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Abstract

Improving the resolution and accuracy of optical tweezers
through algorithmic and instrumental advances

by

Antony Ann-Tzer Lee

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Carlos Bustamante, Chair

In the first half of this thesis, we describe our study of the elongation dynamics of E. coli
RNA polymerase using optical tweezers. Optical tweezers constitute an important tool in
modern biophysical research, as they allow the manipulation and tracking of individual
molecules, such as enzymes that carry out diverse biological functions by converting chemical
energy into mechanical work. Improvements to the spatio-temporal resolution and accuracy
of optical tweezers therefore directly impact our ability to probe the tiniest and fastest motions
of such enzymes.

RNA polymerase is a central enzyme present in all organisms, that transcribes the genetic
information encoded in DNA into RNA, one nucleotide at a time. This process constitutes the
first step of gene expression, and is highly regulated at all its stages: initiation, elongation, and
termination. In particular, elongation—i.e., the processive polymerization of the nascent RNA
chain—does not occur in a continuous fashion, but consists of periods of active translocation
interspersed by long-lived, sequence-dependent pauses, that have been implicated in various
biological roles.

While optical tweezers have long been able to observe such long-lived pausing events, many
questions remained open, due to the limited spatio-temporal resolution of the technique.
Here, we demonstrate algorithmic and instrumental developments that improve our ability
to probe the transcription cycle at the finest level. Improvements in spatial resolution allowed
us to robustly observe individual translocation events over long distances, and thus record
the distribution of the dwell times spent at each position by the enzyme. Improvements
in temporal resolution and spatial accuracy allowed us to understand the dynamics of the
enzymes immediately as it reaches a “pause site”. Specifically, we were able to show that
transcription through a pause site is always accompanied by a decrease of the forward
transcription rate. We established that entry into “backtracked” pauses occurs in a stepwise
fashion, with a relatively slow entry into deeply backtracked states. We also probed the effect
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of nascent RNA structures on RNAP dynamics, and found that, depending on the sequence
context, such structures could either enhance or attenuate pre-existing pauses.

In the second half of this thesis, we review another fundamental single-molecule tech-
nique: super-resolution microscopy. Unlike optical tweezers, optical microscopy allows us to
observe cellular processes in vivo or in situ; and the recent development of super-resolution
microscopy has greatly enhanced the field of application of the technique. However, super-
resolution microscopy also yields data that is much more difficult to interpret than classical
(“diffraction-limited”) microscopy. We discuss recent developments in our ability, not only
to localize molecules with high accuracy, but also to quantify them. Finally, we present a
fluorescent protein engineering work, regarding the development of a split-photoactivatable
fluorescent protein system, towards the goal of studying protein-protein interaction at high
resolution.
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Then a man named Tycho Brahe evolved
a way of answering the question [of
whether the planets went around the
sun]. He thought that it might perhaps
be a good idea to look very very
carefully and to record exactly were the
planets appear in the sky, and then the
alternative theories might be
distinguished from one another.

Richard Feynman,
The Character of Physical Law

Observation is a fundamental part of the scientific inquiry: the precision of the measure-
ments that we perform ultimately decides whether we can distinguish a correct theory from
an incorrect one. In this thesis, we describe our work in improving the resolution and ac-
curacy of a single-molecule biophysical technique, optical tweezers, through algorithmic
and instrumental developments. We also review recent algorithmic advances in another
single-molecule technique, super-resolution microscopy, likewise aimed at furthering the
resolution of the method; finally, we present a fluorescent protein engineering work that
aimed at providing a new modality to probe protein-protein interactions with high spatial
resolution and accuracy.

RNA polymerase and its dynamics
The biological object of our optical tweezers study is the E. coli RNA polymerase during its

elongation phase. Because the precision that we need to achieve is fundamentally set by the
dynamical properties of the object of our study, we first briefly review here the fundamental
properties of this enzyme.

RNA polymerase (RNAP) is an essential enzyme present in all living organisms, that
performs the first step of the central dogma of molecular biology, namely the transcription of
genetic information encoded in DNA into RNA (figure 1) [1]. Due to the central role that the
enzyme plays, all three stages of its activity—initiation, elongation, and termination—are
tightly regulated.

Briefly, RNAP first binds to specific sites in the genome, known as promoters, to initiate
transcription. In bacteria, σ factors of varying promoter specificities [2] transiently associate
with the five-subunit (α2ββ’ω) core enzyme [3] in order to recognize the promoter. RNAP
binds the DNA template initially in the closed promoter form (RPc), melts the DNA to form
a transcription bubble, isomerizes into the open form (RPo) [4], and starts polymerizing an
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DNAreplication RNA protein
transcription translation

Figure 1:
The central dogma of molecular biology: Genetic information encoded in DNA is replicated,
and is transcribed into RNA, which is itself translated into proteins. Other (“special”)
transfers, marked by dashed arrows—reverse transcription of RNA into DNA, and RNA
replication—also occur.

RNA chain. For multiple cycles, this polymerization is abortive, i.e., stops with the release of
a short product less than 10 bp in length [5]; however, RNAP ultimately clears the promoter
and transitions into the processive elongation phase.

During the elongation phase, RNAP repeatedly alternates between performing a mechani-
cal activity—translocation along the DNA template by a single base pair (∼ 0.34 nm)—and
a chemical activity—condensation of a single NTP into the growing RNA chain. While
this process normally occurs at a velocity of a few dozen bp/s, it is also interspersed with
long-lived [6–8], sequence-dependent [9–12] pauses, which may last up to dozens of seconds
[13]. Throughout the years, these pauses have been implicated in various biological functions,
such as regulation of operon expression [14], RNA folding and processing [15], coupling of
transcription with translation [16], and termination [16]. Proteins such as NusA [17], NusG
[18], GreA, and GreB [19] modulate various pausing pathways. The processes involved in
pausing have been widely studied using structural [20] and dynamical [21] methods.

The last stage of the transcription cycle, termination, occurs when RNAP reaches a termina-
tion sequence, and consists of the disengagement of RNAP from the DNA template and the
release of the nascent RNA. Although termination corresponds to the end of a transcription
cycle, it is also highly regulated; for example, premature termination allows for the downreg-
ulation of certain operons [22]. In certain cases, termination is catalyzed by the Rho factor,
which is itself regulated through interactions with factors such as NusA and NusG [23]. In
other cases, termination occurs through the interaction with hairpins in the nascent RNA
[24]; there, regulation may occur, for example, via the binding of anti-termination proteins
that prevent the formation of terminator hairpins [25].

Resolution and accuracy of optical tweezers
Optical trapping is a phenomenon whereby the radiation pressure of a focused laser beam

generates a force gradient that can stabilize micron-sized dielectric particles at a given position.
In the simplest approximation, for a dielectric particle of polarizability 𝛼, an electric field E
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(such as the one present in the focused beam) will induce a dipole moment p = 𝛼E; thus,
such a particle will be subjected to a potential energy landscape of the form −p ⋅ E = −𝛼E2.
The particle will thus be driven towards regions of high electric field, i.e., the beam focus.

Optical trapping was first developed as a tool for the study of the physical properties
of radiation pressure [26, 27]. For fundamental physicists, it has over the years evolved
into a technique to “cool and trap atoms with laser light”, for which Steven Chu, Claude
Cohen-Tannoudji, and William D. Phillips were awarded the Nobel Prize in Physics in 1997.
But this tool also found an important application in biology, as it allowed the manipulation
of individual microorganisms [28] and then of single biological molecules [29]. In particular,
optical traps (or “optical tweezers”) could be used to track the motion of molecular motors,
an important class of enzymes that convert chemical energy into mechanical work and
displacement [30]. As mentioned above, RNA polymerase is an example of such an enzyme,
and it has successfully been studied using optical tweezers [21, 31]. Experiments typically
consist in tethering the enzyme to a bead held in an optical trap, in a geometry such that the
enzyme’s motion is transduced into a measurable displacement of the bead relative to the trap.
Other molecular motors that have likewise been “tweezed on” include DNA polymerases
[32], DNA translocases [33], the ribosome [34], proteases [35], dynein [36] and kinesin [37],
etc. Moreover, the ability of optical tweezers to apply force on the enzyme, and thus to
modulate the energy landscape associated with the enzyme’s displacement, has yielded
many additional insights into the way these molecules perform their mechanochemical
coupling.

In order to follow the activity of such enzymes, it is of utmost importance that the in-
strument possesses both high spatial and temporal resolution (i.e., is able to distinguish
physically small or temporally close events), but also high spatial accuracy (i.e., is able to
report the exact position at which a certain event occurred). Here, we separately discuss the
relevance of each of these requirements, and the approaches we undertook to fulfill them.

Spatial resolution
From an instrumental point of view, an important factor to maximize accuracy and res-

olution is the stability of the instrument, that is, the lack of apparent changes in signal (i.e.,
baseline drift) if the underlying enzyme does not, indeed, move. In the classical, “single-trap”
optical tweezers design, a major source of drift comes from the relative, mechanical motion of
the optical trap (holding for example the enzyme) relative to the microfluidic chamber where
the experiment is performed (and that serves as reference frame for the enzyme’s substrate)
[38]. An important early advance in stabilizing optical tweezers was the development of
the differential detection strategy [38], whereby the enzyme and its substrate are each tethered
to their own bead held in two optical traps formed by the same laser. In such a design,
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mechanical motion of the optical train equally affects both traps, and is cancelled out. In
exceptional cases, this design may be stable enough to occasionally observe stepping of an
RNA polymerase artificially slowed by NTP deprivation [39]; however, such observations
remain exceptionally rare.

In the most commonly used differential detection design (the differential path design),
the two traps were formed using the two polarization components of the laser beam, by
momentarily separating these components with a polarizing beam splitter, reflecting them
on two independent piezo-actuated mirrors for trap steering, and recombining them with a
second polarizing beam splitter. In chapter I.3, we establish that the relative drift between the
two mirrors is the next major source of drift in the system, and we find in chapter I.4 that a
different design, based on the fast switching of a single trap between two different positions
(the time-shared design) [40], does not suffer from this drift. Thus, the use of a time-shared
instrument greatly improves the quality of our data by decreasing its baseline drift.

The next step in resolving single base pair motion lies in algorithmic developments. So far,
many studies of molecular motors on optical tweezers that attempted to resolve individual
steps taken by the motor aimed at understanding basic properties of the enzyme, such as
its previously unknown step size (11 bp for the NS3 helicase [41]; 10 bp for the phage φ29
packaging motor [42]; 1 nm for the ClpXP protease [43]). Other studies, on motors with a
known step size (1 bp for RNA polymerase [39]; 1 codon for the ribosome [34]) did not adapt
their analysis routines to take advantage of that knowledge. It is intuitive that incorporation
of a known step size can help extract more information from the experimental data; in general,
such incorporation occurs via the formulation of an explicit generative model, which lists all
sources of signal and of randomness in the data [44].

In chapter I.5, we introduce a generative model for transcription elongation data—in fact,
more generally, for motors taking steps of a single size—and show how it can be fitted using
the so-called large state-space hidden Markov model [45]. In chapter I.6, we test the resolution
of our approach by generating simulated stepping data directly using the optical traps, and
show that our approach can indeed accurately recover single stepping events with a size
of 1 bp. Finally, in chapter I.7, we apply the framework we developed to actual (slowed)
transcription elongation data, and show that we are again able to recover single stepping
events. Ultimately, this capability may be used to further our understanding of the dynamics
surrounding the nucleotide addition cycle, as well as how this cycle is affected by various
transcription inhibitors, which form an important class of drugs [46]. As a proof of concept, we
also performed our experiments in the presence of the transcription inhibitor pyrophosphate,
and measured how it affected the distribution of dwell times between consecutive steps.
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Spatial accuracy
As noted earlier, the elongation dynamics of RNA polymerase, and in particular its pausing,

depend on the sequence of the underlying DNA template. In order to study this dependence,
it is necessary to develop highly accurate measurements, i.e., where the absolute position of
the enzyme along its substrate is well characterized, even if at the cost of not being able to
consistently resolve single steps. Achieving this goal requires a priori a precise calibration
(≲ 0.1 % error) of all the conversion factors involved in the conversion of the raw electronic
measurements into the position of the RNA polymerase [47]. Various practical limitations
generally make it difficult to achieve the required accuracy (section II.2.1).

In order to maximize the accuracy of our measurements, we need to impose additional
structure onto the data. Specifically, following the ideas of Herbert et al. [9], we take advantage
of the dependency of the velocity of RNA polymerase on the underlying sequence, by
performing our measurements on a template with a repetitive sequence. On such a template,
the velocity and pausing of the enzyme likewise exhibit a repetitive pattern, and the period
of this pattern can be extracted with high accuracy, thus providing an end-to-end calibration
method that bypasses most sources of uncertainty (section II.2.1).

The high accuracy we achieved is useful for the study of sequence-dependent dynamics.
In particular, we show that the sequence dependence of backtracking (one of the mechanisms
that leads to pausing) differs from the general sequence-dependence of pausing (section II.3.2).
This observation indicates that other mechanisms are at play in pause entry, in contradiction
with earlier reports suggesting that backtracking is the sole major pausing pathway [48]. Our
localization accuracy also allowed us to show (section II.3.3) that RNA secondary structures
can either enhance or diminish pausing, depending on the underlying sequence. While the
effect of individual hairpins on pausing is well known [49], earlier optical tweezers studies
found that the general, long-scale elongation kinetics did not depend on the presence or
absence of secondary structures [50]. We hypothesize that such observations arose from an
averaging of the positive and negative effects that we observed.

Temporal resolution
In the absence of pauses, the velocity of RNA polymerase is on the order of a few dozen

bp/s; i.e., the enzyme spends less than 100 ms at each position along the template. Conversely,
most pause events characterized so far have lifetimes on the order of seconds or more, due
to limitations in the temporal resolution of the measurements [21]. Thus, the 100 ms to
1000 ms time scale of RNA polymerase dynamics remains poorly understood, even though it
is accessible to some other techniques, such as rapid quench-flow experiments [51]. Studying
events at such a fast time scale also presents statistical difficulties, as even a hypothetical
enzyme that translocates at a speed of 20 bp/s without ever entering long-lived pauses
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would sometimes take slower steps in the 100 ms to 1000 ms time scale, due to the intrinsic
stochasticity of single-molecule dynamics. In other words, the pause-free and paused dwell
time distributions overlap significantly; it becomes impossible to label with certainty a given
event as paused or non-paused, and such assignments can only be made probabilitiscally. It
is therefore necessary to develop statistical tools that allow us to analyze such overlapping
distributions.

In section II.2.2, we present a nonlinear filtering method based on recent advances in the
statistical [52] and algorithmic [53] literature (in particular, an efficient implementation of
total variation denoising), which allowed us to take, once again, advantage of our preexisting
knowledge regarding the relevant dynamics to extract information down to the 100 ms time
scale. Then, in section II.2.3, we adapt a technique originally introduced for the analysis of
power law tails [54] to our dataset. This technique allows us to nonparametrically compare
our measurements at pause sites with measurements taken outside of the pause sites, while
making only minimal modelling assumptions regarding these measurements.

Our methodology allowed us to estimate the efficiency with which a given sequence
causes the enzyme to enter a state with slower forward translocation dynamics, i.e., the
pausing efficiency of the sequence (section II.3.1). Contrary to earlier reports [55], we find
that pausing efficiencies are generally high and independent of the applied force. We propose
that the previously observed force dependence arose from the inability of earlier methods
to observe short events and the attempt to compensate it by an inaccurate extrapolation of
the long event distribution into the short event regime. The high temporal resolution we
achieved also allowed us to observe the dynamics involved in the entry into the backtracked
state, and to show that this entry occurs through a long-lived non-backtracked or at most
single-base-pair-backtracked intermediate.

Resolution and accuracy of super-resolution microscopy
During the first half of my Ph. D., my research focused on another important single-

molecule technique: super-resolution microscopy. Since the fundamental breakthrough,
in 2006, that exploited the stochastic switching of fluorescent markers to move optical mi-
croscopy past the diffraction limit, down to a resolution of ∼ 15 nm [56–58], this technique
has been widely adopted, and used to study a host of biological systems [59]. We review the
fundamental physical principles underlying super-resolution microscopy in chapter III.1.

Even more than for optical tweezers, super-resolution microscopy only lives up to its name
through optimization of its ability to precisely locate a single fluorophore. Here again, this
optimization occurs through advances in either the instrumentation or the data analysis
methodology. We review the current state of the art in localization algorithms in chapter III.2.
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Unlike classical diffraction microscopy, super-resolution methods (or, more accurately,
methods based on stochastic switching) do not directly yield an image (i.e., a map of fluores-
cence intensities), but rather a list of fluorophore localizations. As such, different kinds of
quantitative informations can be extracted from it. One important example is determining
the oligomeric state of a protein complex. We participated in an effort to perform the count-
ing of such complexes by super-resolution microscopy [60]; we review such quantification
techniques in chapter III.3.

Finally, we note that, as for optical tweezers, there exists a duality between resolution and
accuracy in super-resolution microscopy. In fact, at a local level, super-resolution microscopy
is not the optical technique with the highest resolution: techniques such as single-molecule
Förster resonance energy transfer (FRET) routinely report on conformation changes asso-
ciated with distance changes in the sub-nanometer range [61]. Rather, it is the ability of
super-resolution microscopy to accurately localize molecules across large field of views that
makes it an invaluable technique in cell biology. In part IV, we present our work in combin-
ing the advantages of bimolecular fluorescence complementation—another technique with
high resolution, but relatively limited accuracy—with those of super-resolution microscopy,
through the development of a split photoactivatable fluorescent protein system.
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Part I

Full molecular trajectories
of RNA polymerase

at single base-pair resolution
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In recent years, highly stable optical tweezers systems have enabled the characterization of
the dynamics of molecular motors at very high resolution. However, the motion of many
motors with angstrom-scale dynamics cannot be consistently resolved due to poor signal-to-
noise ratio. Using an acousto-optic deflector to generate a “time-shared” dual-optical trap,
we decreased low-frequency noise by more than one order of magnitude compared with
conventional dual-trap optical tweezers. Using this instrument, we implemented a protocol
that synthesizes single base-pair trajectories, which are used to test a Large state-space hidden
Markov model algorithm to recover their individual steps. We then used this algorithm
on real transcription data obtained in the same instrument to fully uncover the molecular
trajectories of E. coli RNA polymerase. We applied this procedure to reveal the effect of
pyrophosphate on the distribution of dwell times between consecutive polymerase steps.
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Chapter I.1

Introduction

Proteins involved in a wide array of cellular functions are able to convert chemical energy
into mechanical motion, thus functioning as molecular motors [30]. A comprehensive de-
scription of the dynamics of such motors requires following their position with sufficient
spatiotemporal resolution, i.e., to determine their molecular trajectory. The trajectories of all
motors described to date consist of alternating stationary periods (known as “dwells”) and
translocation events (known as “bursts”). From these trajectories, we can extract fundamental
parameters of a motor’s dynamic operation, such as the distribution of its step sizes and
dwell times; these parameters, in turn, provide crucial insight into the mechanochemical
coupling underlying the motor’s operation. For motors, such as dynein, take steps with
variable sizes [36], characterization of the molecular trajectory reveals how the motor adapts
its step size to the conditions under which it operates (external load, ATP concentration,
crowded environment, etc.). Conversely, knowledge of the dwell time distribution can, for
example, shed light on the coordination mechanism in multi-subunit motors [43, 62–66].

Optical trapping can be used to characterize molecular motor dynamics with high precision
over biologically relevant times, distances, and forces. The molecular trajectories of motors
that take relatively large steps (such as kinesin, which takes 8 nm steps on microtubules)
are now regularly accessed in many laboratories. However, the ability to reliably and rou-
tinely resolve the molecular trajectories (including all steps and inter-step dwell times) of
many nucleic acid-associated motors (e.g., DNA and RNA polymerases, helicases, dsDNA
translocases, etc.), whose steps are on the order of 1 bp (∼ 3.4 Å), continues to elude bio-
physicists. While base-pair stepping by RNA polymerase and helicases have been previously
observed with optical tweezers occasionally and over short distances and time scales [39, 67],
sufficiently low levels of instrumentation noise even in the most sophisticated instruments
are short-lived (typically lasting on the order of tens of seconds) and infrequent enough
that upwards of 90 % of the data have to be ignored and discarded [39]. Thus, extraction of
molecular trajectories with single base-pair resolution in a reliable and consistent way has
not been possible until now.
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Chapter I.1 Introduction

Here, we compare the resolution of two optical trap designs: split-path and time-shared
optical tweezers instruments under identical conditions. We show that the ability to robustly
extract trajectories with single base-pair resolution is limited by low-frequency noise present
in the split-path design, but not in the time-shared design. We introduce a protocol to
experimentally synthesize trajectories simulating single base-pair stepping by a molecular
motor. The synthesized data are used to evaluate the fitness of the tether and to test the
performance of a large state-space hidden Markov model (LSS-HMM) algorithm in extracting
the corresponding molecular trajectories. Finally, we use this same algorithm to extract the
full molecular trajectories (steps and dwells) of E. coli RNA polymerase from transcription
traces obtained in the time-shared instrument and to characterize the effect of pyrophosphate
(PPi) on the distribution of dwell times between steps of the enzyme.
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Chapter I.2

Theory

The fluctuations of a microscopic bead held in a harmonic trap of stiffness 𝑘 are described
by its power spectrum. According to the fluctuation-dissipation theorem, the random,
uncorrelated forces due to the collisions of surrounding molecules (at a temperature 𝑇) give
rise to a Lorentzian power spectrum for the position of the bead (in the strongly overdamped
regime) [68],

𝑆𝑥(𝑓 ) =
𝑘𝐵𝑇

𝜋2𝛾(𝑓 2 + 𝑓 2
𝑐 )

. (I.1)

Here, 𝛾 is the drag coefficient, 𝑘𝐵 the Boltzmann constant, and 𝑓𝑐 = 𝑘/2𝜋𝛾 the corner frequency,
beyond which the system begins to lag behind an external driving stimulus (typically in the
kilohertz range for optical traps). Equation I.1 describes how the noise is distributed over
frequencies: the spectrum of fluctuations is approximately flat (white noise) at frequencies
𝑓 < 𝑓𝑐 and decreases as 1/𝑓 2 for 𝑓 > 𝑓𝑐.

For a measurement at a bandwidth 𝐵, the mean quadratic displacement of the trapped
bead, ⟨Δ𝑥2⟩ can be computed by integrating the power spectrum 𝑆𝑥(𝑓 ) of the trajectory over
frequencies ranging from zero to 𝐵,

⟨Δ𝑥2⟩
𝐵

= ∫
𝐵

0
𝑆(𝑓 ) d𝑓 , (I.2)

which yields in the limit of low bandwidth

⟨Δ𝑥2⟩
𝐵≪𝑓𝑐

=
2𝑘𝐵𝑇
𝜋𝑘

𝐵
𝑓𝑐

(I.3)

and in the limit of high bandwidth

⟨Δ𝑥2⟩
𝐵≫𝑓𝑐

=
𝑘𝐵𝑇

𝑘
. (I.4)
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Chapter I.2 Theory

The latter result is known as the equipartition theorem.
Ultimately, the quantity that determines whether a change in displacement of the bead Δ𝑥

(due, for example, to the displacement of a molecular motor) can be distinguished from all
other fluctuation sources is the signal to noise ratio (𝑆/𝑁)—that is, the ratio of this extension
change to the root-mean-square displacement of the bead,

𝑆
𝑁

=
Δ𝑥2

√⟨Δ𝑥2⟩
. (I.5)

Replacing the mean-square displacements obtained in the limits of low and high bandwidths,
the signal-to-noise integrated to bandwidth 𝐵 is

(
𝑆
𝑁

)
𝐵≪𝑓𝑐

=
Δ𝐹

√2𝛾𝐵𝑘𝐵𝑇
and (

𝑆
𝑁

)
𝐵≫𝑓𝑐

=
Δ𝐹

√2𝑘𝐵𝑇𝑘
(I.6)

where Δ𝐹 = 𝑘Δ𝑥 is the change in tether tension due to the bead displacement.
Thus, in principle, even very small displacements can be observed with a signal-to-noise

ratio greater than one simply by decreasing the bandwidth 𝐵 to well below the corner
frequency, provided that the instrument is Brownian noise-limited and that the bandwidth
does not compromise the temporal resolution of the experiment. As discussed below, the
first of these conditions is rarely fulfilled.

14



Chapter I.3

Differential path dual-trap configuration

A common assay to record the position of a motor as a function of time is to optically trap a
bead that is linked to the motor’s substrate (e.g., a microtubule, a DNA template, etc.), while
the motor itself is directly or indirectly attached to another bead held in a second trap [38,
69, 70]. In this dual-trap assay, the progress of the motor along its track is reported by the
distance between the beads (differential detection scheme) [38]. Any correlated motion of the
two traps does not change the distance between the beads and is thus automatically removed
when calculating the trap-to-trap distance. Only anticorrelated motion can contribute to the
measured signal [38].

The most common dual-trap configuration is known as the split-path geometry [38, 71].
There, the two traps are generated by splitting using a polarizing beam splitter the polarized
light of a laser source (in our case, an Nd:YAG 1064 nm) into two beams that travel through
different paths, one of which includes a piezo-actuated mirror for steering the beam, until
they are recombined in a second polarizing beam splitter, slightly shifted in angle relative to
one another and finally sent through the back focal plane of a focusing objective (figure I.1a)
and focused into home-made fluidics chambers. Detection of bead positions and forces was
achieved by collecting the light on a second objective, splitting the beams again using a
polarizing beam splitter, and imaging the beams on quadrant photodiodes (QPDs).

The noise in a split-path dual-trap instrument can be determined by tethering a DNA
molecule between two beads held in the traps (figure I.2A) and by monitoring their net differ-
ential displacement over time under applied tensions. The total noise to infinite bandwidth
is the sum of correlated and anticorrelated contributions; moreover, its value only depends
on the temperature and the combined stiffness of the tether and the traps (equation I.4).
As the tension is increased, the tether stiffens (due to the nonlinear mechanical properties
of the DNA) and the beads’ motions become increasingly correlated. Consequently, the
anticorrelated component (which is the only one measured in differential detection) must
necessarily decrease, both because the total noise decreases and because a larger fraction of
it goes in the correlated component (figure I.2B) [72].
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Chapter I.3 Differential path dual-trap configuration
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Figure I.1:
Simplified diagrams of the optical setups.

(A) The split-path setup splits the laser light into two orthogonally polarizing beams
to steer independently one trap (FM, fixed mirror; PBS, polarizing beam splitter;
SM, steerable mirror).

(B) Time-sharing the traps with an AOD eliminates the need for the split paths.
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Chapter I.3 Differential path dual-trap configuration
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Figure I.2:
Measurement of the noise in a split-path instrument.

(A) Two 1 µm beads were tethered by 1 kb DNA, using biotin-streptavidin linkage on
one bead and digoxigenin-antidigoxigenin on the other. The beads were trapped
using a split-path dual trap.

(B) Power spectra of the differential signal were recorded while the tether was held
under various tensions: ∼ 0 pN (blue), 5 pN (red), 8 pN (green), and 15 pN (or-
ange). The vertical lines indicate the frequencies below which a non-Lorentzian
component emerges from the Brownian floor. The purple curve shows the power
spectrum of the differential signal from a single bead trapped with both trapping
beams. The single-bead measurement measures relative drift between the two op-
tical traps as well as contributions from bead-related artifacts (pink) and electronic
noise (black).
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Chapter I.3 Differential path dual-trap configuration
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Figure I.3:
Measurement of the noise of a bead trapped by two colocalized beams in a split-path
instrument.

(A) A strong and a weak trap were formed in a split-path instrument and were focused
onto the same bead. The recorded displacement signal in the two traps shows that
the vast majority of the noise occurs in the weak trap signal, suggesting that the
anticorrelated signal arises because the two traps are physically drifting relative to
each other.

(B) The power spectrum of the weak trap signal measured in (A) exhibits low-frequency
pink noise comparable to the one measured on the tethered construct (figure I.2),
whereas no pink noise component is observable in the power spectrum of the strong
trap signal. Similarly as in (A), this suggests that the increased low-frequency noise
in the differential signal is due to relative trap drift.

Note, however, that as the anticorrelated noise is suppressed, a non-Lorentzian noise
source becomes apparent at lower frequencies. Because this noise is independent of force,
the frequency at which it emerges over the Brownian floor becomes larger as force increases
(see vertical lines in figure I.2B). Although the power spectrum of fluctuations of a bead in
a single trap is almost white below the corner frequency (figure I.3B, blue curve) [73], the
power spectra of two tethered beads in all dual traps display this low-frequency 1/𝑓 noise
component [39, 71, 73–75], also known as pink noise. Equation I.6 indicates that resolving
single base-pair stepping by RNA polymerase requires using a bandwidth as low as a few
hertz (although the exact value depends on the signal-to-noise ratio required for detection,
which depends itself on the algorithm used); at this bandwidth, the low-frequency noise,
rather than Brownian noise, becomes the resolution-limiting factor.

Several sources for this low-frequency noise have been proposed, including optical turbu-
lence in the split paths, trap positional instability, bead asymmetry, and tether dynamics [39,
71]. Indeed, this noise can be reduced—but not eliminated—by replacing air with helium
in the optical path or by shortening the length of the split paths [39, 71]. However, the
origin of the residual noise remains unknown. Here, we establish that a major contributor to
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Chapter I.3 Differential path dual-trap configuration

the low-frequency noise is the time-dependent change (physical drift) of the trap positions
relative to one another.

To characterize the positional stability of the traps in our split-path instrument, we focused
both traps onto a single 1 μm-diameter microsphere and monitored the differential signal (Δ𝑥).
In this dual-beam, single-bead experiment, the differential signal only reports the relative
trap displacements at the focal plane (figure I.2B, purple curve). Note that the low-frequency
noise remains present even without a tethered molecule or without any protein coating on
the microspheres. Thus, neither tether attachment dynamics nor excess molecules bound to
the beads can fully account for the 1/𝑓 noise. Notice that the electronic noise floor (figure I.2B,
black curve) is well below the single-bead noise.

In these single-bead experiments, the single trap formed by precisely overlaying the two
orthogonally polarized trapping beams emerging from the split path is equivalent to a single
beam polarized at 45°. Strikingly, however, when a single 45° polarized beam is focused
to trap the bead, the low-frequency noise is reduced significantly (figure I.2B, pink curve)
compared with the same measurement using the beam-steering path (figure I.2B, purple
curve). Finally, focusing a weak and a strong trap onto the same bead and measuring the
fluctuations in both channels shows that nearly all of the measured drift occurs in the weaker
trap, demonstrating that the anticorrelated signal arises because the two traps physically
drift relative to each other (figure I.3) (drift is mainly encoded into the weak trap since the
bead tends to follow the stronger trap). Thus, we conclude that the positional instability of
the two traps originates within the beam-steering path of the optical trap and is the main
source of the low-frequency noise.

The remaining low-frequency noise above the electronic floor (figure I.2B, compare pink and
black curves) could originate from asymmetry or optical anisotropy of the beads. However,
this errant displacement signal (pink curve) contributes an insignificant amount of noise
compared with the single bead measurement when the instrument includes the beam-steering
path (purple curve).

What causes the positional instability of the traps in the split-path design? Since the
positions of the traps depend directly on the angles at which the beams enter the back focal
plane of the objective lens, the relative positional stability of the traps is determined by the
relative angular stability of the respective beams. To move one trap relative to the other
in the split-path design, the orthogonally polarized beams are steered immediately after
they are separated and before they are recombined (figure I.1A) [39, 71, 73–75]. The optical
components in each path exclusively interact with one of the beams and thus can introduce
angular drift between them. Therefore, an alternative way of steering the traps that does not
require the light path to be branched can overcome this limitation.
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Chapter I.4

Time-shared dual-trap configuration

A single beam can be used to form two traps, if its direction is switched at a high rate by
an acousto-optic deflector (AOD) [40, 70, 76–80]. Two beads, linked by a DNA tether, can be
trapped in this system, whose corner frequency is, as before, 𝑓𝑐 = 𝑘/2𝜋𝛾, where 𝑘 is the total
stiffness of the DNA and one of the traps (as only one trap is on at any time). This corner
frequency (typically in the kilohertz range) determines the rate above which the AOD must
switch the beam direction to keep the beads stationary. In our case, this switching occurred
every 5 μs and was controlled by a custom-made radio-frequency board.

This time-sharing scheme eliminates the need to split the light into two different paths
(figure I.1B) while maintaining the ability to individually steer each trap by controlling the
amplitude of the deflection through the AOD. In this scheme, the beams forming each trap
never encounter different optical components, and any mechanical drift of these components
can only result in a correlated motion of the two traps that is automatically cancelled when
calculating the distance Δ𝑥 between the beads in the traps.

We compared the steady-state stability of a split-path dual-trap and a time-shared dual-trap
(both custom-built) under identical conditions, as follows. We linked two polystyrene beads
of 1 μm-diameter with a 3.5 kb dsDNA by means of streptavidin/biotin and digoxigenin/an-
tidigoxigenin conjugations and held the tether for 5 min under 5 pN of tension. The power
spectrum of the differential signal in the time-shared instrument reveals a low-frequency
noise more than one order of magnitude smaller than that of the split-path instrument at
0.1 Hz (figure I.4). A similar conclusion was arrived at using an alternative split-path instru-
ment. This result supports the idea that the relative drift of the split beams is responsible for
the low-frequency noise.
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Chapter I.4 Time-shared dual-trap configuration
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Figure I.4:
Power spectra of a split-path (blue) and a time-shared (red) instrument obtained monitoring
the extension of a 3.5-kb DNA tether held at 5 pN of tension. 1/𝑓 noise dominates at low
frequencies, especially in the split-path instrument. Only the portion of the spectra below
the corner frequency (𝑓 < 𝑓𝑐) is shown.
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Chapter I.5

Large state-space hidden Markov model
algorithm

Most motors take steps of a single, constant size. For such motors, stepping motion may be
resolved even if the signal-to-noise ratio is locally smaller than unity. For example, if a motor
sometimes takes steps that are sufficiently slow, the step size distribution can be estimated
from such slow regions and then be used to elucidate the stepping motion over regions of
faster displacement.

Specifically, we adapted the LSS-HMM fitter [45, 81, 82], which models the measured trace
as arising from a random process, as follows. At any time, the molecular motor is assumed to
occupy an unknown position (the “hidden state”), discretized to a small “state size” chosen
to be much smaller than the expected step size of the motor—we set it to 0.025 nm (less
than 0.1 bp). The position measured by the optical tweezers is modeled as the sum of the
actual position of the motor and of a Gaussian error with an unknown but fixed variance
𝑠2. Between each time point, the motor moves by a random amount (zero if the motor is not
moving); the size 𝑑 of this displacement (the “step size”) is drawn from an unknown but
fixed distribution, 𝑝(𝑑).

The procedure to find both the step-size distribution 𝑝(𝑑) and the noise variance 𝑠2 that
maximizes the likelihood of observing the trace that was actually measured is called the
Baum-Welch algorithm. However, due to the large number of states in the model, a specific
optimization (introduced by Felzenzswalb et al.), must be used [45]. Unlike most other
popular approaches to step-finding [83, 84], the LSS-HMM algorithm learns the distribution
of step sizes from the data and can therefore avoid taking large jumps upon encountering an
outlier in the trace, all without manual intervention.

We implemented the LSS-HMM algorithm in the Cython programming language [85].
The analysis parameters (described in the above-mentioned references) were set as follows:
experimentally synthesized traces (chapter I.6) and segments of transcription activity traces
between consecutive adjustments to the trap position (chapter I.7) were downsampled to
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Chapter I.5 Large state-space hidden Markov model algorithm

200 Hz; the quantization size was set to 0.025 nm; a null prior was used for negative step sizes
(for reasons explained in chapter I.7); each HMM was run for up to 1000 iterations, up to 60
seconds, or until the change in likelihood between iterations dropped below 10−8 (whichever
occurred first).
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Chapter I.6

Experimental synthesis
of stepping trajectories

To characterize the resolution capabilities of the time-shared dual-trap, we implemented a
procedure using a tethered molecule to experimentally synthesize the molecular trajectories
of a motor taking single base-pair steps according to a prespecified dwell time distribution
(figure I.5). We call this procedure “STEPS”, for Stepping Trajectories by ExPerimental
Synthesis.

To fully reproduce the noise characteristics present in transcription elongation, the STEPS
procedure was performed using a stalled elongation complex tethered via a DNA handle
to a 1 µm-diameter bead (held in one trap), while the distal end of the DNA template was
tethered to another 1 µm bead (in the second trap), yielding a 3.5 kb tether kept under 15 pN
of tension.

Briefly, stalled complexes were prepared by incubating 2 nM DNA with 10 nm RNAP in
TB20 (Tris 20 mM pH = 8, 20 mM NaCl, 20 mM DTT, 10 mM MgCl2, 20 μg/ml casein) for 20
minutes at 37 °C. The complexes were then ligated to the beads at a ratio of 1 fmol stalled
complex to 2 µg beads in TB20 in the presence of 0.1 mM ATP and 0.4 unit of T4 DNA ligase,
for 60 minutes at room temperature. For 1.5 kb DNA handles, 1 fmol handle was ligated to
3 μg beads. Following the ligation, heparin was added to 0.4 mg/ml to the beads. To the
beads ligated to the DNA handle, a 200-fold excess of neutravidin was added and incubated
with the beads for 10 minutes prior to diluting with experimental buffer, namely, Tris 20 mM
pH = 8, 130 mM KCl, 10 mM MgCl2, 0.1 mM DTT, 0.1 mM EDTA and 10 mM NaN3 (added
as a singlet oxygen scavenger to reduce the extent of photodamage [86]). For the stalled
complex beads, beads were incubated for 10 minutes with the added heparin before dilution
with experimental buffer.

In this geometry, polymerase translocation would cause a corresponding change in bead-
to-bead distance. After obtaining a power spectrum of the beads, for calibration of the
conversion factors between measured voltages and bead displacements, and after forming a
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Chapter I.6 Experimental synthesis of stepping trajectories
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Figure I.5:
Collection and analysis of STEPS data. (A–C) Traps holding tethered beads were displaced
away from each other by 0.34 nm at times separated by (A) constant, (B) exponentially
distributed, or (C) gamma-2 distributed dwells, in each case with a mean dwell time
of Δ𝑡 = 0.5 s (blue, differential signal at 200 Hz; gray vertical lines, times of actual trap
motion), and fitted by LSS-HMM without knowledge of the step size or the stepping times
(gold, result of the fit). Good agreement between fitted times and actual trap motion can
be observed. (D–F) Blue, complementary cumulative distributions of the time intervals
between each real step and the closest fitted step, with the constraint that two real steps
may not be associated with the same fitted step. Orange, complementary cumulative
distributions of the time intervals between each fitted step and the closest real step, with
the constraint that two fitted steps may not be associated with the same real step. The
time axis is in units of mean dwell time (⟨Δ𝑡⟩ = 0.5 s). (D) Constant, (E) exponentially
distributed, and (F) gamma-2 distributed dwells. (G–I) Step size distribution in the three
cases. (G) Constant, (H) exponentially distributed, and (I) gamma-2 distributed dwells.
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tether (by rubbing the beads against each other), we thus simulated such a motion by moving
one trap toward the other in twenty 0.34 nm (1 bp) increments according to various time
interval protocols (dwells): constant dwells (figure I.5A), exponentially distributed dwells
(figure I.5B), and dwells drawn from a gamma distribution with shape parameter 2 (“gamma-
2”, figure I.5C). The second and third cases simulate a molecular motor translocating with
one and two rate-limiting steps, respectively.

In classical optical tweezers measurements, the distances of the beads to the centers of their
respective traps, Δ𝑥bead1-trap1 and Δ𝑥bead2-trap2, are subtracted from the distance between the
traps, Δ𝑥trap1-trap2 (the latter being set by the experimentalist). Such an approach is suitable
to track the time-varying extension of the tether between the traps. In the case of STEPS
data, however, because the tether is ∼ 17× stiffer than the traps (1.7 pN/nm at 15 pN vs
two traps of 0.2 pN/nm each), the tether extension only changes by 1/18 of the trap motion,
whereas the total displacement of the beads away from the traps changes by 17/18 of this
motion (i.e., 0.32 nm as the traps were moved by 0.34 nm). Thus, we chose to analyze the
total displacement data.

Recorded STEPS traces were fitted using the LSS-HMM algorithm, without prior knowl-
edge of the actual step size and trap motion times. Traces where the LSS-HMM algorithm
failed to converge (usually, due to a numerical underflow of the likelihood) were discarded.

To quantify the time accuracy of the fit for STEPS data, we first determined if all real
steps (i.e., actual trap motions) were correctly detected, or if some of them were missed
(underfitting). Likewise, we evaluated if scored steps, as scored by the LSS-HMM algorithm,
correspond to real steps, or some of them were spurious (overfitting).

In order to quantify underfitting, we paired each real step with the closest scored step. If
done naively, such pairing could fail to detect a case where two temporally close real steps are
fitted with a single step—thus missing a short dwell between the two real steps. Therefore,
we additionally imposed the condition that the pairing between fitted steps and real steps
must be one-to-one (if there the number of fitted steps was smaller than real steps, some real
steps were left unpaired). Specifically, we required that the number of matches be equal to
the lower between the number of real steps and scored steps, and minimized the sum of the
time intervals between the paired steps.

We then ask, what is the distribution of the time intervals between the real and the scored
step in the pairings? In other words, how far is each real step from the closest scored step?
We find that regardless of the dwell time distribution (constant, exponential or gamma-2),
more than 70 % of the real steps are within 100 ms (one fifth of the mean dwell time) of the
closest scored step (figure I.5d-f).

In order to quantify overfitting, we asked how far each scored step is from the closest real
step, once again imposing one-to-one correspondence. In this case too, at least 70 % of the
scored steps were found within 100 ms of the closest real step, with the exception of the
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biologically less relevant case of constant steps, where, by experimental design, the allowance
had to be raised to 165 ms (figure I.5g-i).

On the other hand, the step size distributions are relatively broad in all cases (constant
stepping: (0.24 ± 0.25) nm; exponential: (0.30 ± 0.25) nm; and gamma-2: (0.27 ± 0.25) nm;
all values are mean ± standard deviation) (figure I.5G–I).

Thus, interestingly, step times can be correctly obtained even though the step sizes are
recovered with limited accuracy. We rationalized this observation on the basis that LSS-HMM
can assign variation in the measured bead position to two sources—actual spread of the
step size distribution and additional Gaussian noise; thus, LSS-HMM can choose to report
a wider step size distribution in order to narrow the Gaussian noise distribution. We note,
however, that the width of the step size distribution is not broad in absolute terms compared
with step size distributions seen for other motors—it only appears so here because the step
size is small compared with the magnitude of the noise.
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Full experimental trajectories
of RNA polymerase

Analysis of STEPS data allowed us to establish that the time-shared dual-trap instrument
used in combination with the LSS-HMM algorithm can score single base-pair steps from
synthesized data in an accurate and robust manner. We could now take up the challenge of
extracting the full molecular trajectories of individual elongating E. coli RNA polymerase
molecules, with base pair resolution and over long distances.

Tethered, stalled elongation complexes were prepared and trapped as described above.
Once a stalled elongation complex passed the test of the STEPS protocol (a total of six
times—twice for each dwell time distribution constant, exponential, and gamma)), we then
delivered 10 μM NTP (using a home-made flow-chamber with separate entries for buffer and
for the NTP solution) and recorded the tether extension under a mean tension of 15 pN applied
in a direction that assisted forward translocation (figure I.6A). In this geometry, translocation
by the polymerase causes the tension to decrease; whenever the tension dropped below
14 pN, the traps were displaced to restore a tension of 16 pN (“semi-passive” mode). At the
low NTP concentration of 10 µM, the pause-free transcription velocity is three times slower
than the rate used in the STEPS procedure (0.62 bp/s vs. 2 bp/s), and single steps can be
resolved. We discarded any trace where the total change in tether extension was less than
5 nm or where extraneous noise was visually obvious. All other traces, amounting to 14 625 s
of activity covering a distance of 1589 nm, were taken into account for further analysis.

The theory of the LSS-HMM algorithm [45, 81, 82] allows the molecular motor to take
steps both in the forward and in the backward direction (backtracking). However, under
15 pN of assisting force, backtracking events are rare; we found it beneficial to force the steps
to be always in the forward direction. Specifically, the prior on the step size distribution 𝑝(𝑑)
was set to zero for 𝑑 < 0. In the absence of such a constraint, some of the traces would be
fitted to a collection of steps that quickly alternate between forward and backward motion
(about every 100 ms). The origin of this motion is not known but it may be due to dynamics
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Figure I.6:
Observation of full molecular trajectories of RNA polymerase at single base-pair resolu-
tion.

(A) Experimental geometry used to record transcription activity under assisting force,
on a time-shared instrument, as described in the main text.

(B) A sample transcription trace, covering 70 bp (blue, raw data) in 1 min, and the
fitted molecular trajectory (orange). Horizontal gray ticks indicate the positions of
the dwells between two steps. Vertical gray ticks indicate the times of the scored
steps. Insets are zooms into the regions marked by black rectangles. Horizontal
gray ticks or lines in insets mark the position of each fitted step, showing that they
are separated by ∼ 0.33 nm. Vertical gray ticks or lines indicate the times of the
scored steps.

(C) The distribution of fitted step sizes in the absence of PPi (−PPi, blue) is peaked
at (0.32 ± 0.15) nm, corresponding to the expected size of 1 bp. The distribution
of fitted step sizes in the presence of 100 µM PPi (+PPi, orange) is peaked at
(0.30 ± 0.15) nm, corresponding to the expected size of 1 bp.

(D) The distributions of dwell times in the absence and presence of PPi are not expo-
nential, but peaked around Δ𝑡 ∼ 0.2 s.

(E) Comparison of the complementary cumulative dwell time distributions in the
absence (blue) and presence (orange) of PPi shows that PPi slows down processive
elongation by 20 %.
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occurring at the tethering point of the RNAP. Preventing any backwards motion forces the
LSS-HMM to average out these dynamics into a single state.

In certain cases, the LSS-HMM would fail to converge to a valid step distribution. As for
STEPS data, such a failure usually manifests itself as a numerical underflow of the likelihood.
Such failures could arise due to two reasons. First, a trace can exhibit actual backtracking,
contradicting our initial assumption. Second, RNA polymerase can enter long-lived pauses
[87, 88] that we also found to be, counter-intuitively, detrimental to the performance of the
LSS-HMM—likely due to the difficulty for the LSS-HMM algorithm to distinguish between
very slow activity and residual low-frequency noise.

In such cases, we split the data into two halves that were fitted separately, and the procedure
was repeated until the fit succeeded, the segment length dropped below 5 s, or the total
transcribed distance dropped below 10 s (the analysis of segments containing very few steps
is difficult for any HMM-based algorithm, as it needs to learn the correct step distribution
from the dataset self-consistently). In such manner, periods of backtracking or of long-lived
pauses can be separated from the analysis, whereas segments containing processive activity
would be analysed. Note that if the abnormally noisy traces described above had not been
removed manually, this algorithm would likewise reject them.

Overall, the data successfully fitted by LSS-HMM amounted to 𝑁 = 3874 steps from
30 different molecules, corresponding to 6344 s of activity covering 1198 nm. Despite the
lack of prior assumption on the step size, the histogram of observed step sizes peaks at
(0.32 ± 0.15) nm (figure I.6C), which compares favorably with the expected step size of
0.33 nm at 15 pN as predicted by the worm-like chain equation [72]. We were able to recover
the single base-pair trajectory with high accuracy in segments as long as 70 bp (figure I.6B).
Note that the maximum length of the fitted segment is due to the need to maintain the
force within a range of 2 pN; with a trap stiffness of 0.2 pN/nm per trap, the traps must be
displaced—and thus a new fit region must be started—every 20 nm (10 nm on each trap), i.e.,
approximately every 70 bp.

The fitted segments amounted to 75 % of the total distance transcribed, but only 43 %
of the total duration of the traces, due to the selective removal of long-lived pauses from
the analyzed datasets. As such, the dwell time distribution obtained from the analysis
faithfully represents the true distribution of pause-free translocation in short time scales;
however, the distribution is underestimated at longer time scales due to the rejection of slow
segments. Note that the segments rejected are well-defined, and could be subjected to further
analysis by pooling short segments together before fitting with LSS-HMM in order to increase
the statistics. Our results should be contrasted with earlier reports of the observation of
single base-pair stepping in optical tweezers, which was limited to short segments (∼ 15 bp)
corresponding to ∼ 10 % of the distance transcribed in ∼ 10 % of the collected traces [39].

Finally, we tested the effect of PPi on the dynamics of RNA polymerase at the base-pair
scale. In the presence of PPi, RNA polymerase can catalyze the pyrophosphorolysis of the
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nascent RNA chain [89]. Under intermediate concentrations of PPi, transcription elongation
thus occurs at a reduced rate [90]. We collected transcription traces in the presence of 100 µM
PPi. From 6730 s of activity, covering a distance of 470 nm, we successfully fitted, using the
same procedure as above, 𝑁 = 800 steps (51 % of the total distance) over 1509 s of activity
(24 % of the total duration), with a step size of (0.30 ± 0.15) nm (figure I.6C).

Visual inspection of the traces did not reveal significant long-lived pausing events due
to the binding of PPi. On the other hand, comparison of the dwell time distributions of
the transcribing enzyme in the absence and presence of PPi (figure I.6 D and E), truncated
to events shorter than 1 s due to the underestimation of long events noted above, showed
that the enzyme slows down due to a 20 % lengthening of the median dwell periods during
processive elongation, from 0.33 s to 0.40 s (Mann-Whitney test, 𝑝 < 10−4). The dwell time
distributions were not exponential in either case but peaked around Δ𝑡 ≈ 0.2 s.
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Conclusion

Optical tweezers is a powerful method to investigate the dynamics of molecular motors.
These dynamics are encoded in the interspersed dwells and steps of the molecular trajectories
of a motor. The partitioning between these phases and its dependence on various external
conditions provide important information about the motor mechanism. However, extracting
the full molecular trajectories of motors such as RNA and DNA polymerases, helicases,
and other translocases with step sizes of one base pair has been challenging. The spatial
resolution of optical tweezers can be improved by increasing the tension applied on the
tether (if the motor can remain active under such tension), by shortening or stiffening the
handles [91], or by using smaller beads [38]. However, most optical tweezer instruments
display a 1/𝑓 noise component that greatly limits their resolution in the frequency range
where motor dynamics are monitored. We identified a source of low-frequency noise in the
split paths of the most common dual-trap configuration. By using a time-shared scheme, we
eliminated path splitting and decreased low-frequency noise more than ten-fold. We also
implemented a protocol (STEPS) that allows us to directly check the quality of a tether in
real time, before the addition of nucleotide triphosphates, and test the performance of the
LSS-HMM step-finding algorithm. Altogether, these improvements permitted us to fully
uncover the molecular trajectories of E. coli RNA polymerase at single base-pair resolution
in a robust and consistent manner. We have demonstrated the power of this approach by
measuring the effect of PPi on the dwell time distribution of actively elongating polymerases.

The ability to resolve single base-pair stepping and the interspersed dwells in a reliable
manner and over large distances in optical tweezers opens the possibility to study the sub-
nanometer activity of many molecular motors. For instance, the effect of mutations or
antibiotics on the molecular trajectories of RNA polymerase can now be resolved in terms of
the phases of the motor’s cycle. Similarly, the ability to precisely follow the enzyme dynamics
upon each nucleotide incorporation will make it possible to investigate how the template
sequence controls transcription elongation and characterize the dynamics of other important
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processes such as transcription proofreading [87, 88, 92], termination [93–95], or transcription
through the nucleosome [96–98] with unprecedented detail.
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Materials and methods

All DNA modifying enzymes were purchased from New England Biolabs. Oligonu-
cleotides were purchased from IDT. Nucleotide triphosphates were purchased from Thermo
Scientific, and standard salts and buffer components were purchased from Sigma Aldrich.

I.9.1 Polystyrene beads
For power spectra measurements, we used 0.81 µm-diameter streptavidin-coated

polystyrene beads (Spherotech), and 1 µm-diameter carboxylated beads coated with anti-
digoxigenin antibody (Roche, catalog number 11333089001), as follows:

10 μl of 10 % bead suspension was washed with coupling buffer (MES 0.1 M pH = 4.7,
150 mM NaCl) 4 times, with centrifugation steps (5 minutes at 4500 × g) between the
washes. The beads were dispersed in 500 µl coupling buffer. 10 µl of 3.5 mM 1-ethyl-3-
(3-dimethylaminopropyl)carbodiimide (EDC) were added, followed by 65 µl of 0.2 mg/ml of
antibody solution. Reaction proceeded overnight at 4 °C. At this point 10 µl of 1 M glycine
was added, and Tween 20 was added to 0.05 %. The beads were centrifuged, and washed 5
times with storage buffer (Tris 20 mM pH = 8, 130 mM KCl, 0.05 % Tween 20, 1 mM EDTA,
5 mM sodium azide) with 3 minute sonication steps between washes. Beads were stored at
4 °C at a concentration of 1 % w/v until use.

For preparing oligonucleotide-coated beads, the following oligonucleotides were ordered
HPLC purified and used as received:

Bead amine: 5' /5AmMC6/TTAATTCATTGCGTTCTGTACACG 3'
Bead CGGT: 5' /5Phos/CGGTCGTGTACAGAACGCAATGAATT 3'
Bead ACCG: 5' /5Phos/ACCGCGTGTACAGAACGCAATGAATT 3'

To prepare a double-stranded oligo for coupling, Bead Amine oligo was hybridized to
Bead CGGT oligo or to Bead ACCG oligo to generate a double stranded oligo containing a
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phosphorylated 5’ overhang. Annealing was performed by heating a 1:1 mixture of the oligos
in water (0.25 mM each) to 95 °C for 10 minutes, followed by cooling to room temperature on
the bench. This resulted in the following oligos:

CGGT duplex: 5' NH2-TTAATTCATTGCGTTCTGTACACG 3'
3' TTAAGTAACGCAAGACATGTGCTGGC/phos 5'

ACCG duplex: 5' NH2-TTAATTCATTGCGTTCTGTACACG 3'
3' TTAAGTAACGCAAGACATGTGCGCCA/phos 5'

1 µm-diameter carboxylated polystyrene beads (Bangs Labs) were coupled to the prepared
double-stranded oligos as follows: 10 µl of 10 % (w/v) beads were washed 4 times with
200 μl coupling buffer (MES 0.1 M pH = 4.7, 150 mM NaCl, 5 % DMSO), and dispersed in
20 µl coupling buffer. All centrifugations took place for 5 minutes at 4500 × g. 10 µl of 20 μM
double stranded oligo and 6 µl of 2 M 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC)
were added, followed by vigorous shaking for 2 hours at room temperature. At this point
another 10 µl of 2 M EDC were added, followed by overnight shaking at room temperature.

The remaining active EDC was then quenched by adding 2.5 μl of 1 M glycine, and the
beads were washed 5 times with storage buffer (Tris 20 mM pH = 8, 1 mM EDTA, 0.05 %
Tween 20, 5 mM sodium azide) with 3 minutes of sonication between washes. The beads
were finally dispersed at a concentration of 1 % (w/v) and stored at 4 °C.

I.9.2 Bead passivation
The beads were passivated by diluting six-fold in TE (Tris 20 mM pH = 8, 1 mM EDTA)

and addition of β-casein to 1 mg/ml. The beads were vortexed for 10 minutes, washed once
with TE, dispersed at a concentration of 0.2 % in TE and stored at 4 °C until the experiment.

I.9.3 DNA constructs for power spectra measurements
Measurement of power spectra used DNA constructs labeled with biotin and digoxigenin.

The constructs were prepared by PCR using lambda DNA as the template, with biotinylated
or digoxigenin labeled oligonucleotides (IDT) as primers. The constructs were used after
standard PCR purification. To perform the experiment, 1 µl of 0.1 % anti-Dig coated beads
were incubated with 1 µl of 10 nm DNA for 15 minutes at room temperature, followed by
dilution in the experimental buffer (Tris 20 pH = 8, 130 mM KCl). Streptavidin-coated beads
were used directly after passivation.
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I.9.4 DNA constructs and proteins
for transcription experiments

I.9.4.1 Plasmids and DNA templates
Plasmids pIA1127 (for expression of σ70), pIA1234 (for expression of sortagged RNA

polymerase), and pIA2-6 (used as a template for preparing DNA handles) were a gift from
Irina Artsimovitch. Plasmid for the expression of sortase was a gift from David Liu.

A plasmid containing the T7A1 promoter followed by 8 repeats containing the His pause,
originally described in reference [9], was modified by removal of the 1000 base sequence
between the promoter and the repeats through digestion with AgeI and BamHI.

I.9.4.2 Preparation of DNA template and handles
To prepare the DNA template, the plasmids was restricted by BsaI-HF (8 units per μg

DNA for 2 hours at 37 °C) and treated in parallel with shrimp alkaline phosphatase (0.4
unit per µg DNA) to generate a linear DNA with distinct, dephosphorylated 5’ overhangs.
The enzymes were heat deactivated for 20 minutes at 65 °C, and the DNA was immediately
treated with Klenow 3’-5’ exo− polymerase (1 unit per µg DNA) and 0.1 mM ddATP to
generate an assisting force template. The reaction proceeded for 30 minutes at 37 °C, followed
by heat inactivation for 20 minutes at 75 °C. The sample was then extracted 5 times with
phenol-chloroform and once with chloroform, ethanol precipitated, and reconstituted in Tris
10 mM pH = 8, 0.1 mM EDTA. The purity of the DNA was assessed to be ∼ 88 % by agarose
gel electrophoresis.

For producing 1.5 kb handles from the pIA2-6 plasmid, the following oligonucleotides
were used:

For-biotin: 5' /5Biosg/GAAAGTCCGGCATCTCAATCCC 3'
Rev-BsaI: 5' ATGATACCGCGAGACCGATGTGGCTTCGGTCCCTTC 3'

Underlined bases correspond to sequences that anneal to the template plasmid.
The handle was prepared by PCR and cleaned by standard PCR cleanup, treated with

BsaI-HF (5 units per µg DNA for 2 hours at 37 °C followed by heat inactivation for 20 minutes
at 65 °C) and purified using PCR cleanup.

I.9.4.3 Preparation of σ70

Plasmid pIA1127 was transformed into Rosetta2 bacteria. The bacteria were grown in 2
liters of 2YT medium supplemented with 1 % glucose, NPS (25 mM (NH4)2SO4, 50 mM
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KH2PO4, 50 mM Na2HPO4), 1 mM magnesium sulfate, 34 µg/ml chloramphenicol and
50 µg/ml kanamycin. The culture was grown at 37 °C to an OD600 of 0.5, transferred to
17 °C and IPTG was added to 0.1 mM. Induction proceeded for 16 hours.

For purification, the bacteria were dispersed in 80 ml of buffer A25 (Tris 20 mM pH = 7.5,
0.5 M NaCl, 10 % glycerol, 25 mM imidazole, 2 mM β-mercaptoethanol) supplemented with
0.1 mg/ml lysozyme and protease inhibitors (Roche). The bacteria were lysed by French
press, and the lysate was clarified by centrifugation and filtration and loaded on a 5 ml
Ni-NTA column. The column was washed with 20 ml buffer A25 and 20 ml A50 (A25 +
50 mM imidazole), and the his-tagged σ70 was eluted in A300 (A25 + 300 mM imidazole).
TEV protease (prepared as described [99]) was added at a molar ratio of 1:40, and the reaction
proceeded overnight at 4 °C while being dialyzed against A50. The sample was then passed
again through an Ni-NTA column. The flow-through, containing non-his-tagged σ70 was
collected, concentrated two-fold, and further purified by gel filtration on a sephacryl S300
column equilibrated with buffer B (Tris 20 mM pH = 7.5, 0.5 M NaCl, 10 % glycerol, 1 mM
EDTA, 1 mM DTT). The protocol yielded ∼ 35 mg of pure σ70. Aliquots were flash frozen in
liquid nitrogen and stored at −80 °C.

I.9.4.4 Preparation of sortagged RNA polymerase holoenzyme
Plasmid pIA1234 was transformed into Rosetta2 bacteria. Sortag-RNAP was expressed

using the same protocol as σ70, except that ampicillin was used instead of kanamycin.
For purification we used a modified version of a published protocol [100]. The cells

were dispersed in 75 ml of lysis buffer (Tris 50 mM pH = 6.9, 0.5 M NaCl, 5 % glycerol)
supplemented by 0.1 mg/ml lysozyme and protease inhibitors, and lysed by French press.
The lysate was centrifuged and filtered, and imidazole was added to 20 mM. The sample
was loaded on a 5 ml Ni-NTA column. The column was washed with 30 ml of lysis buffer +
20 mM imidazole and the his-tagged RNAP core enzyme was eluted in lysis buffer + 250 mM
imidazole.

To form the holoenzyme, the sample was incubated with a two-fold excess of purified
σ70 overnight on ice. The sample was diluted ten-fold with buffer B0 (50 mM Tris pH =
6.9, 5 % glycerol, 0.5 mM EDTA, 1 mM DTT) and loaded on a heparin 5 ml column. To
avoid overloading the column, the sample was divided into three portions that were loaded
separately. A gradient of 50 mM to 1 M NaCl was used to elute the protein. RNAP holoenzyme
was separated clearly from excess σ70. The sample was dialyzed against buffer B50 (50 mM
Tris pH = 6.9, 5 % glycerol, 50 mM NaCl, 0.5 mM EDTA, 1 mM DTT), and then purified
further on a 1 ml monoQ column using a 50 mM to 1 M NaCl gradient (again, the sample
was split into three portions loaded separately). Pure fractions were pooled, dialyzed against
storage buffer (20 mM Tris pH = 7.5, 200 mM KCl, 0.2 mM EDTA, 0.2 mM DTT, 5 % glycerol),
aliquoted, flash frozen and stored at −80 °C.
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I.9.4.5 Biotinilation of sortag-RNAP
We obtained a peptide containing an N-terminal GGG tag with a biotin-modified lysine

residue (Genscript): GGGGDGDY{Lys(biotin)}.
100 μl of 9.6 μM sortag-RNAP was reacted with a 200-fold excess of biotinilated peptide in

200 μl coupling buffer (Tris 50 mM pH = 7.5, 5 mM CaCl2) containing 2 μM sortase (prepared
as described [101]). The reaction proceeded for 60 minutes. At this point, imidazole was
added to 25 mM and NaCl to 350 mM, and the sample was passed through 70 µl Ni-NTA
beads to remove sortase and unreacted RNAP. The peptide was removed by dialysis into
storage buffer, and the biotinilated RNAP was stored in storage buffer at −80 °C.
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Part II

Pause sequences facilitate entry
into long-lived pause states

by reducing the forward transcription rate
of RNA polymerase
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Transcription elongation by RNA polymerase (RNAP) is interspersed with sequence-
dependent pausing. The processes by which RNAP enters paused states at sequence-
dependent pause sites and the processes that stabilize these paused states have not been
well characterized, due to the spatiotemporal limitations of methods previously used to
study pausing. Here, by combining a high-resolution optical tweezers assay with improved
data-analysis methods, we investigate the formation of paused states at enhanced spatiotem-
poral resolution and characterize their modulation by backtracking and by features in the
nascent-RNA. We find that pause sites modify the dynamics of nearly all RNAP molecules
in a force-independent manner, reducing their forward transcription rate, and not as pre-
viously thought, that they only affect the subset of molecules that enter long-lived paused
states. We propose that the reduced rates at pause sites play a crucial role in pausing, by
allowing time for the elongation complex to undergo conformational changes required to
enter long-lived paused states. In addition, we find that pause stabilization by backtracking
occurs in a stepwise fashion, with non-backtracked states or states backtracked by at most 1
base pair forming quickly, and further backtracking occurring slowly. Finally, we find that
nascent-RNA features, such as RNA hairpins, act as modulators that enhance or attenuate
pausing, depending on the sequence context.
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Introduction

Transcription is a tightly regulated process in which RNA polymerase (RNAP) encodes
the genetic information into RNA with either protein-encoding or structural and catalytic
roles [102]. After initiating transcription from a promoter, RNAP enters the elongation phase,
which consists of periods of processive nucleotide addition interspersed by pauses. Pausing
plays critical roles in regulating transcription and in coordinating it with other processes that
occur cotranscriptionally, including RNA folding [103], RNA processing and translation [10,
104]. The entry into paused states begins with the formation of an elemental paused state
with inhibited transcription elongation [20, 55, 105]. In E. coli, pausing is known to occur at
consensus pause sequence elements (G–10Y–1G+1, where −1 corresponds to the position of
the RNA 3’ end and +1 to the next nucleotide to be incorporated) [10, 11], through inhibition
of the translocation step [11]. The paused states can be further stabilized by the formation of
a nascent-RNA hairpin [17, 106] or by RNAP backtracking [17, 88, 107]. However, the events
required to enter a paused state from active elongation are not well understood, because
those events are beyond the spatiotemporal resolution of previous experiments. Optical
tweezers experiments [9, 48, 55, 108–110] have been used to detect and characterize long-lived
pauses (longer than 1 s), but have not been able to reliably and directly detect and characterize
short, sub-second pauses. Since the time scale for processive nucleotide addition by RNAP at
saturating nucleotide concentrations ranges from 25 ms to 100 ms per nucleotide [39, 111], a
wide range of physiologically relevant time scales (from 25 ms to 1000 ms) has eluded direct
study.

Here, we used a high-resolution optical tweezers assay with improved methods of data
analysis to characterize transcription by E. coli RNAP through sequence-dependent pause sites
at near-single-base-pair spatial resolution and an order of magnitude (∼ 100 ms) improved
temporal resolution. These improvements enabled us to answer three key questions about the
mechanism of pause entry and the modulation of pauses by backtracking and nascent-RNA
features. First, we find that strong sequence-dependent pause sites all involve a slowing of
the forward elongation rate of the enzyme RNAP. This result supports a model in which
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pause sequences reduce on-pathway elongation rates by RNAP, allowing it time to enter
off-pathway reactions leading to long-lived paused states. Second, we find that stabilization
of sequence-dependent pauses by backtracking involves two consecutive steps: a first step
entailing rapid formation of a state that is either non-backtracked or backtracked by at most
a single base pair, and a second step entailing slow conversion to a deeper backtracked and
longer-lived state. Third, we find that nascent-RNA features, such as hairpins, can either
increase or decrease the duration of sequence-dependent pauses, depending on the sequence
context, most likely through interaction with the pretranslocated state of RNAP.
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Characterization of transcriptional
pausing at high spatio-temporal resolution

Previous optical tweezers studies of pausing relied on direct detection of pausing events
by identifying time intervals in which the measured transcription velocity is below a defined
threshold [48, 108]. These methods can consistently detect pausing events with lifetimes
of at least ∼ 1000 ms, but must rely on extrapolation and/or other assumptions to infer
the distributions of events occurring on shorter time scales [21]. The average pause-free
velocity of RNAP at saturating concentrations of nucleotide triphosphates (NTP) is ∼10 bp/s
to 40 bp/s, corresponding to a time scale for processive nucleotide addition of ∼25 ms to
100 ms [39, 108, 112], an order of magnitude shorter than directly accessible to previous
methods (≥ 1000 ms).

To overcome this limitation, we sought to fully characterize the dynamics of sequence-
specific pausing, down to the ∼ 100 ms time scale. To this end, we developed a method that
can accurately determine (1) the position of RNAP on the template sequence, (2) the time
RNAP spends at each pause site for every crossing (the Pause Site Crossing Time), and (3)
the pausing efficiencies at each pause site.

II.2.1 Repeat-based trace alignment

II.2.1.1 Data collection
In theory, since we have exact knowledge of the starting point of each trace, if we had

an accurate measurement of the force on the tether and the worm-like chain parameters of
the template under the experimental conditions, we would be able to accurately calculate
the position of the polymerase on the template throughout the trace from the starting point.
These conditions are not met for several reasons. First, there is a small uncertainty in the
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starting position, since chasing the polymerase requires moving the beads in the chamber to a
different location with a different buffer composition, which as mentioned before introduces
small changes to the force (or trap distance under force feedback). Furthermore, the poly-
merase starts transcribing while the chamber is moving. This mixes the signal coming from
transcription with signals coming from the viscous drag on the beads during the motion,
which increases the uncertainty in starting position. Second, bead sizes and viscosity of the
buffer are usually not precisely known, and therefore there is an uncertainty in the measured
forces. This will change the conversion between nanometers and base pairs. In fact, the
calibrations we later performed indicated that although our experiments were carried under
nominally constant force, this conversion factor varies by 0.5 % to 1 % (figure II.4). Over a
template 3000 base pair long, this may result in an error of 15 to 30 base pairs in positioning.
Moreover, this error will not be distributed evenly across the trace, but will grow as the
polymerase transcribes.

Instead, we modified a procedure first described by Herbert et al. [9]: we performed
transcription experiments on a DNA template containing the T7A1 promoter followed by
eight tandem repeats of a 239 bp sequence containing the his-leader pause site and four other
known sequence-dependent pause sites [9, 55] (figure II.1). As we will show, the repeating
pattern of sequence-dependent pausing that occurs throughout the repeats is sufficient to
achieve accurate determination of the position of RNAP relative to the template sequence (to
±3 bp).

Single transcription elongation complexes containing biotinylated E. coli RNAP halted at
position 29 by NTP deprivation were tethered between 1 μm-diameter polystyrene beads
held in high resolution optical traps (figure II.1; the instrument was described in part I). The
experiment was performed in a laminar flow setup previously described [113]. The main
channel of the chamber was formed by a flow coming from a reservoir containing buffer
(HEPES 50 mM pH = 8, 130 mM KCl, 4 mM MgCl2, 0.1 mM DTT, 0.1 mM EDTA, 20 µg/ml
heparin and 10 mM NaN3 (added as a singlet oxygen scavenger to reduce the extent of
photodamage [86])) and a flow from a second reservoir containing a saturating NTP solution
(1 mM UTP, 1 mM GTP, 0.5 mM ATP, 0.25 mM CTP [39]). The two flows form well separated
regions in the chamber. Beads containing DNA handle were loaded on a side channel
connected to the NTP side via a thin capillary, while beads containing the halted complex
were loaded on a similar channel connected to the buffer side. Every experiment consisted
of the following steps:

1. Trap a DNA handle beads in the NTP side;
2. Trap a halted complex bead in the buffer side;
3. Rub the beads against each other in the buffer side until a tether is formed (if at all);
4. If a tether is formed and it has the expected length, move the pair into the NTP side to

restart transcription.

44



Chapter II.2 Characterization of transcriptional pausing at high spatio-temporal resolution

Figure II.1:
Experimental geometry. Biotinylated E. coli RNAP, halted on the template DNA, was
tethered through a neutravidin bridge to a biotinylated 1.5 kb DNA ligated to the oligo-
coated bead. The selection of which end of the template DNA to ligate to the other beads
enables selection between assisting force and opposing force geometry. The major pause
sites (‘a’, ‘b’, ‘c’, ‘d’, ‘his’) are indicated in the sequence of the repeat.

Subsequent elongation was monitored by measuring the extension of the tether (in nanome-
ters) over time (figure II.2, left). Our experiments were performed using an active force clamp
that moved one of the traps constantly to maintain the mean force constant. This maintained
the force to within 0.1 pN within each trace, ensuring that a constant factor could be used to
convert physical distances (in nanometers) to sequence positions (in base pairs). However, we
discovered that small changes in calibration may arise due to the fact that the calibration and
activity measurement were not performed in the same position in the chamber, possibly due
to variations in the thickness of the glass or change in refractive index due to the different
composition of the buffer in the NTP channel. Therefore, we performed an additional calibra-
tion in the NTP channel after the tether broke, and used this to calculate forces. Obviously,
the feedback still had to be performed using calibration parameters measured in the buffer
channel. This resulted in a small variation in measured force from tether to tether that
rarely exceeded 0.5 pN. For each trace, data was collected until either the tether broke or the
polymerase entered a pause longer than 200 s.

Prior to data analysis, we inspected the traces for irregularities. First, in a small subset of the
traces, the breaking of the tether left a longer tether still connecting the beads, which indicates
more than one molecule was tethered between the beads. These traces were discarded from
further analysis. In 12 traces, large rips (20 nm to 100 nm in size) were observed at early
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Figure II.2:
(Left) Representative traces obtained under assisting forces. Dashed magenta lines mark
the locations of the ‘his’ pause sites in the template. (Right) The mean residence time
histogram was calculated by averaging the time spent at each position in the repeat across
all traces at all conditions, except RNase data, which was aligned separately (203 traces,
table II.2.2). Pause sites are marked, and pause-free regions are shaded. For clarity, the
mean of measurements up to the 95 % percentile is shown to remove to effect of rare
pauses occurring outside the pause sites. However, data analysis was performed on the
full dataset.

stages in the traces, followed by normal transcription and clean breaking at the end. In these
traces, only data following the rip was used. Second, during the experiments, we determined
that photodamage can be a significant effect in such systems, despite the addition of singlet
oxygen scavengers. To test this, we performed experiments in which we held the beads in
the traps for several minutes before attempting to obtain tethers. Tethers obtained this way
were almost always inactive or exhibited extremely slow activity (at least threefold slower
than average rates). We attribute this effect to the fact that before a tether is formed, the
polymerase is frequently very close to the surface of the bead, where most reactive oxygen
species are generated [86], while a tethered polymerase is far away from the surface and is
thus better protected. When obtaining tethers less than one minute after trapping the bead,
the majority of the tethers exhibited activity and tethers showing exceptionally slow activity
typical of photodamage were identified easily and removed from analysis. The final dataset
contained 432 transcription traces, out of which 251 traces reached the repeat region without
entering a long-lived pause (> 200 s) or premature breaking of the tether.

We now describe the procedure used to achieve accurate determination of the position of
RNAP.
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II.2.1.2 Initial processing of data
The first step in the alignment procedure is the calculation of length in nanometers of the

239 bp repeat, which we term the physical repeat length (PRL). This number is used to convert
the physical distance transcribed by RNAP to the position on the template sequence. Since
the traces were collected at a constant force, a constant PRL applies throughout each trace.

The repeats are located between 1107 bp and 3019 bp downstream of the starvation site.
As an initial approximation, starting from an average rise per base pair of 0.33 nm, we thus
estimated the position of the repeats as the region of the trace located between 1.02 × 1107 ×
0.33 nm = 363 nm and 0.98 × 3019 × 0.33 nm = 1005 nm after the starting position; the factors
of 1.02 and 0.98 are used to avoid including data from non-repeat regions. This approximation
will be revisited later.

At 0.33 nm/bp, the PRL is 79 nm. Our algorithm requires the presence of at least two
full repeats in order to align a trace; thus, we discarded any trace which covered less than
2 × 82 nm = 164 nm of the repeats (where we used a slightly larger number for the period to
provide some “buffer” to the analysis).

II.2.1.3 Residence time histogram
For each single-molecule trace, we first generated a residence-time histogram (RTH) by

sorting the extension data into 0.1 nm bins; that is, we discretized the distance axis in small
bins and asked, how much time did the trace spend in each of these windows? As the
following discussion will make clear, the size of these bins must be chosen well below the
expected size of a base pair; in order to work with round numbers, we set it to (1/40)nm,
which is approximately (1/13)bp. Crucially, we find that, at least for the first step of the
analysis (periodization), we do not need to downsample the data before computing the
histogram; that is, the dataset at full bandwidth (800 Hz) is used to populate the histogram.

At regions of high transcription rates (as high as 40 bp/s), there will be 20 to 40 data points
per base pair, which is 1 to 4 data points per bin. At such conditions the occasional empty
bins are unavoidable. Such empty bins are problematic for the further analysis. Thus, we
instead “connected” consecutive points in the trace (figure II.3) and populated histogram
bins in proportion of what fraction of the connecting segments fell within the window. Such
an approach also ensures that the residence time histogram changes continuously when the
size or the origin of the bins in changed, rather than by discrete jumps whenever a data point
crosses the edge between two bins.
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Figure II.3:
Illustration of residence time calculation. Residence times are calculated on segments
between data points, according to which fraction of the segments is located in each bin.
Therefore, even bins without data points (such as bin 2 to 3) will have a non-zero residence
time.
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II.2.1.4 Periodization
Having computed the residence time histogram (RTH) over the (expected) repeat region,

we relied on the following observation in order to determine the correct nanometer-to-base
pair conversion factor: the RTH over one repeat should look “similar” to the RTH over
another repeat. Thus, we can try various candidate conversion factors (taken in a small range
around the extensible worm-like chain prediction), corresponding to various values of PRL
(for a 239 bp repeat, 75 nm to 81 nm, depending on force) and, for each of these conversion
factors, quantify the “similarity” as suggested above. The PRL with the highest “similarity
score” is then taken as the correct one.

Herbert et al. noted that such an evaluation of similarity can be carried out by “folding” the
RTH over itself using the given PRL (that is, by summing the values in the RTH at positions
𝑥, 𝑥 + PRL, … for each 𝑥) [9]. A “good” period should yield very large spikes in the folded
RTH due to the summing in phase of the pausing events over each of the repeats; in other
words, some positions in the repeat should exhibit very long residence times. Thus, they
computed the distribution of residence times in the folded RTH, and used the skewness
(normalized third moment) of the log-residence-time distribution as the similarity score.

We found, instead, that a cross-validation style approach performs better to compute
the similarity score. Specifically, we remove one repeat (the testing set), compute the folded
histogram on the rest of the data (the training set), and compute the probability of observing the
testing set under the hypothesis that the folded histogram gives the correct distribution. We
then repeat this operation using each possible testing set, and use the average log-probability
across all testing sets as the scoring criterion. The scheme can be graphically described as
the calculation of

Let us derive the expression for this average log-probability here. Let 𝑟𝑖 be the residence
time at position 𝑖 = 0, … , 𝑁 − 1 and 𝑃 be the tentative period. We write 𝑆𝑏

𝑎 = ∑𝑏−1
𝑖=𝑎 𝑟𝑖 (sum

of residence times from 𝑎 to 𝑏), 𝑆𝑖[𝑃] = 𝑟𝑖 + 𝑟𝑖+𝑃 + … (sum of residence times at positions an
integer number of periods from 𝑖), 𝑆 = ∑𝑖 𝑟𝑖 (total residence time).

Consider the testing set corresponding to positions 𝑖, … , 𝑖+𝑃−1. The observed distribution
from the testing set is 𝑓𝑖,𝑗 = 𝑟𝑗/𝑆𝑖+𝑃

𝑖 (histogram counts at position 𝑗, divided by the total counts
between 𝑖 and 𝑖+𝑃). The reference distribution for the training set is 𝑔𝑖,𝑗 = (𝑆𝑗[𝑃]−𝑟𝑗)/(𝑆−𝑆𝑖+𝑃

𝑖 ),
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where 𝑖 ≤ 𝑗 < 𝑖 + 𝑃 (folded counts at position a multiple of 𝑃 away from 𝑗, excluding 𝑗 itself,
divided by total counts, excluding counts between 𝑖 and 𝑖 + 𝑃). The probability of observing
the testing set given the training set is

𝐿 =
𝑖+𝑃−1
∏
𝑗=1

𝑔
𝑟𝑗
𝑖,𝑗 ; (II.1)

and the log-likelihood for this testing set is thus

𝐿𝐿𝑖 =
𝑖+𝑃−1
∑
𝑗=𝑖

𝑓𝑖(𝑗) log 𝑔𝑖(𝑗) =
1

𝑆𝑖+𝑃
𝑖

𝑖+𝑃−1
∑
𝑗=𝑖

𝑟𝑗 log
𝑆𝑗[𝑃] − 𝑟𝑗

𝑆 − 𝑆𝑖+𝑃
𝑖

(II.2)

(after normalization by 1/𝑆𝑖+𝑃
𝑖 ).

We now need to average these log-likelihoods over all possible testing sets, that is, 𝑖 =
0, … , 𝑁 − 𝑃 − 1:

𝐿𝐿 =
1

𝑁 − 𝑃

𝑁−𝑃−1
∑
𝑖=0

𝐿𝐿𝑖

=
1

𝑁 − 𝑃

𝑁−𝑃−1
∑
𝑖=0

1
𝑆𝑖+𝑃

𝑖

⎡⎢
⎣

𝑖+𝑃−1
∑
𝑗=𝑖

𝑟𝑗 log (𝑆𝑗[𝑃] − 𝑟𝑗) − 𝑟𝑗 log (𝑆 − 𝑆𝑖+𝑃
𝑖 )⎤⎥

⎦

=
1

𝑁 − 𝑃

𝑁−𝑃−1
∑
𝑖=0

⎡⎢⎢
⎣

∑𝑖+𝑃−1
𝑗=𝑖 𝑟𝑗 log (𝑆𝑗[𝑃] − 𝑟𝑗)

𝑆𝑖+𝑃
𝑖

− log (𝑆 − 𝑆𝑖+𝑃
𝑖 )⎤⎥⎥

⎦
,

(II.3)

where we have relied on the fact that ∑𝑖+𝑃−1
𝑗=𝑖 𝑟𝑗 = 𝑆𝑖+𝑃

𝑖 .
The partial sums 𝑆𝑖+𝑃

𝑖 and ∑𝑖+𝑃−1
𝑗=𝑖 𝑟𝑗 log (𝑆𝑗[𝑃] − 𝑟𝑗) can be computed efficiently by first

computing the cumulative sums starting from index 0 and then taking the difference between
the cumulative sums at the two endpoints of the sum.

While this approach works well for finding the correct period size of traces that exhibit
moderately strong periodic pausing, we found that for traces where the pausing is very
weak, the trace with the highest similarity score tends to pick a period that is “too small”
(by comparison with other traces collected at the same force). We believe that this is due to
the fact that the computation of similarity scores for different periods (expressed in terms
of physical size) compares the RTH over different numbers of bins. For example, consider
the case of a perfectly uniform RTH with 𝑃 bins (each with a relative occupancy of 1/𝑃). The
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Figure II.4:
Repeat lengths vs. force for all aligned traces (𝑁 = 251). Worm-like chain model fitting
was performed on the average lengths obtained at every force (𝑅2 = 0.999).

log-likelihood for any training set would be

𝐿𝐿𝑖 =
𝑖+𝑃−1
∑
𝑗=𝑖

1
𝑃

log
1
𝑃

= − log 𝑃 . (II.4)

Thus, we need to correct the similarity score by taking − log 𝑃 as the base score (which
effectively penalizes small periods): the final similarity score that we maximized in order to
find the physical period size was 𝐿𝐿 + log 𝑃.

The period sizes are expected to increase with force as the DNA becomes more extended.
This is observed when plotting the period sizes versus the force (figure II.4). Fitting the
mean period sizes obtained at each force to an extensible worm-like chain model yielded a
persistence length of (30 ± 18) nm; the stretch modulus could not be fitted with high accuracy.
The value of the persistence length is consistent with established parameters for DNA.

II.2.1.5 Inter-trace alignment
Having computed the correct period size, or nanometer-to-base pair conversion factor, for

each trace, we next needed to find the relative position offset between each trace (all distances
being now expressed in base pairs). For this purpose, we relied on a similar cross-validation
strategy: we shifted the RTH of each trace upstream or downstream until they matched each
other as well as possible, as measured by the average log-probability of observing a given
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RTH (testing set) if the underlying probability distribution is given by the average of the
other RTHs (training set).

Note that, in order to align various traces with each other, the bin size of the RTHs need to
be identical; a new RTH was thus computed for each trace with a bin size of (1/10)bp (using
the same procedure as above). Additionally, we found that for this purpose, a better quality
alignment was obtained by downsampling the traces before computing the RTH; the traces
were downsampled to 5 Hz.

In this case, the expression for the average log-probability is simpler. We define 𝑟𝑢,𝑖 the
average residence time of the 𝑢th trace at position 𝑖, 𝑆𝑢 = ∑𝑗 𝑟𝑢,𝑖 (total average time for trace
𝑢), 𝑆𝑖 = ∑𝑢 𝑟𝑢,𝑖 (total time at position 𝑖) (note the abuse of notation), and 𝑆 = ∑𝑢,𝑖 𝑟𝑢,𝑖. The
log-probability associated with the 𝑢th trace is (similarly to above)

𝐿𝐿𝑢 = ∑
𝑖

𝑟𝑢,𝑖 log
𝑆𝑗 − 𝑟𝑢,𝑖

𝑆 − 𝑆𝑢
(II.5)

and the average log-probability across training sets is

𝐿𝐿 = ∑
𝑢

𝐿𝐿𝑢

= ∑
𝑢,𝑖

𝑟𝑢,𝑖 [log (𝑆𝑗 − 𝑟𝑢,𝑖) − (𝑆 − 𝑆𝑢)]

= ∑
𝑢,𝑖

𝑟𝑢,𝑖 log (𝑆𝑖 − 𝑟𝑢,𝑖) − ∑
𝑢

𝑆𝑢 log (𝑆 − 𝑆𝑢) .

(II.6)

The second term is independent of the relative offsets between the tethers and can be ignored.
Unfortunately, due to the large number of parameters in this maximization problem (one

offset for each trace, except the first trace which can be taken as an (arbitrary) reference),
and the presence of multiple local maxima, we found that the global optimizer on which we
relied (scipy.optimize.basinhopping [114]) is unable to find a satisfactory solution.

We thus relied on a simpler approach first: we computed, for each pair of average residence
time histograms (𝑟𝑢,𝑖)𝑖, (𝑟𝑣,𝑖)𝑖 the correlation between the two traces ((𝑟𝑢 ∗ 𝑟𝑣)𝑖 = ∑𝑗 𝑟𝑢,𝑗𝑟𝑣,𝑖+𝑗),
and found the relative shift 𝛿𝑢,𝑣 that maximized this correlation. A natural idea is then to find
shifts 𝛿𝑢 for each individual trace such that 𝛿𝑢 ⊖ 𝛿𝑣 = 𝛿𝑢,𝑣 for all 𝑢, 𝑣; where ⊖ denotes the
difference taken modulo the number of bins. However, this system is overdetermined and
has no solution; additionally, the presence of the modulo term makes classic linear algebra
techniques, such as least squares, not directly applicable.
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It remains natural to attempt to find an approximate solution for the system 𝛿𝑢 ⊖ 𝛿𝑣 = 𝛿𝑢,𝑣.
One could, for example, attempt to find the minimizer

arg min
(𝛿𝑢)

∑
𝑢,𝑣

((𝛿𝑢 ⊖ 𝛿𝑣) ⊖ 𝛿𝑢,𝑣)2 (II.7)

using a global optimizer. However, as it turns out, not all 𝛿𝑢,𝑣 are “reliable”: for some pairs
of traces, the maximum in the correlation matches two “incorrect” peaks. Thus, we need to
use a robust alternative to least squares, which is able to ignore an unsatisfiable equation as
long as most others are properly handled. A classical example is least absolute deviations,

arg min
(𝛿𝑢)

∑
𝑢,𝑣

∣(𝛿𝑢 ⊖ 𝛿𝑣) ⊖ 𝛿𝑢,𝑣∣ . (II.8)

An additional correction is needed to make the minimization problem better behaved. A
problem of the least absolute deviations formulation is that it is not strictly convex, even
locally; specifically, if, say, 𝛿𝑢 ⊖𝛿𝑣 < 𝛿𝑢,𝑣 and 𝛿𝑢 ⊖𝛿𝑤 > 𝛿𝑢,𝑤, then the effect of slightly changing
𝛿𝑢 on these two terms will cancel out each other; that is, the target function is degenerate.
We fix this issue by rendering the target function locally strictly convex,

arg min
(𝛿𝑢)

∑
𝑢,𝑣

√((𝛿𝑢 ⊖ 𝛿𝑣) ⊖ 𝛿𝑢,𝑣)2 + 𝜖2 (II.9)

where 𝜖 is a small regularizer, chosen to be equal to one base pair.
It turns out that this target function is well-behaved enough so that a generic global

minimizer (scipy.optimize.basinhopping) can find a reasonable minimum for it quickly.
This minimum is then used as an initial point to the log-probability maximization problem
we formulated in the first place.

Having found the set of offsets that maximize this probability, each trace may still be “off”
their correct position by an integer number of periods. This error is fixed by shifting each
trace by an integer number of repeats so that their start position (which, as explained above,
is relatively poorly defined due to the need to move from the buffer channel to the NTP
channel) is no more than half a repeat away from the “expected” initial tether length.

In an initial alignment, we set the positions of the major pauses ‘a’, ‘b’, ‘c’, ‘d’, and ‘his’
within the 239 bp repeat to be 5, 30, 63, 90 and 158, respectively, thus maintaining the distance
between the pause sites in the sequence. We shifted the complete, aligned residence time
histogram to maximize the time spent at those sites (figure II.5). First, we observed that
site ‘c’ was clearly shifted ∼ 1 bp upstream relative to the expected position. To validate
the positions of the pause ‘c’, we performed a bulk transcription experiment covering the
region of pauses ‘c’ and ‘b’ (figure II.6). The results show a strong pause site 1 bp upstream
compared to the previously known position of pause ‘c’, but with a weaker pause following
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Figure II.5:
Residence time histogram of data collected at all conditions (excluding RNase samples).
Calculated distance between the main peaks are shown above the arrows (top value:
calculated value; value in parenthesis: expected according to Herbert et al.). The colored
vertical lines indicate the positions used for residence time calculations. Pause site positions
are shown in green and major sites are labeled. Reference sites at the pause-free region
(red) were analyzed and the residence times calculated in them were aggregated for each
condition.

it. The same result was observed when using the NTP concentrations used in earlier studies
(data not shown) [9]. The source of the discrepancy is thus unclear. Regardless, we moved the
position of pause ‘c’ accordingly. It should be also noted that the observed distance between
those sites was not an integer number of base pairs. This may be due to several reasons: a
possible difference in translocation state between the pause sites, a difference in the rise per
base pair along the template [9], as well as inherent limitations on the accuracy of our data
and alignment. We used the detected pause positions at this stage as the expected positions
for pause scoring described later.

Remember that at the beginning of our alignment procedure, we needed to assume what
section of the trace corresponded to the repeat region, based on an approximate estimate
of the size of a base-pair and of the position of the starvation site. As the output of our
alignment procedure consists of more accurate estimates of both quantities, we used these
outputs to better estimate the position of the repeat region, and repeat the entire alignment
procedure (only for one iteration).
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Figure II.6:
Top: sequence of the repeat with the expected pause sites according to Herbert et al. The
underlined base denotes the +1 base on the non-template strand, while the yellow color
indicates the 3’ end of the RNA at the pause site. Bottom: bulk transcription experiment
surrounding the area containing pause ‘c’, under the same buffer conditions and NTP
concentrations used in the trapping assay. An RNA ladder was generated by performing
the reaction in the presence of 3’-deoxy-NTPs. RNAP pauses strongly after incorporating
U, and more weakly after incorporating the subsequent A, indicating the main pause site
is 1 bp upstream of the expected position.
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II.2.1.6 Results of the alignment
The resulting sequence-dependent pausing profile is presented in figure II.2 (right). We

detected the strong pause sites characterized by Herbert et al. (‘his’, ‘a’, ‘b’, ‘c’, and ‘d’), nine
other sequence-dependent pause sites with shorter residence times (labeled P1–P9), and the
almost entirely pause-free regions between the pause sites. The weak pause sites P1–P9 were
partially evident in previous studies [9] but with lower resolution. They appear as peaks
across all tested conditions and forces, and display the high force sensitivity characteristic of
pause site, is contrast to non-pause sites (as will be shown later, figure II.20). These results
indicate that P1–P9 are weak pause sites and not random fluctuations in transcription rates.
Table II.2.1 contains the sequences of the identified pause sites, and table II.2.2 contains the
average transcription rates in pause-free regions. The ‘his’, ‘a’, and ‘d’ pause sites exhibit
three out of three matches to the consensus pause element, G–10Y–1G+1 [10, 11], whereas
the ‘b’ and ‘c’ pause sites exhibit only two matches. In contrast, the weak pause sites, P1–P9,
exhibit at most one out of three matches to the consensus pause element. We also checked if
the weak pause sites match the more extensive consensus sequence G–11G–10T–3G–2Y–1G+1
[10, 12], and found only one site (P9) that displayed more than one match. We focused our
study on the five strong pause sites, as well as the site ‘P2’, which displayed high sensitivity
to RNase, as described later.
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Table II.2.1:
Sequence of identified pauses sites. Next-to-last base is the 3’ end of the RNA (for sites

‘a’, ‘b’, ‘c’, ‘d’ and ‘his’: known from bulk assays and single molecule data; for sites P1–P9:
estimated from single molecule data). Underlined bases indicate bases from the consensus
motif G–10Y–1G+1.

site sequence (−11 to +1) consensus bases

a CGGGTAGATCCG 3/3
b GGTGAAACCGCA 2/3
c CGGTAAAGTGTA 2/3
d CGTATCACTGCG 3/3
his CGATGTGTGCTG 3/3
P1 TCCGCCCGCATA 1/3
P2 CATCTTTTGACA 1/3
P3 AGGCCGCCGTAT 1/3
P4 ACCACCATCATC 1/3
P5 AAGACATTCAGA 0/3
P6 AGATCGACCTGT 1/3
P7 TTGAAAAAGTTA 1/3
P8 AATCCGTGATAA 0/3
P9 TAACAAGCTGCA 1/3
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Table II.2.2:
Number of traces, number of analyzed repeats, and pause-free velocities under all tested
conditions. Errors are 95 % confidence intervals estimated by bootstrapping.

condition # traces # analyzed repeats velocity (bp/s)

+25 pN 18 152 42.7 ± 0.3
+20 pN 22 184 37.6 ± 0.3
+15 pN 23 195 33.5 ± 0.3
+10 pN 17 139 34.4 ± 0.2
+10 pN + GreB 16 131 26.1 ± 0.2
+10 pN + RNase 26 218 32.0 ± 0.3
+7 pN 17 144 28.4 ± 0.3
−5 pN 17 142 26.2 ± 0.2
−7 pN 18 153 28.3 ± 0.2
−7 pN + GreB 17 148 19.4 ± 0.2
−7 pN + RNase 19 159 24.6 ± 0.3
−10 pN 16 119 22.9 ± 0.2
−10 pN + GreB 17 144 18.9 ± 0.2
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Figure II.7:
Distribution of positions of detected > 1 s pauses relative to the sequence positions of the
major sites ‘a’, ‘b’, ‘c’, ‘d’ and ‘his’. Red dashed lines indicates the ±3 bp range.

II.2.2 Extraction of pause lifetimes
The second requirement—accurate determination of the pause site crossing times—was

fulfilled as follows. We estimated that the location of RNAP at any given position in the data
was known to within ±3 bp (figure II.7). Given this localization accuracy, we could draw,
around each expected pause site, a 6 bp window in which the actual pause site must be located.
Since no pause sites were found within 6 bp of one another, each window surrounding a
pause site contains ∼ 6 steps, one of which corresponds to the crossing of the pause site
itself and the others to the crossing of pause-free sites. Next, we made the key assumption
that within each of these 6 bp windows, the position of the pause site corresponds to the
slowest step. To estimate the crossing time of the pause site, we de-noised the traces using
total variation regularization (section II.2.2.1, figures II.8 and II.9), searched within each 6 bp
window for the 1 bp step that took the longest to cross, and took the duration of that slowest
1 bp as the crossing time at that pause site (section II.2.2.2).

II.2.2.1 Trace regularization
While linear filtering of the data is commonly used as a preprocessing step to detect pause

events in an optical tweezers trace, such a method is known to exhibit low sensitivity to fast,
sub-second pausing events. Instead, we relied on total variation regularization to compute
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Figure II.8:
Total variation denoising and computation of pause site crossing times. The total variation
denoising (red) of the raw data (blue) consists of flat segments separated by discrete jumps.
One of these segments occurs in the vicinity of an expected pause site. 1 bp windows are
drawn in the ±3 bp range surrounding the expected pause site; the window that took the
longest to cross (solid black) is used to define the pause site crossing time for the crossing
of this pause site.
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pause lifetimes [52]. A side-product of this regularization is the ability to detect rips and
zips.

Let us consider a trace 𝑦 = (𝑦0, 𝑦1, …). For traces where no backtracking occurs, a natu-
ral way to regularize the trace is isotonic regression; namely, finding the trace ̂𝑦 that is non-
decreasing (𝑦𝑖 ≤ 𝑦𝑖+1 for all 𝑖) and that minimizes the sum of squared errors, ∑𝑖(𝑦𝑖 − ̂𝑦𝑖)2.

However, backtracking is clearly observed, if somewhat rarely, in our dataset. In order to
allow our fit to go backwards whenever needed, we write a target function that penalizes
both deviation from the measurements (sum of squared errors) and “excessive” following of
the noise spikes:

arg min
̂𝑦

⎡⎢
⎣
∑

𝑖
(𝑦𝑖 − ̂𝑦𝑖)

2 + 𝜆 ∑
𝑖

∣ ̂𝑦𝑖+1 − ̂𝑦𝑖∣⎤⎥
⎦

. (II.10)

For example, note that the second term is equal to the end to end distance of ̂𝑦 if ̂𝑦 never
moves backwards; each backtrack increases the term by twice the backtrack depth. The factor
𝜆 indicates the relative importance we give to the two terms.

Efficient algorithms exist to find the minimizer ̂𝑦; we relied on the implementation of
Johnson’s dynamic programming algorithm [53] in the prox_tv package.

The remaining question is the choice of the relative weight, 𝜆, between the fidelity term
(mean square error) ∑𝑖 (𝑦𝑖 − ̂𝑦𝑖)

2 and the regularization term (total variation) ∑𝑖 ∣ ̂𝑦𝑖+1 − ̂𝑦𝑖∣.
We relied on the L-curve method to pick such a value [115]. The L-curve is the parametric
curve obtained by plotting the points
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∑
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2⎞⎟
⎠

1/2
, ∑

𝑖
∣ ̂𝑦𝑖+1 − ̂𝑦𝑖∣⎞⎟

⎠
(II.11)

for various values of 𝜆 in log-log scale (we plot the root mean square error so that both terms
have the dimension of a distance). When 𝜆 is small, increases in 𝜆 tend to greatly decrease (i.e.,
improve) the regularization term (by avoiding to follow the large number of fast spikes due
to noise), while only minimally increasing (i.e., worsen) the fidelity term (as the smoothed
out peaks are small in amplitude). Conversely, when 𝜆 is large, increases in 𝜆 tend to only
minimally decrease the regularization term (because most of the spikes have been smoothed
out), while greatly increasing the fidelity term (because all that is left to do is to smooth out
the large, “true” movement in the trace). The presence of these two regimes gives the L-curve
an “L” shape, where the two branches correspond to the two regimes described (figure II.9).
The “corner” of the L corresponds to a choice of 𝜆 where the compromise between the fidelity
term and regularization term is, in a sense, “optimal”.

The end result of this procedure is a trace that consists of exactly flat regions, separated by
sharp jumps (“staircasing effect” [52]) (figure II.8). Jumps of a size greater than 4 nm were
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Figure II.9:
L-curve for selecting the value of the regularizer for the 10 pN assisting force dataset.
Individual blue dots correspond to individual values of 𝜆 (taken at a constant ratio, 21/3,
of each other), with greater values of 𝜆 at the bottom right of the curve. The “vertical”
branch of the curve corresponds to the regime where increases in 𝜆 mostly decrease the
total variation term; the “horizontal” branch to the regime where increases in 𝜆 mostly
increase the root mean square error. The two red segments are tangents to the L-curve at
its inflection points (where the L-curve switches from “curving clockwise” to “curving
counterclockwise” and vice-versa); their intersection is marked by a red dot; the blue dot
closest to the red dot defines the chosen value of 𝜆.

considered as rips or zips in the raw data; whenever one was detected, the trace was split
into two sections (before and after the jump) that were analyzed separately.

II.2.2.2 Calculation of pause site crossing times
The regularized trace was then used for scoring the pauses. Again, remember that the

result of the regularization is a trace that is nearly nondecreasing, with backtracks occurring
only at a few, discrete positions.

We first converted the trace to a fully non-decreasing one by replacing its value during any
backtrack by the maximum value attained so far. Physically, this operation can be understood
as tracking the nature of the 3’ end of the RNA, rather than the position of the polymerase
itself.

We could then compute the pause site crossing time as follows: for each site, we defined a
fixed range surrounding the pause site symmetrically, with the range wide enough to ensure
that the pause site will be located within the tested range, but narrow enough to exclude
other pause sites. Within this range, the polymerase takes steps through multiple pause-free
sites and a single pause site. To calculate the crossing time of the pause site, we assumed
that the crossing of the pause site was the slowest step, and therefore picked, among all the
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1 bp-wide windows that one can draw within the tested range, the window that took the
longest to cross (figure II.8).

For this purpose, we first needed to assess how large this range needs to be to capture most
of the pausing events occurring at any site, which is, essentially, a measure of the accuracy of
the positioning individual RNAP molecules. The P1 site is located ∼ 8 bp downstream of ‘a’,
and P2 is located ∼ 10 bp downstream of ‘b’, and they are very clearly resolved. Therefore we
set the range of 5 bp on each side as maximum range necessary. To find if we can reduce this
range, we applied the pause detection algorithm used previously [9] with slight modifications.
The data was downsampled to 200 Hz and filtered with a 3rd order Savitzky-Golay filter
with a 1 s window. The instantaneous velocity was computed at every point and a velocity
histogram was calculated using 0.2 bp/s bins for all the traces collected at each condition.
The region from −2.5 bp/s to 2.5 bp/sec was then fit to a Gaussian. We assumed that all
rates lower than the center of the Gaussian are associated with pausing events and that the
distribution of rates for pause sites is symmetric. Using this assumption we calculated the
histogram for rates associated with pausing above the center. This enabled us to calculate,
for every possible rate, what is the probability that this rate is associated with a pause. We
defined a threshold rate as the rate below which this probability is at least 90 %. We used
this threshold to score pauses, while combining any adjacent pauses that were spaced < 1 bp
apart.

After pause scoring, for each scored pause we found the closest major site. Then, for the
±5 bp range around every major site we plotted a histogram of the distance of scored pauses
from the site (figure II.7). We found that a range of 3 bp at every direction contains ∼ 94 %
of the observed pausing events. We therefore chose a range of ±3 bp for pause scoring.
Crossing time distributions obtained using the two methods showed good agreement for
pauses longer than 1 s and sometimes even shorter pauses (figure II.10). However, our new
scoring method finds a crossing time for every crossing of the pause site, therefore enabling
us to characterize the behavior at very short time scales, as discussed below.

II.2.2.3 Resolution of the crossing time distributions
When performing this calculation, we essentially measure the slowest step between six

steps taking place in the analyzed window (given our localization accuracy of ±3 bp). In
pause-free regions, this will naturally result in crossing times that are longer than the average
pause-free dwell. Crossing time distributions in pause-free sites can be approximated by a
distribution of the maximum of six identical exponentials, yielding transcription rates close
to the measured average values (figure II.11). The behavior at long time scales at opposing
forces is not well fit by this model, possibly reflecting the higher tendency to enter pauses
outside the pause regions.
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Figure II.10:
Comparison of pause site crossing time distributions calculated from previously published
algorithms (solid lines) to crossing time distributions calculated using the method pre-
sented in this manuscript (dashed lines), for 10 pN assisting force. The distributions in
solid lines were rescaled to equalize the value of CCDF at 1 s and illustrate the difference
arising at shorter time scales.

Figure II.11:
Crossing time distributions calculated at 16 pause-free sites and aggregated, at 25 pN
assisting force and 10 pN opposing force. The data was fitted to a maximum of six ex-
ponentials with the same rate. We fit the data using successively truncated datasets (by
removing long events) and selected the fit with the best Kolmogorov-Smirnov statistic
when compared to the experimental data (fitting ∼ 98 % of the 25 pN assisting force data
and 80 % of the 10 pN opposing force data).
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At pause sites, the behavior of the calculated crossing times is more complex. If the
polymerase happened to have crossed the pause site relatively quickly (for example, because
it did not pause or because RNAP was in the paused state for a relatively short time), there
is a significant probability that the event captured by our method will be the crossing of
one of the pause-free sites surrounding the pause site, and therefore some crossing times
measured at short time scales will come from crossings of pause-free sites. As the pause site
crossing becomes longer, the probability of capturing increases. To estimate the probability
of capturing a crossing of the pause site, we assumed the five surrounding pause-free steps
are exponentially distributed and calculated the probability that a pause-site crossing of a
given length will be longer than the other five steps. The calculation shows that pause-site
crossings as short as 4.5 times longer than the average pause-free dwell (equivalent to 125 ms
to 250 ms) will be captured with > 95 % probability. A significant fraction of shorter (50 ms
to 100 ms) crossings will also be captured. Indeed, as shown in the main text, the crossing
time distribution at pause sites can be distinguished from the distribution at pause-free sites
even at very short (< 200 ms) time scales.

II.2.2.4 Results of pause lifetime extraction
We measured the crossing time distribution (CTD) at each pause site, as well as in pause-

free regions, for which the data were aggregated into a single distribution (figure II.12 and
figure II.11). The heterogeneity within the reference sites is small compared to the difference
between reference sites and pause sites (both P1–P9 and ‘a’, ‘b’, ‘c’, ‘d’, ‘his’), justifying the
aggregation of data from all reference sites.

A key feature of the method we use for calculating crossing times is that no element of
pause detection is employed. Instead, the method calculates the crossing time for every
instance of the tested site, whether a pause occurred or not, yielding full distributions of all
crossings of the pause sites. The CTDs at pause sites can be clearly distinguished from the
distribution measured at non-pause sites under the same conditions using the same method
(which we term the reference CTD), down to a time scale of 100 ms (figure II.12).

II.2.3 Estimation of pausing efficiencies
The third requirement—accurate determination of pausing efficiencies—was fulfilled

by employing a non-parametric computational approach, as follows. For each pause site,
we define the pausing efficiency as the probability that an RNAP molecule will reduce its
transcription rate when crossing the site. In previous studies, the number of pauses shorter
than 1 s was estimated by extrapolation of the pause lifetime distribution measured at ≥ 1 s
time scales to shorter times. To test this method, we tried to fit the 1 s to 20 s region in the
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Figure II.12:
Crossing time distributions for different sites measured at 25 pN assisting force. The
complementary cumulative distribution function (fraction of events longer than a given
crossing time, CCDF) is plotted. The gray shaded area marks the time scales accessible to
previous experiments.

crossing times to an exponential distribution (figure II.13). We encountered several issues:
first, an exponential distribution did not give good fits consistently for any site. Second, in
most sites the crossing time log-cumulative distribution becomes steeper at the 0.5 s to 1 s
time scale compared to longer time scales, indicating faster dynamics dominating at this time
scale; that is, there are more 0.5 s to 1 s events than would be expected from an exponential
extrapolation from longer time scales. In other words, extrapolation to 𝑡 = 0 from events
longer than 1 s inherently underestimates the pausing efficiency, with the effect probably
being the greatest at high assisting forces, where very few of the events are longer than 1 s.
Finally, at weak pause sites, or at high assisting forces, the number of events longer than 0.5 s
to 1 s was frequently very low, making such fits very unreliable.

In contrast, we have directly measured the full pause site crossing time distributions. Due
to the stochastic behavior of single RNAP molecules, at the 50 ms to 100 ms time scale, events
cannot be unambiguously assigned as pause-free or paused, contrary to very fast (< 50 ms)
or very slow (> 1 s) events, that can be assigned with certainty as pause-free or paused,
respectively (figure II.14). This inherent limitation is independent of the resolution of the
method. We therefore calculated the pausing efficiency at each site by comparing the CTD
measured there to the reference CTD (measured at non-pause sites), modifying an analysis
of power law tails presented by Clauset et al. [54].
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Figure II.13:
Exponential fits to crossing times in the 1 s to 20 s range for the major pause sites and P2 at
five assisting forces. For pauses ‘a’ and P2 at 25 pN, the fit did not converge.
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Figure II.14:
(Top) Illustration of the overlap between the distribution of crossing times for paused states
and pause-free states. For each curve, 10,000 points were randomly generated from an
exponential distribution with a mean of 0.025 s (blue, pause-free), or from an exponential
distribution with a mean of 0.5 s (red, pause). It is very clear that events at the time scale
of 1 s or longer (green shaded area) can only be pauses; with higher temporal resolution, a
temporal regime in which an event has similar probabilities of being derived from a paused
states or a pause-free state is reached (gray shaded area). Pausing efficiency is estimated
by how much the distribution is enriched with longer events relative to the distribution
measured at pause-free sites. Exponential distributions were selected for the simulation
for simplicity—the principle would apply regardless of the shape of the distribution of
pause crossing times. (Bottom) The probability that an event with a particular duration
arises from the paused state was calculated for the case of 50 % pausing efficiency (half of
the events arise from the paused state). The probability increases with the duration of the
event.
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We assume that for a certain fraction of the observed crossing times, RNAP did not enter a
paused state, and that the crossing times of these pause-free events have the same distribu-
tion as the crossing times measured at the pause-free sites (the reference distribution). The
remaining events arise from the paused state, and their fraction is the pausing efficiency. As
explained in the main text, long events arise from the paused state with very high probability,
while events in the 50 ms to 150 ms range have similar probabilities of arising from a pause
or from pause-free dynamics (figure II.14). The probability that a particular event arises from
a pause increases gradually as the crossing time increases.

Let us consider a distribution of crossing times at the pause sites (figure II.15, blue curve),
and a distribution of crossing times at the reference sites (figure II.15, black curve). Imagine
that we were only able to observe, both at pause and at reference sites, the events that lasted
no longer than a cutoff time 𝜏 (figure II.15, gray vertical line)—and were oblivious even to
the existence of longer events. We could test how well the pause and reference distributions
match each other by computing a distance statistic between the distributions (in our case,
the Kolmogorov-Smirnov statistic). We compute this statistic for all possible 𝜏s, and pick
the one for which the two distributions are the closest to each other as the “cutoff time”
(typically, if 𝜏 is chosen too small, then statistical fluctuations due to small sample size lead to
a larger distance between the truncated distributions; if 𝜏 is chosen too large, it is the intrinsic
difference between the underlying distributions that leads to a large distance between the
truncated distributions) (figure II.15).

The similarity of CTDs below the cutoff at the pause site and at pause free sites suggests that
events shorter than the cutoff arise from the same (pause-free) state in both cases (figure II.15,
light green vertical bar). As stated above, there are also pause-free events longer than the
cutoff, which can be estimated from the reference distribution (figure II.15, dark green vertical
bar). As an example, if 50 % of the events in the reference distribution are shorter than the
cutoff, then at the pause site there should likewise be an equal number of pause-free events
below and above the cutoff. Therefore, the total number of non-paused events at the pause
site is thus computed as twice the number of events shorter than the cutoff. The pausing
efficiency is calculated as the remaining fraction of crossings, which must arise from the
paused state.

In fact, this value is likely to be a lower bound on the true pausing efficiency since, contrary
to our assumption, even events shorter than the cutoff may arise from the paused state with
non-zero probability. Based on simulations, we estimate that true pausing efficiencies may
be up to 15 % higher than the values we report, for the following reasons.

First, as shown in figure II.7, up to 6 % of the pauses occurring at every site will not occur
in the ±3 bp window around the expected position, and therefore the event most likely to
be scored is a pause free event. We can estimate the maximum error caused by this effect by
making the following assumptions: first, that 6 % of events in the crossing time distribution
have no pause site in the window, and that all of these events are recorded as pause free.
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Figure II.15:
Description of the method used to calculate pausing efficiencies, illustrated for the ‘his’
pause at 10 pN assisting force. The reference distribution is rescaled to indicate the overlap
between the two distributions below the cutoff time. For the distribution at the ‘his’ site,
all events shorter than the cutoff are classified as nonpaused (light green), as well as events
longer than the cutoff in the same proportion as in the reference distribution (dark green).
The remaining events (red) are classified as paused.

Second, that the missed pause site crossings have the same pausing efficiency as the captured
crossings.

Under those assumptions, the true pausing efficiency 𝐸 is

𝐸 =
𝑁p, in + 𝑁p, out

𝑁tot
(II.12)

where 𝑁tot is the total number of crossings, 𝑁p,in the number of paused crossings that occurred
within the window, and 𝑁p,out the number of paused crossings that occurred outside of the
window—the latter being equal to 𝑁tot × 0.06𝐸. Meanwhile, the observed efficiency 𝐸obs is
only derived from paused crossings in the window, i.e.,

𝐸obs =
𝑁𝑝,𝑖𝑛

𝑁tot
= (1 − 0.06)𝐸 = 0.94𝐸 . (II.13)

Therefore, an observed efficiency of 80 % will correspond to an efficiency of ∼ 85 %. However,
it should be noted that the fraction of pauses occurring outside the window may be lower
than 6 % as explained above, and there this effect may be smaller.
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Figure II.16: Calculated efficiency vs. real efficiency in a simulated dataset

Second, our observed cutoff times are low, and at these time scales even datasets derived
from completely different distributions (equivalent to 100 % pausing efficiency) may not
always be distinguishable, particularly with the size of our datasets (150 to 200 events for
pause sites, ∼ 2000 events for non-pause sites). To illustrate this, we generated synthetic
datasets—one containing 2000 data points derived from the distribution of a maximum of six
exponentials with an identical rate set to 30 bp/s (mimicking the pause-free sites crossing)
and one containing 200 data points derived from a similar distribution, but with one of the
exponents having a slower rate for a fraction of the data points (thus simulating the true
efficiency). We selected a slow rate of 2 bp/s. We performed the same truncation algorithm
as for the experimental data for different efficiencies. We found that in such a case, the
calculated pausing efficiencies from our method underestimate the real efficiency by 10 %
to 15 % (figure II.16). Similar results were obtained when using a gamma distribution with
a shape factor of 2 and a scale factor of 0.25 to describe the pause crossing times (data not
shown).

Finally, note that our pausing efficiencies should, in fact, be interpreted as “additional
pausing efficiencies above the background amount of random pausing present in the reference
data”. However, random pausing events occurring outside the pause sites (“ubiquitous
pauses”) were rare compared to previous reports [108, 116]: the fraction of crossings in
non-pause sites longer than 1 s (and therefore detectable as pauses by earlier methods) was
< 0.2 % for assisting forces, reaching 1.8 % at 10 pN opposing force (figure II.17). We speculate
that many pauses assigned as ubiquitous in previous studies with lower spatial accuracy
were in fact sequence-specific but their exact position in the sequence could not be resolved.
In comparison, the fraction of > 1 s crossings at pause sites was typically in the range of 5 %
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to 35 % at assisting forces and 30 % to 50 % at opposing forces. Therefore, the assumption
that no pausing occurs outside the pause sites would at most cause an additional slight
underestimation of the true pausing efficiencies at the pause sites.

As a control we measured the efficiency of individual reference sites against all the other
reference sites. As expected, reference sites showed pausing efficiencies around 0 (including
“negative” efficiencies, corresponding to the case where events at a specific reference sites
tend to be faster than the global reference distribution), and much lower than both major and
minor pause sites (figure II.18).
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Figure II.17:
Crossing time distributions at various pause sites and at reference sites at different applied
forces.
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Figure II.18:
Calculated pausing efficiencies at different sites, calculated across the whole dataset.
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Results

II.3.1 Nearly all RNAP molecules exhibit slow forward
transcription rates at sequence-dependent pause sites

We computed the pausing efficiency for the sites ‘a’, ‘b’, ‘c’, ‘d’ and ‘his’ at different forces
using the non-parametric method described above (figure II.19). All pause sites exhibit uni-
formly high pausing efficiencies (> 70 % to 85 %) that are independent of force. In other words,
almost all RNAP molecules exhibit slower dynamics when crossing sequence-dependent
pause sites, regardless of whether they entered an extended paused state. In contrast, the
extrapolation-based method consistently underestimates the efficiency, particularly at high
forces at sites ‘a’, ‘b’ and ‘c’. Unlike pausing efficiencies, pause durations are strongly force
dependent, as seen both in the distributions of pause site crossing times (figure II.17) and in
the residence times (figure II.20).

II.3.2 Pause stabilization by backtracking occurs in two steps
with distinct kinetics

Using the improved spatiotemporal resolution and positional accuracy of our method, we
probed the dynamics of backtracking events down to 2 bp depths under opposing forces
which are known to favor backtracking. Specifically, as illustrated in figure II.22a, we mea-
sured how far RNAP backtracked (backtrack depth), for how long the polymerase paused
before it began to backtrack (pre-backtrack time), and how long it spent in the backtracked
state (backtrack duration). Backtracking is highly site-specific, with the vast majority of
backtracking events occurring at site ‘b’, and less frequently at site ‘a’ (figure II.22b).

We tested whether the sequence-dependence of backtracking could be explained by the
changes in the thermodynamic stability of the transcription bubble as RNAP backtracks. For
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Figure II.19:
Pausing efficiencies at the major pause sites at different forces, calculated using extrapo-
lation of the crossing time distributions above 1 s towards faster times (red), and by our
nonparametric method (blue).
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Figure II.20:
Residence time histogram ratios. The ratios of the residence times at three forces to the
residence times at 25 pN assisting force are plotted. The ratio for 25 pN assisting force,
which equals 1 by definition, is plotted as a reference.

every position along the template, we calculated the free energy change of forming of the
transcription bubble, involving the melting of 12 bp of DNA hybrid (from the −12 position
to the active site) and the formation of a 10 bp RNA-DNA hybrid, using tabulated nearest-
neighbor free energy values [117, 118]. We then calculated the free energy change associated
with backtracking by up to 8 bp at each of the pause sites (figure II.21a, left). Only sites ‘a’, ‘b’
and ‘his’ exhibited an energetic gain from backtracking without the need to cross a significant
energetic barrier. This observation suggests that a significant part of the large backtracking
propensity at sites ‘a’ and ‘b’ may be attributed to the gain in free energy resulting from
moving the transcription bubble backwards. Although backtracking at the ‘his’ site appears
energetically favorable in this simplified model, it is most likely inhibited by the hairpin in
the nascent RNA. More generally, additional sequence-dependent factors that may affect
the backtracking propensity are other secondary structures in the nascent RNA [109] and
interactions between the nucleic acids and the polymerase itself.

To test whether bubble thermodynamics contribute to backtracking propensity in the
bacterial cell, we analyzed the pause sites mapped by Imashimizu et al. [12]. We used the
same technique to calculate the bubble free energies at the pause sites (figure II.17a, right).
At the sites mapped for WT E. coli, each of the first three steps were energetically favorable
at the majority (at least 55 %) of the sites (𝑝 < 0.02, two-sided binomial test) with the least
favorable step (the first one) averaging 0.16 kcal/mol across all sites. At the sites mapped for
ΔgreAB E. coli, each of the first seven steps were energetically favorable at the majority (at least
58 %) of the sites (𝑝 < 0.01, two-sided binomial test) with the least favorable step (the seventh)
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averaging 0.14 kcal/mol across all sites. Conversely, we found that across all annotated
transcribed sequences in the E. coli genome (NC_007779.1), sites where backtracking is
energetically favorable are in a slight minority (49.95 %, 𝑝 < 0.05, two-sided binomial test).
Overall, these findings support a model in which the differences in the energetic cost of
opening a bubble at various sites are a major contributor to the difference in backtracking
propensity. This result is consistent with recent findings from genome-wide analysis of
pausing in bacteria and yeast [119].

We further characterized the backtracking dynamics at site ‘b’. First, the backtrack depth
and duration were positively correlated (figure II.22c) with a sub-linear dependence that
points to a diffusive backtracking mechanism [48, 120]. Return of the polymerase to the active
site does not necessarily imply recovery from the paused state—in many backtracking events,
the polymerase successfully moves back towards the active site, only to backtrack again once
or several times before actual recovery (figure II.22a). Second, we found that RNAP does
not begin to backtrack immediately upon entering a pause. Instead, it takes at least a second
before the enzyme begins to move backwards (with most backtracking events starting 1 s
to 10 s after the beginning of the pause, figure II.22d). This observation indicates that the
stabilization of a pause by backtracking occurs in two steps: 1) rapid formation of an initial
paused state, which is either non-backtracked or backtracked by 1 bp at most, and 2) slow
conversion into a deep and long-lived backtracked state.

To further characterize the backtracking process, we also conducted experiments in the pres-
ence of elongation factor GreB (at a concentration of 0.87 μM), which rescues elongation com-
plexes backtracked by as little as 2 base pairs, but inhibits transcription by non-backtracked
RNAP [120] (figure II.22 and figure II.21). Transcription data collected in the presence of
GreB at 10 pN opposing force, at which backtracking is most favored, displays shorter and
less deep backtracking events, with rapid recovery indicative of transcript cleavage and
transcription directly from the backtracked position, in contrast to the slower, diffusive return
observed in the absence of GreB [88]. GreB has a slight opposite effect on non-backtracked
pauses: GreB slightly increased the crossing times at all time scales at the sites ‘c’, ‘d’, and ‘his’,
consistent with the low degree of backtracking observed at those sites (figure II.23). The effect
of GreB was different for sites ‘a’ and ‘b’ (figure II.23)—at short time scales, crossing times at
‘a’ and ‘b’ were unaffected, or even slightly increased in presence of GreB; however, pausing
events longer than ∼ 3 s, comprising 20 % to 25 % of the events, were highly attenuated.
Pause-free sites display similar behavior to pauses ‘a’ and ‘b’, but only ∼ 3 % of the crossings
(corresponding to time scales > 0.7 s) are shortened by GreB, indicating that backtracking
outside the main pause sites occur at a very low frequency. This result further confirms
that ≥ 2 bp-backtracked states are formed slowly from non-backtracked or 1 bp backtracked
paused states.
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Figure II.21:

(a) (Left) Calculated change in free energy of the transcription bubble during back-
tracking at different pause sites. Energies were calculated for a 10 bp RNA:DNA
hybrid and a 12 bp transcription bubble. At sites ‘a’ and ‘b’, backtracking is ener-
getically favorable to at least 3 bp to 4 bp without encountering significant barriers,
but not at sites ‘c’, ‘d’, and ‘P2’. The ‘his’ site also shows a large energetic gain,
which is most likely offset by the hairpin in the nascent RNA. (Right) Identical
calculation averaged across the backtrack-prone sites mapped by Imashimizu et al.,
for both the WT (blue) and the ΔgreAB (red) datasets. Solid line, mean difference;
shaded area, one standard deviation.

(b) Effect of GreB on transcription dynamics at 10 pN assisting force and 10 pN oppos-
ing force.
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Figure II.22:
Analysis of backtracking events.

(a) The trace shown contains a backtracking event occurring at site ‘b’. The backtrack
depth, pre-backtrack time and backtrack duration are labeled.

(b) Histogram of backtracking events by position.
(c) Backtracking depths and times measured at opposing forces for site ‘b’.
(d) Histogram of pre-backtrack times measured at site ‘b’ at opposing forces.
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Figure II.23:
Effect of 0.87 μM GreB on the crossing time distributions at the major pause sites, measured
at 10 pN opposing force. At short time scales, comprising 80 % to 90 % of the measured
events, GreB slightly increases crossing times. Therefore, mean residence times are longer
in the presence of GreB at pause sites (figure II.21). At sites ‘a’ and ‘b’, for the longest events
(20 % to 25 %), GreB reduces the crossing times, indicating these are backtracked events.

II.3.3 Nascent-RNA hairpins enhance or attenuate pausing
depending on the sequence context and the applied
force

We probed the effect of nascent-RNA on the transcriptional dynamics by addition of
0.1 mg/ml RNase A [109]. Consistent with reports that pausing is stimulated by the nascent
RNA hairpin at the ‘his’ site, RNase strongly attenuated, but did not abolish the pausing at
that site (figure II.25a). We found that nascent RNA also affects pausing dynamics in other
sites, and that the direction and magnitude of the effect are sequence dependent. Pause ‘d’
was attenuated, though to a smaller extent than ‘his’, whereas the otherwise weak pause
‘P2’ was strongly enhanced by RNase. Modulation of pausing by the nascent RNA and
backtracking appear to be mutually exclusive, as the backtracking-prone sites ‘a’ and ‘b’ did
not exhibit sensitivity to RNase. The residence times at several of the minor pause sites (such
as ‘P1’ and ‘P6’) were also modulated by removal of the transcript.

Next, we analyzed how the applied force changed the RNase sensitivity of the affected
pause sites (figure II.25b, c). The effect of RNase was consistently stronger at opposing force
than at assisting force. This observation could be explained by two scenarios. First, nascent
RNA structures may interact more strongly with RNAP in the pre-translocated state, which
is favored by opposing force. Second, under opposing force, transcription rates are lower,
which may give more time for RNA structures to form, thus enhancing their effect. For the
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pause sites ‘a’, ‘b’, ‘c’, ‘d’, ‘his’, and P2, we simulated the cotranscriptional folding of 50 RNA
bases with the 3’ end at the −11 position relative to the pause site (immediately upstream
of the exit channel) using Kinefold [121] (figure II.24). We performed the simulation using
two transcription rates: 29.1 ms/base (rate at 10 pN assisting force) and 35.3 ms/base (rate
at 7 pN opposing force). For every simulation, we checked whether among the five most
stable structures there is a structure containing a helix that ends immediately upstream of
the polymerase at the pause site (positions −15 to −11). We plotted the helix trace for such
helices (percentage of formation of the helix as a function of time). The results are shown in
figure II.21. For the sites ‘P2’ and ‘his’ a stable helix is formed at least 40 ms before RNAP
reaches the pause site, with for site ‘d’ a less stable structure appears ∼ 80 ms before RNAP
reaches the pause site. The applied force, through its effect on the transcription rate, does not
cause any significant changes to the stability of the formed structural or to the timing of their
formation relative to the arrival of RNAP at the pause site. Overall, these simulations indicate
that RNA folding is likely to be fast compared to transcription and therefore the effect of RNA
on pausing is unlikely to change due to the small (∼ 15 %) variation in transcription rate over
the range of forces tested. Accordingly, we tend to favor the hypothesis that nascent-RNA
structure interacts predominantly with RNAP in pre-translocated state.

Previous studies using bulk transcription assays have found that the mutating the nascent
RNA hairpin at the ‘his’ site reduced pause durations with minimal effects on measured
pausing efficiencies, while mutations to the consensus pause elements reduced both [49,
122–124]. However, it is unclear whether this is due to limited temporal resolution (∼ 10 s)
that precluded the detection of short pauses. Using the enhanced resolution in our assay, we
tested the effects of RNase on pausing efficiencies at the ‘his’, ‘d’, and ‘P2’ sites. We found that
in contrast to its effect on the pause residence times, the effect of RNase on pausing efficiency
is minimal, with no significant changes at assisting force and only a ∼ 25 % reduction at
opposing force for the ‘his’ site. These observations confirm that the interaction between
the nascent RNA and RNAP plays only a minor role in pause entry, and primarily serves to
enhance (for ‘his’ and ‘d’) or inhibit (for ‘P2’) the formation of longer lived paused states.
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Figure II.24:
Kinefold analysis of RNA structures in the pause sites. Top: Representative RNA structures
formed near the exit channel when RNAP is located at the pause site. Bottom: Helix traces
for the structure shown for sites P2, d and ‘his’. The black dashed line indicates the
completion of transcription of the 50 base RNA, equivalent to the arrival of RNAP at the
pause site, thereby releasing the −11 RNA base from the exit channel.
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Figure II.25:
Effect of RNase on pausing dynamics.

(a) Residence time histograms collected at 10 pN assisting force with and without
RNase.

(b) Effect of RNase on pausing efficiencies.
(c) Effect of RNase on residence time distributions at sites ‘P2’, ‘d’ and ‘his’.
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Discussion

Sequence-specific pausing involves the formation of elemental paused states that are
stabilized by processes such as backtracking and RNA hairpin formation. The enhanced
temporal resolution of our assay revealed that in addition to these mechanisms, pause
sequences facilitate pause entry by reducing the forward transcription rate of RNAP: nearly
all RNAP molecules exhibit slow transcription dynamics when crossing a pause site, even
under conditions in which few or no pausing events are long enough to be detected directly
using previous methods. This most likely takes place through sequence-dependent inhibition
of forward translocation, as evident from the strong force-dependence of pause durations.
This is further supported by the inhibition of forward translocation of E. coli RNAP by
consensus pause elements [11] and by studies of S. cerevisiae RNA polymerase II, for which
sequence-specific translocation barriers that inhibit forward motion of the polymerase have
been implicated in pausing [125]. We propose that inhibition of the on-pathway elongation
dynamics of RNAP allows time for transitions into stable off-pathway paused states, such as
hairpin-stabilized or backtracked-stabilized states [126] (figure II.26).

The universally high and force-independent pausing efficiencies can also be rationalized
by the existence of a paused state which is accessed at a very high rate relative to forward
transcription, resulting in high pausing efficiencies at all forces. From a functional perspective
this model is equivalent to an effective reduction of the on-pathway rate.

Previous studies of transcriptional pausing were blind to the dynamics in the 100 ms to
1000 ms time scale [48, 108] and estimated the number of pauses shorter than 1 s by extrap-
olating from the distribution of events longer than 1 s, usually assumed to be exponential.
This approach implicitly assumes that the rate of pause escape is the same in both time
scales; in fact, it yields a highly inaccurate picture of the pausing dynamics at short time
scales (figure II.13). The “slowest-crossing” method presented here for computing crossing
times enhances the temporal resolution of the dynamics at pause sites, down to ∼ 100 ms.
The non-parametric method for computing the pausing efficiencies presented here relies on
the more conservative assumption that pause-free crossings at the pause sites occur via the
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same mechanism as crossings of non-pause sites and therefore follow the same distribution.
Using this approach, we found that pausing efficiencies are much higher than previously
determined and are independent of force.

The enhanced temporal resolution of our assay enabled a detailed characterization of
the roles played by backtracking and nascent RNA structure in pausing dynamics. Struc-
tural studies have found differences between the conformations of 1 bp backtracked and
deeper backtracked elongation complexes, both for bacterial and eukaryotic RNAP [127, 128].
However, it was unclear whether these structural differences manifest in a functional effect
on the dynamics of backtracking. Our results provide direct evidence that the formation
of ≥ 2 bp backtracks involves the rapid and efficient formation of an initial paused state
(non-backtracked or 1 bp backtracked) followed by a slower formation of deep backtracked
states (figure II.26). Optical trapping studies on nucleosome-induced pausing have also
yielded indirect evidence of similar behavior by yeast RNA polymerase II [129]. While it is
unclear whether the initial paused state is a non-backtracked or a 1 bp backtracked state, we
propose that the two-step nature of backtracking may be a general property of elongation
complexes.

As with backtracking, the effects of RNA structure on pausing are site-specific; they vary
both in their direction and in their magnitude (figure II.26). While pausing at the ‘his’ site
is strongly dependent on the hairpin, site ‘d’ retained significant pausing in the presence
of RNase, and the RNA structure primarily stabilizes paused states longer than 1 s. At site
‘P2’, pausing is inhibited by the nascent-RNA. Studies of eukaryotic RNA polymerase II [109]
have suggested that RNA structures diminish pausing by generating a physical barrier for
RNAP backtracking [130]. However, we observed no significant backtracking at site ‘P2’, and
RNase had no effect on backtracking in general or on the backtrack-prone sites ‘a’ and ‘b’.
The CTD at ‘P2’ was also not affected by GreB, and the effect of RNase was also observed at
assisting force, where backtracking is not favored. We therefore conclude that the nascent
RNA inhibits pausing at site ‘P2’ by a distinct interaction with RNAP, and not by inhibiting
backtracking.

Our results contrast with previous reports that detected no effect of nascent RNA folding
on pausing [50], and highlight the importance of sequence resolved, high-resolution studies
of pausing. The low temporal resolution and inability to resolve the position of RNAP in
previous methods would cause the diverse effect of nascent RNA to average out. Sequence
resolved characterization of pausing at high temporal resolution revealed a far more complex
picture of transcriptional regulation by nascent RNA structure. Since the nascent transcript
can bind species such as ribosomes [131] and termination factors [132], it may serve as a
fine-tuning element in the transcription cycle, enabling flexible modulation of elongation
rates in a context-dependent manner.

Transcriptional pauses play a crucial role in the regulation of gene expression and in the
coordination of transcription with other processes. Understanding the molecular transitions
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Figure II.26:
Proposed model for transcriptional pausing by E. coli RNAP. TEC: Transcription Elongation
Complex; the indices 𝑛 − 1, 𝑛 and 𝑛 + 1 indicate the length of the RNA product. At
pause sites, the paused state is rendered kinetically accessible to the polymerase through a
slowing down of the on-pathway forward translocation rate. Depending on the sequence
context, this paused state can transition slowly to a ≥ 2 bp backtracked state (in sites ‘a’ and
‘b’), be stabilized or destabilized by the nascent RNA (‘his’, ‘d’ and ‘P2’) or be stabilized
by other mechanisms (such as in site ‘c’, which exhibited neither backtracking nor RNase
sensitivity).
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that lead from pause-free transcription to paused states requires tools that permit the char-
acterization of pausing dynamics at high spatiotemporal resolution. The development of
such tools in this work resulted in valuable insights into the mechanism of pausing and
opens the door to more detailed studies on pause entry of both bacterial and eukaryotic RNA
polymerases.
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Materials and methods

All DNA modifying enzymes were purchased from New England Biolabs. Oligonu-
cleotides were purchased from IDT. Nucleotide triphosphates were purchased from Thermo
Scientific, and standard salts and buffer components were purchased from Sigma Aldrich.
Carboxylated 1 µm polystyrene beads were purchased from Bangs Labs.

II.5.1 Plasmids and DNA templates
Plasmids pIA1127 (for expression of σ70), pIA1234 (for expression of sortagged RNA

polymerase), and pIA2-6 (used as a template for preparing DNA handles) were a gift from
Irina Artsimovitch. Plasmid for the expression of sortase was a gift from David Liu.

The template was derived from a plasmid containing the T7A1 promoter, a ∼ 1 kb down-
stream spacer region, eight repeats containing the ‘his’ pause, and finally an rrnB T1 termina-
tor sequence [9].

II.5.2 Preparation of DNA template, enzymes, beads, and
stalled complexes

The DNA template was prepared as described in part I, with the single modification that
opposing force templates were obtained by treatment with Klenow 3’-5’ exo− polymerase
(1 unit per µg DNA) and 0.1 mM ddCTP (instead of the ddATP used for assisting force
template).

σ70 preparation, RNA polymerase holoenzyme preparation, sortagging, and biotinylation,
bead coupling to oligos, bead passivation, and stalled complex preparation were performed
as described in part I.

89



Chapter II.5 Materials and methods

II.5.3 Preparation of GreB
The gene for GreB was cloned into a pET vector by ligation independent cloning (Add-

gene #29653). The plasmid was transformed in Rosetta2 cells, the bacteria were grown in
1 liter of 2YT medium supplemented with 1 % glucose, NPS (25 mM (NH4)2SO4, 50 mM
KH2PO4, 50 mM Na2HPO4), 1 mM magnesium sulfate, 34 µg/ml chloramphenicol and
50 µg/ml kanamycin. The culture was grown at 37 °C to an OD600 of 0.6, IPTG was added
to 0.5 mM and transformation proceeded for 4 hours at 37 °C. The bacteria were then cen-
trifuged, and dispersed in 40 ml of lysis buffer (Tris 100 mM pH = 7.9, 25 mM imidazole, 1 M
NaCl, 2 mM β-mercaptoethanol) supplemented with 1 mM PMSF and 0.2 mg/ml lysozyme.
The bacteria were lysed by sonication, and the solution was centrifuged and filtered.

The sample was loaded on a 2 ml Ni-NTA column, washed with 12 ml of lysis buffer,
followed by 12 ml of lysis buffer with 50 mM imidazole, and finally eluted with lysis buffer
with 300 mM imidazole. TEV protease was added at a 1:10 molar ratio, and the sample was
incubated overnight at 4 °C while dialysing against lysis buffer. The sample was passed again
over 1 ml Ni-NTA beads, concentrated to < 3 ml, and loaded on a sephacryl S100 gel filtration
column equilibrated with Tris 25 mM pH = 8, 1 M NaCl, 1 mM EDTA, 1 mM DTT. Fractions
containing clean GreB were pooled and concentrated to ∼ 50 µM; glycerol was added to 50 %;
and the protein was flash frozen with liquid nitrogen and stored at −80 °C.

When performing experiments with GreB, the protein was dialyzed first into HEPES
25 mM pH = 8, 1 M KCl, 1 mM DTT and 1 mM EDTA so that it could be mixed into the
experimental buffer in precomputed ratios in order to maintain the buffer composition.

All proteins were > 95 % pure based on SDS-PAGE. Holo-RNAP activity and pausing was
confirmed using short template containing a T7A1 promoter, 29 bp U-less cassette and a
downstream ‘his’ site. GreB activity was tested by the rescue of a 2 bp backtracked elongation
complex assembled using an RNA oligonucleotide with two mismatched bases at the 3’ end
[133].
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Unraveling the thousand word picture:
an introduction to

super-resolution data analysis
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This review of super-resolution analysis techniques was originally written as a part of

Unraveling the thousand word picture: an introduction to super-resolution data
analysis.
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Reprinted with permission from “Unraveling the thousand word picture: an introduction
to super-resolution data analysis”, A. Lee, K. Tsekouras, C. Calderon, C. Bustamante, S. Pressé.
Chem. Rev. (2017), 117, 7276–7330. Copyright 2017, American Chemical Society.

Processes fundamental to life, including DNA transcription, RNA translation, protein
folding, and assembly of proteins into larger complexes, occur at length scales smaller than
the diffraction limit of light used to probe them (< 200 nm). For this reason, up until a decade
ago, these processes were largely inaccessible to conventional microscopy methods. Key
technical achievements by way of experiments, from structured illumination methods [134,
135] to manipulations of fluorophore photophysics [56–58], have peered into this previously
impenetrable scale with several techniques now providing detailed in vivo 3D images.

On the experimental front, many technical challenges remain including the following: high
density labeling; poor time resolution at the expense of high spatial resolution; challenges
with fluorophore activation and complex photophysics; overexpression of select proteins
altering cell homeostasis; and high light intensity, some ∼ 104 times higher than that under
which cells have evolved for methods such as photoactivated localization microscopy [136].
Despite these challenges, experiments have begun to resolve the spatiotemporal dynamics
and organization of cellular components within their native environment, revealing, for
instance, the intricacy of yeast DNA transfer from mother to daughter cell [137] and the
stochastic assembly of chemoreceptors on E. coli’s surface [138]. What is more, recent advances
in optics have mitigated the spatial-temporal resolution trade-off providing greater in vivo
resolution in 3D [139–147]. Advances continue to accrue, with the latest techniques reaching
spatial resolutions of ∼ 1 nm and temporal resolutions on the order of microseconds [148].

Ten years have passed since the inception of super-resolution microscopy and the variety
of data collected has presented new modeling challenges [149]. Initial data analysis methods,
such as mean square displacement analyses, were directly motivated from the analysis of
bulk ensemble data largely inspired by Occam’s razor. Thus, such methods did not explicitly
take advantage of the richness of single molecule datasets such as their temporal ordering or
even their intrinsic heterogeneity.

A large fraction of this review is devoted to later “data-driven” efforts, deeply inspired
from the fields of machine learning and inference, and increasingly available through an
array of open-source software [150–154], to turn the thousand-word picture provided by
super-resolution methods into a quantitative narrative.

Here, after presenting the basic physics of super-resolution methods (chapter III.1), we
tackle two fundamental challenges for the analysis of data generated by such methods: the
localization problem (chapter III.2) and the counting problem (chapter III.3).
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Beating the diffraction limit:
an introduction

III.1.1 Why fluorescence microscopy?
Upon excitation of a sample within a specific wavelength range (the absorption spectrum),

a fluorophore emits light at a longer wavelength (the emission spectrum). The excitation
wavelength may be filtered away leaving behind only the emission from the fluorescent
components. In this way, fluorescence brings improved contrast to microscopy.

The first fluorescence microscopes, developed by the Carl Zeiss company and others in
the early 20th century, relied either on the autofluorescence of various tissues or chemical
dyes and stains such as fluorescein [155]. An important milestone in increasing the ability to
fluorescently label a given biological structure was achieved by Coons et al. in the 1940s, who
demonstrated that antibodies, raised to bind a specific antigen with high specificity, could be
attached to fluorescent dyes, thus realizing a method to fluorescently label any antigen of
interest [156]. The subsequent discovery of the green fluorescent protein [157], together with
advances in molecular biology techniques, then allowed the expression of proteins directly
fused to fluorescent markers by the end of the 20th century [158].

At the same time, the detection of the signal from single fluorophores (rather than larger
labeled structures) was achieved by progressive improvements in instrumentation [159, 160].
This powerful combination of new advanced optical techniques with fluorescent protein tags,
which could be detected in live cells at the single molecule level, set the stage for a new era
of measurements in cell biology and biophysics [147].
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III.1.2 Point spread functions and the diffraction limit
Although labeling techniques have greatly improved over the last century, fundamental

physical reasons have limited the resolution achievable by optical microscopy. Historically,
this resolution has been defined as the ability to distinguish two close objects.

As early as 1834, Airy derived the profile of the diffraction pattern, or point spread function
(PSF), of a point source of radiation imaged through a telescope, now known as the Airy
disk [161]. He established that “the image of a star will not be a point but a bright circle
surrounded by a series of bright rings. The angular diameter of these will depend on nothing
but the aperture of the telescope, and will be [sic] inversely as the aperture” [161]. More
precisely, for a telescope of aperture a imaging at a wavelength 𝜆, the intensity 𝐼 at an angle 𝜃
from the optical axis, relative to the intensity 𝐼0 at the center, is given by

𝐼(𝑥)/𝐼0 = (2𝐽1(𝑥)/𝑥)2 (III.1)

where 𝑥 = (2𝜋/𝜆) 𝑎 sin 𝜃 and 𝐽1 is the first order Bessel function of the first kind. Rings appear
at the maxima 𝑥 = 𝑥1, 𝑥2, … of 𝐼(𝑥). In the limit of small angles (i.e., 𝜃 ≈ sin 𝜃), these maxima
correspond to 𝜃𝑖 = 𝜆𝑥𝑖/(2𝜋𝑎). Thus, the angular diameters of the rings are indeed inversely
proportional to the aperture 𝑎 figure III.1.

A few decades later, Abbe showed that a similar result held for optical microscopy: a point
source imaged at a wavelength 𝜆 through a microscope objective of numerical aperture NA,
defined as the product of the index of refraction of the medium between the objective and
the sample, 𝑛, and the sine of the half angular aperture of the objective, 𝜃, yields a spot of size
𝑑 ≈ 𝜆/2NA in the transverse direction and 2𝜆/NA2 in the axial direction [162] figure III.2.

Whether in astronomy or microscopy, it is the finite extent of the image of a point source
that limits our ability to separate two objects nearby. In 1879, Rayleigh suggested a rule, now
called the Rayleigh criterion, whereas two diffraction spots could be considered as resolved
if their centers were further apart than the center of a spot is from its first zero in intensity
[163] (figure III.3). He emphasized that this rule was simply suggested as an approximation
“in view of the necessary uncertainty as to what exactly is meant by resolution”, though this
rule still remains in use today [164]. In fact, it is generally agreed in astronomy that spots up
to ∼ 20 % closer are resolvable [164].

Nowadays, super-resolution imaging continues to leverage ideas and tools from astronomy,
both on the experimental [165] and analysis side [166].

Even though the Rayleigh criterion may not be strictly accurate, the resolution of a mi-
croscope is certainly inversely correlated with the size of the diffraction spot. As this spot
has a size of 𝑑 = 𝜆/2NA in the transverse direction and 𝑑 = 2𝜆/NA2 in the axial direction,
improvements to the resolution are achieved by working at a shorter wavelength or larger
numerical aperture.
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Figure III.1:
A point emitter generates an Airy spot (a) with an intensity profile (b) given by equation
III.1. The wavenumber 𝑘, used in (b), is 2𝜋/𝜆. The intensity profile and diffraction spots
were plotted using a simple Python script.

Figure III.2:
Microscope seen as a telescope. (a) A microscope’s resolution is determined by the
numerical aperture NA of its objective, which is defined as the product of the index of
refraction of the medium between the objective and the sample, 𝑛, and the sine of the half
angular aperture, 𝜃. (b) A telescope’s angular resolution is determined by its (physical)
aperture, 𝐷.
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Figure III.3:
(a) Fully resolved, (b) barely resolved, and (c) non-resolved Airy diffraction spots accord-
ing to the Rayleigh criterion. The intensity profile and diffraction spots were plotted
using a simple Python script.

The room for improvement from changes in the wavelength is limited by the spectrum of
visible light, 𝜆 = 400 to 700 nm. Electron microscopy achieves a much higher, near-atomic
resolution by operating at a pm-scale wavelength, but this comes at the cost of invasive
sample preparations, radiation damage to the sample, and low contrast [167].

The numerical aperture NA = 𝑛 sin 𝜃 has also reached its practical limits: now, oil immer-
sion objectives (𝑛 ≈ 1.5) with half angular apertures of more than 60° achieve NA ≈ 1.4. Few
(easy to work with) liquids have higher indices of refraction. Taking these improvements
together, the smallest spot size that can be achieved is thus around 150 nm in the transverse
direction and 400 nm in the axial direction.

III.1.3 Beyond the diffraction limit
Objects may be distinguished from one another at a subdiffraction scale by using a combi-

nation of methods including structured illumination, stochastic fluorophore activation, and
basic data processing.

As an example of the latter, if we approximate the imaging system as a linear system, i.e.,
where the measured image can be obtained by applying a linear operator (convolution by
the PSF) to the original sample (the emitter’s original intensity distribution), it is in principle
possible to mathematically invert (“deconvolve”) the imaging operator to reconstruct a higher
resolution image, by solving a system of linear equations. Unfortunately, theoretical results
indicate that the performance of such an approach is strongly limited by noise [168, 169].
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Nonetheless, in the context of microscopy, this idea was first implemented by Agard et al.
[170] and may achieve a twofold improvement [171].

Furthermore, Rayleigh’s criterion does not limit the ability to determine to very high
accuracy the position of a single point emitter. For example, the center of a single spot can be
estimated to a precision length smaller than the size of the spot itself by fitting the emission
pattern to a known PSF, or an approximation of it, such as a Gaussian. The central limit
theorem then suggests that the accuracy of such a calculation should be proportional to the
inverse square root of the number of observed photons.

By determining the approximate position of emitters over a time series of fluorescence
images, where the low density of fluorescent markers ensured their spatial separation,
Morrison et al. tracked the diffusion of individual low-density receptors on cell membranes,
with a resolution of ∼ 25 nm, well below the diffraction limit [172, 173].

Even as early as in 1995, Betzig suggested that such a localization strategy may be applicable
in more densely labeled samples as well, provided that “unique optical characteristics” could
be imparted on individual fluorophores [174]. Such “unique characteristics” would allow
distinguishing the signals arising from each of the fluorophores; thus, the fluorophores
underlying each diffraction spot could then be localized with subdiffraction accuracy [174].

Betzig’s original suggestion was to discriminate certain molecules that would exhibit a
random spread in their zero phonon absorption line width [174]. However, it was instead
the serendipitous discovery of a photoconvertible fluorescent protein, that is, a fluorescent
protein whose emission spectrum can be modified by a light-induced chemical modification
[175], as well as the development of optically switchable constructs based on organic dyes
[176], that provided the critical advance toward the realization of this proposal in biological
samples.

Briefly, the light-induced conversion of probes to a fluorescent state at a slow enough rate
ensures that only a few probes are emitting at any given time even if the sample itself is densely
labeled, thus generating the sparsity needed for localization in dense environments [56–58].
Both labeling approaches were shown to be amenable to this technique: the approach based
on fluorescent proteins was named (fluorescence) photoactivated localization microscopy
((F)PALM) [57, 58]; and the approach based on organic dyes, stochastic optical reconstruction
microscopy (STORM) [56]).

While this review will primarily focus on techniques that rely on the stochasticity of pho-
toconversion to temporally separate the emission of different fluorophores, it is also possible
to exploit another physical phenomenon to enforce this separation. Specifically, as early as in
1994, Hell et al. noted that while the diffraction limit imposes a lower bound on the size of
excitation spots, it is possible to decrease the size of this spot by “deexcitation” (stimulated
emission depletion, STED) of the fluorophores located on its edges [177]. Specifically, this
deexcitation is carried out by alternatively exciting fluorophores within a small region of the
sample and immediately illuminating a doughnut-shaped area around this region with a
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depletion laser, bringing the fluorophores back to their ground state. The intensity profile
of this second region is also diffraction limited; however, given enough time, only the fluo-
rophores close to the exact center of the doughnut (where the deexcitation intensity is zero)
stay active. Measuring the fluorescence of these remaining fluorophores thus realizes a point
spread function that is effectively smaller than the diffraction limit.

A similar approach, relying on the readout of fluorescence along thin stripes rather than
small spots, was also developed, under the name of saturated structured-illumination mi-
croscopy (SSIM) [135]. This method relies on the observation that high spatial frequencies in
the fluorophore distribution can be “brought back” to a lower frequency under illumination
by a similarly high frequency pattern (i.e., by observing the beats between the two patterns)
[178]. Using linear optics (structured illumination microscopy, SIM), the illumination pattern
itself is diffraction-limited, and thus the resolution improvement of SIM is limited to a factor
of 2 over diffraction-limited microscopy; however, the nonlinearity offered by the saturation
method described above allows the generation of higher-frequency patterns and thus further
gains in resolution [135].

Ultimately, the fundamental basis for any of these techniques is to note that the diffraction
limit was derived under certain “standard”, but not absolute, hypotheses: that all fluorophore
positions must be recovered from a single image and that the signal captured depends linearly
on the excitation. Attacking the first condition, by spreading the information across multiple
frames, is the approach taken by stochastic photoconversion. STED and SSIM, additionally,
also violate the second condition, by operating in a nonlinear regime.

The large improvement in resolution afforded by structured illumination and stochastic ac-
tivation of fluorophores, together termed super-resolution microscopy, immediately opened
the door to a large number of discoveries. As early as in 2007, Shroff et al. demonstrated
the ability of two-color super-resolution to resolve the relative positions of pairs of proteins
assembled in adhesion complexes, the attachment points between the cytoskeleton of mi-
grating cells and their substrates, which otherwise seem entirely colocalized in diffraction
limited microscopy [179].
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The localization problem

The localization problem is the first step in the analysis of a super-resolution dataset and
involves finding the position of a fluorescent molecule, x0 = (𝑥0, 𝑦0), from an image I. The
image itself is thought of as a matrix, whose elements describe individual intensities at each
pixel.

In order to localize a fluorophore, we must have a model describing the expected mean
number of photons per frame in pixel x given the fluorophore location at position x0, 𝜆(x; x0).
Typically, 𝜆(x; x0) is given by the point spread function of the imaging system. The inten-
sity at each pixel at location x is itself distributed randomly, according to a distribution
𝑝(𝐼(x)|𝜆(x; x0)), due to shot noise and readout noise.

We begin by describing readout noise (section III.2.1) and follow with a discussion on
identifying “regions of interest” (ROIs) containing fluorophores (section III.2.2). Once posi-
tively identified, we draw from our discussion on maximum likelihood in order to describe
inference frameworks used in localization in section III.2.3. While theoretically attractive,
maximum likelihood methods may be computationally expensive and require good noise
models to outperform simpler approaches. For this reason, we describe performance criteria
of localization methods ultimately used to judge whether the computational cost of a method
is warranted in section III.2.4. Sections III.2.5 and III.2.6 describe simpler localization strate-
gies, including least-squares fit. Subsequent sections tackle generalizations of the methods
discussed thus far: 3D super-resolution in section III.2.7, simultaneous fitting of multiple
emitters in section III.2.8, and deconvolution-style approaches in section III.2.9. Finally, we
end with a note on drift correction in super-resolution (section III.2.10) without which the
best localization methods are of limited value.
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III.2.1 Readout noise in single molecule experiments
Intuitively, one can expect photon shot noise to be partly responsible for reducing the

accuracy of localization methods. Indeed, localization must be achieved with few photons
per frame as the total photon budget of most fluorophores, meaning the number of photons
collected before the fluorophore undergoes irreversible photobleaching, is limited to hun-
dreds or thousands of photons [57, 180]. While greater brightnesses can be achieved by using
quantum dots as fluorescent markers [181], they remain more challenging to deliver into
cells and present toxicity concerns [182].

Perhaps more unexpectedly, accurate localization also requires a model describing how a
fluorophore’s emitted photons are converted into a camera readout. For instance, at a given
illumination level, assuming an average number of photons strike the sample per frame per
unit area, one may naively expect the camera’s readout at a given pixel, 𝐼 = 𝐼(𝑥), to be a
Gaussian random variable identical for all pixels, or at least well approximated by such a
description. In fact, as we now discuss, both Gaussian and identical assumptions are violated
in practice.

Since few photons hit each camera pixel on any given frame, the Poisson limit theorem
states that given the average number of photons 𝜆 for this pixel, the distribution of the actual
number 𝑁𝑝 of such photons follows a Poisson distribution (“shot noise”)

𝑝(𝑁𝑝|𝜆) =
𝜆𝑁𝑝

𝑁𝑝!
𝑒−𝜆 (III.2)

where for notational simplicity, we let 𝜆 = 𝜆(𝑥; 𝑥0).
The total noise of the measurement arises from the convolution of this shot noise by a camera

readout noise, that is neither necessarily normally distributed, nor pixel-independent [183].
In other words, the readout 𝐼 at a camera pixel is distributed according to a distribution 𝑝(𝐼|𝑁𝑝)
that is non-normal and pixel-dependent. As later described, we will use both knowledge of
𝑝(𝑁𝑝|𝜆) and 𝑝(𝐼|𝑁𝑝) to address the localization problem [184].

III.2.1.1 Camera-specific readout
Two technologies, with different readout distributions, are widely used for single molecule

imaging [184]: the older EMCCD (electron-multiplication charge coupled device), where
the electrons produced by a photon hitting a pixel are collected and amplified by chip-wide
electronics, and the more recent sCMOS (scientific complementary metal oxide semiconduc-
tor), which offer higher sensitivity and read rates, at the cost of pixel-to-pixel noise variation
(“fixed pattern noise”), by performing signal amplification at the pixel and column level
[184].
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The noise distribution of an EMCCD camera follows from its amplification mechanism
[185] where a photon hitting a pixel is converted into electrons. Chip-wide multiple charge-
carrier multiplication (CCM) stages then amplify this electronic signal serially, one pixel at a
time.

Specifically, each electron entering a stage has a low probability 𝑝 of giving rise to an
output of two electrons; otherwise, no amplification takes place and a single electron is
output with high probability 1 − 𝑝. Repeating this process across a large number of stages
yield an exponentially distributed number of electrons arising from this single photon [185]

𝑝(𝐼|𝑁𝑝 = 1) ∝ 𝑒−𝐼/𝑀 (III.3)

where the multiplication factor 𝑚 is itself weakly pixel-dependent, due to manufacturing
imperfections. The distribution of the output from the amplification stage for 𝑁𝑝 photons
simultaneously hitting a single pixel is the 𝑁𝑝-fold convolution of the one-photon distribution
[186, 187]

𝑝(𝐼|𝑁𝑝) ∝ 𝐼𝑁𝑝−1𝑒−𝐼/𝑀 . (III.4)

After amplification, the electronic readout stage itself introduces both Gaussian noise, of
standard deviation 𝜎, which needs to be convolved to this distribution, and an offset in the
number of counts (“dark count”), 𝑐0, considered constant [186].

The other technology, sCMOS cameras, offer higher sensitivity and readout rates by attach-
ing an individual amplification stage to each pixel. This different amplification technology
yields a normally distributed readout

𝑝(𝑐|𝑁𝑝) ∝ exp ⎛⎜⎜
⎝

−
(𝑐 − 𝑐0 − 𝑚𝑁𝑝)2

2𝜎2
⎞⎟⎟
⎠

, (III.5)

but the gain 𝑚, offset 𝑐0, and variance 𝜎2 all vary (relatively) strongly from pixel to pixel [188].
From the distribution of camera readouts for a given number of photons, 𝑝(𝐼|𝑁𝑝), and the

distribution of photon counts, 𝑝(𝑁𝑝|𝜆), we may compute the probability distribution of the
camera readout 𝐼 given 𝜆, by marginalizing over the unobservable number of photons 𝑁𝑝

𝑝(𝑐|𝜆) = ∑
𝑁𝑝≥0

𝑝(𝑐|𝑁𝑝)𝑝(𝑁𝑝|𝜆) . (III.6)

As we will see in the next section, this distribution is essential for our goal of estimating 𝑥0
(on which 𝜆 depends).

As earlier mentioned, numerical estimation of this sum (which also matches experimental
observations) demonstrates that 𝑝(𝐼|𝜆) is highly skewed for EMCCD cameras [186], thus vio-
lating the normally distributed noise assumption (figure III.4). In the case of sCMOS cameras,
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numerical estimation of the sum in equation III.6 also yields a non-normal distribution 𝑝(𝐼|𝜆);
moreover, and more importantly, this distribution changes from pixel to pixel due to the
variability of 𝑚, 𝑐0, and 𝜎2 [188].

In principle, one may also infer 𝑚 and 𝑐0 directly from 𝑝(𝐼|𝜆). With these two parameters at
hand, and furthermore knowing, from equations III.4 and III.5, that the mean of 𝐼 is a linear
function of 𝑁𝑝, we can obtain an estimate of 𝑁𝑝 at each pixel given 𝐼. This estimate is useful
in evaluating the localization accuracy of the methods we will later explore in section III.2.6.2.
However, the central quantity, moving forward, is 𝑝(𝐼|𝜆).

III.2.2 Detecting single molecules
We have previously described how the camera readout, I, is related to the illumination

level, 𝜆, through the distribution 𝑝(𝐼|𝜆). As we will discuss in section III.2.6, physical models
of spatial localization allow us to estimate, for given fluorophore parameters 𝚯, the value
of 𝜆 at each pixel x, 𝜆(x; 𝚯). The fluorophore parameters 𝚯 minimally include the position
of the fluorophore (as we had described earlier), but may also include its brightness [173],
orientation [189], velocity [190], or other properties.

From 𝑝(I|𝜆) and 𝜆(𝑥; 𝚯) we obtain a distribution of images conditioned on 𝚯

𝑝(I|𝚯) = ∏
x

𝑝(I(x)|𝜆(x; 𝚯)) (III.7)

where we have assumed that readout noise is uncorrelated across pixels.
We may, in principle, fit the entire image and simultaneously localize a large number of

fluorophores. This is a difficult task, which we will address in section III.2.8. Alternatively,
we may crop out ROIs centered around “emission-like” patterns, as a prelude to their further
analysis [173, 191]. Mathematically, this is equivalent to marginalizing over the positions
outside of the ROI, i.e., ignoring the dependence of the image within the ROI on the positions
outside of it. We explain this here with the caveat that, even today, the selection of these ROIs
is often treated in an ad hoc manner, with limited theoretical justification [192].

III.2.2.1 Laplacian of Gaussian filter
One may expect that ROIs could be chosen by locating pixels whose intensity go beyond

some preset threshold. Such an approach cannot achieve high identification levels of relevant
regions, in particular due to the presence of large amplitude and low spatial frequency
background noise. Instead, a commonly used approach (and one of the few for which a
theoretical basis has been offered) is to enhance features of a characteristic size 𝜎 (chosen to
be that of a diffraction-limited spot) by convolution of the raw image 𝐼(x) = 𝐼(𝑥, 𝑦) with a
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Figure III.4:
Probability densities of EMCCD camera readout counts can be highly non-Gaussian.
Here, we numerically evaluated equation III.6 via a simple Python script for different
mean photon numbers, 𝜆 (0.32, 1.75, 7.0) and multiplication levels 𝑚 (9.8, 28). The dark
count 𝑐0 was set to 1000 and the readout noise standard deviation 𝜎 to 10.
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Laplacian of Gaussian kernel 𝐾(𝑥, 𝑦) [193],

𝐾(𝑥, 𝑦) ∝ ⎡⎢
⎣

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2
⎤⎥
⎦

exp ⎡⎢
⎣
−

𝑥2 + 𝑦2

2𝜎2
⎤⎥
⎦

; (III.8)

i.e., the convolved image 𝐼′(𝑥) is

𝐼′(𝑥, 𝑦) = ∑
𝛿𝑥,𝛿𝑦

𝐾(𝛿𝑥, 𝛿𝑦)𝐼(𝑥 − 𝛿𝑥, 𝑦 − 𝛿𝑦) . (III.9)

In this convolved image, features of a characteristic size 𝜎 have been “enhanced” to appear
as sharp peaks. Peaks with a value greater than a given threshold can then be selected
as originating from a single molecule and deserving further processing. This threshold is
usually empirically chosen [193], for example by picking as many peaks as possible while
avoiding peaks that “look like” noise (as tested during the following processing stages).

However, if we have a good model of the background noise, we can also estimate (by
simulation) the distribution of peak values that would be obtained from convolving an image
only constituted of background noise, and then choose a threshold value that satisfies a
user-specified false-positive 𝑝-value (that is, such that the probability of observing peaks
with a value greater than the threshold in a convolved pure noise image is 𝑝) [194].

Briefly, the theoretical justification for equation III.8 relies on matched filter theory [195].
Matched filter theory indicates that, if we are in the presence of additive white noise (i.e., if
the differences between the observations and the true values constitute a random signal with
constant spectral power density), the best linear filter to retrieve the original distribution is
the convolution by the spatially reversed PSF itself (𝐼′(x) = 𝐼(x)𝑃𝑆𝐹(−x)). In Fourier space,
such a filter corresponds to multiplication by the conjugate of the Fourier transform of the PSF.
Furthermore, empirical observations establish that the spectral power density (the square of
the magnitude of the Fourier transform) of background fluorescence noise, not to be confused
with camera readout noise, in an image approximately follows a power-law, ∣ℱ{𝐼}(k)∣2 ∝ ∣k∣−𝑠,
with 𝑠 ≈ 2 (where ℱ{⋅} denotes the Fourier transform) [193]. Thus, in order to apply the
matched filter result, we first need to transform our data so that it exhibits white noise
(whitening); this is done by multiplying the data, in Fourier space, by the filter 𝐻(k) = ∣k∣−𝑠/2

(so that ∣ℱ{𝐻 ⋅ 𝐼}∣2 = 1). The combination of both steps (whitening and convolution by the
spatially reversed PSF) corresponds to the multiplication, in Fourier space, by the filter

ℱ{𝐾}(k) ∝ ∣k∣−𝑠/2ℱ{𝑃𝑆𝐹}(k) (III.10)

(where the overbar indicates complex conjugation). In the case where 𝑠 = 2 and the PSF is
modeled as a Gaussian, equation III.10 indeed corresponds to the Laplacian of Gaussian
filter described in equation III.8 [193].
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Since super-resolution datasets often contain many consecutive frames, additional improve-
ments beyond whitening filters may be used. For instance, since background fluorescence
varies slowly over time, it is possible to empirically decrease the influence of background
fluorescence by working on difference images, that is, the difference in intensity between
a frame and the next one [57]. The switching-on of a molecule then appears as a positive
peak in the data, whereas its disappearance is a negative peak, both of which may be further
selected using the whitened matched filter (equation III.8) [57].

III.2.2.2 Errors in emitter identification
The output of this initial analysis is a list of ROIs, where a single molecule is assumed to

have been fluorescent. Metrics, which we now introduce, can be used to quantify the quality
of the list. For any method, such metrics are typically calculated from synthetic data, where
the ground truth is a priori known, which is not the case with real data. Therefore, the metrics
provide only an estimate of the method result quality. If the data treated is substantially
different than the synthetic data the metrics were calculated on, this estimate may be quite
inaccurate.

These metrics below are expressed in terms of two kinds of possible errors: some molecules
may have been missed by the detection algorithm (false negatives, 𝐹𝑁), and some regions of
interest may have mistakenly been drawn somewhere where there was, in fact, no molecule
(false positives, 𝐹𝑃) [196].

If we denote 𝑇𝑃 the number of true positives (correctly drawn regions of interest), two
fundamental measures of accuracy are possible: the precision (quantifying false positives)

𝑝 =
𝑇𝑃

𝐹𝑃 + 𝑇𝑃
(III.11)

and the recall (quantifying false negatives)

𝑟 =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
. (III.12)

In order to directly rank different methods, it is convenient to combine these two measures
into a single quantity. Such quantities include the Jaccard index [192, 196]

JAC =
𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑃
(III.13)
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and the 𝐹1-score (or 𝐹-measure) [197]

𝐹1 =
2

1/𝑝 + 1/𝑟
. (III.14)

Modern localization methods are typically able to achieve high precision (𝑝 ≥ 95 %) while
still having limited, though widely varying, recalls (𝑟 ≈ 25 % to 75 %) [192]; this latter value
thus also limits the achievable Jaccard index and 𝐹1-score.

III.2.3 Maximum likelihood localization
Having segmented our image into regions and identified whether such regions contain a

single molecule, we now turn to the problem of localization within an ROI using maximum
likelihood. In general, maximum likelihood estimation aims at finding the set of parameters
𝚯 that maximizes the likelihood of the observation, i.e., the probability of observing the
actual data given the model,

�̂� = arg max
𝚯

𝑝(I|𝚯) . (III.15)

Such an estimator is optimal in the sense that it achieves the Cramér-Rao lower bound [198–
201]; that is, it is provides an unbiased estimator (i.e., whose expected value is the true value)
with a variance as low as possible.

In our case, the probability 𝑝(I|𝚯) is the product over each pixel x of the probability of
observing the actual pixel value I(x), expressed as a function of the fluorophore parameters
𝚯 (equation III.7).

The maximization of equation III.15 can be carried using out-of-the-box numerical ap-
proaches, such as gradient descent [200]; practical implementations of such a method in
a super-resolution context (which achieve the CRLB) are available for both EMCCD and
sCMOS cameras [184, 202, 203].

The actual value of the CRLB (5 nm to 50 nm) depends strongly on a number of experi-
mental parameters, most importantly the number of photons that can actually be collected
[184, 202, 203].

Despite the theoretical optimality of the MLE (in the CRLB, or mean-squared error, sense),
the necessarily imperfect knowledge we have about the imaging system (background fluores-
cence, the PSF, the camera noise) reduces its performance. In fact, PSF mis-specification or
imperfections degrade the performance of the method and may even lead to overly optimistic
accuracy estimations [201, 203, 204]. It thus remains useful to study simpler approaches,
which can take advantage of empirical corrections.
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III.2.4 Additional super-resolution performance metrics
While the Jaccard index, equation III.13, and the mean-square error of a single molecule’s

localization are good performance metrics, even perfect localization cannot reconstruct a
biological structure that is poorly labeled [57].

To assess the quality of a reconstruction, Fourier ring correlation (FRC), a method originally
developed for cryo-electron microscopy, is employed [205, 206]. Briefly, in this method, the
collected single molecule events are randomly split into two datasets, which are used to
create two independent reconstructions 𝐼1 and 𝐼2 of the structure. The “consistency” between
these two reconstructions is then used as a quantification of their resolution [205, 206]. This
consistency is obtained, as the name implies, by computing the Fourier transforms, ℱ{𝐼1}(q)
and ℱ{𝐼2}(q), of the images, and computing the normalized correlation between “rings” of
constant spatial frequency magnitude ∣q∣ = 𝑞,

FRC(𝑞) =
∑∣q∣=𝑞 ℱ{𝐼1}(q)ℱ{𝐼1}(q)

(∑∣q∣=𝑞 ∣ℱ{𝐼1}(q)∣2 ∑∣q∣=𝑞 ∣ℱ{𝐼2}(q)∣2)
1/2 (III.16)

(where the overbar indicates complex conjugation).
This formula yields, for each magnitude of spatial frequency, the degree of correlation,

normalized between −1 and +1, to which the features of that characteristic size are correlated
between the two independent reconstructions. In fact, it is this separation of length scales
that motivates the use of correlation in Fourier space.

For relatively large sized structures, using a random half of the events does not greatly
diminish the quality of the reconstruction; thus, the two reconstructions should be highly
correlated. Conversely, for structures too small to be well resolved, there is no reason to
expect the two reconstructions to be highly correlated and, consequently, the FRC should be
smaller.

We may then select a conventional threshold FRC (typically, FRC(𝑞) = 1/7) and report
as “the resolution” the corresponding characteristic size beyond which the threshold is
exceeded [205, 206]. Interestingly, this measure tends to indicate that nowadays, the main
factor limiting the resolution of reconstructed static structures is typically the labeling density
rather than the accuracy of the single molecule localization itself [205, 206].

III.2.5 Simplified localization approaches
We have seen that while maximum likelihood localization is theoretically the method

that achieves the lowest mean-squared error, imperfect knowledge of the imaging system
characteristics may make other localization methods preferable. Additionally, maximum
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likelihood calculations are typically computationally expensive and implementations often
run on specialized hardware such as graphical processing units (GPUs) [188, 203]. Thus, it
remains useful to study simpler, possibly less model-dependent, approaches.

III.2.5.1 Centroid localization method
An intuitive, simple, and extremely fast approach to the localization problem is to compute

the average of the pixel coordinates x = (𝑥, 𝑦) within a ROI, weighted by their intensities 𝐼(x)
[191].

In such a method, it is crucially important to first subtract away any background fluores-
cence 𝐼𝑏 from the ROI [207], such that the estimated localization is

̂x =
∑x(I(x) − 𝐼𝑏)x
∑x(I(x) − 𝐼𝑏)

(III.17)

where the sum is over the region of interest. Background subtraction is important because in
its absence, the weighted average equation III.17 becomes a weighted average between the
true centroid and the ROIs geometric center.

However, even with this correction, the method remains unsuitable for high-resolution
localization [208]. One simple reason is that, even under the reasonable assumption that
the physical PSF is symmetric (and thus its centroid should yield the fluorophore position),
this is not the case for the camera readout, which is measured on a discrete pixel grid. Even
worse, the centroid of the camera readout does not necessarily coincide with the centroid of
the physical PSF (again due to pixelation) [208]. Still, the extreme simplicity of the method
has led to its use as a minimal baseline against which other approaches can be compared
[192].

III.2.5.2 Finding the point of radial symmetry
The centroid method we just described attempts to localize an event with subpixel reso-

lution by identifying its “geometric center”. Other definitions of “geometric center” have
been proposed, most notably the radial symmetry approach [207, 209]. Briefly, this approach
attempts to find the point that best approximates a “radial center of symmetry” for the image.

In this method, the gradient of the signal is calculated either at each pixel [210] or at each
point where four adjacent pixels (or, in the 3D case [207], eight adjacent voxels) meet [209,
210]. The line defined by this point and gradient pair is taken as approximating a local axis
of symmetry for the image. If all such lines were to intersect with each other at a single point,
such a point would be a reasonable definition of the radial symmetry center. Because this is
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not the case, the radial symmetry center is instead defined as the point that minimizes its
total distance to all such lines [210], possibly with an appropriate weighting factor [207, 209].

Specifically, it is reasonable to weight lines inversely proportionately to their distance from
the center of the image. Since this center is yet unknown, the weighting is instead done using
the inverse distance to the centroid (as computed above) [207, 209]. Most importantly, an
analytical expression can be derived to compute the radial symmetry center thus defined
[207, 209]; as such, this method is extremely rapid.

While simulations indicate that this method yields high, close to CRLB-level localization
accuracy of single events at a high speed [192, 209, 210], they also show that its performance
degrades extremely quickly for high-density data, being unable to correctly localize events
that were not well separated from the others [192].

III.2.5.3 Correlation
As discussed earlier, the good performance of the Laplacian of Gaussian kernel for event

detection was justified on the basis of simple noise and PSF models (section III.2.2). We now
extend this approach to tackle the localization problem itself.

In this approach, a peak’s position is determined by computing the correlation between
the image and the model PSF (although using the Laplacian of the PSF may work better from
a theoretical point of view, as discussed above, it is the PSF itself that is typically used), and
finding the position at which this correlation is maximal. The same background removal
approaches as for centroid calculations may be used [208]; however, they are less important,
as adding a constant background to the image simply shifts the filtered image by a constant
and thus does not affect the maximum’s position.

The correlation of two images is only defined for integer coordinates, so additional work
is needed to obtain a subpixel localization. A simple way to do so is to fit the values of
the correlation in the vicinity of the maximum with a continuous, peaked model function
(e.g., a parabola) [208] and use the maximum of the latter. A more sophisticated approach
is to compute this correlation after Fourier-resampling both the image and the model PSF
to a higher resolution. Such a resampling is achieved by taking the Fourier transform of
the image, zero-padding it to a higher spatial frequency, and taking the Fourier transform
back. Correlation in real space corresponds to point-wise product in Fourier space; thus, the
desired procedure amounts to computing the point-wise product of the Fourier transforms
of the image and the PSF, zero-pad it, Fourier transform the padded product back into real
space, and then select those coordinates at which the correlation attains its maximum [211,
212]. To sidestep the computational cost of the Fourier transforms that upsampling requires,
such methods are typically first run with a limited upsampling to yield a low resolution
localization and then run again with higher upsampling but only in a small neighborhood
around the position selected by the first iteration [211, 212].
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An important advantage of correlation-based localization is that it can be directly used for
any experimentally measured PSF. For example, in particle tracking (an early application of
subpixel localization [208]), one can use the image of a molecule in one frame as the model PSF
for the next frame. [208] In super-resolution experiments, this approach has been suggested
to analyze thick-sample data, which typically exhibits highly distorted PSFs [212] in the
absence of specialized optical corrections [165]. In this case, the distorted, sample-specific
PSF is measured at the beginning of the experiment by imaging a point-source at different
depths; detected events are then localized by correlation with this PSF [212].

III.2.6 Least-squares fitting and model PSFs
The previous section covered methods that require limited assumptions regarding the PSF;

for instance, that it be radially symmetric or invariant across the dataset. Here instead we
focus on an approach, least-squares fitting, that demands no such assumptions but that does
require a form of the PSF.

While, in theory, maximum likelihood achieves the optimal mean square error when an
accurate PSF model is available (section III.2.3), the least-squares method is widely used [172,
173] because of the good performance of readily available, fast, and robust algorithms [192,
194]. Although we will first focus on the common case of fitting a Gaussian PSF model, we
will then discuss possible corrections to this model.

III.2.6.1 Gaussian PSF least-squares fitting
Since the theory of least-squares fitting, as with maximum likelihood (section III.2.3), can

be described independently of the model PSF’s exact functional form, we will, for simplicity,
assume a Gaussian PSF. This choice is one of the earliest in use, offers mathematical simplicity,
and maintains good performance.

Specifically, we model the image I0 arising from a fluorophore as a two-dimensional
Gaussian,

I0(x; 𝐴, x0, 𝜎, 𝐼𝑏) = 𝐼0 + 𝐴 exp ⎛⎜
⎝

−
|x − x0|2

2𝜎2
⎞⎟
⎠

. (III.18)

The unknown amplitude 𝐴, center x0 and standard deviation 𝜎, as well as the unknown, locally
constant mean background 𝐼𝑏, are parameters collectively regrouped as 𝚯, the fluorophore
characteristics, that we now want to infer. Furthermore, despite the subtraction of the
background 𝐼𝑏, the measured image still differs from the model by a noise term of mean zero.
Next, it is also possible to assume that some parameters are a priori known such as 𝜎 or 𝐼𝑏,
for example, they may be independently estimated from the image intensity far away from
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the fluorophore [213]. It is also possible to improve this model by averaging the PSF over
each pixel [56].

One may then infer the remaining set of parameters minimizing the sum of squared
differences between the observed intensity and model provided by equation III.18, weighted
by the signal variance at each pixel. Numerically, this is a classic least-squares minimization,
for which fast and robust implementations, such as the Levenberg-Marquardt algorithm
[183], are available.

The maximum likelihood framework (section III.2.3) and least-squares fitting are identical,
even for non-normal PSFs, if the noise at each pixel is assumed to be independent and drawn
from the same normal distribution with unspecified variance

𝑙 ∝ − ∑
x

(I(x − I0(x; 𝚯)))2 + constant (III.19)

where 𝑙 denotes the log-likelihood.

III.2.6.2 Least-squares fitting localization accuracy
Thompson et al. provided a theoretical analysis of least-squares fitting accuracy in the

presence of normally distributed background noise as well as photon counting noise (sec-
tion III.2.1), as a function of the PSF’s standard deviation (the “spot size”) 𝑠, the pixel size 𝑎,
the number of photons in the event 𝑁𝑝 and the standard deviation of the background noise 𝑏
(figure III.5) [214].

For simplicity, we limit ourselves to re-deriving Thompson’s results in the case of a 1D
model and assume that for a fluorophore at position 𝑥: (i) the expected number of photons at
the 𝑖th pixel (i.e., the PSF model) is 𝑁𝑖(𝑥); (ii) the variance is 𝜎2

𝑖 = 𝑁𝑖(𝑥) + 𝑏2 (i.e., the sum,
in quadrature, of the photon counting noise, 𝑁𝑖(𝑥), and the background noise, 𝑏2); and (iii)
the detected photon number at that same pixel is 𝑦𝑖. By definition, the fitted position, ̂𝑥, is
obtained by minimizing the weighted sum of square residuals, i.e.,

𝜕
𝜕𝑥

∑
𝑖

(𝑦𝑖 − 𝑁𝑖(𝑥))2

𝜎2
𝑖

∣∣∣∣𝑥= ̂𝑥
= 0 . (III.20)

By expanding 𝑁𝑖(𝑥) in the above to first order in ̂𝑥 around the true underlying position 𝑥0
(𝑁𝑖( ̂𝑥) ≈ 𝑁𝑖(𝑥0) + 𝑁′

𝑖(𝑥0)( ̂𝑥 − 𝑥0)) and solving for Δ𝑥 = ̂𝑥 − 𝑥0, we directly derive the mean
square error of the fitted center’s position

⟨(Δ𝑥)2⟩ =
1

∑𝑖(𝑁′2
𝑖 /𝜎2

𝑖 )
. (III.21)
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Figure III.5:
The image of a point source by a microscope can be approximated as a Gaussian of standard
deviation 𝑠. Collecting this image on a camera further pixelates it with pixel size 𝑎. The
noisy intensity profile was generated using a simple Python script.

While this sum can be evaluated numerically, we can also simplify it under reasonable ap-
proximations. We ignore, for now, the effects of pixelation (𝑎 → 0). In this case, under a Gaus-
sian PSF model, the expected number of photons at pixel 𝑖 is 𝑁𝑖 = (𝑁𝑝/√2𝜋𝜎) exp(−𝑖2/2𝜎2),
and the sum in equation III.21 can be replaced by an integral.

In general, this integral is not analytically tractable but it can be asymptotically evaluated
in two limits: (i) dominant photon-counting noise (𝑁𝑖 ≫ 𝑏2, so 𝜎2

𝑖 ≈ 𝑁𝑖) and (ii) dominant
background noise (𝑁𝑖 ≪ 𝑏2, so 𝜎2

𝑖 ≈ 𝑏2). These two cases respectively yield

⟨(Δ𝑥)2⟩
1

=
𝑠2

𝑁𝑝
and ⟨(Δ𝑥)2⟩

2
=

8𝜋𝑠4𝑏2

𝑎2𝑁2
𝑝

. (III.22)

Since each expression dominates the other in the limit where it has been derived, the
authors suggested the following interpolation formula [214]:

⟨(Δ𝑥)2⟩ =
𝑠2

𝑁𝑝
+

8𝜋𝑠4𝑏2

𝑎2𝑁2
𝑝

. (III.23)
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The pixelation noise’s main effect (arising from a nonzero 𝑎) is to increase the photon
counting noise term ⟨(Δ𝑥)2⟩

1
. Specifically, the PSF’s spatial variance, 𝑠2, appearing in this

term should be increased by the spatial variance of a square pixel of size 𝑎, which is 𝑎2/12.
[214] The final expression for the uncertainty of Gaussian fitting is thus

⟨(Δ𝑥)2⟩ =
𝑠2

𝑁𝑝
+

𝑎2

12𝑁𝑝
+

8𝜋𝑠4𝑏2

𝑎2𝑁2
𝑝

. (III.24)

Although equation III.24 is widely used to report localization accuracies [57, 58, 215],
the summation in equation III.21 can also be evaluated numerically. [214] This numerical
estimate indicates that equation III.24 actually overestimates the localization accuracy (in the
relevant regime of parameters) by approximately 10 %. [214] This is a discrepancy that has
also been reported from experimental comparisons [56].

An interesting consequence of equation III.21 is that the mean square error is minimal for
a nonzero pixel size 𝑎 (𝜕(Δ𝑥)2/𝜕𝑎 = 0). In other words, it is counter-productive to make the
pixel size as small as possible. Instead, its optimal size is close to the spot size 𝑠. Intuitively,
this is due to the compromise between the higher spatial information gained from each pixel
when the pixels are smaller and the averaging out of background noise when the pixels are
larger.

In practice, Gaussian PSF fitting has been shown to achieve nanometer-resolution. For
example, Yildiz et al. have used this approach to show that the motion of fluorescently labeled
myosin V enzymes along their tracks occurs in steps of variable size that can be grouped in
consecutive pairs whose sizes add up to 74 nm (fluorescence imaging with one-nanometer
accuracy, FIONA) [215].

III.2.6.3 Applicability of least-squares to non-normal noise
While the assumption of identically and normally distributed noise is reasonable in many

applications of least-squares fitting, which is the source of its versatility and the reason
many efficient algorithms have been developed, it is clearly violated in super-resolution, as
described in section III.2.1.

Although many super-resolution analysis discount non-normal noise, here we discuss a
variance-stabilizing transformation [194] that mitigates the effect of ignoring non-normal
noise.

For simplicity, we consider only the effect of Poisson (shot) noise, whose variance is equal
to its mean. Since the variance of the noise changes across the fitted ROI, the assumption of
identical noise distribution is violated.

In order to correct for this non-uniformity, we exploit the following (numerical) observation,
known as the Anscombe transform: if 𝑋 is Poisson-distributed with both mean and variance
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equal to 𝑚 ≥ 4, then 2√𝑋 + 3/8 is approximately normally distributed with mean 2√𝑚 + 3/8−
1/4√𝑚 and, more importantly, unit variance [216]. Thus, applying this transformation to an
image corrupted by Poisson noise yields an image with (approximately) uniform Gaussian
noise and the classical least-squares algorithm may then be applied. Of course, the fit should
not be done using the original PSF model but, likewise, the Anscombe-transformed model
[194].

Note that this correction assumes that the image data is correctly expressed in units of
photon counts, which requires a calibration of the readout-to-photons conversion factor as
discussed in section III.2.1. Additionally, more sophisticated transforms (e.g., the generalized
Anscombe transform [217]) may be used to handle more realistic non-Poisson noise models.

While, to our knowledge, the effect of a variance-stabilizing transformation for the accuracy
of least-squares fitting has not been evaluated independently of other improvements, the
SimpleSTORM package, which relies on it as a preprocessing step before least-squares fitting
[194], was shown to exhibit a relatively strong performance [192, 194].

III.2.6.4 Corrections to the point spread function
Although we have mentioned, and it is widely quoted [191, 214], that the diffraction pattern

of a point source is an Airy disc (section III.1.2), and chose to approximate this pattern with
a Gaussian peak both for maximum likelihood and for least-squares fitting, we now revisit
this claim.

When imaging using a high-NA objective, as commonly done in super-resolution applica-
tions, the PSF of a freely rotating fluorophore, directly derived from first-principles, is in fact
closer to a Gaussian function than to an Airy function [218] thus justifying, a posteriori, the
use of Gaussians for least-squares fitting.

A rotationally constrained fluorophore, which may occur, or conversely be avoided, e.g.,
due to the labeling strategy used [189, 219], presents additional complications. Such a
constraint breaks radial symmetry, in which case the PSF may present two “lobes” [189,
218]. If a rotationally free model, such as a Gaussian, is used to fit datasets lacking radial
symmetry, simulations indicate that maximum likelihood estimation can lead to substantial
errors (dozens of nanometers), in particular in the case of defocused molecules (e.g., for
3D measurements) [218, 220]. Conversely, orientational information may be derived from
properly fitting the observed PSF to a model PSF for anisotropic emission [189].

In the opposite extreme, highly mobile fluorophores, which move by a significant fraction
of a pixel size during the time it takes to acquire a single frame [190], may distort the effective
molecular PSF, which is now a weighted average of the PSF at each position visited by the
molecule. Once more, ignoring this distortion leads to poor localization accuracy, whereas
using a PSF model that takes motion into account not only restores the original localization
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accuracy but also provides information on the instantaneous molecular velocity [190] and
additional information on motion models.

We end with a note on the non-uniformity of a sample’s refraction index, which introduces
additional PSF aberrations, especially for thick samples [165]. This effect is has so far been
treated experimentally by using adaptive optics (e.g., deformable mirrors) to properly shape
the PSF [165].

III.2.7 3D localization

III.2.7.1 Cylindrical lens 3D
While our discussion, so far, has been limited to localizing single molecules in a 2D plane,

most biological samples are three-dimensional and, as a consequence, there is considerable
interest in obtaining volumetric fluorescence data.

In classical microscopy, this can be achieved by selectively exciting, and thus collecting,
fluorescence from a single plane (multiphoton microscopy [221] or selective plane illumi-
nation microscopy (SPIM) [222]). However, such techniques remain essentially limited by
diffraction. Instead, true 3D super-resolution can be achieved by encoding information about
the depth of a molecule in its PSF.

Fundamentally, the techniques we have discussed up until now fit a PSF that encodes
lateral but not vertical information. In other words, in 2D, the value of the PSF measured
by the camera at position (𝑥, 𝑦) when the emitter is at position (𝑥0, 𝑦0) depends only on the
distance between the two positions, i.e., 𝑃𝑆𝐹 = 𝑃𝑆𝐹(𝑥 − 𝑥0, 𝑦 − 𝑦0). In 3D, the dependence on
the true position 𝑧0 cannot be expressed in terms of translation and the PSF would need to
be of the form 𝑃𝑆𝐹(𝑥 − 𝑥0, 𝑦 − 𝑦0, 𝑧0).

As early as in 1994, Kao et al. introduced a cylindrical lens in the optical path of their
particle tracking setup and observed a depth-dependent PSF [223]. This depth-dependent
PSF progressively switches from being a vertically oriented ellipse for molecules above the
focal plane to a horizontally oriented one on the other side. Thus, the lengths of the PSF’s two
axes, 𝑤𝑥 and 𝑤𝑦, could be estimated and converted to a depth value using a calibration table.
Specifically, the relative difference between the two widths, defined as 𝑅 = (𝑤𝑦−𝑤𝑥)/(𝑤𝑥+𝑤𝑦),
was matched with a calibration curves 𝑅cal(𝑧) in order to read out the depth 𝑧 while the (𝑥, 𝑦)
position was obtained by least-squares fitting to a parabolic PSF (section III.2.6).

The cylindrical lens approach was adapted for super-resolution by Huang et al. [224] who
took advantage of the advent of more general nonlinear fitting procedures, allowing the
determination of 𝑤𝑥 and 𝑤𝑦 by least-squares fit along with the in-plane position. That is, the
model PSF was chosen as a Gaussian with the following parameters that need to be fitted: the
position of the center and the amplitude of the PSF, similarly to the two-dimensional case along
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with the PSF width and height 𝑤𝑥 and 𝑤𝑦 treated as independent parameters. The authors
found, purely empirically, that the fitted 𝑤𝑥 and 𝑤𝑦 could be accurately mapped back to the
molecule depth 𝑧 via the use of a calibration curve (𝑤cal

𝑥 (𝑧), 𝑤cal
𝑦 (𝑧)) obtained by measuring

the PSF of point sources positioned at different depths, as follows: the depth 𝑧 is chosen to
minimize the Euclidean distance between the (𝑤1/2

𝑥 , 𝑤1/2
𝑦 ) point and the (𝑤cal

𝑥 (𝑧)1/2, 𝑤cal
𝑦 (𝑧)1/2)

curve.
Instead of estimating depth based on ellipticity calibration curves, we may immediately

adapt all methods described for 2D localization to the 3D case by simply including the depth
𝑧 in the set of parameters 𝚯 [212, 225]. All theoretical results regarding such methods, such as
the CRLB accuracy limit (section III.2.3), are then applicable. For example, we demonstrated
earlier that in the presence of a highly distorted, but experimentally well characterized
PSFs, the position of the maximum in the ROI’s correlation with the PSF generated good
localization performance (section III.2.5.3). This method is, in fact, especially applicable to
3D imaging of thick samples, as the PSF of events localized deep into the cell can be distorted
by severe optical aberrations [212].

III.2.7.2 Other approaches for encoding depth information in the PSF
While the cylindrical lens approach is relatively simple from an experimental viewpoint, it

only requires introducing a cylindrical lens in the optical path, it encodes depth information
at the cost of lateral resolution, as it distorts the PSF. Additionally, as discussed earlier in
section III.2.6.4, other phenomena can lead to elliptical distortion of the PSF, leading to
spurious apparent changes in depth. Hence, additional ways to encode depth information
have been proposed [225].

For example, the biplane-PALM approach relies on simultaneously imaging two planes, a
few hundred nanometers from each other on the same camera [225]. This can be achieved by
imaging on one-half of the camera chip the “standard” focused image and, on the other half,
a slightly defocused image, obtained by splitting the collected light and reprojecting it onto
the camera after a longer light path. A ROI corresponding to a single event now coincides
with a pair of spots, one on each plane, that may once more be fitted by least-squares either
to an experimental PSF, also measured over the two planes, or a theoretically derived one
[225]. As a fluorophore is displaced along the 𝑧 axis, it does not get defocused to the same
degree in the two planes; this difference in defocusing thus encodes the depth information.
In its first implementation, a depth resolution of 75 nm was achieved [225].

Additional 𝑧-resolution can be provided by more sophisticated procedures. For example,
a spatial light modulator can be used to shape the 3D PSF into a double-helix, such that indi-
vidual events are now observed as pairs of close peaks, whose relative position encode depth
information [139]. This technique, to which all the previous fitting discussions apply, exhibits
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a low theoretical maximal resolution (CRLB) of approximately 15 nm [139]. Interferometric
PALM (iPALM) provides an even more sophisticated procedure to encode depth information
[226] in which the measured image is split over three cameras, each of which measure an
interference pattern between two images that are phase-shifted with respect to one another.
The relative intensities of a same peak across all three cameras allow the experimenter to
compute this phase shift and thus infer the event depth, with an experimentally demonstrated
resolution of approximately 10 nm [226].

III.2.8 Simultaneous localization of multiple molecules
The fundamental breakthrough from which super-resolution microscopy emerged, namely

achieving temporal separation of events too close to be resolved spatially, is also an important
limitation. As described so far, a super-resolution acquisition scheme must ensure that only
a few molecules are activated per frame, thus imposing lengthy acquisition times for densely
labeled samples.

However, just as we have described various ways in which the coordinates of a single mol-
ecule can be retrieved if a model PSF is known, we could, in theory, write down an emission
model for two, or more, close molecules with overlapping PSFs (given their coordinates 𝑥0
and 𝑥1), and then fit a ROI to such a model. This approach was pioneered by astronomers
who were interested in separating images of stars in “crowded fields” (e.g., stars in distant
galaxies, which appear very close to each other) and have since long ago developed such
algorithms [227]. One of these algorithms, DAOPHOT (Dominion Astrophysical Observatory
photometry) [227], was directly adapted for super-resolution microscopy, under the name of
DAOSTORM [166].

There are a few difficulties that are associated with the simultaneous fitting of multiple
molecules at a time. The first is computational; the greater the molecules simultaneously fit,
the greater the number of parameters, rendering the least-squares or maximum likelihood
optimization more challenging numerically.

Fortunately, it is clear that even when PSFs are slightly overlapping, it remains acceptable to
cut the image into smaller regions, that are approximately statistically independent from each
other, and fit them one at a time. This approximation was used by another super-resolution
package developed at the same time, MFA (multiple-emitter fitting analysis) [228]. More
accurately, one can also draw such regions to be bounded by areas of the image where
the intensity is relatively low and are thus unlikely to contain a molecule (the approach
of DAOPHOT/DAOSTORM). Again, in such cases, the problem of fitting PSFs in a region
becomes independent from the fitting in another region [166], in a manner similar to how we
drew ROIs for single-emitter fitting but this time with multiple fluorophores per ROI.

118



Chapter III.2 The localization problem

More importantly, simultaneous fitting of many fluorophores also presents a model se-
lection problem: allowing for more fluorophores always result in a better (or at least, not
worse) fit of a collection of spots (either the fitting algorithm can exploit the additional
degrees of freedom to eliminate some residuals of the fit or, at worst, it can always set the
brightness of the additional fluorophores to a very small value, thus not worsening the fit).
Thus, additional criteria are necessary to prevent overfitting.

While a review of general model selection methods are outside of the scope of this work
(see for example [44, section 3.3.4]), here we present two more model selection strategies
specifically adapted to the problem of multi-emitter fitting used by DAOSTORM [166] and
by MFA [228].

DAOSTORM first uses a peak detection algorithm (such as the one discussed in sec-
tion III.2.2.1) in order to find candidate regions that may correspond to a molecule. This set
of candidates is then fit, by MLE, to a multi-emitter model. The residuals of the fit (i.e., the
difference between the original image and the one that a set of fluorophores at positions
given by the fit would yield) are then iteratively reinserted into the original peak detection
algorithm [166]. Thus, it is the sensitivity of the peak detection algorithm that provides a
stopping criterion against the addition of extraneous fluorophores to the fit.

Model selection by MFA [228] relies instead on computing the log-likelihood ratio, LLR:

LLR = −2 log [
𝐿({(𝑥𝑖, 𝑦𝑖)}MLE|I; noise)

𝐿(I|I; noise)
] . (III.25)

The numerator, 𝐿({(𝑥𝑖, 𝑦𝑖)}MLE|I; noise), is the likelihood of the estimates given the image,
assuming that each pixel’s signal is independently obtained from a Poisson-distributed
source with mean equal to the sum of the PSFs at this pixel (equation III.7). The denominator,
𝐿(I|I; noise) is the maximum value that the above-mentioned likelihood could ever attain,
which it does in the case where the expected mean intensity at each pixel matches the actually
observed intensity. In other words, it is the product over the pixels of the probability of
observing the actual camera output if the mean expected intensity at that pixel was set to be
equal to that output.

Having evaluated the “goodness” of each model (as measured by its LLR), we now need to
estimate, for each model, how well the model matches the data, as compared to how well it
would match random datasets generated from the model itself. Such a comparison penalizes
overfitting, as the marginal improvement to the LLR, for each additional parameter, decreases
sharply once the “correct” number of parameters is reached, whereas such a transition does
not occur for random datasets.

More specifically, we need to estimate the probability 𝑝 that the LLR of a dataset generated
from the model be lower than the LLR of the real data. In other words, we need the value of
the cumulative distribution for the LLR, evaluated at the LLR of the real data. According to
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Wilks’ theorem, this distribution can be approximated by a 𝜒2 distribution with a number of
degrees of freedom equal to the difference between the number of pixels and the number of
fitting parameters [229]. We thus obtain 𝑝 simply by evaluating the cumulative distribution
function of the above-mentioned 𝜒2 distribution [228]. Having done so for each of the models
in contention, the model with the highest such probability is then selected.

III.2.9 Deconvolution-based super-resolution
We have so far focused on reconstructing coordinates of each single event with subd-

iffraction accuracy. However, subdiffraction imaging may be achieved by other means. For
example, deconvolution microscopy achieves a twofold improvement over diffraction-limited
microscopy by approximating the inverse (in a linear operator sense) of the “imaging opera-
tor”, i.e., the operator that convolves a distribution of point emitters by the imaging system’s
PSF [170].

Here, we discuss adaptations of deconvolution-style approaches to datasets collected using
single molecule localization-style techniques where additional information is encoded in
temporal fluctuations of the fluorescence (i.e., stochastic switching of the fluorophores).

III.2.9.1 Compressed sensing
Contrary to localization methods discussed thus far, here we do not initially attempt to

reconstruct a list of molecular positions. Instead, we want to reconstruct a higher resolution
image than the one from which we started.

More specifically, we seek a “fluorophore density map” on a discrete grid s, where each
“pixel” on the grid may be smaller than the raw image, I, physical pixels. Instead of con-
sidering s and I as matrices, we will consider them as vectors of entries (for example, by
concatenating the physical columns of pixels in the image), respectively of size 𝑁 and 𝑛. In
this formalism, convolution by the PSF, which is a linear operator, can be understood as
multiplication by a matrix A, of size (𝑁, 𝑛),

I = A ⋅ s . (III.26)

Each row of the matrix A corresponds to a possible fluorophore position and each entry in the
row corresponds to a physical pixel indicating how much a fluorophore at the row-encoded
position would increase the intensity at that physical pixel.

Localization methods discussed so far correspond approximately to a setup where we
know (or have a good model of) A (i.e., how much a fluorophore at any position affects the
intensity measured at any position—in other words, the PSF) and seek to obtain s (i.e., the
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fluorophore density map). We will focus on the same formulation first. However, we will
later see that we can also attempt to recover A and s simultaneously.

The usual caveats of deconvolution microscopy, namely the sensitivity of s to noise and
to inaccurate knowledge of A still apply. Moreover, as there are many more (discretized)
fluorophore positions than image pixels (𝑁 ≫ 𝑛), the problem is underdetermined. However,
in the context of a super-resolution dataset, we have the additional information that we
expect only a few fluorescent proteins to be “on” on each frame; that is, we have a sparsity
prior on s (we expect most of its entries to be zero).

This class of problems (searching for approximate and sparse solutions to an underdeter-
mined linear system) is known as compressed sensing and is well described in the math-
ematical literature [230]. For example, Zhu et al. showed that in the presence of photon
counting noise, a solution can be obtained by searching for the vector s with minimum 𝑙1
norm (i.e., sum of absolute values of components) among all those for which the 𝑙2 norm
of the residual vector, I − A ⋅ s (i.e., sum of squared errors), is no larger than a noise-level
dependent threshold [231]. Such a vector can then be found using standard algorithms [232].

Such a deconvolution yields, for each frame of the image stack, a sparse list of discretized
molecular positions. All such lists can then be merged together to obtain a final list of
molecular positions. Although the original implementation of this idea [231] yielded a
relatively poor localization accuracy of ∼ 60 nm, it was able to recover highly overlapping
events, i.e., it allowed a very fast imaging rate (6 to 15-fold faster than for single-event fitting,
2 to 3-fold faster than for a multi-emitter fitting such as DAOSTORM).

III.2.9.2 Exploiting fluorophore temporal fluctuations
Instead of using an experimental protocol designed to achieve temporally sparse photoac-

tivation of fluorophores, it is also possible to rely on the natural blinking and bleaching of
fluorophores, that occurs (to varying degrees depending on the fluorophore) even under
continuous illumination.

For example, a simple way to exploit the fluorophore blinking is to compute the difference
between consecutive frames of a regular fluorescence movie. In these difference images, the
spontaneous switching-on of a fluorophore appears as a positive peak, whereas turning-
off events, or photobleaching, appear as a negative one. Standard localization algorithms,
such as PSF fitting, can then be directly applied to such images, yielding a super-resolution
approach that does not require the use of photoconvertible markers (bleaching/blinking-
assisted localization microscopy, BaLM) [233]. More interestingly, it is possible to exploit
the fact that these temporal fluctuations in fluorescence intensity are uncorrelated between
molecules (as each fluorophore undergoes stochastic switching independently from the
others).
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Dertinger et al. noticed that due to this stochasticity, pixels where the emission of two
blinking fluorophores (quantum dots, in their case) overlap exhibit lower temporal coherence
than pixels which capture the emission of a single quantum dot [234]. This observation
yields a simple and elegant method, named super-resolution optical fluctuation imaging
(SOFI), to obtain a superresolved image I [234]. At each pixel, one simply plots the value of
the temporal correlation of this pixel’s signal for a well-chosen time lag 𝜏

𝐼𝜏(𝑥, 𝑦) = ⟨𝐼(𝑥, 𝑦, 𝑡)𝐼(𝑥, 𝑦, 𝑡 + 𝜏)⟩𝑡 (III.27)

where ⟨⋅⟩𝑡 denotes an average over time.
Lidke et al. exploited temporal fluctuations in order to generalize the model proposed in

equation III.26 [181]. Remember that we originally wrote I − A ⋅ s, where I is the image (a size
𝑛 vector), s the discretized fluorophore density (a size 𝑁 vector), and A the imaging operator
(an 𝑁 by 𝑛 matrix). In this generalization, the time dependency, over 𝑇 frames, of I and s, was
also taken into account; these two variables are now matrices respectively of size (𝑛, 𝑇) and
(𝑁, 𝑇), where each row encodes respectively the time-varying image intensity at a pixel and
the time-varying active fluorophore density at a position. The shape of A is unchanged, and
we still have I − A ⋅ s. However, in this analysis, we will also consider the imaging operator
A as an unknown.

The problem may thus appear severely under-determined, as we are trying to reconstruct
𝑁 × 𝑇 + 𝑛 × 𝑁 parameters (A and s) while having only 𝑛 × 𝑇 measurements (I). However,
we can exploit the fact that in our target reconstruction, each row of s should represent the
time-varying intensity of a single fluorophore at a fixed position; conversely, a reconstruction
will be poor if some rows of s encode the time-varying mixture of the intensities of multiple
fluorophores. From the central limit theorem, the values of s adopted by a mixture are
necessarily “more normally distributed” than intensity values of a single fluorophore. In
other words, a weighted sum of multiple iid random variables is more normally distributed
than each individual variable. Thus, we can restate our objective as follows: we seek the
solution of equation III.26 for which the rows of s are “as non-normally distributed as
possible”. In order to quantify the “non-normality” of the distribution of values a row of
s takes, we compute the entropy of the distribution, 𝐻 = − ∑s 𝑝(s) log 𝑝(s). Because the
normal distribution has the maximal entropy among all distributions for a given mean and
variance, we thus seek the solution (A, s) of equation III.26 for which the total entropy of s
(the sum of the entropies of each row of s) is minimal [181]. This minimization problem is
known as independent component analysis, and can be solved using the standard FastICA
algorithm [235].

The outputs of this analysis are both matrices A and s with A giving the PSF associated
with each of the fluorophores while s indicates, for each fluorophore, the frames on which it
is active. This analysis does not directly yield superresolved coordinates; it simply separates

122



Chapter III.2 The localization problem

the PSFs of each fluorophores (into columns of A) starting from a dataset where they were
spatially and temporally overlapping. Each of these PSFs can then be fit to obtain a superre-
solved coordinate for each fluorophore using any of the methods we have discussed so far
[181].

III.2.9.3 Bayesian deconvolution approach for fluorescence time series
Bayesian methods may also be used to obtain both spatial (A, following our earlier nota-

tion) and spatiotemporal (s) information. For example, Cox et al. simultaneously fitted the
full set of fluorophore positions, the state histories (bright, transiently dark, or irreversibly
photobleached) for each fluorophore, as well as the transitions rates between these states
(Bayesian analysis of blinking and bleaching, 3B) [236].

This Bayesian formulation can be seen as another approach to tackling equation III.26:
instead of reducing the problem to independent component analysis, the time-evolution of
the fluorophores (i.e., each row of s) is modeled as a Markov chain between the three above-
mentioned states. The true underlying fluorophore spatial distribution is then selected as the
one maximizing the likelihood that the entire image stack arises from that distribution. This
likelihood is computed by integrating over all possible temporal evolutions (which is done
using the forward algorithm) [183, 236]. Instead of yielding a maximum likelihood estimate,
one can also sample (by Markov chain Monte Carlo) spatial fluorophore distributions from
the posterior derived from this likelihood [183, 236], thus yielding a super-resolved image
where the intensity at each position encodes the confidence level about the presence or
absence of a fluorophore there. This method is extremely demanding computationally, to
the point that cloud-based implementations have been developed [237].

III.2.9.4 Richardson-Lucy deconvolution for fluorescence time series
Mukamel et al. also proposed a simpler deconvolution method (deconSTORM) taking

temporal correlations into account [238]. Again, the final output of such a method is not a
list of coordinates, but simply an image with a higher resolution. Specifically, Mukamel et al.
based their work on Richardson-Lucy deconvolution.

Briefly, Richardson-Lucy deconvolution is an iterative approach, whereby the estimated
deconvolved image ̂I𝑘 at iteration 𝑘 is derived from the estimate at the previous iteration ̂I𝑘−1,
as well as the measured image I, the PSF (assumed known, under a Poisson noise model),
and a prior distribution on the true image 𝑝(⋅), which is, in the classical form of the algorithm,
kept constant throughout iterations:

̂I𝑘 = 𝑅𝐿( ̂I𝑘−1, I, ℎ, 𝑝(⋅)) . (III.28)
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Mukamel et al. proposed to deconvolve a time series of images by running the iterations
of Richardson-Lucy deconvolution in parallel; that is, at each iteration, a new deconvolution
of each frame is computed. More importantly, instead of keeping the same image prior
throughout the iterations, they used a different prior for each frame and updated this prior
at each iteration:

̂I𝑘 = 𝑅𝐿( ̂I𝑘−1, I, ℎ, 𝑝I𝑘(𝑡−1)(⋅)) . (III.29)

Specifically, when running an iteration, the prior for the frame at time 𝑡 was chosen so that the
a priori probability of observing a bright pixel at a given position in that frame is increased
whenever the same pixel was also bright in an earlier frame (already reconstructed during
this iteration); the closer (temporally) this frame was, the stronger the contribution to the
prior. In other words, each frame is deconvolved with a series of priors that, at each iteration,
favors a reconstruction similar to reconstructions of the preceding frames [238].

III.2.9.5 Recovering molecular localizations
from deconvolution-style approaches

We have presented deconvolution-style approaches to obtain a superresolved image with-
out first localizing single molecules. But both methods, deconvolution and localization, may
be used in tandem. That is, an initial deconvolution step identifying candidate single mole-
cule positions (from local maxima of the deconvolved image), may be used as initial guesses
in a subsequent localization step. Such an approach was implemented in the FALCON algo-
rithm [239] that may be understood as a variant of multi-emitter fitting (section III.2.8), where
the model selection step (finding the correct number of fluorophores to fit) is accomplished
by an initial deconvolution.

III.2.10 Drift correction
In the absence of active correction, different microscope components drift by dozens of

nanometers relative to each other during the acquisition of a single molecule localization
dataset [56, 57]. This drift affects positions of measured events.

Thus, in order to combine all the localization events obtained in that dataset into a single
high-resolution image, it is necessary to either (i) actively correct for this drift by measuring
it in real time and displacing the sample in a compensatory manner or (ii) to estimate the
drift in order to subtract it from the fitted positions.

In practice, the second option (drift estimation and subtraction) is typically chosen, as it is
a purely mathematical operation, that does not require any modification to the instrument
itself. In order to do so, we may track bright fiducial markers (e.g., gold nanoparticles or
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fluorescent beads) on the coverslip. This can be achieved by using the same localization
algorithms as used for “real” events [56, 57]. As the fiducial marker concentration can be
chosen to be very sparse, tracking markers from one frame to the next is straightforward.
Additionally, the high level of brightness of these fiducially ensures that they are at least as
well, and typically better, localized than the events themselves, i.e., they are not a limiting
factor for localization accuracy.

Since fiducials are typically bound to the coverslip, such that their motion relative to the
camera matches the sample drift relative to the camera, they are less suitable for thick-sample
3D single molecule localization microscopy. From the instrumentation point of view, the
use of fiducial markers in a thick sample dataset requires repeatedly switching between the
imaging planes and the fiducial (i.e., coverslip) plane [212]. To avoid the need for such a
movement, which complicates the experimental setup and may lead to additional drift itself,
one may abandon the use of fiducials and instead rely on correlating event time-slices. In
this approach, groups of events are formed by stacking consecutive frames until reaching a
set number of events. The cross-correlation between event positions in one group and those
in the next then exhibits a peak at a position that encodes the average displacement of the
events between the two groups—in other words, the sample drift—as long as the reasonable
assumption that both groups are randomly sampled from the entire structure holds [240,
241].

Neither of these methods can correct drift that occurs on the same time scale as the frame
rate as drift estimation requires averaging over a large number of events. In order to increase
the rate at which drift information is collected, McGorty et al. proposed instead to use a
correlation drift estimator on the bright field image itself (that is, the drift is estimated by
finding the shift that maximizes the correlation between a bright field frame and the previous
bright field frame) [242]. Of course, it is not possible to simultaneously collect a bright field
image in the visible wavelength and single molecule fluorescence in the same wavelength, as
the former would swamp the latter; McGorty et al. thus collected the bright field image in
the infrared spectrum. Such an approach allowed them to achieve real-time drift correction,
with a 10 nm in-plane and 20 nm axial stability, at rates of a few hertz and over minutes of
acquisition [242].
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The counting problem

Whether two fluorescent events occurring in close spatial and temporal proximity actually
come from the same fluorescent protein is an important question that was raised since early
PALM experiments [57, 58].

One reason motivating this question is technical: “stacking” multiple frames together, by
summing their intensities before fitting them, ensures that all photons associated with a
single labeled protein are used, thereby improving the reconstructed image’s final quality
[57].

The question was less relevant in STORM, which relies on blinking organic dyes, as
multiple dye-labeled antibodies typically bind to the same target [56]. Each labeled site is
thus associated with dozens or hundreds of fluorescence events. Thus, proper assignment of
each event to its original label is essentially impossible [243].

By contrast, in PALM, given a number of fluorescent events arising from a single diffraction
limited spot, it was reasonable to ask whether one may enumerate the proteins, or, alterna-
tively, quantify the protein density, that gave rise to the fluorescent signal. Furthermore, if
the number of fluorescent events originated from a group of proteins that formed a complex,
with each subunit individually labeled, it may then be possible to quantify protein complex
stoichiometry.

Inferring protein complex stoichiometry in vivo is an important problem. Many protein
complexes involved in essential cellular tasks contain multiple copies of various proteins. For
example, E. coli’s flagellar motor is composed of dozens of proteins all appearing in dozens
of copies [244].

What is more, protein complex stoichiometry may well be dynamical since a pool of freely
diffusing protein subunits available to a protein complex changes over time [245, 246]. The
FliM bacterial flagellar switch protein [246] is a typical example.

Furthermore, determining a complex’s stoichiometry can also help understand a complex’s
operation. For example, asymmetric cell division (sporulation) of B. subtilis creates a smaller
daughter cell (the forespore) that initially contains only 30 % of its copy of the chromosome;
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the remaining 70 % must be translocated from the larger daughter cell by SpoIIIE, a hexam-
eric, membrane-anchored DNA translocase [247, 248]. It was originally thought, based on
similarities with bacterial conjugation systems, that SpoIIIE forms a single aqueous channel
between the mother cell and forespore [247]. Later studies suggested, on the contrary, that the
septum is closed and two SpoIIIE hexamers jointly form a channel across both membranes
through which the DNA passes, based on inability of GFP expressed specifically in the
mother cell to diffuse to the forespore [248]. Since both models predict different SpoIIIE
copy numbers at the translocation septum, they could be resolved by accurately counting of
SpoIIIE monomers.

Finally, at the cellular level, proteins and protein complexes can form higher order structures
and super-resolution can provide deeper insight into the biological effect of such structures
from the spatiotemporal ordering of its constituent proteins. For instance, E. coli’s chemotactic
clusters—which allow the sensing of gradients of small molecules—involve tens of thousands
of receptor proteins [249]. These clusters are positioned in an apparently periodic fashion on
the membrane [138]. It had been suggested, from time-lapse fluorescence microscopy, that
receptor proteins are in fact inserted at random in the cell membrane but later migrate to pre-
existing anchor sites [138]. Other models proposed that this periodicity arises spontaneously
from the stochastic nucleation and merging of clusters [138]. Greenfield et al. suggested that
studying the protein number distribution per cluster could offer insights in the mechanism by
which they are formed [138]. We will revisit the type of insight afforded by super-resolution
to this question later.

III.3.1 Counting from fluorescence intensity
Proteins localized in small clusters can be counted without the need to spatially resolve

them. To do so, we may estimate the number of photons collected and divide through by the
mean number of photons emitted by each fluorophore. This mean number (the fluorophore’s
photon budget) depends not only on the excitation used but also, more crucially, on specific
cellular conditions, in addition to other properties such as possible fluorophore interactions.

As an example of this early approach, if clusters contain few fluorophores, a histogram
of the cluster brightnesses may exhibit discrete peaks at multiples of a base value [250]. In
such a case, this base value likely corresponds to the intensity of a single labeled protein
and peaks observed at two, three, or more times this intensity correspond to clusters of two,
three, or more proteins [250].

In a different approach, a calibration curve relating fluorescence intensity to fluorophore
number is constructed by engineering arrays of, say, 12, 24, and 36 fluorophore binding sites
and measuring the fluorescence intensity for each number of bound markers [251]. Crucially,
such a method can be used to establish the existence of a nonlinear relationship between
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fluorophore count and fluorescence intensity, that can be caused, for example, by interactions
among fluorophores [251].

The precision of methods relying on total observed intensity is relatively low and relying on
a standard mean fluorophore brightness is not without risks. For example, in 2006, Joglekar
et al. GFP-labeled a number of yeast kinetochore proteins (where the kinetochore is the
structure that links centromeric DNA to spindle microtubules) [252]. They relied on the
fluorescence of a single protein within the complex, Cse4, as a GFP fluorescence standard as
that protein was thought to exist in a single copy per complex [252]. However, later studies
demonstrated that this assumption was incorrect: Cse4 may be present in 4 to 8 copies per
centromere and the reported counts of all other proteins were thus underestimated by the
same ratio [253, 254]. Such a difference disqualified earlier arguments indicating that Cse4
may be present in too small a quantity to maintain the necessary attachment points [253,
254].

Further biochemical studies (protection assays) suggested that one of these proteins (cen-
tromere protein A, CENP-A) was, in fact, present at the levels suggested in the Joglekar
study [255]. This time, it was argued that the larger numbers observed by the Coffman
and Lawrimore studies [253, 254] arose from the inclusion in their counts of “unincorpo-
rated” labeled CENP-As, i.e., those not part of the structure itself but simply lingering in the
structure’s vicinity, possibly due to lower incorporation efficiency of labeled CENP-A. Since
biochemical studies are not devoid of artifacts either, this controversy remains open to this
day [256], and should serve as a reminder that the biological question is not to know how
many fluorescent proteins are present somewhere but how many of the underlying proteins
are actually participating in the process of interest.

III.3.2 Counting by photobleaching
using diffraction limited data

An alternative approach is to rely on the stochastic photobleaching of single fluorophores
[245]. More precisely, we rely on the observation that the times at which multiple active
fluorescent proteins appearing within the same diffraction spot eventually photobleach
are stochastic and thus likely different from one another. Thus, a time series of the total
fluorescence signal will exhibit a stepwise decrease [245] with possible double-sized steps if
two fluorophores simultaneously photobleach within the time scale of data acquisition.

So long as a majority of steps are resolvable, most steps should coincide with the pho-
tobleaching of a single fluorophore (or reversible transitions to and from dark states for
blinking fluorophores). This is especially true toward the end of the photobleaching trace
where the odds of two simultaneous photobleaching events are comparatively low. Thus,
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given an estimate for the single fluorophore intensity drop, the number of labeled proteins
present at the start of the trace can be estimated as the ratio between the initial intensity and
the fluorescence drop arising from a single photobleaching event.

Leake et al. applied this method to study MotB, a component of the stator of E. coli’s
flagellar motor, concluding that 22 ± 6 copies were present per complex [245]. However, this
method also suffers from low precision as the noise level at the start of the trace is high and
the initial intensity is therefore poorly defined.

Instead of trying to resolve fluorescence decrease steps, which may be challenging, one
may compare the evolution over time of the total intensity of a collection of fluorophore
spots (which is decreased by any photobleaching event) to the evolution of the number of
spots, within that same collection, which have not completely photobleached yet (which
decreases only when all the fluorophores within a given spot have photobleached). The
slower the decrease of the number of spots relative to the decrease of the intensity, the larger
the number of fluorophores per spot [257]. Yet another approach is to count molecules by
means of photon arrival statistics [258, 259]. This technique exploits the photon antibunching
effect, which essentially states that a single emitting quantum system (a fluorophore in this
case) emits photons one at a time. Therefore, if the temporal resolution of the detector is
sufficiently fine, photons detected at the same time can only originate from different emitters.
In its most recent implementation [259], photon counting statistics were gathered and then
a nonlinear regression with a Levenberg-Marquardt algorithm was used to back out the
number of emitters, i.e., molecules of interest. However, this method is limited to counting up
to around 20 molecules, largely because of error introduced by blinking and photobleaching
effects.

A more promising albeit more difficult approach is to attempt to identify and count all
individual photobleaching steps, and use their number as an estimate of the protein count
[186]. For example, Ulbrich et al. studied the composition of a membrane-bound receptor
in X. laevis oocytes, that was known to form tetramers [186]. The number of steps in each
photobleaching step was visually estimated. Interestingly, the distribution of the number of
steps resolved (1 to 4) is well fitted by a binomial distribution, consistent with a model that
only about 80 % of the labels are ever fluorescent.

In the sections that follow we will explore theoretical approaches that have been proposed
to locate photobleaching steps that can be resolved.

III.3.2.1 Hidden Markov modeling of photobleaching time series
Even before Ulbrich’s original experiments, Messina et al. [260] proposed to determine

the number, 𝑁, of fluorophores using HMMs [261, 44], where each state coincides with a
combination of states for each individual fluorophore.
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The large number of states in this model is suitably shrunk by exploiting the fact that states
with the same number of bright fluorophores are indistinguishable, leading to a formulation
where each state corresponds to a number 𝑛 of active fluorophores. For instance, the transition
from a state with 𝑛 active fluorophores to 𝑛 − 1 has a rate equal to 𝑛 times the transition rate
to the dark state (as any of the 𝑛 fluorophores could go dark) and, similarly, the transition
from the state with 𝑛 active fluorophores to 𝑛 + 1 has a rate equal to 𝑁 − 𝑛 times the recovery
rate from the dark state (as any of those 𝑁 − 𝑛 fluorophores could recover) [260].

Standard maximum likelihood techniques [183] were then applied to compute the like-
lihood corresponding to each total number of fluorophores 𝑁. As there is no penalization
for overfitting, this likelihood can only increase for increasing 𝑁; however, it is expected to
plateau once the true number of underlying fluorophores is reached.

This method’s original implementation was applied to time-correlated single photon
counting experiments; that is, a setup where stochastic arrival times of each individual
photon is measured [260], rather than the more common setup where an average intensity is
measured by integration over a longer period. In such a case, the source of noise arises from
the existence of “background” photons not associated with a fluorophore of interest [262],
as well as from the stochasticity of the arrival times of the “true” photons. However, the
approach of Messina et al. can also be directly adapted to the case where an average intensity
is measured [263]. The authors suggest that up to 30 fluorescent dyes may be counted using
such a technique [260].

III.3.2.2 Step-finding algorithms in counting by photobleaching
Without characterizing the kinetics of photobleaching, it is also possible to rely on classical

step-finding algorithms to count the number of photobleaching events in a time trace [264–
266]. The problem of locating sharp discontinuous changes in noisy data, the purview of
step-finding algorithms, is a general problem across science that has been investigated across
single molecule biophysics (see part I for another application of step-finding algorithms).

III.3.2.2.1 Edge-preserving smoothing

Many step-finding algorithms start from an initial filtering or downsampling of the data
[267]. Although linear filters, where each data point is replaced by a weighted average of the
neighboring data points within a specified window, are easily implemented, they also tend
to blur or smooth out true transitions in the data. In particular, multiple temporally close
transitions may become “merged” into a single transition [268].

To avoid this effect, Chung and Kennedy [268] proposed (for the purpose of resolving state
transitions in patch-clamp experiments) a nonlinear filter, whereby the weight given to a
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neighboring point during the filtering depends on how well it predicts the current observation,
an approach known in the image-processing field as edge-preserving smoothing.

More precisely, for each data point 𝑦(𝑡) in a trace, we consider 2𝐾 “predictors” of “order”
−𝐾, −(𝐾 − 1), … , −1, +1, … , 𝐾 − 1, 𝐾, namely the averages of the 𝑖 (1 ≤ 𝑖 ≤ 𝐾) previous or 𝑖
future data points:

⟨𝑦⟩−,𝑖 (𝑡) =
𝑦(𝑡 − 𝛿𝑡) + ⋯ + 𝑦(𝑡 − 𝑖𝛿𝑡)

𝑖
and ⟨𝑦⟩+,𝑖 (𝑡) =

𝑦(𝑡 + 𝛿𝑡) + ⋯ + 𝑦(𝑡 + 𝑖𝛿𝑡)
𝑖

.
(III.30)

The squared error provides a metric quantifying the predictor’s quality:

Δ−,𝑖(𝑡) = (⟨𝑦⟩−,𝑖 (𝑡) − 𝑦(𝑡))
2

and Δ+,𝑖(𝑡) = (⟨𝑦⟩+,𝑖 (𝑡) − 𝑦(𝑡))
2

. (III.31)

The Chung-Kennedy filter is then computed by weighting the predictor of order 𝑖 by the
inverse 𝑝th power of the average badness of the predictors of the same order 𝑖 but considered
over the 𝑀 preceding (for negative orders) or following (for positive orders) data points,

𝐶𝐾(𝑡) =
1
𝑍

𝐾
∑
𝑖=1

⎡⎢
⎣
⎛⎜⎜
⎝

𝑀−1
∑
𝑗=0

Δ−,𝑖(𝑡 − 𝑗𝛿𝑡)⎞⎟⎟
⎠

−𝑝

⟨𝑦⟩−,𝑖 (𝑡) + ⎛⎜⎜
⎝

𝑀−1
∑
𝑗=0

Δ+,𝑖(𝑡 + 𝑗𝛿𝑡)⎞⎟⎟
⎠

−𝑝

⟨𝑦⟩−,𝑖 (𝑡)⎤⎥
⎦

(III.32)

(where the denominator is simply a normalization factor).
This filter possesses three parameters (𝐾, 𝑀, and 𝑝), which are tuned empirically. The

authors demonstrate that an appropriate choice of the parameters leads to a reduction of the
noise without distorting sharp transitions [268]. More quantitatively, the effect of various
filters on the quality of various step-finding algorithms has been the subject of a comparative
study by Carter et al. [267] finding that a properly (manually) tuned Chung-Kennedy filter
exhibited better performance than mean or median filtering.

III.3.2.2.2 Segmenting the trace

Regardless of whether (and how) the data is smoothed to facilitate step-finding, the essential
part of step-finding is to segment a trace into “approximately constant” regions separated by
a step. Two approaches are possible: “bottom-up”, where small regions are merged together
on the basis of value closeness, and “top-down”, where the whole trace is progressively split
into separate regions.

An example of the bottom-up approach was proposed by McGuire et al. [264]. Briefly,
starting from the beginning of a trace, data points are progressively added to a running
window until the value of the fluorescence moves outside of a small range centered at the
current window mean. When this occurs, the current window is terminated and a new
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window started. After running this process on the whole trace, it is repeated on the resulting
“leveled” trace until the levels have converged. This whole process is then iterated (starting
from the “leveled” trace) using progressively wider window ranges [264].

Conversely, an example of a “top-down” approach is provided by a mathematical ideal-
ization of the white noise assumption: the goal is to find the piecewise constant signal ̂𝑦(𝑡),
containing 𝑁 discontinuities (steps), that minimizes the mean square error, ⟨(𝑦(𝑡) − ̂𝑦(𝑡))2⟩.
Because it is computationally intractable to test all possible combinations of step numbers
and their coinciding locations, the number of locations scaling as the number of time points
raised to a power equal to the number of change points, Kalafut and Visscher [83] proposed
to iteratively add change points one after another, each of them at the position that decreases
the mean square error the most. At each iteration, one only needs to check, for each time
point, the decrease in mean square error if the next change point was inserted there. Even a
naive implementation of this approach only exhibits a complexity proportional to the product
of the number of time points by the number of change points. We note however that recent
theoretical developments have provided efficient exact algorithms to solve this problem
through a careful pruning of the solution tree [269, 270].

As a fit’s mean square error can only decrease as more steps are added, “top-down” ap-
proaches additionally require an explicit penalty against overfitting. Kalafut and Visscher [83]
propose the use of the Bayesian information criterion (BIC) [271]. However, as acknowledged
by the authors, this penalty is typically insufficient and leads to overfitting of the data.

For particular applications, it is always possible to create better step-finding algorithms
directly informed by the physics that dictates the noise properties of the problem.

For example, a Bayesian algorithm specifically applied to counting by photobleaching is
presented by Tsekouras et al. [266]. In this method, priors and likelihoods are specifically
informed by the physics dictating that noise properties should vary stochastically, on the
basis of the number of active fluorophores, and that the number of overlapping blinking and
photobleaching events have different a priori expectations based on the length of the time
trace and the stochastic nature of the photobleaching process.

With this information at hand, Tsekouras et al. arrive at a “top-down” method, more
precisely, a marginal posterior for the entire trace, that can be used as a criterion to locate
photobleaching steps. The method succeeds in avoiding the overfitting problem arising
from assumptions of constant noise across a dataset and, according to the authors, scores
correctly dozens or even hundreds of steps, provided enough data points are present between
successive steps to avoid small number statistics problems.
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III.3.3 Counting by blinking correction
As suggested earlier, super-resolution microscopy, and PALM in particular, are seemingly

well suited for counting, as the molecular photoactivation times are, by design, as temporally
separated as possible. Thus, the number of fluorescence events or bursts detected within a
diffraction-limited spot should, in theory, match the number of active fluorophores within
that spot. This is only in principle true if fluorophores do not blink.

However, even in the presence of blinking, counting remains possible so long as consecutive
bursts originating from the blinking of a single fluorophore can be grouped together. Indeed,
threshold methods—described in greater detail below—were used, for example, to study the
size distribution of E. coli’s chemotactic cluster [138].

III.3.3.1 Threshold methods for counting from PALM data
In the very first implementation of PALM, Betzig et al. [57] acknowledged the need for

such a grouping and applied a purely empirical threshold (“blinking correction time”) to
merge events appearing within the neighboring pixels and separated by no more than three
dark frames.

Annibale et al. [272] further studied the blinking kinetics of the widely used mEos2 pho-
toactivatable fluorescent protein (PA-FP), imaged on a coverslip in vitro. By lowering the
fluorophore density, the authors could ensure that each fluorescent event corresponded in-
deed to a single fluorophore (further confirmed by the absence of multi-step photobleaching)
[272]. The authors found that roughly half of the molecules reactivated after entering a dark
state, i.e., blinked. Recovery times from the dark state were found to be multiexponentially
distributed (similar to observations on other PA-FPs [273]) and regularly lasted as long as
tens of seconds. This observation thus raised the concern that earlier studies may have
misinterpreted large number of blinking events as evidence for protein oligomerization [272].

The authors thus proposed two methods to correct for this blinking. Either the blinking
correction time could be empirically increased or, perhaps more interestingly, the authors
found that recovery from the dark state could be accelerated, and thus the blinking correction
time kept low, through continuous illumination by the photoactivation laser. Thus, they
recommended the use of a continuous photoactivation scheme, rather than a pulsed activation
scheme where the photoactivation laser is alternatively turned on for a brief period of time,
then kept off while the fluorescence of the activated subset is collected [272].

In order to maximize the accuracy of the estimated number of events, Lee et al. offered an
alternative selection strategy for selecting the blinking correction time [60]. First, the authors
suggested a scheme by which the photoactivation laser power is tuned in order to ensure
a near-constant number of photoactivation events per unit time. Such a strategy ensures
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maximal separation between active active fluorophores in times and thus minimizes the
probability that two fluorophores be simultaneously active.

In short, the scheme was devised by first considering the total number of molecules, 𝑁(𝑡),
yet to be photoactivated at time 𝑡 with instantaneous activation rate 𝑘(𝑡) which was found
to be proportional to the photoactivation laser power, 𝑃(𝑡). The number of molecules that
photoactivate between times 𝑡 and 𝑡 + d𝑡 is d𝑁 = 𝑘(𝑡)𝑁(𝑡)d𝑡; thus, the number of molecules
that photoactivate per frame could be kept constant by solving

d𝑁
d𝑡

= 𝑘(𝑡)𝑁(𝑡) (III.33)

and selecting a 𝑘(𝑡) (or equivalently 𝑃(𝑡)) that enforces a constant d𝑁/d𝑡 [60]. The authors
subsequently generated a simulated time series corresponding to the blinking behavior of
various fluorophore numbers. The number of events in each time series was then counted
by using various possible values for the blinking correction time; the blinking correction
time that achieved, for each given underlying number of fluorophores, the minimum mean
bias was then tabulated. As could be expected, the more fluorophores in a single spot, the
smaller the correction time that achieved unbiased counting. Since the correct number of
fluorophores is initially unknown, the authors proposed to start from an arbitrary count,
pick the corresponding correction time, count using that correction time and iterate. Overall,
this approach was shown to exhibit an error of a few percent when counting up to a hundred
molecules [60].

While this method introduces a blinking correction time (i.e., a threshold), it does not
attempt to produce a “grouping” of events correctly identifying whether two events truly
arose from the same molecule. In general, such a grouping may be impossible to attain, as
the blinks arising from multiple molecules may be interlaced, or even overlap each other. In
such a case, “undercounting” (the incorrect merging of events corresponding to two different
fluorophores) is unavoidable. Instead, the blinking correction time was chosen (by using
the simulations described above) so that these undercounts are exactly compensated by
“overcounts” which are cases where a single fluorophore took a time longer than the blinking
correction time to recover from its dark state [60].

III.3.4 Limitations of counting
Biological constraints complicate the counting problem. For instance, even if all proteins

are labeled and are expressed in their native amount (which has been made possible by the
advent of widespread genome editing systems), not all fluorophores mature [186, 274], nor
will all photoconvertible fluorescent proteins successfully photoconvert [275]. Fundamentally,
no algorithm can count proteins that never appear.
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Various approaches have been proposed to quantify the percentage of proteins that properly
activate. For example, by expressing a labeled human glycine receptor GlyR, whose known
stoichiometry of three α and two β subunits could be used as a reference, in X. laevis oocytes
and counting them either by stepwise photobleaching or by blinking correction, Durisic et al.
found that across a wide range of photoconvertible fluorescent proteins, only 40 % to 80 %
of the proteins successfully photoconverted [275]. Likewise, Wang et al. expressed a dozen
different fluorescent proteins in E. coli and compared the number of events collected in a
PALM experiment, corrected through division by the mean number of blinks per molecule, to
an estimate of the actual number of fluorescent proteins expressed, obtained by quantitative
Western blotting [180]. They found an even lower detection efficiency for fluorescent proteins:
only 1 % to 20 % of them successfully photoconverted. Such limitations need to be taken into
account while comparing the accuracy of counting methods: minor gains in the theoretical
accuracy of counting will only matter if the global accuracy of the count is not limited by
experimental considerations.
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Conclusion

More than ten years after the publication of the seminal papers on super-resolution [56–58],
single molecule super-resolution microscopy has become a standard lab technique now
widely available across major imaging facilities. It has been used to study a number of biolog-
ical targets just below the resolution of diffraction-limited microscopy, such as microtubules
[276], mitochondria [277], and the nucleopore complex [278, 279]. Theoretical developments
in interpreting super-resolution experiments, and single molecule experiments more broadly,
have ushered data-driven methods into the physics and chemistry mainstream [280]. While
studies in live cells are motivating more general theoretical approaches borrowing heavily
from statistical advances [281] now feasible due to computing power, quantitative analysis
efforts have also helped identify clear challenges standing in the way of greater modeling ac-
curacy. Novel experimental methods have begun addressing some of these challenges such as
phototoxicity [282] and image distortions in thick heterogeneous samples [283] though other
key challenges such as labeling density [284] and environment-dependent photophysical
properties [285] remain.

As this is a review of analysis methods, we highlight three broad directions that have
been the focus of recent theoretical efforts. The first is on joint methods that simultaneously,
and thus self-consistently, solve many problems at once such as problems in interpretation
and counting [150]. Such efforts reduce the number of user-dependent postprocessing steps
albeit at a heavier computational cost. The second introduces problem-specific models
[286], priors (whether theoretically [266] or experimentally [276] motivated), and algorithms
[287, 288] suited to the particularities of the physical (or photophysical) challenge to reduce
the computational burden and improve the prediction accuracy. The third is focused on
generalizing models to accommodate the data’s complexity [289, 290].

The picture of life emerging from breakthrough experimental techniques and analysis
methods is one far richer in structural features, dynamics, and stochasticity than we could
have conceived of even a decade ago. We envision a future in imaging where a combination of
experiments and principled analysis provide a compelling narrative into the chaotic journey
of life from the level of single molecules upward.
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Part IV

Super-resolution imaging
of protein-protein interactions

through bimolecular complementation
and photoactivated localization

microscopy
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This work was done in collaboration with Alyssa Rosenbloom, Sang-Hyuk Lee, Jae-Yen
Shin, and Carlos Bustamante.

Super-resolution microscopy, a powerful technique for determining protein localization,
cannot discriminate between casual protein-protein proximity and stable interactions. Here,
by developing split-photoconvertible fluorescent proteins that recover photoconversion and
fluorescence properties upon complementation, we combine the absolute localization (∼
20 nm) of photoactivated localization microscopy (PALM) with the relative localization
(< 10 nm) of bimolecular fluorescence complementation (BiFC) for in vivo super-resolution
visualization of stable protein-protein interactions between two subunits of the mammalian
ATP synthase.
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Introduction

A common method for determining protein-protein interaction in vivo is co-localization
using two-color fluorescence microscopy. Classical microscopy is limited by diffraction
but super-resolution methods, such as photoactivated localization microscopy (PALM),
circumvent this limit by combining temporal and spatial separation of individual fluorescent
events to determine absolute localization of single molecules with a resolution of ∼ 20 nm [56–
58]. Several two-color super-resolution methods are described in the literature, but none can
differentiate between transient proximity, limited by overlapping localization uncertainties,
and stable protein-protein interaction [179, 240].

Bimolecular fluorescence complementation (BiFC) makes use of certain fluorescent proteins
(FPs) that, when divided into two non-fluorescent fragments, can re-associate into a fully
fluorescent protein complex [291]. Successful complementation requires two fragments be
held in close proximity (< 10 nm) for an extended period of time, generally by fusion via
short linkers to two stably interacting proteins. The formation of the fluorescent complex,
driven by these interacting proteins, competes kinetically with the irreversible misfolding of
the individual fragments, which prevents the apparition of fluorescence [292]. The amount
of fluorescence observed correlates with the strength of the interaction, down to 𝐾𝐷 ∼ 1 mM
[293].

Standard split-FPs have been used previously in conjunction with stimulated emission
depletion microscopy (STED) [294]. PALM, while offering superior resolution, requires
photoactivatable or photoswitchable fluorescent proteins (PA- or PS-FPs). Thus, we hypoth-
esized that stable protein-protein interactions could be determined at super-resolution by
combining the relative resolution of BiFC with the absolute resolution of PALM through
the use of split PA- or PS-FPs. In this scheme, each individual fluorescent event (∼ 20 nm)
would then represent two proteins that stably interact and co-localize within < 10 nm of each
other. So far, Dronpa is the only photoconvertible fluorescent protein for which successful
splitting has been reported [295]. Here we show that PAmCherry1, Dendra2, and a Dronpa
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variant, rsKame, can be split and, upon complementation, maintain their fluorescence and
photoactivatablity [296–298].

We explored super-resolution microscopy with BiFC-PALM by labeling two subunits
(OSCP and b) of the mammalian ATP synthase stator stalk with N- and C-terminal halves of
PAmCherry1 respectively. Here, we demonstrate that the stable interaction between these two
subunits, previously shown by FRET in S. cerevisiae, allows for the complementation of split-
PAmCherry1, while random collisions between freely diffusing molecules are insufficient
[299]. In addition, we were able to successfully obtain individual fluorescent events at ∼ 20 nm
resolution, each representing a single pair of interacting subunits in an ATP synthase complex.
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Results

In order to assess the suitability of two-color PALM for studying protein-protein interaction
at super-resolution, we chose a system previously characterized by FRET. The Fo-F1 ATP
synthase is a highly conserved oligomeric complex that uses the proton gradient across
the mitochondrial inner membrane to synthesize ATP. Proton passage through the Fo pore
drives the rotation of a central stalk through the F1 domain, which is held in place by a
peripheral stalk [300]. In S. cerevisiae, two of the subunits of the peripheral stalk, b and
OSCP, have been shown to interact by FRET measurements between subunit b-GFP and
OSCP-BFP fusions [299]. We co-expressed mammalian subunit b fused to rsKame and
OSCP fused to PAmCherry1 on a pIRES vector in COS-7 cells for PALM imaging. For both
fusions, a 12 amino acid linker (GSSGGGGSGGGG) was used. After 36 hours of expression
at 37 °C, cells were fixed with 1 % formalin in 1× PHEM. We first imaged rsKame under
488 nm excitation (6 W/mm2) and 405 nm photoactivation (0 mW/mm2 to 10 mW/mm2)
for about 5 min and then PAmCherry1 under 561 nm excitation (22 W/mm2) and 405 nm
photoactivation (0 W/mm2 to 3 W/mm2) for about 8 min [277]. 100 nm gold beads were used
as fiducial markers for drift correction. PALM movies were analyzed with a custom MATLAB-
based software package [60]. Individual fluorescent events were identified and localized
at ∼ 20 nm resolution, both for rsKame and for PAmCherry1 (figure IV.1a,b), showing co-
localization of red and green fluorescence, and thus of subunit b and OSCP, as expected
(figure IV.3a). However, when we targeted instead PAmCherry1 to the mitochondrial matrix
with the cleavable mitochondrial matrix localization sequence (MLS) of CoxVIII instead
[301], while keeping the subunit b-rsKame fusion, and imaged COS-7 cells under the same
conditions, co-localization of red and green fluorescence was also observed, despite the lack
of interaction between the fusion partners of the two FPs (figure IV.3b). Thus, protein-protein
interaction cannot be proven by fluorescence co-localization alone, even at super-resolution.
This led us to develop BiFC-PALM for such applications (figure IV.3c).

The splitting of various FPs such as EGFP and mCherry1 between β-sheets 7 and 8 has been
characterized previously [291, 302]. As PAmCherry1, mEos2, Dendra2 and Dronpa variant
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Figure IV.1:
Localization uncertainty of (a) full-length rsKame (PALM image shown in Fig 1a), (b)
full-length PAmCherry1 (PALM image as shown in Fig 1a) and (c) complemented split-
PAmCherry1 (BiFC-PALM image as shown in figure IV.4c), computed for all the molecules
in each field of view using the theoretical estimation [214].

Figure IV.2:
Sequence alignment between fluorescent proteins EGFP, mCherry, PAmCherry1, Dendra2,
rsKame, and mEos2 demonstrates a conserved splitting site (indicated in red) between β7
and β8. Blue boxes indicate β-sheets.
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rsKame share similar β-barrel structures to EGFP and mCherry1, we also split them between
β7 and β8 (figure IV.2) [277, 296–298, 300]. In order to test whether complementation of the PA-
or PS-FPs restores the photoconversion and the fluorescence properties of the full proteins,
we used the self-dimerization of either EGFP or TagBFP under over-expression conditions
[302]. N- or C-terminal halves of the split-PA- or PS-FPs were fused to EGFP or TagBFP, using
the 12 amino acid linker described above, and co-transfected into EpH4 cells. Cells were
allowed to express proteins at 37 °C for 24–48 hours after which the incubation temperature
was lowered to 28 °C for 12 hours, to allow for complementation. For cells expressing the split-
PAmCherry1-, split-mEos2-, or split-Dendra2-EGFP fusions, EGFP expression was confirmed
by 488 nm illumination. Under 561 nm illumination, red fluorescence was observed in cells
expressing split-PAmCherry1 or split-Dendra2 only after photoactivation by 405 nm for ∼ 10 s
(arc lamp), indicating successful complementation (figure IV.3d). No fluorescence could be
recovered in cells expressing split-mEos2. Likewise, for cells expressing split-rsKame-TagBFP
fusions, TagBFP expression was confirmed by 405 nm illumination. Green fluorescence from
rsKame was switched off by 488 nm illumination and recovered after photoactivation by
405 nm illumination (figure IV.3d). As we were able to recover fluorescence in BiFC-PA-
FPs or BiFC-PS-FPs that are either irreversibly photoactivatable by UV-induced peptide
cleavage (PAmCherry1 and Dendra2) or reversibly photoswitchable through a cis to trans
isomerization of the chromophore (rsKame), functional complementation does not interfere
with either photoactivation mechanism. We do not know why mEos2 did not functionally
complement.

Having shown that photoactivatable fluorescence can be recovered upon complementation
of split-PAmCherry1, we then labeled OSCP and subunit b with the N- and C-terminal
halves of split-PAmCherry1 respectively, using the 12 amino acid linker described above,
and co-expressed them on a pIRES vector (figure IV.4a). In vivo complementation of split-
PAmCherry1 was confirmed by imaging transfected COS-7 cells after 36 hours of expression
at 37 °C and 12 hours at 28 °C, to allow for complementation. Mitochondrial networks were
pre-stained with MitoTracker Green and imaged by illumination with 488 nm. After 90 s of
405 nm photoactivation (7.3 W/mm2) we observed mitochondrially localized red fluorescence
from complemented PAmCherry1 under 561 nm excitation (figure IV.4b), both in live cells
and in cells fixed with 1 % formalin in 1× PHEM.

Identically prepared COS-7 cells were also used for BiFC-PALM imaging. Split-PA-
mCherry1 was imaged under 561 nm excitation (22 W/mm2) and 405 nm photoactivation
(0 W/mm2 to 3 W/mm2) until complete photobleaching. Again, individual fluorescent events
were identified and localized at ∼ 20 nm resolution (figure IV.4c, figure IV.1c), yielding super-
resolution images of a quality similar to those obtained by keeping only the red channel of
the previous two-color PALM experiments (figure IV.4d). However, this time, each event
represented a single ATP synthase complex containing both labeled subunit b and OSCP in
close proximity (< 10 nm).
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Figure IV.3: (See next page.)
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(continued)
(a) Interacting proteins OSCP and subunit b, respectively labeled with PAmCherry1

(red) and rsKame (green), co-localize when imaged by two-color PALM (merged
image).

(b) However, super-resolution co-localization is also observed when PAmCherry1 is
targeted to the mitochondrial matrix instead using the MLS of CoxVIII (red) while
subunit b is still labeled with rsKame (green), despite the lack of protein-protein
interaction (merged image).

(c) A stable interaction between proteins A and B, respectively fused to the N- and
C-terminal halves of a split PA-FP, can drive the complementation of the PA-FP.
Photoactivation of the fully complemented PA-FP results in fluorescence upon
excitation.

(d) Stable EGFP or TagBFP dimerization at high expression levels leads to the comple-
mentation of split PAmCherry1, Dendra2 and rsKame in EpH4 cells. EGFP was
fused to both halves of PAmCherry1 and Dendra2, and TagBFP to both halves of
rsKame. Expression of EGFP and TagBFP were detected by excitation at 488 nm
and 405 nm, respectively. Prior to photoactivation by 405 nm illumination, no fluo-
rescence was detected from complemented PAmCherry1, Dendra2 and rsKame.
After a 30s photoactivation by 405 nm (arc lamp), fluorescence was detected by
561 nm or 488 nm excitation.

Scale bars, 0.5 µm (a, b).
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Figure IV.4: (See next page.)
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(continued)
(a) The stable interaction between subunits OSCP and b of the ATP-synthase enables

their fusion partners, respectively the N- and C-terminal halves of PAmCherry1,
to complement into a photoactivatable complex.

(b) Photoactivatable fluorescence of complemented PAmCherry1 is detected by epi-
fluorescence in live and fixed COS-7 cells, and is localized to the mitochondria.
Under 561 nm illumination, no fluorescence is detected prior to activation, but
fluorescence was detected post activation by 405 nm illumination for 90 s. The
mitochondrial networks were pre-stained with MitoTracker Green.

(c) Super-resolution imaging using complemented PAmCherry1 in fixed COS-7 cells
(top and blue box) offers a dramatic resolution improvement over conventional
epifluorescence imaging (bottom).

(d) As a reference, a PALM image was reconstructed using only the signal from the red
channel (OSCP-PAmCherry1) of the previous two-color PALM experiments (top
and blue box). The number of events detected and the resolution improvement
over diffraction-limited epifluorescence (bottom) are similar to those obtained by
BiFC-PALM.

(e) Random, transient collisions between the split halves of PAmCherry1 are not
sufficient for complementation: when PAmCherry1(C) was fused to the MLS of
CoxVIII instead and co-transfected with PAmCherry1(N) fused to OSCP in COS-7
cells, no fluorescence is detected in live or fixed cells, before or after activation,
under the same imaging conditions as in (b).

Scale bars, 10 µm (b,e), 0.5 µm (c,d).
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We confirmed that complementation specifically requires long-term stable proximity by
targeting the C-terminal half of PAmCherry1 to the mitochondrial matrix, again using the
MLS of CoxVIII, while keeping the N-terminal half fused to OSCP (figure IV.4e). Under the
same expression and imaging conditions as above, no red fluorescence was observed even
after photoactivation, demonstrating that stable interactions, rather than random collisions,
are necessary for successful complementation.
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Discussion

We have demonstrated that photoactivatable (PAmCherry1, Dendra2) and photoswitchable
(rsKame) fluorescent proteins can be split and recover fluorescence and photoconversion
properties upon complementation. We also demonstrated that complementation of split-
PAmCherry1 requires a stable interaction of their respective fusion proteins, such as subunits
b and OSCP of ATP synthase. In the absence of interacting fusion partners, the split halves of
PAmCherry1 cannot complement, even if present at a significant concentration in the small
volume of the mitochondrial matrix, most likely because the transient collisions of the split
halves are too short and random. Once complemented, split-PAmCherry1 can be successfully
used for super-resolution fluorescence imaging of protein-protein interactions. Specifically, it
was possible to observe in situ the relative localization of subunit b to OCSP within < 10 nm
by complementation of split-PAmCherry1 while obtaining the absolute localization of each
interacting pair within ∼ 20 nm.

BiFC directly probes protein-protein interactions up to a range of ∼ 10 nm and a stability
of 𝐾𝐷 ∼ 1 mM, but, like conventional FRET, cannot determine absolute molecular positions
better than the diffraction limit. Meanwhile, super-resolution microscopy can only infer
protein-protein interaction through colocalization, but a single PALM voxel of ∼ 20 nm ×
20 nm × 20 nm is large enough to contain hundreds of proteins, that would all appear co-
localized without necessarily interacting. By contrast, BiFC-PALM combines both the relative
localization of BiFC and the absolute localization of PALM. This approach permits definitive
determination of protein-protein interaction within < 10 nm of each other as well as the
absolute localization of the proteins within ∼ 20 nm inside the cell.
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Materials and methods

IV.4.1 Cloning
pPAmCherry1N-EGFP was built by ligating a KpnI/XhoI fragment, PAmCherry11-160,

and a XhoI/ApaI fragment, EGFP into pcDNA-5/TO (Invitrogen). A 12 amino acid linker,
GSSGGGGSGGGG, was added to the N-terminus of EGFP by PCR. pEGFP-PAmCherry1C was
built by cloning a KpnI/XhoI fragment, EGFP, and a XhoI/ApaI fragment, PAmCherry1161-236,
into pcDNA-5/TO. The same 12 amino acid linker was added to the N-terminus of
PAmCherry1C by PCR. The same method was used to build pDendra2N-EGFP, pEGFP-
Dendra2C, pmEos2N-EGFP, pEGFP-mEos2C, prsKameN-TagBFP and pTagBFP-rsKameC.

pATP5F1-PAmCherry1C-IRES-ATP5O-PAmCherry1N was built as follows. A PstI/XhoI
fragment, ATP5F1 (Open Biosystems) and a XhoI/BamHI fragment, PAmCherry1161-236,
carrying a hexahistidine tag at its C-terminus, were ligated together, and then cloned into
pIRES2-EGFP (Clontech), yielding pATP5F1-PAmCherry1C-IRES-EGFP. Then, a MscI/XhoI
fragment, ATP5O (Open Biosystems), and a XhoI/NotI fragment, PAmCherry11-160, carrying
a FLAG tag at its C-terminus, were ligated together, and cloned into the previous vector,
replacing EGFP. Both fusion proteins included the same 12 amino acid linker, added by PCR
to the N-terminal of each PA-mCherry1 fragment.

pMLS-PAmCherry1C-IRES-ATP5O-PAmCherry1N was built as follows. The mitochondrial
localization sequence of subunit VIII of human cytochrome c oxidase, composed of its
first 29 amino acids, and a 3 amino acid linker, GGG, were added to the N-terminus of
PAmCherry1161-236 by nested PCR, yielding a PstI/XhoI fragment, carrying a hexahistidine
tag at its C-terminus. This fragment was cloned into pATP5F1-PAmCherry1C-IRES-ATP5O-
PAmCherry1N, replacing ATP5F1-PAmCherry1C.

pATP5O-PAmCherry1-IRES-ATP5F1-rsKame was built as follows. A PstI/XhoI fragment,
ATP5O, and a XhoI/BamHI fragment, PAmCherry1, carrying a hexahistidine tag at its
C-terminus, were ligated and cloned into pIRES2-EGFP, upstream of the IRES, yielding
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pATP5O-PAmCherry1-IRES-EGFP. Then, a MscI/XhoI fragment, ATP5F1, and a XhoI/NotI
fragment, rsKame, carrying a FLAG tag at its N-terminus, were ligated and cloned into the
previous vector, replacing EGFP. Both fusions contained the same 12 amino acid linker, added
by PCR to the N-terminal of each fluorescent protein.

pMLS-PAmCherry1-IRES-ATP5F1-rsKame was built by cloning a PstI/BamHI fragment,
MLS-PAmCherry1, also built by nested PCR and carrying a hexahistidine tag at its C-terminus,
into pATP5O-PAmCherry1-IRES-ATP5F1-rsKame, replacing ATP5O-PAmCherry1.

In order to promote translation, a Kozak consensus sequence, GACACC, was added to the
N-terminus of each construct before the start codon. PAmCherry1 and Dronpa were generous
gifts from the Liphardt lab (University of California, Berkeley). TagBFP was a generous gift
from the Hariharan lab (University of California, Berkeley). mEos2 was a generous gift from
Sean McKinney. rsKame was developed in the Bustamante Lab. Dendra2 was purchased
from Clontech Laboratories, Inc.

IV.4.2 Cell culture, transfection and protein expression
Two different cell lines were used: mouse EpH4 (mammary gland epithelial) and monkey

COS-7 (kidney). EpH4 cells, originally isolated by C. Roskelley, were cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) with 2 % FBS, 5 mg/L insulin and 50 mg/L gentam-
icin. COS-7 cells, purchased from the University of California, Berkeley Tissue Culture
Facility, were cultured in DMEM with 10 % FBS, 1 % non-essential amino acids and 1 %
penicillin/streptomycin. Cell reagents were purchased from the University of California, San
Francisco Cell Culture Facility. Cells were grown at 37 °C with 5 % CO2. Cells were trans-
fected using lipid-based commercial transfection reagents: Lipofectamine 2000 (Invitrogen)
for EpH4 cells and Xfect (Clontech) for COS-7 cells. Cells were transfected for 4–6 hours and
then incubated for 24–48 hours (EpH4 cells) or 36 hours (COS-7 cells).

IV.4.3 Diffraction-limited microscopy
Cells were imaged on the Nikon Eclipse TE2000-S scanning confocal microscope (Nikon

Instruments Inc.). Cells were plated on MatTek imaging tissue culture plates (MatTek Corpo-
ration). Cells were imaged in vivo in 1× PHEM. Cells transfected with EGFP or TagBFP were
illuminated with 488 nm or 405 nm respectively. rsKame was photoactivated with 405 nm
prior to illumination with 488 nm. PAmCherry1, Dendra2, and mEos2 were photoactivated
with 405 nm prior to illumination with 561 nm. In cells expressing multiple fluorophores,
images were taken consecutively then analyzed and overlaid using ImageJ.
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Chapter IV.4 Materials and methods

IV.4.4 Super-resolution fluorescence microscopy
Super-resolution microscopy was performed with a homemade fluorescence microscope

built with an Olympus IX71 body and an UAPO150xO/TIRFM-SP NA 1.45 objective. Three
lasers—561 nm (Sapphire 561 nm, 200 mW; Coherent, Inc.), 488 nm (Cyan 488, 50 mW; Spec-
tra Physics), and 405 nm (Cube 405 nm, 50 mW; Coherent, Inc.)—were combined, magni-
fied, and focused on the back focal plane of the objective to illuminate a sample area of
55 μm × 55 μm. Fluorescence images were acquired by a low-noise, light-sensitive electron
multiplying charge coupled device (EMCCD) (DV887ECS-BV; Andor) at 20 Hz with either a
green emission filter (ET525/50; Chroma) for rsKame or a red emission filter (FF01-588/21;
Semrock) for PAmCherry1, mEos2 and Dendra2. Focus drift was stabilized by active feedback
control of a piezo-stage (CRIFF; ASI) whereas in-plane sample drift was corrected by tracking
100 nm gold fiducials (Microspheres-Nanospheres). The final imaging system provided
512 × 512 pixels of entire field of view, 107 nm/pixel, and 2D Gaussian point spread function
(PSF) with 𝜎 ∼ 1.2 pixel.

Raw data was analyzed in three steps by using a custom-developed PALM analysis software
written in MATLAB.

EMCCD images were digitally filtered using a Laplacian of Gaussian filter to enhance
their contrast and remove low-frequency background. Local maxima of the filtered image
for which the peak value was greater than 6 times the background noise and the summed
raw EMCCD counts over a 7 × 7 box was greater than 2000 were selected for further fitting.

Raw EMCCD counts were converted to photon counts. Around each selected local maxi-
mum, a 11 × 11 box was cropped. Molecular localizations were obtained by fitting the central
9 × 9 pixels, using the remaining outer pixels to estimate the mean and standard deviation of
the local background fluorescence Maxima appearing in consecutive EMCCD frames within
1 pixel of each other were interpreted as being due to a single fluorophore; thus, for such
cases, the sum of the whole stack of corresponding 9 × 9 boxes was fitted.

Super-resolution images were reconstructed from the single molecule localizations thus
obtained, by representing each single molecule by a 2D Gaussian with a standard deviation
given by the theoretical uncertainty of the localization of the corresponding PSF [57, 214].
The summing of the 2D Gaussians was accelerated by GPU-based parallelization (CUDA,
Nvidia).
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During our Ph. D., we had the opportunity to explore two different single molecule
techniques: optical trapping and super-resolution microscopy. In both cases, we aimed at
improving the resolution or the accuracy of the technique.

In the case of optical tweezers, we presented in part I a series of algorithmic and instru-
mental improvements that allowed us to resolve single base-pair stepping by slowed RNA
polymerase in a robust fashion. We exploited this technique to obtain the distribution of dwell
times taken by the enzyme between consecutive steps, and measure how this distribution is
affected by the transcription inhibitor pyrophosphate. Many other small molecules affect the
dynamics of transcription elongation and are of therapeutic interest [46], and it is our hope
that the methodology we developed may be used to study at the finest level the dynamical
effects of such small molecules on the elongation cycle.

In part II, we presented a methodology, relying on transcription through specifically
constructed (namely, repeating) templates as well as novel data analysis methods, that allows
us to accurately measure sequence-dependent dynamics of RNA polymerase, down to time
scales where pauses and pause-free transcription become indistinguishable from a purely
kinetic point of view. This framework allowed us to obtain important information regarding
the dynamics of pause entry, the initial steps of backtracking, the role of the factor GreB,
and the various effects that RNA secondary structures can have on RNA polymerase. But
the framework is also more widely applicable, and is already being used by colleagues to
study other sequence-dependent processes, such as the transcription by the eukaryotic RNA
polymerase (Pol II) through nucleosomes.

It is our strongly held opinion that further improvements to the resolution and accuracy of
optical tweezers may be achieved through careful modeling of the data (which cannot be
decoupled from a deep understanding of the biological system of interest) and through the
application of novel statistical methods.

As part of our work on super-resolution microscopy, we first presented in part III a re-
view of current analysis techniques, both for achieving the highest possible localization
accuracy, as well as for extracting quantitative information regarding protein counts from
super-resolution data. Finally, we presented in part IV our work in engineering a split photo-
activatable fluorescent protein that may be used for probing protein-protein interaction at
high resolution while maintaining the localization accuracy advantages offered by super-
resolution microscopy. Although this project was prematurely interrupted following the
publication of similar findings by other groups [303, 304], we still hope that the efforts to
develop general methods for probing protein-protein interactions (either with bimolecular
fluorescence complementation, or with more flexible techniques such as Förster resonance
energy transfer) with high localization accuracy will continue.
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