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Clinical significance and molecular annotation of 
cellular morphometric subtypes in lower-grade gliomas 
discovered by machine learning
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Abstract
Background.  Lower-grade gliomas (LGG) are heterogeneous diseases by clinical, histological, and molecular 
criteria. We aimed to personalize the diagnosis and therapy of LGG patients by developing and validating 
robust cellular morphometric subtypes (CMS) and to uncover the molecular signatures underlying these 
subtypes.
Methods.  Cellular morphometric biomarkers (CMBs) were identified with artificial intelligence technique from 
TCGA-LGG cohort. Consensus clustering was used to define CMS. Survival analysis was performed to assess the 
clinical impact of CMBs and CMS. A nomogram was constructed to predict 3- and 5-year overall survival (OS) of 
LGG patients. Tumor mutational burden (TMB) and immune cell infiltration between subtypes were analyzed using 
the Mann-Whitney U test. The double-blinded validation for important immunotherapy-related biomarkers was ex-
ecuted using immunohistochemistry (IHC).
Results. We developed a machine learning (ML) pipeline to extract CMBs from whole-slide images of tissue histology; 
identifying and externally validating robust CMS of LGGs in multicenter cohorts. The subtypes had independent pre-
dicted OS across all three independent cohorts. In the TCGA-LGG cohort, patients within the poor-prognosis subtype 
responded poorly to primary and follow-up therapies. LGGs within the poor-prognosis subtype were characterized by 
high mutational burden, high frequencies of copy number alterations, and high levels of tumor-infiltrating lympho-
cytes and immune checkpoint genes. Higher levels of PD-1/PD-L1/CTLA-4 were confirmed by IHC staining. In addition, 
the subtypes learned from LGG demonstrate translational impact on glioblastoma (GBM).
Conclusions. We developed and validated a framework (CMS-ML) for CMS discovery in LGG associated with spe-
cific molecular alterations, immune microenvironment, prognosis, and treatment response.
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Key Points

•	 CMS-ML discovers robust CMS in LGG and enables accurate patient stratification.

•	 CMSs are significantly associated with clinical outcomes.

•	 CMSs are significantly associated with specific molecular alterations and immune 
microenvironment.

Graphical Abstract
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Importance of the Study

LGGs are highly heterogeneous both at the histopatho-
logical and molecular level reflected in significant var-
iability in clinical outcomes. Therefore, to personalize 
care and treatment of LGG patients, accurate and ro-
bust patient stratification, which is significantly associ-
ated with clinical outcomes, is mandatory. In this study, 
we developed and multicentrically validated a frame-
work (CMS-ML) for CMS discovery in LGG associated 

with specific molecular alterations, immune microenvi-
ronment, prognosis, and treatment response. And the 
subtypes learned from LGG demonstrate translational 
impact on glioblastoma. Our findings have potential 
clinical implications to facilitate precision diagnosis 
and personalized treatment of LGG patients. In addition, 
CMS-ML may provide potential clinical value across 
tumor types.

Gliomas is the most common primary central nervous 
system (CNS) malignant tumor, accounting for ~80% 
of all CNS malignancies.1 According to the 2007 WHO 
classification, gliomas were categorized into grades 
1-4.2 The 2021 WHO classification3 introduced a para-
digm shift in the classification of CNS tumors combining 
histopathologic and genotypic features4 to reveal an 

“integrated” diagnosis. Factors affecting overall survival 
(OS) include age >40 years, astrocytic subtype, tumor max-
imum diameter >6 cm, tumors crossing the midline, and 
the patient’s degree of neurological impairment, Karnofsky 
performance score, multiple lesions, IDH-mutant status, 
1p19q status, TERT mutation status, and ATRX mutation 
status.5–8 Moreover, lower-grade gliomas (LGGs) are highly 
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heterogeneous both at histopathological and molecular 
levels,4,9 resulting in significant variability in clinical out-
comes.9,10 Therefore, to personalize care and treatment of 
LGG patients, accurate and robust patient stratification, 
which is significantly associated with clinical outcomes, is 
mandatory.

Cellular morphometric properties play key roles in 
cancer diagnosis and prognosis together with important 
molecular factors. Recently, deep neural networks (eg, con-
volutional neural network [CNN]) have been successfully 
applied in several glioma-related studies.11–13 However, the 
quantitative profiling and molecular association of the cel-
lular morphometric landscape from whole-slide images 
(WSIs) remain inadequately investigated due to both tech-
nical and conceptual limitations.

To capture the heterogeneous cytoarchitecture of 
gliomas, we developed a high-throughput and robust 
computational pipeline that quantifies tissue histology at 
the cellular level14 with applications to tumor classifica-
tion15 and molecular association.16 In addition, we intro-
duced stacked predictive sparse decomposition (SPSD)17 
for mining underlying cellular morphometric properties 
within WSI. Here, we applied SPSD to LGG cohorts to dis-
cover clinically relevant cellular morphometric subtypes 
(CMSs) and evaluate the clinical impacts and molecular 
correlation of CMSs.

Methods

Data Collection

The patient data in this retrospective study, including 
tissue histology diagnostic slides and the clinical in-
formation, were collected from TCGA-LGG cohort 
(Supplementary Table 1), Zhongnan Hospital of Wuhan 
University (ZN-LGG cohort, between January 2016 and 
May 2019, Supplementary Table 2), the Medical Center of 
Stanford University (SU-LGG cohort, between January 
2013 and December 2014, Supplementary Table 3), TCGA-
GBM cohort (Supplementary Table 4), and Zhongnan 
Hospital of Wuhan University (ZN-GBM cohort, between 
January 2016 and May 2019, Supplementary Table 5) to 
form the discovery cohort and multicenter validation co-
horts. The inclusion criteria were primary LGG and GBM 
with diagnostic slides and OS information available. This 
study was approved by the institutional review board 
(IRB) of Zhongnan Hospital of Wuhan University, Stanford 
University, and Lawrence Berkeley National Laboratory, 
with a waiver of informed consent.

Treatment Response in TCGA-LGG Cohort

The treatment response in TCGA-LGG cohort was as-
sessed using Response Evaluation Criteria in Solid Tumors 
(RECIST)18 as complete remission, partial remission, pro-
gressive disease, and stable disease. Here, we categorized 
patient response into Response (including complete/par-
tial remission), and non-Response (including progressive/
stable disease).

Identification of Cellular Morphometric 
Biomarkers

We developed an unsupervised machine learning pipeline 
based on SPSD17 for the discovery of underlying cellular 
morphometric characteristics from the 15 cellular mor-
phometric features extracted from the WSIs of TCGA-LGG 
cohort (Supplementary Method 1). We then identified 256 
cellular morphometric biomarkers (CMBs) for cellular 
object representation. Specifically, we used a single net-
work layer with 256 dictionary elements (ie, CMBs) and 
sparsity constraint 30 at a fixed random sampling rate 
of 1000 cellular objects per WSI from TCGA-LGG cohort 
(Supplementary Figure 2A), where the network parameters 
(ie, dictionary size and sparsity) were experimentally opti-
mized to maintain the data reconstruction error ratio under 
certain threshold (ie, 10% in this study, Supplementary 
Figure 2B and C). The pre-trained SPSD model recon-
structed each cellular object as a sparse combination of 
pre-identified 256 CMBs, and thereafter represented it as 
the sparse code (ie, reconstruction sparse coefficients), 
where the sparsity constraint enforced the reconstruction 
contribution mainly from the top 30 CMBs.

Clinical and Biological Evaluation of CMBs

We evaluated the prognostic impact of the top 30 CMBs 
with largest variations mined from TCGA-LGG cohort 
with Cox proportional hazards regression (CoxPH) 
model (survival package in R, Version 3.2-3), and exam-
ined the effects of high or low levels of each prognostic 
significant CMB on OS using Kaplan-Meier analysis 
(survminer package in R, Version 0.4.8) and log-rank 
test (survival package in R, Version 3.2-3), where TCGA-
LGG cohort was divided into CMB-high and CMB-low 
groups per CMB (survminer package in R, Version 0.4.8). 
Meanwhile, we evaluated biological significance be-
tween these groups by assessing their relationship with 
factors available in TCGA-LGG cohort using the Mann-
Whitney U test.

Construction of Patient-level Cellular 
Morphometric Context Representation

The patient-level representation was constructed based 
on pre-identified 256 CMBs as an aggregation (ie, max-
pooling) of all the cellular sparse codes extracted via pre-
built SPSD model from the cellular objects belonging to 
the same patients following these steps consecutively: 
(1) delineation of cellular architecture and extraction of 
cellular morphometric properties from WSIs of each pa-
tient; (2) construction of cellular sparse codes for the 
cellular objects belonging to each patient based on pre-
identified 256 CMBs and pre-built SPSD model; (3) ag-
gregation (ie, max-pooling) of all cellular sparse codes 
belonging to the same patient to form the patient-level 
cellular morphometric representation; and (4) selection 
of the top 30 CMBs with the largest variations identified 
in TCGA-LGG cohort as the final patient-level cellular 
morphometric representation.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
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Identification and Application of CMS

The CMS was identified based on patient-level cellular 
morphometric context representation through consensus 
clustering19 (ConsensusClusterPlus R package, Version 
1.50.0) with hierarchical clustering, Pearson’s correlation, 
and 500 bootstrapping iterations; and the optimal number 
of subtypes was determined by the consistency of cluster 
assignment (consensus matrix) and the prognostic impact 
of subtypes. For a new patient, the subtype was assigned 
as follows: (1) construct patient-level cellular morpho-
metric context representation with pre-built CMBs and 
SPSD model; (2) calculate the Pearson’s distances between 
the new patient’s representation and the mean representa-
tion of each pre-identified patient subtype; and (3) assign 
the new patient to its closest subtype yielding smallest 
Pearson’s distance.

Clinical Evaluation and Validation of CMS

We evaluated and independently validated the clinical 
impact of pre-identified CMSs from TCGA-LGG cohort, 
ZN-LGG cohort, SU-LGG cohort, TCGA-GBM cohort, and 
ZN-GBM cohort, respectively. Refer to Supplementary 
Method 2 for details.

Differences in Gene Expression, Mutation Load, 
and Immune Microenvironment Between CMSs

We evaluated the differences in gene expression, muta-
tion load, and immune microenvironment between CMSs. 
Refer to Supplementary Methods 3 for details.

Immunohistochemistry Staining

Immunohistochemistry (IHC) staining was carried out on 
4-µm sections of formalin-fixed and paraffin-embedded tis-
sues according to standard protocols (see Supplementary 
Method 4 for details).

Statistical Analysis

Refer to Supplementary Method 5 for details.

Results

Study Design and Characteristics of 
Patient Cohorts

We used three retrospective LGG cohorts to evaluate and 
independently validate the prognostic impact of CMSs; 
and used two retrospective GBM cohorts to evaluate the 
generalizability and translational impact of LGG-driven 
CMSs in GBM (Figure 1). The TCGA-LGG cohort served as 
discovery set including 488 LGG patients. There were 271 
(55.5%) male and 217 (44.5%) female patients, with a me-
dian age of 41 years (range: 14-87 years). The ZN-LGG co-
hort included 70 LGG patients, where 36 patients (51.4%) 

were male and 34 (48.6%) were female. Median age was 
47.0  years (range: 6-72  years). The SU-LGG cohort in-
cluded 37 LGG patients, where 22 patients (59.5%) were 
male and 15 (40.5%) were female, and the median age was 
41.0  years (range: 1-83  years). The TCGA-GBM cohort in-
cluded 380 GBM patients, where 145 patients (38.2%) were 
male and 234 (61.6%) were female and the median age was 
59.0  years (range: 10-89  years). The ZN-GBM cohort in-
cluded 77 GBM patients, where 23 patients (29.9%) were 
male and 53 (68.8%) were female and the median age was 
56.0 years (range: 5-81 years).

Identification of CMBs Using Unsupervised 
Representation Learning

Our pipeline14 recognized and delineated over 400 mil-
lion cellular objects from TCGA-LGG chort; over 25 million 
cellular objects from ZN-LGG cohort; over 10 million cel-
lular objects from SU-LGG cohort; over 400 million cel-
lular objects from TCGA-GBM cohort; and over 25 million 
cellular objects from ZN-GBM cohort, where each cellular 
object was represented with 15 morphometric proper-
ties (Supplementary Figure 1A, Supplementary Table 6, 
Supplementary Method 1).

Next, we trained SPSD17 model based on pre-
quantified cellular objects randomly selected from 
TCGA-LGG cohort to discover the CMBs (Supplementary 
Figure 2). After training, the pre-built SPSD model recon-
structed each cellular object as a sparse combination 
of the pre-identified 256 CMBs, which led to the novel 
representation of each single cellular object as the 256 
sparse codes. Thereafter, the corresponding 256-dimen-
sional cellular morphometric context representation of 
each patient was an aggregation (Supplementary Figure 
1B) of all delineated cellular objects belonging to that 
patient (Supplementary Tables 7–11). The final patient-
level cellular morphometric context representation was 
optimized by using the top 30 CMBs with the largest var-
iations (sparsity constraint of SPSD model), which con-
tributed to 98.84% of the total data variations.

Clinical and Biological Evaluation of CMBs

We next evaluated the association of the 30 CMBs with 
respect to histological meanings, prognosis, and cancer 
biology. Our survival analysis revealed that 20 CMBs 
had significant prognostic impact (false discovery rate 
[FDR] < 0.05), where 5 of them were prognostically fa-
vorable (hazard ratio [HR] < 1) and 15 prognostically un-
favorable (HR > 1)  (Figure 2A, Supplementary Figure 3, 
Supplementary Table 12). Examples of prognostically 
significant CMBs (Figure 2A, Supplementary Figure 3) 
demonstrated the capability of our pipeline in acquiring 
biomedically meaningful and interpretable histopatho-
logical cellular concepts (Supplementary Table 13). For 
example, these CMBs captured atypical nuclear contour 
(eg, CMB_139, CMB_115, CMB_152, CMB_131), nuclear 
pleomorphism with increasing variation in nuclear size, 
shape (eg, CMB_208) or multinucleated tumor cells (eg, 
CMB_145), etc.

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
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Additionally, the TCGA-LGG patient cohort was di-
vided into two groups based on each CMB. The Kaplan-
Meier curves showed significant impact (P < .01, Figure 
2B, Supplementary Figure 4) of the levels of each CMB 
on OS. Thereafter, we evaluated biological significance 

between patient groups with high and low CMB levels 
in the TCGA-LGG cohort and discovered significant cor-
relations (P < .05) with tumor microenvironment fac-
tors, including the relative abundance of tumor immune 
cells and fibroblast,20 and predictors of immunotherapy 
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Fig. 1  Graphical illustration of our study.
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response (Figure 2C, Supplementary Figures 5 and 6). 
Levels of prognostically favorable CMBs correlated neg-
atively, whereas levels of prognostic unfavorable CMBs 
correlated positively with tumor-infiltrating immune 
cells and the expression levels of PD-1 and PD-L1, but 
not to fibroblasts (P > .05; Figure 2C, Supplementary 
Figures 5 and 6). Finally, we detected a significant cor-
relation between focal somatic copy number alteration 
(SCNA) and tumor mutational burden (TMB) (P < .05; 
Figure 2D).

Identification and Validation of CMS

Consensus cluster analysis using 30 CMBs identified three 
CMSs from TCGA-LGG cohort with significantly differing 
prognosis (log-rank P < .0001; Supplementary Figure 7). 

Given the small number of patients (n = 4) in subtype 3, 
as well as its prognostic similarity to subtype 2 patients, 
we merged subtypes 3 and 2, and referred this combi-
nation as subtype 2 in the rest of this study (Figure 3A). 
Accordingly, the TCGA-LGG cohort contained 389 subtype 
1 and 99 subtype 2 patients. The patient-level cellular mor-
phometric context representation in TCGA-LGG cohort 
formed significantly distinct clusters (P = .001, Figure 3B). 
Importantly, two CMSs, predicted with pre-built subtype 
model, were portioned in two validation sets. Specifically, 
ZN-LGG cohort was stratified into subtype 1 (38 patients) 
and subtype 2 (32 patients), whereas SU-LGG cohort was 
stratified into subtype 1 (16 patients) and subtype 2 (21 pa-
tients). Moreover, the patient-level representation in both 
validation cohorts also formed significantly distinct clus-
ters (P = .001, Figure 3C and D).
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Fig. 3  Lower-grade glioma (LGG) patient subtype provides significant and independent prognostic impact. (A) Consensus clustering model for 
LGG patient subtypes discovery and inference; (B–D) subtype-specific patients in TCGA-LGG, ZN-LGG, and SU-LGG cohorts form distinct clusters 
in patient-level cellular morphometric context space; (E–G) subtype-specific patients in TCGA-LGG, ZN-LGG, and SU-LGG cohort show significant 
difference in survival; (H–J) patient subtype in TCGA-LGG, ZN-LGG, and SU-LGG cohort is a significant and independent prognostic factor.
  



75Liu et al. Cellular morphometric subtypes in lower-grade gliomas
N

eu
ro-

O
n

colog
y

Clinical Significance of CMSs

We examined the association between CMSs and clin-
ical and tumor characteristics in TCGA-LGG cohort. 
Surprisingly, there was no significant association be-
tween CMSs and any clinical/molecular prognostic fac-
tors (including age, grade, histological type, IDH mutation 
status, 1p/19q codeletion, MGMT promoter status, TERT 
promoter status, and ATRX status) (Supplementary Table 
1). This finding was confirmed in both validation cohorts 
(Supplementary Tables 2 and 3).

In the TCGA-LGG cohort where genetic alteration burden 
information was available, Maftool analysis showed sig-
nificantly higher TMB (P  =  .003) and focal SCNA score 
(P = .012) in subtype 2 patients (Supplementary Figure 8), 
indicating a higher level of genomic instability of tumors 
from subtype 2.

Kaplan-Meier analysis showed significantly shorter 
OS of subtype 2 than subtype 1 patients (P = .001, Figure 
3E). Furthermore, univariate and multivariate CoxPH 
models indicated the independent prognostic impact of 
CMSs in TCGA-LGG cohort after adjusting for other sig-
nificant clinical and molecular factors, including age, 
histological type, grade, IDH mutation status, and ATRX 
mutation status (HR: 1.773, 95% CI: 1.066-2.947, P = .027; 
Figure 3H, Supplementary Table 14). The combination of 
CMSs and clinical and molecular factors provided sig-
nificantly improved (P < .001, Supplementary Figure 9) 
prediction of OS (median C-index: 0.860, 95% CI: 0.859-
0.861) compared to classical models with only clinical and 
molecular factors (median C-index: 0.857, 95% CI: 0.856-
0.858). Moreover, the nomogram (Figure 4A), built upon 
patient subtype and clinical and molecular factors, sig-
nificantly correlated with OS of TCGA-LGG patients, and 
provided excellent prediction [C-indexes for validation 
on the training set and testing set with 1000 bootstraps 
were 0.8334 (95% CI: 0.8322-0.8345) and 0.8014 (95% CI: 
0.8001-0.8026), respectively] of the 3- and 5-year OS of 
TCGA-LGG patients, which was further confirmed by cal-
ibration analysis on the training (Figure 4B and C) and 
testing set (Figure 4D and E), respectively. Meanwhile, a 
dynamic nomogram further facilitated its potential clin-
ical implications at: https://liuxiaoping.shinyapps.io/LGG_
nomogram. Additionally, the chi-square test showed 
significantly poor response of subtype 2 patients with re-
spect to primary therapy (P  <  .001) and follow-up treat-
ment (P = .002) (Supplementary Table 1).

Importantly, the double-blind deployment of the pre-built 
CMS model on both validation cohorts with independent 
survival analysis confirmed the significantly worse OS of 
subtype 2 patients (P = .027 in ZN-LGG, P = .005 in SU-LGG, 
Figure 3F and G). Furthermore, univariate and multivariate 
CoxPH models confirmed the independent prognostic im-
pact of CMSs after adjustment for other significant clinical 
factors in both validation cohorts (ZN-LGG: HR: 4.776, 95% 
CI: 1.29-17.686, P = .019; SU-LGG: HR: 9.392, 95% CI: 1.944-
45.373, P = .005; Figure 3I and J, Supplementary Tables 15 
and 16).

Interestingly, the direct translation of the pre-built CMS 
model on TCGA-GBM and ZN-GBM cohorts confirmed 
the clinical impact of CMS learned from LGG on GBM pa-
tients (Supplementary Figure 10). Consistent with our 

observations on LGG cohorts, GBM patients in both co-
horts were stratified into distinct clusters (P  =  .001 in 
TCGA-GBM; P  =  .001 in ZN-GBM; Supplementary Figure 
10A and B), and the subtype 2 GBM patients demonstrated 
significantly worse OS compared with subtype 1 GBM 
patients (P  =  .00051 in TCGA-GBM; P < .001 in ZN-GBM; 
Supplementary Figure 10C and D). Furthermore, univar-
iate and multivariate CoxPH models confirmed the inde-
pendent prognostic impact of CMSs in GBM patients after 
adjusting for significant clinical/molecular factors in both 
GBM cohorts (TCGA-GBM—HR: 1.457, 95% CI: 1.002-2.117, 
P = .049; ZN-GBM—HR: 3.101, 95% CI: 2.006-7.491, P < .001; 
Supplementary Figure 10E and F, Supplementary Tables 17 
and 18). Furthermore, restricted mean survival time (RMST)21 
analysis on both LGG and GBM patients (Supplementary 
Table 19) suggested the difference in follow-up times across 
cohorts had no significant influence on the prognostic value 
of CMS.

Lastly, we performed pooled analysis combing all LGG 
and GBM patients into Pooled-LGG (595 patients) and 
Pooled-GBM (457 patients) cohorts, respectively. The 
pooled analysis confirmed (1) the significantly distinct strat-
ification of patients (Pooled-LGG: P = .001, Supplementary 
Figure 11A; Pooled-GBM: P =  .001, Supplementary Figure 
12A); (2) the significantly worse OS of subtype 2 patients 
(Pooled-LGG: P < .001, Supplementary Figure 11B; Pooled-
GBM: P < .001, Supplementary Figure 12B); and (3) the 
independent prognostic impact of CMSs in both pooled 
cohorts (Pooled-LGG—HR: 2.315, 95% CI: 1.617-3.315, 
P < .001, Supplementary Figure 11C, Supplementary Table 
20; Pooled-GBM—HR: 1.57, 95% CI: 1.206-2.044, P  =  .001, 
Supplementary Figure 12C, Supplementary Table 21). 
Interestingly, OS difference between LGG subtypes was 
independent of tumor grade (Grade2: P  =  .037; Grade3: 
P < .0001; Supplementary Figure 11D) and histology types 
(Astrocytoma: P  =  .0046, Oligodendroglioma: P  =  .012, 
Oligoastrocytoma: P = .0013; Supplementary Figure 11E), 
further demonstrating the independent clinical value of 
CMSs.

Molecular Annotation Underlying CMSs

To gain insight into molecular differences underlying CMSs, 
we used available transcriptome data from TCGA-LGG and 
identified 316 differentially expressed genes (DEGs) be-
tween CMSs (|log2FC| > 1, P < .001, Supplementary Figure 
13A, Supplementary Table 22), where 147 and 169 genes 
were upregulated and downregulated, respectively, in 
subtype 2 compared to subtype 1.  Gene ontology (GO) 
functional enrichment analysis of DEGs demonstrated 
significant enrichment (FDR < 0.05) for biological pro-
cesses involving hemostasis, keratinization, intermediate 
filament organization, humoral immune response, reg-
ulation of ERK1 and ERK2 cascade, positive regulation 
of acute inflammatory response (Supplementary Figure 
13B, Supplementary Table 23); Cellular component GO 
terms significantly enriched (FDR < 0.05) in the DEGs in-
cluded intermediate filament, blood microparticle, cluster 
of actin-based cell projections, collagen-containing extra-
cellular matrix, and trans-Golgi network transport vesicle 
(Supplementary Figure 13C, Supplementary Table 24), 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
https://liuxiaoping.shinyapps.io/LGG_nomogram
https://liuxiaoping.shinyapps.io/LGG_nomogram
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noac154#supplementary-data


 76 Liu et al. Cellular morphometric subtypes in lower-grade gliomas

  

Points

A

B

D

C

E

0 10 20 30 40 50 60 70 80 90 100

15 20 25 30 35 40 5045 55 60 65 70 75

0

–2 –1.5 –1 –0.5

0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0.9

Training1.0

0.8

0.6

A
ct

ua
l 3

–y
ea

r 
O

S
 (

pr
op

or
tio

n)

0.4

0.2

0.0

0.0 0.2 0.4
Nomogram–predicted probability of 3–year overall survival

0.6 0.8 1.0

Testing1.0

0.8

0.6

A
ct

ua
l 3

–y
ea

r 
O

S
 (

pr
op

or
tio

n)

0.4

0.2

0.0

0.0 0.2 0.4
Nomogram–predicted probability of 3–year overall survival

0.6 0.8 1.0

Training1.0

0.8

0.6

A
ct

ua
l 5

–y
ea

r 
O

S
 (

pr
op

or
tio

n)

0.4

0.2

0.0

0.0 0.2 0.4
Nomogram–predicted probability of 5–year overall survival

0.6 0.8 1.0

Testing1.0

0.8

0.6

A
ct

ua
l 5

–y
ea

r 
O

S
 (

pr
op

or
tio

n)

0.4

0.2

0.0

0.0 0.2 0.4
Nomogram–predicted probability of 5–year overall survival

0.6 0.8 1.0

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

0 0.5 1 1.5 2 2.5 3 3.5

20 40 60 80 100 140120 160 180 200 220

Age

IDH Status
Mutant

Mutant

WT

WT

3

1

2

2
Grade

ATRX Status

Subtype

Total points

Linear predictor

3-year survival probability

5-year survival probability
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at 5 years in the test set of TCGA-LGG cohort.
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Fig. 5  (A) Patient subtypes in TCGA-LGG cohort show significant difference in various tumor microenvironmental factors. (B) Immunohistochemistry 
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tients (scale bar = 100 µm).
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whereas molecular function GO terms (FDR < 0.05) in-
cluded structural constituent of cytoskeleton and cytokine 
activity (Supplementary Figure 13D, Supplementary Table 
25). KEGG analysis indicated that DEGs were significantly 
enriched (FDR < 0.05) in neuroactive ligand-receptor in-
teraction, cytokine-cytokine receptor interaction, IL-17 
signaling pathway, complement and coagulation cascades, 
and Staphylococcus aureus infection (Supplementary 
Figure 13E, Supplementary Table 26). Moreover, protein-
protein interaction (PPI) network analysis suggested that 
72 genes with a degree no less than 5 were at the hub of 
the network (Supplementary Table 27, Supplementary 
Figure 14). Together these findings suggest possible differ-
ences in the molecular mechanisms of CMSs.

Association of CMSs With Tumor Immune 
Microenvironment

Based on the molecular annotation of DEGs between 
CMSs, we investigated their association with the immune 
microenvironments. Subtype 2 (Figure 5A) showed signif-
icantly more infiltrating B cells (P  =  .027), dendritic cells 

(P =  .024), eosinophils (P =  .033), macrophages (P =  .02), 
mast cells (P = .0034), natural killer (NK) cells (P = .01), neu-
trophils (P = .025), gamma delta T cells (P = .0097), T reg-
ulatory cells (P = .0042), macrophages M1 (P = .003), and 
monocytes (P = .029) compared to subtype 1. There was a 
trend toward increased abundance of CD4+ T cells (P = .065), 
CD8+ T cells (P = .057), and plasma cells (P = .072) in sub-
type 2. Moreover, the T-cell infiltration score (P  =  .00097) 
and overall immune infiltration score (P = .029) were signif-
icantly higher in subtype 2 (Figure 5A). Importantly, we val-
idated the immune infiltrations in the ZN-LGG cohort using 
IHC (Figure 5B, Supplementary Figure 15), and confirmed 
the significantly more infiltrating T cells (CD3+) (P = 1.3E-6), 
B cells (CD20+) (P = .00042), and macrophages M1 (CD80+) 
(P = .037) in subtype 2 patients. In addition, no statistical 
difference of macrophages M2 (CD163+) (P = .57) between 
CMSs was found.

To explore the possibility of immune escape in sub-
type 2 LGG patients, we examined expression levels of 
immune suppression molecules CTLA-4, PD-1, the li-
gand of PD-1 (ie, PD-L1), HAVCR2, LGALS9, CD86, LAG3, 
PDCD1LG2, CD28, CD96, CD80, and IDO1. In TCGA-LGG 
(Figure 6A, Supplementary Figure 16), the expression of 
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PD-1 (P  =  .00044), PD-L1 (P  =  .03), PDCD1LG2 (P  =  .014), 
CD96 (P = .016), CD28(P = .031), CD80 (P = .002), and CD86 
(P = .043) were significantly higher in subtype 2 patients, 
with a similar trend for CTLA-4 (P  =  .17), TIM3(P  =  .055), 
LGALS9 (P = .34), LAG3(P = .14), and IDO1(P = .09). Finally, 
we validated the expression levels of these immune in-
hibitory molecular markers in ZN-LGG using IHC and con-
firmed significant upregulation of PD-1 (P = 8e-05), PD-L1 
(P = .018), and CTLA-4 (P = .00089) in subtype 2 (Figure 6B 
and C). Overall, these results indicated possible mechan-
isms for immune escape or immune tolerance in subtype 
2 tumors, which could explain the poor prognosis of sub-
type 2 patients and laid the foundation of potential immu-
notherapy for LGG patients.

Discussion

In this study, we extracted CMBs from WSIs of LGG patients 
through unsupervised learning strategy and subsequently 
defined two CMSs. Different from classical biomarkers, the 
CMBs act as imaging biomarkers capturing the heteroge-
neity in cellular properties and their microenvironments, 
which could be further explored as a future direction. The 
robustness of CMSs was demonstrated in two independent 
LGG cohorts. Interestingly, although a minority of GBM 
arises through the progression from LGG, the relevance 
of CMSs from LGG was shown to have prognostic value 
in GBM in two independent GBM cohorts, possibly related 
to common tumor microenvironments between LGG and 
GBM captured in CMSs. Although the HR of CMS was not 
as large as the HRs of well-known prognostic factors in 
gliomas (eg, grade, IDH mutation status), the importance of 
CMSs lies in its independent prognostic significance after 
adjusting for other clinical and molecular factors; the rela-
tion to immunosuppressive tumor microenvironments; the 
association with treatment response; and the relation to 
underlying molecular and phenotypic alterations.

Different from many CNN-like systems, which mainly 
focus on end-to-end prediction of clinical/molecular 
endpoints, the emphasis of our study was on novel knowl-
edge discovery with interpretability, robustness, and inde-
pendent clinical value through multicentric validation. As 
a further justification, we evaluated a superior CNN-like 
system (ie, SCNN [survival CNN]), specifically designed 
and optimized for the prediction of cancer outcomes in 
brain tumor.22 Interestingly, the SCNN risk score did not 
provide independent and significant prognostic value in 
both TCGA-LGG (P = .182, Supplementary Figure 17A) and 
TCGA-GBM (P = .533, Supplementary Figure 17B) cohorts, 
in the presence of CMS and other important clinical/molec-
ular factors, suggesting that CMS out-performed the super-
vised CNN-like system (ie, SCNN) for precision prognosis.

SCNA score, closely related to the occurrence and pro-
gression of many tumors (including glioma), is related to 
poor prognosis.23 Meanwhile, TMB levels, closely related 
to degree of malignancy and poor prognosis of glioma, 
are often used as a biomarker for predicting the efficacy 
of anti-PD-1 therapy.24,25 Our study confirmed significantly 
higher focal SCNA scores and TMB levels in subtype 2 pa-
tients, which explains the poor prognosis and provides 

justification for anti-PD-1 immunotherapy for subtype 2 
patients.

Our KEGG analysis suggested that DEGs were signifi-
cantly enriched (FDR < 0.05) in neuroactive ligand-receptor 
interaction, cytokine-cytokine receptor interaction, IL-17 
signaling pathway, complement and coagulation cascades, 
and S. aureus infection, which were closely associated with 
the diagnosis and/or prognosis of glioma.26–30 Moreover, 
IL-6, at the hub of the PPI network (Supplementary Figure 
14), was recognized as an indicator for the oncogen-
esis, invasiveness, prognosis, and treatment of patient 
with glioma.31–33 In addition, through oncoKB database, 
we found that MET (mesenchymal-epithelial transition, 
one of the hub DEGs), as a receptor tyrosine kinase, was 
selected as a target for various drugs in lung cancer, such 
as Capmatinib, Tepotinib, Capmatinib, and Tepotinib, etc. 
Together, these findings explained the prognostic role 
and treatment implications of CMS in glioma at the mo-
lecular level (detailed discussion refer to Supplementary 
Discussion 1).

The tumor immune microenvironment plays an impor-
tant role in tumor progression. In glioma, NK cells, macro-
phages, neutrophils, CD4+ T cells, CD8+ T cells, regulatory 
T cells, etc. influence disease outcome.34 Molinaro et al35 
evaluated immune cell fractions and epigenetic age in 
glioma patients and found that IDH/1p19q/TERT-WT pa-
tients had lower lymphocyte fractions (CD4+ T, CD8+ T, NK, 
and B cells) and higher neutrophil fractions than people 
without glioma, suggesting that common host immune 
factors among different glioma types may affect survival. 
Consist with previous studies, we showed that T cells (in-
cluding CD4+ T cells, CD8+ T cells, gamma delta T cells, reg-
ulatory T cells), B cells, plasma cells, macrophages, NK 
cells, neutrophils, mast cells, etc. were higher in subtype 
type 2 patients, suggesting higher immune infiltration in 
tumors of subtype 2 patients. Moreover, we examined 
expression levels of immune inhibitory receptor CTLA-4 
and PD-1 and the ligand of PD-1 (ie, PDCD1L1), HAVCR2, 
LGALS9, CD86, LAG3, PDCD1LG2, CD28, CD96, CD80, and 
IDO1. The expression levels of these immune suppression 
molecules (Figure 6A, Supplementary Figure 16) were 
significantly or tend to be significantly higher in the poor-
prognosis subtype.

CTLA-4 inhibits T-cell activation by inducing antigen-
presenting cells to express CD80 and CD86.36 Regulatory 
T cells can inhibit T-cell function by secreting IL-10 and 
TGF-β.37 Studies have reported that neutrophil infiltra-
tion in tumor tissues can promote tumor progression 
and metastasis, and in glioma, neutrophils can pro-
mote tumor proliferation by inducing angiogenesis.38–40 
NK cells are an important component of the human im-
mune system. However, Poli et al showed that NK cells 
are in a state of inactivation in glioma.41 These results 
indicated possible mechanisms for immune escape or 
immune tolerance due to the influence of immunosup-
pressive cell (eg, regulatory T cells) infiltration, T-cell 
function inactivation, and other factors in the poor sub-
type tumors, which could explain the poor prognosis 
of subtype 2 patients in spite of more immune cells en-
riched in this subtype. Given the role of these immu-
nosuppressive molecules in cancer immunotherapy, 
CMS also lays the foundation to select patients for the 
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targeted immunotherapy.34 Surprisingly, there was no 
significant association between PIK3CA/PIK3R1 muta-
tion or CDKN2A/B copy number alternation and CMBs 
(Supplementary Figures 18 and 19); also, no significant 
association between homologous recombination defi-
ciency and CMS was identified (Supplementary Figure 
20), despite their clinical value in gliomas.42,43

This study has some shortcomings. First, relatively 
few LGG patients were included in the validation co-
horts, so the conclusions of this study need further 
verified in large-scale studies. Second, the prevalence 
of subtype 2 was potentially due to the differences in 
patient population across hospitals. Nevertheless, our 
findings demonstrated the robustness and significant 
clinical value of CMS in all five cohorts. However, further 
large-scale studies are still needed to evaluate the im-
pact of population difference on CMS before its utility in 
clinical practice. Third, our findings raise the possibility 
that subtype 2 LGG patients could benefit from anti-PD-1 
immunotherapy; however, since LGG patients have not 
been recommended for anti-PD-1 immunotherapy based 
on existing clinical practice, we could not find any retro-
spective dataset to test this and will investigate it in our 
future prospective study.

In conclusion, we developed a pathology image-based 
LGG subtyping that seems to stratify LGG patients into 
two groups with different OS associated with treatment re-
sponses, copy number alterations, and TMB levels and im-
mune tolerance. It provides a cost-effective solution with 
potential applicability worldwide in current clinical settings 
(Supplementary Table 28).

Supplementary Material

Supplementary material is available at Neuro-Oncology 
online.
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