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A deep learning approach for fully 
automated cardiac shape modeling in tetralogy 
of Fallot
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Sanjeet Hegde3,4, James C. Perry3,4, Jeffrey H. Omens1, Albert Hsiao5, Alistair A. Young2 and 
Andrew D. McCulloch1*    

Abstract 

Background  Cardiac shape modeling is a useful computational tool that has provided quantitative insights into the 
mechanisms underlying dysfunction in heart disease. The manual input and time required to make cardiac shape 
models, however, limits their clinical utility. Here we present an end-to-end pipeline that uses deep learning for auto‑
mated view classification, slice selection, phase selection, anatomical landmark localization, and myocardial image 
segmentation for the automated generation of three-dimensional, biventricular shape models. With this approach, we 
aim to make cardiac shape modeling a more robust and broadly applicable tool that has processing times consistent 
with clinical workflows.

Methods  Cardiovascular magnetic resonance (CMR) images from a cohort of 123 patients with repaired tetralogy of 
Fallot (rTOF) from two internal sites were used to train and validate each step in the automated pipeline. The complete 
automated pipeline was tested using CMR images from a cohort of 12 rTOF patients from an internal site and 18 rTOF 
patients from an external site. Manually and automatically generated shape models from the test set were compared 
using Euclidean projection distances, global ventricular measurements, and atlas-based shape mode scores.

Results  The mean absolute error (MAE) between manually and automatically generated shape models in the test set 
was similar to the voxel resolution of the original CMR images for end-diastolic models (MAE = 1.9 ± 0.5 mm) and end-
systolic models (MAE = 2.1 ± 0.7 mm). Global ventricular measurements computed from automated models were in 
good agreement with those computed from manual models. The average mean absolute difference in shape mode 
Z-score between manually and automatically generated models was 0.5 standard deviations for the first 20 modes of 
a reference statistical shape atlas.

Conclusions  Using deep learning, accurate three-dimensional, biventricular shape models can be reliably created. 
This fully automated end-to-end approach dramatically reduces the manual input required to create shape models, 
thereby enabling the rapid analysis of large-scale datasets and the potential to deploy statistical atlas-based analyses 
in point-of-care clinical settings. Training data and networks are available from cardiacatlas.org.
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Background
Advances in computational medicine have enabled more 
quantitative approaches to characterizing ventricular 
shape and remodeling in individuals with heart disease. 
One such approach is the use of cardiac shape mode-
ling to condense complex, multi-dimensional data from 
standard of care cardiovascular magnetic resonance 
(CMR) images into statistical atlases of cardiac struc-
ture and function [1–13]. These atlases are composed of 
interpretable shape and wall motion features that can be 
important quantitative biomarkers of patient status and 
outcome and, in turn, aid in prognosis and treatment of 
disease.

To extract the relevant features of cardiac morphol-
ogy that are used to build these statistical atlases, several 
steps are involved (Fig.  1). Traditionally, most of these 
have been performed manually, requiring a human ana-
lyst to identify relevant view and slice information from a 
raw CMR image dataset, identify end-diastolic (ED) and 
end-systolic (ES) phases in the cardiac cycle, label ana-
tomical features such as the left ventricular (LV) apex and 
valvular insertion points, and trace endocardial and epi-
cardial contours. This information can then be collated 
and processed to build three-dimensional (3D), biven-
tricular shape models, including all four valves (aortic, 
pulmonary, mitral, tricuspid), and used to build atlases of 
ED, ES, or systolic wall motion (ES-ED) using principal 
component analysis. Semi-automated methods for image 
segmentation have been developed that take advantage of 
guide-point modeling [14–17], and more recent efforts 
have focused on using deep learning (e.g., convolutional 
neural networks (CNNs), fully convolutional neural net-
works (FCNs), U-nets, and recurrent neural networks 
(RNNs)) to completely automate image segmenta-
tion [18, 19]. Fully manual and even semi-automated 
techniques, however, are time-consuming and require 

significant operator expertise to achieve an acceptable 
level of accuracy. While fully automated methods have 
made advances in accuracy, they are prone to error for 
challenging regions of the heart such as the right ventri-
cle (RV) and the complex anatomies of congenital heart 
disease (CHD) patients.

With improved availability of large, heterogenous 
clinical datasets and manually annotated models for 
reference, the major steps involved in constructing 3D, 
biventricular shape models from raw CMR image data-
sets for use in statistical atlas-based analyses can be 
automated. Herein, we detail the use of deep learning 
for automated view classification, slice selection, phase 
selection, anatomical landmark localization, and myocar-
dial image segmentation that together provide an end-
to-end pipeline for cardiac shape modeling. Moreover, 
we demonstrate this approach in a multi-institutional, 
international cohort of patients with repaired tetralogy 
of Fallot (rTOF)—a patient population with particularly 
challenging anatomy. The integration of these steps in an 
automated fashion can significantly reduce the manual 
input and time required to create shape models, which 
has been a significant barrier to the clinical application of 
atlas-based analyses to patient management.

Methods
Study population and data acquisition
This study used deidentified, retrospective CMR images 
of patients with rTOF from three clinical centers (Rady 
Children’s Hospital, San Diego, California, USA; The 
Center for Advanced Magnetic Resonance Imaging, 
Auckland, NZ; and Evelina Children’s Hospital, London, 
UK) with approval from local institutional review boards 
via waiver of informed consent (UCSD IRB 201,138; 
HDEC 16/STH/248; and 21/LO/0650, respectively). 
Labeled CMR images from 123 rTOF patients were 

Fig. 1  Overview of the automated cardiac shape modeling pipeline. The automated pipeline was developed as a series of five steps for view 
classification, slice selection, phase selection, anatomical landmark localization, and myocardial image segmentation. CMR cardiovascular magnetic 
resonance, 2Ch two-chamber, 3Ch three-chamber, 4Ch four-chamber, LVOT left ventricular outflow tract, RVOT right ventricular outflow tract, SAx 
short axis, LA long axis, ED end-diastole, ES end-systole



Page 3 of 17Govil et al. Journal of Cardiovascular Magnetic Resonance           (2023) 25:15 	

contributed from the Cardiac Atlas Project (CAP) data-
base (https://​www.​cardi​acatl​as.​org) [20] from San Diego 
and Auckland (internal sites) and were used as the train-
ing/validation set to optimize each step in the automated 
pipeline. A separate test set composed of labeled CMR 
images from 30 rTOF patients from San Diego (internal 
site) and London (external site) was used to evaluate the 
output of the automated pipeline. A flow-diagram sum-
marizing the datasets employed and how they were used 
to develop the automated pipeline is shown in Fig.  2. 
Summary characteristics of the study participants in the 
training/validation and test sets are shown in Table 1. All 
patients underwent functional CMR examination within 
the scope of standard clinical practice. CMR acquisition 
data for study participants in the training/validation and 
test sets are shown in Table 2.

Automated cardiac shape modeling pipeline overview
The automated cardiac shape modeling pipeline was 
developed as a series of five steps for view classification, 
slice selection, phase selection, anatomical landmark 
localization, and myocardial image segmentation, respec-
tively. The view classification network was designed 
to take a raw CMR image dataset and classify views as 
either two-chamber left (2Ch LT), two-chamber right 
(2Ch RT), three-chamber (3Ch), four-chamber (4Ch), LV 
outflow tract (LVOT), RV outflow tract (RVOT), short 
axis (SAx), or other. After view classification, optimal 
and non-optimal slices in the SAx stack were character-
ized through the slice selection network. Optimal slices 
were defined as SAx slices that range from the LV apex to 
the mitral and tricuspid base planes, while non-optimal 

slices were defined as SAx slices either below the LV apex 
or above the mitral and tricuspid base planes. ED and 
ES phases were then identified from selected SAx slices 
through the phase selection network. ED and ES phases 

123 patients with repaired 
tetralogy of Fallot from two 

internal institutions

12 validation patients111 training patients 12 internal test patients 18 external test patients

Used to optimize each step 
of the automated pipeline

Used to evaluate the output 
of the automated pipeline

30 patients with repaired 
tetralogy of Fallot from one 
internal institution and one 

external institution

Fig. 2  Flow-diagram of internal and external datasets used to train, validate, and test the automated cardiac shape modeling pipeline. Cases from 
the training/validation set were used to optimize each step of the automated pipeline, while cases from the test set were used to evaluate the 
generalizability of the automated pipeline

Table 1  Summary characteristics of study participants in the 
training/validation and test sets

Data are reported as mean ± standard deviation or as median (interquartile 
range), depending on the distribution, for continuous variables and as the count 
for categorical variables. Normality was tested using Shapiro-Wilks. Differences 
between the training/validation set and test set were assessed using two-
sample t-tests or Wilcoxon rank-sum tests, depending on the distribution, for 
continuous variables and Pearson’s chi-squared tests for categorical variables. 
BSA body surface area, LV left ventricular; RV right ventricular, EDV end-diastolic 
volume, ESV end-systolic volume, SV stroke volume, EF ejection fraction

Characteristic Training/
validation set 
(n = 123)

Test set (n = 30) p-value

Sex (m/f ) 73/50 15/15 0.35

Age (y) 17 (12–26) 22 ± 13 0.47

Height (cm) 161 (150–168) 163 (155–176) 0.07

Weight (kg) 58 ± 25 63 ± 18 0.31

BSA (m2) 1.57 ± 0.42 1.72 (1.52–1.82) 0.27

LV EDV (mL) 128 ± 44 119 ± 36 0.31

LV ESV (mL) 66 (51–83) 60 (47–70) 0.19

LV SV (mL) 59 ± 21 57 ± 16 0.52

LV EF (%) 48 (41–52) 48 ± 7 0.23

LV mass (g) 118 ± 35 111 ± 33 0.28

RV EDV (mL) 205 ± 67 197 ± 51 0.54

RV ESV (mL) 127 ± 46 121 ± 37 0.48

RV SV (mL) 78 ± 28 76 ± 23 0.78

RV EF (%) 38 ± 7 39 ± 7 0.72

RV mass (g) 58 (43–77) 53 ± 24 0.16

https://www.cardiacatlas.org
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from the 3Ch, 4Ch, RVOT, and selected SAx slices were 
then provided as inputs to the anatomical landmark 
localization networks to identify the LV apex, RV inserts, 
and mitral, tricuspid, aortic, and pulmonary valve inserts 
on corresponding views. These anatomical landmarks are 
required for use with previously developed mesh fitting 
software, as described below. Finally, ED and ES phases 
from the 2CH LT, 2CH RT, 3Ch, 4Ch, RV outflow tract 
(RVOT), and selected SAx slices were segmented using 
the myocardial image segmentation network from which 
contour points were extracted for the LV and RV endo-
cardium, epicardium, and septum. The LV papillary 
muscles and RV trabeculae were included in the blood 
pool. The extracted contour points and the anatomi-
cal landmark points were then converted from image to 
model coordinates using an affine transformation and fit 
to a previously developed biventricular subdivision sur-
face template mesh [21, 22] via diffeomorphic non-rigid 
registration for contour points and landmark registra-
tion for anatomical landmark points. An overview of the 
automated cardiac shape modeling pipeline is detailed in 
Fig. 1. Each step in the pipeline was designed to give the 
user the ability to make manual corrections if necessary.

Technical specifications, network architectures, 
and optimization
For each step in the automated pipeline (view classifica-
tion, slice selection, phase selection, anatomical land-
mark localization, and myocardial image segmentation), 
we report technical specifications regarding the dataset 
and preprocessing, network architecture, and optimi-
zation and evaluation. For the development of the view 
classification, slice selection, phase selection, and ana-
tomical landmark localization networks, we utilized 
Python (v3.6.15, Python Software Foundation, Wilming-
ton, Delaware, USA) and Tensorflow v2.4 on a machine 
with an NVIDIA Tesla V100 GPU. For myocardial image 
segmentation, we utilized Python v3.7.10 and PyTorch 
v1.8.1 on a machine with an NVIDIA GeForce RTX 3090 
GPU. The 123 cases from the CAP database (https://​
www.​cardi​acatl​as.​org) were randomly split at the patient 
level into 111 training and 12 validation cases (90–10 
percent split), with roughly equal cases from each inter-
nal site, San Diego and Auckland, in each set (Fig. 2). For 
each network detailed below, training cases with appro-
priate data were used to optimize the network weights, 
while validation cases with appropriate data were used 

Table 2  CMR acquisition data for study participants in the training/validation and test sets

Numerical data are reported as mean (range). Categorical data are reported as the count (percentage). CMR cardiovascular magnetic resonance

Parameter Training/validation set
(n = 123)

Test set (n = 30)

Imaging

 Flip angle (°) 64 (15–80) 57 (45–81)

 Phase spatial resolution (mm) 1.9 (0.9–3.0) 1.4 (0.5–2.1)

 Frequency spatial resolution (mm) 1.6 (0.8–2.8) 1.4 (0.5–2.1)

 Slice thickness (mm) 7.1 (4.0–10.0) 7.7 (4.5–10.0)

 Repetition time (ms) 15.8 (2.6–48.7) 16.6 (2.7–60.5)

 Echo time (ms) 1.4 (1.1–3.3) 1.4 (1.1–1.8)

Magnetic field strength

 1.5T 120 (98) 30 (100)

 3T 3 (2) –

Manufacturer

 Siemens Healthineers 55 (45) 13 (43)

 Philips Healthcare 41 (33) 8 (27)

 GE Healthcare 27 (22) 9 (30)

Model

 Siemens Avanto 55 (45) 3 (10)

 Siemens Intera 41 (33) 8 (27)

 GE Discovery MR450 14 (11) 3 (10)

 GE Signa HDxt 10 (9) 1 (3)

 GE Discovery MR750w 3 (2) –

 Siemens Aera – 10 (33)

 Philips Achieva – 3 (10)

 Philips Ingenia – 2 (7)

https://www.cardiacatlas.org
https://www.cardiacatlas.org
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for hyper parameter tuning and to estimate model 
performance.

View classification
Dataset and preprocessing
Of the 111 cases in the training set, 93 had complete CMR 
studies available (n = 18 excluded) and were included 
in the training of the view classification network. Simi-
larly, 8 of the cases in the validation set had complete raw 
CMR studies available (n = 4 excluded) and were used for 
validation. Each CMR series was manually classified into 
one of eight possible view categories: 2Ch LT, 2Ch RT, 
3Ch, 4Ch, LVOT, RVOT, SAx, or other. Prior to training, 
each CMR image was converted to an 8-bit integer RGB 
image and resized to 224 × 224 pixels using bicubic inter-
polation. Images were normalized by zero-centering each 
color channel with respect to the ImageNet dataset, with-
out scaling. To improve model generalizability, real-time 
data augmentations were utilized during training includ-
ing random rotations (± 10%), random zooms (± 20%), 
and random translations (± 10%).

Network architecture
For view classification, the CNN architecture ResNet50 
was utilized. Feature extraction layers were imported 
with pretrained weights from the ImageNet dataset. Clas-
sification layers consisted of a 2D global average pooling 
layer followed by a fully connected dense layer with eight 
output classes and softmax activation.

Optimization and evaluation
Prior to training, the pretrained weights in the feature 
extraction layers were frozen. The classification lay-
ers were then optimized with a sparse categorical cross 
entropy loss function for a total of 25 epochs using a 
batch size of 16 and a stochastic gradient descent opti-
mizer with a learning rate of 0.0001 and momentum of 
0.9. Next, the feature extraction layer weights were unfro-
zen, the learning rate was decreased by a factor of 2, and 
training was continued for an additional 50 epochs. Fol-
lowing training, view classification performance was 
assessed using precision, recall, and F1-scores.

Slice selection
Dataset and preprocessing
All 111 cases in the training set and all 12 cases in the 
validation set had available SAx stacks and were included 
for the optimization of a SAx slice selection network. SAx 
slices were split into two possible classifications: optimal 
and non-optimal. Optimal slices were defined as slices 
that were manually selected for inclusion in the modeling 
process by users, which typically range from the LV apex 
to the mitral and tricuspid base planes. Non-optimal 

slices were defined as slices that were not included in the 
modeling process by the manual users. Of note, not every 
slice between the apex and valve planes is required for 
modeling; as a result, there was considerable variability in 
which slices were selected as optimal between cases and 
users. Prior to training, each CMR image was converted 
to an 8-bit integer RGB image and resized to 224 × 224 
pixels using bicubic interpolation. Images were normal-
ized by zero-centering each color channel with respect 
to the ImageNet dataset, without scaling. To improve 
model generalizability, real-time data augmentations 
were utilized during training including random rotations 
(± 30%), random zooms (± 20%), and random transla-
tions (± 10%).

Network architecture
For slice selection, the CNN architecture ResNet50 was 
utilized. Feature extraction layers were imported with 
pretrained weights from the ImageNet dataset. Classi-
fication layers consisted of a 2D global average pooling 
layer followed by a fully connected dense layer with eight 
output classes and softmax activation.

Optimization and evaluation
Prior to training, the pretrained weights in the feature 
extraction layers were frozen. The classification lay-
ers were then optimized with a sparse categorical cross 
entropy loss function for a total of 25 epochs using a 
batch size of 16 and a stochastic gradient descent opti-
mizer with a learning rate of 0.0001 and momentum of 
0.9. Next, the feature extraction layer weights were unfro-
zen, the learning rate was decreased by a factor of 2, and 
training was continued for an additional 50 epochs. Fol-
lowing training, slice selection performance was assessed 
using precision, recall, and F1-scores.

Phase selection
Dataset and preprocessing
All 111 cases in the training set and all 12 cases in the 
validation set were used to optimize the phase selection 
network. To produce ground-truth labels, the ES phase 
was manually labeled for each case using a mid-ventric-
ular slice from the SAx stack. The ES phase was deter-
mined using the LV and defined as the phase when the 
LV cavity volume was at a minimum. This label was used 
to produce a normalized Gaussian distribution centered 
at the ES phase, with a sigma of 4. In this way, a numeri-
cal value was assigned to each phase of the cardiac cycle, 
increasing to 1 during systole and decreasing to 0 during 
diastole.

Inputs consisted of SAx slices ranging from apex to 
base. For each slice, CMR images from the complete 
cardiac cycle were utilized, producing a 2D + time input 
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with 30 phases. Cases with less than 30 phases in the SAx 
stack were zero-padded to maintain a consistent input 
size. Prior to training, each CMR image was converted 
to an 8-bit integer RGB image and resized to 224 × 224 
pixels using bicubic interpolation. Images were normal-
ized by zero-centering each color channel with respect to 
the ImageNet dataset, without scaling. To improve model 
generalizability, real-time data augmentations were uti-
lized during training, including resizing to 256 × 256 
pixels and randomly cropping back to 224 × 224 pixels, 
random brightness adjustments (± 10%), and random 
contrast adjustments (± 5%). Inputs were also randomly 
shuffled along the time axis, such that the ground-truth 
ES phase could occur at any time point in the 30-phase 
input.

Network architecture
The phase selection network consisted of a CNN com-
bined sequentially with a long  short-term memory 
(LSTM) network. This network was chosen based on 
previously published cardiac phase selection networks 
[23, 24]. The CNN is used to extract image features, 
while the LSTM encodes temporal information. For the 
CNN feature extractor, the CNN architecture ResNet50 
was utilized. Feature extraction layers were imported 
with pretrained weights from the ImageNet dataset. The 
ResNet50 architecture was followed by two LSTM layers 
and two fully connected dense layers.

Optimization and evaluation
Prior to training, the pretrained weights in the feature 
extraction layers were frozen. The LSTM layers were then 
optimized with a mean squared error loss function for a 
total of 75 epochs using a batch size of 4 and a stochastic 
gradient descent optimizer with a learning rate of 0.0005 
and momentum of 0.9. Next, the feature extraction layer 
weights were unfrozen and training was continued for 
an additional 150 epochs. Following training, ES phase 
selection performance was assessed using the average 
absolute frame difference (AAFD) between predictions 
and manual labels.

Anatomical landmark localization
Dataset and preprocessing
All 111 cases in the training set and all 12 cases in the 
validation set were used to optimize the anatomical 
landmark localization networks. From these cases, the 
3Ch, 4Ch, RVOT, and optimal SAx slices were selected. 
Ground truth anatomical landmarks were manually 
placed throughout the cardiac cycle for each view by an 
expert analyst using Cardiac Image Modeller (CIM) soft-
ware (Auckland, NZ) [25]. In the 3Ch view, mitral valve 
inserts and aortic valve inserts were labeled. In the 4Ch 

view, mitral valve inserts, tricuspid valve inserts, and 
the LV apex were labeled. In the RVOT view, pulmonary 
valve inserts were labeled. In the SAx slices, RV inserts 
were labeled. Manual point labels were converted to a 
normalized Gaussian heat map label with a sigma of 12 
for all images. Gaussian heat maps were utilized based on 
recently published literature on cardiac landmark locali-
zation [26].

For each cardiac view, inputs consisted of 2D images 
throughout the cardiac cycle. To provide temporal infor-
mation, the input for each time point t was concatenated 
with 2D images from t-2, t-1, t + 1, and t + 2, producing a 
final 2D + time input with 5 channels. Prior to training, 
the inputs were resized to 256 × 256 pixels using bicu-
bic interpolation and normalized to have a minimum of 
0 and maximum of 1. To improve model generalizability, 
real-time data augmentations were utilized during train-
ing, including random rotations (± 10%), random zooms 
(± 20%), random translations (± 10%), random contrast 
adjustments (± 15%), the addition of Gaussian noise, and 
histogram equalizations.

Network architecture
The anatomical landmark localization networks utilized 
the U-net architecture, an encoder-decoder with skip 
connections between mirrored layers in the encoder 
and decoder stacks [27]. Scaled exponential linear units 
(SELU) were utilized for activation, with a LeCun nor-
mal kernel initializer [28]. An individual U-net network 
was optimized for each cardiac view, with the number of 
output channels determined by the number of landmarks 
present in each view.

Optimization and evaluation
For each cardiac view, a U-net network was optimized 
with a mean squared error loss function for a total 
of 150 epochs using a batch size of 40 and a stochastic 
gradient descent optimizer with a learning rate of 1e-5 
and momentum of 0.9. Following training, performance 
for each network was assessed using absolute distance 
errors between predicted and ground truth landmarks. 
For insertion points, the angulation error between pre-
dicted and ground truth valve and septal planes was also 
measured.

Myocardial image segmentation
Dataset and preprocessing
All 111 cases in the training set and all 12 cases in the 
validation set were used to optimize the myocardial 
image segmentation networks. From these cases, the 2Ch 
LT, 2Ch RT, 3Ch, 4Ch, RVOT, and optimal SAx slices 
were selected. Ground truth myocardial image segmenta-
tions were generated from contours that were manually 
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drawn at ED and ES for each view by an expert analyst 
with greater than 10  years of cardiac modeling experi-
ence using Segment (Medviso, Lund, Sweden) [29]. The 
LV papillary muscles and RV trabeculae were included 
in the blood pool. In the 2Ch LT view, the LV cavity and 
LV myocardium were labeled. In the 2Ch RT and RVOT 
views, the RV cavity and RV myocardium were labeled. 
In the 3Ch, 4Ch, and SAx views, the LV/RV cavity and 
LV/RV myocardium were labeled.

For each cardiac view, inputs consisted of 2D images 
at ED and ES. Prior to training, inputs were cropped to 
their non-zero regions and normalized to have a mini-
mum of 0 and maximum of 1. To improve model gen-
eralizability, real-time data augmentations were utilized 
during training, including random rotations (± 10%), 
random zooms (± 20%), random brightness and contrast 
adjustments (± 15%), the addition of Gaussian noise and 
blur, gamma correction, mirroring, and the simulation of 
low resolution.

Network architecture
The myocardial image segmentation networks utilized 
the nnU-net architecture, an encoder-decoder with skip 
connections between mirrored layers in the encoder and 
decoder stacks [30]. This architecture was chosen based 
on the results of prior multi-vendor, multi-disease myo-
cardial segmentation challenges [31]. Leaky rectified lin-
ear units (ReLU) were utilized for activation [32], with 
an instance normalization initializer [33]. An individual 
nnU-net was optimized for each cardiac view, with the 
number of output channels determined by the number of 
cavity and myocardium labels present in each view.

Optimization and evaluation
For each cardiac view, an nnU-net network was opti-
mized with a sum of cross-entropy and Dice loss func-
tion [34] for a total of 100 epochs using a batch size of 
10 and a stochastic gradient descent optimizer with an 
initial learning rate of 0.01 and Nesterov momentum of 
0.99. The learning rate was decayed throughout train-
ing following the ‘poly’ learning rate policy [35]. Follow-
ing training, performance for each network was assessed 
using Dice scores [36] and Hausdorff distances [37] 
between predicted and ground truth contours using a 
single fold validation.

Interobserver analysis
To further characterize the performance of the nnU-net 
segmentations, an interobserver analysis was conducted 
to determine the variation in myocardial segmentations 
between two human observers. In this analysis, two 
expert analysts, each with greater than 10  years of car-
diac modeling experience, manually drew contours of the 

RV and LV myocardium and blood pool at ED and ES for 
each cardiac view using Segment (Medviso, Lund, Swe-
den) [29]. This analysis was performed for a subset of 36 
cases from the training and validation sets. Dice scores 
between contours drawn by the two analysts were calcu-
lated and compared to the Dice scores achieved by the 
nnU-net network.

Automated cardiac shape modeling pipeline testing
The automated cardiac shape modeling pipeline was 
tested by comparing manually and automatically gen-
erated shape models from study participants in the test 
set. Automatically generated models were first aligned 
with manually generated models using a rigid registra-
tion. Euclidean projection distances were then calculated 
between points on the automatically generated models 
and surfaces on the manually generated models, which 
was the metric used to compute the mean absolute error 
(MAE) in a global and regional error analysis. Global ven-
tricular measurements were also compared between the 
manually and automatically generated models by com-
puting LV and RV volumes and masses at ED and ES by 
numerical integration of mesh volumes. Lastly, manually 
and automatically generated models were projected onto 
an ED/ES shape atlas constructed from the shape mod-
els in the training/validation set and computed Z-scores 
were compared.

Statistical analysis
Statistical analyses were carried out using the SciPy 
Python library (Python Software Foundation, Wilming-
ton, Delaware, USA;  https://​www.​scipy.​org). Summary 
characteristics of study participants in the training/
validation and test sets are reported as mean ± standard 
deviation or as median (interquartile range), depending 
on the distribution, for continuous variables and as the 
count for categorical variables. Normality was tested 
using Shapiro-Wilks. Differences between these groups 
were assessed using two-sample t-tests or Wilcoxon rank-
sum tests, depending on the distribution, for continuous 
variables and Pearson’s chi-squared tests for categori-
cal variables. The AAFD between predicted and manual 
labels in the validation set was compared to the AAFD 
between two manual analyst labels in the validation set 
using a two-sided t-test. Differences in global ventricu-
lar measurements for manually and automatically gen-
erated shape models in the test set were assessed using 
paired-sample t-tests. The distribution of Z-scores for the 
manually and automatically generated shape models were 
assessed by a two-sample Kolmogorov–Smirnov test with 
a significance level of 0.05 and a Holm-Bonferroni cor-
rection for multiple comparisons.

https://www.scipy.org


Page 8 of 17Govil et al. Journal of Cardiovascular Magnetic Resonance           (2023) 25:15 

Results
Individual network performance
View classification
Precision, recall, and F1-scores for view classification 
predictions on the validation set are shown in Table  3. 
Cardiac views were reliably classified.

Slice selection
Precision, recall, and F1-scores for slice selection predic-
tions on the validation set are shown in Table 4. SA slices 
were reliably classified.

Phase selection
The AAFD between predicted ES phase labels and man-
ual labels in the validation set is shown in Table  5. The 
AAFD between two manual analyst labels in the valida-
tion set is shown for reference. There was no significant 
difference between the AAFD between the predicted 
and manual labels and the AAFD between interobserver 

labels, as assessed by a two-sided t-test with a signifi-
cance level of 0.05.

Anatomical landmark localization
Absolute distance errors between predicted and ground 
truth anatomical landmarks in the validation set are 
shown in Table  6. For insertion points, the angulation 
error between predicted and ground truth valve and 
septal planes is also shown. Representative anatomical 
landmark localization predictions are shown in Fig.  3. 
Anatomical landmarks were reliably localized.

Myocardial image segmentation
Dice scores and Hausdorff distances between predicted 
and ground truth contours in the validation set are 
shown in Table 7. Representative myocardial image seg-
mentation predictions are shown in Fig. 4. Segmentation 
performance was found to be highly reliable and compa-
rable to the interobserver segmentation error between 
two expert manual analysts, as shown in Table 8.

Automated cardiac shape modeling pipeline results
Comparison with manual models
A representative output of the cardiac shape modeling 
pipeline is shown in Fig.  5, which depicts the myocar-
dial contours and anatomical landmark points that are 

Table 3  Precision, recall, and F1-scores for cardiac view 
classification predictions on the validation set

2Ch LT two-chamber left, 2Ch RT two-chamber right, 3Ch three-chamber, 4Ch 
four-chamber, LVOT left ventricular outflow tract, RVOT right ventricular outflow 
tract, SAx short axis

Cardiac view Precision Recall F1-score

2Ch LT 0.88 0.94 0.91

2Ch RT 0.96 0.95 0.96

3Ch 0.38 0.83 0.52

4Ch 0.85 0.92 0.89

LVOT 1.00 0.92 0.96

RVOT 0.78 0.79 0.79

SAx 0.90 0.96 0.93

OTHER 0.97 0.89 0.93

Table 4  Precision, recall, and F1-scores for short-axis slice 
selection predictions on the validation set

SAx short axis

SAx slice optimality Precision Recall F1-score

Optimal 0.81 0.93 0.86

Non-optimal 0.96 0.87 0.91

Table 5  Absolute frame difference (AAFD) between predicted 
end-systole phase labels and manual labels in the validation set. 
The AAFD between two manual analyst labels in the validation 
set is shown for reference

The AAFD is reported as mean ± standard deviation

Predicted vs. Manual Interobserver p-value

AAFD 1.15 ± 1.02 1.39 ± 1.35 0.18

Table 6  Anatomical landmark localization distance errors and 
valve and septal plane angulation errors in the validation set

Distance and angulation errors are reported as mean ± standard deviation. 3Ch: 
three-chamber; 4Ch: four-chamber; RVOT: right ventricular outflow tract; SAx: 
short axis; LV: left ventricular; RV: right ventricular; MV: mitral valve; AV: aortic 
valve; TV: tricuspid valve; PV: pulmonary valve

Cardiac view 
and anatomical 
landmark

Distance error (mm) Plane Angulation
error (°)

3Ch view
 MV Insert 1 7.1 ± 3.4 MV 14.3 ± 12.2

 MV Insert 2 6.4 ± 3.3

 AV Insert 1 10.8 ± 7.5 AV 19.5 ± 17.0

 AV Insert 2 9.8 ± 7.5

4Ch view
 MV Insert 1 4.3 ± 2.6 MV 7.1 ± 5.7

 MV Insert 2 6.0 ± 3.3

 TV Insert 1 4.9 ± 2.7 TV 10.2 ± 13.1

 TV Insert 2 5.0 ± 3.4

 LV Apex 6.2 ± 3.6

RVOT view
 PV Insert 1 13.6 ± 8.1 PV 48.7 ± 37.8

 PV Insert 2 17.0 ± 10.4

SAx view
 RV Insert 1 5.9 ± 5.3 Septal 8.7 ± 13.5

 RV Insert 2 5.0 ± 3.2
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generated for each cardiac view that are then fit to a sub-
division surface template mesh to build a three-dimen-
sional, biventricular shape model. In order to assess 
the performance of the automated pipeline, the MAE 
between manually and automatically generated models in 
the test set was computed. This was done on a global and 

regional basis for ED and ES models as shown in Table 9. 
The overall error of the automated models is within voxel 
resolution of the original CMR images for ED mod-
els and approximately at voxel resolution for ES models 
(Table 2). In order to assess systematic inward or outward 
surface displacement of the automated models compared 

Fig. 3  Representative anatomical landmark localization predictions for the 3Ch, 4Ch, RVOT, and SAx views. 3CH three-chamber, 4Ch four-chamber, 
RVOT right ventricular outflow tract, SAx short axis, RV right ventricular, MV mitral valve, AV aortic valve, TV tricuspid valve, PV pulmonary valve
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to the manual models, the average algebraic Euclid-
ean projection distance for each coordinate point in the 
biventricular surface mesh was computed and is shown 
in Fig.  6. Global ventricular measurements including 
volume and mass metrics were also compared between 
manually and automatically generated models in the test 
set. A summary of the global ventricular measurements 
computed in manually and automatically generated mod-
els is shown in Table 10, along with the differences and 
correlations. Figure 7a shows regression plots and Fig. 7b 
shows Bland–Altman plots between global ventricular 
measurements for manually and automatically generated 
models.

Pipeline timing and manual intervention requirements
For a subset of the test set (n = 12), the time required to 
generate cardiac shape models using the automated pipe-
line was recorded. Statistics were recorded at multiple 
institutions for multiple users. Shape models were gen-
erated in 5.1 ± 2.8 min on average per model  (range 2.5 
– 10.2  min). This represents a significant time savings 
over manual approaches, which typically take 60–90 min 
on average for a single model. For this subset of cases, 
the number of times manual override was required was 
also recorded. The automated pipeline was designed so 
the user could manually override the automated predic-
tions at each step if necessary. Manual override was only 
required during the landmark localization step, with 
interventions occurring for 11.4% of landmarks. The 
most frequently corrected predictions were for the aor-
tic valve insertions (40% of corrections) and pulmonary 
valve insertions (40% of corrections). A summary of the 
necessary manual overrides can be seen in Table 11.

Table 7  Myocardial image segmentation Dice scores and 
Hausdorff distances in the validation set

Dices scores and Hausdorff distances are reported as mean ± standard 
deviation. 2Ch LT two-chamber left, 2Ch RT two-chamber right, 3Ch three-
chamber, 4Ch four-chamber, RVOT right ventricular outflow tract, SAx short axis; 
LV left ventricular, RV right ventricular

Cardiac view and contour Dice score Hausdorff 
distance 
(pixels)

2Ch LT view

 LV cavity 0.96 ± 0.02 2.73 ± 1.04

 LV myocardium 0.88 ± 0.06 2.94 ± 1.13

2Ch RT view

 RV cavity 0.97 ± 0.02 3.66 ± 2.40

 RV myocardium 0.79 ± 0.12 4.88 ± 3.04

3Ch view

 LV cavity 0.96 ± 0.02 3.57 ± 1.68

 LV myocardium 0.90 ± 0.03 4.25 ± 3.90

 RV cavity 0.95 ± 0.02 2.90 ± 1.95

 RV myocardium 0.76 ± 0.09 5.98 ± 6.28

4Ch view

 LV cavity 0.97 ± 0.01 2.57 ± 1.34

 LV myocardium 0.90 ± 0.03 4.07 ± 3.12

 RV cavity 0.96 ± 0.03 3.60 ± 2.73

 RV myocardium 0.77 ± 0.12 3.74 ± 2.06

RVOT view

 RV cavity 0.94 ± 0.03 4.05 ± 2.32

 RV myocardium 0.78 ± 0.09 4.25 ± 2.48

SAx view

 LV cavity 0.94 ± 0.03 4.51 ± 3.05

 LV myocardium 0.90 ± 0.02 5.40 ± 3.22

 RV cavity 0.94 ± 0.02 4.50 ± 2.35

 RV myocardium 0.78 ± 0.03 8.62 ± 3.94

Fig. 4  Representative myocardial image segmentation predictions for the 2Ch LT, 2Ch RT, 3Ch, 4Ch, RVOT and SAx views. 2Ch LT two-chamber left, 
2Ch RT two-chamber right, 3Ch three-chamber, 4Ch four-chamber, RVOT right ventricular outflow tract, SAx short axis
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Evaluation of useability for statistical shape modeling
In order to assess the robustness of the automated car-
diac shape modeling pipeline for statistical shape mod-
eling applications, the manually and automatically 
generated models in the test set were projected onto 
an ED/ES shape atlas derived from shape models in the 
training/validation set. The mean absolute difference 
in Z-scores between manually and automatically gener-
ated models was then computed for the first 20 modes 
of the atlas (Fig. 8), which explain approximately 87% of 
the shape variation in the training/validation set cases. 
The mean absolute difference in Z-score was below one 
standard deviation for each of the first 20 modes, and the 
average mean absolute difference in Z-score for the first 
20 modes was 0.5 standard deviations. The distribution 
of Z-scores for the manually and automatically generated 
models were not significantly different for each of the 
first 20 modes, except mode 8, as assessed by a two-sam-
ple Kolmogorov–Smirnov test with a significance level 
of 0.05 and a Holm-Bonferroni correction for multiple 
comparisons.

Discussion
In this study, we demonstrate the use of deep learning 
for automated view classification, slice selection, phase 
selection, anatomical landmark localization, and myocar-
dial image segmentation that together provide an end-
to-end pipeline for cardiac shape modeling. While others 
have developed automated cardiac shape modeling pipe-
lines [38–41], the pipeline presented herein is the first, 
to our knowledge, to reliably generate 3D, biventricular 
shape models, including all four valves, from a raw CMR 
image dataset for the challenging anatomies seen in 
rTOF. Overall, the automated pipeline performed well on 

an independent, multi-institutional test set that included 
a variety of CMR scanners, including several models that 
were not included in the training/validation set. (Fig.  2 
and Table 2).

The highest errors between the automated and manual 
models were observed around the valve planes (Table  9 
and Fig. 6). This was probably due to the high sensitivity 
of the fitting of the biventricular subdivision surface tem-
plate mesh to the location of the valve insertion points, 
which are extremely sparse compared with the contour 
points used to fit the LV and RV endocardial and epicar-
dial surfaces. Even with manually generated biventricu-
lar shape models, slight deviations in the locations of the 
valve insertion points can result in significant differences 
in the valvular anatomy of the fitted models.

With this new automated cardiac shape modeling 
pipeline, which includes a manual confirmation or 
override for each step of the workflow, a single cardiac 
shape model can be made in 5.1 ± 2.8  min on average, 
whereas manual models generally require 60–90 min per 
model  for an expert analyst. This dramatic reduction in 
processing time can be useful for estimating global ven-
tricular volumes and masses, for which the automati-
cally generated models demonstrated good agreement 
with the manual models (Table 10 and Fig. 7). Although 
differences between automated and manual models 
reached statistical significance for several global meas-
urements, the magnitude of these differences were small 
and unlikely to be clinically significant. Moreover, these 
differences and correlations were similar to previously 
reported manual interobserver errors and differences 
between existing clinical techniques, such as the error 
between CMR and echocardiography [42, 43]. The reduc-
tion in processing time can also significantly increase 
the throughput and clinical translation of more specific 
atlas-based analyses of biventricular shape. The auto-
matically generated models were able to capture relevant 
features of regional ED/ES shape variation to within 0.5 
standard deviations on average per mode compared with 
the manually generated models (Fig.  8). With this auto-
mated workflow, the analysis of large retrospectively col-
lected datasets, such as the INDICATOR cohort [44], can 
be rapidly achieved, yielding larger and more compre-
hensive statistical atlases for shape, biomechanics, and 
electrophysiology analyses with more statistical power 
when assessing relationships with independent measures 
of outcome. Additionally, with an end-to-end pipeline 
that has processing times more consistent with clinical 
workflows, the ability to deploy atlas-based analyses in 
a point-of-care clinical setting to quantify patient-spe-
cific anatomy, function, or risk relative to the population 
would be greatly enhanced.

Table 8  Interobserver analysis results  showing myocardial 
image segmentation Dice scores between two expert analysts 
for a subset of the training and validation sets (n = 36)

Dices scores are reported as mean ± standard deviation. LA long axis, SAx short 
axis, LV left ventricular, RV right ventricular

Cardiac view and contour Dice score

LA views

 LV cavity 0.94 ± 0.05

 LV myocardium 0.83 ± 0.06

 RV cavity 0.91 ± 0.12

 RV myocardium 0.54 ± 0.13

SAx view

 LV cavity 0.94 ± 0.08

 LV myocardium 0.83 ± 0.07

 RV cavity 0.91 ± 0.06

 RV myocardium 0.60 ± 0.12
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In the current iteration of the pipeline, the anatomical 
landmark localization and myocardial image segmenta-
tion networks were only trained on cardiac shape models 
created at ED and ES. This was done because reference 
manual anatomical landmarks and segmentations for 

training/validation were only available at ED and ES. 
This can readily be extended to other timepoints, how-
ever, by validating the automated model performance 
on timepoints throughout the cardiac cycle compared to 
manual models derived at these same timepoints. Doing 

Fig. 5  Representative output of the automated cardiac shape modeling pipeline. Extracted contour points for the LV endocardium (green), RV 
endocardium (yellow), epicardium (cyan), and septum (red) and anatomical landmark points for the MV (blue), AV (green), TV (purple), and PV 
(red) are shown on corresponding views (outside). The contour points and anatomical landmark points were then fit to a biventricular subdivision 
surface template mesh resulting in a patient-specific biventricular shape model (center) with surfaces for the LV endocardium (green), RV 
endocardium (blue), and epicardium (maroon). 2Ch LT two-chamber left, 2Ch RT two-chamber right, 3Ch three-chamber, 4Ch four-chamber, RVOT 
right ventricular outflow tract; SAx short axis, LV left ventricular, RV right ventricular, MV mitral valve, AV aortic valve, TV tricuspid valve, PV pulmonary 
valve
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so would enable the quantification of dynamic informa-
tion throughout the cardiac cycle and enable the creation 
of statistical atlases with much greater temporal resolu-
tion. This could assist in the analysis of the effects of ven-
tricular electrophysiologic activation (e.g. bundle branch 
block, pacing, large scars or patches) on shape and bio-
mechanics. Since the current pipeline was designed as a 
series of five steps, each of the networks can be improved 
upon independently of each other. This modularity will 
be especially useful for extending the automated pipe-
line to other CHDs with two ventricle morphology, such 
as coarctation of the aorta, because testing, performance 
assessment, and any required network retraining will 
need to be done only on specific steps as needed.

In this study, the ES phase was selected based on the LV 
cavity in a mid-ventricular SAx slice. For some patients, 
the presence of right bundle branch blocks or other 

Table 9  MAE between manually and automatically generated 
shape models in the test set based on projection distance

Numerical data are reported as mean ± standard deviation. MAE mean absolute 
error, ED end-diastole, ES end-systole, LV left ventricular, RV right ventricular, MV 
mitral valve, AV aortic valve, TV tricuspid valve, PV pulmonary valve

MAE (mm) ED ES

Global 1.9 ± 0.5 2.1 ± 0.7

Region

 LV Endocardium 1.6 ± 0.7 1.8 ± 1.0

 RV Endocardium 1.8 ± 0.5 2.1 ± 0.5

 Septum 1.3 ± 0.4 1.4 ± 0.5

 Epicardium 2.2 ± 0.8 2.5 ± 1.0

 MV 4.6 ± 0.5 5.6 ± 0.7

 AV 5.2 ± 0.1 5.4 ± 0.3

 TV 3.6 ± 0.6 3.9 ± 0.5

 PV 3.1 ± 0.3 3.0 ± 0.3

Fig. 6  Average inward (blue) and outward (red) Euclidian projection distances between manually and automatically generated shape models in 
the test set. The range of the color bar accounts for 99% of the observed errors. ED end-diastole, ES end-systole

Table 10  Average global ventricular measurements for manually and automatically generated shape models in the test set as well as 
differences and correlations

Numerical data are reported as mean ± standard deviation. Differences between the manual and automated cases were assessed using paired-sample t-tests. LV left 
ventricular, RV right ventricular, EDV end-diastolic volume, ESV end-systolic volume; SV stroke volume, EF ejection fraction

Measure Manual Cases Automated Cases Difference (%) R2 p-value

LV EDV (mL) 119 ± 36 114 ± 37 − 5 ± 10 (− 4) 0.93  < 0.05

LV ESV (mL) 62 ± 24 64 ± 23 2 ± 9 (3) 0.85 0.26

LV SV (mL) 57 ± 16 50 ± 18 − 7 ± 8 (− 12) 0.82  < 0.01

LV EF (%) 48 ± 7 44 ± 7 − 5 ± 6 (− 9) 0.45  < 0.01

LV Mass (g) 111 ± 33 118 ± 37 8 ± 12 (7) 0.89  < 0.01

RV EDV (mL) 197 ± 51 191 ± 54 − 6 ± 17 (− 3) 0.90 0.07

RV ESV (mL) 121 ± 37 114 ± 36 − 7 ± 13 (− 6) 0.88  < 0.01

RV SV (mL) 76 ± 23 77 ± 29 1 ± 15 (1) 0.76 0.67

RV EF (%) 39 ± 7 40 ± 10 1 ± 7 (3) 0.55 0.39

RV Mass (g) 53 ± 24 54 ± 25 0 ± 7 (0.4) 0.93 0.83
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dyssynchrony may necessitate the selection of independ-
ent LV and RV phases. The demonstration of statistical 
shape modeling presented in this manuscript requires 
temporal synchronization and the selection of a single 

ED and ES phase, which may lead to inaccuracies in 
the RV in the setting of a right bundle branch block. 
However, the pipeline provides the option of manually 

Fig. 7  A Regression plots showing the correlation between global ventricular measurements for manually and automatically generated shape 
models in the test set. B Bland–Altman plots comparing the correlation of global ventricular measurements for manually and automatically 
generated shape models in the test set. LV left ventricular, RV right ventricular, EDV end-diastolic volume, ESV end-systolic volume, SV stroke volume, 
EF ejection fraction
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selecting independent LV and RV phases, allowing 
the user to select the option most appropriate for their 
analyses.

Limitations
In the current iteration of the pipeline, the anatomical 
landmark localization and myocardial image segmenta-
tion networks were only trained on cardiac shape models 
created at ED and ES. This was done because reference 
manual anatomical landmarks and segmentations for 
training/validation were only available at ED and ES. This 
can readily be extended to other timepoints, however, by 
validating the automated model performance on time-
points throughout the cardiac cycle compared to man-
ual models derived at these same timepoints. Doing so 
would enable the quantification of dynamic information 

throughout the cardiac cycle and enable the creation of 
statistical atlases with much greater temporal resolu-
tion. This could assist in the analysis of the effects of ven-
tricular electrophysiologic activation (e.g. bundle branch 
block, pacing, large scars or patches) on shape and bio-
mechanics. Since the current pipeline was designed as a 
series of five steps, each of the networks can be improved 
upon independently of each other. This modularity will 
be especially useful for extending the automated pipe-
line to other CHDs with two ventricle morphology, such 
as coarctation of the aorta, because testing, performance 
assessment, and any required network retraining will 
need to be done only on specific steps as needed.

In this study, the ES phase was selected based on the LV 
cavity in a mid-ventricular SAx slice. For some patients, 
the presence of right bundle branch blocks or other dys-
synchrony may necessitate the selection of independent 
LV and RV phases. The demonstration of statistical shape 
modeling presented in this manuscript requires tempo-
ral synchronization and the selection of a single ED and 
ES phase, which may lead to inaccuracies in the RV in 
the setting of a right bundle branch block. However, the 
pipeline provides the option of manually selecting inde-
pendent LV and RV phases, allowing the user to select 
the option most appropriate for their analyses.

Conclusions
Through the use of deep learning, we were able to auto-
mate all of the major steps involved in constructing 3D, 
biventricular shape models including view classifica-
tion, slice selection, phase selection, anatomical land-
mark localization, and myocardial image segmentation. 
To our knowledge, this is the first fully automated, end-
to-end pipeline that can robustly create shape models 
for the challenging anatomies present in rTOF. With 
this approach, we can greatly reduce the manual input 
required to create shape models enabling the rapid anal-
ysis of large-scale datasets and the potential to deploy 
statistical atlas-based analyses in point-of-care clinical 
settings.
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2Ch LT	� Two-chamber left
2Ch RT	� Two-chamber right
3Ch	� Three-chamber
3D	� Three dimensional
4Ch	� Four-chamber
AAFD	� Absolute average frame difference
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BSA	� Body surface area
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Table 11  Occurrence of manual overrides for landmark 
localization predictions when using the automated pipeline for 
a subset of the test set (n = 6 internal cases, n = 6 external cases)

Occurrences are reported as n (%). RV right ventricular, LV left ventricular, AV 
aortic valve, MV mitral valve, PV pulmonary valve

Landmark Manual overrides (%)

AV Inserts 16 of 48 (33)

PV Inserts 16 of 48 (33)

MV Inserts 8 of 96 (8)

RV Inserts 0 of 148)

LV Apex 0 of 12 (0)

Total 40 of 352 (11.4)

Fig. 8  Z-score difference between manually and automatically 
generated shape models in the test set projected onto an ED/ES 
shape atlas constructed from shape models in the training/validation 
set. Bars show the average absolute difference in Z-score, and error 
bars show the standard deviation
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LVOT	� Left ventricular outflow tract
MAE	� Mean absolute error
MV	� Mitral valve
PV	� Pulmonary valve
ReLU	� Rectified linear units
RNN	� Recurrent neural network
rTOF	� Repaired tetralogy of Fallot
RV	� Right ventricle/right ventricular
RVOT	� Right ventricular outflow tract
SAx	� Short axis
SELU	� Scaled exponential linear units
SV	� Stroke volume
TOF	� Tetralogy of Fallot
TV	� Tricuspid valve
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