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Abstract: Background: MicroRNAs (miRNAs) are crucial regulators of gene expression, playing
significant roles in various cellular processes, including cancer pathogenesis. Traditional cancer
diagnostic methods, such as biopsies and histopathological analyses, while effective, are invasive,
costly, and require specialized skills. With the rising global incidence of cancer, there is a pressing
need for more accessible and less invasive diagnostic alternatives. Objective: This research investi-
gates the potential of machine-learning (ML) models based on miRNA attributes as non-invasive
diagnostic tools for oral cancer. Methods and Tools: We utilized a comprehensive methodological
framework involving the generation of miRNA attributes, including sequence characteristics, target
gene associations, and cancer-specific signaling pathways. Results: The miRNAs were classified
using various ML algorithms, with the BayesNet classifier demonstrating superior performance,
achieving an accuracy of 95% and an area under receiver operating characteristic curve (AUC) of
0.98 during cross-validation. The model’s effectiveness was further validated using independent
datasets, confirming its potential clinical utility. Discussion: Our findings highlight the promise of
miRNA-based ML models in enhancing early cancer detection, reducing healthcare burdens, and
potentially saving lives. Conclusions: This study paves the way for future research into miRNA
biomarkers, offering a scalable and adaptable diagnostic approach for various cancers.

Keywords: miRNA; machine learning; oral cancer; diagnostics

1. Introduction

MicroRNAs (miRNAs) are small, noncoding RNAs critical in regulating gene expres-
sion at the post-transcriptional level, influencing key cellular processes such as develop-
ment, differentiation, apoptosis, and proliferation [1]. Their role extends into the realm of
disease pathogenesis, particularly in cancer, where the dysregulation of miRNA expression
has been identified as a significant factor [2]. Traditional approaches to cancer diagnosis,
including biopsies and histopathological analyses, are invasive, costly, and demand special-
ized interpretive skills [3]. These methods are becoming increasingly unsustainable given
the rising global incidence of cancer, highlighting the urgent need for alternative diagnostic
strategies that are efficient, less invasive, and more accessible [3].

This challenge is magnified by the increasing global incidence of cancer, highlighting
the urgent need for non-invasive sample collection and cost-effective diagnostic alterna-
tives [4]. The integration of artificial intelligence (AI) and computational methodologies
offers a promising solution [5]. With the exponential growth in genomic and transcriptomics
data facilitated by advancements in sequencing technologies, computational prediction
of miRNA–disease associations, particularly in the context of oral cancer, has become
increasingly feasible [6,7]. Studies like Jiang’s et al., which described a machine-learning
(ML) model to predict miRNA targets and their disease associations [8], and Lee’s et al.,
which used deep-learning (DL) algorithms to analyze miRNA expression profiles for early
cancer detection [5], demonstrate the potential of AI to uncover the complex relationships
between miRNAs and various cancers, facilitating the discovery of novel biomarkers [9].
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Additionally, recent research by Aravind with colleagues on using ML and miRNA for the
diagnosis of esophageal cancer [10] and by Kumar with co-authors on Parkinson’s disease
diagnosis using miRNA biomarkers and DL [11] further substantiates the efficacy of these
approaches in various diseases.

The primary objective of this research project is to explore the potential of miRNA-
based ML models as diagnostic tools for oral cancer, a prevalent and often fatal disease [12].
Through the computational analysis of miRNA–disease associations, this study aims to
uncover specific miRNAs that could serve as reliable biomarkers for oral cancer [12]. This
endeavor promises to enhance our scientific understanding of miRNA functions within the
context of cancer and significantly impact society by improving cancer care. By enabling
early detection and more informed treatment planning, the project seeks to improve patient
prognoses, reduce the healthcare burden of cancer, and ultimately, save lives. Through
these efforts, we aim to contribute substantially to the ongoing fight against cancer, offering
hope for more effective, less invasive diagnostic methods soon.

2. Methods
2.1. Data Pre-Processing and Analysis

Our investigation aimed to illuminate the diagnostic potential of miRNAs as non-
invasive biomarkers for oral cancer. We identified the liquid biopsy miRNAs linked to
oral cancer from open source [12] and utilized computational models (see details below) to
predict miRNA–disease associations. Our analysis included two distinct sets of miRNAs:
one associated with oral cancer [12], and another consisting of randomly selected miRNAs
from the miRBase database [13], which are not associated with oral cancer. The random set
of miRNAs selected was distinct from oral cancer-related one.

2.2. Generation of miRNA Attributes

The generation of miRNA attributes was structured in three phases: analyzing
sequence-based characteristics, identifying potential target genes, and evaluating involve-
ment in cancer-specific signaling pathways [14]. We developed a custom algorithm using
miRBase, v. 22.1, to extract and analyze characteristics such as nucleotides composition, fre-
quency, molecular weight, hydrogen bond count, and the presence of specific motifs in the
miRNA sequences [15]. This analysis was grounded on the hypothesis that these sequence
compositions are crucial for miRNA’s binding ability to target mRNAs, influencing gene
regulation [16]. Additionally, the miRDB, v. 6.0, was utilized to identify high-potential
target genes for the miRNAs [17], and a Python script was created to efficiently elucidate
proper targets of related miRNAs. The extract from the more than 500 gene targets set is
presented in Table 1. We also explored the role of miRNAs in cancer by identifying exper-
imentally validated interactions between miRNA–target genes and signaling pathways
using the DAVID software, v. 2023q4, specifically pathways significantly associated with
cancer [18]. The pathways identified through this comprehensive analysis include key
signaling cascades and cellular processes involved in cancer progression and regulation
(Table 2). Notably, pathways such as the mTOR signaling pathway, MAPK signaling path-
way, TGF-beta signaling pathway, and p53 signaling pathway are known to play critical
roles in tumorigenesis and cancer progression. Additionally, the Ras signaling pathway,
Hippo signaling pathway, JAK–STAT signaling pathway, and NF-kappa B signaling path-
way were identified, highlighting their importance in cell proliferation, apoptosis, and
immune response modulation. Pathways like endocrine and other factor-regulated calcium
reabsorption, insulin resistance, and choline metabolism in cancer emphasize the metabolic
alterations often seen in cancer cells. Furthermore, pathways involved in viral infections,
such as Epstein–Barr virus infection and human immunodeficiency virus 1 infection, un-
derline the complex interplay between viral oncogenesis and miRNA regulation.
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Table 1. miRNA gene target descriptors.

miRNAs Genes

hsa-miR-301a-5p MAB21L2 PPM1L KLHL42 STK39 TNRC6B SMAD1 EPC2 ERLIN1
hsa-miR-3160-5p C5orf24 ELMOD2 RPS6KA6 LSM12 UBN2 FBXO28 NLK LOXL2

hsa-miR-1297 SLC8A1 SERINC5 CDK8 LARP1 NAP1L5 CAMSAP1 PLEKHH1 IQCJ
hsa-miR-3677-5p MBNL2 SLC5A3 ETNK1 LEF1 ULK2 FAM136A COL10A1 ZIC5

hsa-miR-4535 RGL1 TNFAIP1 POLR3G ATP11C BAG4 TMC7 RSPRY1 PARPBP
hsa-miR-6732-5p CDH11 DIP2A SLC7A11 PEX13 BLOC1S2 REEP3 PFKFB2 MSMO1
hsa-miR-6717-5p ESR1 STRADB RHOQ E2F7 SLC25A36 FBXL19 ULK1 KDM1B
hsa-miR-3619-5p MGA SLC2A13 OTUD4 NHS MAB21L1 PLOD2 UBR3 ITGB1BP1
hsa-miR-4746-3p ZNF236 CIPC NAB1 NUS1 USP3 ZNF608 CDK6 RC3H1
hsa-miR-4746-3p TADA2B TET2 CHORDC1 STRBP NAA15 CEP350 UBE2G1 MED19
hsa-miR-4746-3p BNC2 CASZ1 CREBRF SLC25A16 ALDH5A1 SULF1 CREB1 MFN2
hsa-miR-1304-3p DHX9 USP9X TET1 CLASP2 MTM1 BRWD1 ADM AMMECR1L
hsa-miR-570-3p NR2C2 FAM98A B3GNT5 TET3 GNA13 ZSWIM6 SLC45A4 ZFAND3
hsa-miR-21-3p ZFHX4 TP53INP1 PHF3 PITPNC1 SYT10 EIF2S1 BBX MAPK1
hsa-miR-32-3p TSC22D2 PTEN KCNJ2 OSBPL11 GSK3B FRMD4B MTDH NEO1

hsa-miR-4763-3p CTNND2 KLHL42 STK39 TNRC6B SMAD1 EPC2 ERLIN1 DOLPP1
hsa-miR-6796-3p PPM1L RPS6KA6 LSM12 UBN2 FBXO28 NLK LOXL2 CBL
hsa-miR-486-3p ELMOD2 CDK8 LARP1 NAP1L5 CAMSAP1 PLEKHH1 IQCJ SEC24C
hsa-miR-3605-3p SERINC5 ETNK1 LEF1 ULK2 FAM136A COL10A1 ZIC5 DMXL2
hsa-miR-548ae-3p SLC5A3 POLR3G ATP11C BAG4 TMC7 RSPRY1 PARPBP C17orf49
hsa-miR-525-3p EIF5A2 FAM160B1 COL19A1 SLC30A7 HOOK3 NR3C1 HPSE2 C17orf49

hsa-let-7a-3p TMTC2 C21orf91 44991 PLEKHM3 KIAA0232 KIAA1217 BAZ2A PIM1

Table 2. miRNA gene target-related pathways.

Pathways

Endocrine and other factor-regulated calcium reabsorption Oxytocin signaling pathway
mTOR signaling pathway Adrenergic signaling in cardiomyocytes

Prostate cancer Progesterone-mediated oocyte maturation
Insulin resistance MAPK signaling pathway

AMPK signaling pathway MicroRNAs in cancer
Autophagy—animal TGF-beta signaling pathway

Breast cancer Oocyte meiosis
Endometrial cancer Signaling pathways regulating pluripotency of stem cells

Hepatocellular carcinoma Hippo signaling pathway
Kaposi sarcoma-associated herpesvirus infection JAK–STAT signaling pathway

Human cytomegalovirus infection Endocytosis
Longevity regulating pathway Measles
Choline metabolism in cancer Alcoholic liver disease

Phospholipase D signaling pathway Hepatitis B
African trypanosomiasis Tuberculosis

Allograft rejection Pathogenic Escherichia coli infection
Type I diabetes mellitus Epstein–Barr virus infection

Pathways in cancer Human immunodeficiency virus 1 infection
Pertussis Lipid and atherosclerosis

Leishmaniasis B cell receptor signaling pathway
Chagas disease C-type lectin receptor signaling pathway

Toll-like receptor signaling pathway T cell receptor signaling pathway
Ras signaling pathway Proteoglycans in cancer

Melanoma Long-term depression
p53 signaling pathway Fc epsilon RI signaling pathway

NF-kappa B signaling pathway Gastric cancer
Toxoplasmosis Melanogenesis
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2.3. Software and Database Utilization

Throughout our research, we utilized several key software tools and databases to
process and analyze data effectively. miRBase served as a primary resource for obtaining
miRNA sequences and related data. miRDB was crucial for identifying and predicting
potential target genes for the miRNAs [17]. The Waikato Environment for Knowledge
Analysis (WEKA), v. 3.8.6, provided a robust platform for ML analysis, enabling us to apply
various algorithms and perform attribute selection [19]. Additionally, the Database for An-
notation, Visualization, and Integrated Discovery (DAVID) was instrumental in annotating
and integrating biological data, generating the additional signaling pathways descriptors,
and further enhancing our understanding of miRNA functions and interactions [18].

2.4. Attribute Selection and Machine-Learning Analysis

With a detailed set of attributes encompassing sequence characteristics, target gene
associations, and pathway involvements, we moved to the ML analysis phase. Our objec-
tive was to train models capable of clearly distinguishing miRNAs associated with oral
cancer from those that are not. Using the WEKA platform, we optimized our attribute
selection using the InfoGainAttributeEval feature to identify the most impactful attributes
for classification [19].

We evaluated the performance of various classification algorithms, focusing on metrics
such as accuracy, precision, and other relevant measures [20]. To ensure the reliability and
generalizability of our models, we implemented cross-validation techniques [21].

2.5. Validation and Testing

The final phase involved the validation of our optimized machine-learning model
using an independent dataset of miRNA expressions from patients with oral cancer, ob-
tained from The Cancer Genome Atlas (TCGA), v. 41.0 [22]. This step was crucial to verify
the predictive accuracy and potential clinical applications of our model. Validation was
conducted using the trained ML model. We submitted the new data to the trained model
and elucidated the accuracy of recognition of this dataset as related to oral cancer. The
results of this validation are presented below.

Through this comprehensive methodological framework, our study seeks to elucidate
the role of miRNAs in blood as non-invasive biomarkers in the diagnosis of oral cancer,
potentially advancing cancer detection and treatment strategies.

3. Results
3.1. Machine-Learning Models

Our final ML model, employing the BayesNet classifier, exhibited superior perfor-
mance with 5-fold cross-validation, which is supported with performance curves both the
receiver operating characteristic (ROC) curve and the precision–recall (PR) curve. The
model achieved an accuracy of 95%, precision of 95.4%, recall of 95%, and F-measure of
95%. Notably, the area under the ROC curve (AUC) was 0.98, and the area under the PR
curve (AUCPR) was 0.982 (Figures 1 and 2, correspondingly).

These results underscore the model’s efficacy in accurately classifying miRNAs as asso-
ciated with oral cancer (Table 3). The high precision indicates consistent performance, while
the AUC exceeding 0.9 demonstrates the model’s robustness in distinguishing between
associated and randomly selected miRNAs [21].
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model’s AUC. (E) Color interpretation of performance curves. Color represents the threshold value 
set to get the best pair of true FPR/TPR points. 

Figure 1. (A) BayesNet ROC Curve. The ROC curve for the BayesNet model shows an area under the
curve (AUC) of 0.98. This high AUC value indicates excellent model performance in distinguishing
between miRNAs associated with oral cancer and those that are not. (B) HoeffdingTree ROC Curve.
The ROC curve for the HoeffdingTree model demonstrates an AUC of 0.99. While high, it does
not match the performance of the BayesNet model in overall accuracy, suggesting less accurate
classification. (C) Naïve Bayes ROC Curve. The NaïveBayes model’s ROC curve shows an AUC
of 0.99. This performance is the same as the HoeffdingTree model, albeit a still lower accuracy.
(D) RandomForest ROC Curve. The ROC curve for the RandomForest model reveals an AUC of
0.944. This indicates a strong performance but still falls short of the BayesNet model’s AUC. (E) Color
interpretation of performance curves. Color represents the threshold value set to get the best pair of
true FPR/TPR points.

Table 3. Performance metrics of the top five classifiers.

Classifier Accuracy Precision Recall F-Measure AUC AUPRC

BayesNet 0.950 0.954 0.950 0.950 0.980 0.982
HoeffdingTree 0.925 0.934 0.925 0.924 0.990 0.989

NaïveBayes 0.925 0.934 0.925 0.924 0.990 0.989
RandomForest 0.850 0.852 0.850 0.849 0.944 0.947
RandomTree 0.850 0.800 0.800 0.800 0.798 0.738
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Figure 2. (A) BayesNet Precision–Recall (PR) Curve. The PR curve for the BayesNet model shows
an area under the curve (AUPRC) of 0.982. This high AUPRC value reflects the model’s excellent
precision–recall performance in distinguishing between miRNAs associated with oral cancer and
those that are not. (B) HoeffdingTree PR curve. The PR curve for the HoeffdingTree model demon-
strates an AUPRC of 0.989, slightly outperforming the BayesNet model, indicating superior precision
and recall in classification. (C) NaïveBayes PR curve. The NaïveBayes model’s PR curve shows
an AUPRC of 0.989, matching the performance of the HoeffdingTree model and suggesting highly
accurate classification. (D) RandomForest PR curve. The PR curve for the RandomForest model
reveals an AUPRC of 0.947, indicating strong performance, yet still falling short of the precision–recall
accuracy achieved by the BayesNet, HoeffdingTree, and NaïveBayes models. (E) Color interpre-
tation of performance curves. Color represents the threshold value set to get the best pair of true
FPR/TPR points.

3.2. Comparison with Other Algorithms

In testing other algorithms, BayesNet consistently outperformed them in terms of key
metrics (Figure 3). While other models also showed high performance, the comprehensive
evaluation through 5-fold cross-validation confirmed that the BayesNet was the most
optimal choice for our objectives [19].
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The ROC curves for the various models illustrate the trade-off between sensitivity
(true positive rate) and specificity (false positive rate) across different thresholds [23]. The
BayesNet model’s ROC curve (Figure 1A) demonstrates the highest area under the curve
(AUC = 0.98), indicating superior performance in correctly classifying miRNAs associated
with oral cancer. RandomForest shows good performance with various biomarkers [24]. In
comparison, the ROC curves for HoeffdingTree, NaïveBayes, and RandomForest models
show varying AUC values, signifying similar but slightly worse performance. The high
AUC values across all models reflect their strong discriminative abilities, but the BayesNet
model stands out as the most robust and reliable when combined with its accuracy.

3.3. Optimization of Model Parameters

The BayesNet model’s effectiveness was also influenced by the number of miRNAs
used for training and the number of attributes selected for classification. Our analysis
confirmed that the model’s performance improved with the increase in the number of
miRNAs included in the training set. The model was initially trained with 20 oral cancer-
related miRNAs available from the studies [12]. The best results were achieved when the
model was trained with a larger dataset that incorporated both the original 20 miRNAs [12]
as well as 20 more obtained from additional studies [25]. This expansion led to a noticeable
improvement in accuracy (Figure 4), precision, and recall metrics. Specifically, the model
achieved an accuracy of 95%, a precision of 95.4%, and a recall of 95%. These enhancements
underscore the importance of a comprehensive training dataset in ML models for biological
classification tasks. The increased number of miRNAs provided a more diverse set of
attributes for the model to learn from, which in turn improved its ability to accurately
classify miRNAs associated with oral cancer.
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3.4. Validation of the Trained Model

Upon validation using independent data, which included miRNAs from patients
with oral cancer, the results were the de-identified data that were presented in the TSGA
database and all necessary informed consents were obtained from patients before inclusion
of their results in the TCGA. The model successfully classified miRNAs as associated
with oral cancer, resulting in a classification accuracy of 95%. This high accuracy in
an independent test set further validates our model’s utility in real-world diagnostic
settings [22]. During this phase, we also tested the robustness and generalizability of the
model across different classifiers.

The performance accuracies of the best classifiers are shown in Figure 5. The Ran-
dom Forest classifier showed the highest accuracy at 81.17%, benefiting from its ensemble
method which reduces overfitting and enhances generalization by averaging multiple deci-
sion trees. The Random Tree classifier followed with an accuracy of 78.57%, demonstrating
its straightforward approach to classification but with potential overfitting in some cases.
The BayesNet classifier, while achieving a slightly lower accuracy of 74.45%, stood out
for its probabilistic framework which makes local decisions based on sufficient statistics,
providing it with a distinct advantage in managing noisy and high-dimensional data.

The superior performance of the Random Forest classifier underscores its robustness
and effectiveness in miRNA classification tasks. However, the consistent performance of
the BayesNet classifier across training, validation, and independent testing phases also
highlights its reliability in accurately classifying miRNAs as associated with cancer. This
comprehensive validation across these three classifiers reinforces the robustness of our
approach and highlights the potential of integrating different machine-learning methods
for enhanced miRNA–disease association studies.
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3.5. Analysis of Model Attributes

The model attributes that contributed most significantly to classification were evalu-
ated using InfoGainAttributeEval. This analysis highlighted the attributes that effectively
reduced overall information entropy in the classification process, emphasizing their critical
role in distinguishing cancer-associated miRNAs [26].

Our findings elucidated specific pathways and miRNA gene targets associated with
cancer. Key genes identified include AKT1, MAPK1, PTEN, TP53, and CDKN1A. These
genes are involved in several well-known cancer-related pathways, such as the PI3K–Akt
signaling pathway, the MAPK signaling pathway, and the p53 signaling pathway.

For instance, the PI3K–Akt signaling pathway, which includes the AKT1 gene, plays a
pivotal role in cell proliferation and survival, often being deregulated in cancer. Similarly,
the MAPK signaling pathway, represented by the MAPK1 gene, is integral to cell differenti-
ation and division, with abnormalities often leading to tumorigenesis. The p53 signaling
pathway, involving the TP53 gene, is crucial for regulating the cell cycle and maintaining
genomic stability, making it a key player in preventing cancer development.

These insights into the biological characteristics of miRNAs not only enhance our
understanding of their involvement in oral cancer but also provide a solid foundation for
future diagnostic and therapeutic research. By pinpointing the specific gene targets and
pathways that are more prevalent in cancer-associated miRNAs, we can better target these
areas for potential treatments and diagnostic tools, advancing the fight against oral cancer.

4. Discussion

Existing methods for oral cancer diagnostics include tissue biopsies, imaging tech-
niques like MRI and CT scans, and endoscopic examinations. Tissue biopsies, although
accurate, are invasive and can be painful for patients, with accuracy rates varying based
on the size and quality of the biopsy sample. Imaging techniques offer non-invasive
alternatives but may lack specificity and sensitivity in early-stage detection.

Our approach offers a non-invasive (not requiring a tumor biopsy), highly accurate,
and patient-friendly alternative to traditional diagnostic methods. The use of miRNA-based
diagnostics reduces the need for painful biopsies and can provide early detection that is
both specific and sensitive. Additionally, our method can be more easily deployed in
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under-resourced settings, where access to advanced imaging and specialized endoscopic
equipment is limited.

Our ML model, which leverages the BayesNet classifier [27], demonstrates excellent
performance metrics such as high accuracy, area under ROC curve, and precision compared
to other classifiers. It is the most effective given the number and types of miRNAs and
attributes utilized in its training. The robustness of the BayesNet algorithm is particu-
larly notable in its handling of noisy data. By making local decisions based on sufficient
statistics, it minimizes the impact of noise, enhancing the model’s overall classification per-
formance [28]. This ability underscores the potential of our model to accurately distinguish
between miRNAs associated with oral cancer and those that are not [29].

The developed ML model’s effectiveness extends beyond its immediate application
in identifying oral cancer-associated miRNAs. It possesses the adaptability to be applied
to other cancer types or diseases where miRNA associations exist, given the availability
of relevant data [30]. This versatility is facilitated by the model’s capacity to classify any
miRNA as associated or non-associated with cancer, following a straightforward process
of attribute generation and classification via our developed Python script. Additionally,
the non-invasive nature of miRNA-based diagnostics presents a significant advantage over
traditional methods, making it more accessible and patient friendly.

Looking ahead, expanding the model to include additional attributes like age, gender,
and ethnicity—factors known to influence disease incidence and outcomes—could refine
its predictive accuracy and applicability [31]. These demographic factors, often linked with
varying disease dynamics, could provide deeper insights into the miRNA–disease associa-
tions and enhance the model’s contextual relevance. Furthermore, verifying the biological
significance of newly identified miRNAs concerning oral cancer through empirical studies
could solidify their role in disease pathogenesis. This would not only validate our model’s
predictions but also enrich our understanding of miRNA functions in cancer biology [32].

This research has successfully demonstrated the use of an ML model based on miRNA
descriptors in diagnostics of oral cancer. By incorporating sequence-based attributes,
predicted target genes, and pathway analyses into our model, we have discerned the most
salient features for miRNA classification, achieving an accuracy of 86.8% in training phases
and 83% in validation against an independent dataset. The implications of these findings are
profound, emphasizing the viability of miRNA-based markers as non-invasive diagnostic
tools. This approach has the potential to complement traditional diagnostic methods such
as endoscopy, particularly in under-resourced settings, thereby broadening the accessibility
of cancer diagnostics [33]. Moreover, the pathways and target genes identified in this study
open new possibilities for targeted therapeutic interventions, addressing key aspects of
cancer proliferation [34].

Our study is distinct in its methodological innovation and the specific combination of
computational techniques used to analyze miRNA characteristics [18]. This novel approach
not only enhances the accuracy of cancer-associated miRNA identification but also provides
a scalable model that could be applied to other cancers and diseases with known miRNA
signatures. Moving forward, this groundwork will enable further explorations into less
invasive, more accessible diagnostic and therapeutic tools, potentially significantly altering
the paradigm of cancer care.

To apply our methods, scientists can download our ML model to their computers
and submit sets of miRNAs from new patients. The model will recognize whether these
patients have oral cancer. Such results can suggest the next step of diagnostics using more
invasive methods. We would be happy to help with the implementation of this method.
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