
UC Irvine
UC Irvine Previously Published Works

Title
Resonant ultrasound spectroscopic techniques for measurement of the elastic moduli of 
solids

Permalink
https://escholarship.org/uc/item/7d95f3dg

Journal
Physica B Condensed Matter, 183(1-2)

ISSN
0921-4526

Authors
Migliori, A
Sarrao, JL
Visscher, William M
et al.

Publication Date
1993

DOI
10.1016/0921-4526(93)90048-b

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7d95f3dg
https://escholarship.org/uc/item/7d95f3dg#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Physica B 183 (1993) 1-24 
North-Holland PHYSICA rn 

Resonant ultrasound spectroscopic techniques for measurement 
of the elastic moduli of solids 

A_ Migliori, J.L. Sarrao, William M. Visscher, T.M. Bell, Ming Lei, Z. Fiskl and 
R.G. Leisure2 

Los Alamos National Laboratory, Los Alamos, NM, USA 

Received 20 October 1992 

The mechanical resonant response of a solid depends on its shape, density, elastic moduli and dissipation. We describe 
here instrumentation and computational methods for acquiring and analyzing the resonant ultrasound spectrum of very 
small (0.001 cm3

) samples as a function of temperature, and provide examples to demonstrate the power of the technique. 
The information acquired is in some cases comparable to that obtained from other more conventional ultrasonic 
measurement techniques, but one unique feature of resonant ultrasound spectroscopy (RUS) is that all moduli are 
determined simultaneously to very high accuracy. Thus in circumstances where high relative or absolute accuracy is 
required for very small crystalline or other anisotropic samples RUS can provide unique information. RUS is also sensitive 
to the fundamental symmetry of the object under test so that certain symmetry breaking effects are uniquely observable, 
and because transducers require neither couplant nor a flat surface, broken fragments of a material can be quickly screened 
for phase transitions and other temperature-dependent responses. 

1. Introduction 

Large single crystals are always highly prized, 
in part because of their appearance, but also 
because usually they are the result of consider­
able effort on the part of the grower. Such effort 
is justified because the usual implementation of 
many measurement techniques, for various com­
plex and often mundane reasons, requires sam­
ples with dimensions in the centimeter range. 
Ultrasound measurements, traditionally of great 
importance because of their connection to 
thermodynamics, transport properties and mi­
crostructural effects, are typically subject to this 
size constraint. When only small samples are 
available, it is possible to perform pulse-echo 
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ultrasound measurements at GHz frequencies [1] 
or to use the vibrating reed and related methods 
[2], but the cost to the scientist is either instru­
ment complexity or loss of information. There 
are, of course, other nonacoustic techniques for 
obtaining sound velocity and attenuation data 
such as Brillouin scattering [3], inelastic neutron 
scattering [4], X-ray based methods [5] and 
others. Each of these nonacoustic techniques has 
advantages and disadvantages. Among the dis­
advantages common to all of them is the lack of 
high precision. Only the acoustic techniques can 
achieve 10-6 or better reproducibility. Because 
the speed of sound may vary only a percent or 
less at a phase transition [6] or a few percent 
from 300 K to 4 K, this lack of precision can be a 
serious failing. On the other hand, neutron scat­
tering can provide the entire dispersion curve 
from Brillouin-zone center to edge, but with 
worse than percent accuracy, Brillouin scattering 
can obtain data at frequencies in the tens of GHz 
range with 1 % accuracy on very small samples 
but suffers at cryogenic temperatures or with 
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opaque samples, and X-ray techniques achieve 
moderate accuracy on very small samples. Thus 
each of these techniques retains an important 
place in elasticity studies (or it would not be 
used, of course). 

Of the acoustic techniques, such methods as 
the vibrating reed and torsion pendulum can 
measure only some of the elastic moduli, while 
pulse-echo ultrasound and most of the nonacous­
tic techniques can measure all of them. This is 
not a particularly important constraint for iso­
tropic materials such as glasses, polycrystalline 
metals and ceramics. However, for single crys­
tals, textured alloys and the like, the value of 
ultrasound measurements is often critically de­
pendent on measurement of all moduli with both 
precision and accuracy. 

This requirement for accuracy and precision is 
exemplified by ultrasonic studies of the physics 
surrounding second-order phase transitions. At 
such transitions, there are no microscopic discon­
tinuities in the material. No atoms suddenly 
change position, magnetism and ferroelectricity 
do not suddenly appear, and electrical conduc­
tivity in a superconductor becomes infinite only 
for infinitesimal currents carried at zero magnetic 
field. However, several thermodynamic second 
derivatives do exhibit discontinuities. For a liq­
uid, with only one elastic modulus, it is simple to 
write down the important relations, using pres­
sure (P), volume (V) and temperature (T) in­
stead of stress (Iij' strain Cij and T. They are 

a2 11Glap2 = a I1Vlap = -liB, 

a2 11GlaT2 = -a I1SlaT= -CpIT, 

a2 I1GlapaT=aI1VlaT= a, 

(1) 

(2) 

(3) 

where I1G is the Gibb's free energy difference 
per unit volume across the phase boundary and 
is continuous, 11 V is the fractional volume dis­
continuity across the phase boundary, equal to 
zero, I1S the entropy discontinuity, also zero, Cp 
is the specific heat, a is the volume thermal 
expansion coefficient and B the bulk modulus. 
Each of the quantities Cp ' a and B can exhibit 
discontinuities at T s ' the second-order phase 

transition temperature at which the high­
temperature (usually the so-called symmetric) 
phase transforms to the low-temperature (usually 
the unsymmetric) phase. 

Discontinuities are of great importance to the 
experimentalist because they are often the most 
unambiguous of measured quantities. Moreover, 
in general Cp is a scalar, a a vector and, if we 
were to write eq. (1) for stress and strain rather 
than pressure and volume, we would find that 
the right side of eq. (1) would be a tensor. That 
the modulus is a tensor and is discontinuous at a 
second-order phase transition is a key motivating 
factor for the development of RUS. To see why, 
consider a simple soft-mode structural phase 
transition such as occurs in La2 Cu04 • This tran­
sition, described in more detail below, arises 
from a zone-edge double-well [7] potential V for 
one phonon branch. As the material in its tetra­
gonal phase is cooled, the thermal excitation 
level drops through the point where the double 
well becomes important. The free energy G ex­
hibits a single-well behavior from thermal smear­
ing at high temperature and a double-well be­
havior cold. At the temperature Ts where the 
behavior just switches over, the phonon's fre­
quency decreases to zero resulting in a static 
displacement. This static displacement increases 
from zero as the material is cooled further, 
doubling the unit cell to an orthorhombic struc­
ture. What is of most interest here is that the 
zone-edge static displacement, coupled with 
group theoretical considerations including 
phonon and crystal symmetry, Ginsburg-Landau 
theory [8] and fluctuation theory [9], forces very 
specific predictions about which moduli exhibit 
discontinuities and how big, and the temperature 
dependence of the moduli as Ts is approached 
from either direction. Such an analysis can be 
made for any second-order phase transition, and, 
if the full response of the modulus tensor is 
available, one can work backwards to extract 
much of the physics driving the transition. With­
out a discontinuous tensor to work from, such an 
analysis would be more subject to interpretation­
al errors. 

RUS can determine the full elastic tensor in a 
single measurement with unprecedented absolute 
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and relative accuracy from cryogenic to very high 
temperatures. The basic principle behind this 
simple, inexpensive bench-top measurement 
technique is that the mechanical resonances of a 
solid depend on its shape and moduli in a way 
sufficiently complex such that a measurement of 
the resonant frequencies of a carefully made 
sample can be used to determine the full elastic 
tensor. To illustrate this we show in table 1 the 
results of such a measurement on a Si3N4 ball 
bearing. These data represent our current state­
of-the-art for accuracy, primarily because this 
object, a nominal 5/16 inch diameter sphere, is 
spherical to a few parts per million and is made 
from a carefully controlled ceramic with very 
isotropic properties. Thus only two moduli, the 
density and the diameter are required to fully 
characterize its resonances. As can be seen from 
the columns labelled fm and fr, agreement be­
tween experiment and computation is of order 
0.01 % after a best fit to the moduli (in this case, 
we use the shear modulus J.L and Poisson's ratio if 
as the independent parameters) is found. Density 
and diameter are measured independently. For a 
larger 112 inch nominal-diameter sphere of the 
same material, we obtain 0.004% agreement, 
primarily because the larger object is less pertur­
bed by air and transducer contact and because its 
temperature cannot change as quickly. 

Table 1 

2. Measurement techniques 

Current practices in the design of the hard­
ware, data analysis and sample preparation sys­
tems required to make and interpret RUS mea­
surements have not been described in detail 
anywhere. Because of the novelty of the tech­
nique, and because of its utility, it is important 
to understand the measurement system in order 
to appreciate the data produced by it. Because 
an example is often the best focus, a state-of-the­
art apparatus for making low-temperature RUS 
measurements on rectangular parallelepiped 
eRP), spherical and cylindrical samples with 
smallest dimension of about 0.05 cm, from 20 K 
to 400 K, will be described schematically. Using 
data on SrTi03 , LaZCu0 4 and Laz_x Srx Cu0 4 

single crystals, we will illustrate what can be 
learned with RUS including certain effects relat­
ing to crystal symmetries not accessible by any 
other measurement method. 

2.1. Data analysis 

The key to the successful application of RUS 
is the ability to compute mechanical resonances 
from a body's shape, density and moduli. For 
solids, such as a sphere or RP, having a shape 
sufficiently simple to enable description by a few 

Resonant ultrasound measurement of a 0.63500 cm diameter Si3N4 ceramic sphere with a density of 3.2325 g/cm3. fm are measured 
frequencies, f, are fitted, n is the mode number. k is our designator (to be discussed below) for the symmetry of the mode and i is 
in essence the harmonic number of each symmetry type. Multiple entries indicate the mode degeneracy. The fit for 
/J- = 1.2374 X 1012 dyne/ cm2 and a = 0.2703 has a x2 (%) = 0.0124. This is sufficient to determine /J- to about 0.01% and a to 
about 0.05%. There are no corrections so these values are absolute. 

n f, (MHz) fm (MHz) % error (k, i) 

1 0.775706 0.775707 -0.000138 (6,1), (1, 1), (4, 1), (4, 2), (7, 1) 
6 0.819567 0.819983 -0.050778 (5,1), (3, 1), (5, 2), (8, 1), (2, 1) 

11 1.075664 1.075399 0.024614 (1,2), (7,2),(6,2) 
14 1.198616 1.198505 0.009239 (5,3), (2,2), (3,2), (8,2), (3,3),(8,3), (2,3) 
21 1.217375 1.217850 -0.039042 (1,3), (6, 3), (7,3), (1, 4), (6, 4), (7, 4), (4, 3) 
28 1.440760 1.440750 0.000712 (5,4) 
29 1.527080 1.526474 0.039695 (5,5), (8,4),(3,4), (5,6), (2,4) 
34 1.558358 1.558848 -0.031448 (5,7), (5,8), (5, 9), (3,5), (8,5), (2, 5), (3, 6), (8, 6), (2,6) 
43 1.580067 1.579871 0.012426 (6,5), (7,5), (7,6), (1,5), (4,4), (1,6), (6,6),(4,5), (4,6) 
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mathematical functions, an approach based on 
work by Holland [10], Demarest [11], Anderson 
et al. [12] and Ohno [13] is used. This procedure 
does not use finite-element methods but instead 
seeks stationary points of the Lagrangian for a 
solid with free surfaces [14], and with a nondis­
sipative symmetric elastic tensor with no far-field 
effects such as those associated with ferromag­
nets or ferroelectrics. Far-field systems [15] and 
the dissipative problem [16] have been analyzed 
successfully, but will not be discussed here. Once 
the mechanical resonances are computed (the 
direct problem), carefully constructed fitting pro­
cedures can be used to work backwards to find 
moduli from resonant frequencies (the inverse 
problem). 

The procedure for solving the direct problem 
for an arbitrarily shaped elastic solid with vol­
ume V, elastic tensor Cijk /, density p, and with a 
free surface S begins with the Lagrangian 

L= f (KE-PE)dV (4) 
v 

where the kinetic energy, KE, is given by 

KE 1 2 2 = 2:PW ui , (5) 

and the potential energy, PE, by 

PE = !ck/u. ,uk / . IJ 1,J , 
(6) 

Here u i is the ith component of the displacement 
vector, the usual summation convention applies, 
indices following a comma denote differentiation 
with . respect to that coordinate and the time 
dependence of the displacements is assumed to 
be e iwt where w is the angular frequency and t is 
time. 

Following Hamilton, we allow ui to vary arbit­
rarily in the volume V and on the surface S 
(u i ---!> u i + 8uJ and calculate the variation 8L in 
L. The result is 

8L = f (left side of eq. (8))i8ui dV 
v 

+ f (left side of eq. (9))i8ui dS 
s 

(7) 

plus higher-order terms in 8u i • The elastic wave 
equation is 

(8) 

and the vanishing of the ith component of the 
surface traction vector is expressed by 

(9) 

where {nJ is the unit outer normal to S. 
Because of the arbitrariness of 8ui in V and on 

S, the u;'s which correspond to stationary points 
of L (i.e. 8L = 0) must satisfy eq. (8) in V and 
eq. (9) on S. There are no such u;'s, of course, 
unless w

2 is one of a discrete set of eigenvalues, 
the normal mode frequencies of free vibration of 
the system. This simple result makes possible the 
following powerful procedure for obtaining the 
free vibrations of an object. 

Following the Rayleigh-Ritz prescription, we 
expand the displacement vector in a complete set 
of functions {CPA}' 

(10) 

and choose as our basis functions powers of 
cartesian coordinates: 

£Ii. /mn 
""A = X Y z , (11) 

where A = (I, m, n) is the function label, a set of 
three nonnegative integers. After substituting 
eq. (10) into eq. (4), we obtain (a becomes a 
column vector) 

(12) 

where E and r are matrices whose order R is 
determined by the truncation condition 

l+m+n~N, (13) 

with R = 3(N + l)(N + 2)(N + 3)/6. We have 
found that N = 10 gives a good compromise be­
tween computational accuracy, computing time 
and typical sample preparation errors consistent 
with data spanning the first 50 or so modes. 
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The matrix E has elements 

EAiA'i' = 0U' J cPAPcPA' dV . 
v 

(14) 

If we had chosen cPA to be an orthonormal set 
with respect to the density p (for example, nor­
malized Legendre polynomials [13]), E would 
have been the unit matrix, simplifying sub­
sequent manipulations. Our choice of cPA' al­
though extracting a moderate computational 
penalty, is more easily applied to complex shapes 
than an orthonormal set. 

The matrix r has elements 

rAiA'i' = Ciji'j' J cPA,jcPA',j' dV . 
v 

(15) 

The volume integrals which appear here are 
quite tractable for many shapes if the choice (11) 
is made. 

The expression (12) for the Lagrangian is 
stationary if the displacements ui are solutions of 
the free-vibration problem. These solutions may 
be obtained by setting the derivatives of eq. (12) 
with respect to each of the R amplitudes a iA 

equal to zero. This yields the following eigen­
value equation: 

(16) 

The matrix E is symmetric and positive definite 
and r is symmetric, so a standard eigenvalue­
eigenvector subroutine package (RSG in EIS­
PACK-[17]) can be used to solve (16). 

For our choice of cPA the matrix elements of E 
and r are all of the form 

f(p, q, r) = J xpyqzr dV , (17) 

v 

where p, q and r are nonnegative integers. This 
integral can be evaluated analytically for a varie­
ty of shapes [14]. For the RP with sides 2d1 , 2d2 , 

2d3 , it is 

SdP+ldq+ldr+l 
. . 1 2 3 

f(p, q, r) = (p + l)(q + l)(r + 1) . (IS) 

To solve the inverse problem, the derivatives of 
the eigenfrequencies f= wl2'IT (where w

2 is an 
eigenvalue of eq. (16)) with respect to parame­
ters of the sample are required. These can be 
obtained easily in the following way. First, dif­
ferentiate eq. (16) with respect to one of the 
sample parameters p (an elastic constant, dimen­
sion or angle specifying the orientation of the 
crystallographic axes with respect to the paral­
lelepipedal axes) to obtain 

aw 2
/ ap Ea + w2E aa/ ap + aw 2 aE/ ap a 

= ar/ap a + r aa/ap . (19) 

Then multiply this from the left with aT and 
compare with the transpose of eq. (16) to get 

Because we have already computed the eigen­
vectors a and the volume integrals occurring in 
a r / a p and aE / a p are trivial, the computation of 
the derivatives represents only a minor increase 
in computational time. 

We can speed up the calculation immensely by 
exploiting the symmetries x ---? - x, Y ---? - y, 
Z ---? - z that occur if the crystal is of ortho­
rhombic or higher symmetry and the crystallo­
graphic axes are aligned with those of the sam­
ple. Then by inspection of the PE in eq. (6) we 
see that if U x is characterized by a parity triplet 
(-g, f..t, v) where 

the matrix r only connects this U x with u y and U z 

having the following parities: 

ux:(-g,f..t,v), 

u y : (g, - f..t, v) , 

U z : (g, f..t, - v) . 

(21) 

Thus the matrix r degenerates into a block­
diagonal matrix with eight blocks, each charac­
terized by one parity triplet, say the parity of ux ' 

We label this parity as follows: 
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k= 1 2 3 4 567 8 

(22) 

The modes for each k-value (22) are uncoupled, 
so that the maximum order for which we need to 
solve the eigenvah.\e problem (16) and the total 
computational time are much reduced even 
though we now have 8 eigenvalue problems to 
solve. 

Each of the 8 k-values represents a different 
symmetry for the displacement of the material in 
the object. For example a uniform translation in 
the x-direction will have U x with (I, m, n) = 

(0,0,0) or k = 1. A translation in the y-direction 
has k = 7, and a translation in the z-direction 
k = 6. Similarly, a rotation about the z-axis will 
have k = 3, one about the y-axis has k = 2, and 
one about the x-axis k = 4. These six special 
eigenvectors all have an eigenvalue of zero. One 
other special case occurs for k = 5 which has 
div u ¥- 0 after averaging over V, so it is the only 
k-value for which the volume oscillates. 

This very fast and accurate solution to the 
direct problem is the key tool for solution of the 
inverse problem. However, the inverse problem 
is not at all straightforward. First note that there 
is no unique solution to the inverse problem 
because all the frequencies scale inversely with 
the linear dimensions of the sample and with the 
square root of the elastic constants. This simple 
scaling problem is easily dealt with, but for real 
data on imperfect objects, other uniqueness 
problems arise that are difficult to circumvent. 
The best procedure we have found is to begin 
with a 'figure of merit': 

F= 2: wi(h - gJ2. (23) 
i 

Here the sum is over a sufficient number of 
measured frequencies, Wi is a weighting factor 
chosen (usually either 0 or II g7, so that F is a 
measure of fractional deviation) to reflect one's 
degree of confidence in the measured frequency 
gi (a function of signal strength and resonance 

width) and h = wJ2TI is the ith calculated fre­
quency. Note that the derivatives computed in 
eq. (20) are such that several resonant fre­
quencies depend in almost exactly the same way 
on certain weighted sums of the cij . Thus many 
more than M resonances (where M is the number 
of parameters to be fit) must be measured for a 
meaningful fit to be achieved. 

A systematic scheme is used to locate the 
minimum of F in the space of chosen parame­
ters. This can be a I-dimensional space if all we 
need to find is the compressibility of a fluid, or a 
24-dimensional space if we need the 21 in­
dependent elastic constants of a tridinic crystal 
plus its three dimensions. The method we pres­
ent here works in both these cases as well as 
many intermediate ones. In the process of 
searching for a viable minimization recipe we 
have tried several and settled on the Levenberg­
Marquardt scheme [18] because it is relatively 
flexible, controllable, stable and reliable. 

First we expand F in a Taylor series 

F(x) = F(xo) + (x - xo)"F,,,(xo) 

+ Hx - x o)"F,"/3(xo)(x - x O)/3 + '" . (24) 

x is the vector whose components {xa }, a = 
1, ... ,M, are the parameters we need to esti­
mate (elastic constants, dimensions and Euler 
angles relating crystallographic axes to sample 
surfaces in a misaligned sample have all been 
successfully determined). This expansion is valid 
only in a limited domain such that x - Xo is in 
some sense small, thus it is important to use any 
available information to guess accurately Xo at 
the start. 

If F is a minimum at x, then 

F,,,(x) = 0, a = 1, ... ,M . (25) 

Using, eq. (24), 

(26) 

which, when solved iteratively for x, is just New­
ton's method in M dimensions. The derivatives 
are 
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F.a = 2Wi (h - gJh.a , (27) 

F.af3 = 2Wi h.aAf3 + 2wJh - gJh.af3 . (28) 

The first derivatives h,a are given by eq. (20); we 
drop the second-derivative term Aaf3' One may 
make four arguments to justify this. First, the 
second term in eq. (28) is a sum over the mea­
sured frequencies; this sum will probably include 
about as many positive terms as negative ones, 
and consequently should be small. Secondly, 
dropping the second term will never affect the 
position of the minimum, only the route and 
speed of getting to it. Third, althoughh,af3 can be 
expressed in terms of already computed eigen­
vectors and eigenvalues, actually evaluating it 
requires considerably more computer time than 
the evaluation of h,a' Finally, to implement the 
minimization scheme one must obviously solve 
eq. (26) for x, which may involve finding the 
inverse of F,af3' often a difficult thing to do if F,af3 
is not positive definite (the first term in eq. (28) 
is positive-definite, but not the second). Follow­
ing ref. [18], let 

(29) 

(30) 

and the solution of eq. (26) is 

(31) 

This equation is valid whenever eq. (24) is a 
good approximation, i.e. when xa is close to the 
minimum. If not, a best guess is to move in a 
direction opposite to the gradient (downhill), i.e. 

Xa = xOa - constant * Ba , (32) 

where the positive constant has dimensions X2! F. 
Aaa (no summation) has dimensions F!x2 and is 
a measure of the aath element of the F-surface 
curvature tensor. It therefore may be reasonably 
used to limit the distance moved in the ath 
direction in parameter space (this is important 
because there are many shallow local minima 
available to trap the solution. Such minima ap-

pear if a mode is too weak to be detected and no 
allowance is made for a missing mode in the 
group of measured frequencies, or if large steps 
are taken in following the gradient 'downhill'). 
Following Marquardt, introduce a dimensionless 
positive quantity n and replace eq. (31) with 

(33) 

where 

(34) 

without a sum in eq. (34). Equation (33) is 
identical to eq. (31) if [l = 0 and is very much 
like (32) for large n, when G becomes nearly 
diagonal. By choosing a large n we can proceed 
as cautiously as we like along the M-dimensional 
surface F, only decreasing n to zero when in the 
neighborhood of the minimum. 

If by iterating eq. (33) a number of times 
convergence is achieved at a point xmin in M­
dimensional parameter space where the gra­
dients Ba = 0, a = 1, ... ,M, then F may be 
expanded about that point: 

where 8x = x - xmin' 

Because the curvature of F in different direc­
tions varies over as much as two orders of mag­
nitude at the minimum, the accuracy for de­
termining xmin is very different for different pa­
rameters. Recognizing that 2A is just the inverse 
of the covariance matrix for this problem, 
diagonalizing it (or equivalently, G) yields M 
eigenvectors yfL and eigenvalues (T~. Specifically, 

(36) 

In terms of these variances and eigenvectors eq. 
(35) becomes 

F(x) = F(xmin ) + (8x, yfL)2!2(T~ . (37) 

Here (8x, yfL) is the inner product of two vec­
tors, and because yfL is a unit vector it is just the 
projection of 8x in the yfL direction. So eq. (37) 
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tells us the shape of the surface F near the 
minimum. The surfaces of constant F are ellip­
soids in M -dimensional parameter space with 
semi-major axes in the {yIL} directions. The 
lengths of the semi-major axes are given by 

(38) 

where 8F is the amount by which F exceeds the 
minimum. In practice it is often true that one or 
more of the aIL's is quite large, meaning that a 
large uncertainty is attached to the correspond­
ing linear combination of the x;'s given by 
(8x, yIL). Thus probable errors cannot be at­
tached easily to individual elastic constants (and/ 
or dimensions), but only to these linear combina­
tions of them. We estimate the error for a par­
ticular parameter Xi by examining several of 
these linear combinations. In this way the sharp­
ness of the minimum for a particular parameter 
and thus an error estimate for that parameter 
may be determined. The error estimate is very 
sensitive to sample geometry errors induding 
chipped corners for a RP and inhomogeneities. 
Such errors may make the absolute minimum for 
F shallow and introduce other local minima that 
may trap the solution in the wrong place. The 
effect is compounded if a mode is missed. For a 
measurement with one or two missing modes and 
a 5 fLm parallelism error in 2 mm it is essentially 
impossible to obtain an accurate (20% errors are 
easy to get) value in a cubic material for c11 or 
c12 ; however C44 is always reasonably accurately 
obtained. Typically with a 'good' fit and where 
not more than two modes are missed out of 30, 
the RMS error between fitted and measured 
frequencies is less than 0.1 %, the solution does 
not get trapped in a local minimum, and a 
change in this error of 2% is larger than all 
reproducibility and other error sources occurring 
in the measurement. Thus an M-dimensional 
ellipsoid in parameter space surrounding the 
minimum in F with a surface corresponding to a 
2% increase in XZ provides a realistic error esti­
mate for determination of parameters. Using this 
criterion, the compressional moduli (Cii , i = 1, 3) 
are determined to better than 1 %, shear moduli 
(ca, i = 4, 6) to 0.02% and off-diagonal moduli 

to better than 3%. This way of determining 
errors can be tested directly by making the di­
mensions of the sample free parameters. To 
circumvent the ambiguity mentioned above, we 
add to eq. (23) a term Ll(d1dzdJ - V/8)2, which, 
for large Ll, has the effect of fixing the volume of 
the RP. Using measured values as the initial 
guess, for good data on a sample with good 
geometry, the fitted dimensions are typically 
within 2 fLm (0.1%) of the measured value, the 
limit of our accuracy for length measurement. 

2.2. Sample preparation 

As described above, one can easily fit to a 
local and incorrect minimum in modulus space 
with very large con commit ant errors in parame­
ter determination if (1) the sample geometry and 
properties are not consistent with the mechanical 
model used for the computation, (2) some reso­
nances are missed (i.e. [; is paired with the wrong 
gi in eq. (23)) or (3) the resonant frequencies are 
incorrectly measured. To achieved an accurate fit 
the faces of a millimeter-sized RP sample must 
be accurate to 2 fLm or better. This is easily 
accomplished using ground steel shims and a 
glass plate as shown in fig. l. The shims, surface­
ground to be 10 to 50 fLm thinner than the 
distance between sample faces to be polished, 
and with edges squared up in an ordinary milling 
machine, are arranged as shown on a flat glass 
plate coated with molten wax [19] and held down 
with a large magnet. The X-ray oriented sample 
is trapped by the shims and polished on 15 fLm 
and then 3 fLm optical lapping paper [20] using 
an appropriate lubricant such as kerosene. That 
the shims can force a sample face to be either 
parallel or perpendicular to the glass depending 
on how pressure is applied to the sample as the 
wax cools is crucial. In addition, as the sample 
nears completion, the shims support the sample 
edges, ensuring that sharp edges and corners are 
produced, especially for brittle materials such as 
LaZCu0 4 • This appears to be important both for 
accuracy and to minimize the number of missed 
modes. There is no definite way that we know of 
for the quantifying requisite corner and edge 
sharpness. 
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Sample (to be polished) 
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Glass Plate 

Shims 
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Fig. 1. Shown is the arrangement of ground steel shims on a 
glass plate used for obtaining an accurate rectangular paral­
lelipiped from an as-grown oriented single crystal. 

2.3. Hardware 

Even with a well-prepared sample, certain 
modes, especially those having k = 5 (the only 
mode type where the volume oscillates) may 
have nodes near the corners of the sample. 
Computation of the mode shape is a simple 
addition to the codes used to find resonant fre­
quencies, and the result for two mode types is 
shown in fig. 2. Because the task is to excite 
resonances, it is important to drive the sample at 
a low-symmetry location to excite as many 
modes as possible. The lowest symmetry point 
on a RP sample is the corner, thus this is the 
most desirable point to drive and detect, an 
important principle discovered by Demarest [11] 

Fig. 2. Eigenvectors (local instantaneous peak displace­
ments) for k = 4, a pure shear mode and k = 5, the only 
mode type for which the volume oscillates are displayed. The 
k = 5 . mode illustrates how a node can occur near a corner. 
making it very difficult to observe that mode. 

and Anderson et al. [12], and derived, group­
theoretically, by Mochizuki [21]. Moreover, the 
corners have a low mechanical impedance so that 
touching them with a transducer has minimal 
(less than a 10-5 fractional frequency shift) effect 
on the free-surface boundary conditions if the 
contact force is low (103 dynes or less). Other 
excitation schemes have also been used, such as 
electromagnetic [22] and polyvinylidene fluoride 
strips [23], with mixed sucess, in the sense that 
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the ultimate accuracy of determination of the 
free-sample resonances is not as good as for 
point contact. 

Surprisingly, the lowest modes, even for an 
RP sample, are usually pure shear modes. Thus 
even if moduli and shape conspire to force a 
node to be near a corner, thereby making it so 
weak that it may be missed, the first several 
modes will generally determine the shear moduli 
to 1 % or so, providing a good guess for them in 
the inversion calculation. The inversion code 
now has somewhat less work to do, making it 
harder to fall into a false minimum. More im­
portant, though, is that anything that helps en­
sure a good initial guess for the moduli should be 
used, induding published values, because with a 
good starting point and the use of only the first 
five or ten resonances, the first pass of the code 
may help identify places where a mode is miss­
ing. Then a more careful scan or a remount of 
the sample may reveal the mode. There are 
other ways of finding missing modes using simple 
modifications to the apparatus described below 
[24], or by simply inserting, measuring and re­
moving the sample several times. We cannot 
overstress the importance of finding nearly (95% 
or better) all modes before relying on the analy­
sis of the data. 

The hardware and electronics used to obtain 
accurate resonance data include a cryostat or 
furnace, transducers, a preamplifier, amplifier 
and mixer / filter or some equivalent. The elec­
tronic components and transducers used in our 
and Anderson's systems [25] are now commer­
cially available from Quatro Corp. [26]. We will 
begin the hardware discussion with the transduc­
ers and work our way back to the PC-AT com­
patible computer used as a controller. Although 
other approaches will work, the one described 
here has been demonstrated to produce suffi­
ciently high relative and absolute accuracy that 
overall errors are determined by temperature 
shifts and intrinsic sample preparation problems. 

To measure resonances of the sample it is 
important to eliminate the resonant response of 
the apparatus, or extra modes may be observed. 
Because most samples in the size range of 1 mm 
have resonances above about 0.4 MHz, and 30 or 

more resonances below 3 MHz, the transducers 
used to excite and detect must be either damped 
or nonresonant in this frequency range. Damp­
ing does not work well over such a large range of 
frequencies or at 20 K, thus the nonresonant 
approach is best. However, all transducer ma­
terials have sound velocities comparable to the 
samples measured. One cannot get around this 
by using electrostatic, magnetic or optical detec­
tion schemes. The optical ones are much too 
noisy. Magnetic schemes, occasionally used by 
others [22], suffer from two serious problems. 
The first is that the sample must be either fer­
romagnetic or conducting or coated with a fer­
romagnetic or thick conducting layer. Even 1 /-Lm 
of ferromagnetic layer can be a 0.2% perturba­
tion on small samples, but worse still, the fer­
romagnet does not have a symmetric elastic ten­
sor. Second, the coil used to drive or detect 
interacts mechanically with the sample via a 
magnetic field. Thus the usually numerous coil 
resonances shift and degrade the sample modes 
as well as perhaps introducing some new ones. 
This is known as 'coil disease' in NMR measure­
ments [27]. Electrostatic systems have similar 
problems. The solution, applicable to direct con­
tact (and electrostatic and magnetic drive sys­
tems as is obvious after a moment's reflection) is 
not to make very small, and therefore very weak 
transducers but to construct the transducer most­
ly out of single-crystal diamond. Our system [25] 
uses commercial 30 MHz compressional mode 
LiNb03 discs 1.5 mm in diameter and approxi­
mately 0.1 mm thick [28]. Such discs have a 
thickness mode of 30 MHz but bending modes 
near 180 kHz. However, using our cylinder code 
we know that a diamond cylinder 1.5 mm in 
diameter and 1.0 mm long has a lowest mode of 
4.47 MHz. Thus if we bond the diamond to the 
transducer, the assembly has a lowest mode near 
4 MHz. The diamond also acts as an inertial 
load, so that the response of the LiNb03 in 
direct contact with the sample is enhanced by the 
diamond behind it. We also use a Ag-coated 
polyimide film 25 fLm thick with 1 fLm of evapo­
rated Ag as the ground plane, and a strip of this 
material 1.5 mm wide as a low inductance, low 
mechanical Q electrical contact by inserting the 
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strip between diamond and LiNb03 . This strip 
also helps damp the 4 MHz and above assembly 
resonances. All joints are made with a noncon­
ducting epoxy [29] because at these frequencies 
no direct electrical contact with the transducer is 
required, capacitive coupling is sufficient. The 
transducer assembly is shown in fig. 3. 

In order to minimize transducer loading effects 
on the sample, we mount the transducers in a 
Mg machined 'tone arm' assembly, shown in fig. 
4 schematically. This assembly provides of order 
1 g of unbalanced mass above the transducer to 
provide a low contact force. The tone arm is 
suspended on 1 mm wide strips of Ag-coated 
polyimide film, the same used in the transducer. 
The width of the film provides a low-inductance 
electrical ground with excellent low-temperature 

Lithium Niobate Disc 

Diamond 

Cylinder 

1 

Silvered Kapton Film 

/ 

~ 
Silvered 
Kapton 

Electrical 
-+ 1 1.5 mm 1 •• __ Lead 

Fig. 3. Shown is a schematic of the diamond I polyimide I 
LiNb03 composite transducer used for all the measurements. 

il'p~:;~L}JS~I~~riJ'~ION 
LEAD 

Mg TONE ARM 

SAMPLE 

TRANS[)UCER HOUSINGS 

Fig. 4. The sketch here roughly illustrates how mechanical 
contact is made to the sample while preserving electrical 
shielding and maintaining a low contact force. This arrange­
ment works well from 2 K, the lowest temperature we are set 
up to reach, up to the temperature at which the epoxy bonds 
in the transducers fail. 

properties. The combination of low contact force 
and small, nonresonant transducers produces sig­
nals that are much weaker than those used by 
Ohno, Sumino and colleagues [15,30]. Their 
measurements were always made using a force 
balance that enabled resonant frequencies to be 
measured at successively lower contact forces. 
The frequencies shifted substantially (0.1%-
0.5%) as force decreased, and the extrapolated 
asymptote was used as the zero-force frequency. 
With our system, even at comparable contact 
force, we observe less than 20 ppm frequency 
shifts for changes in loading from 2 g to 0.5 g. 
The shifts observed in refs. [15] and [30] appear 
to be primarily associated with high drive levels, 
and are absent for us. This is important because 
it greatly reduces both the amount of data re­
quired and the possibility of shifting the sample 
accidentally during a run, a problem that can 
cause artificial discontinuities in both frequencies 
and Q. Another effect appearing in Anderson's 
system is associated with alumina buffer rods 
[31]. These rods were necessary to isolate the 
transducers from temperatures exceeding an as­
tonishing 2000 K, the highest temperatures ever 
used in a conventional ultrasound measurement 
system. Because the rods were long (i.e. several 
orders of magnitude longer than the largest sam­
ple dimension) they operated in the reverbera­
tion limit. That is, at the frequencies of interest 
for sample resonances, the rods themselves had 
such a higher mode density that the modes over­
lap strongly. As frequency is swept, the response 
of the buffer rods is convoluted with the sample 
response producing essentially random am­
plitude and phase mechanical motion, but with 
resonances still clearly detectable. The result is 
the observation of non-Lorentzian line shapes 
for the sample resonances, making it difficult to 
determine accurately either the center frequency 
or the Q. However, considering the tempera­
tures reached, and with no obvious cure, Ander­
son was forced to use such an approach. For 
most other system designs, buffer rods should be 
avoided. A similar effect in our system is associ­
ated with the gas surrounding the sample which 
provides an undesirable ultrasound path between 
transducers in the reverberation limit. A disk of 
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ordinary filter paper with a small hole punched 
in the center, and split in half was constructed 
and inserted between transducer assemblies and 
surrounding the sample. This completely elimi­
nates the gas path for ultrasound and thus 
minimizes gas resonances. 

To access temperatures from 20 K to 400 K, 
our measurement cell is inserted into a vacuum­
insulated cylinder. One end of the cylinder (or 
flow cryostat) is open, the other end is connected 
via vacuum insulated tubing (a conventional 
liquid-He transfer line) to the gas space above a 
liquid-He storage dewar. Inside the dewar, 
below the liquid level is a 1 kfi, 2 W carbon 
resistor. This resistor is heated using an ordinary 
power-line-type variable autotransformer, with 
applied voltages up to about 30 VAC. The cold 
boil-off gas passes through the transfer line into 
the insulated cylinder and around the measure­
ment cell. A second 50 fi heater, constructed of 
10 film cotton-insulated resistance wire (the 
wire is simply wadded up into a rough ball) is 
inserted in the gas flow path at the flow cryostat I 
transfer tube joint and is controlled using any 
commercial cryogenic temperature controller. 
Temperature sensing is via a silicon diode ther­
mometer mounted inside the RUS cell within a 
few millimeters of the sample. This arrangement 

Boll-off 
R.slstor 

Uquld Helium 

is shown schematically in fig. 5, and is capable of 
20 mK temperature control. 

The weak signals produced by our transducers 
and low contact force require the best possible 
signal/noise ratio (sin) for the receiver elec­
tronics to ensure detection of as many modes as 
possible. The electronics design is centered 
around the electrical equivalent circuit for our 
transducer assembly over the frequencies of in­
terest, essentially a pure 10 pF capacitor. Signals 
produced are in the tens of microvolt range and 
up. To detect such signals, two basic approaches 
can be taken. The one we reject is to use a 
broadband excitation pulse and Fourier trans­
form the result. This is the best approach if large 
signals and overlapping modes are present [32]. 
However, to ensure that we do not miss even the 
weakest modes, and because the most usable 
samples have a mechanical Q in excess of 500, 
mode overlap is not a problem but sin is. The 
broadband approach must have an electronic 
bandwidth exceeding that of the group of reso­
nances to be measured, and must also signal 
average a measurement having a low duty cycle. 
That is, to average the signal (and noise over the 
receiver bandwidth) for some amount of mea­
surement time, many excitation pulses must be 
generated, digitized time series taken, data 

Fig. 5. Shown is the arrangement of the He storage dewar, transfer line and simple vacuum-insulated chamber that make up the 
flow cryostat that is so convenient for RUS. 
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transferred between pulses etc. Thus most of real 
time is spent with no signal present. Moreover, 
because measurements are made only in regions 
of frequency space where the sample exhibits 
mostly well-separated very sharp modes, any 
broadband system is acquiring much data that 
contains no information. Finally, for sharp, Lor­
entzian, well-separated modes, phase informa­
tion is unnecessary. We have, therefore, chosen 
to use a swept sine approach based on a 
heterodyne receiver. 

A heterodyne/swept-sine receiver (HSSR) can 
have an arbitrarily narrow bandwidth, has a duty 
cycle of unity, need only measure where reso­
nances exist, and can signal average for arbitrari-

ly long times a signal from which most of the 
noise is already eliminated using digital detection 
of the final, high-amplitude information-contain­
ing output of the analog section of the receiver. 
As with any receiver, the unavoidable noise is 
controlled primarily by the pre amplification 
stage. The best approach for preamplification is 
to locate a JFET preamp very close to the re­
ceive transducer. In this way, the shunt effect of 
the capacitance (easily 100 pF) of cables connect­
ing the 10 pF transducer to the preamp is elimi­
nated. However, this would require a warm pre­
amp to be located inside the flow cryostat, a 
complication we chose to forego. Instead, we use 
an accurately unity gain preamp at the end of a 
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Fig. 6. We show here the schematic diagram of the low-noise unity-gain preamplifier used to bootstrap the cable capacitance of 
the transducer connection. The construction of this device requires very careful layout to prevent instabilities. 
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triaxial cable connecting preamp to transducer. 
By connecting the preamp output to the inner 
shield of the triax, we eliminate cable capaci­
tance effects (this is known as a bootstrap or 
guard). This is only important because the pre­
amp is voltage sensitive. For a current sensitive 
preamp or an op-amp type preamp, cable shunt 
capacitance has no effect on overall sin. But for 
any type of preamp used with so much cable 
capacitance, much care must be taken to elimi­
nate high-frequency phase shifts that could cause 
oscillation. This is why we have used low-induct­
ance leads on the transducers and also why we 
find it easier to design a good JFET front end. 
The JFET unity-gain preamp shown schematical­
ly in fig. 6, modified from one described in 
Horowitz and Hill [33], is designed to have a 
bandwidth of 50 MHz, ensuring no unwanted 
phase shifts below 4 MHz, and has an input noise 
figure of a few nV/Hz1l2, controlled primarily by 
the dual JFET. Because the triax effectively 
connects the output directly to the input, the 
design and layout of the circuitry is crucial. The 
inherent response of a HSSR is such that it is not 
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19uFI 
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the full bandwidth of the preamp, but instead the 
noise per unit bandwidth that is important for 
overall sin. 

The preamp is followed by a simple but quiet 
RF amplifier with a bandwidth of about 20 MHz 
based on an application note for the MAR-6 
amplifier made by Mini-Circuits [34]. This stage, 
shown in fig. 7, has a voltage gain of 100. 

Following the preamp is a mixer I filter shown 
in fig. 8 adapted from the data sheets from 
Motorola [35] and National Semiconductor [36]. 
This mixer performs an instantaneous multiplica­
tion of the RF transducer signal at frequency f, 
including whatever noise is present, with a (noise 
free) local oscillator (LO) signal at f + ilf, where 
ilf is the intermediate frequency or IF. The 
output of the mixer is, then, the amplifier noise 
upshifted in frequency by f + ilf, and informa­
tion-containing signals at 2f + ilf, and ilf. Be­
cause the noise is basically white, noise per unit 
bandwidth is unaffected. After the mixer is a 
state-variable analog filter tuned to ilf. Because 
the LO source is of constant amplitude, the 
amplitude of the mixer I filter IF output at ilf is 
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Fig. 7. Shown is the schematic diagram of the low-noise RF amplifier used for our RUS measurements, based on the MAR-6 
integrated circuit. The layout of this circuit is extremely important. 
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Fig. 8. The mixer/filter based on the widely used Motorola 1496 mixer Ie and the National Semiconductor AFlOO state-variable 
active filter is shown schematically. The layout of this circuit is extremely important. 

proportional to the resonance signal at f. We use 
an IF frequency of 1 kHz and a filter bandwidth 
of 100 Hz. This yields a noise bandwidth 100 Hz 
wide at the filter output, but also limits the 
receiver response time to of order 10 ms. This is 
not a real limitation on the data acquisition rate 
because each sample resonance is stepped 
through using steps much narrower than the 
resonance width. Thus the receiver need only 
respond to incremental signal amplitude changes 
at sample resonance (i.e. if n steps are taken 
through one resonance then the receiver re­
sponse time required is reduced by a factor of n). 

At this point the resonance information wan­
ted appears at a fixed IF frequency of 1 kHz 
combined with a 100 Hz wid~ slice of noise. To 
get the amplitude of the IF signal into a PC-AT 
type computer requires that it be 'detected'. The 
best approach is to use an analog to digital 
converter (ADC) to digitize the filter output 
such as an Analogic LSDAS-16, a 16-bit, 16 
Channel, 50 kHz ADC [37]. By running the con­
verter at 32 kHz and taking 320 readings, we 
acquire 10 cycles of the IF signal. We also ac-

quire almost exactly 320 cycles of the most im­
portant interference source, the electric field as­
sociated with the VGA monitor of the computer. 
The absolute value of the 320 readings is aver­
aged with software to generate the resonance 
amplitude at the frequency step chosen. The 
effect of this is (1) to produce a constant back­
ground offset arising from VGA interference, 
and (2) to signal average (equivalent to another 
100 Hz bandpass filter) the IF signal over 10 
cycles with no analog time constants to generate 
glitches if the measurement is started with un­
controlled phase of the IF signal (which it is). 

A complete sweep through each individual 
mode is made using the above system and a dual 
digital synthesizer card to generate the LO and 
RF signals. The card we use was designed by us, 
is capable of 32 bit frequency and phase control 
and 15 bit amplitude control of two separate 
outputs, and is commercially available [26]. The 
card fits in a standard PC-AT slot, is controllable 
by Microsoft QuickBASIC or other languages and 
has a maximum output of 1 VAC (sufficient to 
drive the transducers directly) up to about 
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Fig. 9. A typical (and definitely not the best) resonance in the La1.86Sr014Cu04 single crystal is shown to illustrate the quality of 
the data obtainable from a RUS measurement. 

8 MHz. Other computer-controlled frequency 
synthesizers can be used successfully. A typical 
resonance is shown in fig. 9. 

The resonance data acquired is processed to 
subtract background and then, using all the data 
acquired, a first moment of the usually Lorent­
zian resonances is computed. In this way, further 
noise reduction occurs so that we can determine 
reliably the center frequency of a resonance to 
about 3% or less of the linewidth. A complete 
experimental run would consist of (1) a search 
for all modes at room temperature, (2) acquisi­
tion of a data file produced by a narrow sweep 
through each resonance found, (3) a room­
temperature fit to the moduli (and iteration of 
(1) and (2) if the fit is inadequate or predicts 
missing modes, and (4) a repeat of (2) for each 
temperature desired using sufficiently small tem­
perature steps so as not to lose track of mode 
identifications. 

3. Typical results 

Having described the principles, procedures 
and hardware for making R US measurements 
and analyzing the data, we present here some 
examples of the application of RUS to the study 

of structural phase transitions (SPT). The exam­
ples reviewed here are the soft-mode-driven 
SPTs in the perovskite system La2Cu04 , which 
includes several high-temperature superconduc­
tors, and in SrTi03 . 

SrTi03 is a perovskite that undergoes a SPT 
from cubic (the high-temperature or 'symmetric' 
phase) to tetragonal (the low-temperature or 
'unsymmetric' phase) crystal symmetry at 105 K. 
This material is particularly interesting because 
its SPT is a canonical example of a soft-mode 
[38] phase transition and has been well studied 
both theoretically [39] and experimentally using 
conventional ultrasonic techniques [40,41,42]. 
Furthermore, the perovskite structure and un­
derlying titanium-oxygen octahedra in SrTi03 

are very similar to the structure of the high­
temperature superconductors La2 CuO 4 and 
La2 _ x Srx Cu04 to be discussed below. On a more 
practical level, large high-quality single crystals 
are readily available commercially, and no 
macroscopic fields develop at the SPT to compli­
cate data analysis. We obtained a large single 
crystal [43] and prepared several RP samples 
(1.9 mm x 1.5 mm x 1.0 mm) as was described 
above. 

The sample geometry was accurate to about 
2 f.Lm and the intrinsic quality was high so that 
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we were able to measure and fit the first 33 
resonant frequencies at room temperature with 
an rms error of 0.075 percent. The values of the 
elastic moduli determined by the fit, as well as 
several sets of values from measurements by 
others, are shown in table 2. The agreement is 
excellent. 

Our real interest in this material is not so 
much a test of RUS but rather a study of the 
details of the temperature dependence of the 
elastic moduli through the SPT. Because of the 
unique capability of RUS to determine all mod­
uli simultaneously, precise comparisons between 
moduli can be made and compared to Ginsburg­
Landau (G-L) type predictions. The SP'R in 
SrTi03 occurs as a result of the softening of a 
particular zone edge lattice vibration, the tilting 
of the titanium-oxygen octahedra around the 
(100), (010) or (001) axes. As the frequency 
of this phonon decreases to zero, these octahed­
ra develop a static displacement, reducing the 
crystal's symmetry to tetragonal and doubling 
the size of the unit cell. Because of the three-fold 
degeneracy of this octahedral tilt (rotation about 
x, y or z) the material also twins as it goes 
through the SPT, making RUS measurements 
difficult in the low-temperature phase. 

Theoretically, this transition is well under­
stood. The soft-mode description coupled with a 
G-L free energy enables accurate quantitative 
predictions to be made for the elastic response of 
the material through the transition. Rather than 
work with the complete expression for the free 
energy including all possible strains and the full 
three-component order parameter, discussed in 
detail elsewhere [39], we will focus here on a 
qualitative understanding by considering a 

Table 2 
Room temperature elastic moduli (all values are in units of 
1012 dyne/cm2) of SrTi0 3 determined by RUS as well as by 
conventional ultrasonic techniques. The percentages after our 
data are the error estimates for the individual moduli, de­
termined as discussed above. 

3.17 
3.31 
3.15 (0.2%) 

1.02 
1.05 
1.02 (0.7%) 

1.23 
1.26 
1.22 (0.01 %) 

Source 

Ref. [40) 
Ref. [41) 
This work 

single-strain and one-component order parame­
ter. This is more than casually justified because if 
one knows which way the octahedra tilt, then use 
of a single-component order parameter causes no 
loss of generality. Because in an unstrained sin­
gle crystal the order parameter does develop in a 
single direction, one certainly knows its direction 
after the fact. It is only important that one is 
careful with the group theory. That is, the full 
symmetry and number of required components 
of the order parameter are use to determine 
what terms must be included in a single-order­
parameter description. Thus an accurate single­
component-order-parameter free energy can be 
written 

F 1 2 1 (T T) 2 1 {3 4 1 2 = 2: cas + 2: a - c q + 4 q + 2:'Ys q 
(39) 

where s is the strain, q the order parameter and 
a, {3, 'Y and Co temperature-independent con­
stants. The first term in eq. (39) represents the 
usual elastic energy, the second and third an 
expansion in the order parameter, and the last 
term the strain-order parameter coupling. Be­
cause the order parameter in this transition is a 
tilt in a mirror plane, only even powers appear 
(positive or negative tilts are equivalent energeti­
cally). Given such a free energy, the change in 
elastic moduli can be calculated by minimizing 
eq. (39) with respect to strain [44]. Such a 
minimization gives 

c = co' T> T c ' (40) 

(41) 

Thus, a Ginsburg-Landau analysis of this phase 
transition predicts a step decrease in elastic mod­
uli at the transition and, usmg the full crystal 
symmetry, predicts the relative size of the step 
for each individual modulus. Our data for the 
elastic moduli of SrTi03 as a function of tem­
perature are shown in fig. 10. Each modulus 
increases with decreasing temperature from ther­
mal contraction and then exhibits a sharp (but 
not step-like) decrease in the region near the 
transition, in agreement with the above analysis 
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Fig. 10. The three elastic moduli of a single crystal of SrTi03 near the structural phase transition are shown as a function of 
temperature. These data were obtained using RUS. 

as well as with the experimental work of others. 
Unfortunately, twinning of the crystal at the SPT 
prevents RUS from accessing the moduli in the 
unsymmetric phase so that some quantitative 
predictions of the Ginsburg-Landau theory can­
not be tested by us. This has, however, been 
done by other groups using pulse-echo measure­
ments and the results are in accord with theory 
[41]. Note that any ultrasound measurements in 
a twinned sample average over some set of mod­
uli, and that to obtain useful information, some 
detailed knowledge of the twinning pattern and a 
model for backing out moduli are required. RUS 
is so sensitive to macroscopic twinning that us­
able data of any sort often cannot be obtained in 
a twinned sample because of substantial degra­
dation of the resonance signals. This is typically 
not the case for pulse-echo, nor for RUS on 
microtwinned or polycrystal materials. 

The departure from true step-like behavior 
can be attributed to both thermal fluctuations 
and to imperfections or defects in the crystal 
[45]. In order to verify this fact and to demon­
strate the fundamental difference between this 
rounding and the effects observed in La2 _ x 

Srx Cu0 4 , discussed below, we vacuum-annealed 
a RP of SrTi03 to create oxygen vacancies in an 
attempt to braden the transition. While a sharp 
decrease remains after annealing, the decrease is 
distinctly broader in the annealed sample, in 
agreement with previous work [42]. Having dem­
onstrated that there are no surprises in a RUS 
study of SrTi03 , we describe similar measure­
ments on a more difficult system with results that 
prove to be not so accommodating. 

Unlike SrTi03 , La2Cu04 and also its high­
temperature superconducting relative La2 - x 

Srx Cu0 4 are not readily available as untwinned, 
morphologically perfect single crystals. The only 
such samples extant are in the 1 mm size range 
and require very considerable effort to produce. 
Thus conventional ultrasound techniques must 
be applied to either large, poor-quality twinned 
samples or not at all. In this system, the tetra­
gonal to orthorhombic (TO) SPT occurs at 223 K 
for x = 0.14 and about 530 K for x = 0.0 [46]. In 
table 3 are the elastic moduli for an untwinned, 
orthorhombic crystal of La2Cu04 (1.735 mm x 
1.536 mm X 1.108 mm, 7.026 g/cc) and also 
for a tetragonal crystal of La1.86SrO.14Cu04 
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Table 3 
The full elastic moduli of La1.6SrOI4Cu04 and La2 Cu04 in units of 1012 dyne/cm2 determined using RUS. The first entry for 
La1.86SrO.14Cu04 is for the usual tetragonal basis. The second entry is simply the first one rotated by 45° such that a direct 
comparison to the orthorhombic stoichiometric compound can be made. The errors are about 1.3% for c;i' i = 1, 3, 0.05% for c;;' 
i = 4, 6, and3.1 % -for the off-diagonal moduli for La2Cu04 • The corresponding error estimates for La1.86SrO.14Cu04 are 0.25%, 
0.01 % and 1.0% respectively. 

cll C 22 C 33 

La1.86SrO.14Cu04 2.666 2.571 
La1.86SrO.14Cu04 2.245 2.571 
La2Cu04 1.747 1.730 2.662 

(2.470 mm X 2.267 mm X 2.192 mm, 6.946 g/cc) 
determined using RUS. The La2Cu04 crystal 
was grown by Canfield, Fisk and Kodali from a 
flux [47]. The Sr doped crystal was produced by 
Tanaka and Kojima using a travelling solvent/ 
floating zone system [48]. We note that the axes 
of the La2Cu04 sample were not aligned with 
the crystallographic axes. Thus the fitting proce­
dure had to determine not only the moduli and 
dimensions but also the crystal orientation. This 
takes far more computer time because the mat­
rices to be inverted are no longer block diagonal. 
Nevertheless, the errors for the determination of 
moduli and angles are low because over 35 reso­
nances were used in the fit. 

We review here the microscopic deformations 
at the SPT in the La2 CuO 4 compounds, the 
Ginsburg-Landau Hamiltonian, and the expec­
ted effects on the sound velocities. Using RUS 
measurements on La2 _ x Srx Cu0 4 and a com­
parison with SrTi03 , we present direct evidence 
for breakdown of tetragonal symmetry at the 
Brillouin zone center, show how this can explain 
the very strong temperature dependence of C66 

above the TO SPT, and discuss some implica­
tions. 

To understand what drives the TO transition 
in La2Cu04 , consider first (fig. 11) the four 
Cu-O bonds that lie in the Cu-O plane and also 
form part of the 0 octahedra. Through the TO 
transition, these Cu-O bond lengths remain 
fixed [49]. What does change is the angle be­
tween the two O-Cu-O diagonals of the octa­
hedra. In the tetragonal phase, the diagonals are 
perpendicular. In the orthorhombic phase they 
scissor slightly, doubling the unit cell. This J ahn-

C 23 

0.991 

c 13 C
'2 

C 44 C S5 C 66 

0.992 0.649 0.677 0.587 
0.992 1.071 0.677 1.009 
0.928 0.900 0.653 0.669 0.992 

Fig. 11. We illustrate here the arrangement of ions (not to 
scale) of La2 Cu04 • Cu is the solid circle, the open circles are 
o and the shaded circles are La. 

Teller-like distortion has the effect of increasing 
the length of either the (110) or the (110) axis. 
This is shown schematically in fig. 12. For the 
crystal to accomodate this, the Cu-O plane also 
buckles in the corresponding direction, taking 
the octahedra with it so that they tilt. This tilt is 
the x-point soft mode. Of course, a given oc­
tahedron could tilt in either of four possible 
directions, i.e. in the positive (110) direction, 
the negative (110) direction, the positive (110) 
direction, or the negative (110) direction. Thus 
both kinks (positive-negative tilt phase error) 
and twins (110) versus (110) tilt are possible, 
and the order parameter must have two com­
ponents, ql and Q2' 

Because any possible tilt preserves mirror sym­
metry, either sign of tilt is equivalent. Therefore 
any coupling of the Brillouin-zane-edge oc­
tahedron-tilt phonon mode to any zone-center 
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Fig. 12. Shown is a diagram showing the 0 atoms in the 
Cu-O plane (solid circles) and the 0 atoms at the apices of 
the 0 octahedra (shaded circles) projected onto the Cu-O 
plane. The Cu atoms are directly beneath the undisplaced 0 
atoms and are not shown. Upon transition to the ortho­
rhombic state, the apical 0 atoms displace as shown by the 
arrows (a twin would have displacements in the Cu-O plane 
perpendicular to those shown, i.e. turn the figure on its side). 
The tetragonal unit cell is the smaller dashed square, the 
orthorhombic one is the larger dashed square, although it is 
really a rectangle with the longer sides parallel to the arrows. 

acoustic phonons must be quadratic in lowest 
order. Moreover, most of the effects of the 
phase transition are seen in C66 , the shear mod­
ulus for deformations of the Cu-O plane. This is 
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also easily seen because when the O-Cu-O 
diagonals scissor, the square base of the tetra­
gonal unit cell becomes a rhombus in the ortho­
rhombic phase (fig. 12). Deforming the square 
into a rhombus is exactly equivalent to a C66 

shear. We have, as yet, no measurements above 
the TO transition in La2Cu0 4 because our RUS 
cell cannot handle such temperatures. However, 
in La1.86SrO.14Cu04 the TO transition occurs at 
223 K, a very convenient temperature. 

In fig. 13 we show the resonant frequency of 
an eigenmode of the single crystal of La1.86 
SrO.14Cu04 as a function of temperature T and in 
fig. 14 we show 11 Q vs T where Q is the quality 
factor for the resonance. Numerical analysis of 
the motion establishes that the eigenmode of fig. 
13 depends almost purely on C66 • Absent dy­
namical effects, we would treat the tempeature 
dependence of C66 with the same Ginsburg­
Landau (G-L) Hamiltonian used for SrTi03 . As 
with SrTi03 , simple quadratic coupling and no 
dynamics produces only a step discontinuity in 
C66 at the SPT. This is not what the data show. 
The data fit a Curie-Weiss (C-W) softening of 
the form 

(42) 

zee 219 zze n9 249 Z59 zr.9 279 289 Z'J9 399 
TeaperatureCK) 

Fig. 13. Shown is the normalized resonant frequency squared (proportional to a modulus) for a La1.86SrO.14Cu04 mode that is 
nearly pure C 66 as a function of temperature (circles). The solid line is a Curie-Weiss fit to the data. The gap in the data just below 
230 K is evidence of symmetry-breaking effects. 
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Fig. 14. The scaled inverse quality factor 10001 Q is proportional to the loss or ultrasonic attenuation in the single crystal of 
La1.86SrO.14CuO •. Very near the SPT at 223 K, the attenuation increases dramatically, but at temperatures well above the SPT but 
still in the Curie-Weiss region, no excess attenuation is observed. 

where Tc is 223 K, C 66 is a temperature-indepen­
dent constant and the fit, shown as the solid line 
in fig. 13, is accurate to 0.2% over more than a 
decade in To/(T - TJ. 

Gaussian fluctuations of the order parameter 
[9], self-consistent phonons [7] and linear coup­
ling between strain and order parameter [44] all 
yield a C-W behavior for C66 • For Gaussian 
fluctuations, the critical exponent for the specific 
heat and for the elastic moduli is A = 2 - dl2 
where d is the dimension of the order parameter. 
In our system, the order parameter is two­
dimensional, thus the critical exponent (the 
exponent of 1/(T - Tc» is unity, in agreement 
with the data. However, our C-W fit is over a 
temperature range of about 80 K (To = 1.47 K). 
This is a very large range for fluctuations to be 
important, much larger than the range for the 
similar SPT in SrTi0 3 . An upper-bound estimate 
for the fluctuations regime [9] is found by using a 
few lattice spacings for the coherence length, and 
by using a 1 % (SrTi03 has about a 10% modulus 
discontinuity at its phase transition temperature) 
modulus discontinuity to obtain a fluctuation 
range of about 1 K, comparable to the region in 
fig. 14 where the ultrasonic attenuation increases 
sharply. Thus it appears very unlikely that 2-D 

Gaussian fluctuations can explain what we ob­
serve. 

A self-consistent phonon treatment of the 
anharmonic potential associated with the zone­
edge soft mode of the ° octahedra can also 
produce C-W modulus softening [7]. For this 
sort of treatment to work, the zone-edge soft 
mode must be linearly coupled to the zone­
center acoustic mode. The 1-D treatment in ref. 
[7] deals with this by inserting the anharmonic 
spring, used in the shell-model construct to de­
velop the self-consistent phonon dispersion 
curve, in series with the ion cores. Thus this 
spring contributes to the potential energy for any 
value of k, the phonon wave vector. 

Neutron scattering measurements [4] show 
that the soft mode is part of the phonon branch 
corresponding to C44 , not C66 • Without some 
linear coupling term to the C66 dispersion curve, 
it is not easy to see the applicability of self­
consistent phonons. Were such a term to be 
added, the model would be forced to become 
explicitly 3-D, and because both the coupling 
and the energies would depend on the anhar­
monicity, the C-W exponent would likely be 
lost. 

The third possibility we consider here is the 
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replacement of quadratic coupling with linear 
coupling (for T> Tc ' the inclusion of the quad­
ratic term has no effect with or without the linear 
term present) between order parameter and 
strain in eq. (39). Using the same justification 
for a single-component order parameter as in 
SrTi03 we find 

and 

for T> Tc ' 

(44) 

(45) 

as required to fit the data of fig. 13. To justify a 
linear coupling term, the La1.86SrO.14Cu04 crys­
tal must be either nonlinear or non tetragonal. 

In fig. 15 we plot the lowest eigenfrequencies 
of the La1.86SrO.14Cu04 crystal vs T and in fig. 16 
are plotted the lowest two eigenmodes on an 
expanded scale, showing an avoided crossing of 
2%. Note that in fig. 15 avoided crossings are 
observable in several places. The mechanical 
Lagrangian for analysis of the resonances of this 
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-;:;-
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material is based on a linear tetragonal solid 
[13,14]. The model produces eight orthogonal 
symmetry classes for the modes, therefore none 
of the avoided crossings should occur. Their 
existence can be explained only if the crystal is 
nonlinear, not tetragonal, or has excessive prep­
aration errors. 

This sample has a TO transition width of much 
less than 1 K as determined by the RUS vari­
ation of both Q and C66 ' it has a superconducting 
Tc of 38 K, its faces have been ground parallel to 
better than 1 micron, some resonances have 
Q > 70 000, it has near theoretical bulk density 
and no visible defects. There are, therefore, no 
sample preparation errors even remotely close to 
the few percent required to produce the ob­
served avoided crossings. To test for anhar­
monicity, the measurements of fig. 16 were re­
peated at resonance amplitudes varying over an 
order of magnitude. All the scans were identical 
to about 0.01%, the limit of our temperature 
control precision. Thus no anharmonic affects 
are present. 

X-ray [46] and elastic neutron scattering [4,49] 
studies of this material all indicate unambiguous­
ly that the structure is tetragonal. However, both 
types of probe operate at an effective k = O. That 

ZZ8 Z25 238 235 248 245 Z58 Z55 Z6e 265 219 27'S Z89 Z85 298 
Teapcrllture(K) 

Fig. 15. This is a plot of many of the resonances of the La1.86SrO.l'CuO. single crystal as a function of temperature above the 
SPT. Avoided crossings are numerous. 
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Fig. 16. Plotted are the data of fig. 13 for the C 66 mode and also data for the C 44 mode for the La186SrO.14Cu04 single crystal as a 
function of temperature. These modes have different symmetries so that no avoided crossing is expected. The surprisingly large 
effect may arise from symmetry-breaking at the Brillouin-zane-edge produced by Sr disorder combined with the soft-mode-driven 
SPT. 

is, they average over many unit cells. Because 
RUS is also a k = 0 probe, it too should see a 
tetragonal structure. That it does not might be 
related to the destruction of zone-edge symmetry 
because of the disordered Sr doping. At small k, 
the Sr concentration fluctuations average out, 
and a tetragonal structure is observed. However, 
RUS is sensitive to the strain susceptibility. At 
temperatures well above (150 K or more) the TO 
transition, the x-point soft mode has negligible 
effect on C66 (see fig. 13). At temperatures some­
what above 300 K, all the sound velocities begin 
to decrease on cooling as a result of the coupling 
between the soft mode and the strains. This 
coupling might also carry with it a symmetry­
breaking term at temperatures near the TO tran­
sition related to the total softening of C66 • 

Such a symmetry-breaking effect is only ob­
servable if some effect, the SPT for this example, 
makes the moduli vary sufficiently rapidly that 
nominally orthogonal modes cross, and if the 
experimental probe can clearly separate the re­
sponses of the modes that cross. We know of no 
other ultrasound probe with this property. Thus 
RUS is capable of extracting new information as 
well as providing an alternative high-precision 
general ultrasound probe. 
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