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Bendability parameter for twisted ribbons to describe longitudinal wrinkling and
delineate the near-threshold regime
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We propose a dimensionless bendability parameter, ϵ−1 = [(h/W )2 T−1]−1 for wrinkling of thin,
twisted ribbons with thickness h, width W , and tensional strain T . Bendability permits efficient
collapse of data for wrinkle onset, wavelength, critical stress, and residual stress, demonstrating
longitudinal wrinkling’s primary dependence on this parameter. This new parameter also allows us to
distinguish the highly bendable range (ϵ−1 > 20) from moderately bendable samples (ϵ−1 ∈ (0, 20]).
We identify scaling relations to describe longitudinal wrinkles that are valid across our entire set of
simulated ribbons. When restricted to the highly bendable regime, simulations confirm theoretical
near-threshold (NT) predictions for wrinkle onset and wavelength.

Wrinkling of geometrically frustrated sheets is a well-
studied subject. Recently, systematic treatments of thin
sheet wrinkling examined flat sheets on compressed sub-
strates [1, 2] and frustrated annuli [3–6], which possess
tractable axial symmetries. Next thin films were floated
on deformable fluid surfaces [7–13] or adhered to curved
planes [14–16], further complicating the forces complicit in
wrinkle formation. Many features of such wrinkled sheets
were successfully described using near-threshold (NT) ap-
proximations which assume wrinkling amplitude is a small
perturbation from the flat state [4, 5, 13]. In some cases
it was helpful to use a far-from-threshold (FT) expansion
which assumes compressive stress in the sheet is alleviated
to first order by onset of wrinkles [1, 4–6, 12, 14–16].

A thin ribbon when twisted also develops wrinkles due
to geometric frustration. Wrinkled ribbons were first doc-
umented in the 1930s [17], but the longitudinally wrinkled
phase was not verified numerically until nearly 50 years
later [18]. Since then, twisted ribbons have been theo-
retically analyzed [19–21], and their phase space experi-
mentally mapped [22]. We previously showed simulations
can replicate the morphology and mechanics of ribbons
buckled and wrinkled via twisting [23] and investigated
NT and FT predictions across a broad swath of the pa-
rameter space. Despite some of the successes of NT and
FT approximations for the twisted ribbon [19, 20, 24],
the transition between their regimes of validity remains
elusive. Exact predictions for onset and wavelength of
wrinkling are lacking [23]. Simulations offer a grip on
ribbons that are neither very thin nor free of compressive
stress, with potential to illuminate the murky demarcation
of NT and FT predictions.

Bendability Parameter— A thin, twisted ribbon devel-
ops longitudinal wrinkles when a longitudinal force F and
end-to-end twist θ are applied, as shown in Fig. 1(a). The
wrinkles have wavelength λlon and are confined to the
“wrinkled zone”, which is symmetric about the center line
with width 2rwr, labeled in Fig. 1(b).

The two dimensionless parameter groupings useful for
analyzing wrinkling in other thin sheets, such as frus-
trated annuli or floating films, are the confinement (here
called α) and the bendability (ϵ−1) [4, 5, 12–16, 25]. For
twisted ribbons, the appropriate confinement parameter
was previously identified [20]:

α ≡ η2

T
(1)

where η represents the geometric strain, and T the ten-
sional strain. η and T are themselves dimensionless,

η = θ
W

L
, T =

F

EhW
, (2)

where E is Young’s modulus, h is ribbon thickness, W
the ribbon width, and L the ribbon length.

On the other hand, bendability for the twisted ribbon,
the dimensionless ϵ−1, has not yet been identified in the
literature. We propose

ϵ ≡
12

(
1− ν2

)
B

WF
=

(
h

W

)2
1

T
(3)

to define inverse bendability for twisted ribbons, where ν
is Poisson’s ratio and B is the bending modulus.

Previous studies that use bendability, such as [4, 5, 12–
16, 25], focus primarily on the highly bendable limit, such
that ϵ−1 ≫ 1. Many of our ribbon samples fall into a
“moderately” bendable range with ϵ−1 ∈ (0, 20]. We first
identify scaling laws for the full range of samples, then
examine only the highly bendable sheets (ϵ−1 > 20) to
compare directly to theoretical NT estimates.

Simulation Details— Ribbons are simulated by an un-
derlying topology of either 11250 or 22500 randomly dis-
tributed nodes connected by in-plane springs, and bending
between adjacent facets is quadratically penalized [26].
Both in-plane stretching and out-of-plane bending mod-
els are generalized to the random mesh using modifica-
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FIG. 1. (a) Observed snapshots of wrinkled ribbons with width W = 5.08 cm (left) and 2.54 cm (right) at tensions T and
twisted by η are displayed here, both with thickness h = 0.254mm and T = 2.5 × 10−3. Overlaid in purple (green) is the
mean curvature H of the ribbon, buckled above (below) the plane. (b) The ribbon projected on a flat plane with H rendered
according to color map shows the wrinkling is confined to a region of width 2rwr, marked here by vertical dashed lines, and has
a wavelength λlon. (c) The critical confinement, αc, at which wrinkles appear plotted against longitudinally applied tension. An
infinitely thin ribbon would develop wrinkles at confinement α0 = 24 (solid green line). Ribbons with finite thickness, however,
transition to the wrinkled state at αc > α0. (d) αc versus the bendability parameter, defined in Eq. (3), with data collapsing
onto the line αc − α0 ∝ ϵγ with γ = 0.585± 0.004.

tions adapted from Van Gelder/Lloyd [27, 28] and Grin-
spun [29, 30], respectively. Full derivation and validation
of the model are presented by Leembruggen, et al. [23].

Interactions between nodes are described by Newton’s
second law. Since the ribbon is in the quasi-static limit
where F ≈ 0, we use an implicit integration scheme. A
typical ribbon simulation requires a wall-clock time of 8 h,
using 8 threads on a Linux computer with dual 2.40GHz
Intel Xeon E5-2630 CPUs.
Six ribbons with L = 45.7 cm were used in this study:

two of width W = 5.08 cm with thicknesses h/W =
5×10−3, 10−2; and four of width W = 2.54 cm with thick-
nesses h/W = 5 × 10−3, 1 × 10−2, 1.5 × 10−2, 2 × 10−2.
Young’s modulus for these ribbons was E = 3.4GPa, and
Poisson’s ratio was ν = 1/3 [26, 28]. The short edges of
each ribbon were fixed to a rigid rod rotating at constant
rotational velocity, θ̇; thus the position of each node on
the boundary was imposed at each time step. Ribbons
were additionally held at fixed tensions, T , within the lon-
gitudinal buckling phase. Ultimately we had 96 samples
of longitudinally wrinkled ribbons with varying λlon.
Wrinkling Onset— Examining the ribbon’s stress in

the longitudinal (y) direction [20],

σyy(x)

T
= 1 +

α

2

(( x

W

)
− 1

12

)
, (4)

identifies α0 = 24 as the confinement at which stress

becomes compressive along x = 0 (the ribbon’s spine).
An infinitely thin ribbon, unable to support compressive
stress, buckles at α0. But ribbons with thickness sup-
port stress, and thus buckle at confinements αc > α0,
as demonstrated across samples in Fig. 1(d). (Details
concerning the appearance of wrinkles, determination of
wrinkle onset, and calculation of wavelength are presented
by Leembruggen et al. in Fig. 4 of Ref. [23].) Previous
estimates of this finite thickness correction based on ex-
periments followed the form ηc = η0 + Clon

h
W where

η0 =
√
24T coincides with α0 = 24 [22]. Written in terms

of proposed bendability, this translates to a correction on
the order of αc−α0 ∝ ϵ. However, as plotted in Fig. 1(e),
we observe

αc − α0 ∝ ϵγ , (5)

with γ = 0.585 ± 0.004. As shown by the data collapse
in Fig. 1(e) the tension dependence and geometric pa-
rameters are captured by the bendability parameter in-
troduced in Eq. (3). The previously proposed correction
of O(ϵ) overcompensated for the thickness of the ribbon.
Chopin et al. posit that, using the NT approximation,
(αc − α0) ∼ (h/W )T−1/2 [20]. Recast using ϵ−1, the
equivalent prediction is αc − α0 ∝ ϵγ with γ = 1/2.
Wavelength at onset of longitudinal wrinkling is con-

stant in α, so we wait until the wrinkle pattern has
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FIG. 2. (a) Wavelength per unit length as a function of ribbon
dimensions and applied tension, compared with Chopin and
Kudrolli’s experimental normalization (dashed black line) [22].
Plotted with this normalization, data are broadly distributed.
(b) Plotted against bendability, wavelengths collapse more
closely. In terms of ϵ−1, theoretical NT analyses [19, 20]
predict δ = 1/4, plotted by the blue, dotted line. Adjusting
the NT approximation by substituting γ observed in Fig. 1(e),
such that δ = γ/2 = 0.293± 0.002 is shown here by the green,
dash-dotted line. Note that points with ϵ−1 > 20 roughly
follow the slope of the NT prediction, but diverge from this
line when ϵ−1 < 20.

appreciable amplitude before extracting λlon to make
the measurement more precise [23]. NT approximations
have been used to estimate wavelength at onset [19, 20]:
λ ∝ rwr ∝

√
h/WT−1/4, and were noted to describe

experimentally measured wavelengths [22].

In Fig. 2(a) we plot wavelength per unit length (i.e.
the inverse of preferred wave number) using the same
normalization as Chopin and Kudrolli’s experiment [22]
which differs from the NT prediction by a factor of W
but has the same dependence on T . Also plotted in this
figure is a best fit as a function of T , represented by the
black, dashed line. Vertical spread in these data suggests
the dependence on h and W is not captured by

√
hW

normalization. However, plotting wavelengths against the
bendability, in Fig. 2(b), the values collapse, scaling as
λlon/L ∝ ϵδ with δ = 0.342 ± 0.019, shown as a black,
dashed line.

Recast in terms of bendability, the theoretical NT pre-

diction for wavelength is λlon/L ∝ (αc−α0)
1/2 ∝ ϵδ, with

δ = γ/2 = 1/4 in this case. Alternatively we could assume
adjusting γ propagates to other NT predictions. In which
case, δ = γ/2 = 0.293± 0.002, using Eq. (5). In Fig. 2(b),
we plot the theoretical NT δ = 1/4 in a blue, dotted line,
and adjusted NT δ = 0.293 in a green, dash-dotted line.
All in all, scaling λlon in terms of ϵ−1 is a vast im-

provement over past investigations of wavelength versus
tension. Regardless of the collapse’s precise slope, the
points are clustered more closely than in previous stud-
ies [23], further affirming ϵ’s usefulness.

Residual Stress— Throughout the simulation we extract
the stress tensor via the mesh’s deformation gradient
tensor [23]. Longitudinal slices are taken along the middle
third of the ribbon, then averaged along the y direction to
obtain ⟨σyy (x)⟩y. Instinctually, one might expect critical
buckling stress ⟨σyy

c (0)⟩y is proportional to cross-sectional

area (hW/W 2 = h/W in dimensionless units). In Fig. 3(a)
we plot critical stress at x = 0 against this candidate
scaling factor. This simple estimate, however, results in
incomplete collapse of the data.
Turning back to our stress equation, Eq. (4), along

x = 0 we expect the stress at α > α0 to be

σyy

T
= 1− α

24
= 1− α0

24
− α− α0

24
= −α− α0

24
. (6)

Since we observe the scaling for confinement in Eq. (5),
critical stress should go as

σyy
c

T
= −αc − α0

24
∝ −ϵγ . (7)

This is consistent with our measurements, plotted in
Fig. 3(b), which find σyy

c /T ∝ −ϵγ
′
, with the measured

γ′ = 0.599± 0.006.
It is not clear from analytical studies whether the rib-

bon’s residual, post-buckling, compressive stress should
scale the same as its critical stress, especially as α > αc

changes [16, 31]. However, as shown in Fig. 3(c), stress
saturates at values very close to critical stress; we measure
γ′
res = 0.591± 0.003.
The Boundary of Near Threshold— It is expected that

NT relations are valid only for highly bendable sheets
(h/W )2 ≪ T , or equivalently, ϵ−1 ≫ 1. Although there
are no sharp transitions in the data of Figs. 1 & 2 as
a function of ϵ−1, we could exclude points with small
bendability to better understand how confinement (αc −
α0), wavelength (λlon), and critical stress (⟨σyy

c (0)⟩y/T )
scale in the highly bendable limit.
In Fig. 4(a) we plot the value of scaling exponents

for confinement (γ) and wavelength (δ) as a function
of the lower threshold, ϵ−1

lb . As ϵ−1
lb increases, further

restricting the data to a highly bendable range, γ changes
little, hovering around 0.5. On the other hand, δ is quite
sensitive to ϵ−1

lb , but converges to ≈ 0.25 when ϵ−1
lb > 20.

Therefore, when constrained by a highly bendable limit,
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FIG. 3. (a) The critical stress along the ribbon center at onset
of wrinkling plotted against W

h
T results in incomplete collapse

of the data. (b) When written as a function of bendability,

stress at critical confinement follows the curve σyy
c (0) ∝ −ϵγ

′
,

γ′ = 0.599 ± 0.006. This relationship follows from Eqs. (4)
& (7). (c) The stress of each ribbon sample at four different
confinements, α, resulting in 384 points. Open markers indi-
cate the stress in a ribbon before it has buckled, whereas filled
markers indicate the stress post-buckling. Marker shape refers
to the confinement, α, at which the stress was sampled. Post-
buckling, the ribbons support residual stress. Residual stress
saturates according to ribbon bendability, and is independent
of α. Post-buckling residual stress follows the relationship

σyy
residual (0) ∝ −ϵγ

′
res , γ′

res = 0.591± 0.003, similar to the scal-
ing of σyy

c in (b).

FIG. 4. (a) Various thresholds are placed on the lower bound
of ϵ−1. The confinement scaling exponent, γ (upper, blue cir-
cles, solid border) remains largely unchanged as lower bound
changes. The wavelength exponent, δ (lower, red circles,
dashed border), is more sensitive to the threshold of ϵ−1;
when the threshold reaches ϵ−1

lb ≈ 20, δ ≈ 0.25. Horizon-
tal lines are plotted at 0.25 and 0.5 to guide the eye. (b–d)
Replications of Figs. 1(d), 2(b) and 3(b) where the scaling
exponent (dashed, black line) is fitted only using data with
ϵ−1 > 20. Darker points, right of the vertical dotted lines,
are included in the scaling fit; desaturated points to the left
are not. With this threshold imposed, γ = 0.513± 0.001 and
δ = 0.255 ± 0.044 (compared to NT predictions of γ = 0.50
and δ = 0.25). The critical stress scaling remains essentially
unchanged, with γ′ = 0.608± 0.029.
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our simulations agree entirely with NT predictions that
(αc − α0)NT ∝ ϵ1/2 and λNT

lon ∝ ϵ1/4.

Figures 4(b–d) recreate Figs. 1(d), 2(b), & 3(b) respec-
tively, this time restricting the data such that only highly
bendable ribbons are included in the scaling exponent fit.
Excluded data are desaturated, left of the vertical dotted
lines, and included data are fully saturated to the right
of the cutoff line. With this threshold imposed, the con-
finement in Fig. 4(b) has γ = 0.513± 0.001; wavelength
in Fig. 4(c) has δ = 0.255± 0.044; and critical stress in
Fig. 4(d) has γ′ = 0.608 ± 0.029. Interestingly, critical
stress remains largely unchanged when thresholded, and
is inconsistent with the stress (Eq. (7)) expected using
the thresholded confinement scaling.

Discussion—Inspired by studies of complementary wrin-
kled systems, we introduced a dimensionless parameter
for bendability of a twisted ribbon ϵ−1. Specifically ϵ−1

incorporates finite thickness, and extends predictions con-
cerning infinitely thin ribbons. Then, we demonstrated
ϵ−1 successfully describes onset of wrinkling, wavelength,
and even stress at and after wrinkle onset. By rewriting
NT and FT predictions [20] in terms of ϵ−1, we show
onset of wrinkling scales somewhere between NT and FT
predictions of [20], but more closely to NT results. When
data are restricted to a highly bendable region (ϵ−1 > 20),
they exactly match NT predictions. With our simulation
framework, additional simulations of even more bend-
able ribbons could readily be performed to further probe
the NT theory. Perhaps most successfully, ϵ−1 allows
investigation of ribbons in the “moderately” bendable
(ϵ−1 ∈ (0, 20]) limit, which are less bendable than theo-
retically tractable ribbons. Including this broader set of
bendabilities enabled determination of scaling laws are
valid for a wide range of ribbons.

Further, analyzing simulated ribbons allowed us to ex-
tract stress throughout the twist, which is prohibitively
difficult to measure in experiments. Thus, the simula-
tions have revealed stress in finite-thickness ribbons is
not completely alleviated by buckling, as is assumed in
FT analysis, and the compressive stress they support sat-
urates at critical buckling stress. Our simulations also
demonstrate critical stress, and thus saturated stress,
depends only on ribbon bendability. Other quantities,
such as suppression of wrinkles near the boundaries, and
growth of wrinkle amplitude can also likely be scaled
according to ϵ−1 [23]; additional analytical and experi-
mental studies should be performed to verify and identify
these relationships. We anticipate these facts uncovered
by our simulations, and introduction of a bendability pa-
rameter for twisted sheets, will prove useful in further
theoretical development of scaling laws.
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Fabian Brau, and Pascal Damman. From Cylindrical
to Stretching Ridges and Wrinkles in Twisted Ribbons.
Physical Review Letters, 117(10):104301, September 2016.
Publisher: American Physical Society.

[22] Julien Chopin and Arshad Kudrolli. Helicoids, Wrinkles,
and Loops in Twisted Ribbons. Physical Review Letters,
111(17):174302, October 2013.

[23] Madelyn Leembruggen, Jovana Andrejevic, Arshad Ku-
drolli, and Chris H. Rycroft. Computational model of
twisted elastic ribbons. Physical Review E, 108:015003,
2023.

[24] Julien Chopin and Romildo T. D. Filho. Extreme con-
tractility and torsional compliance of soft ribbons under
high twist. Phys. Rev. E, 99:043002, Apr 2019.

[25] Joseph D. Paulsen, Evan Hohlfeld, Hunter King,
Jiangshui Huang, Zhanlong Qiu, Thomas P. Russell,
Narayanan Menon, Dominic Vella, and Benny Davi-
dovitch. Curvature-induced stiffness and the spatial vari-
ation of wavelength in wrinkled sheets. Proceedings of the
National Academy of Sciences, 113(5):1144–1149, Febru-
ary 2016. Publisher: Proceedings of the National Academy
of Sciences.

[26] H. S. Seung and David R. Nelson. Defects in flexible
membranes with crystalline order. Physical Review A,
38(2):1005–1018, July 1988.

[27] Allen Van Gelder. Approximate simulation of elastic
membranes by triangulated spring meshes. Journal of
Graphics Tools, 3(2):21–41, 1998.

[28] Bryn Lloyd, Gabor Szekely, and Matthias Harders. Iden-
tification of Spring Parameters for Deformable Object
Simulation. IEEE Transactions on Visualization and
Computer Graphics, 13(5):1081–1094, September 2007.

[29] Eitan Grinspun, Anil N. Hirani, Mathieu Desbrun, and
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