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ABSTRACT OF THE DISSERTATION 

 

Non-epistemic Values in Model Building, Theory Testing, and Communication in Science 

by 

Alysha Kassam 

Doctor of Philosophy in Logic and Philosophy of Science 

University of California, Irvine, 2021 

Professor Cailin O’Connor, Chair 

 

 

Scientific practice has long portrayed itself as objective, in the sense that it is guided by 

epistemic values that are independent of ethical, social and political thought. The worry scientists 

have long had is that moral or political reasoning undermines science, as it contaminates the 

search for truth with social, political and ethical priorities and motives. However, there are many 

ways in which science is responsible to society, as the fruits of science are often used in value- 

laden settings. For instance, consider how science bears on the distribution of resources 

(Greenberg 2001, Kitcher 2001), or the evaluation of risks (Beck 1992, Douglas 2009, Hempel 

1965), or how it shapes the material conditions of our lives (Winner 1986, Scolve 1995, Kitcher 

2001). When one considers this more seriously, a clear separation between science and social 

concerns starts to seem less plausible. For this reason, feminist philosophers of science have 

criticized the value-free ideal, pointing out that non-epistemic values (i.e., social, political, 

ethical values) are not only unavoidable, but also often critical to proper scientific reasoning. 

Grappling with the notion that non-epistemic values play an important role in scientific 

reasoning, philosophers have asked themselves: when and how do non-epistemic values serve a 
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permissible role? The purpose of this chapter is to survey the various responses to this question 

in the philosophical literature.  

In this dissertation, I will first describe the value-free ideal and the challenges that have 

been lodged against it. The subsequent discussion will center on philosophers’ proposed criteria 

of distinguishing between non-epistemic values that play a permissible versus impermissible role 

in scientific reasoning. I will then highlight some philosophical perspectives on the types of 

ethical considerations important to scientific reasoning. Finally, the dissertation project will close 

with a discussion on how non-epistemic values are often embedded in mathematical modeling 

work and what implications should be drawn from this.  
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INTRODUCTION 

 
My dissertation project centers on science policy and the role of scientific expertise in 

democracy. The project is motivated by the current debate over the ideal of value-free science. 

Scientific practice has long portrayed itself as objective, in the sense that it is guided by 

epistemic values that are independent of ethical, social and political thought. The worry scientists 

have long had is that non-epistemic values undermine the objectivity of science by 

contaminating the search for truth with social, political and ethical priorities and motives. 

However, there are many ways in which science is responsible to society, as the fruits of science 

are often used in value-laden settings. When one considers this more seriously, a clear separation 

between science and social concerns starts to seem less plausible.  

One way in which non-epistemic values play a role in scientific reasoning is through 

inductive risk considerations. The concept of inductive risk was first expressed by Hempel 

(1965) and later developed by Douglas (2009) and is the chance that one will be wrong in 

accepting or rejecting a hypothesis. According to Douglas, the choice of a level of statistical 

significance requires scientists to consider which kind of error they are willing to tolerate, as 

changing the level of statistical significance changes the balance between false positives and 

negatives (Douglas, 2009). For instance, if one wishes to avoid false negatives and is willing to 

accept more false positives, then she should lower the standard for statistical significance. On the 

other hand, if one wishes to avoid false positives, then she should raise the standard for statistical 

significance. In developing a standard for statistical significance, scientists must consider the 

consequences of false positive and false negative results. Considerations surrounding these 

consequences often include non-epistemic value judgements.  
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Based on these considerations, Douglas claims that scientists should not aim to entirely 

exclude non-epistemic values from their reasoning or, in other words, that the value-free ideal is 

not a defensible ideal. Scientists have ethical responsibilities with respect to society as their 

decisions have social consequences. Douglas is predominantly concerned with the unintended 

harm scientists may cause by their negligence. On the basis of this moral concern, Douglas 

claims that when there are potential risks involved in the confirmation of a hypothesis, scientists 

should raise their evidential standards to avoid causing harm. By the same token, if a hypothesis 

supports a social- good, should scientists relax their evidential standards since the acceptance of 

the hypothesis has positive social consequences?  

In the first chapter, I explore this question in relation to the construction and application 

of mathematical models in the social sciences. I use Hong and Page’s (2004) ‘diversity trumps 

ability’ result as a key example where academics have dropped their epistemic standards because 

the model’s stated result supports a social-good. I argue that in dropping our epistemic standards, 

we undermine the conditions for rejecting research that supports social ills on epistemic grounds. 

I consider the value-laden assumptions and consequences associated with the use of 

mathematical models in other domains of scientific inquiry and the ethical obligations modelers 

have to the general public. Problems arise when non-epistemic values are embedded in 

mathematical models in such a way that unpacking these value judgements becomes a difficult 

and sometimes unfeasible task. In her book Weapons of Math Destruction, Cathy O’Neil 

concludes that complex mathematical models can be good at hiding the various ways non-

epistemic values are embedded in their construction. According to O’Neil, non-epistemic values 

can permissibly influence model- building if modelers are transparent about the role such values 

play. If a model is transparent, then even if it encodes a bias, this bias can nevertheless be 
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evaluated by other modelers and the general public. However, O’Neil finds that many 

mathematical models are what she calls ‘weapons of math destruction’—mathematical models 

that have negative social consequences because they opaquely encode biases. 

The current project expands on this idea by pointing out additional epistemic features of 

mathematical models that make them difficult to evaluate by the general public. Consider the 

nuanced epistemic role mathematical models may play in argumentation. Sometimes 

mathematical models do not tell us something is the case, but instead, provide a plausibility 

argument for why something may be the case, given a certain set of assumptions. Moreover, 

mathematical models can be difficult to replicate, partly because of the opaque role non-

epistemic values play in their construction. I consider how mathematical models may encode 

prejudice and bias in ways that can be opaque and whether modelers have an ethical obligation to 

make their modeling work transparent and replicable.  

Along these lines, the second chapter considers the concept of transparency—which has 

received a great deal of attention in the philosophy of science literature, especially as it relates to 

communicating scientific studies and findings to non-experts. Many philosophers claim that 

transparency is important for establishing public trust in science (Douglas 2009; Elliott 2017; 

Kitcher 2011; I. de Melo-Martin and Intemann 2018; Stanev 2017; Williams 2002) whereas 

some philosophers instead argue that transparency about scientific practices could actually 

promote unwarranted skepticism (John 2018; Kovaka 2019). The transparency debate has often 

centered on the notion that skepticism in science is caused by a discordance between non-

experts’ idealized assumptions on scientific methodology and actual scientific practice.  

However, if we want to better understand what role transparency plays in the public’s 

perception of scientific claims, we must realize that the issue is multifaceted and complex. In 



 

4 
 

these later chapters, I argue that claiming we shouldn’t be transparent because non-experts hold a 

false folk philosophy of science oversimplifies the issue. When determining whether 

transparency will bolster or hinder public trust in science, we must first consider the way 

scientific information is being communicated to the public. More specifically, we should ask 

ourselves: ‘how is the general public receiving scientific information?’, ‘has this scientific topic 

been politicized?’ and ‘are special interest groups playing a role in the dissemination of the 

scientific information?’. Answering these questions is essential to determining the effectiveness 

of transparency. This is because, transparency is only effective if the public receives an accurate, 

unbiased account of what most scientists actually claim.  

The third and final chapter considers whether a clear demarcation between epistemic and 

non-epistemic values is tenable in the machine-learning context. Machine learning algorithms are 

often touted as superior to human decision-making due to their ability to be completely objective 

and have been increasingly used in public and private practices such as predicting recidivism in 

criminal justice, determining who should be hired, admitted to university, or granted social 

welfare benefits, evaluating job performance, suggesting who should get a loan, or pay which 

insurance rate. In these contexts, it has been made evident that the outcomes associated with 

machine learning algorithms have been worse for racialized people, women and for people in 

other minority or marginalized communities. It is commonly assumed in the machine learning 

literature that unfair outcomes are due to issues with data collection: either the data is not 

representative of the population or the problematic pattern is already pervasive in the population 

(Johnson, 1). As the assumption goes, non-epistemic values can infect machine learning 

algorithms if such values are already present in the data on which the algorithm is operating on 



 

5 
 

(ibid). What this assumption implies is that non-epistemic values are usually not inserted into the 

algorithm itself through the explicit design decisions of the modeler. 

Taking inspiration from the values in science literature, I attempt to push back on this 

general assumption. Helen Longino (1995, 1996) famously argued that epistemic and non-

epistemic values play an indistinguishable role in scientific reasoning. According to Longino, 

what proponents of the value-free ideal fail to recognize is how their choice to adopt seemingly 

purely non-epistemic values over others is itself a value-laden judgement as it arguably includes 

an appeal to social and political factors. Longino’s analysis is applicable to the machine learning 

context. Recently, in response to the ubiquitous application of machine-learning algorithms in 

decision procedures that directly impact peoples’ lives, many modelers have developed an 

interest in algorithmic fairness. A common view in the machine learning literature is that there is 

an inherent trade-off between accuracy and fairness. However, it is a choice to model 

assumptions that cast fairness in direct opposition to accuracy. This framing of a tradeoff does 

not just involve purely mathematical assumptions, but also implicates non-epistemic concerns 

regarding how to value fairness and accuracy both independently and in relation to each other. 

Thus, the influence of non-epistemic values in machine learning algorithms extends far beyond 

simply data collection—non-epistemic values play a role in explicit choices concerning how to 

define algorithmic accuracy in the first place. Tying this back to Longino’s claim, I argue that 

accuracy is not a purely epistemic notion in the machine learning context and as I discuss, this 

has important implications for the algorithmic fairness literature.  
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CHAPTER 1 

 

EPISTEMIC RISK IN THE DIVERSITY TRUMPS ABILITTY MODEL  

 

1.1 Introduction 

  While the results of science are used in many value-laden settings, scientific practice has 

often portrayed itself as objective and value-free. More recently, philosophers of science have 

criticized the value-free ideal, pointing out that non-epistemic values are often critical to proper 

scientific reasoning. Grappling with the notion that non-epistemic values play an important role 

in scientific reasoning, philosophers have asked themselves: when and how do non-epistemic 

values serve a permissible role? 

Heather Douglas (2009) has argued that non-epistemic values play an indispensable role 

in scientific reasoning through her discussion of inductive risk. Very roughly, inductive risk is 

the chance that one will be wrong when accepting or rejecting a scientific hypothesis. When 

deciding their evidential standard for a hypothesis, Douglas claims that scientists must consider 

what the consequences of error would be. Moreover, in assessing the consequences of error, non-

epistemic values often play a role. For instance, when testing whether a certain pesticide is 

environmentally safe, a scientist concerned about public safety may raise their evidential 

standards to avoid causing harm.  

Thus, Douglas claims that when there are potential social risks that follow from the 

confirmation of a hypothesis, scientists should raise their evidential standards to ensure public 

safety. If Douglas is correct that scientists should consider the bad consequence associated with 

making erroneous claims, such that it requires scientists to raise their evidential standards in 

order to avoid causing negligent harm does it then follow that scientists should likewise consider 
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the potential benefits of accepting or rejecting a hypothesis? Suppose the hypothesis in question 

is in support of a social-good. In this case, should a scientist relax their evidential standards, 

since the acceptance of the hypothesis has positive consequences?  

This paper attempts to answer these questions in relation to the construction and 

application of mathematical models in the social sciences. I use Hong and Page’s ‘diversity 

trumps ability’ result as a key example where academics have dropped their epistemic standards 

because the model’s stated results support a social-good. As I argue, this has a consequence. The 

model also has an unstated result that “highest ability problem solvers cannot be diverse” (Hong 

and Page, 2004, 16389). This result can be utilized to support a socially pernicious notion that 

groups of best experts must not be diverse. I will argue that in dropping our epistemic standards 

in evaluating Hong and Page’s model, we have no clear epistemic grounds to dismiss this 

socially pernicious result since, after all, the model itself has not changed. In other words, in 

dropping our evidential standards to support the ‘diversity trumps ability’ result, we make it 

difficult to reject the model’s other result that experts must be uniform. I claim that this shows, 

more generally, that in dropping our epistemic standards, we undermine the conditions for 

rejecting research that supports social-ills on weak epistemic grounds.   

This paper has two aspects of novelty. First, the paper attempts to answer the question of 

whether modelers should lower their epistemic standards when a model’s results support a social 

good. Second, the paper explores whether inductive risk calculations can be applied to 

mathematical models more generally.   

The paper will proceed as follows. The second section of the paper introduces the 

Heather Douglas’s work on non-epistemic values in science, focusing on her notion of inductive 

risk. The third section discusses Hong and Page’s model and simulation results that support the 
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idea that cognitive diversity is more important than ability when it comes to group problem-

solving. The fourth section explores some critiques of the model and exposes how non-epistemic 

values may be playing a role in the author’s and general public’s assessment of the evidential 

sufficiency of the model. The fifth section evaluates whether the role values play is in fact a good 

thing in the case of Hong and Page’s model.  

1.2 Heather Douglas’s view of Inductive Risk 

   The view that only epistemic values have a legitimate role to play in science has been 

importantly challenged. Epistemic values such as predictive accuracy, explanatory power, 

consistency, etc., have always been thought to play a legitimate role throughout all aspects of 

scientific reasoning (Kuhn, 1977). More recently, philosophers of science have argued that non-

epistemic values (e.g., ethical and political concerns) also play a role in many aspects of science. 

It will be helpful to distinguish at least four stages at which non-epistemic values may affect 

science. Non-epistemic values may play a role in the (1) choice of a research problem, (2) 

gathering evidence, (3) the acceptance or rejection of a hypothesis, and (4) the application of the 

scientific research results (Weber, 1988). Most philosophers of science believe that non-

epistemic values permissibly play a role in choosing a research problem and when applying 

research results. Thus, the real debate has centered on whether values can play a permissible role 

at the core of scientific reasoning, or in steps two and three.  

   One way in which non-epistemic values play a role in the internal stages of scientific 

reasoning is through considerations surrounding inductive risk. The concept of inductive risk 

was first expressed by Rudner (1953) and Hempel (1965) and was later developed by Douglas 

(2009) and is the chance that one will be wrong when accepting or rejecting a scientific 

hypothesis. There are two ways in which scientists can go wrong when accepting or rejecting a 
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hypothesis. The first type of error consists in concluding that there is a phenomenon or an effect 

when in fact there is none. This is called a type I error or a false positive result. The second type 

of error consists in discounting or missing an existing phenomenon or effect. This is called a type 

II error or a false negative result.  

According to Douglas, the choice of a level of statistical significance requires scientists to 

consider which kind of error they are willing to tolerate, as changing the level of statistical 

significance changes the balance between false positives and negatives (Douglas, 2009). For 

instance, if one wishes to avoid false negatives and is willing to accept more false positives, then 

she should lower the standard for statistical significance. On the other hand, if one wishes to 

avoid false positives, then she should raise the standard for statistical significance. In order to 

reduce both types of error, one must devise methods for improving the overall statistical 

adequacy of the experiment (like, for example, increasing the population size). Oftentimes, 

scientists do not have the means of increasing the overall statistical adequacy of their 

experiments, so trade-offs between type I and type II errors, like the ones just mentioned, must 

be made instead.  

In developing a standard for statistical significance, scientists must consider the 

consequences of false positive and false negative results. Considerations surrounding these 

consequences often include non-epistemic value judgements. This can be seen from a case in 

which it is uncertain whether a drug has a serious harmful side-effect. Acting as if there were no 

such side effect when there is one (type II error) would put the public at more risk than acting as 

if there were such a side effect when there is none (type I error). Thus, a scientist concerned 

about public safety will find an excess of false positives and a limited number of false negatives 

permissible. On the other hand, suppose the potential risk of this drug is very mild. Further 
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suppose that the scientist in question helped develop this pharmaceutical drug and is eager to get 

it out on the market because of its great health benefits. When testing for the side effect, this 

scientist will find an excess of false negatives and a limited number of false positives 

permissible, leading to its under-regulation.  

It is important to note that on Douglas’s picture, inductive risk is not only present in 

determining whether the evidence is sufficient to support the conclusion of a research project. 

Instead, inductive risk is present at all moments in scientific reasoning, including the first stages 

where scientists are confronted with ambiguous data and must decide what to do with it. In 

characterizing the data, scientists must ask themselves: 

Should they discard them (potentially lowering the power of their study)? Should they 

characterize them one way or another? Should they give up on the study until a more 

precise methodology can be found? Each of these choices poses inductive risks for the 

scientist, a chance that their decision could be a wrong one and thus that they will incur 

the consequences of error. (Douglas, forthcoming, p. 7). 

In answering these questions, scientists often draw upon non-epistemic values (ibid.). Non-

epistemic values thus play a role throughout all stages of scientific reasoning on Douglas’s view. 

One might try to resist Douglas’s inductive risk argument by adopting a Bayesian 

approach. A Bayesian can claim that scientists do not accept nor reject hypotheses in the way 

inductive risk arguments describe. Instead, scientists merely assign probabilities to hypotheses 

(Jeffrey, 1956; Mitchell, 2004). These probabilities represent degrees of belief in a hypothesis 

and are arrived at by an application of Bayes’ Rule, which does not require appeal to non-

epistemic values (Parker and Winsberg, 2017). Bayes’ rule provides a formula for updating the 

probability assigned to a hypothesis H in light of new evidence, e. The updating of probabilities 
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is always conditional on the agent’s background information B, or all the information the agent 

has prior to the point of considering how the evidence e should affect her probability 

assignments.1  

However, Douglas’s inductive risk argument need not be about significance testing and 

p-values. For instance, Steele (2015) claims that scientists often lack the precise degrees of belief 

or the probabilities that serve as priors and likelihoods that are needed as inputs to Bayesian 

analysis. Instead, scientists must decide how to represent these probabilities, and these decisions, 

like other methodological decisions in science, are subject to inductive risk (Steele, 2015).  

Although Douglas claims that non-epistemic values play an important role in activities 

central to scientific reasoning, she does admit that these non-epistemic values should not 

interfere with scientific reasoning in such a way that it threatens the objectivity of science. In 

order to both preserve the objectivity of science while still being sensitive to the fact that non-

epistemic values play an indispensable role in scientific reasoning, Douglas distinguishes 

between direct and indirect roles for values (2000, 2009). Values play a direct role when a 

scientist considers “the direct consequences of a particular course of action” whereas values play 

an indirect role when they help scientists decide how to respond to the potential consequences of 

making erroneous choices or producing inaccurate results (Douglas, 2000, 564-565). Another 

way Douglas characterizes the distinction is the following: values operate in a direct role when 

they act “as reasons in themselves” or “as stand-alone reasons” to motivate our choices (2009, 

96). In contrast, she says that values act indirectly when they “act to weigh the importance of 

 
1 More explicitly, Bayes’ Rule can be formulated as follows: p(H|e&B)= p(H|B) x p(e|H&B) / p(e|B).  
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uncertainty, helping to decide what should count as sufficient” reason for a choice (2009, 96). 

According to Douglas, non-epistemic values can be rightly influential when they play an indirect 

role and should only rarely play a direct role in activities central to scientific reasoning. 

It should be noted that Douglas further claims that scientists should not aim to entirely 

exclude non-epistemic values from their reasoning or, in other words, that the value-free ideal is 

not a defensible ideal. Scientists have ethical responsibilities with respect to society as their 

decisions have social consequences. Douglas is predominantly concerned with the unintended 

harm scientists may cause by their negligence. On the basis of this moral concern, Douglas 

claims that when there are potential risks involved in the confirmation of a hypothesis, scientists 

should raise their evidential standards to avoid causing harm. By the same token, if a hypothesis 

supports a social-good, should scientists relax their evidential standards since the acceptance of 

the hypothesis has positive social consequences? Douglas is silent on how the positive social 

consequences of a hypothesis may affect a scientist’s evidential standards.  For the remainder of 

this paper, I will explore this question in relation to Hong and Page’s modeling work on diverse 

groups of problem solvers.  

1.3 The ‘Diversity Trumps Ability’ Result  

Hong and Page’s (2004; Page, 2007) ‘diversity trumps ability’ results indicate that 

functionally diverse groups whose members have less ability outperform groups of best 

individual problem solvers. These results are derived from simulation models, and the authors 

also develop a mathematical theorem to explain the logic behind the model’s results.  

 In the model, the problem which the agents are trying to solve is represented by a circle 

of 2000 spots. Each spot on the circle can be considered a candidate answer to the problem. The 

agents move together along the circle and eventually land on a particular spot. There is a random 
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integer assigned to each spot on the circle and this random integer is considered the epistemic 

payoff for landing on this particular spot in the circle.  

 The agents each have a heuristic that they use to move forward in the circle. A heuristic 

consists of an ordered list of non-repeating integers {h1, h2, h3}. The way the heuristic works is 

that from wherever the agent is on the circle, she can ask herself if the spot h1 moves ahead has a 

higher score than her current spot on the circle. If so, the agent moves ahead to that spot on and if 

not, the agent stays at the same spot. They then move on to their next heuristic h2 and repeat the 

same process with this heuristic. The process is repeated by returning to h1 after trying h3 or 

until the agent can no longer move to a higher score. From a given starting point on the circle, 

there is a unique stopping point the agent will fall on.  

They measure the performance of an agent with a heuristic  by its expected value. 

Formally, for a starting point v and heuristic , an agent’s expected value E(V ; ) =  

 

1/𝑛 ∑ V ((i))

𝑛

i=1 

 

(Hong and Page, 2004, 16386) 

It is assumed here that each point on the circle is equally likely to be the starting point. Thus, it 

follows that for each starting point i and agent’s heuristic , the average of the epistemic payoff 

values for all possible starting points is the agent’s expected value. An agent A exhibits more 

expertise than an agent B if agent A’s expected value is greater than agent B’s expected value.   

 As mentioned, Hong and Page are interested in group performance. A group of agents is 

represented as an ordered list {a1, a2, … ai}. From a given starting point, the first agent takes the 
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group to the highest spot it can using its heuristic. The second agent goes next and leads the 

group to the highest spot using its heuristic. After all agents have attempted to locate higher-

value solutions, the first agent then searches again. The search finally stops when no agent can 

locate a higher value. The group’s performance is the average score the group receives starting 

from all spots.  

For a class of agents defined by their heuristics, Hong and Page rank all the possible 

agents by their expected values and create two groups: a group that includes the 10 best agents 

(or the agents with the 10 highest expected values) and another group that includes 10 randomly 

selected agents. The model result is that groups with randomly selected heuristics outperform 

groups of with the best distinct heuristics. According to Hong and Page, the reason random 

groups outperform groups with the best heuristics is because the random groups are more 

functionally diverse. What functional diversity means in the model is the following. Consider the 

following heuristics: {3,7,8} and {3,4,5}. These two heuristics overlap in the first spot, because 

they share the same number, three, in that spot of the heuristic. The diversity between two 

heuristics is measured by the percent of places that the two heuristics do not overlap. Thus, the 

diversity percentage between heuristics {3,7,8} and {3,4,5} is lower than the diversity 

percentage between heuristics {1,2,3} and {4,5,6}. If D(x1, x2) is the diversity percentage 

between two heuristics x1 and  x2 or the percent of places that the two heuristics do not overlap, 

then the diversity percentage of a group that includes more than two heuristics is the average of 

all D(xi, xj) where xi  and xj are heuristics in the group and i ≠ j.2 

In one iteration of the computational experiment, Hong and Page compared one group of 

the 10 best agents to a group of 10 randomly selected agents. The expected values of the 

 
2 See Singer (2018) for a nice explication of the ‘diversity trumps ability’ model.  
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individual agents are first used to form the two groups and then they run the experimental trials. 

They ran 50 trials, where in each trial the group was randomly assigned a starting point on a 

circle of 2,000 spots. In this iteration of the experiment, the group of the highest performing 

agents had a diversity percentage of 70.98, whereas, the diversity percentage of the randomly 

selected agents was 90.99. Their results were the following. The performance score of the best 

problem-solvers was 92.56 and the performance score of the diverse problem-solvers was 94.53. 

They repeated this experiment while varying parameters such as the number of agents per group, 

the number of spots on the ring, etc. Despite the variations in parameters, Hong and Page 

repeatedly found the same result that “on average, the collective performance of the randomly 

selected agents significantly outperforms the group of the best agents” (2004, 16387).  

Hong and Page develop a mathematical proof to explain the simulation results. This proof 

is general, in the sense that it does not rely on contingent features of the simulation (e.g., that 

there are 2,000 spots on the ring, etc.). The proof relies on four important assumptions: (a) agents 

are intelligent, (b) the problem is difficult, (c) agents are diverse, and (d) the best agent is unique. 

What these assumptions mean more specifically is the following. Assumption (a) ensures that all 

the agents are somewhat competent at the task as it states that no matter which alternative x the 

search process starts with, it does not terminate at an alternative φ(x) that is worse than x. The 

idea behind assumption (b) is that the problem of identifying the best answer must be sufficiently 

difficult such that no agent on its own is always going to be able to solve it. Assumption (c) 

guarantees that for any potential solution that is not the optimal solution, that there exists at least 

one agent who can find an improvement to this non-optimal solution. This assumption does not 

imply that for any particular group of problem-solvers, the group will in fact improve upon a 

non-optimal solution. For instance, a group that is homogenous in its heuristics may very well 
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get stuck on one solution and this would be because no agent in this group uses a search rule that 

recognizes an improvement. Finally, assumption (d) says that there is exactly one heuristic that 

outperforms all the others.   

 Derived from these four basic assumptions, Hong and Page’s proof includes two 

important lemmas. The first lemma is that as the group size becomes large, the independently 

drawn collection of agents will find the optimal solution with probability one (2004, 16388). 

Given that agents drawn independently are unlikely to have common heuristics, it follows that as 

the group size increases, the probably that the group will get stuck on one non-optimal solution 

converges to zero. The second lemma is that as the pool of problem-solvers grows large, the best 

problem-solvers will become similar and in the limit, the highest-ability problem solvers cannot 

be diverse (Hong and Page, 2004). To get an intuitive sense of this result, consider a set of 

randomly selected numbers from 1 to 100, each representing a score on an exam. As the set of 

randomly selected numbers expands, the group of the 10 best scores will become more similar, 

ultimately including only numbers 91 to 100 in the limit. Subsequently, the group of experts 

drawn from a large pool of problem-solvers have similar heuristics and often do no better than 

single best problem solver—who, by assumption (b), cannot always find the optimal solution.  

The simulation results and corresponding mathematical proof support the idea that 

“diversity trumps ability” (2004, 16388). It has been discussed how the concept of diversity is 

represented in the model, but in order to get a better sense of the results of the model, we must 

consider what diversity refers to in the real-world for Hong and Page. The type of diversity the 

authors are concerned with in the model is called ‘functional’ diversity (or, similarly, ‘cognitive’ 

diversity). Functional diversity refers to a diversity of perspectives (ways of representing 

problems) and a diversity of heuristics (ways of generating solutions to problems). Moreover, 
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functional diversity is influenced by what Hong and Page call ‘identity’ diversity, or the 

differences in people’s demographic characteristics, cultural identities, ethnicity, training, and 

expertise.3 The reason functional diversity is partly caused by identity diversity is because a 

person’s unique perspective on a problem is often influenced by factors related to social identity 

and learning history. Although it is easy to confuse functional diversity with identity diversity 

because of how often they are correlated, the authors note how it is important to keep these forms 

of diversity separate. Functional diversity is conceptually distinct from its causes (cultural 

identity, gender, ethnicity) and its symptoms as well (differences in opinions, political affiliation, 

etc.). 

 It is difficult to overstate the academic and social impact of Hong and Page’s ‘diversity 

trumps ability’ results. The results have been cited over 3,000 times and have been utilized to 

argue for inclusiveness in democratic institutions (Landemore, 2012), university settings (UCLA, 

2014), the armed forces (Fisher v. University of Texas, Austin, 2016) and in the sciences (Bright 

2017; Martini, 2014; Stegenga, 2016). Helen Landemore (2012), for instance, applies Hong and 

Page’s ‘diversity trumps ability’ results to support her claim that a randomly selected political 

committee can be expected to produce smarter results than elected representatives, since random 

selection maximizes diversity. Along these lines, Jacob Stegenga (2016) has argued for the 

inclusion of experts and non-experts in science policy debates since epistemic diversity fosters 

the best results. 

 
3 For more on the link between functional diversity and identity diversity see: Nisbett & Ross 1980, Robbins 1994, 

Thomas & Ely 1996. 
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Outside of academic research, the ‘diversity trumps ability’ result has been used to 

support identity diversity in public institutions. For example, the UCLA College Diversity 

Committee discussed the results when arguing for a university policy that:  

takes seriously issues of diversity with respect to race, ethnicity, gender, socioeconomic 

status, sexual orientation, religion, disability, age, language, nationality, citizenship status 

and/or place of origin. (UCLA College Diversity Initiative Committee, 2014).  

The idea here is that diversity with regard to these factors will produce better epistemic outcomes 

for the university. For similar reasons, the results have also been cited in the US Supreme Court 

case ‘Fisher vs. University of Texas, Austin’ (2016), where the results were implemented in 

arguments supporting gender and racial diversity.  

 The wide application of the ‘diversity trumps ability’ result assumes that the model 

suitably applies to real-world problem-solving contexts. In the next section, I question this 

shared intuition, by raising skeptical considerations surrounding the model’s representational 

adequacy.  

1.4 Critiques of the Model  

It is common for modelers to ignore or simplify real-world features of the phenomenon 

they are interested in. The demand for a model to fully represent the target system is untenable 

and misses the various epistemic functions models serve in light of utilizing simplifications, 

abstractions and idealizations (O’Connor, 2017; Weisberg 2013). Given this fact, a model can 

serve important explanatory functions even when it doesn’t represent the complexity of the target 

system.   
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Thus, the explanatory power of a model cannot be determined solely by how well it 

captures aspects of the real-world. Instead, one must consider the specific claim the model is 

meant to support and whether the model does a sufficient job of supporting this claim. There are 

issues with the application of the ‘diversity trumps ability’ model that stem from the way the 

problem-solving scenario and diversity are represented in the model. For instance, consider how 

the model has been utilized to argue for diversity in deliberative politics and science. Does the 

problem-solving scenario in the model adequately capture the complexity of deliberation or 

scientific reasoning?  

 To answer this question, let us look at how the Hong and Page model is applied to 

support diversity in these problem-solving contexts. Consider, first, Landemore’s application of 

the ‘diversity trumps ability’ results to deliberative politics. The issue here is that a model 

characterized by agents finding a place along a circle of numbers cannot capture the complexities 

of individuals deliberating about policy issues in a meaningful way. First, democratic 

deliberation is oftentimes geared towards consensus or general agreement amongst deliberators. 

The types of problem-solving strategies utilized to come to a consensus view involve an 

exchange of reasons and rational reconsideration of one’s preexisting beliefs. But, in the model, 

agents are assigned a set heuristic that does not change. Moreover, for the iteration of the Hong 

and Page model discussed here, agents work to solve the problem in a sequential order. Since 

deliberation requires an exchange of reasons in order to make a joint decision, the model cannot 

capture this fundamental epistemic property of deliberation.    

 If we now turn our attention to the model’s application in support of diversity in science 

and university education, it is clear that the model similarly does not capture the complex 

epistemic properties of these contexts either. Consider how cognitive diversity in academic 
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settings introduces a range of values and reasoning strategies. In order for these academic 

contexts to achieve its epistemic aims, individuals must be willing and able to articulate their 

positions in a way that is understandable and palatable to their diverse audience. Thus, one 

general issue is that the problem-solving context in the model does not address the fact that 

cognitive diversity in academic settings often introduces increased communication costs. 

Cognitive diversity often entails differences in what people value and how they rank such values, 

which may result in preference conflicts and cultural misunderstandings. Moreover, the worry is 

that such communication errors and value conflicts may outweigh the potential benefits brought 

by cognitive diversity. Therefore, a skeptical evaluator of Hong and Page’s model may find that 

it does not give us insight into how diversity helps in problem-solving contexts, since 

communication costs brought by cognitive diversity is unavoidable in real life problem-solving 

scenarios.  

 Finally, consider a more general criticism that concerns the way expertise is defined in 

the model. As Grim et al. claim, genuine expertise seemingly requires being able to perform well 

on many problems of the same type, not just on a single problem. However, this important 

characteristic of expertise is not captured in the model. According to Hong and Page (2004), 

each ring of numbers is supposed to represent a specific problem the group of agents is out to 

solve. Hong and Page model each of these problem-solving tasks as completely random, in the 

sense that there is no correlation between the numbers assigned to the positions in the circles of 

different problem-solving tasks. As a result, different problem-solving tasks are represented by 

distinct circles and subsequently yield best performing agents with very different heuristics 

(Grim et al., 2019). An agent that is best-performing on one random landscape will likely do 

poorly on another landscape. According to Grim et al., this is troublesome, because it means no 
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matter how linked two problems may be, by modeling those problems as distinct and random, 

best-performing heuristics cannot be expected to carry over from one problem to another similar 

problem (ibid).  

 The issue then is not the fact that the ‘diversity trumps ability’ model is idealized. 

Instead, the issue is that the model is highly idealized, such that, it is unclear how the model 

applies to the various problem-solving contexts it is meant to capture.  

Given that these representational shortcomings are difficult to ignore, one may wonder 

why modelers and the academic community have, nevertheless, applied the model so widely. 

One way of diagnosing the situation is through considerations surrounding inductive risk. Recall 

that on Douglas’s view, scientists must consider both the epistemic and non-epistemic 

consequences of error when characterizing data and applying research results. As discussed, 

Douglas claims that scientists should raise their evidential standards in order to avoid causing 

negligent harm. But notice how the consequences of a ‘false positive error’ when characterizing 

and applying Hong and Page’s results are marginal, since the results support diversity, a social-

good. On Douglas’s view, if one is willing to accept more false positives and wishes to avoid 

false negatives, then she should lower the standard for statistical significance. If we apply this 

line of reasoning to mathematical models, where the question under consideration is not of 

empirical adequacy but instead one that concerns when a model can be used and how, one way to 

lower one’s epistemic standards is to utilize a model that does not capture important features of 

the target system. The application of Hong and Page’s results may be an instance where the 

academic community has dropped their epistemic standards because the results support a social-

good.  
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To see why, consider how highly idealized models of this sort are usually used to support 

much weaker claims. One way highly idealized models are used is to show a proof of possibility, 

or that some phenomenon can in principle be generated from a set of starting conditions 

(O’Connor, 2017; Weisberg 2007). Another way these models are used is to highlight the 

important causal factors of a phenomenon by highlighting the minimal conditions under which 

the phenomenon occurs (ibid). Despite this variation in epistemic goals, modelers generally 

agree that highly idealized models cannot be used to directly tell us truths about the social world. 

Thus, the use of the ‘diversity trumps ability’ model to directly support empirical claims and 

policy decisions is a deviation from the epistemic norms.  

Admittedly, just because there are apparent issues with the application of the Hong and 

Page results does not necessarily imply that evaluators have dropped their epistemic standards. In 

response to this worry, consider how the model has two results: one stated result, that diversity 

outperforms experts, and an unstated result, that the group of experts must be non-diverse (Hong 

and Page, 2004). According to Hong and Page their 

…results provide insights into the trade-off between diversity and ability. An ideal group would 

contain high-ability problem solvers who are diverse. But, as we see in the proof of the result, as 

the pool of problem solvers grows larger, the very best problem solvers must become similar. In 

the limit, the highest-ability problem solvers cannot be diverse (16389). 

Suppose the results of the Hong and Page simulation centered on the discussion of the 

trade-off between diversity and ability, such that, the authors instead claimed that the simulation 

results and corresponding mathematical proof showed that the highest ability problem solvers 

cannot be diverse. In this counterfactual scenario, would the Hong and Page model still be 
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utilized in critical policy debates and decisions (e.g., for the US Supreme court or for a university 

diversity requirement)?   

If it is assumed that the group of experts is homogenous, then it follows from this that 

when selecting an expert, one should look for an expert of a certain type. This is a dangerous 

implication of the model since it can legitimize disproportionately recruiting or hiring people 

from a particular social category. For instance, consider how although there have been reported 

gains in faculty diversity in the past two decades, the number of underrepresented minorities and 

women in tenure and tenure-track positions has only marginally improved and still remains 

disproportionately low (Finkelstein et al., 2016). However, if we assume that there is one type of 

best expert and that functional and identity diversity overlap, then perhaps the fact that there are 

far more white male academic experts is justified. Along these lines, given that there are 

currently more white male academic experts, one can utilize this fact to justify continuing to 

disproportionately hire men—after all, we should expect groups of experts to be homogenous 

anyways.  

Assuming, as we are, that the reaction to the Hong and Page model would be different if 

the discussion centered on the trade-off between ability and diversity, on what grounds would the 

model be challenged? Here the results of the model undermine the social-good of diversity in 

problem-solving scenarios and along these lines, the model can be utilized to support policy 

measures that threaten inclusivity. Given the consequences of erroneously accepting the model 

and its results, evaluators will likely raise their evidential standards. In raising their evidential 

standards, the simulation results could be challenged on the same grounds I have previously 

discussed in this paper, i.e., the model does not capture many of the important epistemic features 

diversity produces in problem-solving contexts.  
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The main moral to be drawn from this section is that given the positive social implication 

of the ‘diversity trumps ability’ model, Hong and Page, as well as those who have utilized this 

model since its publication, have arguably adopted unusually low epistemic standards. If my 

analysis is correct, an interesting question confronts us: given the positive social implications of 

the model, were the authors and academic community justified in dropping their epistemic 

standards? In the next section, I will consider this question in more detail and will eventually 

conclude that despite the model’s initial plausibility, there are apparent dangers in dropping our 

epistemic standards in this case. 

1.5 Inductive Risk and Mathematical Models 

Given the positive social implications of the diversity trumps ability model, was the 

academic community justified in dropping their epistemic standards? Answering the central 

question of this section will require us to consider the epistemic features of mathematical models 

more generally. A particular property that is relevant here is the flexibility surrounding the 

application of mathematical models. As we will see, a single model can serve a variety of 

explanatory roles in various arguments, even when applied to the same target system.4 

Mathematical models are flexible, in the sense that they are representational structures that can 

provide multiple distinct conclusions. In this section I will argue that this flexibility allows for 

mathematical models to take on a life of their own, such that, it is difficult to calculate their 

inductive risk.   

One way in which a single model can serve distinct explanatory roles is through its 

application to a variety of target systems. One recognized example of this is the use of the 

 
4 For more on the explanatory plurality of models see: Downes (1992), O’Connor (2017), and Jhun, Palacios, and 

Weatherall (2017).  
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signaling games to model between and within organism communication. The standard signaling 

game as described by David Lewis (1969), is a model of information transfer between two 

agents. This model of information transfer between organisms has been utilized to develop a 

theory of convention and meaning (Lewis 1969) as well as the emergence of language 

(Huttegger 2007; Huttegger & Zollman 2011; Harms 2004; Skyrms 2010). In addition, signaling 

games have been applied to various biological and cognitive systems to better understand their 

function including: the perceptual system (O’Connor, 2014), genetic information transfer 

(Calcott, 2014; Godfrey-Smith, 2014), and neural interactions (Cao 2014; Skyrms, 2010).5 

 It is also the case that a model can generate multiple distinct conclusions when applied to 

the same target system. For example, consider how the signaling game model, applied to a single 

target system—between organism communication, can generate distinct conclusions. One 

conclusion that is derived from signaling games is that it is possible to understand the convention 

of meaning without dissolving into circularity or regress (Lewis, 1969). This is a ‘how-possibly’ 

type of conclusion, as it shows that it is in principle possible to derive meaning from 

convention.6 Moreover, signaling games provide a distinct ‘how-actually’ conclusion. Signaling 

games offer a framework for analyzing how a conventional language actually emerges from 

interacting agents that are less than fully rational (Huttegger, 2007; Skyrms 1996; 2000; 2004). 

Relatedly, the signaling game model helps explain how interacting agents spontaneously learn to 

 
5Skyrms (2010) only briefly comments that neural interactions can count as a signaling system and so, the extent to 

which he is committed to the applicability of signaling games to neural systems is unclear. Regardless, neurons are a 

potential candidate for the Lewis-Skyrms model.  
6 The ‘how-possibly’ conclusion derived from the signaling game model is first described by David Lewis in 

Convention (1969). Lewis’s account is a response to Quine, who claimed that it is impossible to derive meaning 

from convention. Quine’s argument takes the following form. Conventions arise by agreement between agents. 

However, in order to arrive at an agreement, agents must have some rudimentary language. Now the origins of this 

rudimentary language must be explained. Thus, according to Quine, conventions of meaning cannot be generated 

without turning into a regress or circularity. Signaling games provide a framework in which meaning is derived from 

convention.  
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signal (Skyrms, 2010) and how conventional language is maintained in a population (Huttegger, 

2007).  

 It is important to note that empirical theories can similarly support multiple distinct 

claims when directed at a specific target phenomenon. For instance, consider two distinct 

consequences derived from Einstein’s theory of special relativity. Special relativity predicts that 

the time lapse between two events is not invariant from one observer to another, and instead, 

depends on the relative speeds of the observers’ reference frames. This prediction was later 

confirmed by the Hafele-Keating ‘clock’ experiment (1971). Another implication of special 

relativity theory is the relativity of simultaneity, or the idea that the simultaneity of two events is 

dependent on the reference frame of an observer. More specifically, two events happening at two 

different locations can occur simultaneously in the reference frame of one observer may, 

nonetheless, occur non-simultaneously in the reference frame of another observer.  

Nevertheless, mathematical models are especially flexible for a number of reasons. 

Consider how mathematical models can be generated from a minimal number of assumptions, 

without capturing the complexity of the target system. Such models are often explanatory in 

virtue of leaving out real-world features, as they better capture the essential causal factors of the 

target system by doing so. Since these models prioritize causal transparency over complexity and 

nuance, we often see the same model applied to a variety of target systems—as long as the target 

systems share some minimal causal structure. Moreover, as discussed, mathematical models can 

derive remarkably distinct conclusions when applied to a particular target system. The ‘diversity 

trumps ability’ model is a perfect example of this. Here we see the model derives two very 

different conclusions in its explanation of the role of diversity in problem-solving contexts.  
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Let’s now return to the question postponed: given the positive social implications of the 

model, were the authors and academic community justified in relaxing their epistemic standards? 

One way of tackling this question is to consider a similar counterfactual to the one posed 

previously. Suppose after publishing their simulation results, Hong and Page went on to retract 

the take-away that diversity trumps ability and instead, focused on the understated result that as 

the pool of problem solvers grows large, the very best problem solvers become less diverse. If 

Hong and Page re-described their results in this way, what reasons can we give for why the 

model is inadequate?  

The worry is that in dropping their epistemic standards in response to the ‘diversity 

trumps ability’ result, the academic community has subverted the grounds to dismiss this socially 

pernicious result. At this point, one might respond that this isn’t a problem for Hong and Page 

for the following reason: it is common for mathematical models to have extraneous or artificial 

results and it is usually implied that these results are irrelevant to the model’s main conclusion. 

An example of an extraneous result derived from the model is that if an agent possesses all of the 

heuristics, the group the agent is in cannot improve. The idea here being, given that the agent 

possesses all of the heuristics, it can always maximize how it goes around the circle. This result 

is extraneous because it is unrelated to the question of what role diversity and ability play in a 

group’s problem-solving performance. In fact, this result implies that there is no reason to have 

groups of problem solvers in the first place, because there is some individual that can outperform 

everyone else.  

Consider how we cannot easily dismiss the socially pernicious result of the model 

because it is not an extraneous result. The result that the group of highest ability problem-solvers 

cannot be diverse is essential to the main diversity trumps ability result. What makes the diverse 
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group outperform the group of best problem-solvers is partly due to the fact that the group of 

best problem-solvers is homogenous. Recall that the single best problem solver cannot always 

find the optimal solution from every possible starting point. Therefore, the homogenous group 

made up of the best problem-solvers is likely to get stuck on a non-optimal solution, which 

allows for the diverse group to reliably outperform the homogenous group.  

Notice, then, how the socially pernicious result is epistemically on par with the ‘diversity 

trumps ability’ result, as it is either the case that both results are derived from the model, or 

neither result is derived. Hong and Page make this explicit in their discussion of the parameters 

needed to derive the simulation results. Hong and Page claim that the ‘diversity trumps ability’ 

result  

…relies on the size of the random group becoming large… At the same time, the group 

size cannot be so large as to prevent the group of best problem solvers from becoming 

similar… As the group size becomes larger, the group of the best problem solvers 

becomes more diverse and, not surprisingly, the group performs relatively better (2004, 

16389). 

In other words, when group sizes are too large, groups of expert problem solvers are no longer 

homogenous and subsequently, they perform better than the diverse groups.7 This importantly 

shows the interdependence between the two results—without the result that the group of best 

experts are homogenous, the intended ‘diversity trumps ability’ result cannot be derived.  

 
7 Notice how a different notion of group size is being invoked here. Previously, we saw Hong and Page claim that 

“as the pool of problem solvers grows larger, the very best problem solvers must become similar” (16389). This 

refers to the set of problem solvers that the members of the diverse group and expert group are selected from. Here 

Hong and Page are discussing the group size of the diverse group and expert group themselves.  
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The discussion thus far illustrates why we cannot reject the socially pernicious result in 

isolation. However, perhaps the academic community must instead reject the model entirely in 

this hypothetical. For the academic community to reject the Hong and Page model only after the 

result that the group of expert problem-solvers must be non-diverse is later emphasized would be 

problematic also. In step with the logic of Douglas’s view on inductive risk, to reject the 

simulation results in this scenario where the model stays the same but different morals are drawn 

would be for values to directly contribute to the weight of the evidence. The fact that the model 

now supports a claim that grates against our ethical intuitions serves as evidence to reject it and 

recall that on Douglas’s picture, in the phases of science where evidence is interpreted, and 

hypotheses are tested, values shouldn’t play a direct role of this sort. If values played a direct 

role in the assessment of evidence, a scientist’s preference for a particular outcome could act as a 

reason for that outcome, or for the rejection of a disliked outcome (Douglas, forthcoming). Such 

a situation would impede critical evaluation of research, as there would be no shared standards 

for determining the validity and empirical adequacy of another’s work.  Thus, in order to avoid 

ad hoc theory rejection, the academic community should have rejected the model at an earlier 

stage. 

One may think that the arguments presented in the section merely show that Hong and 

Page and the academic community have miscalculated the inductive risks involved in the 

‘diversity trumps ability’ model. They erroneously assumed that the ‘diversity trumps ability’ 

model has low inductive risk and so they dropped their epistemic standards. However, the point 

is not that the academic community merely miscalculated the model’s inductive risk. It is instead 

that inductive risk calculations cannot be appropriately conducted for mathematical models like 

the ‘diversity trumps ability’ model. This is because, there is flexibility in what results can be 
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derived from the model. This flexibility makes some risks unforeseeable—like the risk of 

concluding Hong and Page’s model supports the socially pernicious result.  

As we saw in the case of the diversity trumps ability model, mathematical models often 

derive distinct results, even when applied to a single target system. Moreover, the differences in 

the model’s results can be stark, such that, in dropping our epistemic standards in response to the 

result that supports a social-good, we undermined the conditions for rejecting a result that 

supports a social-ill on weak epistemic grounds. Since the flexibility of derived results is a 

feature of mathematical models in general, the example of Hong and Page’s model illustrates 

why the academic community should not drop their epistemic standards in their evaluation of 

mathematical models, even when supporting a social good.  

1.6 Conclusion  

To conclude, I would like to reemphasize the aspects of novelty presented in this paper. 

The paper has shown that mathematical models generate inductive risks like those described by 

Heather Douglas. In the case of the ‘diversity trumps ability’ model, this resulted in modelers 

lowering their epistemic standards because the model supports a social-good. However, the paper 

also illustrates that inductive risk calculations are difficult to do for mathematical models. For 

instance, consider how mathematical models can be applied to multiple target systems or can 

generate such distinct results even when applied to a single target system. It is for this reason that 

the risks in generating and applying mathematical models are often unforeseeable. 

Second, the paper attempts to answer the question of whether modelers should lower their 

epistemic standards when a model’s results support a social-good. Through the example of Hong 

and Page’s diversity trumps ability model, I argued that dropping our epistemic standards is 

problematic, as it can result in situations where we are no longer able to evaluate claims based on 
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independent epistemic grounds. This implication was made evident through the discussion of the 

counterfactual situation in which Hong and Page’s model supports the idea that the group of best 

problem solvers cannot be diverse. The issue here was that to dismiss the model because of the 

newly emphasized socially pernicious result would be for values to play a direct role in our 

evaluation of the model. Thus, in order to avoid ad-hoc theory rejection, we should keep our 

epistemic standards high regardless of what results the model supports.   
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CHAPTER 2 

 

WILL TRANSPARENCY BOLSTER OR HINDER PUBLIC TRUST IN 

SCIENCE?  

 
 

2.1 Introduction  

The concept of transparency has received a great deal of attention in the philosophy of 

science literature, especially as it relates to communicating scientific studies and findings to non-

experts. Many philosophers claim that transparency is important for establishing public trust in 

science (Douglas 2009; Elliott 2017; Kitcher 2011; I. de Melo-Martin and Intemann 2018; 

Stanev 2017; Williams 2002) whereas some philosophers instead argue that transparency about 

scientific practices could actually promote unwarranted skepticism (John 2018; Kovaka 2019). 

Despite their disagreements, both camps similarly claim that transparency plays a particularly 

important causal role in shaping the general public’s perception of science.  

 Non-experts hold a particular folk philosophy of science, or a set of idealized 

assumptions concerning how science should work that sometimes conflicts with actual scientific 

methodology (John 2018; Kovaka 2019). For example, non-experts often assume scientific 

consensus is much more common than it actually is. Another common folk view of scientific 

methodology is that the social structures of science should always encourage debate when, in 

fact, shutting down certain positions is often epistemically useful and important. The worry is 

that if scientists are completely transparent, they will expose non-experts to practices that 

conflict with their folk philosophical assumptions, thus causing more skepticism in science. It is 

important to note that some defenders of transparency agree that skepticism in science is often 

caused by a discordance between actual scientific practice and non-experts’ assumptions. For 
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example, Douglas (2015) and Elliott (2017) claim public trust in science only has the hope of 

being successful if transparency is coupled with proper philosophy of science education.  

 However, if we want to better understand what role transparency plays in the public’s 

perception of scientific claims, we must realize that the issue is multifaceted and complex. In this 

paper, I argue that claiming we shouldn’t be transparent because non-experts hold a false folk 

philosophy of science oversimplifies the issue. When determining whether transparency will 

bolster or hinder public trust in science, we must first consider the way scientific information is 

being communicated to the public. More specifically, we should ask ourselves: ‘has this 

scientific topic been politicized?’ and ‘are special interest groups playing a role in the 

dissemination of the scientific information?’. Answering these questions is essential to 

determining the effectiveness of transparency. This is because, transparency is only effective if 

the public receives an accurate, unbiased account of what most scientists actually claim.  

In order to support the claim that the transparency debate in philosophy is mistakenly 

focused on non-experts’ knowledge of scientific methodology, I first outline Stephen John’s 

argument against transparency. John uses Climategate—an incident where climate scientists’ 

emails were leaked—to support his claim that transparency can hinder public trust in science 

when scientific methodology diverges from the public’s folk philosophy of science. I argue that 

this example doesn’t serve as a general argument against transparency. This is because, it isn’t 

clear that what caused climate skepticism was a transparent presentation of climate science 

methodology. Instead, special interest groups and conservative media presented the climate 

scientists’ emails and methodological approaches as unscientific and pernicious. I then discuss 

how we still see skepticism in science in cases where experts’ methodological approaches fit 

with the public’s idealistic assumptions of proper scientific methodology. This further supports 
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my argument that agreement with a folk philosophy of science isn’t the most important factor 

when it comes to transparency. I then consider an example where transparency bolstered public 

trust in science, despite methodological disagreements between experts and non-experts. Finally, 

I discuss why answering the two related questions: ‘has the scientific topic been politicized?’, 

and ‘are special interest groups playing a role in the dissemination of scientific information?’ is 

fundamental in determining the relevance of transparency.  

2.2 John’s argument against transparency  

Stephen John claims that transparency can destroy non-experts’ trust in science. To 

support this claim he first discusses how non-experts learn from experts. John claims that 

learning from experts can be modelled as a two-premise inference. The idea here is that our 

everyday practices of deference to scientific experts are grounded in these two general 

assumptions. The first premise is what he calls the sociological premise. According to the 

sociological premise:   

Institutional structures are such that the best explanation for the factual content of some 

claim (made by a scientist, or group, or subject to some consensus) is that this claim 

meets scientific ‘epistemic standards’ for proper acceptance (John, 77).  

The sociological premise states that institutional structures of epistemic groups typically ensure 

that its members only assert and accept claims when those claims meet community-based 

standards. However, standards for acceptance between different epistemic communities greatly 

varies and so the sociological premise alone does not tell us when we are warranted in accepting 

the claims of a particular epistemic communities. For example, the sociological premise holds 

true for a group of highly regarded astrologers—they only assert claims that meet astrological 

standards for assertion. Despite this fact, it is obvious that consensus amongst astrologers about 
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some claim does not carry as much epistemic weight as a report of consensus amongst scientist 

about a claim. This leads us to what John calls the epistemological premise or the idea that we all 

implicitly assume that  

if some claim meets scientific epistemic standards for proper acceptance, then I should 

accept that claim as well (John, 77). 

Unlike other domains of inquiry, most people living in modern societies agree that the epistemic 

standards characteristic of scientific research communities should govern our beliefs. The 

scientific community can be contrasted with the astrological community, where we do not hold 

an analogous assumption when it comes to the astrological standards for proper acceptance.  

John’s account of how non-experts learn from a scientific community rests heavily on the 

notion that the institutional structures of science ensure that only claims that meet rigorous 

epistemic standards are accepted. For example, some rigorous epistemic standards of science 

include replicability, peer-review, statistical significance—all of which require transparency 

between scientists. Since transparency within the scientific community is required to meet 

epistemic standards, it may seem “unreasonable—or even unethical” for scientific experts to 

withhold information from non-experts (p. 80).  

Nevertheless, John argues that scientists need not follow the norm of transparency when 

communicating to non-experts. According to John, transparency about knowledge production 

does not necessarily promote the flow of true beliefs among non-experts. The reason why has to 

do with the fact that non-experts often have false ideas about how scientific methodology works. 

In other words, non-experts can have false beliefs about what epistemic practices make the 

sociological premise true. These incorrect assumptions non-experts have about how science 
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should work is what John calls a “folk philosophy of science” (p. 80). Some examples of a folk 

philosophy of science include the belief that there is usually consensus in the scientific 

community and that lack of consensus indicates there is no fact of the matter. Another example is 

that the social structures of science should always encourage debate and discussion when, in fact, 

shutting down certain views is sometimes epistemically useful.  

John highlights this point through the example of Climategate, an incident where 1,000 

emails between climate scientists at the Climate Research Unity (CRU) of the U.K.’s University 

of East Anglia were leaked (John, 2018). Climate skeptics claim that these emails show scientific 

misconduct that amounts to fabrication of anthropocentric climate change. More specifically, 

skeptics claimed that these emails showed that climate scientists at the University of East Anglia 

were engaging in unscientific practices including confusing correlation with causation, refusing 

to publish papers by certain authors, refusing to include certain data sets in their analysis and 

making assertions based on uncertain modeling work. Since non-experts have a false folk 

philosophy of science, they were easily convinced that these practices are unscientific when, in 

fact, such practices are typical and acceptable within the scientific community. For example, as 

John states, inferring causation from sufficient types and kinds of correlations is justifiable 

scientific procedure (Papineau 2012); refusing to publish certain research is often necessary to 

promote progressive research projects (Lakatos 1978); and discarding recalcitrant or unusual 

data sets is a warranted response to uncertainties in data collection (McAllister 2012).  

As a result, non-expert trust in science is often warranted yet fragile—if a non-expert 

learns a scientist reaches her results in a way that deviates from a folk philosophy of science, 

then the non-expert is likely to remove her trust. It is for this reason John claims that demands 

that scientists should be transparent about the research process to non-experts are not well 
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grounded. As long as non-experts hold a false folk philosophy of science, transparency can be 

epistemically harmful, as we saw in the example of Climategate.   

 One may wonder why the solution to the problem John presents is to limit transparency 

between experts and non-experts. One might think that the natural solution is to combat non-

experts’ folk philosophy of science. If non-experts knew how scientific theorizing really worked, 

then experts could be transparent with non-experts in the same way experts are transparent 

between one another. John agrees that the long-term goal should be to change non-experts’ folk 

philosophy of science through science education reform. Unfortunately, when it comes to climate 

science, we cannot wait for a better world as immediate action is needed to mitigate 

anthropocentric climate change. Thus, John concludes that the long-term benefits of transparency 

does not outweigh the short-term costs.  

 It is important to note that John isn’t alone in focusing on non-experts’ misguided views 

on scientific methodology when discussing public skepticism in science. For instance, Karen 

Kovaka has similarly claims that  

dispelling misconceptions about the nature of science may force people to re-evaluate 

their rejection of climate change and ultimately help them change their minds (2019, p. 

3). 

Along these lines, Heather Douglas argues 

…we need a public that has a better understanding not just of scientific facts but, more 

importantly, of the nature of science… understanding the nature of science is crucial for 

both being able to properly process science in the news, and more importantly, for 

engaging with scientific and technological controversies. (2015, p. 10).  
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Notice how Douglas argues for the importance of an accurate folk philosophy of science in 

public understanding. And in particular, both John and Kovaka claim that skepticism in climate 

science can be mitigated if the general public had a more accurate conception of scientific 

methodology. However, there are reasons to doubt that we can derive general conclusions about 

transparency’s effect on non-experts based on the Climategate example. In the next section, I 

will explore some reasons for why we may doubt the Climategate example can generalize in the 

way John claims it does.  

2.3 Climategate: a peculiar case of transparency  

To determine whether or not the Climategate example generalizes, we must ask ourselves 

whether non-experts’ false folk philosophy of science sufficiently explains public mistrust in 

climate science after the leaked emails, or if there were other factors involved. If there were other 

factors that influenced the public’s mistrust of climate science, then the central issue may not be 

a matter of forced transparency on the part of climate scientists.  

 To answer this question, we must consider how public perception changed after 

Climategate and for what reasons. Climate change denialists first broke the story and argued that 

the emails showed global warming was a scientific conspiracy and that scientists manipulated 

climate data and suppressed critics. The mainstream media then picked up the story at the same 

time negotiations over climate change mitigation began in Copenhagen in December 2009. Due 

to the timing of the leak, scientists, policymakers, and public relations experts claim that the 

release of the emails was intended to undermine the aims and objectives of the climate 

conference. Although the American Association for the Advancement of Science (AAAS). The 

American Meteorological Society (AMS), and the Union of Concerned Scientists (UCS) released 

statements supporting the scientific consensus that the Earth’s mean surface temperature had 



 

39 
 

been rising for decades in response to the controversy, in many ways the damage had already 

been done.  

 It is important to note that the way the emails were discussed by conservative media 

outlets was not neutral. Instead, quotes from the emails were taken out of context and were made 

to appear more controversial than they really were. For example, the most quoted phrase took 

words from an email written by Phil Jones, which referred to a graph he was preparing for the 

World Meteorological Organization on the status of climate change in 1999. Jones wrote: 

I’ve just completed Mike’s Nature trick of adding in the real temps to each series for the 

last 20 years (i.e., from 1981 onwards) and from 1961 for Keith’s to hide the decline. 

(Washington and Cook, 2011, p. 44) 

The graph showed three series of paleoclimate reconstructions based on tree ring, coral, ice core, 

and lake sediment samples along with historical and instrumental records. The ‘trick’ refers to a 

technique for combining data series. Climatologist Michael E. Mann published a paper on 

temperature trends in Nature in 1998 which combined various proxy temperature records and 

related them to actual temperature records. It included a figure later notably called the ‘hockey 

stick’ graph which clearly distinguished between this proxy and instrumental data. According to 

Mann, the ‘trick’ is simply a concise way of showing these two kinds of data together, while still 

clearly labeling the two types of data. Thus, he claims that there is nothing hidden or 

inappropriate about this method and that this method of combining proxy and instrumental data 

had be corroborated by numerous statistical tests and matched thermometer readings taken over 

the past 150 years. The phrase ‘the decline’ referred to the divergence problem in 

dendroclimatology—a well-known issue that while thermometer records indicate a substantial 
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warming trend up until the late 20th century, many tree rings from these areas do not display a 

corresponding change in their maximum latewood density (Oreskes and Conway, 2010).  

The phrases ‘trick’ and ‘the decline’ were misquoted to mean a “trick” to hide the decline 

in measured global temperatures. This was of course entirely false, since 1998 had been the 

warmest year on record. However, this did not stop conservative news outlets, like Fox News, 

and politicians to misrepresent what Jones meant. For instance, in 2009 US vice presidential 

candidate Sarah Palin said the phrase showed a “highly politicized scientific circle” that had 

“manipulated data to hide the decline in global temperatures” and Senator Jim Inhofe of 

Oklahoma said “of course he means hides the decline in temperatures” (Pearce, 2010).  

In fact, climate change deniers have been conducting a smear campaign against climate 

scientists and their work since the 1960s. In their book Merchants of Doubt, Naomi Oreskes and 

Eric M. Conway identify the role of special interest groups in both the global warming and 

tobacco smoking controversies. The book draws a number of parallels between these two cases 

and focusses specifically on how special interest groups and think tanks set up by the oil and 

tobacco industries actively created controversy on these issues. The general strategy of these 

special interest groups was to present legitimate scientific methodology as flawed. As Oreskes 

and Conway claim, the idea here is that “if they cannot contest the scientific facts, then the next 

best thing is to go after the scientific methodology of those claiming things they don’t like” and 

this is exactly what we see in the Climategate example, a full-blown attack against the efficacy 

of climate research (Oreskes and Conway, 143). It is no surprise that non-experts were skeptical 

of the research methods exposed in the Climategate case, after all, their methods had been under 

attack for a number of decades prior to the scandal.  
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Thus, transparency did play a role in inducing skepticism, as it allowed skeptics to make 

effective, if spurious, arguments to the public about the illegitimacy of climate science. 

However, the large role special interest groups played in mischaracterizing emails and portraying 

climate science as illegitimate indicates that transparency alone did not cause climate skepticism, 

like John claims. Instead, the important factor here is the industrial actors and how these actors 

utilized transparency as fodder for their anti-climate science agenda. For this reason, it is unclear 

whether John’s example of Climategate generalizes as he claims it does. At the very least, the 

Climategate example doesn’t show why transparency is harmful or dangerous in the absence of 

nefarious industrial actors. Most scientific debates don’t include special interest groups that 

spread misinformation like in the case of climate change, or at least not to the same degree. More 

importantly, when we think of transparency, we think of an unbiased presentation of the 

scientific facts and as discussed this isn’t what we find in the Climategate example.  

 Furthermore, evidence indicates that knowledge of scientific facts and methodology isn’t 

necessarily the most salient driving factor when it comes to trust in climate science. For instance, 

a PEW study (Funk et al., 2019) found that among those with a ‘high’ degree of environmental 

science knowledge, 44% said environmental scientists provide fair and accurate information 

about their research, whereas, among those that have a ‘low’ degree of environmental science 

knowledge, 25% said environmental scientists provide fair and accurate information about their 

research. Presumably, those with knowledge about environmental science would likewise know 

that the methodology often deviates from folk philosophy of science norms. However, we see 

that the percentage of trust in environmental science between these two groups isn’t as different 

as we might expect.  
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Compare this statistic with how trust in environmental science deviates along political 

lines. In the same PEW research study (Funk et al., 2019), 70% of democrats said they have a 

mostly positive view of environmental scientists, whereas, only 40% of republicans said the 

same. Moreover, 47% of democrats agreed with the claim that environmental scientists provide 

fair and accurate information whereas only 19% of republicans agreed.  

 It is important to note that when controlling for each of these variables, political 

affiliation seems to be a better predictor of trust in environmental science than scientific literacy. 

For example, when controlling for education level, democrats on average trust the results of 

climate scientists more than their conservative counterparts (Gauchat, 2010; Hornsey et al., 

2016). Moreover, although increased education level, in general, positively correlates with more 

trust in climate science, it should be noted that this main trend must be qualified by a moderate 

effect: research in the U.S. using representative samples suggest that the link between scientific 

knowledge and trust in climate science is more positive among Democrats than Republicans 

(Hornsey et al., 2016). This seems to indicate that when controlling for education, politics still 

plays a significant role.  

In this section, I discussed how climate change skeptics spread misinformation in order to 

fracture public trust in science. Due to this misinformation campaign, it is unclear that 

transparency was the main driver of public skepticism in climate science. I then argued that even 

if transparency played a significant role in public mistrust in climate science, given the unique 

role special interest groups played in climate change denial, the pernicious effect transparency 

possibly had in this case can’t generalize to other scientific debates. John’s argument against 

transparency relies on the fact that there is a discrepancy between non-experts’ idealized views 

and actual scientific methodology, such that, mistrust in science is generated when research 
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methods that don’t correspond to a folk philosophy of science are made transparent. Finally, I 

argued that political leaning is more strongly correlated with trust in environmental science than 

scientific education.  

In the next section, I will further question John’s account by looking at the example of 

vaccines, where research methods corresponded to the public’s folk philosophy of science and 

yet, nevertheless, we see public mistrust in science. Through a careful examination of this 

example, I hope to show that public mistrust in science is a complex issue caused by a set of 

factors and thus, John’s account of mistrust in science oversimplifies the issue. 

2.4 Is science skepticism usually rooted in a methodological disagreement between experts and 

non-experts?   

According to John, the communicative obligations scientists have towards non-experts 

should be grounded in claims about what will further non-experts’ epistemic interests (p. 82). 

More specifically, we saw him argue that when the scientific community and the general public’s 

standards for acceptance diverge, scientists shouldn’t be transparent about their methods. In this 

section, I will argue that when we seek to bring about conditions necessary for warranted trust, 

we shouldn’t myopically focus on the general publics’ views about scientific methodology. 

Scientific skepticism stems from many factors and focusing on non-experts’ methodological 

misconceptions oversimplifies the issue. In supporting this argument, I will look at the case of 

vaccine safety, where scientists did everything right vis a vis the folk philosophy of science, but 

we still see skepticism in part because of influencers and propogandists.  

On John’s account, in cases where scientific methodology corresponds to common folk 

philosophy of science assumptions (e.g., debate and discussion should always be encouraged, 

refusal to publish and engage with certain research projects is impermissible, large sample sizes 
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indicate validity, etc.) we should expect transparency to at least minimally curb scientific 

skepticism. If we do find cases where scientists are operating within the “extremely idealized… 

normative models of scientific inquiry” that non-experts are “routinely exposed to” and 

nevertheless see mistrust in the science, then this seems to imply that other factors besides a folk 

philosophy of science helped to generate this mistrust (John, 81).  

There is reason to believe that the measles, mumps, and rubella (MMR) vaccine safety 

research is an example where scientific methodology corresponds to a folk philosophy of 

science. For example, earlier studies determining the efficacy of these vaccines reported that: 

clinical studies of 284 triple seronegative children, 11 months to 7 years of age, 

demonstrated that M-M-R II is highly immunogenic and generally well tolerated. In these 

studies, a single injection of the vaccine induced measles hemagglutination-inhibition 

(HI) antibodies in 95%, mumps neutralizing antibodies in 96%, and rubella HI antibodies 

in 99% of susceptible persons (CDC report, 2020). 

Furthermore, it has been reported that the efficacy of measles, mumps, and rubella vaccines was 

established in a series of double-blind controlled field trials which demonstrated a high degree of 

protective efficacy by the individual vaccine components (Cutts 1991, Hilleman 1967, 1968; 

Weibel 1967).  

Compare the clinical studies conducted to establish the efficacy of the MMR vaccine, 

which included a large sample size and double-blind controlled field trials, to the studies 

published by vaccine skeptics. For example, in 1998, Andrew Wakefield and 12 of his 
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colleagues8 published a case series in Lancet which suggested that measles, mumps, and rubella 

(MMR) vaccine may predispose children to behavioral regression and pervasive developmental 

disorder. Despite the small sample size (n=12), the uncontrolled design, and the speculative 

conclusions, the paper was very influential.  

Instead of dismissing these methodologically flawed studies conducted by vaccine 

skeptics, the scientific community responded in a way that corresponds to a folk philosophy of 

science—they engaged in debate and discussion with anti-vaxxers. In fact, the scientific 

community took the anti-vaccination movement surprisingly seriously and conducted many 

carefully performed scientific studies to determine whether there is a link between vaccines and 

autism. One of these studies was supervised by the CDC and the Danish Medical Research 

Council in November 2002. The study followed more than 500,000 children over 7 years and 

found no link between MMR vaccination and autism (Center for Disease Control and Prevention, 

2020). Also included is an April 2006 study conducted by the National Institution of Child 

Health and Human Development of NIH and the CDC that assessed data from 351 children with 

autism spectrum disorders and 31 typically developing children. This study similarly found no 

link between MMR vaccination and autism (ibid.). More recently, a study from September 2008 

published in Public Library of Science was conducted to determine whether the results from an 

earlier study that claimed to find measles virus RNA in the intestinal tissue of a specific group of 

autistic children could be confirmed. The results of this earlier study could not be confirmed, 

once again corroborating the fact that there is no link between MMR and autism (ibid.).  

 
8 Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. 

Wakefield AJ, Murch SH, Anthony A, Linnell J, Casson DM, Malik M, Berelowitz M, Dhillon AP, Thomson MA, 

Harvey P, Valentine A, Davies SE, Walker-Smith JA 

Lancet. 1998 Feb 28; 351(9103):637-41. 
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Unfortunately, we still see widespread skepticism concerning the safety of vaccines. A 

recent survey from the Pew Research Center show that 9 percent of Americans think the MMR 

vaccine is not safe and another 7 percent is unsure (Pew Research Center, 2015). Moreover, 

among the people who are actually parents of minors, the number of vaccine skeptics is at 13 

percent. In fact, only 80 percent such parents agreed that the MMR vaccine is safe (ibid.).  

Here we see a case where the scientific experts’ studies and discourse resemble non-

experts’ folk ideals of good scientific methodology—large sample sizes, peer reviewed studies, 

engaging in with vaccine skeptics, etc. Compare this to how small the sample size is for 

Wakefield’s original study, how it wasn’t peer reviewed and how anti-vaccine ‘scientists’ never 

formally engaged with articles that demonstrate the safety of vaccines. If non-experts’ 

methodological ideals strongly influence trust in science, then we might expect non-experts to 

trust scientific studies that fit these methodological ideals. However, evidence indicates quite the 

contrary: a recent report evaluated the effectiveness of messages designed to reduce parental 

misperceptions and increase vaccination rates, including messages about peer review studies 

with large sample sizes establishing vaccine safety, demonstrated that these messages were not 

only ineffective, they even reduced the intention to vaccinate in some groups of parents (Nyhan 

et al., 2014).  

The discussion thus far implies that a folk philosophy of science was not the primary 

cause of vaccine safety skepticism. Epidemiologists were conducting their research according to 

a folk philosophy of science and nevertheless, we still see public mistrust in vaccine safety.   

What then is causing non-expert’s mistrust if it is not their folk philosophy of science? 

This is a difficult question without a single straightforward answer. One plausible answer is that 

mistrust in vaccines stem from a discrepancy between epidemiologists’ and the general public’s 



 

47 
 

assessment of risk (Hicks, 2017). An epidemiologists’ assessment of risk is determined by the 

frequency of a hazard across an entire population given the implementation of the vaccine. This 

risk is then compared to the overall public health benefits in order to determine whether the risk 

is worth taking. For example, a mandatory vaccination policy that promised to prevent 5,000 

mumps cases, even while leading to 50 cases of serious side effects, might still be considered 

worthwhile (Hicks, 2017). Compare this assessment with the way a worried parent may assess 

the risk of a vaccine. When assessing risk, parents tend to focus on their child instead of an 

overall social balance of costs and benefits. More specifically, in determining whether to 

vaccinate their children, parents may narrowly focus on the increased risk of exposing their child 

to harsh side effects and ignore the public safety risks of not vaccinating their child (Hicks, 

2017).  

Another answer to this question has to do with the way anti-vaxxers exploited the way 

people share information and learn from one another (O’Connor and Weatherall, 2019). For 

instance, after learning that autism rates were particularly high in a Somali community in 

Minneapolis, anti-vaccine supporters distributed fliers that reported a link between vaccinations 

and autism (ibid). In fact, Andrew Wakefield visited Minneapolis many times between 2010 and 

2011 to speak with Somali parents of autistic children. Following these visits was a drop in 

vaccination rates in the Somali community from 92 percent in 2004 and 42 percent in 2014 

(O’Connor and Weatherall, 2019). As O’Connor and Weatherall claim, anti-vaxxers were taking 

advantage of conformity effects by pushing their views on a close-knit group that is already 

susceptible to their message (ibid).  

Notice how public skepticism in science is a complicated issue often generated by more 

than one factor. For the MMR vaccine, we saw that both the discrepancy in risk assessment 
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between parents and epidemiologists as well as the way anti-vaxxers exerted influence by 

targeting close-knit communities contributed to vaccine mistrust. While it is plausible that a folk 

philosophy of science plays a role in vaccine skepticism, the discussion suggests that it isn’t the 

most important factor.  

In what follows, I will push back on the claim that mitigating methodological disputes 

between scientists and laypeople requires scientists to be less transparent. Medical research for 

an AIDS cure during the 1980s involved a direct clash between experts and non-experts’ 

methodological assumptions. As will be discussed, receptivity to the methodological critiques 

and further transparency from the scientific community is eventually what quelled non-experts’ 

skepticism.    

2.5 An example of transparency fostering public trust in science 

Let us now turn to the example of AIDS research in the United States during the height of the 

epidemic. Philosophers studying methodological disputes between experts and non-experts tend 

to focus on the deleterious role non-experts’ methodological assumptions play in knowledge 

production. However, the example of AIDS research shows that non-experts can in certain 

circumstances become genuine participants in the construction of scientific knowledge in virtue 

of their methodological disagreements with experts. This is meant to illustrate that divergences 

between expert and non-expert methodological assumptions alone isn’t enough to produce 

scientific skepticism. 

Non-experts in the form of gay rights activists disagreed with the methodological 

approach of AIDS research. More specifically, they challenged the use of randomized clinical 

trials and questioned the exclusion of subjects and requirements that subjects avoid participating 

in multiple trials. This was a direct challenge to orthodox scientific methodology when it comes 
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to drug trials. In challenging assumptions about the randomized clinical trial standard, activists 

forced the scientific research establishment to design clinical trials that could serve AIDS 

patients, most of whom suffered from multiple health problems that needed simultaneous 

treatments, and gained the inclusion of a more diverse subject population in antiretroviral trials 

(Epstein, 1996).  

 From the activists’ perspective, experts’ emphasis on methodological purity reflected a 

dangerous abstractedness from pressing social realities (ibid). In the medical literature, the 

dispute concerning drug trials between experts and activists has often been characterized as a 

clash in values. For instance, Feinstein (1983) distinguishes between the two conceptions of such 

trials as the “pragmatic” and “fastidious” perspectives. Activists took the pragmatic approach 

and thought that the trial design should “incorporate the heterogeneity, occasional or frequent 

ambiguity, and other ‘messy’ aspects of our ordinary clinical practice” (Feinstein 1983, p. 545). 

In their view, medical research should respond to the pressing public health issues at hand and 

given the urgency of the AIDS epidemic, they felt that there was no time to wait for “pure” 

subjects. On the other hand, experts initially took a more fastidious methodological approach as 

they feared that the pragmatic strategy would yield a “messy” answer (ibid). They instead 

preferred “using homogenous groups, reducing or eliminating ambiguity, and avoiding the 

spectre of biased results” (ibid).  

Once activists established that their methodological critiques were credible, they were 

able to gain representation on NIH and FDA advisory committees, on institutional review boards 

at local hospitals and research centers, on community advisory boards established by 

pharmaceutical companies, and on a national board created by the Clinton administration, 

responsible for overseeing the entire course of AIDS research (Epstein, 1996). Eventually, AIDS 
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activists became full partners in bringing effective antiretroviral drugs to the market in 1996. 

Through their efforts, they revolutionized how pharmaceutical sciences are practiced and today, 

patients of most diagnoses are involved in research through formal advisory boards.  

There are many lessons to glean from the role activists played in AIDS research. By 

being receptive towards non-experts’ methodological disagreements, researchers were able to 

increase the external validity of the AIDS clinical trials and bolster trust. As AIDS activists 

themselves pointed out, methodological disagreements between experts and non-experts 

stemmed from different value-laden assumptions and not from a lack of understanding by non-

experts. For this reason, John may object that the example doesn’t serve against his argument, 

since the methodological dispute wasn’t rooted in non-experts’ folk philosophy of science.  

However, notice how experts couldn’t have learned of these valid methodological 

critiques if transparent and honest communication wasn’t fostered between themselves and non-

experts. In other words, John’s suggestion that scientists should consider the general publics’ 

views about scientific methodology before deciding whether to be transparent or not could have 

backfired here. If researchers followed John’s advice, it is plausible that they would have 

excluded dissenting activists from the conversation, fearing transparency may run contrary to 

non-experts’ epistemic interests.  

A final important note about the relationship between experts and non-experts for AIDS 

research is the following. Activists started as science novices in their initial interactions and 

involvement with experts. Yet, through the course of their conversations with experts, they 

developed detailed and sophisticated scientific knowledge. Overtime, activists found themselves 

comfortably conversing with researchers about “viral assays”, “reserve transcription”, “cytokine 

regulation” and “epitope mapping” (Epstein, 1996, p. 419). As a result, researchers felt even 
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more compelled to consider activist arguments on their merits. This seems to imply that AIDS 

activists weren’t actually non-experts, as they gained fluency in the relevant medical and 

epidemiological concepts. But, once again, notice how an atmosphere of transparency and honest 

communication is what helped activists develop the necessary knowledge to converse 

comfortably with experts.   

The example of AIDS research reveals how transparency can strengthen trust in science, 

despite methodological disagreement between experts and non-experts. In the next section, I will 

consider a set of other important sources for skepticism in science that will help us better 

understand when transparency is helpful versus not.  

2.6 Other factors that relate to transparency 

The discussion of Climategate and vaccine skepticism is meant to show that the public’s 

folk philosophy of science isn’t the most salient factor to consider when determining the efficacy 

of transparency. Instead, the extent to which transparency initiatives are effective in fostering 

trust in science depends less on how careful scientists are when communicating their work, and 

more instead on whether special interest groups are acting out of bad faith. Thus, we should ask 

ourselves two related questions: ‘has this scientific topic been politicized?’, and ‘are special 

interest groups playing a role in the dissemination of the scientific information?’ when deciding 

whether transparency on the part of the scientists will be effective or not. I will consider each of 

these questions in turn.  

First, we may ask ourselves ‘has this scientific topic been politicized?’. Consider how 

70% of Democrats have a positive view of environmental researchers while only 40% of 

Republicans do. Furthermore, 47% of Democrats trust environmental scientists, whereas, only 

19% of Republicans do (Funk et al., 2019). This discrepancy between Democrats and 
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Republicans when it comes to trust in climate science is no accident—65% of Republicans trust 

FOX News, including its reporting on climate science (ibid). In contrast, 61% of Democrats 

distrust FOX News and this includes its reporting on climate science. Citing survey data, climate 

scientist and author of Climatology versus Pseudoscience Dana Nuccitelli writes: 

Republicans who watch Fox News are more than twice as likely to deny human-caused 

climate change than Republican non-viewers, and 62 percent of Republicans watch Fox 

News… [this data] suggests that the presence of Fox News and other conservative media 

outlets may be the primary explanation for why climate denial is more prevalent in the 

United States than in other developed countries (Bulletin of the Atomic Scientists, 2019).  

A common strategy in the politicization of science is to have actors emphasize the inherent 

uncertainty of science to cast doubt on the existence of a scientific consensus. This results in 

citizens dismissing credible scientific information and undermines the positive role that science 

can play in informing political debates on issues with substantial scientific content (Dietz, 2013). 

This strategy has been shown to be extremely effective. Bolsen and Druckman (2015) tested the 

effects of politicization of scientific information by surveying 2,484 Americans about two 

relatively new energy technologies. The first survey asked participants about CNTs, which are 

tiny graphite tubes that convert sunlight into electricity and thus offer a novel method to obtain 

energy from an alternative source (N=1,256). Surveys suggested that nearly half of the US 

population knew virtually nothing about CNTs at the time. The other survey concerned hydraulic 

fracturing or fracking (N=1,228). Although more Americans knew about fracking than CNTs, 

survey data indicated that most Americans in 2014 were “largely unaware and undecided about 

this issue” (Boudet et al., 2014, p. 63).  



 

53 
 

Participants were then assigned to one of 6 different conditions, though I will discuss just 

the first 3 conditions. For condition 1, no information about either technology was given and 

participants were simply asked to report on the extent of support for the use of CNTs or fracking. 

For condition 1, only 17% of the participants supported fracking and 22% CNTs. For condition 

2, they presented the technologies as if there was general scientific support for their use. This 

condition was meant to test the effect of scientific consensus without politicization. Here they 

found that 95% of participants supported fracking and 94% supported CNTs. Finally, the third 

condition added a statement that accentuated politicization such as  

yet, importantly, politics nearly always color scientific work, with advocates selectively 

using evidence. This leads many to say it is unclear whether to believe scientific evidence 

related to debates over CNTs [or fracking]. Some argue the process leads to pollution that 

harms the environment, while others disagree, pointing to evidence that there are minimal 

or no negative environmental consequences (p. 754).  

With the politicization condition only 4% of participants supported fracking and 17% CNTs. 

What this seems to imply is that the general public is likely to trust the consensus views of 

scientists and the politicization of science plays an important causal role in generating 

skepticism.  

This leads to the second question ‘are special interest groups playing a role in the 

dissemination of scientific information?’. As we saw with the examples of climate change and 

vaccine skepticism, special interest groups did play a role in manufacturing doubt. This third 

question is directly related to the politicization of science because often times special interest 

groups have political motives. For example, politically motivated think-tanks such as the 

American Enterprise Institute and the George Marshall Institute have been active in promoting a 
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message that is at odds with the consensus view on climate change (Gelbspan 1997, 2004; 

Oreskes and Conway, 2010). These organizations have helped scientists who disagree with the 

mainstream view get media attention and airtime on right-leaning political news networks like 

FOX News (ibid).  

 It is important to note that special interest groups are often utilized by the private sector 

as well. When scientific claims contradict the financial motives of certain industries, special 

interest groups are hired to manufacture doubt. Returning to the example of climate change, the 

message of scientific uncertainty was reinforced by the public relations campaign of corporations 

that have a stake in the issue. For example, ExxonMobil has spent at least $16 million between 

1998 and 2005 to fund a network of 40 think tanks and special interest groups to manufacture 

doubt about climate science (Union of Concerned Scientists, 2007).  

We cannot determine what effect the general public’s misconceptions about scientific 

methodology have on their appreciation of transparent scientific information until we are sure 

that scientific information is being disseminated in an objective, honest way. Thus, the 

philosophical debate concerning transparency shouldn’t center on how non-experts process 

scientific information. When determining whether transparency will be effective in promoting 

trust in science, we should first answer the two more basic question presented in this section. 

Moreover, even if transparency might be used by propogandists in these nefarious ways, the right 

advice isn’t to make science less transparent. Instead, we should be dealing with these malicious 

actors more directly. 

2.7 Conclusion  

I have shown that the existence of bad faith actors serves as a defeater for John’s 

interpretation of the Climategate case study. I then presented examples that instead support the 
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idea that how scientists communicate their work isn’t what matters most when it comes to public 

trust in science. More specifically, the vaccine example indicates that skepticism occurs even 

when scientists are working in ways that correspond to non-experts’ idealized methodological 

assumptions. Although this doesn’t serve as a knockdown argument against John’s general 

claim, it illustrates how there are other more influential factors for science skepticism besides 

non-experts’ methodological misconceptions. Alternatively, the example of AIDS research 

shows that contrary what John claims, transparency can actually strengthen trust in science when 

experts and non-experts disagree on methodology. In general, both examples suggest that 

focusing on one influential factor, such as non-experts’ methodological assumptions, will not 

help us derive a comprehensive account of the efficacy of transparency. 

Transparency as a method of garnering trust in science can only work if the public is 

receiving their information from scientists themselves. However, most Americans do not receive 

their scientific knowledge directly from science journals and organizations. Instead, news media 

is the common source of scientific information and as discussed, many popular news outlets in 

the United States either lean conservative or liberal. This is problematic, since the politization of 

science undermines the impact of positive consensual scientific information. Additionally, 

special interest groups with political or corporate interests manufacture doubt by making it seem 

as though there isn’t scientific consensus in cases where there is.  

All of these factors are relevant to the transparency debate. Thus, instead of myopically 

focusing on the general public’s methodological assumptions or scientists’ communication 

mishaps, we should expand our analysis to include the epistemic and political environment in 

which scientific information is communicated. This will hopefully allow us to develop more 

direct and comprehensive solutions to the issue of public mistrust in science.  
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CHAPTER 3 

 

DIAGNOSING THE ACCURACY-FAIRNESS TRADEOFF IN MACHINE 

LEARNING ALGORITHMS  

 

3.1 Introduction  

Machine learning systems have been increasingly utilized in human decision making in 

both the public and private sector. For instance, machine learning algorithms are often used to 

produce predictions in various domains including job candidates’ outcomes, susceptibility to 

loan payment, likelihood of recidivism, etc. Due to their ability to track and use massive amounts 

of personal data, machine learning algorithms have generated novel ethical concerns about 

fairness, privacy, and the control of information. More recently, scholars have noted that the 

outcomes associated with machine learning systems are often worse for racialized people, 

women, and other marginalized minorities.  

Machine learning algorithms applied to such problems use training data to produce a 

function that takes inputs and produces predictions (Kleinberg et al., 2019). The way such 

algorithms generate prediction is via a training model that usually involves fitting a curve to a set 

of training data points for which classification labels are already known (Cooper and Abrams, 

2021). After the training phase, the algorithm is fed new data points and provides classification 

labels for these new data points. To better understand this process, consider the following 

example. Suppose we are interested in predicting a job applicant’s future performance in a new 

company. In building such a model, the training process uses data to produce classifiers that best 

optimize some objective function. When the algorithm receives a new job applicant’s data after 

the training process, it can classify whether that applicant should be hired or not. As a result, 
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accuracy measures how often a machine learning algorithm correctly predicts or infers a decision 

outcome after training (ibid.).  

 In response to the ubiquitous application of machine-learning algorithms in decision 

procedures that directly impact peoples’ lives, many modelers have developed an interest in 

algorithmic fairness, and a common view in the machine learning literature is that there is an 

inherent trade-off between accuracy and fairness. For example, in the criminal justice context, 

the accuracy of a decision is defined by how it best maximizes public safety, whereas, the 

fairness constraints aim to reduce racial disparities in decision outcomes (Corbett-Davies et al., 

2017). The pre-existing machine learning literature presents strategies for dealing with this 

inherent tension between accuracy and fairness by specifying the conditions under which the 

trade-off dissolves, arguing for why fairness should be scarified in favor of accuracy, or 

something in between (Dutta et al. 2020; Chen, Johansson, and Sontag 2018; Bakker et al. 2019; 

Menon and Williamson 2018). However, very few scholars have actually challenged the 

assumptions that casts fairness at odds with accuracy.  

In this paper, I examine how the way accuracy and fairness are defined and 

operationalized results in the inherent trade-off between them. I refer to the current debate in the 

values in science literature concerning how epistemic and non-epistemic values should be 

distinguished in scientific reasoning to better understand why accuracy and fairness are 

considered to be at odds with one another. There is no reason to assume that fairness and 

accuracy must be in tension with one another. Instead, modelers choose to incorporate 

assumptions in their models that cast fairness in direct opposition to accuracy and what guides 

these choices are oftentimes non-epistemic values. More specifically, I focus on the way 

accuracy is defined in the literature and argue that although accuracy is meant to be a purely 
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epistemic notion that is conducive to truth and rational belief, in this context, it incorporates non-

epistemic considerations.   

 The paper will proceed as follows. The second section will discuss the current literature 

on the accuracy-fairness tradeoff in machine learning algorithms. The third section will discuss 

how claims concerning the inherent tradeoff between accuracy and fairness typically fail to 

acknowledge the fact that accuracy is a socially shaped concept. More specifically, I will argue 

that accuracy in machine learning algorithms is always understood with respect to some socially, 

ethically, or politically shaped goal or objective. Here I will go on to claim that the choice in goal 

or objective to be maximized in the algorithm are based on sociopolitical, or non-epistemic, 

values in the sense outlined in the philosophy of science literature. In the following section four, 

I will argue that non-epistemic values also play a role in how accuracy is operationalized in the 

algorithm. Finally, section five concludes that once we recognize the role non-epistemic values 

play in defining and operationalizing accuracy, the accuracy-fairness tradeoff must be 

understood differently.  

3.2 The tradeoff between accuracy and fairness  

The tradeoff between accuracy and fairness can be thought of as an optimization 

problem—where the optimal solution is the one that maximizes some objective function, or a 

function that measures how well the model performs on a particular objective (Cooper and 

Abrams, 2021). In this section, I will discuss how in the machine learning literature accuracy and 

fairness require two separate objective functions that cannot be maximized simultaneously, thus 

resulting in the inherent tradeoff.   

To understand how accuracy is defined, it is important to consider how machine learning 

algorithms are trained. Suppose a machine learning algorithm is being used to produce some 
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evaluative score. In order to be represented by the data, the outcome of the algorithm must be 

specified in terms of an objective function to be maximized. The training phase involves the use 

of data in which the various input factors and objective function are known. The algorithm then 

picks up the numerous correlations that exist between the input factors and the objective 

function. The algorithm is then given input factors only and a prediction is made. The results of 

the prediction are then checked against the actual value of the objective function. Thus, accuracy 

measures how often the machine learning model correctly predicts or infers decision outcomes 

after training. 

There are two more specific ways of defining accuracy within a machine learning 

algorithm. One way accuracy is often measured is through label alignment, or the percentage of 

correctly classified data points, where correctness is determined by whether the model’s 

classification decision matches the known label (Cooper and Abrams, 2). In these types of 

machine learning algorithms, the algorithm makes a correct classification in relation to either an 

explicit or implicit set of classifying rules. For example, consider an algorithm that is meant to 

classify dogs versus cats and is trained on labeled images of dogs and cats. The algorithm may 

learn that “long snout” is a reliable rule in distinguishing cat and dog images. However, notice 

that things can go wrong when classifying subgroups of dogs that deviate from the majority. For 

example, this algorithm may mislabel Pomeranians as cats, since Pomeranians don’t have long 

snouts like most other dogs (Cooper and Abrams, 3). 

 Another way of defining accuracy is relative to the algorithm’s positive predictive value. 

In this case, the machine learning algorithm is concerned with making accurate predictions 

instead of simply accurate classifications. For example, consider a graduate school admissions 

algorithm where the aim is to maximize students’ success in graduate school. Since ‘success in 
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graduate school’ is an abstract concept that is difficult to measure, the modeler may choose to 

operationalize success by means of measurable outcomes like the number of publications or 

awards and recognitions achieved during graduate school. After deciding how to operationalize 

the objective or goal ‘successful graduate student’, the modeler then decides what data the model 

should be trained on. This data will include input factors that will serve as predictors for 

‘graduate student success’ measured via publications and/or awards and recognitions. Plausible 

predictively reliable input factors for future publications and awards are place of undergraduate 

education, undergraduate GPA, letters of recommendation, etc. In the subsequent testing phase, 

the algorithm is given input information only, and a prediction is made for each person in 

relation to the objective function. The outputs are then compared with the actual data. So, for 

example, the algorithm may predict that a current graduate student that had a high bachelor’s 

degree GPA from a prestigious institution will likely publish at least 1-2 papers during their time 

as a graduate student. The modeler would then check whether this publication record prediction 

is actually true of that graduate student—and if it is, the algorithm has made an accurate 

prediction. 

 The thing to notice here is that an algorithm’s predictions are deemed accurate or 

inaccurate relative to a certain objective chosen by the modeler. Thus, modelers must make 

critical decisions when picking an objective to maximize and deciding how to operationalize this 

objective in the algorithm. In the prior example, ‘success in graduate school’ is the objective the 

admissions board wants to maximize and operationalizes this objective by means of something 

quantifiable ‘number of publications, awards, and recognition’. However, notice, that the 

admissions board could have chosen to operationalize ‘success in graduate school’ differently, or 

they could have chosen a different objective to maximize altogether.  
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 Algorithmic fairness has been an important topic of discussion in the machine-learning 

literature and as a result, there are numerous mathematical definitions of it. The definitions of 

algorithmic fairness similarly include some treatment of protected attributes, such as race, 

gender, sexual orientation, etc., and decision outcomes that can be evaluated for fair treatment 

(Huq, 2019). These various mathematical definitions of fairness can be grouped into the 

following categories: group fairness, fairness through blindness and individual fairness. Group 

fairness is fairness by “comparing the target variable outcome of a machine-learning process 

between two groups sorted along the sensitive variable” (Bent, 2019). For example, balancing 

the number of false positives or false negatives between two groups are methods of ensuring 

group fairness. Fairness through blindness is instead a fairness strategy in which information that 

encodes protected attributes like race, gender, etc., are removed (Bent, 2019). Finally, individual 

fairness looks for “disparities in treatment at the individual level for individuals with similar 

features” (Bent, 2019).  

This leads us to the discussion of why accuracy and fairness are considered in inherent 

tension with one another. If fairness as a constraint limits the set of possible classification 

assignments to those that meet a fairness requirement, then fairness will prevent the algorithm 

from simply maximizing accuracy based on all the features that would otherwise be available to 

the algorithm (Bent, 2020). Thus, at first glance, the tradeoff is quite intuitive—if fairness 

constraints are just limiting the set of possible classification assignments to those that are 

collectively fair, then of course this will reduce accuracy, as “optimization over a subset of the 

data is a lower bound compared to optimization over the original set” (Wick, Panda, and Tristan, 

2019). For example, suppose a car insurance company uses clients’ zip code as a variable that 

helps determine risk scores. Further suppose that zip code is a reliable indicator of how likely a 



 

62 
 

person will get into future accidents, since those that live in areas that are densely populated are 

much more likely to get into a wreck than those that live in suburban areas. In this example, zip 

code also serves a proxy for race—because of housing discrimination and systemic injustice, 

Black people tend to live in the inner city and whites tend to live in the suburbs. So, although zip 

code is a reliable predictor for risk of future accidents, the fact that it serves as a proxy for race 

makes the algorithm unfair. However, removing the ‘zip code’ variable from the algorithm for 

reasons of fairness will diminish its predictive accuracy.   

 Accordingly, the general view in the machine learning literature is that accuracy and 

fairness tradeoff on one another such that accuracy and fairness are modeled as two objective 

functions that cannot be simultaneously optimized (Chen, Johansson, and Sontag 2018; Menon 

and Williamson 2018; Bakker et al. 2019). However, the purpose of this paper is to present a 

different approach to addressing bias and discrimination that doesn’t entail a tradeoff between 

the algorithm’s accuracy and fairness. Those that claim that accuracy is inherently at odds with 

fairness fail to realize the fact that accuracy is, itself, socially shaped in two ways that impact 

how we should think about the tradeoff. First, accuracy is always understood with respect to 

some socio-politically influenced goal. In other words, there is no free standing, epistemically 

pure “accuracy”. Second, in trying to reach that socially-chosen goal, accuracy must be 

operationalized in some specific way. Once we acknowledge these facts, the accuracy-fairness 

tradeoff must be understood differently since algorithmic predictions are oftentimes only 

‘accurate’ with respect to standards that track structural inequalities. Consequently, we need to 

think more clearly about the way accuracy is defined within the model and whether the definition 

results in accurate predictions for all groups, including marginalized minorities. This will require 
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us to think more carefully about the role sociopolitical values play in defining accuracy in the 

first place. 

3.3 The role non-epistemic values play in defining accuracy  

The push to utilize machine-learning algorithms in decision-making in both the public 

and private sector has been based on the assumption that automated classifications and 

predictions are objective and unbiased. In general, the common assumption is that if bias get into 

the algorithm at all, it does so by being already present in the data on which the algorithm is 

trained, and not by means of the explicit design decisions of the modeler (Johnson, 1). The 

purpose of this section is to push back on this general assumption. 

More specifically, the discussion will draw upon the fact that ‘accuracy’ in the machine-

learning context is not a purely epistemic norm, as defining what it means for a prediction to be 

accurate relies on a host of socio-political assumptions. When building and applying machine-

learning algorithms, modelers must choose some objective or goal to maximize. For example, the 

objective of a recidivism model can be ‘public safety’. Similarly, in the context of mortgage 

loans the objective to be maximized might be ‘timely loan repayment’. Finally, for those using 

algorithms for college acceptance decisions, the objective to be maximized may be ‘academic 

preparedness’. The point here is simply that machine-learning modelers must choose something 

to maximize in each case and that sociopolitical values can influence this decision.  

To understand this point, let me make clear exactly what I mean by purely epistemic 

versus non-epistemic or sociopolitical values. Creating machine-learning algorithms requires a 

whole host of assumptions. Oftentimes these assumptions are guided by certain agreed upon 

epistemic values. For example, in machine learning, when writing proofs about an algorithm’s 

proprieties, it is common to assume that the distribution is convex (Cooper and Abrams, 2021). 
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Assumptions like this enable modelers to guarantee certain conclusions about an algorithm’s 

behavior, such as bounds on its convergence rate (ibid). Other examples more relevant to the 

topic at hand are the assumptions that statistical parity can model fairness or that label alignment 

is a proper accuracy metric. The point here is that these assumptions are similarly justified by 

their mathematical simplicity. Notice how simplicity is an epistemic value that modelers share 

along with “accuracy, consistency, scope, fruitfulness” to name a few others (Kuhn, 1977, p. 

322). Therefore, epistemic values inform decisions relating to the production of true accounts, 

predictions, and theories in science, whereas, non-epistemic values aren’t assumed to be entirely 

truth-tracking, as they involve social, moral, and political considerations (Rooney, 32). 

While machine-learning researchers are accustomed to explicitly stating how epistemic 

values guide their assumptions, we have yet to see similar attention paid to the way non-

epistemic values guide such assumptions. But consider how mathematical models require both 

the use of epistemic and non-epistemic values due to practical limitations. For instance, in 

creating climate models, modelers are faced with uncertainty that stems from an incomplete 

theoretical understanding of the climate system and from constraints placed by computing power 

(Winsberg 2010; 2012). Given this uncertainty, modelers must make critical choices about how 

to model a certain phenomenon and oftentimes, values guide these choices. What is important to 

note in relation to Winsberg’s discussion of the roles values play in model and algorithm 

building is a distinction he makes between “epistemically forced” and “unforced” choices (2012, 

p. 124). An epistemically forced choice is one in which there are purely epistemic grounds for 

considering one model-building option over another. Otherwise, the choice is epistemically 

unforced, and thus requires social and political values in the decision process.  



 

65 
 

More recently, Gabriel Johnson has argued for that distinguishing between the role 

epistemic and non-epistemic values play in generating and applying machine-learning algorithms 

is often untenable (2020). Drawing insight from Helen Longino (1995), Johnson argues that all 

values, including epistemic ones, are formed with regards to a certain socio-political context. As 

a result, even epistemic values necessarily reflect the sociopolitical features of the environment 

to which they are applied. To make this point clear, Johnson uses the example of clinical drug 

trial for the common sleep-aid Ambien. The prescription drug Ambien was approved as a sleep 

aid by the FDA in 1992. Due to concerns related to simplicity, pharmacologists took the male 

metabolic system to be the paradigm case, and generalized their findings based on the male 

metabolic system to women. This resulted in similar recommended doses between men and 

women. However, this had dire effects for women taking the drug, as it was found later that 

women were taking nearly twice the amount they should have been, based on their body mass 

and metabolic rates. In this case, scientists’ commitment to simplicity required that they posit the 

fewest kinds of entities in this context, resulting in the male body to be taken as the essential 

model of human physiology. But notice how the epistemic value of simplicity is infected by the 

sociopolitical context in which it is formed—the simple model of human physiology is one based 

off the male body, as men have more power and privilege in our sociopolitical context. Thus, 

adherence to simplicity will take in the very sociopolitical values on which the power dynamics 

in society are formed (Johnson, 2020).  

Johnson’s discussion is helpful for understanding the accuracy-fairness tradeoff in 

machine learning and importantly relates to the point about accuracy addressed in this paper. 

Since accuracy is always defined with relation to some socially-chosen goal, the epistemic value 

of accuracy always involves non-epistemic considerations. For example, consider how a college 
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admissions algorithm can maximize one of the following two objectives—'preparedness for 

school’ or ‘innate promise’ and how the latter objective can result in fairer outcomes for 

marginalized minorities. An objective function such as academic preparedness can be 

operationalized by means of any characteristic that correlates with a student’s preexisting skills 

and knowledge. So, for instance, the measure ‘academic ranking of high school attended’ can 

serve as a measurable stand in for ‘academic preparedness’. Notice how if the college board 

actually focused on this objective function and its operationalization, the outcomes would be 

worse for minority students, as white students attend high-ranking schools at higher rates than 

marginalized minorities. In this example, although the algorithm is unfair since it downgrades 

racialized minority applicants, it is still accurate—it is true that ‘academic preparedness’ can be 

reliably maximized by means of the measure ‘academic ranking of high school attended’.  

This example reflects how our standards for accuracy are often shaped by the social 

environment that reflects pervasive, systemic inequalities for unprivileged groups. This also 

demonstrates some of the challenges of using trade-off and optimization tools in algorithmic 

fairness research. For instance, if the accuracy metric is condition on past unfairness, what is the 

trade-off between fairness and accuracy actually measuring? Notice how if accuracy metrics 

encode past unfairness for marginalized groups, the fairness-accuracy tradeoff is effectively 

positioning fairness in a tradeoff with a form of unfairness.  

Thus, there are two lessons to be drawn from this example. First, modelers discussing the 

accuracy-fairness tradeoff fail to realize that their choice to privilege accuracy over fairness, and 

the various metrics they use to define accuracy, are themselves value-laden judgements. Second, 

the example shows that sometimes making an algorithm fairer requires we change our objective 

or goal to be maximized altogether. Instead of maximizing ‘academic preparedness’ in college 
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admissions, we could instead try to maximize something like ‘innate promise’ that can be 

operationalized by means of something like ‘high school GPA’. This objective would be result in 

fairer outcomes for marginalized minorities and so arguably should be our goal in implementing 

college admissions algorithms. However, we tend to see college admissions focus on the former 

objective instead and then later account for the unfair outcomes by means of some fairness 

metric—like balancing false positives between white and Black students, or false negative, or 

some other parity notion of fairness that is in tension with the algorithm’s accuracy. What I am 

suggesting here is that considering fairness as a different objective to be optimized after the 

predictively accurate algorithm has been built is the wrong approach. Modelers should be 

thinking of fairness at the start, like when deciding on a particular objective the algorithm does 

well in relation to.  

Thinking more carefully about what groups the algorithm is making accurate predictions 

for versus not, and for what reasons, helps us realize that we can make an algorithm fairer and 

more accurate at the same time. In principle, we can choose an objective to maximize that 

correlates with fairness, such that, the accuracy-fairness tradeoff is eliminated. This shows that 

the tradeoff isn’t inherent, unlike what is claimed in the machine-learning literature, and instead 

arises from the ways we choose what we want from our algorithms.  

But, of course, sometimes we want our machine learning algorithms to categorize people 

or make predictions according to goals that are notably distinct from fairness. In such cases, is 

the tradeoff between accuracy and fairness inevitable? Unless the objective for the algorithm is 

explicitly biased, the answer to this question is ‘no’. This is because, in cases where we want to 

make predictions or categorizations according to goals besides fairness, the tradeoff can be 

greatly mitigated through how we operationalize accuracy. However, because we live in a biased 



 

68 
 

system, the ways we operationalized accuracy tends to reflect systemic injustices. In the next 

section, I will argue that the way we operationalize an algorithm’s objective affects its fairness. 

In order to support this argument, I will consider recidivism and bail setting algorithms.  

3.4 The role non-epistemic values play in operationalizing accuracy  

One particular case that is popular in the discussion of the accuracy-fairness tradeoff 

concerns criminal justice risk-assessment algorithms such as COMPAS or the Correctional 

Offender Management Profiling for Alternative Sanctions. COMPAS, developed and owned by 

Northpointe, is a program used by judges across the United States to produce recidivism risk 

scores. COMPAS works by collecting data about defendants awaiting trial and produces a risk 

score for the defendant based on statistical analysis. This risk score is then used by judges to 

make decisions about setting bail, establishing the need for pretrial detention, sentencing, or 

parole, among other things. Despite its promise of objectivity, in 2016 ProPublica revealed that 

in an analysis of over 7,000 COMPAS uses, the program was twice as likely to falsely label 

Black defendants as future criminals than white defendants (O’Neil 2016; Johnson 2020). Along 

these lines, white defendants were mislabeled as low risk at a much higher rate than Black 

defendants (ibid). 

In light of ProPublica’s analysis that exposed bias in the COMPAS algorithm, Northpoint 

published a validation study in 2009 where it was found that the risk of recidivism score had an 

accuracy rate of 68% for a sample of 2,238 people (ProPublica, 2016). The study also showed 

that the score was slightly less predictive for Black men than white men—67% versus 69%. Tim 

Brennan, the founder of Northpoint, argued that these findings indicate the reliability of the 

COMPAS algorithm. When asked about the differences in accuracy rates between white and 

Black inmates, Brennan highlighted how it is difficult to construct a score that doesn’t include 
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items that can be correlated with race—like poverty, joblessness, and social marginalization 

(ProPublica, 2016). According to Brennan, “if those [predictors] are omitted from your risk 

assessment, accuracy goes down” (ProPublica, 2016). In other words, the algorithm’s (relatively) 

high accuracy rate of 68% is partly due to the fact that it uses variables that correlate with race. 

As a result, making the algorithm fairer by removing these variables will decrease the 

algorithm’s accuracy.  

ProPublica’s analysis of the COMPAS model sparked a heated and captivating debate in 

the ethics of algorithms literature. Due to the discrepancy between recidivism predictions 

between Black and white inmates, many scholars proposed ways of making recidivism 

algorithms fairer through some form of statistical parity. These methods similarly aimed to 

equalize metrics between individuals or groups by, for instance, requiring equal rates of accurate 

and inaccurate predictions between one group and another (Hellman 2020, Bent 2019, Johnson 

2020). The underlying assumption in this literature is that, given the COMPAS algorithm’s high 

predictive accuracy of 68%, perhaps the best way to mitigate issues of injustice is to apply a 

technical formalization of fairness to the COMPAS algorithm via statistical parity (ibid). 

However, when determining how to make the COMPAS model fairer, we must also 

consider the fact that an algorithm’s predictive accuracy is always measured relative to some 

objective to be maximized. The COMPAS algorithm attempts to ‘maximize public safety’ by 

accurately predicting the chances of recidivism. Since ‘chances of recidivism’ is an abstract 

concept that is difficult to measure, Northpoint chose to operationalize recidivism by means of 

the measurable outcome “a new arrest within two years” or more specifically, “a new 

misdemeanor or felony offense within two years of the COMPAS administration date” (Brennan 

et al., 2009).  
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Thus, the COMPAS algorithm’s unfair and discriminatory outcomes depends on the way 

recidivism is operationalized in the model. If reoffending is defined as arrests within two years 

after release, it is evident how the algorithm may make accurate predictions at the expense of 

fairness, as racialized minorities have a higher chance of being arrested than their white 

counterparts, not because they are more criminal or dangerous, but instead because their 

communities are overpoliced. In fact, a 2013 study by the New York Civil Liberties Union found 

that while Black and Latinx males between the ages of fourteen and twenty-four made up only 

4.7 percent of the city’s population, they accounted for 40.6 percent of the stop-and-frisk checks 

by police (O’Neil, 2016, 58). Thus, operationalizing a defendant’s chances of recidivism as ‘new 

arrests within two years’ will systematically label racialized minorities as a higher risk than their 

white counterparts, simply because they are more prone to have run-ins with police due to 

racialized policing practices.  

If the COMPAS algorithm’s predictions were instead accurate relative to simply chances 

of committing a crime in the future, regardless of whether the defendant gets arrested, racialized 

minorities subject to over-policing would not be deemed riskier than their white counterparts. To 

support this claim, consider how although Black and white Americans use cannabis at relatively 

similar rates (10.7% for Black Americans and 8.4% for white Americas) and that whites make up 

a much larger proportion of the American population, Black Americans are still four times more 

likely than whites to be arrested for marijuana possession (National Survey on Drug Use and 

Health, 2016; Washington Post, 2020). What this example shows is that the chances of 

committing a future crime via marijuana possession is similar across white and Black defendants 

since the marijuana consumption rates between white and Black Americans is comparable. 

However, when it comes to the chances of committing a future crime and getting caught or 
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arrested, the chances are far higher for Black inmates. Since the accuracy of the COMPAS 

algorithm is predicated on the propensity to be arrested instead of simply the propensity to 

commit crimes in the future, Black inmates will be deemed riskier to no fault of their own.  

Let me make this same point in relation to a different example. Recall, Northpoint chose 

to operationalize recidivism by means of the measurable outcome “a new arrest within two 

years” and notice how broad this definition of recidivism is (Brennan et al., 2009). A full range 

of crimes are taken into account, including small infractions and misdemeanors like driving with 

an expired license. As mentioned earlier, relative to this way of operationalizing recidivism, the 

COMPAS algorithm has a predictive accuracy of 68%. However, if we focused on just 

predicting violent crime, such that, recidivism in the model instead means “a new violent arrest 

within two years”, notice how the COMPAS algorithm’s predictive accuracy substantially 

diminishes. As ProPublica’s findings demonstrated, only 20% of the people predicted to commit 

a violent crime actually went on to do so. What this shows is that the COMPAS algorithm’s 

predictive accuracy when it comes to violent crimes is actually quite low.  

A plausible reason for this discrepancy is the following. Predictors that proxy for race 

like poverty, joblessness, and social marginalization contribute to the accuracy of the COMPAS 

model if we what we are interested in is “arrests within two years” as these factors may result in 

a former inmate to “drive with an expired license”, shoplift, or some other petty crime 

(ProPublica, 2016). However, if we instead focused on “a new violent arrest within two years” it 

is unclear whether and to what extent poverty, joblessness and social marginalization would 

predict reoccurring violent behavior. What we do know is that as of now, for the COMPAS 

algorithm, these metrics are quite unreliable in predicting violent re-offenses.  
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Thus, if Northpoint instead sought to maximize public safety by accurately predicting 

chances of recommitting violent offences within two years of release, perhaps the algorithm 

would concurrently be made fairer and more accurate. Recall, that the variables in the COMPAS 

algorithm are quite poor at predicting violent crime. Furthermore, many of the Black inmates 

with no record of past violent crimes nevertheless received a high-risk score, whereas, white 

inmates with a prior history of violence received lower risk scores (ProPublica, 2016). Thus, the 

predictors used in the COMPAS model that often proxy for race helped with generating reliable 

predictions concerning future arrests broadly construed but are nevertheless very unreliable in 

predicting future arrests based on violent crimes.  

Moreover, it is important to note that operationalizing ‘chances of recidivism’ in this way 

has dire long-term effects on racialized minorities. According to the COMPAS algorithm, a 

person who scores ‘high risk’ is likely to come from a neighborhood where run-ins with police is 

a common occurrence (O’Neil, 2016). Due to their high-risk score, the defendant gets a longer 

sentence—which makes later rehabilitation more difficult. When they are finally released into 

the same overpoliced neighborhood, they have a criminal record which makes finding a job more 

difficult, thus making it more likely that they will commit another crime. If they do in fact 

commit another crime, the COMPAS algorithm can claim that it had made an accurate 

prediction, when in fact the result was created by the effects of using the algorithm that 

operationalizes recidivism as new arrest within two years. As a result, if modelers aren’t careful 

when deciding how to operationalize a certain objective, the predictive accuracy of an algorithm 

can be predicated on a pernicious feedback loop like the one outlined here.  

The purpose of this paper is to present a different approach to addressing bias and 

discrimination in the use of the COMPAS algorithm that doesn’t entail a tradeoff between the 
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algorithm’s accuracy and fairness. As previously mentioned, accuracy measures how well an 

algorithm performs on a particular objective that is selected by the modeler. Often there is more 

than one objective to satisfy simultaneously in the algorithm and those objectives can be in 

tension with one another. In such instances, it is common to pose this problem as optimizing a 

trade-off (Cooper and Abrams, 2021). In the context of criminal justice, bail and recidivism, the 

accuracy of decisions has been framed as how best to “maximize public safety” while still 

satisfying some formal fairness constraints that aim to reduce racial disparities in decision 

outcomes (Huq et al., 2017). My suggestion has been the following: recidivism algorithms can 

maximize public safety while remaining fair by focusing on an objective to maximize that 

doesn’t tradeoff with fairness. As argued, sometimes making an algorithm fairer requires that we 

change our objective function altogether. In other cases, like the one at hand, the objective to be 

maximized need not be changed and instead, the way we operationalize this objective in the 

model must instead be changed for fairer outcomes.  

On this picture, we should worry less about the inherence of the accuracy-fairness 

tradeoff, and more about what goes into defining and operationalizing ‘accuracy’ within the 

machine-learning algorithm in the first place. More specifically, we should ask ourselves: ‘how 

do we pick objectives for our algorithms, and operationalize these objectives, such that the trade-

off is less severe and worrisome?’ By thinking more carefully about who the algorithm is making 

accurate predictions for versus not, and for what reasons, helps us realize that we can make an 

algorithm fairer and more accurate at the same time. This will require modelers to be rigorous 

and clear about the role non-epistemic values play in guiding how they define and operationalize 

accuracy in the algorithm. 
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 I am not suggesting that making non-epistemic values explicit is a sufficient solution to 

the problem of inequity and bias in algorithmic decision-making. Nevertheless, it would still help 

facilitate greater scrutiny about the appropriateness of proposed algorithmic fairness solutions. 

For instance, my analysis would allow for considering that fairness and accuracy could in fact be 

in accord. Moreover, the argument presented here requires machine-learning researchers to be 

more introspective about how their particular sociopolitical values might inform their modeling 

choices and assumptions. Clarifying these implicit non-epistemic values and their role in 

building machine-learning algorithms facilitates rethinking how we measure and understand 

accuracy and at the very least, presents a novel solution to the problem of algorithmic bias that is 

worth exploring.  

3.5 Conclusion  

To conclude, I would like to reiterate how machine learning algorithms require a host of 

both epistemic and non-epistemic assumptions. Epistemic assumptions come naturally to 

modelers like, for example, modeling some real-world problem as an optimization problem 

where the best solution is one that either minimizes some cost function or maximizes some 

objective function. What modelers often fail to realize is that these epistemic modeling 

assumptions also involve non-epistemic norms. The arguments presented in this paper support 

the conclusion that modelers should take the time to make explicit the non-epistemic 

assumptions that underly their work, as being rigorous and clear about non-epistemic values 

allows them to be reviewed and vetted with the same rigor as the purely mathematical 

assumptions. This is especially important when we consider how difficult, and oftentimes 

untenable it is to separate the modeling assumptions that are purely epistemic from those that 

non-epistemic.  
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Furthermore, as the arguments suggest, clarifying the implicit role non-epistemic values 

play in the mathematical assumptions facilitates rethinking how we can measure accuracy. To 

the best of my knowledge, no preexisting algorithmic fairness scholarship has considered making 

algorithms fairer by changing the way accuracy is defined and operationalized in the model.  

This is likely because operationalizing fairness and accuracy as epistemic and mathematical 

metrics helps situate algorithms as purely value-free tools. But once we examine more carefully 

what objective function an algorithm is accurate with respect to, we notice that there is a social 

component involved in the measurement of predictive accuracy. As a result, we can maximize 

accuracy and fairness at the same time by defining accurate prediction relative to an objective 

function, or goal, that actually tracks the phenomenon in question for all groups of people, 

including those that are marginalized.  
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CONCLUDING REMARKS 

 

This dissertation project was motivated by the debate over the ideal of value-free science. 

The worry scientists have long had is that non-epistemic values undermine the objectivity of 

science by contaminating the search for truth with social, political and ethical priorities and 

motives. As displayed in this dissertation, there are many ways in which science is responsible to 

society, as the fruits of science are often used in value-laden setting. When one considers this 

more seriously, a clear separation between science and social concerns becomes untenable.  

In light of this fact, this dissertation connects the philosophical literature with existing 

scientific techniques in the hope of illuminating the ethical obligations scientists have to society 

at large. How should the social implications of a study effect our epistemic standards? What is 

the correct basis for trust in science by the broader society and what role should values play in 

science given this basis? Finally, what explicit role are social and political values playing in the 

use of mathematical models?  

This final question is extremely important if we consider how mathematical models and 

more specifically, algorithms associated with AI, big data, and machine learning play a central 

role in a wide range of public and private practices. This dissertation contributes to debates over 

equity in modeling and algorithmic contexts, with particular attention to the ways mathematical 

models can perpetuating social inequalities. Ultimately, this dissertation is suggestive of ways 

that understanding and evaluating the use of mathematical models requires new norms and new 

theoretical tools. My hope is that the arguments presented in this dissertation will generate a 

more nuanced and refined understanding of the way mathematical models are undeniably value-

laden.  
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