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Abstract

Background: Biotin >20.0 ng/mL (81.8 nmol/L) can reduce Elecsys® 

Troponin T Gen 5 (TnT Gen 5; Roche Diagnostics) assay recovery, 

potentially leading to false-negative results in patients with suspected 

acute myocardial infarction (AMI). We aimed to determine the prevalence 

of elevated biotin and AMI misclassification risk from biotin interference 

with the TnT Gen 5 assay.

Methods: Biotin was measured using an Elecsys assay in two cohorts: (i) 

797 0-h and 646 3-h samples from 850 US emergency department 

patients with suspected acute coronary syndrome (ACS); (ii) 2023 random

samples from a US laboratory network, in which biotin distributions were 

extrapolated for higher values using pharmacokinetic modeling. Biotin 

>20.0 ng/mL (81.8 nmol/L) prevalence and biotin 99th percentile values 

were calculated. AMI misclassification risk due to biotin interference with 

the TnT Gen 5 assay was modeled using different assay cutoffs and test 

timepoints.

Results: ACS cohort: 1/797 (0.13%) 0-h and 1/646 (0.15%) 3-h samples 

had biotin >20.0 ng/mL (81.8 nmol/L); 99th percentile biotin was 2.62 ng/

mL (10.7 nmol/L; 0-h) and 2.38 ng/mL (9.74 nmol/L; 3-h). Using 

conservative assumptions, the likelihood of false-negative AMI prediction 

due to biotin interference was 0.026% (0-h result; 19 ng/L TnT Gen 5 

assay cutoff). US laboratory cohort: 15/2023 (0.74%) samples had biotin 
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>20.0 ng/mL (81.8 nmol/L); 99th percentile biotin was 16.6 ng/mL (68.0 

nmol/L). Misclassification risk due to biotin interference (19 ng/L TnT Gen 

5 assay cutoff) was 0.025% (0-h), 0.0064% (1-h), 0.00048% (3-h), and 

<0.00001% (6-h).

Conclusions: Biotin interference has minimal impact on the TnT Gen 5 

assay’s clinical utility, and the likelihood of false-negative AMI prediction is

extremely low.

Keywords: Acute myocardial infarction; biotin; high-sensitivity cardiac 

troponin T; false negative; immunoassay interference; risk of 

misclassification

List of abbreviations: ACS, acute coronary syndrome; AMI, acute 

myocardial infarction; CI, confidence interval; CLSI, Clinical and Laboratory

Standards Institute; cTn, cardiac troponin; cTnI, cardiac troponin I; cTnT, 

cardiac troponin T; ISO, International Organization for Standardization; 

IVD, in-vitro diagnostic; MS, multiple sclerosis; NPV, negative predictive 

value; TnT Gen 5, Troponin T Gen 5
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Introduction 

Biotin is a water-soluble vitamin with an adult recommended adequate 

intake of 30 µg per day [1]. Biotin–streptavidin coupling has been used for

decades by manufacturers of in-vitro diagnostic (IVD) devices to 

immobilize biotinylated proteins [2, 3]; however, these immunoassays are 

susceptible to interference from excessive blood biotin concentrations. 

The biotin–streptavidin-based Elecsys® Troponin T Gen 5 (TnT Gen 5;

marketed outside the United States [US] as Elecsys Troponin T-high 

sensitive; Roche Diagnostics International Ltd, Rotkreuz, Switzerland) 

assay provides a high negative predictive value (NPV; ≥99%) for ruling 

out acute myocardial infarction (AMI) [4–8]. Biotin concentrations >20.0 

ng/mL (81.8 nmol/L) can reduce TnT Gen 5 assay recovery [9], which may 

lead to lower reported cardiac troponin T (cTnT) concentrations, and thus 

false-negative AMI prediction. However, the incidence of biotin 

interference and its clinical implications in the TnT Gen 5 assay intended-

use population is unknown.

Until recently, immunoassay interference from biotin was considered 

extremely rare, as interference thresholds are considerably higher than 

blood concentrations associated with the recommended dietary biotin 

intake. However, very high biotin doses (up to 300 mg daily) have been 

used in clinical trials for treating multiple sclerosis (MS) and high-dose 

biotin supplements (up to 10 mg in single-ingredient preparations) have 

been marketed for cosmetic purposes, which may increase the risk of 

biotin interference [10–16]. In 2011–2012, 29% of US adults reported 
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using biotin-containing supplements [17]. In a 2017 US prevalence study, 

biotin use was reported by 7.7% of outpatients [18]. Biotin doses ranged 

from <1 to 50 mg; 47.0% of respondents reported taking ≤10 mg, and 

44.9% did not know the dose they were taking or did not respond [18]. In 

the same study, 7.4% of emergency department patients had plasma 

biotin concentrations ≥10 ng/mL (40.9 nmol/L) [18]. Nielsen US retail 

sales data for July 2014 to June 2017 showed a slight increase in biotin 

sales. However, the data also suggest most consumers are taking biotin 

doses that pose a low interference risk, with the steadiest growth in ≤2.5 

mg doses; sales of 5 mg biotin declined [19].

We aimed to determine the prevalence of elevated biotin 

concentrations and the associated patient misclassification risk due to 

biotin interference with the TnT Gen 5 assay in the US intended-use 

population. We also performed a second risk analysis using extrapolated 

biotin prevalence data based on random samples from a US laboratory 

network representative of the general US population. Patient 

misclassification risk was evaluated according to International 

Organization for Standardization (ISO) 14971 and Clinical and Laboratory 

Standards Institute (CLSI) guidelines [20, 21].

Material and methods

TnT Gen 5 test principle

The Elecsys Troponin T Gen 5 assay is an electrochemiluminescence 

sandwich immunoassay, comprising a biotinylated monoclonal anti-cTnT-
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specific antibody and a monoclonal anti-cTnT-specific antibody labeled 

with ruthenium [9]. These antibodies react to form a sandwich complex 

with cTnT, which is then bound to the solid phase via biotin–streptavidin 

interaction [9]. The TnT Gen 5 assay has previously demonstrated good 

analytical performance and met precision requirements [9]: limit of 

detection 5 ng/L (cobas e 411 analyzer) and 3 ng/L (cobas e 601 

analyzer); measuring range 6–10,000 ng/L (both analyzers); repeatability 

and intermediate precision coefficients of variation (CVs) 0.7–5.6% and 

1.4–10.3%, respectively (cobas e 411 analyzer; mean cTnT concentrations

7.3–9341 ng/L in lithium-heparin plasma samples), and 0.7–3.0% and 1.5–

6.4%, respectively (cobas e 601 analyzer; mean cTnT concentrations 7.4–

9455 ng/L in lithium-heparin plasma samples); 10% CV (total imprecision) 

11 ng/L; CV at 99th percentile upper reference limit 3.92 (cobas e 411 

analyzer) and 3.18 (cobas e 601 analyzer) with a coefficient of variation 

<10% at the 99th percentile upper reference limit, meeting precision 

requirements [9]. TnT Gen 5 assay recovery can fall to 90% at biotin 

concentrations of 20.0 ng/mL (81.8 nmol/L); higher biotin concentrations 

can reduce assay recovery further (Figure 1). No interference has been 

observed with biotin ≤20.0 ng/mL (81.8 nmol/L) [9].

Study design

The prevalence of elevated biotin and the clinical risk of biotin 

interference with the TnT Gen 5 assay was evaluated using two distinct 

study cohorts and risk assessment models (Figure 2). In each model, the 

impact of biotin interference on the NPV of the TnT Gen 5 assay and the 
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likelihood of false-negative AMI prediction was estimated, based on the 

prevalence of biotin >20.0 ng/mL (81.8 nmol/L) in each cohort, the 

distribution of cTnT concentrations (as specified in each model below), 

and the biotin interference curve for the TnT Gen 5 assay.

Model 1: Risk calculation based on biotin prevalence data 

from a cohort of patients with suspected acute coronary 

syndrome (ACS cohort)

The ACS cohort comprised 850 patients presenting to 16 US emergency 

departments with suspected ACS from July 2014 to October 2015 and 

aimed to represent the TnT Gen 5 assay intended-use population in the 

US; this cohort has been previously described [8]. The original study 

received ethics approval from all relevant institutional review boards, and 

was conducted in accordance with the principles of the Declaration of 

Helsinki and the International Conference on Harmonization guidelines for 

Good Clinical Practice. All patients provided informed consent.

In the original study, 1679 patients (48% female; median age 55 

years [interquartile range: 47–64]) had a TnT Gen 5 assay result available 

at one or more time point; all patients had an available result on the 

cobas e 411 analyzer and 1675 patients had an available result on the 

cobas e 601 analyzer. Of these, 850 patients who had sufficient residual 0-

h (admission) and/or 3-h sample volume to measure biotin, and consented

to future use of their samples, were included in the present analyses. 

Samples were stored for 28 months at −80°C and protected from light 

prior to biotin analysis. Biotin has been shown to be stable following 

7

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150



frozen storage and freeze/thaw cycles [22] and has an effective half-life of

15 hours [23]. Biotin was quantified using a competitive Elecsys research 

assay on the cobas e 411 analyzer (Roche Diagnostics International Ltd, 

Rotkreuz, Switzerland): limit of detection 4.88 ng/L (cobas e 411 analyzer)

and 2.05 ng/L (cobas e 601 analyzer); measuring range 3–10,000 ng/L 

(both analyzers); intermediate precision CV 2.81 ng/L (cobas e 411 

analyzer) and 2.20 ng/L (cobas e 601 analyzer); 10% CV (total 

imprecision) 5.03 ng/L (cobas e 411 analyzer) and 4.49 ng/L (cobas e 601 

analyzer); CV at 99th percentile upper reference limit <10% (both 

analyzers) [24]. This assay detects total serum biotin (free biotin, bound 

biotin/biocytin, and biotin metabolites) with a lower limit of detection 

of 0.1 ng/mL (0.41 nmol/L), and has been validated against a liquid 

chromatography-tandem mass spectrometry method at biotin 

concentrations of 40.0 to 300 ng/mL (164 to 1228 nmol/L) (Supplemental 

Figure 1). A comparison of these methods for biotin concentrations <40.0 

ng/mL (163.7 nmol/L) was not assessed.

A risk calculation model was built based on the measured 

prevalence of biotin >20.0 ng/mL (81.8 nmol/L) and distribution of cTnT 

concentrations in the ACS cohort, and the biotin interference curve for the

TnT Gen 5 assay. The prevalence of cTnT concentrations around the 99th 

percentile upper reference limit for the TnT Gen 5 assay was evaluated, 

respecting the diagnostic criteria of the Third Universal Definition of 

Myocardial Infarction (the adjudication process for diagnosing AMI was 

performed before the publication of the updated fourth definition). This 

requires detection of a rise and/or fall in cardiac troponin (cTn) values, 
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with at least one value above the 99th percentile upper reference limit, 

alongside clinical evidence of AMI [2425]. The misclassification risk was 

determined using the US-specific 19 ng/L TnT Gen 5 assay cutoff. A 

misclassification was defined as a cTnT above the cutoff, which could be 

reported as below the cutoff due to biotin interference, and thus lead to a 

false-negative result. 

The following assumptions were used: (i) the highest anticipated 

biotin concentration was derived by multiplying the highest observed 

concentration in the ACS cohort by three, per CLSI EP07 guidelines [2526];

(ii) the prevalence of 0-h biotin >20 ng/mL (81.8 nmol/L) and ≤100 ng/mL 

(409 nmol/L) was derived from the upper confidence limit of the observed 

prevalence in the ACS cohort; (iii) the maximal reduction in TnT Gen 5 

assay recovery at a biotin concentration of 100 ng/mL (409 nmol/L) was 

42%; and (iv) the AMI prevalence was extrapolated to 15%, a more 

conservative, yet realistic, estimate based on the measured prevalence of

10.3% in the ACS cohort [8].

Model 2: Risk calculation based on extrapolated biotin 

prevalence data in random samples from a US laboratory 

network (US laboratory cohort) 

To enable a more comprehensive assessment of the risk of biotin 

interference with the TnT Gen 5 assay, a second study cohort was utilized 

to provide biotin prevalence data from a broader population than the ACS 

cohort. The US laboratory cohort was intended to reflect the general US 

population and comprised 2023 routine blood samples randomly selected 
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from a US commercial laboratory network in 2016. Samples were stored 

for 2 weeks at −20°C and protected from light prior to biotin analysis. 

Biotin was quantified using a competitive Elecsys research assay on the 

cobas e 411 analyzer (Roche Diagnostics International Ltd, Rotkreuz, 

Switzerland). For a more conservative approach and to evaluate a worst-

case scenario, the measured prevalence of elevated biotin >20 ng/mL in 

the US laboratory cohort was extrapolated to higher biotin values, such as

patients taking very high biotin doses for MS. This extrapolation was 

based on previous pharmacokinetic studies and a biotin prevalence study 

of US emergency department patients [10, 18, 23, 2627].

A risk calculation model was built based on the extrapolated 

prevalence of biotin >20.0 ng/mL (81.8 nmol/L), a US-specific distribution 

of cTnT concentrations extracted from a global Roche Diagnostics data 

collection system of participating customers, and the biotin interference 

curve for the TnT Gen 5 assay. The misclassification risk was determined 

using TnT Gen 5 assay cutoffs of 14, 19, and 22 ng/L (to cover non-US 

combined, US-combined, and US sex-specific cutoffs), and following biotin 

washout times of 1, 3, and 6 h by applying the pharmacokinetic data 

described previously [23]. These washout times were chosen to reflect 

commonly used time points for serial TnT Gen 5 testing. We also 

evaluated the misclassification risk of biotin interference if using a TnT 

Gen 5 assay cutoff of 6 ng/L (i.e. the assay’s limit of quantitation) for 0-h 

result. Specifically, we assessed the risk of biotin interference causing a 

true TnT Gen 5 result of ≥6 ng/L to be recorded as <6 ng/L. The rationale 

behind this analysis was that a cutoff of 6 ng/L for 0-h TnT Gen 5 result is 

10

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224



commonly used in US emergency departments to decide whether a 

patient should be ruled out for AMI (<6 ng/L) or undergo serial cTn testing 

(≥6 ng/L), although it should be emphasized that this is an off-label use of

the TnT Gen 5 assay.

Further details on this second risk calculation model are provided in 

the online Supplemental material. 

Risk assessment per ISO 14971 guidelines

A risk assessment was performed to evaluate the probability and clinical 

consequences of misclassification due to biotin interference with the TnT 

Gen 5 assay, according to ISO 14971 guidelines [20].

Results

Model 1: Risk calculation based on biotin prevalence data 

from the ACS cohort

Prevalence of elevated biotin

Biotin was undetectable (<0.1 ng/mL; <0.41 nmol/L) in 471/797 (59%) 0-h

samples and 399/646 (62%) 3-h samples (Supplemental Figure 5). The 

99th percentile biotin concentrations were 2.62 ng/mL (10.7 nmol/L) at 0-

h and 2.38 ng/mL (9.74 nmol/L) at 3-h, seven times lower than the biotin 

interference threshold for the TnT Gen 5 assay of 20.0 ng/mL (81.8 

nmol/L). Biotin >20.0 ng/mL (81.8 nmol/L), which might influence TnT Gen

5 results by >10%, was identified in one sample at each time point (0-h, 
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30.23 ng/mL; 124 nmol/L) and (3-h, 24.48 ng/mL; 100 nmol/L); the 

corresponding prevalence of biotin >20.0 ng/mL (81.8 nmol/L) was 0.13% 

(0-h; 95% confidence interval [CI] 0–0.70) and 0.15% (3-h; 95% CI 0–0.86).

Both samples were from a 60-year-old female patient who was correctly 

not diagnosed with AMI; 0-h TnT Gen 5 results for this patient were 5.70 

ng/L (cobas e 411) and 5.51 ng/L (cobas e 601); 3-h TnT Gen 5 results 

were 5.15 ng/L (cobas e 411) and 5.74 ng/L (cobas e 601).

Among the 850 patients included in this analysis, 257 (30%) had a 

single biotin measurement available, 325 (38%) had undetectable biotin 

(<0.1 ng/mL; 0.41 nmol/L) in both samples, and 73 (9%) had undetectable

biotin in one of the two samples. Thus, 195 (23%) patients had detectable 

biotin in both samples available to calculate biotin kinetics in the ACS 

cohort. The median change in biotin between 0-h and 3-h serial samples 

was −0.015 ng/mL (0.061 nmol/L) (interquartile range: −0.050 to 0.002 

ng/mL).

Risk calculation

The following assumptions were used: (i) the highest biotin concentration 

was 100.0 ng/mL (409 nmol/L) which is approximately three times the 

highest observed biotin concentration of 30.23 ng/mL (124 nmol/L) in the 

intended use population; (ii) the prevalence of 0-h biotin >20.0 ng/mL 

(81.8 nmol/L) and ≤100 ng/mL (409 nmol/L) was 0.7% (upper confidence 

limit of observed prevalence); (iii) the maximal reduction in TnT Gen 5 

assay recovery at a biotin concentration of 100 ng/mL (409 nmol/L) was 

42%; and (iv) the AMI prevalence was 15%. Based on these assumptions, 
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only a 0-h TnT Gen 5 result between 19 and 45.24 ng/L could lead to false-

negative AMI classification, using the US overall 19 ng/L cutoff. As 25% of 

patients diagnosed with AMI in the ACS cohort had a 0-h TnT Gen 5 result 

within this range, the likelihood of false-negative results due to biotin 

interference was estimated as 0.026% (Figure 3).

Model 2: Risk calculation based on extrapolated biotin 

prevalence data from the US laboratory cohort

Prevalence of elevated biotin

Biotin >20.0 ng/mL (81.8 nmol/L) was identified in 15/2023 (0.74%) 

samples; the highest measured biotin concentration was 92.7 ng/mL (379 

nmol/L). The measured biotin prevalence was extrapolated anticipating 

patients receiving high-dose biotin treatment for MS. This resulted in 

extrapolated biotin concentrations of 100–600 ng/mL (409–2456 nmol/L) 

(Figure 4), which is higher than has been previously observed in the 

intended-use population for cTn testing [18].

Risk calculation 

Based on extrapolated biotin data, predicted elimination of biotin in blood,

and US-specific cTnT distribution data from the Roche data collection 

system, the misclassification risk due to biotin interference with the TnT 

Gen 5 assay, using the US-specific 19 ng/L cutoff, was 0.025% (0-h), 

0.0064% (1-h), 0.00048% (3-h), and <0.00001% (6-h). Using different TnT

Gen 5 assay cutoffs in the modeling produced the following 
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misclassification risk estimates: 14 ng/L (non-US combined cutoff/US 

female-specific cutoff), 0.026% (0-h) and 0.0067% (1-h); 22 ng/L (US 

male-specific cutoff), 0.029% (0-h) and 0.0075% (1-h). Comparable 

misclassification estimates were obtained when applying a global 

distribution of cTnT data to the modeling, rather than a US-specific 

distribution alone: 0-h 19 ng/L cutoff, 0.025%; 0-h 14 ng/L cutoff, 0.027%. 

This risk calculation model was also applied to the ACS cohort biotin 

prevalence data, which showed a misclassification risk of <0.00001% (0-

h). The risk of biotin interference causing a true TnT Gen 5 result of ≥6 

ng/L to be recorded as <6 ng/L was 0.063% (0-h).

Risk assessment per ISO 14971 guidelines

The severity of biotin interference with the TnT Gen 5 assay can be 

described as high due to the risk associated with AMI misclassification. 

However, the probability of misclassification occurring was judged to be 

low (0.026%).

Discussion 

Biotin interference with biotin–streptavidin-based assays is of increasing 

interest due to biotin supplementation marketed for cosmetic use and 

trials of high-dose biotin for treating MS [10–16]. CLSI EP07 guidelines 

recommend that potential assay interferents are tested at the highest 

concentration expected in the intended-use population [2526]. However, 

manufacturer-reported assay interference thresholds for biotin are based 

on historic reference ranges (<1.0 ng/mL; 4.09 nmol/L) [2728, 2829], and 
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attempts to address biotin interference are limited by the poorly 

documented pharmacokinetic profile for biotin [23]. We explored the 

impact of biotin interference on the biotin–streptavidin-based TnT Gen 5 

assay. At least one cTn measurement above the 99th percentile upper 

reference limit is necessary, although not sufficient alone, for AMI 

diagnosis [2425]. As such, false-negative TnT Gen 5 results due to biotin 

interference have potential clinical implications. 

The prevalence of elevated biotin in our study (ACS cohort, 0.13–

0.15%; US laboratory cohort, 0.74%) is consistent with that reported in 

routine cTnT samples from an Australian population (0.2%) [2930], but is 

lower than observed in previous research of patients presenting to a US 

emergency department (1.7%) [3031]. Differences may be due to 

geographic differences in biotin consumption and a lack of standardization

for all current, biotin assays. For instance, in an Australian study [2930], 

biotin was measured by liquid chromatography–mass spectrometry (LC-

MS)/MS (Shimadzu), whereas, in our study, biotin concentration was 

analyzed by LC-MS and an in-house Elecsys research assay on a cobas e 

411 analyzer [23]. The differences in methods and inter-laboratory 

instrument calibration can result in discrepancies and there is currently no

standard approach. By defining biotin concentration and interference with 

the same assay, our methods are comparable and valid. 

We demonstrated that the likelihood of false-negative AMI prediction 

due to biotin interference with the TnT Gen 5 assay is very low in the 

intended-use population (0.026%, based on 0-h TnT Gen 5 result). This is 
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lower than reported in a previous study, which estimated that up to 0.8% 

of US emergency department patients would be at risk of a clinically 

significant cTnT decrease (defined as any change in cTnT of 4 ng/L or 

10%) caused by biotin interference [3031]. Our definition of a clinically 

significant cTnT decrease is more stringent: 10% decrease at the US 

overall 19 ng/L TnT Gen 5 assay cutoff (approximately 2 ng/L). 

Importantly, our results show that the misclassification risk with the TnT 

Gen 5 assay is not determined by the assay biotin interference threshold 

alone. The prevalence of elevated biotin in the intended-use population, 

the shape of the assay-specific biotin recovery curve, and the test analyte 

distribution with respect to the assay cutoff are also key factors.

We developed a second risk model, which included more recent 

samples from a US commercial laboratory network and aimed to address 

a worst-case scenario by anticipating very high biotin concentrations in 

patients with MS taking high-dose biotin treatments/supplements. The 

misclassification rate due to biotin interference in this model, based on a 

US-specific distribution of cTnT data, the US-specific TnT Gen 5 assay 

cutoff of 19 ng/L, and a strict and conservative risk assessment, remained 

extremely low: 0.025% (0-h) to <0.00001% (6-h). Similar misclassification 

risk estimates were obtained when using non-US and US sex-specific TnT 

Gen 5 assay cutoffs (14 and 22 ng/L).

The present misclassification rates due to biotin interference are 

considerably lower than those caused by other factors related to the 

clinical performance of cTn assays. For the TnT Gen 5 assay, the 
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misclassification rate would be 0.7%, based on an NPV of 99.3% at 3 h [8],

or 0.6%, based on an NPV of 99.4% [3132]. For contemporary cTn assays, 

a meta-analysis reported an NPV of 98.2%, which equates to a 

misclassification rate of 1.8%, and reflects the current standard of care for

cTn assays and thus user expectations [3233]. The misclassification rate 

of a high-sensitivity cardiac troponin I (cTnI) assay would be 1.5%, based 

on an NPV of 98.5% [3132]. A typical assay imprecision of 3–6% would 

translate into a misclassification risk of 0.30–0.64%; coefficients of 

variation for intermediate precision with the TnT Gen 5 assay range from 

1.4% to 10.3% (cobas e 411 analyzer) and from 1.5% to 6.4% (cobas e 

601 analyzer) [9].

The American Heart Association/American College of Cardiology 

guidelines recommend serial cTn testing, with an additional draw after 3–6

h [3334]. Biotin concentrations should decrease during this period, thus 

reducing the risk of interference and a false-negative result. However, the 

introduction of high-sensitivity cTn assays has prompted an increasing 

trend for accelerated diagnostic protocols and faster clinical decision-

making than the traditional 3–6-h algorithms. The European Society of 

Cardiology guidelines include a 0/1-h algorithm for high-sensitivity cTn 

assays [3435], and some AMI diagnostic algorithms incorporate risk scores

before cTn testing or with the initial cTn result. Risk scores and clinical 

judgment may provide an additional safety layer, as high-risk patients 

should be investigated further, despite a non-elevated cTn. 
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Although our findings show that the misclassification risk from biotin 

interference with the TnT Gen 5 assay is low, special attention should be 

paid to patients taking high-dose biotin and those with inherited biotin 

metabolism disorders (e.g., biotinidase and holocarboxylase synthetase 

deficiencies). Clinicians should ask patients about recent biotin 

consumption, perform serial cTn measurements, and be aware that TnT 

Gen 5 results may be falsely depressed. TnT Gen 5 assay measurements 

should be repeated in patients with clinical signs of AMI, but a negative 

initial TnT Gen 5 result, taking into account expected biotin clearance 

times. In contrast to high-dose biotin, biotin doses <5 mg, which are 

commonly found in multivitamin and biotin supplements, are unlikely to 

lead to blood biotin concentrations that pose an interference risk with the 

TnT Gen 5 assay [23]. However, patients with renal impairment may have 

altered biotin kinetics and receive supplements of water soluble vitamins 

especially under dialysis [3536]. The interpretation of cTn in patients with 

renal failure is complicated by concomitant chronic structural heart 

disease rather than acute injury [3637], and cTn is often persistently 

elevated and affected by hemodialysis timing and membrane used in this 

population. Further research is required to examine the effects of biotin in 

patients with chronic kidney disease.

All immunoassays can be affected by interferences [3738]; 

collectively, these likely contribute to the fact that NPVs of cTn assays 

using the 99th percentile upper reference limit during serial sampling are 

95–99% [3233]. Our findings suggest that biotin interference is far less 

prevalent than other interferences that can affect cTn assays [3839, 
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3940]. In spite of the low risk, the TnT assay has recently been updated 

(Gen 5 reformulated) to a biotin interference threshold of 1200 ng/mL 

(4.91 umol/L). 

Strengths of the present analyses are that the biotin interference risk 

with the TnT Gen 5 assay was assessed using a conservative approach for 

estimating the probability of false-negative AMI prediction, and that biotin 

prevalence data were determined from a range of populations. The risk of 

biotin interference is dependent on the prevalence of elevated biotin in 

the target population, the assay’s biotin interference tolerance, and the 

test analyte concentration. Therefore, our findings are specific to the TnT 

Gen 5 assay and the US population, and are not generalizable to other 

assays or populations. Biotin interference thresholds for cTn assays range 

from 2.5 to 10,000 ng/mL (10.2 nmol/L to 40.9 umol/L) [4041], and the 

threshold for the TnT Gen 5 assay of 20.0 ng/mL (81.8 nmol/L) is on the 

lower end of this range. It should also be noted that cTnT measured using 

high-sensitivity assays may differ depending on the assay equipment used

for analysis. Although samples were stored frozen for prolonged periods 

and were not freshly analyzed, biotin has been shown to be stable 

following frozen storage and freeze/thaw cycles [22]. A limitation of the 

study was that the samples used were not specifically collected for the 

purpose of measuring biotin levels. Prior studies have shown that biotin is 

stable under such conditions [4142]. Our data reflect biotin distribution in 

the intended use population for troponin testing, but might differ from 

broader or more selected populations. In the ACS cohort, biotin was 

undetectable in the majority of samples. This may suggest that the ACS 
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cohort had lower biotin concentrations than might be expected in the 

general population; however, biotin reference intervals vary and there is 

no standardization of biotin assays. Another limitation of the study is that 

the biotin assay was validated against a liquid chromatography-tandem 

mass spectrometry method for biotin concentrations of 40.0–300 ng/mL 

(164–1228 nmol/L), but not below. While values <40.0 ng/mL (164 nmol/L)

may therefore be insufficiently checked between methods, the most 

important factor was to check for reliability of comparability of higher 

concentrations, which are critical in terms of interference. The critical 

concentration range of biotin has been recently confirmed in external 

studies [4243, 4344].

Patients with renal insufficiency, pregnancy, and recent 

hospitalization were excluded from the original ACS cohort; therefore, our 

findings may not be generalizable to these groups. This is in keeping with 

standard algorithms for diagnosing AMI, which are not applicable to 

patients with renal dysfunction [2425]. Our worst-case scenario modeling 

was based on assumptions rather than measured data, and we do not 

know the proportion of patients with MS in the study cohorts who may 

have been taking high-dose biotin. The ACS cohort data suggest that no 

patients with MS taking high-dose biotin treatment were included in this 

cohort. In the risk model derived from the US laboratory cohort, the 

measured biotin prevalence data were extrapolated to anticipate very 

high biotin concentrations resulting from high-dose biotin treatment for 

MS.
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In conclusion, biotin interference has a minimal impact on the clinical 

utility of the Elecsys Troponin T Gen 5 assay, and the likelihood of false-

negative AMI prediction in the intended-use population is low. However, 

further research is required to understand completely biotin interference 

as a concern. Medical and laboratory staff should be aware of the 

potential risk for biotin interference, and pay particular attention to results

from high-risk groups, such as patients with MS. It is important that 

clinicians evaluate results in the context of the wider clinical picture, ask 

patients about recent biotin/multivitamin supplement use, and perform 

serial cTn testing.
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<FIGURES>

Figure 1. Impact of biotin interference on Elecsys Troponin T Gen 

5 assay recovery. 

Troponin recovery was measured on the cobas e 411 analyzer using 

samples with a cardiac troponin T concentration of 16.2 ng/L, which were 

spiked with measured concentrations of biotin. A non-linear dose-response

model was fitted to the measured data and was used to predict recovery 

values in samples with up to 100 ng/mL (409 nmol/L) biotin.

Figure 2. Overview of the two study cohorts/risk assessment 

models used to determine the prevalence of elevated biotin and 

the clinical risk of biotin interference with the TnT Gen 5 assay. *A

risk calculation model was built based on biotin prevalence data, 

distribution of cTnT concentrations, and the biotin interference curve for 

the TnT Gen 5 assay. A misclassification was defined as a cTnT above the 

cutoff, which could be reported as below the cutoff due to biotin 

interference, and thus lead to a false-negative result. ACS, acute coronary

syndrome; cTnT, cardiac troponin T; TnT Gen 5, Troponin T Gen 5; US, 

United States.

Figure 3. Estimating the probability of false-negative AMI 

prediction due to biotin interference with the TnT Gen 5 assay 

(based on 0-h result).
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ACS, acute coronary syndrome; AMI, acute myocardial infarction; CI, 

confidence interval; TnT Gen 5, Troponin T Gen 5; US, United States.

Figure 4. Measured and extrapolated biotin prevalence data 

based on random samples from a US commercial laboratory 

network and scientific literature. 

The simulated biotin prevalence assumed a higher biotin prevalence, and 

thus higher degree of risk, than observed in the laboratory samples. US, 

United States.
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