to occur. Event unit C receives
this priming activation at the same time as it detects
the onset of anticlockwise rotation, the visual feature
for which it codes. It combines the priming and fea-
ture activation to produce a new activation transient.
This in turn initiates the clock in interval unit D,
and the process continues with a wave of activation
building up as it flows around the network. Each
scenario network also contains a summator unit X,
which monitors the activity of the event and interval
units to produce an estimate of the overall activation
level in the scenario.

The Association Mechanism

As high-level memory structures, scenarios are
position-independent (despaced) representations. In
connectionist vision systems, as in biological systems,
low level feature detectors are duplicated, each copy
having a limited receptive field. This allows parallel
processing across the visual field and is an explicit
representation of space. For position-independent
recognition activation must be integrated across the
visual field. Despaced high-level representations of
objects and actions perform this integration. The al-
ternative, duplication of complex object and action
representations across the visual field, would require
copius hardware (units), and the problem of learning
new objects and actions would be made even harder.

In terms of the “what” and “where” distinction in
the visual system (Mishkin, Ungerleider and Macko,
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Figure 3: Association Map: Structure and Function

1983), I postulate that scenarios are analyzed primar-
ily in the “what” pathway. Scenarios are an extension
of the static concept of “what” to include the dynamic
notion “what’s happening”. Despaced scenario rep-
resentations are devoid of location information, but
location information must be represented somewhere
and associated with the central representations. In
MARS the AM performs this representation and asso-
ciation function, encoding what is happening where.
AM information is used to focus bottom-up flow of
activation from particular locations in the visual fea-
ture maps to particular central scenario representa-
tions, and to focus priming activation in the reverse
direction. The connection with selective attention is
discussed further below, but first I describe the struc-
ture and function of the AM.

Structure

The AM is organized as a spatiotopic map encoding
location and action. It is based on the understanding
that the wave of activation flowing around an active
scenario network is a mirror of the changes that are
occurring in the scene. Therefore it is possible to use
temporal synchrony between the visual changes at
a location and the internal changes in the scenario
network as the cue for determining an association
between the location and the action (see (Goddard,
1988) for an early version of this idea).

At each location in the AM there is a set of prozy
units (Figure 3 shows two proxies at one location).
Each proxy unit represents a scenario. Its activa-
tion indicates the degree of belief that the action is
occurring at that particular location (activation flow-
ing around the scenario network indicates the belief
that the action is occurring somewhere in the scene).
Proxy dynamics are described below. The proxies at
a given location in the spatiotopic map inhibit each

other (Figure 3), thereby competing for activation
from feature detectors at the location.

Function

Bottom-up Focus: A proxy modulates the signifi-
cance to its scenario of visual features at its location.
Proxies have activation levels in the interval [—c, 1.0],
0 < a < 1.0, where polarity indicates indicates evi-
dence for (positive) or against (negative) the action
occurring at the location and magnitude indicates the
degree of belief, so that the neutral or “resting” level
is zero?. Positive activation increases the significance
to the scenario of the visual features at the location.
Negative activation, which occurs through inhibition
from other proxies, decreases the significance. a de-
termines the degree of inhibition between proxies, as
described below. Modulation is achieved with a link
from the proxy to each of the event units in the sce-
nario (shaded link in Figure 3). The link is labeled
with the proxy’s location, as are the links from the
visual feature units to the event unit (shaded link).
The activation Ps p from the proxy for scenario S
at location L multiplicitavely modulates the activ-
ity from the feature units located at L by the factor
(1 + Ps,.) which is in the range [1 — ,2]. In the
simulations of gait recognition, a was set at 0.5, so
that the modulation factor was always in the interval
[0.5,2].

The modulation factor causes the scenario to “at-
tend” more to locations where its proxy has an acti-
vation above resting level and to “neglect” locations

2Proxy activations are passed through a scaling
function f(z) = ££2 for transmission to other units,
and its inverse upon reception, which ensures that
values passed between units are always in the inter-
val [0,1]. The “resting” activation level is then £.

2
This (de)scaling is ignored here for simplicity.
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where 1its proxy is below resting level. In a scene
containing a small number of actions, the effect is
that each location where there is action tends to be
“owned” by one scenario, and other scenarios actively
ignore that location. Simulations showed that this is
important in reducing interference between actions
that are occurring in different spatial locations and
thus increasing the ability to recognize concurrent ac-
tions.

Top-down Priming: Recall that the scenario net-
work contains clocked interval units that pass on
priming activation to the succeeding event unit. This
priming is sent when the visual change which the
event codes for is expected to occur. This infor-
mation 1s also used to enhance the response of the
visual feature units representing the change that is
expected, prior to the change occurring in the input
(hollow link from D in Figure 3). The importance of
the AM in this process is that the association that
has been set up between an action and a location is
used to direct the priming to the region in which the
action is occurring (hollow link from proxy in Fig-
ure 3). This predictive priming acts as a multiplier
on the unprimed response of the feature unit. The
multiplicative factor at time ¢ for a feature at loca-
tion L that is is selected by one or more events in
scenario S 1s

1+ B1y/B2Ps L (1)Is (1) + (1 = B2)Is (1)

where I is the maximum level of priming from inter-
val units in scenario S that predict the feature, g is
a parameter controlling the magnitude of the prim-
ing effect, and 3, is a parameter that controls the
modulating of priming by the proxy activation. In
the simulations of gait recognition 3; and (3, were set
to 0.25 and 0.7 respectively. The simulations showed
that the predictive priming significantly increased the
speed with which the correct scenario was activated.

AM Dynamics

A proxy unit has a set of receptive sites®, one for
each event its scenario. A site receives input from
the event unit and succeeding interval unit in the sce-
nario and from the visual feature units in the feature
map that the event unit is selective for (solid links in
Figure 3). However, unlike the event unit, the proxy
receives visual feature input only from the location it
represents. The site compares activity of the event

3A unit with sites can be thought of as representing
a small network of cells, or a single cell and dendritic
tree.

Figure 4: Interpolation Coding of Location

unit with activity of the feature units. It assigns a
value which is dependent on simultaneous transients
in both event unit and feature units and on the mag-
nitude of those transients. When simultaneous tran-
sients are detected, the site value is the geometric
mean of the two magnitudes. The site maintains this
value during subsequent simulation cycles until the
subsequent event has been primed, as indicated by
the activation arriving along the link from the inter-
val unit (e.g., unit B in Figure 3), at which time the
site value decays to zero. This mechanism allows the
proxy to set its activation from the relatively infre-
quent event transients but for the proxy activation
to subside if the predicted events do not occur when
expected. The values computed by the sites are com-
bined in a scenarto-dependent way to produce the
synchrony cue T'(t) for the proxy. In the implemen-
tation that modeled the gait recognition data (God-
dard, 1992) the two highest site values are averaged
to produce T'(t).

T'(t) is combined with an overall estimate S(t) of
the scenario activity provided by a link from the sce-
nario summator unit. The proxy activation function
is given by:

Psp(t+1)=(1—m)Psc(t)+

7 [T G+ (1= )5(0) - amax P

where 7; 1s a parameter controlling the attack and
decay rates of the unit and 7, is a parameter con-
trolling the extent to which the scenario activation
modulates the synchrony cue. The latter is moti-
vated by the observation that it makes no sense for
Ps 1(t) (S is happening at L) to be higher than S(t)
(S is happening somewhere). The final term in the
activation function is the mutual inhibition between
proxies at each location, controlled by the parameter
a introduced above. In the simulations of gait recog-
nition, v; and 7, were set to 0.1 and 0.3 respectively
and recall that o was set to 0.5.
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Figure 5: Proxies’ Activation

Figure 6: Scenarios’ Activation

Simulations

For the simulations I acquired human gait data from
three males and three females walking, running and
skipping, using a high resolution imaging system
(Scholz, 1989). The data were analyzed to construct
scenario network models of the three gaits, modeling
the movements of arms and legs as distinct actions.
Full details are contained in (Goddard, 1992), here I
describe more recent simulations focusing on the AM.

Location Coding in the AM: Simulationsin which
single actions (e.g., “legs-walking-right”) were pre-
sented showed that the AM codes location informa-
tion more finely than the resolution of a single cell. In
Figure 4, shading illustrates the activation levels of
the proxy units for “legs-walking-right” when the legs
were in the location shown (leg actions were modeled
to be “located” at the hip). Figure 5 shows a trace of
the activation of all the proxies at all locations over
time (60 frames/sec simulated). The thick line in Fig-
ure 5 indicates the proxy activation for “leg-walking-
right” at the heavily shaded location in Figure 4. The
next highest activation trace (0.75) is at the moder-
ately shaded location and the third highest (0.5) is
at the two lightly-shaded locations. The location of
the action can be recovered by interpolating the ac-
tive locations using their activation as a weighting.
Other proxies end up at or below resting level (0).

What-Where Interaction: Figure 6 plots the time-
course of activation in the scenarios (summator out-
puts are shown). Note that by frame 30 in Fig-
ures 5 and 6 the leading trace shows high levels of
activation and the two continue to rise together. This

Figure 8: Multiple Actions

demonstrates the location binding in the association
mechanism (“where”) and the activation of scenarios
(“what”) occuring in parallel. The two processes act
cooperatively to settle on a consistent solution.

Plasticity and Phase Insensitivity: A simulation
was run to show that the binding in the AM is plastic.
60 frames of “legs-walking-right” were presented, rec-
ognized, and an association formed in the AM (Fig-
ure 5). Without resetting the network, 60 frames of
“legs-running-right” were presented (Figure 7). The
previous association dies away after about 30 frames
(0.5 sec) of the new action, and the correct new asso-
ciation to “legs-running-right” (thick trace) is formed
soon thereafter. The AM is a plastic mechanism.

The scenarios are capable of aligning themselves
with the input, independent of initial phase of an
action, as described in (Goddard, 1992). The AM
receives all its timing expectations from the scenarios
and is is therefore also insensitive to phase,

Multiple Actions: Two actions were were presented
simultaneously. When the two were presented in ap-
proximately the same location, there was usually too
much cross talk for the AM to establish any sce-
nario/location association. When the actions were
spatially separated, the AM formed the correct as-
sociation with each location (Figure 8). The thick
and thin lines that asymptote at 1.0 are the activa-
tion of the proxies of the two actions at the closest
AM location. The other pairs at about 0.75 and 0.5
are the corresponding proxies at the other AM loca-
tions used in the interpolation-coding. It takes the
AM longer to establish the associations when two ac-
tions are presented simultaneously. I presented three
spatially-separated actions, and the AM took much
longer to establish the associations. The AM is capa-
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ble of maintaining multiple associations, but it shows
capacity limitations in establishing multiple associa-
tions in parallel. This suggests a role for sequential
attention.

Selective Attention and Spotlight
Models

Focusing visual processing on a particular spatial
location is usually associated with selective atten-
tion. Previous cognitive models have proposed a
single “spotlight” of attention (e.g, (Mozer, 1991)),
perhaps of variable diameter, based on perceptual
data (e.g., (Posner, Snyder and Davidson, 1980)).
The association mechanism outlined here is capable
of forming, in parallel, multiple associations between
simultaneously-presented spatially-separated actions
and their locations. Thus it can be seen as a multiple-
spotlight model (see (Shiffrin, 1988) for a review of
the data). It would be a relatively simple matter to
add inhibition between locations to restrict the model
to a single spotlight, as in (Mozer, 1991). However
the simulation results suggest another interpretation.
A mechanism such as the AM may be used to build
up and maintain a set of action/location bindings se-
quentially. As more actions are added to the pre-
sentation, it becomes more difficult for the indexing
process to reliably activate any scenario model due to
crosstalk. The association mechanism cannot focus
processing on a particular location until a scenario
is at least partially active. If a separate attentional
spotlight were added, it would be possible for the AM
to make associations between location and action one
pair at a time using a sequential spotlight cued by
motion or other parameters.

Conclusions

The AM forms a crucial part of MARS, the first
program to model the Johansson biological motion
data. Modeling arm- and leg-movements separately,
I found that the AM was required to enable recogni-
tion of full-body human gait. Using as a cue temporal
synchrony between scene-action and internal active
memory structures representing actions, it associates
what’s happening with where it is happening. The
AM displays an ability to maintain multiple associ-
ations in parallel but cannot necessarily form those
associations in parallel, suggesting a role complemen-
tary to that of sequential attention.
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