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Conventional and frugal methods 
of estimating COVID‑19‑related 
excess deaths and undercount 
factors
Abhishek M. Dedhe 1,2,3*, Aakash A. Chowkase 1,4, Niramay V. Gogate 1,5, 
Manas M. Kshirsagar 1,6, Rohan Naphade 1, Atharv Naphade 1, Pranav Kulkarni 1,7, 
Mrunmayi Naik 1, Aarya Dharm 1,8, Soham Raste 1, Shravan Patankar 1,9,  
Chinmay M. Jogdeo 1,10, Aalok Sathe 1,11, Soham Kulkarni 1,12, Vibha Bapat 1,13, 
Rohinee Joshi 1,14, Kshitij Deshmukh 1,15,16, Subhash Lele 1,17, Kody J. Manke‑Miller 2, 
Jessica F. Cantlon 2,3 & Pranav S. Pandit 1,18*

Across the world, the officially reported number of COVID‑19 deaths is likely an undercount. 
Establishing true mortality is key to improving data transparency and strengthening public health 
systems to tackle future disease outbreaks. In this study, we estimated excess deaths during 
the COVID‑19 pandemic in the Pune region of India. Excess deaths are defined as the number of 
additional deaths relative to those expected from pre‑COVID‑19‑pandemic trends. We integrated data 
from: (a) epidemiological modeling using pre‑pandemic all‑cause mortality data, (b) discrepancies 
between media‑reported death compensation claims and official reported mortality, and (c) the 
“wisdom of crowds” public surveying. Our results point to an estimated 14,770 excess deaths [95% CI 
9820–22,790] in Pune from March 2020 to December 2021, of which 9093 were officially counted as 
COVID‑19 deaths. We further calculated the undercount factor—the ratio of excess deaths to officially 
reported COVID‑19 deaths. Our results point to an estimated undercount factor of 1.6 [95% CI 1.1–
2.5]. Besides providing similar conclusions about excess deaths estimates across different methods, 
our study demonstrates the utility of frugal methods such as the analysis of death compensation 
claims and the wisdom of crowds in estimating excess mortality.

Keywords Statistical modeling, Wisdom of crowds, COVID-19, Excess mortality estimation, Frugal science

Accurate and trustworthy data are critical for understanding, mitigating, and preventing complex problems. Dur-
ing disease outbreaks, precise mortality data are essential for facilitating optimal resource allocation, conducting 
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retrospective evaluations of disease mitigation measures, and effectively planning for—and perhaps potentially 
preventing—future epidemics and other public health  emergencies1,2. However, there are widespread concerns 
about the lack of reliable mortality estimates during large-scale disease outbreaks, and this concern was prevalent 
during the COVID-19  pandemic3–6. Skepticism about the validity of official COVID-19 mortality data arises from 
a lack of rigorous testing, absence of medical certification, deaths occurring outside formal healthcare systems, 
and other indirect pandemic-related deaths that occurred due to delays or lack of access to healthcare, reduced 
hospital capacity, increased risk of other diseases, and post-COVID-19  complications3,4,7,8. In response, national 
and international health authorities, epidemiologists, and journalists across the world have estimated the number 
of additional deaths during the COVID-19 pandemic relative to those expected based on trends from pre-pan-
demic times, also known as excess mortality4,5,7,9–14. Excess mortality estimates are conventionally computed using 
a range of statistical and epidemiological  models4,5,7,8,10–25. However, these models rely on plentiful, high-quality, 
and timely pre-pandemic mortality data. Such data are particularly difficult to obtain in resource-constrained 
settings where robust and resilient data infrastructures are  limited2,3,26–28. In such circumstances, researchers 
have estimated COVID-19-related excess mortality using innovative alternatives such as post-mortem PCR tests, 
large household surveys, satellite imagery of cemeteries, obituary notifications, funeral data, cremation counts, 
burial numbers, death insurance claims, verbal autopsies, and investigative  journalism10,29–36. Although useful, 
many of these alternative methods remain resource-intensive, and thus prompt a need for frugal fact-finding 
approaches in addition to traditional data-collection techniques.

To that end, the wisdom of crowds approach may potentially be useful in estimating excess mortality. The 
wisdom of crowds refers to the counterintuitive accuracy of aggregated cognitive estimates. Cognitive estima-
tion is the human ability to provide reasonable answers to questions for which specific answers are not readily 
 available37–39,126. Many everyday human behaviors depend on successful cognitive estimation (e.g., planning out 
how many clothes to pack for a trip). Such everyday cognitive estimation scenarios tap into a range of psychologi-
cal processes such as reasoning, working memory, cognitive flexibility, mental imagery, and problem-solving40–45. 
Cognitive estimation has therefore been applied across clinical populations to assess patients with brain lesions 
and other psychiatric  conditions46–56. Such neuropsychological studies have made progress in describing the 
neural underpinnings of cognitive estimation. Parallel research efforts have investigated cognitive estimation 
in the context of education and neurocognitive developmental  disorders57–61. Such research has shown how the 
accuracy of cognitive estimation is sensitive to experiential factors including socioeconomic status, reading hab-
its, quality of education, and media  exposure62. Even though individual human judgment and decision-making 
are often biased and susceptible to influence from a range of cognitive, emotional, socioeconomic, and political 
 factors27,63–66, a growing body of research points to the wisdom of crowds. This frugal method has been widely 
used across multiple domains including neuropsychology, business, finance, economics, election polling, public 
policy, and global  geopolitics37,39,59,67–77. Specifically, in the context of epidemiology, public health surveillance, 
and the COVID-19 pandemic, this method has been used to predict future outbreaks, vaccination uptake, disease 
caseload, infection hotspots, and overall disease  severity72,78–86. Despite the potential of cognitive estimation, 
the utility of this method has not been widely tested to estimate pandemic-associated excess mortality, a gap 
this study aims to fill.

In this study, we investigated whether COVID-19-related excess mortality estimates using multiple methods 
were similar to each other. We focused on three conventional statistical and epidemiological models: (a) a simple 
averaging  technique18,87, (b) the Farrington surveillance  algorithm20, and (c) an overdispersed Poisson  model88, 
along with two novel frugal methods to estimate COVID-19-related excess mortality: (d) analyzing media 
reports about discrepancies between official mortality data and death compensation claims, and (e) the wisdom 
of crowds public surveying. Similar estimates obtained from different methods would establish the use of frugal 
methods in estimating pandemic-related excess mortality and other unknown public health-related statistics, 
especially in resource-constrained settings.

In our case study, we focused on the Pune Municipal Corporation region (henceforth simply referred to as 
‘Pune’) in the state of Maharashtra, India. Pune is the eighth-largest metropolitan area of India with a popula-
tion of 5 million  people89. Of them, around 40% of inhabitants (~ 2 million) reside in urban  slums90, with an 
additional floating population of migrants from surrounding rural areas. Between 1st January 2020 and 31st 
December 2021, Pune officially reported more than half a million COVID-19 cases and 9093 COVID-19 deaths 
over two successive waves (Fig. 1, Fig. S1)91. Despite a large number of officially reported cases and deaths, Pune 
is one of the few large Indian cities for which pandemic-associated excess mortality has not been determined. 
We, therefore, estimated COVID-19-related excess deaths in Pune. Our results point to an estimated 14,770 
excess deaths [95% CI: 9820–22,790] in Pune from March 2020 to December 2021, of which 9093 were offi-
cially counted as COVID-19 deaths. This translates to an estimated undercount factor—the ratio of estimated 
excess deaths to officially reported COVID-19 deaths—of 1.6 [95% CI: 1.1–2.5] for Pune from March 2020 
to December 2021. In other words, we estimate that Pune experienced 60% more COVID-19-related deaths 
than officially reported. We found that excess death estimates from diverse methods—both conventional and 
frugal—were within the margins of error of each other. Thus, our study provides evidence about excess death 
estimates from diverse approaches and demonstrates the utility of non-traditional frugal methods such as the 
analysis of media-reported death compensation claims and the wisdom of crowds in estimating excess mortality. 
Our study also reinforces the potential of collective cognitive estimation as an untapped theoretical avenue for 
computational social science, neuroscience, cognitive and behavioral science, and other life sciences. Finally, 
our study highlights the practical importance of the wisdom of crowds and other frugal estimation methods in 
generating equitable solutions to credible fact-finding, especially in resource-constrained settings where robust 
data infrastructures are unaffordable.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:10378  | https://doi.org/10.1038/s41598-024-57634-6

www.nature.com/scientificreports/

Methods
We adopted a multi-method approach to estimate COVID-19-related excess deaths in Pune from March 2020 to 
December 2021 by combining estimates from three methods: (a) statistical and epidemiological modeling with 
pre-pandemic mortality data, (b) analyzing media reports about discrepancies between official mortality data and 
death compensation claims, and (c) wisdom of crowds public surveying. Within statistical and epidemiological 
methods, we used three models: (a) a simple averaging  technique18,87, (b) the Farrington surveillance  algorithm20, 
and (c) an overdispersed Poisson  model88. Multi-method approaches help mitigate the flaws and biases inher-
ent to any particular method. Piecing together data from different sources improves our understanding of the 
 pandemic10,16,92,93. Different methods often reflect different approaches to answering the same question, and thus 
may produce conflicting estimates. Rather than identifying any single “best” method, multi-method approaches 
combine diverse sources to produce a collective estimate that is typically more accurate than estimates from 
individual models. Combining estimates minimizes the pitfalls of relying on any particular individual model, 
and it can offset statistical bias, potentially canceling out overestimation and  underestimation94–96. More broadly, 
multi-method approaches reflect an epistemic commitment to diverse  viewpoints97. They highlight how the voice 
of diverse stakeholders may be critical to establishing the ground  truth98. This is especially relevant in the context 
of COVID-19 where considerable debate exists about officially reported mortality  figures3,12,19,99–103,119. Next, we 
briefly describe various methods used in this study to estimate COVID-19-related excess deaths in Pune. All 
methods were carried out in accordance with relevant guidelines and regulations. All experimental protocols 
were approved by Carnegie Mellon University’s Institutional Review Board (Registration No.: IRB00000352).

Figure 1.  Officially reported COVID-19 incidence and deaths in Pune. Top: Daily COVID-19 incidence in 
Pune from March 2020 through December 2021. Bottom: Monthly COVID-19 deaths reported in Pune from 
March 2020 through December 2021.
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Statistical modeling with pre‑pandemic all‑cause mortality data
To estimate COVID-19-related excess mortality, researchers conventionally use various statistical modeling tech-
niques ranging from simple averaging and linear regression to more sophisticated methods such as Monte-Carlo 
simulations, Poisson models, and other machine learning  models4,10,11,14,87,104. Other researchers have estimated 
excess deaths by extrapolating from more traditional epidemiological measures such as serosurveillance data, 
infection fatality rate, the overall population’s susceptibility to the virus, the protection offered by vaccination, 
and the chances of  reinfection10,16,87,106. Most statistical and epidemiological models computed excess deaths by 
estimating the number of expected deaths based on pre-pandemic  trends5. However, different models varied 
widely in their assumptions and choice of relevant real-world parameters. Some researchers used simple averag-
ing techniques to establish a baseline of expected all-cause  mortality18,87. Although useful, such simple approaches 
lack flexibility and robustness because they ignore real-world factors including seasonality, population growth, 
and contemporary trends of mortality. Epidemiologists addressed these limitations using more sophisticated 
methods such as widely adopted Poisson and quasi-Poisson models that include parameters such as population 
growth, seasonality, and recent temporal trends of  mortality4,7,9,20,24,105. Such models trace their roots to the “clas-
sical” Farrington surveillance algorithm that has been extensively used across diverse public health settings over 
the past three  decades20,106–108. This approach remains a reference point for many of the improved and extended 
Poisson-related models that have since been  developed109,110.

Our three statistical models used a dataset about monthly all-cause mortality in Pune from January 2014 
through December 2021 (Fig. 2). This dataset was provided to the Jnana Prabodhini Foundation by the Pune 
Knowledge Cluster, a national-level Science and Innovation Cluster set up by the Office of the Principal Scientific 
Advisor, Government of  India91. A formal memorandum of understanding (MoU) of institutional collaboration 
was signed between the Jnana Prabodhini Foundation and the Pune Knowledge Cluster to ensure responsible 
data-sharing and upholding privacy standards. The Pune Knowledge Cluster ultimately obtained this dataset 
from the Pune Municipal Corporation Health Office’s death certificate registration data. Besides estimating excess 
deaths (Eq. 1), we also computed the undercount factor, the ratio of excess deaths to officially reported COVID-
19 death figures (Eq. 2)17. Next, we describe the three statistical models we used in this study.

Simple average model
We used a simple nonparametric  model18,87 to compute COVID-19-related excess deaths (Eq. 3). The expected 
deaths for each month from March 2020 to December 2021 were calculated as the mean number of total deaths 
recorded during that month for the previous six years. We also calculated the associated 95% prediction intervals 
[μ ± Zσ] where μ is the mean expected estimate and σ is the standard deviation around the predicted estimate. 
We set Z = 1.96, the 97.5th percentile of a standard normal distribution. Negative values, where observed counts 
were below the expected thresholds, were set to zero. This method assumes that the number of deaths is effectively 
constant over time and that the underlying data are independent and identically distributed (i.i.d.). See Support-
ing Information for further methodological details and an evaluation of model assumptions.

(1)excess deaths = total reported deaths − expected deaths

(2)undercount factor =
excess deaths

reported COVID-19 deaths

Figure 2.  Officially reported monthly all-cause deaths in Pune from January 2014 through December 2021.
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where Mi is the number of deaths in month M of year i

Farrington surveillance algorithm
We implemented the Farrington surveillance  algorithm20, a quasi-Poisson regression model that accounts for 
seasonality (Eq. 4), to compute the expected deaths for each month from March 2020 to December 2021. This 
model was implemented using the surveillance package in the R programming  language105,111. As is standard 
practice, the lower bound for the margin of error of the Farrington surveillance algorithm was computed using a 
one-sided 95% prediction interval. The upper bound was computed using average expected deaths. Negative val-
ues, where observed counts were below the expected thresholds, were set to  zero9. This method assumes that the 
number of deaths is effectively constant over time. See Supporting Information for further methodological details.

where ɑ and β account for a seasonal variation in deaths, and M is measured in months.

Overdispersed Poisson model
We implemented an overdispersed Poisson model that accounts for population growth in addition to seasonal 
variation in deaths (Eq. 5)88 to compute the expected deaths for each month from March 2020 to December 
2021. This model was implemented using the excessmort package in the R programming  language104. We obtained 
estimates about Pune’s monthly population from the World Population  Review89. We report the associated 95% 
prediction intervals [μ ± Zσ] where μ is the mean expected estimate and σ is the standard deviation around the 
predicted estimate. We set Z = 1.96, the 97.5th percentile of a standard normal distribution. Negative values, 
where observed counts were below the expected thresholds, were set to zero. See Supporting Information for 
further methodological details and an evaluation of model assumptions.

where PM is the population in month M, ɑM is a gradual trend accounting for the increasing life expectancy, and 
sM is a seasonal trend accounting for a seasonal variation in deaths.

Analyzing media reports about discrepancies between official mortality data and death com‑
pensation claims
Governmental bodies across the world including India’s National Disaster Management Authority have imple-
mented ex gratia monetary compensation policies targeted at households who lost family members to COVID-
19101,112. Such policies often employ liberal definitions of COVID-19 mortality, thus counting some of the 
COVID-19 deaths that may have been missed for various  reasons3,4,7,8, such as deaths that had occurred within 
a month of suffering from COVID-19 as well as the deaths of patients who did not possess positive RT-PCR 
(reverse transcription–polymerase chain reaction) tests, but nevertheless displayed other indicators of likely 
COVID-19 infection including positive antibody tests and HRCT (high-resolution computed tomography) chest 
 scans113. We analyzed reports from the Times of India113, one of India’s most-circulated daily newspapers, about 
the number of COVID-19 death compensation claims filed by households that lost family members to COVID-
19. We treated this number as the estimated COVID-19-related excess deaths (Eq. 3). We then computed the 
undercount factor as the ratio between the number of registered COVID-19 death compensation claims and the 
number of officially reported COVID-19 deaths (Eq. 4). Unlike statistical modeling, our analysis of death com-
pensation claims only provides a point estimate of excess deaths. However, to heuristically estimate the margin of 
error associated with our point estimate, we further computed undercount factors for other cities in Maharashtra. 
Together, these cities constitute a fifth of Maharashtra state’s population and almost half of Maharashtra’s urban 
population. We calculated the standard error for the undercount factors, thus generating a range of plausible 
undercount factors for cities in Maharashtra [se = σ/√n where σ is the standard deviation across these cities and 
n is the number of cities]. This standard error was used to compute a 95% confidence interval for Pune [μ ± Z*se] 
where μ is the estimated undercount factor for Pune. We set Z = 1.96, the 97.5th percentile of a standard normal 
distribution. The lower and upper bounds of this confidence interval were multiplied by the number of reported 
COVID-19 deaths to compute plausible lower and upper estimates of excess COVID-19-related deaths in Pune. 
See Supporting Information for alternative heuristics of computing plausible lower and upper estimates of the 
undercount factor for Pune.

Wisdom of crowds public surveying
We conducted an online wisdom of crowds survey in Pune to obtain COVID-19-related excess death estimates. 
Ethics approval for this survey was obtained from Carnegie Mellon University’s Institutional Review Board 
(Registration No.: IRB00000352). Only adults participated in the survey and completed a digital consent form 

(3)expected deaths =
1

6
(M2014 +M2015 +M2016 +M2017 +M2018 +M2019)

(4)expected deaths = e(α+β·M)

(5)expected deaths = PM · e(αM+sM )

(6)excess deaths = reported COVID-19 death compensation claims

(7)undercount factor =
reported COVID-19 death compensation claims

reported COVID-19 deaths
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before proceeding to the survey questionnaire. Thus, we confirm that informed consent was obtained from all 
participants. We did not collect identifying or potentially identifying information about survey respondents. We 
deployed the survey from 8 January 2022 to 8 February 2022. Participants responded to the survey hosted on the 
SurveyMonkey platform (now Momentive) in either Marathi or English. We employed a sample-of-convenience 
snowball-sampling method and promoted the survey via social media platforms such as WhatsApp and Face-
book. 280 adult residents of Pune participated in a COVID-19-related Knowledge, Attitudes, and Practices (KAP) 
survey (Table S2)27. Survey respondents were asked COVID-19-related questions including: “As of January 1, 
2022, there have been 9,117 COVID-19 deaths in Pune during the pandemic. This data is from official government 
figures released by Pune Municipal Corporation (PMC). What do you think is the true number of COVID-19 deaths 
in Pune (as of January 1, 2022)? Please choose a number between 0 and 90,000.” The average cognitive estimate 
obtained from public surveying, that is, the collective guess about the “true number of COVID-19 deaths” was 
considered to be the number of excess COVID-19-related deaths (Eq. 5). We computed the undercount factor as 
the ratio between the collective cognitive estimate of the speculated true number of COVID-19 deaths and the 
number of officially reported COVID-19 deaths (Eq. 6). We calculated the standard error [se = σ/√n] and used 
it to compute the 95% confidence interval [μ ± Z*se] where we set Z = 1.96, the 97.5th percentile of a standard 
normal distribution.

Aggregate estimate
We combined five COVID-19-related excess deaths and undercount factors obtained from different methods: (a) 
the simple averaging technique, (b) the Farrington surveillance algorithm, (c) the overdispersed Poisson model, 
(d) analyzing media-reported death compensation claims, and (e) the wisdom of crowds public surveying. We 
used a simple bootstrap to generate a plausible range of excess deaths and undercount factors for Pune. We first 
randomly sampled from the distributions generated by each of the five different methods. For all methods except 
the wisdom of crowds, we conducted sampling assuming a normal distribution. For the wisdom of crowds, we 
did not have any such assumption and conducted sampling from the raw survey data. We conducted 10,000 
iterations of such random sampling with replacement and used the resulting 10,000 means to compute a 95% 
confidence interval. See Supporting Information for further methodological details.

Results
We used a multi-method approach to compute COVID-19-related excess death estimates in Pune from March 
2020 to December 2021 compared to the 74,289 total reported deaths during this time. We also computed the 
undercount factor in this period, that is, the ratio of estimated excess deaths to the 9,093 officially reported 
COVID-19 deaths. Table 1 and Fig. 3 present a summary of excess death estimates and undercount factors 
estimated from all different methods in this study. All estimated expected deaths and excess deaths have been 
rounded to the nearest 10 to avoid a false sense of precision.

First, we used three types of statistical models. Based on the pre-pandemic trends, the simple average model 
estimated 53,790 expected deaths (95% PI: 41,230–64,230). Therefore, the estimated COVID-19-related excess 
deaths were 20,490 (95% PI: 10,050–33,050) (Fig. 4A). Compared to the estimated excess deaths, the 9,093 

(8)excess deaths = collective cognitive estimate of COVID − 19 deaths

(9)undercount factor =
collective cognitive estimate of COVID − 19 deaths

reported COVID − 19 deaths

Table 1.  Estimated expected deaths, excess deaths, and undercount factors during the COVID-19 pandemic 
in Pune. The values in the parentheses are the lower and upper bounds of the margin of error associated 
with each estimate. The margin of error is the 95% PI for the statistical models: simple average, Farrington 
surveillance algorithm (one-sided), and overdispersed Poisson model. It is the 95% CI for the analysis of death 
compensation claims from media reports, the wisdom of crowds public surveying, and the aggregate estimate. 
aUnlike other cities, the number of death compensation claims filed for Pune based on the media report was 
 approximate113.

Method Expected deaths Excess deaths Undercount factor

Simple average 54,390
(41,230–64,230)

20,490
(10,050–33,050)

2.3
(1.1–3.6)

Farrington surveillance 65,090
(54,390–65,090)

9,200
(9,200–19,900)

1.01
(1.01–2.2)

Overdispersed Poisson 59,110
(45,200–68,300)

15,180
(5,990–29,090)

1.7
(0.7–3.2)

Death compensation claims NA 13,000a

(6,910–19,100)
1.4
(0.8–2.1)

Wisdom of crowds NA 18,900
(16,930–20,880)

2.1
(1.9–2.3)

Aggregate estimate NA 14,770
(9,820–22,790)

1.6
(1.1–2.5)
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officially reported COVID-19 deaths were an undercount of 2.3 (95% PI: 1.1–3.6). However, the simple averag-
ing model did not incorporate seasonal variation in deaths. Accounting for seasonal variation, the Farrington 
surveillance algorithm estimated 65,090 expected deaths (one-sided 95% PI: 54,390–65,090). Therefore, this 
method revealed 9,200 estimated excess deaths (one-sided 95% PI: 9,200–19,900) with an undercount factor of 
1.01 (one-sided 95% PI: 1.01–2.2) (Fig. 4B). In addition to seasonal variation, the overdispersed Poisson model 
accounted for population growth and estimated 59,110 expected deaths (one-sided 95% PI: 45,200–68,300), 
implying 15,180 estimated excess deaths (95% PI: 5,990–29,090) with an undercount factor of 1.7 (95% PI: 
0.7–3.2) (Fig. 4C).

Second, we analyzed media reports about discrepancies between official mortality data and the number of 
COVID-19 death compensation claims filed by the public. As of January 2022, residents of Pune had filed around 
13,000 death compensation  claims113, which served as the estimated COVID-19-related excess deaths in Pune 
based on media reports. Compared to the officially reported mortality, this figure was an undercount factor of 
1.4. Using the same media  reports113, we additionally computed excess deaths and undercount factors for other 
major cities in Maharashtra. Table 2 represents a summary of death compensation claims filed at different major 
cities in Maharashtra and the resultant undercount factors of COVID-19-related excess deaths. Finally, we used 
the undercount factors from cities in Maharashtra to compute a 95% confidence interval for Pune. Our analysis 
of media reports about discrepancies between official mortality data and the number of COVID-19 death com-
pensation claims filed by the public point to an estimated 13,000 excess deaths [95% CI: 6,910–19,100] in Pune 
from March 2020 to January 2022 (Table 1), implying an undercount factor of 1.4 [95% CI: 0.8–2.1].

Third, we conducted a wisdom of crowds survey to obtain cognitive estimates about pandemic-associated 
excess mortality. Cognitive estimates for excess deaths were diverse, with a sixth of survey respondents believ-
ing the official COVID-19 numbers were in fact an overestimate (Fig. 5). However, the crowd estimated that the 
true number of COVID-19 deaths in Pune was 18,900 [95% CI: 16,930–20,880], which served as the estimated 
COVID-19-related excess deaths. In other words, the crowd estimated an undercount factor of 2.1 [95% CI: 
1.9–2.3].

Finally, we used a simple bootstrap to combine estimates from different methods and computed an aggregate 
estimate of COVID-19-related excess deaths in Pune (Fig. S11). Aggregately, our results estimate 14,770 excess 
deaths [95% CI: 9,820–22,790] in Pune from March 2020 to December 2021, translating to an undercount factor 
of 1.6 [95% CI: 1.1–2.5].

Discussion
In our case study, we computed COVID-19-related excess death estimates for Pune. To our knowledge, this is 
the first such effort; therefore, our results provide new information that can inform the public health policy of 
Pune. Using multiple methods, we estimated 14,770 excess deaths [95% CI: 9,820–22,790] in Pune from March 
2020 to December 2021, of which 9,093 were officially counted as COVID-19 deaths. We further calculated the 
undercount factor, a metric that allowed for easy comparison of the differential impact of the pandemic across 
diverse geographical regions and socioeconomic  groups2,13,21,113. We estimated an undercount factor of 1.6 [95% 

Figure 3.  Undercount factor computed from COVID-19-related excess deaths in Pune. The margin of error 
is the 95% PI for the statistical models: simple average, Farrington surveillance algorithm (one-sided), and 
overdispersed Poisson model. It is the 95% CI for the analysis of death compensation claims from media reports, 
the wisdom of crowds public surveying, and the aggregate estimate. An undercount factor of 1 represents an 
ideal scenario where all estimated excess deaths can be attributed to officially reported COVID-19 mortality.
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CI: 1.1–2.5] for Pune from March 2020 to December 2021. Thus, we estimated excess COVID-19-related deaths 
were about 60% more than officially recorded. An undercount factor of 1 implies that all the estimated excess 
deaths can be attributed to officially reported COVID-19 mortality. This represents an ideal scenario where public 

Figure 4.  Results from three statistical models: A) the simple average model, B) the Farrington surveillance 
algorithm, C) and the overdispersed Poisson model. The dotted lines show the expected deaths (estimated from 
the statistical models) in Pune, the green lines show the officially reported all-cause deaths in Pune, and the gray 
bands show the 95% PI (one-sided for the Farrington surveillance algorithm).
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health infrastructures are robust and resilient enough to maintain complete and high-quality data, even during 
acute crisis events such as pandemics. However, this ideal scenario was rarely achieved globally and across major 
Indian cities, where the estimated undercount factors were around three (Table S1)10,14,15,22,156. Even some of the 
world’s best healthcare systems saw undercount factors around 1.5 (Fig. S2 in Supporting Information)8,113. Based 
on our results, Pune’s performance in this regard seems comparable to some of the leading healthcare systems 
across the world, with its public health data recording infrastructure proving to be fairly robust and resilient 
during the COVID-19  pandemic115,116.

In addition to providing novel public health information about Pune, our main goal was to investigate whether 
diverse methods of estimating pandemic-related excess deaths provided us with accurate and overlapping sta-
tistical estimates. We computed COVID-19-related excess deaths and undercount factors from five different 
methods: (a) the simple averaging technique, (b) the Farrington surveillance algorithm, (c) the overdispersed 
Poisson model, (d) analyzing media-reported discrepancies between official mortality data and death compensa-
tion claims, and (e) the wisdom of crowds public surveying. Despite their limitations, diverse methods—both 
conventional and frugal—produced excess deaths estimates and undercount factors that were within the mar-
gins of error of each other. Results from all models except from the Farrington surveillance algorithm point 
towards a similar conclusion about the COVID-19-related undercount factor for Pune. These findings can 
inform Pune’s public health policy—for future pandemics or health crises, decision-makers could assume a 
worst-case scenario and prepare for up to 2.5 times (upper limit of the 95% confidence interval associated with 
our aggregate estimate) the reported number of pandemic-caused deaths. Our results reinforce the strength of 
using multi-method approaches to triangulate the true extent of the impact of the COVID-19 pandemic. By 
combining conventional and novel frugal methods of estimating pandemic-associated excess mortality in a 
multi-method approach, we minimized the pitfalls of relying on any particular individual  method86,95–98,117,118. 
Our findings can have important implications, especially in resource-constrained settings, where robust and 
resilient data infrastructures tend to be lacking or limited, and in contexts where considerable debate exists 
about the underlying ground  truth1–3,12,19,26–28,99–103,119. Particularly with the COVID-19 pandemic, there are 
widespread concerns about the accuracy of officially reported COVID-19-related  deaths3–8. Our study adds to 

Table 2.  Discrepancies between filed death compensation claims and officially reported deaths and estimates 
of undercount factors during the COVID-19 pandemic in major cities in Maharashtra as of January 2022. 
a Unlike other cities, the number of death compensation claims filed for Pune based on the media report was 
 approximate114.

City

Excess COVID-19-related deaths Undercount factor

Filed claims Official deaths Estimate

Ahmednagar 5,889 1,636 3.6

Aurangabad 5,733 2,329 2.5

Mumbai 17,052 16,581 1.03

Nagpur 12,069 6,055 2.0

Nashik 8,607 4,678 1.8

Pune 13,000a 9,093 1.4

Satara 8,194 6,537 1.3

Solapur 5,224 4,152 1.2

Figure 5.  Results from the wisdom of crowds public survey. N = 280.
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a growing body of COVID-19-related excess mortality literature that emerged in response to such skepticism 
about the accuracy of officially reported pandemic  casualties3–5,7,9–15,22. Future research efforts could focus on 
other untapped frugal alternatives such as analyzing discrepancies between COVID-19 cremation counts and 
officially reported COVID-19 mortality  data157,158.  Our preliminary results from this method for Pune suggest 
consilience with the other methods we employed in our study (Table S3). However, these preliminary results 
are based on a temporally restricted dataset about COVID-19 cremation counts, and a more complete dataset is 
needed to ascertain the robustness of this method.

Within our multi-method approach, we employed three conventional statistical and epidemiological models 
that have been previously widely used to compute COVID-19-related excess mortality. These methods are often 
considered the gold standard of excess mortality estimation because of their interpretability and inclusion of 
multiple epidemiologically relevant real-world factors including seasonality, population growth, and contem-
porary trends of  mortality4–25. Therefore, our results from these methods represent important benchmarks to 
examine the effectiveness of the novel frugal methods we used. However, these conventional statistical and 
epidemiological models rely on high-quality all-cause pre-pandemic data that is only accessible in robust and 
transparent public health data recording systems. The performance of these models suffers in the absence of such 
data. One limitation of our study was the low granularity of our dataset; it included only monthly—not weekly 
or daily—data. Future research efforts can address this limitation by using high-granularity datasets. Addition-
ally, although Pune is estimated to have high pre-pandemic death registration  coverage18,120, our study did not 
account for fluctuations in death registration coverage during the COVID-19 pandemic. Future work should 
use indirect proxy estimates of fluctuations in death registration coverage that can be computed from relevant 
public health and demographic data such as birth registration coverage, the incidence of traffic accidents, and 
surveillance of other infectious diseases such as AIDS and tuberculosis (Table S4)18,121–124.

Two of the statistical models we used: a) the simple averaging technique and b) the Farrington surveillance 
algorithm did not incorporate underlying population data, and therefore can be readily deployed when these 
data are non-existent or difficult to obtain due to monetary, bureaucratic, and time constraints. An additional 
strength of the simple averaging technique is its ease of implementation. This method does not require com-
puter programming knowledge, thus increasing its potential for widespread applicability in low-resource and 
data-scarce settings. Both the simple averaging technique and the Farrington surveillance algorithm assumed 
that the pre-pandemic number of deaths was effectively constant over time. We assessed this assumption for 
both models (see Supporting Information). Even though there was a slight yet significant increase in mortality 
over time (Fig. S4), both models showed relatively robust performance despite this violated assumption (Fig. S5, 
Fig. S6, Fig. S7, and Fig. S8). Robust model performance depended upon the amount of underlying data used—
both models required monthly data across at least four years. The overdispersed Poisson model incorporated 
underlying population data to account for fluctuations in mortality rates over time and thus did not assume that 
the pre-pandemic number of deaths was effectively constant over time. It also accounted for sustained indirect 
effects that both the simple averaging technique and the Farrington surveillance algorithm lacked the power to 
 detect88, thereby offering more flexibility and robustness compared to these two models. Finally, the overdis-
persed Poisson nature of this model allowed it to capture more variance than predicted by a Poisson model. This 
makes it well-suited to our dataset of monthly reported all-cause mortality (mean = 2,687; variance = 418,337).

In addition to using statistical and epidemiological models, we also analyzed media reports about discrep-
ancies between official mortality data and death compensation claims. To our knowledge, our study is the first 
effort to use this frugal method to estimate pandemic-associated excess deaths. The analyses in this method 
were possible only because of the availability of data about death compensation claims filed by the public under 
India’s ex gratia monetary compensation policy that employed a liberal interpretation of pandemic-associated 
 mortality101,113,159,160. However, this policy may have led to somewhat inaccurate estimates of excess mortality due 
to the submission of fraudulent documents or the double counting of deaths in neighboring  jurisdictions 125,159,160. 
Nonetheless, this frugal method remains an important component of multi-method approaches to estimating 
excess COVID-19-related deaths, given the checks and balances implemented by the government to ensure 
accurate relief  disbursement113. Future research should use disaggregated and officially verified ex gratia death 
compensation data to compute more precise estimates of pandemic-associated excess mortality.

Finally, we examined the effectiveness of another frugal method—the wisdom of crowds approach—to esti-
mate COVID-19-related excess mortality. Although this approach has been widely used across multiple real-
world domains before, including during the COVID-19  pandemic37–86,126,127, to our knowledge, this frugal method 
has not yet been used to estimate COVID-19-related excess mortality. Therefore, our study provides a novel 
confirmation of the potential of the wisdom of crowds approach as a complementary tool of frugal fact-finding. 
However, the results from our wisdom of crowds public survey should be interpreted with caution, because col-
lective cognitive estimates may be biased, sometimes resulting in herding, mob mentality, informational echo 
chambers, and widespread proliferation of unscientific  opinions128–137. Nonetheless, these limitations can be 
overcome by integrating findings from judgment, decision-making, behavioral economics, and cognitive sci-
ence that highlight how domain-general psychophysical representations and Bayesian mechanisms may account 
for many of the systematic mistakes observed in cognitive estimation across many real-world  contexts137–149,151. 
These findings suggest that domain-general processes account for many of the quirks of human estimation, judg-
ment, and decision-making. Accounting for such general psychophysical factors and other cognitive biases can 
greatly improve the accuracy, robustness, and effectiveness of the wisdom of crowds  approach150. For example, 
in our study, we were able to partially mitigate the biases introduced due to social and peer  influence127,128,130,151 
by conducting an online, anonymous public survey. In addition to being a non-WEIRD (Western, Educated, 
Industrialized, Rich, and Democratic)  population152, our survey sample of adult residents from Pune was diverse 
in terms of gender, age, native language, occupation, socioeconomic status, and COVID-19 infection history 
(Table S2). These study participants also displayed heterogeneous COVID-19-related beliefs and behaviors. Thus, 
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the diversity, decentralization, and independence of  opinions126 in our sample may have mitigated some of the 
inaccuracies stemming from demand characteristics and response biases. In our future work, we plan to explore 
how diverse COVID-19-related psychological perceptions influence cognitive estimates about COVID-19-related 
deaths, thus adding to a rapidly growing literature about cognitive estimation and the wisdom of crowds.

Our findings confirm that, like most other places, officially reported COVID-19 mortality in Pune was an 
underestimate. These findings highlight the limitations of public health infrastructures in capturing plentiful, 
high-quality, and timely data during unpredictable black swan events such as the COVID-19  pandemic153. 
To address these limitations, strong health data systems are needed to inform healthcare utilization planning, 
resource allocation, and policymaking to ensure healthy living and promote well-being for all (UN Sustainable 
Development Goal 3)154. Robust data systems also permit post-mortem evaluations of pandemic mitigation 
measures including vaccinations and public  lockdowns156. To prepare for future pandemics, resilient public 
health systems require sustained material investments in vital infrastructure and medical equipment, as well as 
the availability of credible, open-source, and high-quality data (UN Sustainable Development Goal 17.19)154. 
The success of these initiatives will depend on both long-term material investments in vital infrastructure and 
medical equipment, as well as the availability and abundance of credible, open-source, high-quality data. There-
fore, governments, think tanks, research universities, non-profits, industry actors, the media, and other relevant 
stakeholders have an onus to build and maintain robust data collection and storage infrastructures. This will 
support wider aims of sensitive societal governance, public accountability, and memorialization of one of the 
largest public health crises the world has collectively faced in over a  century1,2.

Data availability
All data generated or analyzed during this study are included in this published article and its supplementary 
information files.
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