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of Meteorology and Statistics, The Pennsylvania State University, University Park, Pennsylvania

(Manuscript received 19 March 2014, in final form 27 June 2014)

ABSTRACT

Variations in extreme daily temperatures are explored in relation to changes in seasonal mean temperature

using 1218 high-quality U.S. temperature stations spanning 1900–2012. Extreme temperatures are amplified

(or damped) by as much as 650% relative to changes in average temperature, depending on region, season,

and whether daily minimum or maximum temperature is analyzed. The majority of this regional structure in

amplification is shown to follow from regional variations in temperature distributions.More specifically, there

exists a close relationship between departures from normality and the degree to which extreme changes are

amplified relative to the mean. To distinguish between intraseasonal and interannual contributions to non-

normality and amplification, an additional procedure, referred to as z bootstrapping, is introduced that

controls for changes in the mean and variance between years. Application of z bootstrapping indicates that

amplification of winter extreme variations is generally consistent with nonnormal intraseasonal variability.

Summer variability, in contrast, shows interannual variations in the spread of the temperature distribution

related to changes in the mean, especially in theMidwest. Changes in midwestern temperature variability are

qualitatively consistent with those expected from decreases in evapotranspiration and are strongly correlated

with a measure of drought intensity. The identified patterns of interannual variations in means and extremes

may serve as an analog for modes of variability that can be expected at longer time scales.

1. Introduction

There is substantial uncertainty regarding how changes

inmean and extreme temperature are related (Alexander

and Perkins 2013; Katz et al. 2013). Part of this uncer-

tainty stems from difficulties in disentangling changes in

the mean from higher-order moments of the temperature

distribution. Hansen et al. (2012), for example, suggested

an increase in the variance of summer monthly temper-

atures, but changes in variance are not discernible after

accounting for trends in the mean, among other factors

(Rhines and Huybers 2013; Huntingford et al. 2013).

Similarly,Donat andAlexander (2012) suggested that the

distribution of temperature has become more skewed in

recent decades, but it may be that the skew emerges from

aggregating across distributions with differing mean

values (Karl and Katz 2012; Katz et al. 2013). As a final

example, it was suggested that exceptionally warm

summers in western Europe in 2003 and Russia in 2010

resulted, in part, from an increase in temperature var-

iability (Schär et al. 2004; Barriopedro et al. 2011), but

further analyses were unable to statistically differenti-

ate such events from the consequences of mean

warming (Rahmstorf and Coumou 2011; Otto et al.

2012; Tingley and Huybers 2013).

The foregoing examples from the literature illustrate

that a shifting mean can lead to the appearance of changes

in variance, skew, or other features of the distribution.One

method of isolating the effects of changes in themean is to

specifically examine features of the distribution as a func-

tion of the mean. Robeson (2002), for example, provides

an analysis of the variance of U.S. daily temperatures as
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a function ofmonthlymean values between 1900 and 2000.

Such analyses of conditional variance have been de-

veloped in detail in econometric applications (Engle 2001).

The functional dependence of variance conditional

on the mean would afford a complete description of the

distribution if it were normal. But departures from

normality are common (Karl 1985; Ruff and Neelin

2012), as can generally be anticipated from the in-

fluence of nonlinear phenomena such as those associ-

ated with changes in soil moisture, surface albedo,

atmospheric stability, and advection (e.g., Seneviratne

et al. 2006; Meehl and Tebaldi 2004; Teng et al. 2013).

The likely presence of nonnormality thus makes it

useful to explore other measures of how the tempera-

ture distribution depends on the mean, and we focus

on the 5th and 95th percentiles. Allowing for non-

normality also prompts a need to account for inherent

dependence between the mean and extremes of a sam-

ple. In the following, we analyze interannual variations

in mean and extreme U.S. daily temperatures, dem-

onstrate that systematic changes in the relationship

between these quantities can result from either non-

normality or changes in the underlying distribution

between years, and then introduce a methodology to

distinguish between some subsets of nonnormal and

nonstationary behaviors.

2. Data

The distributions ofminimum (Tn) andmaximum (Tx)

daily temperature are examined across 1218 stations from

version 3.11 of the U.S. Global Historical Climate Net-

work (GHCN) between 1900 and 2012. These stations

were selected on the basis of being high quality, well re-

solved, and well distributed (Menne et al. 2012).

GHCN data fromU.S. stations are typically recorded in

rounded units of degrees Fahrenheit that are then con-

verted to degrees Celsius and again rounded to the nearest

tenth of a degree. One curious result of this double

rounding is that no digit should then end in a value of 0.5.

Rounding biases certain percentile statistics (Machado

and Santos Silva 2005; Zhang et al. 2009), but in section 3

we demonstrate a small sensitivity of our particular anal-

ysis when rounding to either 18F or 0.18C.
A more substantial issue is the presence of seasonality

because it is associated with changes not only in themean

but also in higher-order moments of the temperature

distribution (e.g., Huybers and Curry 2006). Seasonality

is dealt with in two ways. First, seasonality is removed

from Tx and Tn at each station by removing the clima-

tological average seasonal cycle, similar to previous

studies (Brown et al. 2008). Climatological seasonal cy-

cles are estimated by taking the average Tx or Tn as

a function of day across the available data points between

1950 and 2000, where this interval is selected as a trade-

off between duration and completeness of the data. Gaps

in the data are not filled because they tend to be clustered

into long sequences, making such infilling uncertain and

impractical. We then low-pass filter the empirically esti-

mated climatological seasonal cycles using a second-

order Butterworth filter with a cutoff frequency of once

per two weeks.

In a small number of cases individual data points exceed

6 times the sample standard deviation associated with the

smoothed climatological seasonal cycle. These outliers

are removed and the seasonal climatology reestimated.

On average, each record has one such outlier among

35 000 data points, but outliers are clumped such that 10%

of the stations account for 70% of all outliers. Repeating

the analysis without excluding data yields quantitatively

very similar results (see section 4). Robustness to outliers

comes, in part, from using 5th and 95th percentiles, as

opposed to seasonal minima and maxima, and because

there is rarelymore than one outlier in a given season. All

years are treated as having 365 days. Hereafter Tx and Tn

are used to refer to their respective anomalies from the

climatological seasonal cycle.

The second control for seasonality is to perform

analyses with respect to four 3-month seasons. The year

associated with January is assigned to the December–

February (DJF) winter season. In section 4, we also de-

scribe howmonthly resolution analysis affects our results.

Although beyond the scope of this study, we note that the

relationship between means and extremes likely evolves

continuously over the course of the seasonal cycle and

that there is substantial temporal (e.g., Stine andHuybers

2012) and spatial (e.g., McKinnon et al. 2013) variability

in seasonality, ultimately warranting a more generalized

examination of the seasonality of mean and extreme

temperature. Seasonal means and quantiles are com-

puted when temperatures on 80% of the days in a given

season are recorded. By this criterion, just over 80% of

the years between 1900 and 2012 across stations are in-

cluded for both Tn and Tx for each season. Trials using

70% and 95% seasonal coverage thresholds give quan-

titatively very similar results, as described in section 4.

This follows from the fact that data for most seasons are

either complete (;65%) or entirely missing (;15%).

Both Tx and Tn have roughly equal data availability

across seasons.

3. A mean–extreme metric

In what follows, we make use of the fact that the mean

of a sample from anormal distribution is expected to have

no covariance with any quantile of the sample, after
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subtracting the sample mean. That is, E[COV(x, x̂2x)]5
0, where x indicates the mean of a sample, x̂ is a quantile,

COV is the covariance, and the brackets indicate the

expectation. This relation follows from a more general

theorem regarding the independence of ancillary statis-

tics relative to complete and sufficient statistics (Basu

1958).

A related consequence of Basu’s theorem is that the

distribution of samples from a normal distribution that is

conditioned on amean value will also be normal and have

the same variance as the original distribution. For pur-

poses of illustration, Fig. 1a shows a standard normal

distribution and the distribution of realizations condi-

tioned on a specifiedmean. The conditional distribution is

estimated in a simple manner through drawing sets of 90

independent realizations from a standard normal and only

accepting those with a sample mean between 0.45 and

0.55, as an approximation to conditioning on a sample

mean of 0.5. Sets are generated until 10 000 samples meet

the criteria for inclusion and all members of these sets are

binned together in estimating the conditional distribution.

In this case, the conditional distribution is consistent

within sampling uncertainty of having increased the

original standard normal distribution’s mean by 0.5.

For nonnormal distributions the sample mean is gen-

erally not a complete and sufficient statistic, and samples

conditioned on a mean will have higher-order moments

that differ from the original distribution. It follows that

samples fromnonnormal distributions will generally have

extremes that are either amplified or damped relative to

variations in the mean. For instance, samples from

a standard Gumbel distribution that are conditioned on

amean of 0.5 have 50%greater variance than the original

zero-mean distribution (Fig. 1b). Illustrative examples

are again generated through realizing 10000 90-member

sets having a mean within 10% of 0.5.

A measure of the amplification or damping of varia-

tions in extreme temperature relative to themean can be

computed as

S5COV(x, x̂2 x)/VAR(x) , (1)

where the sample covariance between the mean and a

quantileminus themean is divided by the sample variance

of themean. This statistic results in a unitless quantity that

is a least squares best estimate of the slope between the

mean and quantileminus themean. The quantiles focused

on here are the 5th percentile (T05) and the 95th per-

centile (T95). The measure given by Eq. (1) will be re-

ferred to as a mean–extreme slope or, more specifically,

the mean–Tx05 slope, mean–Tn95 slope, and so on.

The expected value of the mean–extreme slope is zero

if values are drawn from a distribution that is normal and

stationary (i.e., the moments of the underlying distri-

bution do not change between years). Departures from

a mean–extreme slope of zero indicate nonnormality,

changes in the underlying distribution, or both. The

converse does not necessarily hold, however, in that

certain forms of changes in the underlying distribution

do not influence the slope, as will be illustrated. Mean–

extreme slopes that are greater than zero indicate vari-

ations in extremes that are amplified relative to changes

in the mean, whereas negative slopes indicate damping.

Note that positive mean–T05 slopes imply shortening of

FIG. 1. Illustration of how conditioning a sample upon the mean has different implications for normal and non-

normal distributions. (a)A standard normal distribution (black), the original distribution shifted positive by 0.5 (red),

and the distribution of samples drawn from the standard normal conditional upon their having a mean of 0.5 (blue).

As required by Basu’s theorem, the conditional and shifted distributions are equivalent, up to sampling issues as-

sociated with our estimation approach. (b) The shifted and conditional distributions differ for a standard Gumbel

distribution. In this case, although each has a mean of one-half, the conditional distribution has greater variance.

Conditional distributions are approximated by realizing sets with 90 samples and retaining those whose samplemean

is within 10% of 0.5.
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the lower tail of the distribution, whereas positive

mean–T95 slopes imply lengthening of the upper tail.

Percentiles are estimated by constructing the empirical

cumulative distribution function, also known as aKaplan–

Meier estimate (Kaplan and Meier 1958), and linearly

interpolating for a given percentile.Note that a potentially

useful feature of the mean–extreme metric is that it does

not require assumptions regarding the parametric form of

the underlying distribution.Quantile regression (Koenker

2005) was also explored for purposes of estimating mean–

extreme slopes and gave similar results, but a least squares

fit to the estimated percentiles is employed here because

of its relationship with Basu’s theorem.

Six examples of mean–extreme slopes are provided to

illustrate the effects of departures from normality and

stationarity. A zero mean–extreme slope is expected for

the first three examples and a nonzero slope for the last

three. Each example has 100 sets of realizations, nominally

representing years, and each set comprises 90 samples,

nominally representing daily temperatures. The empirical

distribution associated with all 9000 samples and the

mean–T95 slope are analyzed in each case. Confidence

intervals are placed on the samplemean–extreme slope by

resampling the realizations of T95 minus the mean with

replacement and recalculating slopes 10000 times. Confi-

dence intervals are two sided and at the 95% level.

Analogous results hold for T05 and other percentiles but

are not shown.

Example 1: Samples are drawn from a standard nor-

mal distribution (Fig. 2, panels 1a and 1b), and the

corresponding mean–T95 slope is indistinguish-

able from zero at the 95% confidence level (Fig. 2,

panel 1c), as expected. The y intercept of the

mean–extreme regression line indicates the aver-

age offset between the mean and 95th percentile

of the empirical distribution and equals 1.646 0.02

(1 standard deviation), a value consistent with that

expected for the 95th percentile of a standard

normal.

Example 2: Samples are again considered from a nor-

mal distribution but whose mean value increases

linearly with the integer value of the year beginning

at year 50 (Fig. 2, panel 2a). The empirical distribu-

tion, when considered across all realizations, is

mixed normal with a positive skew (Fig. 2, panel

2b) (cf. Karl and Katz 2012). Despite changes in the

mean and the empirical distribution appearing non-

normal, the difference between T95 and the mean is

invariant, and the estimated mean–T95 slope is con-

sistent with zero, again as expected (Fig. 2, panel 2c).

Example 3: Considering samples from another normal

distribution, but with standard deviation increasing

linearly with integer values of the year (Fig. 2,

panel 3a), leads to an empirical distribution similar

to that of Student’s t distribution (Fig. 2, panel 3b).

As in example 2, the expected mean–max slope

again remains zero (Fig. 2, panel 3c), but the slope

is more uncertain because the spread of themean is

relatively smaller and the spread of T95 larger.

Example 4: Both the mean and standard deviation

of a normal distribution are now made to increase

linearly with the integer value of the year (Fig. 3,

panel 4a). The empirical distribution considered

across all realizations is mixed normal with posi-

tive skew (Fig. 3, panel 4b). In this case, a positive

mean–T95 slope is expected because of the im-

posed covariance between the mean and standard

deviation, where the latter controls the expected

spread between T95 and the mean (Fig. 3, panel 4c).

Example 5: A generalized extreme value distribution

is now considered having a scale parameter of 1,

shape 20.1, and location selected to give a zero

mean. The sign of the distribution is also reversed

in order to give negative skew. T95 variations are

expected to be damped relative to changes in the

mean because of the negative skew, among other

higher-order moments, and a negative mean–T95

slope is found (Fig. 3, panels 5a–c). The empirical

distribution is similar to that from example 2 in

terms of having nonzero skew, but the nonnormal

intraseasonal variability in this example leads to

the expectation of a negative slope.

Example 6: Finally, given samples from a Student’s t

distribution, the spread of the distribution leads to

extreme values having amplified variability relative to

the mean and to a positive mean–T95 slope (Fig. 3,

panels 6a–c). (More technically, although T952 T is

ancillary to T , the sample mean is not complete

sufficient for Student’s t distribution.) Note that the

empirical distribution is difficult to distinguish from

that in example 3 but that the slopes differ, illustrating

how the empirical distribution canhave an ambiguous

relationship with the mean–extreme slope.

The foregoing examples illustrate a diverse set of re-

lationships between means and 95th percentiles across

normal (examples 1–4) and nonnormal (examples 5 and 6)

processes as well as between stationary (examples 1, 5, and

6) and nonstationary (examples 2–4) processes. The

mean–extreme slope provides a simple description of how

the tails of a distribution change with respect to the mean

that we apply and interpret in the next section. The fact

that the mean–extreme slope can take on similar values

despite describing different processes (e.g., examples 3 and

6) is also addressed in section 6 where we introduce
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a bootstrap approach that distinguishes between some

subsets of nonstationary and nonnormal behaviors.

To explore the extent to which rounding may influence

our results, we conduct paired synthetic experiments using

each of the foregoing six examples, where one member of

the pair uses full machine precision in estimating mean–

extreme slopes and the other has data rounded first to units

of degrees Fahrenheit and then, after unit conversion, to

tenths of a degree Celsius (see section 2). Cross correla-

tions between paired mean–extreme slopes, calculated

from 1000 realizations, always exceed 0.97 and average

0.99 across the six examples. These high correlations in-

dicate that noise contributions from rounding are small.

Regression between the twin realizations of slopes also

results in a relationship that is within 5% of unity and

passes within60.02 of zero at the y intercept, indicating no

appreciable bias in the results.

4. U.S. mean–extreme slopes

Applying the mean–extreme analysis to each of the

1218 stations results in maps of slopes across the United

States that show coherent spatial structures depending

on season and variable (Figs. 4 and 5). Counting across

all seasons and variables, 46% of mean–extreme slopes

differ from zero at the 95% confidence level using the

FIG. 2. Illustrative examples of the relationship between sample means and 95th percentiles drawn from normal distributions. (1a)–(3a)

Each example has sets of 90 values (nominally labeled temperature) that are drawn 100 times (labeled years) and themean (solid red) and

95th percentile of each set (dashed red) are indicated. (1b)–(3b) The empirical distributions from the 903 100 samples, and (1c)–(3c) the

95th percentileminus themean regressed against themean (black line) along with the 95% confidence interval for the slope (dashed black

lines). Distributions correspond to examples in the text: (1a–c) standard normal, (2a–c) standard normal with a mean trend in the latter

half, and (3a–c) standard normal with increasing variance.
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same two-sided test relied upon in the foregoing exam-

ples. See Table 1 and Figs. 4 and 5 for summary statistics

and maps of mean–extreme slopes.

Notable features of the mean–extreme slopes include

a band of winter Tn slopes that are positive for Tn05 and

negative for Tn95 with magnitudes near 0.58C/8C arcing

from the northwest to the northeast and extending

southward to Texas. Wettstein and Mearns (2002) ex-

amined the influence of the northern annular mode

(NAM) on the northeastern segment of this jetlike

structure and found that low NAM indices correspond

to warmer average Tn and smaller variance, consistent

with our findings of a decrease in the spread of Tn with

warmer temperatures. Similar results and correspon-

dence with the results of Wettstein and Mearns (2002)

hold for spring. Furthermore, our results indicate that

these regional variations connect into larger domainwide

patterns, as might be expected from the NAM being

a hemisphere-scale descriptor of atmospheric circulation.

During spring through fall, stations adjacent to the Pa-

cific show slopes that are positive for Tx95 and negative

for Tx05 with magnitudes of 0.58C/8C. The proximity of

these stations to the ocean suggests sea breeze dynamics

that generally suppress values of Tx but that periodically

give way to advection of high temperature from more

interior continental conditions (e.g., Hughes and Hall

2010). A third feature is that summer Tx95 slopes exhibit

negative values in the west and positive values in the east

with magnitudes of about 0.258C/8C. This pattern is sim-

ilar to the May–June Tx warming trends described by

Portmann et al. (2009), who evaluate this east–west di-

chotomy in the context of differences in precipitation.We

return to the influence of precipitation on these variations

in more detail later.

FIG. 3. As in Fig. 2, but for examples (4a–c) using a normal distribution with increasing mean and standard deviation, (5a–c) using

a generalized extreme value distribution, and (6a–c) using a Student’s t distribution.
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As noted in section 2, 80% seasonal coverage was

required for inclusion of a given year in estimating

a mean–extreme slope. If instead this criterion is

loosened to 70% or tightened to 95% coverage, the

cross-correlations between the mean–extreme slopes

reported here (Figs. 4 and 5) and the alternate values

respectively average 0.997 and 0.992. The lowest

correlation across the 16 season–variable pairs and

both threshold criteria is 0.98. Similarly, the cross

correlations between the results reported here and

mean–extreme slopes computed without removing

outliers from the data are uniformly high, averaging

FIG. 4. Mean–extreme slopes for winter and spring. Means are computed as the seasonal average for a given year

and slopes are computed with respect to the 5th or 95th percentiles computed from the corresponding seasonal data

minus the sample mean. Points outlined in black have a slope differing significantly from zero at the 95% level.
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0.991 across each of the 16 season–variable pairs, with

the lowest correlation being 0.96. Regression between

the variable pairs, either changing the coverage or

outlier treatments, also results in slopes that are

within 2% of unity in all cases and y intercepts within

06 0.005. These additional tests demonstrate that our

results are not sensitive to reasonable changes in how

the data is processed.

A general interpretation of how changes in the lower

and upper tail relate to each other across theUnited States

can beobtained fromplotting themean–T95 slopes against

the mean–T05 slopes for each season and variable (Fig. 6).

Four quadrants can be defined with respect to mean–T95

andmean–T05 slopes: quadrant 1 (1T05,1T95) indicates

that a higher mean is associated with shortening of the

lower tail and lengthening of the upper tail, consistent with

FIG. 5. As in Fig. 4, but for summer and fall.
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increasing skew; quadrant 2 (2T05, 1T95) indicates that

a higher mean is associated with an increase in the spread

of the distribution, consistent with greater variance;

quadrant 3 (2T05, 2T95) indicates decreased skew; and

quadrant 4 (1T05, 2T95) indicates decreased variance.

Example distributional changes are also shown in Fig. 6

using a generalized extreme value distribution that is fit to

the average summer Tx distribution and is characterized

by a negative skew. More thorough analysis of extreme

temperatures involving the use of generalized extreme

value distributions has been presented elsewhere (e.g.,

Brown et al. 2008; Zwiers et al. 2011), but here this para-

metric fit is used only for the purposes of illustration.

Whether generalized extreme distribution would accu-

rately capture the mean–extreme covariance in the data is

unclear, and we instead rely on nonparametric estimates.

Each of the eight T05–T95 trend comparisons has

a negative correlation, indicating that the primary axis of

U.S. interannual variability is oriented along decreasing

and increasing spread with changes in the mean. For ex-

ample, the Midwest tends to show greater spread in Tx

during warm summers, whereas the Southwest shows less

spread. There is also a greater representation in the third

than first quadrant, particularly for Tx during the spring

and fall in the northeastern and northwestern United

States, indicating that anomalously warm seasonal aver-

ages are generally associated with a shift toward more

negative skew.

Results can be compared to those of Robeson (2002),

who analyzed the relationship between monthly means

and standard deviations of U.S. Tn and Tx. Regions

showing a trend toward lower variance with increasing

mean generally correspond to those identified byRobeson

(2002), including for winter Tn in the northern United

States, summer Tx in the West, and fall Tx in the Great

Plains.With respect to variance increasingwith themean,

however, there is a mismatch in the Midwest. We find

midwestern summer Tx95 to be amplified by about 25%

relative to the mean and Tx05 to be damped by about

25%, whereas Robeson (2002) finds no appreciable

increase in standard deviation. (See Fig. 5 for which

stations have significant amplification at the 95% confi-

dence level.) If, however, the analysis procedure of

Robeson (2002) is applied to the entire summer season—

and not only monthly intervals—increasing midwestern

variance with the mean is found. Conversely, applying our

mean–Tx analysis to monthly intervals shows essentially

no increase in variance. This suggests that the processes

governing amplification of midwestern temperature ex-

tremes have time scales that exceed amonth. This issue of

time scale separation is addressed in more quantitative

detail in section 6.

5. Consistency between slopes and empirical
distributions

A block bootstrap method is used to quantify the

degree to which U.S. mean–extreme slopes can be di-

rectly inferred from the empirical distribution. As

a specific example, values of Tx are sampled with re-

placement across all summer data in order to construct

new realizations of temperature. Blocks of 15 contigu-

ous days are sampled so as to preserve synoptic-scale

autocorrelation. More specifically, 15 days exceed esti-

mates of decorrelation times for daily U.S. tempera-

tures, which generally grade from about 5 days in the

east to 10 days in the west (Király et al. 2006).
Different block realizations are selected from across

years and, therefore, give results consistent with the

assumption that the empirical distribution reflects a sta-

tionary process. Summer means and extremes are cal-

culated from the resampled observations for each year,

and the mean–extreme slope is computed using a num-

ber of realizations equal to the numbers of years in the

original station data. This process is repeated 1000 times

to construct a distribution of mean–extreme slopes for

summer Tx and is likewise applied to all other season–

variable pairs. Significant divergence of the observed

slope from the bootstrapped slopes is indicative of

nonstationarity.

A representative slope for each station is estimated by

taking the average of the corresponding bootstrapped

slopes. The squared cross correlation between the mean

bootstrapped and observed slopes averaged across each

season–variable pair is 0.71, indicating close correspon-

dence between the empirical distribution and the observed

TABLE 1. Percentage of mean–extreme slopes that significantly differ from zero (first set of columns), from the full bootstrapping results

(second set), and from the ‘‘z bootstrapping’’ results (last set). Significance is assessed at the 95% confidence level using two-sided tests.

Relative to zero Full bootstrapping z bootstrapping

Tx95 Tx05 Tn95 Tn05 Tx95 Tx05 Tn95 Tn05 Tx95 Tx05 Tn95 Tn05

Winter 59 40 39 53 26 18 16 15 36 24 13 35

Spring 30 53 42 43 14 17 11 14 32 20 21 20

Summer 70 25 54 29 16 26 21 26 61 37 40 28

Fall 63 46 40 45 18 13 12 15 42 19 15 26
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slope (Table 2). Cross correlation does not, however, ac-

count for mean offsets or differences in scaling between

the data, and a reduction in variability statistic provides

a complementary description, calculated here as

f 5 �
i
(si 2 ŝi)

2
.
�
i
(s2i ) ,

where si are the slopes and ŝi are the mean of the cor-

responding bootstrapped estimates. A value of f5 0 in-

dicates a perfect prediction, whereas f. 1 indicates that

the prediction introduces relatively more noise variance

than it explains signal variance and is interpretable as an

overall lack of predictive skill. All of the 16 values of f

are less than one except for summer Tx05, which has f5
1.3. Winter values of f are generally the smallest, aver-

aging only 0.29, consistent with synoptic winter vari-

ability largely controlling these mean–extreme slopes.

Bootstrapped samples of the slopes also permit for

examining the probability with which an observed slope

differs from a stationary process described by the em-

pirical distribution. As opposed to the 47% of estimates

that show significantly nonzero slopes, only 17% of

mean–extreme slopes significantly differ from these

FIG. 6. Mean–T05 slopes vs mean–T95 slopes for each season and for (a)–(d) Tx and (e)–(h) Tn. Dashed lines demark quadrants that,

moving from top right counterclockwise, indicate that mean warming is associated with more positive skew, greater variance, more

negative skew, and less variance. U.S. stations are generally aligned along the axis of more or less variance. At bottom is a generalized

extreme value probability distribution (black) with coefficients chosen to be approximately consistent with average summer Tx. The

distribution has its orientation reversed from the usual definition such that it has negative skew. Also plotted are alterations of the base

distribution that have values of T05 and T95 values consistent with a 18Cmeanwarming for the various mean–extreme slopes indicated by

the colored crosses in the scatterplots. The red distribution, for example, has a 0.678C increase in spread between the 5th and 95th

percentiles. To aid in visual comparison, all distributions are centered on zero.
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bootstrapped expectations at the 95% confidence level.

The general agreement between observed slopes and

those derived from the bootstrap indicates that non-

normality in the empirical distributions largely explains

the observed nonzero slopes.

Some insight as to why 17% of the observed slopes do

not correspond with the bootstrapped results, instead of

the expected 5%of false positives, can be gained by again

appealing to the six examples provided in section 3. A

comparison of mean–Tx95 slopes is made between those

obtained from the standard regression across years [i.e.,

Eq. (1)] and those obtained from bootstrapping (e.g.,

Fig. 7) using 10 000 data realizations according to each

example. Both techniques yield nearly identical distri-

butions of mean–Tx95 slopes in cases where the process

is stationary (i.e., examples 1, 5, or 6) but discordant

results when the distribution is nonstationary in mean

or variance (i.e., examples 2, 3, or 4). Differences arise

because bootstrapping gives an estimate of the mean–

extreme slope that is consistent with the empirical dis-

tribution being stationary, whereas changes in mean and

variance generate the appearance of nonnormality in

examples 2 and 3 and impose covariance between means

and extremes in example 4. These examples suggest that

the discordance between the observed and bootstrapped

mean–extreme results derives from interannual changes

in the underlying distribution.

6. z bootstrapping and soil moisture

To isolate mean–extreme contributions associated

with changes in the mean or variance between years,

a modification of the bootstrapping procedure is

introduced and applied. In this modified form, samples

associated with each season and year are normalized to

zero mean and unit variance prior to bootstrapping.

This procedure is referred to as z bootstrapping in

analogy with a z test. The use of z-bootstrapped samples

drawn from a normal distribution is expected to yield

mean–extreme slopes near zero, regardless of whether

the mean or variance of the distribution changes from

year to year. Normalizing these leading two moments

does not account for interannual changes in the higher-

order moments of the temperature distribution, but is at

least plausibly sufficient in that the primary axis of in-

terannual variability diagnosed in the initial mean–ex-

treme analyses is oriented along changes in the spread

of the distribution (Fig. 6).

Examples 1–6 are again used for purposes of illustration

(Fig. 7). The empirical distribution associated with all re-

alized data for each example (1043 1023 905 93 107) is

shown in Fig. 7 (panels 1a–6a). Empirical distributions are

sampled from distributions that are normal (Fig. 7, panel

1a); normal mixtures over means (Fig. 7, panel 2a), vari-

ances (Fig. 7, panel 3a), and both means and variances

(Fig. 7, panel 4a); the generalized extreme value distribu-

tion (Fig. 7, panel 5a); and Student’s t distribution (Fig. 7,

panel 6a). The z bootstrapping procedure has negligible

effect on the samples drawn from a stationary normal

distribution (Fig. 7, panel 1a), and converts the normal

mixture distributions (Fig. 7, panels 2a–4a; red curves) to

approximately standard normal distributions (blue curves)

through the suppression of interannual changes in mean

and variance. Finally, z bootstrapping has only minor ef-

fects on the stationary samples drawn from nonnormal

distributions (Fig. 7, panels 5a and 6a).

Parallel results hold for the distribution of mean–

extreme slopes shown in Fig. 7 (panels 1b–6b). The

distribution of mean–extreme slopes associated with a

standard normal distribution is centered on zero, re-

gardless of what bootstrapping approach is applied (Fig. 7,

panel 1b). Standard bootstrapping from sample distribu-

tions involving mixed normals, however, results in mean–

extreme slopes centered away from zero (Fig. 7, panels 2b–

4b; red curves). One way to understand this result is that

samples drawn across years from a normal mixture follow

a nonnormal distribution, as noted in section 5. Application

of z bootstrapping in examples 2–4 suppresses the non-

stationarity associated with interannual changes in means

and variances and yields mean–extreme slopes centered on

zero (Fig. 7, panels 2b–4b; blue curves). Finally, application

of either bootstrapping or z bootstrapping in example 5 and

6 does not appreciably shift mean–extreme slopes toward

zero because they are derived from stationary samples

whose nonnormality is inherent at the annual level (Fig. 7,

panels 5b and 6b).

TABLE 2. Correspondence between mean–extreme slopes and

those predicted from the empirical distribution.Upper rows are the

cross correlation between mean–extreme slopes and the slopes

expected from bootstrapping (left columns) and z bootstrapping

(right columns). Lower rows are similar but for the reduction in

variance statistic.

Full bootstrapping z bootstrapping

Tx95 Tx05 Tn95 Tn05 Tx95 Tx05 Tn95 Tn05

Cross correlation

Winter 0.85 0.83 0.93 0.92 0.74 0.71 0.87 0.87

Spring 0.84 0.82 0.79 0.90 0.73 0.77 0.61 0.84

Summer 0.82 0.79 0.75 0.83 0.46 0.58 0.50 0.70

Fall 0.87 0.88 0.68 0.91 0.73 0.78 0.50 0.83

Variance fraction

Winter 0.33 0.58 0.70 0.17 0.58 0.56 0.10 0.37

Spring 0.49 0.62 0.53 0.29 0.130 0.58 0.130 0.35

Summer 0.69 1.30 0.68 0.85 4.00 2.10 1.20 0.94

Fall 0.39 0.32 0.51 0.27 0.110 0.45 0.74 0.44
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A single rescaling of the mean and variance of the

empirical distribution across all years would not in-

fluence the mean–extreme slopes because the magni-

tude of this slope is a measure of relative, not absolute,

changes. The z bootstrapping procedure, however, acts

on each year individually and tends to slightly decrease

certain higher-order moments. For instance, the annu-

ally normalized empirical distribution associated with

examples 1–4 has a kurtosis of 2.8, as opposed to the

value of 3 expected for a normal distribution. Relatedly,

the average z bootstrapped slopes in examples 1–4 are

each 20.05 to within one significant figure. Similar mi-

nor distortions of the underlying distribution take place

for examples 5 and 6, with normalization leading to

a decrease of skew and kurtosis. As can be seen in Fig. 7,

however, the suppression of intrinsic sample variability

in mean and variance has a minor influence relative to

that associated with the example interannual trends in

mean and variance.

Application of the z bootstrap to all U.S. stations and

season–variable pairs leads to a squared cross correlation

of 0.52 between observed slopes and the average of the

z bootstrapped results. This value is lower than the 0.71

average for the full bootstrapping procedure because

interannual contributions are no longer accounted for.

The reduction in variability statistic again has the smallest

values for winter at f 5 0.36 (Table 2, Fig. 8). Higgins

et al. (2002) find interannual variations in the mean and

FIG. 7. Approximate distributions for observed, bootstrapped, and z bootstrapped slopes. Numbers refer to the examples described in

section 3. (1a)–(6a) The empirical distribution before (red) and after (blue) normalizing each set of observations to zero mean and unit

variance. (1b)–(6b) The empirical distribution of mean–extreme slopes (black) and those derived from full bootstrapping (red) and z

bootstrapping (blue). Note that in example 4, where trends in the mean and variance are imposed, z bootstrapping (blue) gives values

centered nearly on zero that are quite distinct from the observed mean–extreme slopes (black).
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skewness of daily winter temperatures associated with La

Niña andElNiño conditions thatmay account for some of
this residual structure.
The largest discrepancies with the z bootstrapped re-

sults are found for summer, where observed and z-

bootstrapped slopes have f5 4.2 for Tx95 and f5 2.1 for

Tx05. A locus of positive residuals in excess of 0.5 ap-

pear across the Midwest for Tx95 and negative values in

the range of 20.5 for Tx05 across the Midwest, South,

and East (Table 2, Fig. 9). These discrepancies are sub-

stantially larger than the magnitude of the original

mean–extreme slopes (Fig. 5). Station USC00122149,

FIG. 8. The difference between observed and z bootstrapped slopes. Points outlined in black have mean–extreme

slope that are outside the 95% confidence interval derived from the z bootstrapping results.
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for example, is located in northwestern Indiana and

has a summer mean–Tx95 slope of 0.26, but a z boot-

strapped slope of 20.16, giving a residual of 0.42. It can

be inferred that interannual nonstationarity at station

USC00122149 gives a positivemean–Tx95 slope, whereas

the intraseasonal variations isolated by z bootstrapping

are associated with a negative mean–Tx95 slope. This

scenario is a hybrid of examples 4 and 5, where the

FIG. 9. As in Fig. 8, but for summer and fall.
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generalized extreme value distribution used in example

5 provides a plausible fit to the normalized summer Tx

data. Other trials (not shown) demonstrate that a sys-

tematic increase in the mean and variance of this distri-

bution, similar to that found in example 4, readily leads

to a positive slope when regressing across year but a

negative slope from z bootstrapping. The apparent du-

ality in the behavior of the extremes across intraseasonal

and interannual time scales suggests another reason for

the confusion in the literature regarding whether ex-

tremes are changing relative to the mean (Alexander and

Perkins 2013; Katz et al. 2013).

A similar distinction was observed with respect to the

analysis procedure of Robeson (2002), where increased

midwestern variance is observed when using seasonal

intervals but not monthly intervals. Evidently, a process

with an intrinsic time scale longer than a month is of

basic importance for controlling the summer tempera-

ture distribution in the Midwest. A prime candidate for

increasing the variance of summer Tx is loss of soil

moisture. Karl et al. (2012), for example, discuss how

evapotranspiration suppresses maximum temperatures

when soil moisture is available, and how loss of this la-

tent release of heat translates into higher sensible tem-

peratures with respect to the 2012 U.S. drought. The

importance of soil moisture for regulating temperature

variability has been established in a large number of

other observational and model analyses (Seneviratne

et al. 2010) and, given seasonal persistence in soil

moisture properties (e.g., Palmer 1965; Huang et al.

1996), it follows that the shape of the underlying distri-

bution of summer temperature can change between

years.

To further examine this relationship, each station and

season–variable pair was regressed against a measure of

drought, the self-calibrated Palmer drought severity in-

dex with the Penman–Monteith formulation of evapo-

transpiration (PDSI) (Dai 2011). PDSI is provided at

monthly resolution on a 2.58 3 2.58 grid, and after av-

eraging to seasonal resolution, comparisons are made

between interannual variations in PDSI at each grid box

and the 5th and 95th percentiles in station data. Al-

though temperature is itself used in estimating PDSI, the

cross correlation with the 5th and 95th temperature

percentiles is generally weak, with amedian value across

stations and season–variable pairs of 0.12. The major

exception is for summer Tx95, for which correlations

average 0.46 and are as high as 0.80 in the Midwest

and parts of the South (Fig. 10). The strongest correla-

tions between drought and temperature correspond in

region, season, and variable to the largest discrepancy

from the z bootstrapped estimates—namely for Tx in

the Midwest during summer—further substantiating a

link between increased high temperature extremes

and drought. The present analysis does not of itself

provide evidence for causality, although other studies

have demonstrated the importance of antecedent soil

moisture conditions in controlling extreme summer

FIG. 10. The squared cross correlation between the self-calibrated Palmer drought severity

index and Tx95 for summers between 1900 and 2012. The average squared cross correlation

across all stations is 0.25, reflecting the much higher values in theMidwest and parts of the U.S.

South. Similar analyses using any other season-variable combination result in average squared

cross correlations that are always smaller by at least a factor of 2 and that average 0.04.
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temperatures (e.g., Durre et al. 2000; Hirschi et al. 2011).

A more thorough assessment of causality in this mean–

extreme framework is deferred for later work.

7. Summary and conclusions

A simple shift in the distribution is sometimes sug-

gested as the default assumption for how the temperature

distribution will change with warming (e.g., Rhines and

Huybers 2013; Tingley and Huybers 2013), but such

a relationship is not necessarily to be expected when the

underlying temperature distribution is nonnormal. Non-

normality implies the presence of an intrinsic relationship

between the mean and higher-order moments of the

distribution. Indeed, 46% of the 19 488 tested station–

variable pairs show significant amplification or damping

of extreme values in relation to the mean at the 95%

confidence level. But when taking into account the non-

normality indicated by the empirical distribution of each

variable at each station, only 17% of station–variable

pairs significantly differ from the expected slope.

Contributions to nonnormality in an empirical distri-

bution can come from both intraseasonal variability that is

inherently nonnormal and from interannual changes in

mean, variance, or higher-order moments (e.g., Karl and

Katz 2012; Katz et al. 2013; Otto et al. 2012; Rhines

and Huybers 2013; Huntingford et al. 2013; Tingley

and Huybers 2013). A second examination of baseline

variability is undertaken using a procedure referred to as z

bootstrapping that controls for interannual changes in

mean and variance. Winter mean–extreme slopes are well

explained as a consequence of nonnormal intraseasonal

variability, indicating that synoptic variability controls

most of the observed wintertime amplification.

Contrasting results are obtained from the z bootstrap

for summer temperature variability, particularly in the

eastern half of the United States. Amplification of sum-

mer Tx relative to themean only reaches about 10%over

most of the eastern United States (Fig. 5), but this ap-

parently represents the residual between contributions

from nonnormal intraseasonal variability that would lead

to a damping and interannual changes in variance that

lead to amplification (Fig. 9). In agreement with other

findings (e.g., Durre et al. 2000; Seneviratne et al. 2010;

Hirschi et al. 2011; Karl et al. 2012), we speculate that the

increase in temperature variance is associatedwith drying

of soils and an attendant loss of evapotranspirative

cooling. A strong relationship between variations in the

95th percentile of temperatures and PDSI also supports

the suggestion of drought-induced increases in the tem-

perature spread (Fig. 10).

Results indicate that the majority of interannual

variability in extreme temperatures follows from the

nonnormality of the seasonal temperature distribution

(section 5; see Table 2), but that a distinct interannual

component can also be identified, especially for sum-

mer Tx95 in the eastern United States (section 6). A

similar approach could be followed for exploring

longer-term variations in the temperature distribution

with respect to consistency with the distribution of in-

terannual variability. Insomuch as certain nonlinear

processes generate nonnormality at one time scale,

they may be expected to contribute a similar coupling

at other time scales. Analogous with the concept of

forced variations projecting onto ‘‘natural modes’’ of

variability, it would be helpful to better understand the

degree to which decadal-scale changes project onto

‘‘natural moments’’ of the temperature distribution.
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