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ABSTRACT:  Microbialites  are  an
example  of  complex  and  diverse
microbial  assemblages  where  several
metabolic pathways are interconnected
for  biomass  formation  coupled  to
mineral precipi- tation. Lake Alchichica
(Mexico) is an oligotrophic
environment where nitrogen (N) and
phospho-  rus  alternately  limit
productivity,  and  massive  microbialite
growths  are  found  along  the  lake’s
perimeter.  Previous  studies  have
described the importance of N2 fixation
in  these  microbialites,  although  other
pathways associated with the N cycle,
including  denitrification,  nitrification
and  anaerobic  ammonium  oxidation
(anammox),  had  not  been  evaluated.
This  study  identified  the  genetic
diversity associated with N cycling in
both  metagenomic  DNA  and  RNA
expression  by targeting  key genes  for
nitrogenase  (nifH),  ammonia
monooxygenase  (amoA),  nitrite
oxidoreduc-  tase  (nxrA,  nxrB),
hydrazine  oxidoreductase  (hzo)  and
nitrite  (nirS  and  nirK  )  and  nitrous
oxide  (nosZ)  reductases.  While  the
genetic  potential  for  N2 fixation,
ammonia  oxidation,  anammox  and
denitrification  was  present  in  the
microbialites  of  Lake  Alchichica,  the
most  transcribed  pathway  was  N2

fixation.

KEY  WORDS:  Microbialites  ·  N  cycle  ·  N2 fixation  ·
Cyanobacteria · Heterocyst
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spaceINTRODU
CTION

Microbialites  are  benthic
microbial  communities  defined  as
organo-sedimentary  structures
where  microbial  activity  promotes
lithification  by  trapping,  binding
and/or  precipitating  detrital  or
chemical  sed-  iments  (Burne  &
Moore  1987).  These  biostructures
can  be  found  in  freshwater
environments,  saline  (alkaline)
lakes, hypersaline ponds, tidal sand
flats,  shallow rock pools and hot
springs (Laval et al. 2000, Berelson
et al. 2011, Centeno et al. 2012,
Cooper et

*Corresponding author: 
falcon@ecologia.unam.mx

spaceal.  2013).
Although  the
physicochemical
environ- ment plays a
crucial role in their
development, micro-
bial  activity  remains
the main driving force
promot- ing accretion,
with  cyanobacterial
photosynthate  and
heterotrophic
respiration  as  the
main  contributors
(Reid et al. 2000, Stal
2012,  Cerqueda-
García  &  Fal-  cón
2016). These complex
microbial
assemblages have had
a continuous presence
throughout  the  his-
tory of life on Earth.
The fossil
counterparts of micro-
bialites  date  back  to
the  Archaean  (~3500
million  years ago)
and provide the most
ancient microfossil

space

spacerecord of life (Krumbein
1983). Therefore, these ben-  thic
biostructures can be considered one
of  the  first  successfully  organized

communities for which fossil records exist, hosting bacteria that
played an essen- tial role in atmospheric evolution and planetary
bio-  geochemistry  (van  Gemerden  1993,  Decho  et  al.  2005,
Paterson et al. 2008).

Several  studies  have  described  the  phylogenetic  diversity  in
microbialites (Tavera & Komárek 1996,  Couradeau et al. 2011,
Kaz´mierczak et al. 2011, Cen-  teno et al. 2012, Ruvindy et al.
2016). In addition, metagenomic approaches have confirmed an
ample metabolic repertoire with interconnected biogeo- chemical
pathways  within  millimetric  scales  (Breit-  bart et al. 2009,
Khodadad & Foster 2012, Mobberley  et  al.  2013,  Cerqueda-
García  &  Falcón  2016).  These  studies  have  shown  that
Cyanobacteria  and  Pro-  teobacteria  in  microbialites  are  key
microorganisms with important roles for carbon (C), nitrogen (N)
and sulfur cycling (Myshrall et al. 2010).

The  environments  where  microbialites  thrive  are  often
oligotrophic  and  restrict  microbial  activity  by  nutrient
unavailability, mostly N and/or phosphorus
(P)  (Pepe-Ranney  et  al.  2012).  N  is  an  essential  ele-  ment  in
nucleic  acids  and  proteins  and  often  limits  marine  ecosystem
productivity.  On  geological  time-  scales,  fixed  N  has  been
proposed to restrict primary productivity (Falkowski 1997). The
N2 fixation pro- cess constitutes an important source of N input
into  biomass  from  atmospheric  N2 (Canfield  et  al.  2010).  In
contrast,  denitrification  and  anaerobic  ammonium  oxidation
(anammox)  are  biological  processes  that  return  N  back  to  the
atmosphere (Canfield et al. 2010), while nitrification connects N2

fixation and denitrification (Klotz & Stein 2008).
Lake Alchichica (Mexico) is an oligotrophic, saline and alkaline

environment with living microbialites. Both N and P have been
found to limit biological pro-  ductivity  in  the  water  column
(Ramírez-Olvera et al. 2009), although N seems to be the limiting
element most frequently, due to the very low dissolved inor- ganic
N (DIN) concentrations found in the mixed layer (0.7−3.8 µM)
during the year (Ramírez-Olvera et al. 2009, Ardiles et al. 2012).
The  most  abundant  micro-  bialite  type  in  the  lake  consists  of
spongy  structures  distributed  around  the  entire  perimeter,
described as white cauliflower-like thrombolites composed mainly
of    hydromagnesite — Mg5(CO3)4(OH)2·4H2O    (Kaz´- mierczak et
al. 2011) (Fig. 1). Alchichica microbialites have shown high rates
of daytime nitrogenase activity (Falcón et al. 2002, 2007, Beltrán
et al. 2012) associ- ated with heterocystous cyanobacteria (Falcón
et al. 2002).

spaceIn this study, we aimed to explore the genetic
diversity and expression associated with N cycling in
spongy  microbialites  from  Lake  Alchichica.  To
accomplish  this,  different  N-cycle  pathways  were
surveyed for N2 fixation  (nifH), ammonia oxidation
(amoA), nitrite oxidation (nxrA and nxrB), anammox
(hzo)  and denitrification  (nirK,  nirS  and  nosZ).  To
encompass these results, a description of the physic-
ochemical environment where microbialites develop
was  also  registered.  We  hypothesize  that  N-cycle
pathways  including  denitrification,  nitrification  or
anaerobic  ammonium oxidation (anammox) should
exist in Alchichica microbialites where steep chemi-
cal−redox  gradients  and  biogeochemical  cycling
occur  (Tavera  & Komárek  1996,  Couradeau  et  al.
2011, Kaz´mierczak et al. 2011).

mailto:falcon@ecologia.unam.mx
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N

Site3
Site1

Site4

Site5

200 m

42.38 ± 10.49
0.51 ± 0.31
0.89 ± 0.49
0.14 ± 0.06
2.62 ± 0.75
0.62 ± 0.29

N-total (µM)
N-NH4+ (µM) N-NO3– (µM)
N-NO2– (µM)
P-total (µM)
SRP (µM)

N and P content in littoral water samples

c

 1 cm d

Microbialite composition

Corg 196.57 ± 78.92 mg g–1

TN   22.55 ± 7.24  mg g–1

TP0.54 ± 0.13  mg g–1

MATERIALS AND 
METHODS

S
t
u
d
y
 
s
i
t
e

Lake Alchichica is a
crater  lake  in  central
Mexico  (2300 m
above sea level; 19°
24’ N, 97° 24’ W).
This  lake  is  the
deepest  crater lake in
Mexico’s  Neovol-
canic Axis (over 60
m depth) and has a
diameter of
~1.8  km  (Fig.  1a)
(Nelson  &  Sánchez-
Rubio 1986, Vilaclara
et  al.  1993).  The
system is classified as
a soda lake (pH > 8.9
with  electrical
conductivity
~13.39 mS cm−1 in the surface), 
formed by a phreatic
explosion and mainly
fed by an influx of
water rich in  sodium
from  volcanic
materials  and
bicarbonates  from
Cretaceous  limestone
(Caballero  et  al.
2003). The area is arid
and  shows  steep
changes  in  ambient
temperature  from  5.5
to  30°C  (mean
14.4°C),  high  annual
evaporation  rates
(1590  mm)  and  400
mm  precipitation
(García  1988,  Adame
et  al.  2008,  Armienta
et al. 2008).

Sampling and nucleic acid 
extraction

Sampling was done in the summer of 2013, during
the stratification period of the lake. The

physicochem- ical data were measured in situ, and
microbialite (Fig. 1b,c) and water column samples

were collected. To study the genetic diversity
associated with the N cycle in microbialites, 6

sampling sites were chosen for spongy microbialites
growing at <1 m depths. In all cases, the outermost

layer (first 5 cm) of micro- bialites was sampled. For
each site, 3 subsamples (each ca. 5 g) were taken,

placed into sterile bags, stored at 4°C (24 h) and then
frozen at −20°C until

space

Fig.  1.  (a)  Geographic  location  of  Lake  Alchichica,
Mexico.  The  topographical  map  shows  the  changes  of
elevation in the region. The panoramic photograph (inset)
shows  the  semicontinuous  white  ring  (indicated  with
arrows) of inactive micro- bialites above the water level.
(b) Collection sites of spongy microbialites and mean
values (± SD) of nitrogen (N) and phospho-  rus (P)
concentrations in littoral water samples. (c) Inactive spongy
microbialites exposed over the water lake level; inset indi-
cates their mean organic carbon (Corg), total N (TN) and
total P (TP) content. (d) Transversal section of live spongy
microbialite

Site
6
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spaceDNA  extraction.  Total  DNA
was  extracted  and  then  purified
using  the  method  previously
described  for  microbialites  by
Centeno et al. (2012). The obtained
pellets  were resuspended in  30 µl
molecular-grade  water  (Sigma
Aldrich).  A  pooled  sample  of
micro-  bialites  was  used  for
amplifications  with  specific
primers  to  explore  the  genetic
diversity associated with N-cycling
pathways.

To  analyze  N-cycle  gene
expression  in  microbia-  lites,
samples  were  collected  every  6  h
setting the initial time at midnight
(24:00 h). In this case, 3 sub-

spacesamples  of  the
spongy  microbialite
(5  g)  were  taken  at
24:00,  06:00,  12:00
and  18:00  h,  frozen
immediately  in  liquid
N2 (24 h) and stored at
−80°C  until  RNA
extraction.  For  RNA
extraction,  6  g  of
material  per  site  per
time  were  disrupted
by  freeze−  thaw
cycles  in  liquid  N2,
together  with  2.5  ml
of  bead  solution (Mo
Bio  Laboratories).
The RNA PowerSoil®

Total RNA Isolation
Kit (Mo Bio Labora-
tories)  was  used
following  the
manufacturer’s  in-
structions  with  slight
modifications.  The
obtained  pulverized
fraction was placed
into 15 ml bead

space

spacetubes and processed according
to  instructions.  Recovered  RNA
was further purified using the RNA
cleanup  protocol  of  the  RNeasy
Mini Kit (Qiagen), including a step
to  remove  genomic  DNA  with
DNase  I  (Qiagen).  After  DNA
hydrolysis, RNA sam- ples per time
were  pooled,  and  residual  DNA
was tested using 2 µl of the eluted

material as a template for PCR amplification using rpoB-targeted
primers  (rpoB1698f and rpoB2041r) (Dahllöf et al. 2000). The
assay  was  negative  for  DNA;  thus,  cDNA was  syn-  thesized
immediately by avian myeloblastosis  virus reverse transcriptase
(Promega)  following  the  man-  ufacturer’s  protocol.  The  first-
strand cDNA samples were stored at −20°C until analysis.

spacePCR amplification

Selected N-cycle pathways including N2 fixation,
nitrification, anammox and denitrification were sur-
veyed  using  nifH,  amoA  (bacterial  and  archaeal),
nxrA, nxrB, hzo, nirK, nirS and nosZ genes as
molec-  ular  markers  (Table  1).  PCR  reactions
contained DNA (~10 ng per reaction), 1× ViBuffer
A (Vivantis),
0.4 µM each primer, 200 µM of each

deoxynucleotide  triphosphate, 0.5 µg µl−1 BSA
(Biolabs) and 1 U of Taq  DNA  polymerase
(Vivantis). The concentration of magnesium chloride
varied  between amplified  regions from 1.5 to 2.0
mM (Table 1). The amplifica-  tion  protocol  was
similar for amoA, nxrA, nxrB, hzo,

space

Table 1. Primers used to survey the nitrogen cycle in crater Lake 
Alchichica 
microbialites. 
MgCl2: 
magnesium 
chloride; Ta: 
annealing 
temperature

Gene
Primer

Sequence 5’ 3’ Amplicon
length (bp)

Ammonia monooxygenase (ammonia oxidation, nitrification)
amoA (Bacterial)

amoA-1F GGG GTT TCT ACT GGT GGT 600
amoA-2R CCC CTC KGS AAA GCC TTC TTC

amoA (Archaeal)
Arch-amoAF STA ATG GTC TGG CTT AGA CG 600
Arch-amoAR GCG GCC ATC CAT CTG TAT GT

Hydrazine oxidoreductase (anaerobic ammonium oxidation)
hzo

hzoF1 TGT GCA TGG TCA ATT GAA AG 1000
hzoR1 CAA CCT CTT CWG CAG GTG CAT G

Dinitrogenase reductase, iron protein (nitrogen fixation)
nifH

nif4 TTY TAY GGN AAR GGN GG 456
nif3 ATR TTR TTN GCN GCR TA
nif1 TGT GAT CCT AAA GCT GA 361
nif2 CCT CTT TAC TAC CGT AA

Nitrite oxidoreductase subunits (nitrite oxidation, nitrification)
nxrB-Nitrospira

nrxBF14 TGG CAA CTG GGA CGG AAG ATG 1245
nxrBR1239 TGT AGA TCG GCT CTT CGA CC

nxrA-Nitrobacter
F1370-F1-nxrA CAG ACC GAC GTG TGC GAA AG 322
F2843-R2-nxrA TCC ACA AGG AAC GGA AGG TC

Copper-dependent nitrite reductase (nitrite reduction, denitrification)
nirK

F1aCu ATC ATG GTS CTG CCG CG 472
R3Cu GCC TCG ATC AGY TTG TGG TT

Cytochrome cd1-type nitrite reductase (nitrite reduction, denitrification)
nirS
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R3cd GAS TTC GGR TGS GTC TTG
Nitrous oxide reductase (nitrous oxide reduction, denitrification)
nosZ

nosZ-F CGY TGT TCM TCG ACA GCC AG
nosZ-R CAT GTG CAG NGC RTG GCA GAA

space

spacenirK, nosZ and nirS genes.
The general PCR program
consisted of an initial denaturation
step at  95°C for  2 min, followed
by 35 cycles of amplification at
95°C  (30  s),  annealing
temperatures  depending  on  the
primer pairs (Table 1) (30 s) and at
72°C (60 s), and a final extension
step at 72°C (2 min).

Cloning and 
sequencing

The obtained PCR products were
inserted  into  the  pCR®2.1  vector
using the original  TA  Cloning Kit
(Invitrogen)  following  the
manufacturer’s  instruc-  tions.
Chemically competent  Escherichia
coli  DH5cells  were  transformed
with  the  constructed  vectors,  and
positive clones were selected by  -
complemen-  tation  on  Luria-
Bertani plates containing ampicillin
(50 µg ml−1) and X-gal (5-bromo-
4-chloro-3-indolyl-  -D-
galactopyranoside,  1.6  mg  spread
on the  sur-  face).  An ABI 3730xl
DNA  analyzer  (Applied  Bio-
systems)  was  used  for  sequencing
with the M13 region.

Sequence analysis
and phylogenetic

reconstruction

Nucleotide  sequences  were
translated  to  amino  acids  using
SeaView  software  v.4.2.12  (Gouy
et al. 2010), and pseudogenes were
removed  after  detect-  ing
unexpected  stop  codons  on  all  3
reading  frames.  Putative  open
reading frames were compared with
entries  in  databases  using  the
standard  nucleotide  basic local
alignment search tool (v.2.2.27)
(Zhang et  al.  2000).  Operational
taxonomic  units  (OTUs)  were
assigned  with  mothur  (v.1.33.3)

using  the  furthest  neighbor  algorithm  to  collapse  similar
sequences (Schloss et al. 2009). The cut-off level depended on the
analyzed  gene:  5%  nucleotide  sequence  differ-  ence  for  nifH,
amoA,  nirK  and  nirS  (Francis et al.  2003, Yoshida et al. 2010,
Gaby & Buckley 2011); 3% for nosZ (Philippot et al. 2013); and
1% for hzo (Dang et  al.  2013).  Only the assigned OTUs were
consid- ered for phylogenetic analyses.

Phylogenetic  reconstruction  involved  nucleotide  sequence
alignment using the translated amino acid configuration to keep
the  analogous  codon  positions  lined up, using SeaView and
ClustalW2 (Larkin et al.  2007,  Gouy  et  al.  2010).  Nucleotide
alignments  were  used  to  construct  phylogenetic  trees  with
maximum  likelihood  in  PhyML  3.0  (Guindon  et  al.  2010).
Sequence  data  were  deposited  in  GenBank  under  accession
numbers KJ967530−KJ967806.

spacePhysicochemical characterization

The physicochemical environment of microbialite-
surrounding water was measured in situ with a YSI
6600 multiparametric probe. In addition, water sam-
ples were taken in clean polypropylene bottles to de-
termine  dissolved nutrients  and total  N and  P.  All
samples were kept in the dark at 4°C (24 h) and
frozen  prior  to  analysis.  Additionally,  samples  for
nutrients  determination were filtered through
coupled 0.45 and
0.22 µm membranes. Dissolved N forms
(ammonium, nitrate and nitrite) and soluble reactive
P  (SRP)  were  photometrically  analyzed  with  a
Skalar  SanPlus  seg-  mented  flow  autoanalyzer
(Skalar Analytical), using adapted standard methods
reported by Grasshoff et al. (1983) and the circuits
suggested  by  Kirkwood  (1994).  Unfiltered  water
samples  were  analyzed  for  total N and P as
suggested by Valderrama (1981).

For  total  elemental analysis  in  microbialites,  a

subsample of 1 cm2  area of each microbialite was
excised, lyophilized and ground in an agate
mortar. Organic C and total N (TN) contents were
deter-  mined  using  a  CE  Instruments  Flash  EA
1112  ele-  mental  analyzer,  after  removal  of  the
inorganic C (carbonate) using 1.5 M hydrochloric
acid.  Total  P  (TP) was determined by UV
spectrometry as molyb- date-reactive P, after high-
temperature persulfate oxidation.

RESULTS

The  littoral  water  surrounding  the  microbialites
showed low nutrient concentrations in all cases
(SRP,
0.62 µM), but particularly for DIN (1.54 µM),
exhibit- ing a 2.5 DIN:SRP ratio. Littoral water TP
and  TN were  more  balanced  (2.62  and  42.4  µM,
respec-  tively),  showing  a  16.2  TN:TP  ratio.
Microbialite composition (Fig. 1c) also showed very
low N and P contents relative to C (C:N ratio = 8.7,
C:P ratio = 364 and N:P ratio = 41.8 in mass).
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Genetic diversity
associated with
the N cycle in

Lake Alchichica
microbialites

A  total  of  364
sequences  were
obtained  from  meta-
genomic  DNA
samples,  including
nifH,  bacterial  amoA,
hzo,  nirK,  nirS  and
nosZ  amplicons
(Table  2).  Archaeal
amoA and nitrite
oxidation genes (nxrA
and  nxrB)  were  not
detected  in  our
survey.  The  largest
number  of  OTUs
recovered  was  for
denitrification  (nirK,
nirS and nosZ),
followed by N2

fixation (nifH).
space

spaceChemolithotrophic  processes
such  as  aerobic  ammo-  nia
oxidation  and  anammox  showed
the lowest num- ber of phylotypes
(Table 2).

Ammonia 
oxidation

Three  OTUs  were  detected  for
amoA.  Sequences  affiliated  to
Nitrosomonas
(Betaproteobacteria),  dis-  tributed
within  the  Nitrosomonas
europaea/mobilis  lineage  and  the
N. marina lineage (Fig. 2a). Anam-
mox genetic diversity in Alchichica
microbialites was represented by 1
hzo OTU, which showed 99% simi-
larity  to  sequences  detected  in
marine sediments.

Denitrification

Nitrite respiration (nirK and nirS)
recovered 13 and  15  OTUs,
respectively.  The  nirK  amplicons
showed

70 to  85%  similarity to environmental sequences from estuaries,
water column samples from eutrophic freshwater lakes and lake
sediments  (Mosier  &  Fran-  cis  2010)  and  were  related  to
Rhodobacter  sphae-  roides,  Octadecabacter  antarcticus  and
Chelativo-  rans  sp.  BNC (Fig.  2b,c).  The  nirS  sequences from
Alchichica microbialites showed 73 to 93% similarity  to
environmental sequences from sediments and soils and 71 to 85%
similarity to isolated strains (Fig. 2c). The OTU with more clones
was nirS_OTU1 (44.4%) and sequences that clustered within the
same group related to  Marinobacter aquaeolei  (Fig. 2c). Phylo-
types nirS_OTU2 and nirS_OTU3 contributed with  31% of the
total sequences in the spongy microbialite samples, closely related
to isolated Alphaproteobac- teria such as Dinoroseobacter shibae
and Polymor-

spacephum gilvum (78−83% similarity). The genetic

diver-  sity  associated  with  nitrous  oxide reduction
was  observed in 16 nosZ OTUs, with 75 to 90%
identity to reported sequences mainly from coastal
marine  sedi-  ments  and  isolated  strains  of  the
haloalkaliphilic  Thioalkalivibrio  sulfidophilus  and
the  Alphapro- teobacteria D. shibae  and  P.  gilvum
(Fig. 2d). OTU nosZ_OTU1 contained almost  51%
of the nosZ sequences detected.

N fixation

The genetic diversity associated with N2 fixation
(nifH) was predominantly from Cyanobacteria, with
a minor representation of  Proteobacteria  and  Clos-
tridia (Fig. 3). OTU nifH_OTU1 was the most abun-
dant  (50%  clones),  showing  96%  identity  with  a
clone from a periphyton mat affiliated to Nostocales.
Phylotype nifH_OTU3 was the second most abun-
dant and related to  Alphaproteobacteria, i.e.  Rhizo-
bium sp. TJ171 (81% identity). The nifH sequences
detected also related to environmental clones repor-
ted  from  microbialites  of  Laguna  Bacalar,  in  the
Yucatan Peninsula, Mexico (Beltrán et al. 2012).
Only  N2 fixation  (nifH)  RNA  transcripts  were
recovered  (Table  2).  The  OTUs  found  in  the  diel
expression experiment, shown in Fig. 3, were mostly
affiliated to Nostocales cyanobacteria.

DISCUSSION

Microbialites have been described as a plethora of
microbial  metabolisms with large functional diver-
sity supported by autotrophy and diazotrophy (Viss-

space

Table 2. Number of sequences obtained from different
nitrogen-cycle pathways in microbialites of crater Lake

Alchichica. DNA amplifications were done from
metagenomic DNA extracted; RNA amplifications were

done from synthesized cDNA. OTUs: operational
taxonomic units
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of study

Nitrogen-cycle process

DNA
Nitrogen fixation
Aerobic ammonia oxidation amoA
Anaerobic ammonia oxidation
Denitrification (nitrite respiration)
Denitrification (nitrite respiration)
Denitrification (nitrous oxide reduction)
Total DNA sequences

RNA
Nitrogen fixation

space

c nirS, nitrite reduction 
(denitrification)

Dinoroseobacter shibae

 Microbialite clones Alch_nirS OTU3, KJ967542

spacea amoA, aerobic ammonia 
oxidation

space
100

96

space Microbialite clones Alch_nirS OTU2, KJ967555

 Microbialite clone Alch_nirS33 OTU14, KJ967572 
space
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Fig. 2. Maximum
likelihood phylogenetic
tree for genes involved

in nitrogen-cycle
pathways in Alchichica

microbialites: (a)
bacterial amoA (378

nucleotides), (b) nirK
(435 nucleotides), (c)

nirS (412 nucleotides),
(d) nosZ (649

nucleotides). Grey-
shaded operational

taxonomic units
represent those obtained
in this study. Midpointed

maximum likelihood
trees with bootstrap

values 50% are shown
(1000 replicates).

Divergence is
represented by each

scale bar

spacecher & Stolz 2005, Stal 2012).
This  study  represents  the  overall

genetic diversity associated with N cycling in microbialites. As
we  hypothesized,  genes  involved  in  N2 fixation,  ammonia
oxidation and  denitrification were present in  the environmental
DNA analyzed, where phylotypes related to denitri- fication were
the  most  abundant.  The  relative  abun-  dance  of  phylotypes
associated with each N path- way was similar to that reported in
previous

spacemetagenomic  studies  on  microbialites  from
Cuatro  Cienegas,  Mexico  (Breitbart  et  al.  2009);
however, these authors did not find genes associated
with nitrification or anammox.

The ability to use N oxides as electron acceptors is
a widely spread feature in Bacteria and Archaea and
has been detected as a major functional capacity in
microbialites (Breitbart et al. 2009, Mobberley et al.
2013) and microbial mats (Desnues et al. 2007,
Peim-
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Fig. 3. Midpointed
neighbor-joining

(Kimura 2-parameter)
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partial sequences (315

nucleotides); boot- strap
values > 50% are shown
(1000 replicates). The

scale bar represents 5%
divergence. Phylotypes
recovered from DNA

are highlighted in grey,
and the green circles
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in the gene expression
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space

spacebert et al. 2012, Alcántara-
Hernández et al. 2014, Fan et al.
2015).  Denitrification  occurs
mainly  under  microaerophilic  or
anaerobic  conditions,  such  as
those present in the lower portions
of the microbialite  structure, but
was not detectable with transcripts
for either nitrite respiration  (nirK
and  nirS)  or  nitrous  oxide
reduction (nosZ). Visscher &
Stolz (2005) have  suggested the
coupling of sulfide oxidization to
deni- trification during nighttime.
However, in microbial mats under

N-limited  systems,  low  denitrification  rates  have  been
observed,  which  can  nevertheless  increase significantly if
nitrate is added (Joye & Paerl  1994, Stal 2003, Joye & Lee
2004, Fan et al. 2015). In  Alchichica  microbialites,  the  N-
limited conditions and the physicochemical environment might
favor the assimilation of N oxides including nitrate and nitrite
despite  the  large  genetic  diversity associated  with
denitrification.

The aerobic and anaerobic oxidation of ammonia pathways had
the lowest diversity. Previous metage- nomic studies had reported
the lack of nitrification genes in oncolites from Cuatro Cienegas
Basin  in  northern  Mexico  (Breitbart  et  al.  2009),  while  a  few
nitrification  genes  were  detected  in  thrombolitic  mats  from
Highborne  Cay,  Bahamas  (Mobberley  et  al.  2013).  The  low
diversity and abundance associ- ated with ammonia oxidation in
microbialites  from  Lake Alchichica could relate to long
replication times  of  chemolithotrophs  and  limitation  in  saline
(alka- line) environments due to bioenergetic constraints (Sorokin
& Kuenen 2005, Oren 2011). In other stud- ies, small numbers of
ammonia-oxidizing phylotypes have been found in shallow soda
pools of eastern Austria (Hornek et al. 2006) and in water column
samples from Mono Lake (Ward et al. 2000). Aerobic ammonia
oxidation  by  Thaumarchaeota  was  also  verified  using  amoA-
targeted primers (Francis et al. 2005), but no PCR product was
detected for any sam- ple with the methodology here employed,
possibly since microbialites are known to harbor low amounts of
Archaea (Centeno et al. 2012). Ammonia mono- oxygenase genes
from Candidatus Nitrosopumilus maritimus have been detected in
other thrombolites (Breitbart et al. 2009, Couradeau et al. 2011,
Centeno et al. 2012, Khodadad & Foster 2012, Mobberley et al.
2013).

Alchichica microbialite hzo sequences related to environmental
sequences  from sediments  of  the  Bohai  and  South  China  seas
(Dang  et  al.  2013,  Li  et  al.  2013)  and  clustered  within  the
Scalindua-like cluster I, a clade composed exclusively of environ-
mental sequences detected in bay and oceanic sedi- ments (Dang
et al. 2013, Li et al. 2013). The detection

spaceof an anammox phylotype was possible with the
hzo  gene-targeted method here employed,  although
fur- ther studies must be done to understand the rele-
vance of this process in microbialites.

N2 fixation is an important process carried out in
microbial mats and microbialites, as many of them
inhabit oligotrophic systems (Severin et al. 2010,
Stal  2012).  Beltrán  et  al.  (2012)  suggested  that
cyanobac- teria were the most relevant diazotrophs
in  Alchi-  chica  microbialites,  followed  in  minor
proportion  by  Alphaproteobacteria,  sharing  an
analogous  composi-  tion  to  marine  microbialites
(Steppe et al. 2001) and microbial mats (Zehr et al.
1995).  The detection of  nifH mRNA sequences in
this study is consistent with previous observations of
high  daytime  nitrogenase  activity  in  Alchichica’s
microbialites  (Falcón  et  al.  2002,  Beltrán  et  al.
2012).  A  minor  number  of  nifH  OTUs  were
recovered from transcripts (RNA), sug- gesting only
a small set of active N2 fixers (Fig. 3); this pattern
has  also  been  observed  in  microbial  mats
(Moisander et al. 2006, Woebken et al. 2012). The
most active nifH_OTU2 and nifH_OTU1 phylotypes
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clustered  within
Nostocales  and
showed respectively
85 and 89% similarity
with  Anabaena  spp.,
while  phylotype
nifH_OTU4 had  84%
identity  with  Lepto-
lyngbya sp. PCC 7104
and with Elkhorn
Slough Fila-  mentous
Cyanobacterium-1
(ESFC-1)  (Woebken
et  al. 2012).
Nostocales
(filamentous
heterocystous) and
Oscillatoriales
(filamentous
nonheterocystous)
have  been  described
as the  most  abundant
cyanobacteria  in
Alchichica
microbialites (Tavera
& Komárek 1996, Kaz
´mierczak  et  al.
2011)  and  in  other
nonlithifying  and
lithifying  mats
(Severin  et  al.  2010,
Khodadad  &  Foster
2012).  Furthermore,
microbial  mats  domi-
nated  by
heterocystous
cyanobacteria  have
shown  high
nitrogenase  activity
during  daytime
(Falcón  et  al. 2002,
Charpy et al. 2007,
Severin et al. 2010),
since  nitrogenase
activity  can  be
coupled  to
photosynthe-  sis,
avoiding  oxygen
inhibition  through
spatial sepa- ration of
N2 fixation  in  the
heterocysts  (Stal
1995,  Staal  et  al.
2002).

Lake  Alchichica
microbialites  contain
a  large  ge-  netic
diversity  associated
with N cycling, where
N2 fixation is the most

active  pathway  and  is  mainly  driven  by
heterocystous  cyanobacteria.  Cyanobac-  teria  play
an important role in microbialites for N ac- quisition,
in addition to CO2 drawdown via photosyn- thesis
for biomass, extracellular polymeric substances
formation  and  carbonate  mineral  precipitation.
Tavera  & Komárek (1996) identified heterocystous
and unicel-  lular  cyanobacteria  in  microbialites  of
Lake  Alchichica  including  Aphanocapsa  sp.,
Calothrix  sp.,  Chroococcus  sp.  and  Rivularia  sp.
There are other microorganisms

space

spacein charge of transforming different N forms by nitrifi- cation,
anammox  and  denitrification,  but  these  pro-  cesses might be
occurring at low rates.

Our nutrient data are consistent with previous observations of N
limitation  in  the  water  column  (Ramírez-Olvera et al. 2009,
Ardiles et al. 2012), and the microbialite composition (C:N ratio =
8.7)  we found suggests that N also limits microbial activity in
Alchichica’s microbialites. It is reasonable to consider that nitrate
concentration in  the water  surrounding the microbialites differs
from that in the microsites of  the  biogenic  structure,  making
denitrification  possi-  ble in the microoxic−anoxic  interfaces.
However,  min-  eralization  might  be  small  compared  to  N2

fixation, driven by cyanobacterial photosynthetic activity and the
N demands of the system. This study might not reflect effectively
all  denitrifiers  in the system since the genetic region amplified
misrepresents  Deltapro-  teobacteria,  Epsilonproteobacteria  and
Verrucomi- crobia (Sanford et al. 2012).

Another  relevant  feature  of  the  N-cycling  dynam-  ics in the
water column of Lake Alchichica is the sea- sonal — and regular
— bloom of  Nodularia  spp.  by  the  onset  of  the  stratification
period (June−October) (Oliva et al. 2009). The massive growth of
this cyano- bacterium has been reported as an important source of
fixed N to the system, diminishing N2 fixation rates  of
microbialites  after  the  bloom  period  (Falcón  et  al.  2002).
Notwithstanding this N relief, the diazotrophic  activity  of
microbialites  is  detected before,  during and after  the  bloom. It
might  be  possible  that  other  pathways of  the N cycle,  such as
nitrification, anam- mox and denitrification, also exhibit seasonal
varia- tions, changing N-cycling genetic diversity in time (as was
described  for  P  utilization  genes  in  micro-  bialites  and
bacterioplankton within the system, see Valdespino-Castillo et al.
2016).  However,  further  studies  must  be  done  to  address  this
issue.

The  low  relative  content  of  both  N  and  P  found  in  the
microbialites (C:N ratio = 8.7, C:P ratio = 364) is likely due to
intense  internal  recycling  (Valdespino-  Castillo  et  al.  2016)  of
these 2 elements within the microbial community as compared to
C, which may be left behind to contribute to the accretion of these
organo-sedimentary  structures.  Therefore,  the  much higher N:P
ratios found within the microbialites (N:P ratio = 41.8 and 92.5
for mass and molar ratios, respectively) relative to both the TN:TP
ratio (16.2) and DIN:SRP ratio (2.5) in the water column could
simply be the result of a much higher effectiveness of N2 fixation
within  the  microbialite  community  as  compared  to  the  water
column  community,  which  would help explain the seasonal
Nodularia spp.
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spacebloom  in  Lake
Alchichica (Falcón et
al.  2002).  Al-  though
genes for the entire N
cycle were present in
Alchichica
microbialites,  in  this
study  we  only  found
the  expression  of  the
N2 fixation pathway.

CONCLUSIONS

In  this  study,  we
analyzed
microbialites  from
Lake  Alchichica to
understand the
genetic diversity
associ-  ated  with  N
cycling.  It  was
apparent  that  the
poten-  tial  for  N2

fixation,  ammonia
oxidation,  anammox
and  denitrification  is
present  in  Lake
Alchichica
microbialites. The
most active pathway
is N2 fixation,  where
heterocystous
cyanobacteria play an
impor- tant role.
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