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Supersymmetric Standard Model from the Heterotic String
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We present a Z6 orbifold compactification of the E8 � E8 heterotic string which leads to the (super-
symmetric) standard model gauge group and matter content. The quarks and leptons appear as three
16-plets of SO(10), whereas the Higgs fields do not form complete SO(10) multiplets. The model has large
vacuum degeneracy. For generic vacua, no exotic states appear at low energies and the model is consistent
with gauge coupling unification. The top quark Yukawa coupling arises from gauge interactions and is of
the order of the gauge couplings, whereas the other Yukawa couplings are suppressed.

DOI: 10.1103/PhysRevLett.96.121602 PACS numbers: 11.25.Wx, 11.25.Mj, 12.60.Jv
FIG. 1. G2 � SU�3� � SO�4� torus lattice of a Z6-II orbifold.
The problem of ultraviolet completion of the (super-
symmetric) standard model (SM) has been a long-standing
issue in particle physics. The most promising approach is
based on string theory; however, explicit models usually
contain exotic particles and suffer from other phenomeno-
logical problems. The purpose of this Letter is to show that
these difficulties can be overcome in the well-known
weakly coupled heterotic string [1] compactified on an
orbifold [2,3]. The emerging picture has a simple geomet-
rical interpretation.

In the light cone gauge the heterotic string can be
described by the following bosonic world sheet fields: 8
string coordinates Xi, i � 1 . . . 8; 16 internal left-moving
coordinates XI, I � 1 . . . 16, and 4 right-moving fields �i,
i � 1 . . . 4, which correspond to the bosonized Neveu-
Schwarz-Ramond fermions [cf. [4] ]. The 16 left-moving
internal coordinates are compactified on a torus. The asso-
ciated quantized momenta lie on the E8 � E8 root lattice.
The massless spectrum of this 10D string is 10D super-
gravity coupled to E8 � E8 super Yang-Mills theory.

To get an effective four-dimensional theory, 6 dimen-
sions of the 10D heterotic string are compactified on an
orbifold. A ZN orbifold is obtained by modding a 6D torus
together with the 16D gauge torus by a ZN twist, O �
T6 � TE8�E08

=ZN . On the three complex torus coordinates

zi, i � 1; 2; 3, the ZN twist acts as zi ! e2�iviN zi, where
NvN has integer components and

P
iv
i
N � 0. This action is

accompanied by the shifts of the bosonized fermions �i

and the gauge coordinates XI, �i ! �i � �viN , XI !
XI � �VIN where NVN is an E8 � E8 lattice vector.
Further, if discrete Wilson lines WI

l are present [3], the
torus lattice translations are accompanied by the shifts
XI ! XI � �nlW

I
l with integer nl. In addition to the re-

quirement that NVN and nW, where n is the order of the
Wilson line, be E8 � E8 lattice vectors, VN and W are
constrained by modular invariance [cf. [5,6] ]. At each
fixed point of the orbifold, a local ZN twist, composed of
VN and discrete Wilson lines, breaks E8 � E8 to a subgroup
[cf. [7] ]. Given an orbifold, a torus lattice together with the
06=96(12)=121602(4)$23.00 12160
shift VN and the Wilson lines, the massless spectrum of the
orbifold can be calculated. It is supersymmetric by con-
struction and consists of the states which are invariant
under the twisting and lattice translations.

In our construction, we choose a Z6-II orbifold based on
a Lie torus lattice G2�SU�3��SO�4� (Fig. 1) with a twist
vector v6 � �

1
6 ;

1
3 ;�

1
2� [5]. In addition to V6, we require

two Wilson lines: one of order two in the SO(4) plane, and
another of order three in the SU(3) plane. In an orthonor-
mal basis, the shift and the Wilson lines are given by

V6 � �
1
2;

1
2;

1
3; 0; 0; 0; 0; 0��

1
3; 0; 0; 0; 0; 0; 0; 0�;

W2 � �
1
2; 0;

1
2;

1
2;

1
2; 0; 0; 0���

3
4;

1
4;

1
4;�

1
4;

1
4;

1
4;

1
4;�

1
4�;

W3 � �
1
3; 0; 0;

1
3;

1
3;

1
3;

1
3;

1
3��1;

1
3;

1
3;

1
3; 0; 0; 0; 0�:

The model has 12 fixed points which come in six inequi-
valent pairs, with the local groups

SO�10� � SO�4�; SO�8� � SO�6�; SO�12�;

SO�8�0 � SO�6�0; SU�7�; SO�8�00 � SO�6�00

up to U(1) factors and subgroups of the second E8. The
standard model gauge group, GSM � SU�3�c � SU�2�L �
U�1�Y , is obtained as an intersection of those groups. The
surviving gauge group in 4D is

G � GSM � �SO�6� � SU�2�	 � U�1�8; (1)

where one of the U(1)’s is anomalous, and the brackets
indicate a subgroup of the second E8. The matter multiplets
are found by solving the masslessness equations together
with the twist- and translation-invariance conditions. The
2-1 © 2006 The American Physical Society
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resulting spectrum includes both untwisted (U, ‘‘bulk’’)
and twisted (Tk, ‘‘localized’’) states, and is given in Table I.
The twisted states can belong to any of the twisted sectors
Tk (k � 1; 2; 3; 4) depending on their string boundary con-
ditions. There are no left-chiral superfields in the T5 sector.

Let us now discuss some properties of the spectrum. We
first note that the V6 shift is chosen such that the local
gauge symmetry at the origin is SO�10� � SO�4� � U�1�
and the twisted matter at this point is a 16-plet of SO(10)
plus SO(10)-singlets. When the SU�3� � SU�2� � U�1� 

SO�10� factor is identified with the SM group GSM (with
the standard GUT hypercharge embedding), the 16-plet of
SO(10) gives a complete generation of the SM matter,
including the right-handed neutrino. Since there are two
equivalent fixed points in the SO(4) plane (Fig. 2), there are
2 copies of the 16-plets. Because of our choice of Wilson
lines, the remaining matter has the SM quantum numbers
of an additional 16-plet plus vectorlike multiplets. This can
partly be understood from the SM anomaly cancellation.
Thus, we have

matter: 3� 16� vectorlike: (2)

Two generations are localized in the compactified space
and come from the first twisted sector T1, whereas the third
generation is partially twisted and partially untwisted:

2� 16 2 T1; 16 2 U; T2; T4: (3)

In particular, the up-quark and the quark doublet of the
third generation are untwisted, which results in a large
Yukawa coupling, whereas the down-quark is twisted and
its Yukawa coupling is suppressed.

It is well known that the heterotic orbifold models have
large vacuum degeneracy which gives enough freedom for
realistic constructions [8–10]. There are many flat direc-
tions in the field space along which supersymmetry is
preserved but some of the gauge symmetries are broken.
In particular, all of the U(1) factors of Eq. (1) apart from
the hypercharge are broken by giving vacuum expectation
values (VEVs) along D- and F-flat directions to some of
the 69 singlets s0

i . We note that cancellation of the Fayet-
Iliopoulos D term associated with an anomalous U(1)
TABLE I. The GSM � �SO�6� � SU�2�	 quantum numbers of
the spectrum.

Name Representation Count Name Representation Count

qi �3; 2; 1; 1�1=6 3 �ui ��3; 1; 1; 1��2=3 3
�di ��3; 1; 1; 1�1=3 7 di �3; 1; 1; 1��1=3 4
�‘i �1; 2; 1; 1�1=2 5 ‘i �1; 2; 1; 1��1=2 8

mi �1; 2; 1; 1�0 8 �ei �1; 1; 1; 1�1 3

s�i �1; 1; 1; 1��1=2 16 s�i �1; 1; 1; 1�1=2 16

s0
i �1; 1; 1; 1�0 69 hi �1; 1; 1; 2�0 14

fi �1; 1; 4; 1�0 4 �fi �1; 1; �4; 1�0 4

wi �1; 1; 6; 1�0 5

12160
requires that at least some of the VEVs be close to the
string scale. Choosing all the singlet VEVs of order the
string scale, the U(1) gauge bosons are decoupled, and we
have

G! SU�3�c � SU�2�L � U�1�Y �Ghidden; (4)

with Ghidden � SO�6� � SU�2�. This leads to complete
separation between the hidden and observable sectors.

One of the main problems of string models is the pres-
ence of exotic states at low energies. Generically, such
states are inconsistent with experimental data and destroy
gauge coupling unification. Even if the exotic states are
vectorlike with respect to the SM, they are still harmful
unless they attain large masses. However, one cannot as-
sign the mass terms at will. They must appear due to VEVs
of some singlets and be consistent with string selection
rules [9,11]. In most cases, the latter prohibit many of the
required couplings such that the exotic states stay light.
One of the achievements of our model is that all of the
exotic vectorlike states can be given large masses consis-
tently with string selection rules.

To proceed, let us briefly summarize these rules [5]. The
coupling

�1�2 . . . �n (5)

between the states �i belonging to twisted sectors Tki
(including also the untwisted sector) to be allowed, the
total twist has to be a multiple of 6:

P
iki � 0 mod 6. There

are further restrictions on the fixed points that can enter
into this product, called a space group selection rule. For
example, in the SO(4) plane it amounts to

P
i�n
�i�; n�i�

0
� �

�0; 0�mod 2, where �n�i�; n�i�
0
� are the coordinates of the

fixed points in the orthonormal basis, n�i�; n�i�
0
� f0; 1g.

Similar rules apply to the SU(3) and the G2 planes.
Further, there is a requirement of gauge invariance

P
ipi �

0, where pi are the (shifted) momenta in the E8 � E8 gauge
lattice. Finally, theH momentum in the compact 6D space
must also be conserved,

P
iR
�i�
1 � �1 mod 6,

P
iR
�i�
2 �

�1 mod 3,
P
iR
�i�
3 � �1 mod 2, where R1;2;3 are the H

momenta associated with the G2, SU(3), and SO(4) planes,
respectively.

Based on these selection rules, we analyze allowed
superpotential couplings involving vectorlike pairs of ex-
FIG. 2. Local gauge symmetries in the SO(4) plane [at the
origin in the G2 and SU(3) planes]. Two 16-plets arise from the
orbifold fixed points.
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otic fields xi �xj and the SM singlets sa:

W � xi �xjhsasb . . .i: (6)

We find that all of the exotic states enter such superpoten-
tial couplings. This requires a product of up to 6 singlets. In
order to decouple the exotic states one has to make sure
that the corresponding mass matrices have a maximal rank
such that no massless exotic states survive. An interesting
feature of the model is that there are exotic states with the
SM quantum numbers of the right-handed down-quarks
and lepton doublets. As a result, these extra states mix
with those from the 16-plets of SO(10), such that the
observed matter fields are a mixture of both [cf. [8,12] ].
In particular, for down-type quarks we have the following
mass matrix:
�d1

�d2
�d3

�d4
�d5

�d6
�d7
d1
 s5
 s5
 s5
 s5
 s5
 s3
 s3
d2
 s1
 s1
 s3
 s3
 s3
 s3
 s3
d3
 s1
 s1
 s3
 s3
 s3
 s3
 s3
d4
 s6
 s6
 s6
 s3
 s3
 s6
 s6
Here sn indicates that the coupling appears when a product
of n singlets is included. Different entries with the same n
generally correspond to different mass terms since they
involve different singlets and Yukawa couplings. This mass
matrix has rank 4 reflecting the fact that only 3 down-type
quarks survive and the others have large masses, e.g., of the
order of the string scale. Note that higher n does not
necessarily imply suppression of the coupling: hsi can be
close to the string scale and, furthermore, the combinato-
rial coefficient in front of the coupling grows with n.

An important phenomenological constraint on this tex-
ture comes from suppression of R-parity violating inter-
actions. It turns out that, in order to prohibit �u �d �d and
similar couplings at the renormalizable level, the �d6;7

component in the massless �d quarks must be suppressed.
This is achieved choosing appropriate directions in the
space of singlet VEVs.

For the lepton or Higgs doublets we have
‘1
 ‘2
 ‘3
 ‘4
 ‘5
 ‘6
 ‘7
1

‘8
�‘1
 s3
 s4
 s4
 s1
 s1
 s1
 s1
 s1
�‘2
 s1
 s2
 s2
 s5
 s5
 s3
 s3
 s3
�‘3
 s1
 s2
 s2
 s5
 s5
 s3
 s3
 s3
�‘4
 s1
 s2
 s2
 s5
 s5
 s6
 s3
 s3
�‘5
 s1
 s6
 s6
 s3
 s3
 s6
 s3
 s3
This matrix has rank 5 which results in 3 massless doublets
of hypercharge �1=2 at low energies. In order to get an
extra pair of (‘‘Higgs’’) doublets with hypercharge �1=2
and 1=2, one has to adjust the singlet VEVs such that the
rank reduces to 4. This unsatisfactory fine-tuning consti-
tutes the well-known supersymmetric� problem. A further
constraint on the above texture comes from the top Yukawa
2160
coupling: it is order one if the up-type Higgs doublet has a
significant component of �‘1.

From the flavor physics perspective, it is interesting that
only the right-handed down-type quarks and the lepton or
Higgs doublets mix with the exotic states. Implications of
this phenomenon will be studied elsewhere. Finally, the
remaining exotic states mi and s�i have full rank mass
matrices and can be decoupled as well.

We have checked that the above decoupling is consistent
with vanishing of the D terms. This is implemented by
constructing gauge invariant monomials out of the singlets
[13] involved in the mass terms for the exotic states. The
F-flatness condition requires a more detailed study and
will be discussed elsewhere. Let us only mention that there
are plenty of F-flat directions in the field space, for ex-
ample, any direction in the 39-dimensional space of T2-,
T4- and U-sector non-Abelian singlets is F flat to all orders
as long as the singlets from T1;3 have zero VEVs. This is
enforced by theH-momentum selection rule for the SO(4)
plane. Whether the decoupling of all of the extra matter can
be done using exactly flat directions or it requires isolated
solutions to the Fi � Da � 0 equations is currently under
investigation. In any case, one can show that Fi � Da � 0
can be satisfied simultaneously on certain low-dimensional
manifolds in the field space, so the decoupling of extra
matter can be done consistently with supersymmetry.

The string selection rules have important implications
for the matter Yukawa couplings. In particular, in our setup
the only large Yukawa coupling is that of the top quark.
The reason is that, at the renormalizable level, the types of
couplings allowed by the space group and the H momen-
tum are UUU, T1T2T3, T1T1T4, UT2T4, UT3T3. The third
generation up-quark and quark doublet as well as the up-
type Higgs doublet (up to a mixing) are untwisted, so there
is an allowed Yukawa interaction of the type UUU whose
strength is given by the gauge coupling. The Yukawa
couplings involving the T3 sector vanish since there is no
SM matter in that sector. The coupling UT2T4 is incom-
patible with the SU�2�L � U�1�Y symmetry, while the cou-
pling T1T1T4 is prohibited due to either gauge invariance or
decoupling of the exotic down-type quarks required by
suppression of R-parity violation. Therefore, all quarks
and leptons apart from the top quark are massless at the
renormalizable level and their Yukawa interactions appear
due to higher order superpotential couplings. These are
suppressed when the involved singlets have VEVs below
the string scale.

An important feature of the model is that it admits
spontaneous supersymmetry breakdown via gaugino con-
densation [14]. The SO(6) group of the hidden sector is
asymptotically free and its condensation scale depends on
the matter content. The 6-plets and the 4; �4-plets of SO(6)
can be given large masses consistently with the string
selection rules. In this case, the condensation scale is in
the range �1011–1013 GeV depending on the threshold
corrections to the gauge couplings. Assuming that the
2-3



FIG. 3. A 6D orbifold GUT limit with a large SO(4)-plane
compactification radius.
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dilaton is fixed via the Kähler stabilization mechanism
[15], gaugino condensation translates into supersymmetry
breaking by the dilaton. The scale of the soft masses, m3=2,
depends on the details of dilaton stabilization and can be in
the TeV range.

Since our model has no exotic states at low energies and
admits TeV-scale soft masses, it is consistent with gauge
coupling unification. Then a natural question to ask is what
are the orbifold GUT limits [5–7] of this model. That is,
what is the effective field theory limit in the energy range
between the compactification scale and the string scale
when some of the compactification radii are significantly
larger than the others? Such anisotropic compactifications
may mitigate the discrepancy between the GUT and string
scales, and can be consistent with perturbativity for one or
two large radii of order �2� 1016 GeV��1 [16]. In our
model, the intermediate orbifold picture can have any
dimensionality between 5 and 10. For example, the 6D
orbifold GUT limits are [up to U(1) factors]:

SO�4� plane: bulk GUT � SU�6�; N � 2;
SU�3� plane: bulk GUT � SU�8�; N � 2;

G2 plane: bulk GUT � SU�6� � SO�4�; N � 4;

where the plane with a ‘‘large’’ compactification radius is
indicated and N denotes the amount of supersymmetry. In
all of these cases, the bulk � functions of the SM gauge
couplings coincide. This is because eitherGSM is contained
in a simple gauge group or there is N � 4 supersymmetry.
Thus, unification may occur below the string scale. (To
check whether this is the case, logarithmic corrections
from localized fields, contributions from vectorlike heavy
fields, and string thresholds have to be taken into account.)
The SM gauge group is obtained as an intersection of the
gauge groups at the different fixed points of the 6D orbifold
(Fig. 3).

In this Letter, we have presented a heterotic string model
which reproduces the spectrum of the minimal supersym-
metric SM and is consistent with gauge coupling unifica-
tion. The emerging picture has a simple geometrical
interpretation. The SM gauge group is obtained as an
intersection of the local E8 subgroups at inequivalent orbi-
fold fixed points. Two generations of quarks and leptons
12160
appear as 16-plets localized at the fixed points with un-
broken SO(10) symmetry, whereas the third ‘‘16-plet’’
involves both bulk and localized states. The Yukawa cou-
plings do not exhibit SO(10) relations. The top quark
Yukawa coupling is related to the gauge couplings, while
the other Yukawa couplings are due to nonrenormalizable
interactions. The model has a hidden sector which allows
for supersymmetry breaking via gaugino condensation.

Finally, let us remark that although this model is very
special, it is perhaps not unique. In the Z6-II orbifold with
the V6 shift given above, there are roughly 104 models
(some of them may be equivalent) with the SM gauge
group. O�102� of them have 3 matter generations plus
vectorlike exotic matter, whereas we have so far found
only one model where the vectorlike matter can be de-
coupled consistently with the string selection rules. We
plan to investigate this issue further. It would also be
interesting to understand the relation of this type of model
to other phenomenologically promising constructions [17].

We thank T. Kobayashi, H. P. Nilles, and S. Stieberger
for valuable discussions.
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