
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
A service-oriented architecture for authentication and authorization

Permalink
https://escholarship.org/uc/item/7d98v3ch

Author
Hamedtoolloei, Hamidreza

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7d98v3ch
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

A Service-oriented Architecture for Authentication and

Authorization

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in

Computer Science

by

Hamidreza Hamedtoolloei

Committee in charge:

Professor Ingolf H. Krüger, Chair
Professor Professor Joseph Pasquale
Professor Professor William G. Griswold

2009

Copyright

Hamidreza Hamedtoolloei, 2009

All rights reserved.

The Thesis of Hamidreza Hamedtoolloei is approved and it is

acceptable in quality and form for publication on microfilm

and electronically:

Chair

University of California, San Diego

2009

iii

TABLE OF CONTENTS

Signature Page . iii

Table of Contents . iv

List of Figures . vii

List of Tables . viii

Abstract of the Thesis . ix

Chapter 1 Introduction . 1
1.1. Motivation . 1

1.1.1. Meteorology Case Study 2
1.2. Security Challenges . 4

1.2.1. The Grid Security Problem 5
1.3. GAMA 1.X . 7
1.4. Problem Statement & Solution Proposal 8
1.5. Related Work . 10

1.5.1. PURSE . 10
1.5.2. GridAuth . 11
1.5.3. FusionGrid . 11

1.6. Thesis Organization and Author Contribution 13

Chapter 2 Grid Authentication & Authorization Models 14
2.1. Introduction . 14
2.2. Authentication Models . 14

2.2.1. Certificate Authentication 15
2.2.2. Kerberos Authentication 16
2.2.3. Password Authentication 18

2.3. Authorization Models . 18
2.3.1. Push Model . 19
2.3.2. Pull Model . 21

2.4. Authentication & Authorization in GAMA 2.0 24

Chapter 3 GAMA 2.0 Scenario Analysis . 25
3.1. GAMA 2.0 Overview . 25
3.2. GAMA 2.0 Single-site Authorization Enforcement 26
3.3. GAMA 2.0 Multi-site Authorization Enforcement 27
3.4. Federated System Environment 27

iv

Chapter 4 GAMA 2.0 Security Requirements 29
4.1. Generic Requirements . 29
4.2. Project Specific Requirements 30

Chapter 5 GAMA 2.0 Architecture . 32
5.1. Introduction . 32
5.2. Logical Architecture . 33

5.2.1. Overview . 33
5.2.2. Operational Nodes . 33
5.2.3. Public Interfaces . 36

5.3. Information Exchange . 37
5.3.1. Needlines . 37

5.4. GAMA-lib Services . 38
5.5. Logical Data Model . 41

5.5.1. Users, Resources, Roles, and Policies 41
5.5.2. Security Data Model . 44

5.6. GAMA Deployment Architecture 47
5.6.1. GAMA Technology Selection Process 47

5.7. GAMA Use Cases . 50

Chapter 6 GAMA 2.0 Implementation . 54
6.1. Introduction . 54
6.2. Technology Selection . 55
6.3. Code Organization . 57
6.4. Code Implementation . 60

6.4.1. Drivers . 60
6.5. GAMA Exception Handling 69
6.6. GAMA Testing . 70
6.7. Implementation Security Discussion 71
6.8. Alpha Release Open Issues . 71

Chapter 7 GAMA 2.0 Evaluation and Analysis 74
7.1. Introduction . 74
7.2. GAMA 2.0 vs GAMA 1.X . 75

7.2.1. Authorization Support . 75
7.2.2. LDAP-based Authentication Support 76
7.2.3. Pluggable Architecture and Implementation 77

7.3. GAMA 2.0 vs Other Identity Management Systems 78
7.3.1. Communication Mechanisms 78
7.3.2. Authorization Support . 79
7.3.3. Architecture Design and Implementation 81

7.4. GamaLib Performance Evaluation 82
7.4.1. GamaLib Benchmarks 82
7.4.2. Evaluation Procedure and Result 87

v

Chapter 8 Conclusion . 91

Bibliography . 94

vi

LIST OF FIGURES

Figure 1.1: weather forecasting is a complex process (adopted from [45]) 3
Figure 1.2: Example of a large-scale distributed computation (adopted from

[25]) . 6
Figure 1.3: GAMA Architecture (adopted from [29]) 7
Figure 1.4: Graphical Representation of the Author’s Contributions (high-

lighted rectangles) . 13

Figure 2.1: Overview of the Kerberos system (adopted from [15]) 17

Figure 3.1: GAMA overview (adopted from [32]) 26
Figure 3.2: GAMA single-site access control (adopted from [32]) 27
Figure 3.3: GAMA multi-site access control (adopted from [32]) 28
Figure 3.4: GAMA Federated system environment (adopted from [32]) . 28

Figure 5.1: GAMA Logical Architecture (adopted from [32]) 34
Figure 5.2: Resource-Policy Domain Model (adopted from [32]) 43
Figure 5.3: GAMA Security Data Model (adopted from [32]) 46
Figure 5.4: GAMA 2 Deployment Architecture (adopted from [32]) . . . 48
Figure 5.5: User Registration Use Case 51
Figure 5.6: User Authentication Use Case 52
Figure 5.7: Resource Authorization Use Case 53
Figure 5.8: Administrator Usage Use Case 53

Figure 6.1: GAMA 2.0 Code Organization 58
Figure 6.2: ldapdriver Command pattern 61
Figure 6.3: ldapdriver commands . 62
Figure 6.4: GAMA Entity Identification System 66
Figure 6.5: Entity Attribute Management System 66
Figure 6.6: gamaLib Services . 68
Figure 6.7: GAMA Exception Handling 70

vii

LIST OF TABLES

Table 7.1: GAMA 2.0 vs Related Identity Management Systems 75
Table 7.2: execution time and LDAP access frequency of each bench-

mark (before optimization) 87
Table 7.3: execution time and LDAP access frequency of each bench-

mark (after optimization) . 90

viii

ABSTRACT OF THE THESIS

A Service-oriented Architecture for Authentication and

Authorization

by

Hamidreza Hamedtoolloei

Master of Science in Computer Science

University of California, San Diego, 2009

Professor Ingolf H. Krüger, Chair

Many applications require access to large quantities of data and computational

resources that are often distributed over a wide-area network. Grid computing infrastruc-

tures provide a platform to run these applications, but their heterogeneous nature makes

security a vital component of grid systems. The standard technology for grid security

is the Grid Security Infrastructure (GSI). Although GSI is well-known in academic and

government settings, GSI-based security systems are usually difficult to deploy and use.

The Grid Account Management Architecture (GAMA [18]) was developed to make Grid

security easy for system administrators and users by extensive use of web-services tech-

nology. Nevertheless, GAMA has a few limitations that make it unattractive to many

communities. For example, it does not offer a usable resource authorization mechanism.

Moreover, it is tightly coupled to the selected technologies.

We propose GAMA 2.0, which is a service-oriented architecture that addresses

both authentication and authorization concerns. Moreover, the multi-tier architecture

is pluggable to cope with the rapidly evolving relevant technologies. We have imple-

mented the GAMA 2.0 reference infrastructure using well known programming tech-

niques such as polymorphism and the Command pattern. In addition, a comprehensive

testing strategy, which includes unit-testing and scenario-testing, as well as detailed

exception handling has been employed to ensure correctness and robustness of the in-

ix

frastructure. Although performance was not the driving factor, we have managed to

increase GAMA 2.0’s performance by applying a few optimization techniques.

x

Chapter 1

Introduction

1.1 Motivation

There are many problems in engineering and scientific fields that cannot be

resolved using current personal and supercomputers, although we have witnessed a

tremendous performance increase in computers and networks in the recent years. In

fact, since these problems are large-scale and computationally intensive, their solutions

demand a range of heterogeneous resources. Nevertheless rapid advances in relevant

technologies have resulted in ubiquity of the Internet, availability of powerful comput-

ers, and high speed network technologies. These advances, in turn, have led to devel-

opment of computing platforms with a wide variety of distributed resources. There are

various types of distributed platforms such as Clusters [21], Grids [24], and peer to peer

(P2P) networks [31], which share the following main benefits:

• Functional Separation: purpose of each component in the system is determined

based on the functionality it provides.

• Inherent distribution: system entities such as users, resources, and sites are inher-

ently distributed.

• Reliability: data can be stored and replicated at different locations to increase

reliability.

1

2

• Scalability: addition of more resources or users to increase performance or avail-

ability.

• Economy: resources can be shared by many entities to reduce the ownership cost.

These features allow parallel and possibly independent entity operations in a distributed

system. In addition, proper entity communication leads to coordinated actions, and

task completions at well-defined states. Since entities are heterogeneous, failures are

independent, and usually no single entity has the knowledge of the entire state of the

system.

To further support the case for distributed computing platforms, G. V.

Laszewski presents the following weather forecasting example promoting usage of grid

environments [45].

1.1.1 Meteorology Case Study

In the meteorology domain, extensive calculations based on weather observa-

tions are required for precise weather predictions. The first modern idea for numeric

weather prediction was introduced in 1922, and within two decades, a prototype of a

predictive system was developed by Von Neuman and Charney [17, 40]. Since then,

numerical weather prediction has become mature as computers become more powerful.

While early models rely solidly on observations, scientists recently have realized that

complex chemical processes and their interactions with land, sea, and atmosphere have

to be considered for more detailed and accurate analysis (see Figure 1.1). Introducing

climate variables makes prediction models extremely complex for the following reasons:

• Sophisticated sensor networks must be employed to collect climate variables and

weather observations.

• Enormous amount of data need to be fed into complicated models for accurate

analysis. In addition, predictions must be delivered to consumers.

The increased in prediction system complexity requires a massive amount of compu-

tational and storage resources. Despite the enormous power of supercomputers, they

3

Figure 1.1: weather forecasting is a complex process (adopted from [45])

are likely to be inadequate for complex forecasting models; promoting the usage of dis-

tributed computing to realize flexible, secure, and coordinated sharing of a wide variety

of resources.

Several enabling factors allow for development of sophisticated forecasting

models on distributed computing platforms.

As technology advances, sensor infrastructure has expanded from surface tem-

perature measurements to Doppler radars and weather satellites. In addition, remote

access to a variety of databases collecting measurement data is realized via the Internet

and communication satellites. Moreover, computer power has increased steadily, while

network production and hardware cost has decreased. Computer speed, for instance, has

doubled in every eighteen months for the past couple of decades supporting Moore’s law

[34]. Also, over the past few years, network bandwidth has increased at a much higher

rate and some experts suggest that it doubles every nine months [45].

Change in modality of computer operation is another enabling factor encour-

aging the usage of distributed computing platforms. The first generation of supercom-

puting enterprise was mostly based on high-end mainframes and vector processors in a

single institution and an administrative domain. As new network technologies and the

Internet [5] promote connectivity of computers and organizations, distributed computing

environments are gaining attention. As a part of transition to decentralized computing,

it has become natural to collect geographically dispersed and heterogeneous computer

resources typically as networks of workstations and supercomputers.

4

Among the enabling factors are increase in capacity, capability, and change in

modality that has resulted in a shift from centralized computing center to a decentralized

environment.

1.2 Security Challenges

Despite the fact that distributed platforms offer numerous advantages over cen-

tralized environments, they need to address several challenges. Some of the important

issues are presented below:

• Heterogeneity: various entities in the system must be able to inter-operate with

one another despite differences in hardware architectures, operating systems,

communication protocols, and security models.

• Transparency: communication between the entities should be hidden from the end

user and the entire system should appear as a single logical unit.

• Fault tolerance and failure management: the entire system should not fail with

failure of one or more components.

• Scalability: adding resources to the system should enhance system’s performance

or availability. In addition, the system should work efficiently with increasing user

population.

• Concurrency: shared access to resources should be possible.

• Migration and load balancing: distribute computation load among available re-

sources to enhance performance without affecting the operation of users or appli-

cations

• Security: access to resources should be secured to ensure only known users are

able to perform allowed operations.

Among the challenges mentioned above, security is one of the key issues. Security is a

vital component of distributed systems and is somewhat different from operating system

5

security. In distributed systems there is no central, trusted authority that arbitrates inter-

action between users and processes. Instead, a distributed system usually runs on top of

a large number of connected independent hosts. Each host may run a different operating

system and has its own set of internal security rules and policies. A distributed environ-

ment security solution needs to address a variety of issues such as group membership,

authentication, and access control.

Considering grids as one of the popular distributed computing platforms, Ian

Foster performs the following detailed security analysis of grid systems [25].

1.2.1 The Grid Security Problem

Figure Figure 1.2 illustrates a scientist, member of a multi-institutional scien-

tific project, running a data analysis program. Since the data is stored at site C, a distant

location, site A sends a data analysis request to site C. Also, to successfully execute the

analysis program, a simulation needs to run to compare some experimental results to

predictions. Consequently, site C contacts site D where a resource broker is maintained

to locate idle resources that can be used for a computation. The resource broker, in

turn, initiates computation on computers at two sites (E and G). These two sites contact

site F to access required parameter values on its file system. In addition to communi-

cating amongst themselves, sites (E and F) also communicate with the resource broker,

the original site, and the user. Although the described example is somewhat contrived,

it illustrates many unique features of the grid computing environment. A few of these

features are discussed below:

• User participants in a grid environment include members from many institutions

and will change regularly over time. (i.e. the user pool is large and dynamic).

• Individual users and institutions determine whether and when to share resources

Therefore, sites and the quality of resources change frequently. (i.e. the resource

pool is large and dynamic).

• During its execution, a computation can dynamically acquire and release re-

6

Figure 1.2: Example of a large-scale distributed computation (adopted from [25])

sources. In the above scenario, for instance, the data analysis computation ac-

quired and released resources at five locations. (i.e. computation is a dynamic

collection of processes running on different resources and sites).

• In grids, processes forming a computation may communicate using a well-defined

mechanism. (i.e. during the lifetime of a computation, communication connec-

tions such as TCP/IP sockets may be created and destroyed dynamically).

• Individual institutions enforce their own set of authentication and authorization

rules. In Figure Figure 1.2, institution dependent access control is illustrated by

showing the local polices that apply at the different sites. These include Kerberos,

plain-text passwords, etc.

• At different sites, a participant user will have different local accounts and creden-

tials for the purpose of proper access control. A regular user of one site can be an

administrator of another site.

• Resources and users may be located in different countries.

To summarize, the challenge we are facing is to provide a security solution that en-

ables sharing and coordinating of a wide variety of resources that are geographically

7

Figure 1.3: GAMA Architecture (adopted from [29])

distributed and owned by different organizations.

1.3 GAMA 1.X

Grid systems depend on a collection of back-end software packages and tech-

nologies to create and manage Grid credentials for users. Therefore, system adminis-

trators spend a significant amount of time and effort installing and maintaining these

technologies. Moreover, users often are exposed to security details as they are required

to explicitly issue and manage their own credentials. The Grid Account Management

Architecture (GAMA [18]) has been designed and implemented to overcome these chal-

lenges. It bundles many of the security-related technologies that are not primarily de-

signed for interoperability in order to achieve a complete end-to-end security system that

works out-of-the-box. Figure Figure 1.3 depicts GAMA’s architecture, which consists

of two main components: a back-end server component that manages users’ identities

and credentials, and a set of portal components that provide different web interfaces for

both users and administrators.

The GAMA back-end server provides a set of services that run on a remote,

protected machine. There is no end-user access to this machine and the services are ex-

8

posed to public only via web-service calls. User management services such as addUser,

deleteUser run in a secure web-service container that requires mutual authentication be-

tween the GAMA server and GAMA clients. Other services such as login run in a less

secure container, which does not require mutual authentication. The back-end services

use CACL[30] for issuing users certificates, MyProxy for storing and retrieving cre-

dentials, and CAS [38] for defining and using roles for authorization. These software

packages and services can be difficult to install and some require a substantial amount

of configuration. To make the installation and configuration process easy for system

administrators, the Rocks [37] clusters management software has been employed to cre-

ate a GAMA server roll [37]. Rocks installs all GAMA components and performs post

installation configuration to provide a fully functional GAMA back-end serverappliance

“out-of-the-box” with minimum system administrator intervention.

The remainder of the GAMA system consists of a set of portlets that allow

end-users (administrators or users) to interact with GAMA. Users, for example, can

perform several activities such as request an account, login, and access web-based ap-

plications. At the same time, administrators have the ability to easily define policies and

perform user management tasks such as delete a user.

1.4 Problem Statement & Solution Proposal

Existing grid security systems are difficult to deploy and use. These sys-

tems are usually based on the Grid Security Infrastructure (GSI) technology, which is

well-known in academic and government settings. GSI-based system administrators are

usually required to invest significant time and effort in installing and configuring many

software packages and technologies. Furthermore, end-users are exposed to low level

security-related tasks such as issuing and managing their credentials. Another limitation

of GSI-based systems is the lack of flexible authorization mechanisms. These problems

are even more apparent in academic settings where mid-size scientific projects spanning

few organizational sites desire efficient deployment, user friendly interfaces and flexible

9

access control solutions.

In recent times, service-oriented architectures have witnessed a lot of atten-

tion in designing and constructing distributed systems. Grid computing, in particular,

has shifted toward service-oriented architecture leveraging web-services technologies.

The shift will likely continue with the recent development and release of Web Services

Resource Framework (WSRF)[14] which allows for easier aggregation and composi-

tion of data and applications in novel ways. At the same time, analyzing several grid

infrastructures suggests that many grid systems have similar security requirements

despite the fact that they have different goals, and are usually tailored for a particular

set of problems. In addition, detailed requirements elicitation sessions augmented with

complex categorization and prioritization procedures have revealed that many mid-size,

academic-related projects spanning few domains share various similar requirements

[33].

Merging the two trends mentioned above, GAMA (Grid Account Manage-

ment Architecture) was born to overcome many challenges in GSI-based security

systems (see section 1.3). GAMA has been successfully employed in various commu-

nities mainly because of its efficient deployment and simple usage. At the same time,

many projects were hesitant to use GAMA 1.X because it did not offer a usable autho-

rization solution and did not support LDAP-based authentication. In addition, GAMA

1.X had explicit reliance on the employed technologies such as MyProxy and CACL.

As grid security technologies are rapidly changing and improving, it is very difficult to

incorporate new relevant technologies into the old versions of GAMA.

To address GAMA 1.X’s shortcomings, GAMA 2.0 was introduced. GAMA

2.0 offers a flexible, fine-grained resource authorization solution based on RBAC mod-

els. Moreover, to attract the projects that desire to use LDAP server for authentication,

GAMA 2.0 is designed to support LDAP-based user authentication. Similar to GAMA

1.X, it aggregates many of the existing trusted tools that support building a GSI-based

security system, but are not designed for interoperability. However, the multi-tier ar-

chitecture is pluggable to cope with the rapidly evolving relevant technologies, and is

10

flexible to be employed in various non-crossing projects.

1.5 Related Work

In this section, we are going to present a few existing identity management

solutions. We only document these systems without analyzing or comparing them to

GAMA 2.0. Later, in the evaluation chapter, advantages and disadvantages of these

systems with respect to GAMA 2.0 are discussed.

1.5.1 PURSE

Portal-based User Registration Service (PURSE [26]) consists of set of tools

and technologies to automate difficult security-related tasks such as user registration,

credential creation, and credential management. By employing PURSE, end-users are

freed from the need to create or manage public key credentials, consequently simplifying

the Grid experience and reducing opportunities for error.

The PURSE’s back-end is a collection of Java APIs that stores user infor-

mation, issues and stores user certificates, and allows for subsequent use of those cer-

tificates to access Grid resources. Moreover, the system has functionality to support

credential renewal and revocation. PURSE integrates several common tools to provide

these functionalities. For example, it uses MYSQL to store user data and MyProxy

repository to persist user credentials. Also, depending on application requirements, it

employs either SimpleCA or an external certificate authority to generate and sign user

credentials.

The back-end is complemented with a front-end user interface, typically a

Web portal, to ease registration and credential management tasks. The portal runs on the

same machine as the back-end tools such as MyProxy certificate authority. Therefore,

the front-end web portal can easily access the back-end services via Java library calls.

11

1.5.2 GridAuth

GridAuth [6] is a user credential management solution for distributed systems

with wide range of heterogeneous data and resources like Grids. The pluggable Gri-

dAuth architecture is easily configurable as well as extensible. Therefore, it is appealing

to many communities that require credential management, advanced authorization, and

secure authentication. GridAuth system supports a wide variety of use cases such as

authentication, authorization, single-sign-on, and delegation. It comprises two major

components: client API available in Perl, Java, and PHP and back-end server which is

written in Perl.

GridAuth provides client APIs used by external applications or grid nodes.

These APIs hide the low-level implementation details that are handled on the serve

side and provide high-level functions to application developers for authentication and

authorization. The client APIs are extremely lightweight, secure, and portable as they

use standard HTTP over SSL to communicate with the central backed server.

The GridAuth back-end server consists of Service Handler and Plug-in Stack.

The service handler receives requests from any client API then it passes the request to

the plug-in stack. The service handler manages a customized list of plug-ins defined for

the specific grid instance. The stack consists of predefined and custom built plug-ins,

each one implementing required interface functions such as login and logout. To process

a login request from client API, for example, the service handler will call login methods

on each of the plug-ins in the stack. When all plugin calls return (i.e. successful login)

the service handler sends the response back to the client.

1.5.3 FusionGrid

FusionGrid [19] is a computational grid that consists of geographically dis-

tributed services and data repositories. These services are used by members of the Na-

tional Fusion community who are scientists and collaborators from various universities

and labs. The development team has put significant time and effort testing and evaluat-

ing a wide range of security-related technologies and tools. They have also created the

12

FusionGrid security system that supports both user authentication as well as resource

authorization. In addition, the FusionGrid system fulfills many of the pivotal grid se-

curity requirements such as delegation and single sign-on. Considerable attention has

been devoted to make the system as simple and usable as possible to the benefit of fusion

scientists who are not grid security experts.

The FusionGrid security team has examined several approaches to user au-

thentication. Early FusionGrid investigations suggested employing X.509 credentials

and the Globus Security Infrastructure (GSI) as means to uniquely identify users and

to provide a single sign-on capability. Although the system was a success, researches

experienced a difficult time managing their own certificates. Several quick solutions

such as replacing the web interface with a set of command-line scripts and providing

certificate management training did not fix the problem. Consequently, developers de-

cided to remove the burden of certificate management from scientists. They created a

credential manager which consists of a DOEGrids CA, a MyProxy server, and a custom

Web interface. They all run on a dedicated and secured host to provide user registration

and authentication.

To decide on authorization technologies, similar to authentication, the Fusion-

Grid security team has experienced an iterative process investigating several alternatives.

Eventually, they decided to create a new authorization system that would meet the needs

of resource stakeholders while being as simple and easy as possible for scientists to use.

They developed Resource Oriented Authorization Manager (ROAM [20]) which is a

custom, pull-mode authorization system enforcing consistent authorization scheme over

the distributed resources of FusionGrid. ROAM is a two-tier architecture system. The

back-end is a relational database containing all users, resources, and authorization infor-

mation. It consists of three pivotal entities: resources, permissions, users. These entities

collectively represent FusionGrid authorization by indicating user X has permission Y

on resource Z. The front-end is a web interface that provides authorization management

interface. Users such as stakeholders and resource providers access the authorization

decision interface via HTTPS protocol.

13

Figure 1.4: Graphical Representation of the Author’s Contributions (highlighted rectan-
gles)

1.6 Thesis Organization and Author Contribution

In chapter 1, the author of this document presents advantages and challenges

of distributed computing platforms such as grids. After identifying security as one of

the essential grid components, he discusses well-known authentication and authoriza-

tion schemes in chapter 2. In the remaining chapters, the author discusses GAMA 2.0’s

requirements, design, and implementation, while focusing on his contributions in these

areas (see Figure 1.4). In chapter 3 and 4, he presents several GAMA 2.0’ usage scenar-

ios and security requirements respectively. Then he discusses the architecture of GAMA

2.0 in chapter 5. He emphasizes his main contributions in architecture design such as

security models, back-end services, and use cases. The next chapter highlights the au-

thor’s contribution to code implementation, which include developing and testing many

back-end services. In chapter 7, the author compares GAMA 2.0 to other identity man-

agement solutions and evaluates the back-end services in terms of their execution time.

Finally, he provides a summary of and direction for future work in chapter 8.

Chapter 2

Grid Authentication & Authorization

Models

2.1 Introduction

In a grid context, there is a sharp distinction between authentication and au-

thorization due to dynamic and large number of users and resources with different man-

agement policies. Authentication is concerned with the identity of an entity such as a

user within a given context such as a virtual organization [35]. On the other hand, given

an entity with identity I, authorization captures what I can access and do [35]. In this

chapter, we discuss popular authentication and authorization schemes. First, we present

three models of authentication, while noting that the certificate based model is the most

common approach. Also, we discuss several authorization schemes and technologies.

We conclude this chapter by briefly mentioning GAMA 2.0’s authentication and autho-

rization models.

2.2 Authentication Models

Recalling many authentication schemes discussed in [41, 35, 15, 10], we de-

scribe the main authentication models in more details in this section.

14

15

2.2.1 Certificate Authentication

Perhaps the most popular and prevalent grid authentication mechanism is the

certificate based authentication. It relies on a public key infrastructure (PKI [28]) to

provide means for trusted authority to sign information to be used for authentication

purposes. In this approach, each entity has a public-key based cryptographic credential

in the formulation of a certificate such as X.509 certificate. A trusted certificate au-

thority (CA) signs and certifies these certificates which typically include the following

information:

• A subject name usually in form of distinguished name (DN). A DN uniquely

identifies the person or object that the certificate represents.

• The subject’s public key.

• The identity of a Certificate Authority (CA) that has signed the certificate. This is

required to certify that the public key and the identity both belong to the subject.

• The digital signature of the named CA.

To request a certificate a user starts by generating a public-private key pair. The private

key is stored encrypted with a pass phrase the user provides, while the public key is put

into a certificate request. Then the user sends the certificate request, often encrypted

using the CA’s public key, to the CA. The CA usually includes a Registration Authority

(RA) which applies appropriate policy rules that verifies identity of the user. After

successful verification, the CA creates a certificate with the appropriate information

such as user public key, and certificate expiration date. Moreover, it signs the certificate

using its own private key.

Many grid systems that are based on PKI use certificates differently. Instead

of employing long-lived digital certificates, they take advantage of proxy certificates.

A proxy certificate is a special kind of X.509 certificate that does not require a signa-

ture of a certificate authority. Because proxy certificates are short-lived, usually several

hours, and can be generated during login stage, they can be used to provide users with

16

mechanisms of single sign-on (SSO) and credential delegation. However, they present

new challenges such as lack of revocation mechanism to revoke existing proxy certifi-

cates. To reduce the management and maintenance burden on users, MyProxy Server

is created to manage user credentials. MyProxy is a widely deployed online credential

repository for grid that runs on a secured host. It enables users to store their certifi-

cate and private key in a MyProxy repository and retrieve a short-lived proxy certificate

from the MyProxy later when needed. This is great advantage over storing user’s X.509

certificate and private key on user’s own machine. Nevertheless, one of the key draw-

backs of the PKI is that current tools and technologies for certificate management are

too complicated for users.

2.2.2 Kerberos Authentication

Kerberos [41] is a secret key based mechanism for providing authentication

in the network. It is a third party authentication solution that includes a trusted cen-

tral authentication service, Key Distribution Center (KDC), to authenticate users. The

KDC consists of two major components: the Ticket Granting Server (TGS) and the

Authenticating Server (AS). These two work collectively to provide a centralized user

authentication solution. Moreover, each user and service share a secret key with KDC

and KDC generates tickets indicating identity of their owners [35]. A ticket has a limited

lifespan and relates a user to an end-service.

Figure Figure 2.1 depicts the required operations to request a service. The

following steps are performed:

1. The client connects to the Authentication Server (AS) asking access to the Ticket

Granting Server (TGS).

2. The AS generates the TGS ticket and encrypts it with the TGS’s public key. It also

issues a random session key which later will be used between the client and The

TGS. The entire information is encrypted using the client’s private key, which can

be the client’s password.

17

Figure 2.1: Overview of the Kerberos system (adopted from [15])

3. The client sends the ticket information along with the authentication information

and name of the target server to the TGS. The authentication information typically

includes time, client information, etc. The client encrypts the client-TGS ticket

with the TGS’s public key.

4. The TGS replies with the ticket that can be subsequently used by the client to

access the server.

While Kerberos meets many of the basic requirements for grid authentica-

tion, it presents a major problem. Namely, every authentication among users and ser-

vices involves KDC intervention as it holds a list of all users and services. Moreover,

implementing inter-organizational authentication (called cross-realm authentication) is

extremely difficult with Kerberos. As each realm is served by an independent KDC,

establishing a cross-realm trusted relationship is one the most serious obstacles that pre-

vent Kerberos from being deployed in Grid systems. However, Kerberos has become a

de-facto standard for local security infrastructures operated by many institutions [35].

18

2.2.3 Password Authentication

Many computer systems use passwords to authenticate users since they are

simple to implement and computationally inexpensive. Authentication consists of

checking supplied user password against a hash of the password stored in some database.

The checking process is simple and does not require any complicated computation.

However, password based authentication systems are vulnerable in several ways. Due to

the lack of confidentially, for example, passwords need to be encrypted to prevent adver-

saries from tapping into the system. Moreover, choosing a password itself is a difficult

task because there are many automated tools that can guess a password using methods

such as brute force. To overcome some password based authentication shortcomings,

researches have developed One Time Password (OTP) technology [10]. Unlike a static

password, a one-time password changes each time a user logs in. Consequently, it is

difficult for malicious adversary to tap into a system.

Despite the recent advances in password based authentication such as OPT

technology, it is hardly employed in grid systems as it offers several new challenges.

It is extremely difficult to fulfill some grid requirements such as Single Sign-on and

credential delegation via password authentication, although recently there have been

some advances in this area [35]. Nevertheless, passwords are usually used to login to a

grid infrastructure (i.e. to access private keys in MyProxy repositories, obtain Kerberos

tickets, etc.).

2.3 Authorization Models

Grid Security Infrastructure (GSI [43]) is the de facto standard security infras-

tructure on the grid and its authorization is based on a grid-mapfile. This file provides

mapping information between grid-wide user identities and local user identities such as

Unix account. Upon successful mapping, the local identity can be used to enforce local

policy decisions such as file access. Although the grid-mapfile authorization is easy to

implement, it offers several shortcomings such as lack of scalability and consistency

19

[38].

To overcome grid-mapfile authorization limitations, many alternative autho-

rization solutions have been proposed. These solutions generally are based on two well-

known authorization models: push or pull model. After reviewing related authorization

modes discussed in [38, 39, 16, 20, 27], the author summarizes the essential ones in this

section.

2.3.1 Push Model

In the push model, an authorization subject that corresponds to a grid user

first contacts an authority to obtain his/her authorization rights. The authority issues

and returns a token or a message that contains the user’s access rights. The subject

can use the token to contact a resource and request a specific service. Using the token,

the service owner many accept or reject the request and will report this back to the

requesting subject.

CAS

A Community Authorization Service (CAS [38]) server is designed to main-

tain authorization information for all community entities and enforce fine-grained access

control policies. CAS is a centralized trusted third-party authorization system that stores

users’ rights in a backend database. The CAS server contains policy statements that in-

dicate what permissions are granted to which users and which resources the permissions

are granted on. It delegates all sets of rights to a user based on the user’s role in the

community. The user’s set of rights is the intersection of the set of rights granted to

the community by the resource provider and the set of rights granted to the user by the

community. Using CAS, authorization decisions are made at a resource level when a

user presents his access rights to the resource.

CAS is designed and implemented to work with the public key authentication

and delegation mechanisms of the Grid Security Infrastructure (GSI). To access a re-

source, a community user first generates a proxy certificate that is signed by his user

20

credential. Then the user presents his proxy certificate to the CAS server which issues

new certificate called CAS proxy certificate. This certificate contains the user’s access

rights and capabilities. Moreover, the CAS server uses the security assertion markup

language (SAML [12]) as the format for the policy assertions. Subsequently, the user

provides a resource with his CAS certificate. The resource parses the CAS policy asser-

tions to determine the operations the user is allowed to perform.

CAS is a centralized third-party authorization solution. It reduces administra-

tive costs and makes it easy to enforce coherent authorization policies in a community.

Also, it offers scalability in terms of number of users and resource providers. Each user

needs to be known and trusted by the CAS server, but not by each resource provider.

Similarly, each resource provider needs to be known and trusted by the CAS server,

but not by each user [39]. Nevertheless, CAS system is hard to install and configure.

Moreover, because CAS issues new certificate that is different from GSI certificate, user

account mapping may become complicated. Using a single CAS server may not be very

scalable in terms of the number of resource access requests. If many users attempt to

access the CAS server at the same time, it can be a bottleneck as well as a single point

of failure.

VOMS

A Virtual Organization Membership Service (VOMS [16]) was initially pro-

posed to provide authorization means on the DataGrid [4] project. In VOMS, group

memberships and group rights are managed separately. The VOMS server only man-

ages group memberships and group rights are maintained at the resource site. VOMS

issues policy assertions to a user that contains a list of role or group memberships held

by the user. Consequently, the resource provider is responsible for interpreting this as-

sertion and determining the user’s access rights based on the user’s memberships and

local policies about those memberships.

The first operation that a user must perform in order to access grid resources

is to generate a proxy certificate. The VOMS generates a proxy certificate for the user.

21

The issued proxy certificate contains the user’s role and memberships as a non-critical

extension. A resource provider extracts authorization assertions from the user’s proxy

certificate and combines it with the site’s local policies to make the authorization deci-

sion. The resource provider relies on two additional services to make the authorization

decision: The Local Center Authorization System (LCAS) and Local Credential Map-

ping Service (LCMAPS). LCAS is a service employed on the resource site to enforce

local security policies, while LCMAPS maps user to local credentials such as Unix ac-

count.

One advantage of the VOMS system is that it uses standard proxy certificate

with the addition of a non-critical extension for the authorization information. There-

fore, VOMS issued certificates can be used in non-VOMS-enabled services, which sim-

ply ignore the extra data. This also simplifies the user account mapping process as the

resource provider can identify the user identity via his standard proxy certificate. Never-

theless, VOMS does not provide a complete centralized authorization solution (resource

providers need to associate group memberships with resource permissions). This can

potentially promote consistency problems in situations where policies are changing dy-

namically [38].

2.3.2 Pull Model

In the pull model, a subject directly contacts a resource. Subsequently, the

resource contacts its Authorization Authority to determine the user’s access rights. The

Authority performs an authorization decision and returns the result to the resource.

Based on the result, the resource grants or denies the service to the subject.

AKENTI

Akenti [42] is an authorization infrastructure developed at Lawrence Berkeley

National Laboratory. It is an established authorization system that enforces fine-grained

access control policies in communities with distributed resources controlled by multiple

stakeholders. It presumes that X. 509 certificates are used for identification and au-

22

thentication of all the entities involved in authorization. In Akenti, a resource can have

multiple stakeholders possibly from different domains that independently define autho-

rization policy for the resource. A resource policy is represented by a set of certificates

digitally signed by the resource stakeholders. These certificates are usually distributed

across multiple sites and can be stored remotely. To make an authorization decision,

policy engine gathers all the relevant certificates for the user and the resource, verifies

them, and determines the user’s rights with respect to the resource.

Akenti uses XML to express authorization policy for a resource. The policy

is stored in three types of certificates: use-condition certificates, attribute certificates,

and policy certificates [1]. Use-condition certificates contain conditions that limit the

access to a resource as well a list of rights/privileges that are granted if the conditions

are satisfied. Attribute certificates associate attributes to users that are needed to satisfy

the use constraints. A policy certificate contains the name of the resource to which the

policy applies. In addition, it has a list of URLs to search for use-condition certificates.

Policy certificate are self-signed and must be protected in a secure place. The other two

certificates can be stored at different sites as their signatures will be evaluated whenever

they are used. When a user attempts to access a resource, the resource gatekeeper con-

tacts an Akenti server to find out if the user is allowed to perform the intended operation

on the resource. The Akenti server retrieves relevant certificates and verifies that each

of them is signed by appropriate issuer. Subsequently, it evaluates the certificates and

returns the authorization decision.

Akenti supports decentralized and distributed authorization policy to provide

fine-grained authorization solution that closely controls what users can do in a gird.

However, because authorization information is stored in several distributed digitally

signed certificates, some access management operations are difficult to perform. In

particular it is not easy to list all the users and resources of the virtual organization or to

check on all the outstanding authorizations for a given resource [20].

23

PERMIS

Privilege and Role Management Infrastructure Standards Validation (PERMIS

[22]) is a Role Based Access Control (RBAC[23]) authorization system. A User’s per-

missions in a community are derived from roles that are assigned to that user by a site

administrator. PERMIS uses certificates to store authorization information such as user

identity, roles, and authorization policy. These certificates are dispersed over many sites.

In order to make an authorization decision, the PERMIS’s authorization engine needs to

collect and verify all user’s certificates and to evaluate them against the resource’s local

access policy.

The PERMIS authorization policy includes a Role Allocation Policy (RAP)

and a Target Access Policy (TAP). RAP specifies which managers are trusted to assign

which roles to which users. At the same time, TAP states which roles are authorized

to perform which actions on which resources. Moreover, the application gateway com-

prises an Application dependent Enforcement Function (AEF) and an Application inde-

pendent Decision Function (ADF). A user contacts the AEF component of a resource.

The AEF checks the user’s attribute certificates against the RAP and valid attributes are

passed to the ADF. According to authorization policy described by the TAP, the ADP

makes an access right decision and returns it back the AEF. The AEF then enforces this

decision on behalf of the resource.

Since number of roles in a community is far less than number of users, PER-

MIS role based authorization system significantly reduces the access control manage-

ment cost and promotes scalability. However, in the case of multiple communities in

a federation, PERMIS authorization system has a limitation. Because each community

has its own attribute certificate repository, it is difficult to maintain consistency among

them [27].

24

2.4 Authentication & Authorization in GAMA 2.0

The subsequent chapters describe GAMA 2.0’s authentication and authoriza-

tion schemes in detail. However, as this chapter presents many authentication and autho-

rization models, it is worthwhile to mention that GAMA 2.0 uses the certificate based

approach to authenticate users. Moreover, GAMA 2.0 developers have designed and

implemented a pull model authorization system. Similar to PERMIS, it is a role based

access control system that provides a complete and flexible authorization solution.

Chapter 3

GAMA 2.0 Scenario Analysis

To better understand GAMA 2.0 infrastructure, several usage scenarios are

presented in this chapter. These scenarios were derived from GAMA 2.0’s architecture

document [32].

3.1 GAMA 2.0 Overview

An overview of a GAMA 2.0 system is shown in Figure 3.1 where the entire

system represents one administrative domain. GAMA 2.0 server provides the means

for centralized authentication and authorization, while the system users are identified

by short-lived identification tokes such as X.509 proxy certificates. Upon request, the

GAMA 2.0 server issues these certificates after a successful credential challenge: the

user provides the GAMA 2.0 server with the correct shared secret (password). More-

over, end-users or external applications usually interact with the GAMA via web front-

end, mainly a portal solution. The GAMA 2.0 provides the same authentication mech-

anism for all portals (i.e. portals that access GAMA 2.0 directly or through a separate

single sing-on (SSO) portal). After a successful authentication, a user can use his ses-

sion certificate to access various domain resources such as databases, files, computation

grids, and other resources through the portals.

25

26

Figure 3.1: GAMA overview (adopted from [32])

3.2 GAMA 2.0 Single-site Authorization Enforcement

Authorization enforcement in GAMA 2.0 is shown in Figure 3.2. Assuming

that a user has been successfully authenticated and obtained a short-lived certificate,

authorization policy enforcement is performed upon accessing a resource. There exists

two main authorization enforcement approaches:

• push mode: in this case, The GAMA 2.0 server issues a certificate which contains

the digitally signed access permissions of a user.

• pull mode: in this case, upon a authorization request the resource, using the user’s

certificate, contacts the GAMA 2.0 server to obtain the user’s authorization per-

missions.

In both cases, the GAMA 2.0 server knows about the users, resources as well as permis-

sions granted to users, and stores this information in its authorization database.

27

Figure 3.2: GAMA single-site access control (adopted from [32])

3.3 GAMA 2.0 Multi-site Authorization Enforcement

Figure 3.3 represent a situation where one GAMA 2.0 server is shared among

multiple administrative domains, sites. Sites can be organizations or universities that

work together on a collaboration project, while sharing a few common infrastructures

such as a GAMA 2.0 server. Each site has a set of resources and users. In addition,

it has an administrator that is responsible for managing site’s resources and users. A

site administrator has various responsibilities such as approving user self-registration

requests and granting permissions to users. Centralized GAMA 2.0 server provides

means for cross-site resource access. Similar to sites, the GAMA 2.0 infrastructure has

an administrator that manages the overall GAMA 2.0 installation; however, he cannot

mange users or sites belonging to a specific site.

3.4 Federated System Environment

Though it is not a common GAMA 2.0 case, Figure 3.4 shows an overview of a

distributed identity management scenario which requires a complicated and specialized

installation setup. In this scenario multiple GAMA 2.0 installations exist. The simple

28

Figure 3.3: GAMA multi-site access control (adopted from [32])

Figure 3.4: GAMA Federated system environment (adopted from [32])

case is similar to the section 3.3 scenario where users from one domain access resources

in another domain. In this particular scenario, however, the two domains of interest

are connected to two different GAMA infrastructures. Therefore, identity relationship

needs to be established across systems by connecting the two GAMA 2.0 installations,

based on a general trust relationship.

Chapter 4

GAMA 2.0 Security Requirements

Security is a vital component of distributed systems due to heterogeneous na-

ture of resources and users. Providing a security solution for distributed systems such

as grids is a complex problem which should be based on existing standards whenever

possible. GAMA 2.0 identity management solution has been developed using security

technologies that have stood the tests of time and repeated scrutiny. This chapter de-

scribes the Grid security requirements that GAMA 2.0 satisfies. They can be divided

into project specific and generic requirements..

4.1 Generic Requirements

This section describes GAMA 2.0’s generic requirements [43].

Satisfied Genetic Requirements

• Single Sign-On: users must be able to authenticate just once and then have ac-

cess to any resource in the grid that they are authorized to use, without further

authentication of the user

• Delegation: grid services should be allowed to act in a user’s name i.e. a resource

should be able to access other resources on user’s behalf. Chain of delegation also

should be possible.

29

30

• User-based Trust Relationships: if a user is capable to access resources in multi-

ple domains, the intervention and interaction of site administrators should not be

required in the security environment. For example, if a user has the right to use

resources in sites A and B, the user should be able to access sites A and B without

requiring administrators of site A and B to cooperate and interact.

• Authorization by Stakeholders: resource owners should be able to decide which

subjects can access the resource, and under what conditions.

4.2 Project Specific Requirements

In addition to the genetic requirements, a complete grid security solution

should address many project specific requirements. One of the main goals of GAMA is

to develop a flexible architecture that can be applied to many projects. Therefore, espe-

cial effort has been made to harness requirements that many non-overlapping, academic-

related projects share. By frequent requirements elicitation sessions with GAMA users

and inference from the user statements in discussions, the GAMA team has discovered,

categorized, and prioritized many common requirements [33]. NEES [9], CAMERA [3]

and BIRN [2] were among the active participants in the requirements gathering process,

although they have significantly different goals. CAMERA, for instance, aims to pro-

vide rich data repository and a bioinformatics tools to serve the needs of the microbial

ecology research community, while BIRN project’s goal is to create a distributed virtual

community of shared resources offering tremendous potential to advance the diagnosis

and treatment of disease. A short summery of the common security requirements that

these projects share is presented here:

• Most users should not need to install middleware components on their desktop or

laptop machines. It is desirable to allow users to access the grid resources via web

or grid portal without installing any grid software on their machine. Moreover,

users would like to use the familiar username/password model for logging into

the system. They do not want to configure various middleware such as MyProxy,

31

CAS, etc. similarly, users do not want to create and manage their certificates.

Only in rare unusual cases, users would like to have direct access to their actual

certificate

• For a given project, there are usually several types of resources such as clus-

ters, databases, and domain-specific applications. Moreover, for each type of

resource, there are multiple instances distributed in different administrative do-

mains. Access to all project resources by a user should be enabled with a single

username/password pair identifying that user.

• It would be desirable to avoid local account and gridmap updates as users are

added or deleted from a project. In addition, role-based authorization mechanism

should be employed to provide access control based on the identity of a user and

the role to which the user is assigned (i.e. authorization for resource access is

done through a user’s role).

• The grid security solution should support broad range of resources, including

web-based applications such as web portals; rich clients such as standalone ap-

plications; and the popular command-line tools such as ssh.

Chapter 5

GAMA 2.0 Architecture

5.1 Introduction

This chapter summaries the GAMA 2.0 architecture document [32] in a

DoDAF-based format, while focuses on the author contributions to the design. In partic-

ular, it highlights its security models, library services, technology selection process, and

uses cases describing important interactions between end-users and the system. Please

refer to Chapter 3 for usage scenarios and workflows.

The rest of the chapter is organized as follows. First, we present the logi-

cal architecture of the system depicting operational components, system interfaces, and

needlines between nodes. This is followed by a description of essential GAMA-lib ser-

vices. Then we discuss logical data models that describe the GAMA’s authentication

and authorization policies in detail. We supplement this with a section on architecture

deployment, highlighting selected technologies and tools. Finally, we end this chapter

by showing a few user cases describing essential interactions between end users and

GAMA.

32

33

5.2 Logical Architecture

5.2.1 Overview

Figure 5.1 displays the logical architecture of GAMA. It consists of opera-

tional nodes, communication needlines, and system interfaces. Operational nodes cor-

respond to the logical components of the system, and communicate with each other via

communication channels that carry certain type of information. Also, public interfaces

allow end users to interact with the system. The main parts of GAMA are the server

appliance as well as several web applications and middleware plug-ins for accessing the

GAMA server.

5.2.2 Operational Nodes

A detailed description of the GAMA operational nodes is presented in this

section. The operational nodes can be divided into server appliance components and

nodes that are not part of the GAMA server, but belong to the GAMA framework.

GAMA Server Appliance Nodes

GAMA server appliance nodes consist of the following components:

• Statistics Database: it contains information about access statistics and server

infrastructure. For instance, it could store the number of registered users as well

as usage statistics of sites.

• User Profile Repository: this repository stores information specific to users and

their profiles, but not their credentials and identities. For example, it may contain

the email address and telephone number of a user, but not his public/private key.

• Resource & Authorization Directory: in a structured way, it keeps and retrieves

information about resources, user roles, and user access rights. the resource &

authorization directory will likely contain resource information such as resource

34

Figure 5.1: GAMA Logical Architecture (adopted from [32])

names and a list of legal permissions on resources such as read, write, execute,

etc.

• User Credential Repository: it keeps user identity and credential information

such as private and public keys. For instance. it many contain X.509 credential

certificates. The credential information will be used for user authentication and

35

resource authorization.

• Dashboard: it aggregates and presents statistical data about GAMA server ap-

pliance. In addition, it provides a user interface to perform GAMA management

functions.

• Certificate Authority (CA): CA is a trusted third party authority that provides

digital certificate services such as issuing and signing certificates.

• GAMA-lib: the GAMA-lib provides functionalities for user authentication as

well as resource authorization. It offers functionalities for user registration and

user/resource management. It enables access to user profiles, and resource and au-

thorization information, while it provides certificates for in-session use throughout

the domain of authority.

• MyProxy: the purpose of the legacy MyProxy installation is to create short-lived

proxy certificates to support legacy applications.

• Resource Adaptor: it allows the GAMA-lib to communicate with underlying

nodes. It abstracts away the technology decisions that are made in the lower-level

components so that GAMA-lib interface is not aware of those technologies.

• Remote Credential Management: it provides a single interface for credential

management activities. It communicates with the user credential repository as

well as Certificate Authority (CA) to process identity management requests.

Non-GAMA Server Appliance Nodes

Non-GAMA server appliance nodes consist of the following components:

• User Self Registration Web-application: this web-app provides an interface for

user self-registration.

• SSO Web-application: it is a web-app component that provides a Single-Sign-

On solution. Similar to the registration web-app, it will be deployed on a JavaEE

36

servlet container and provides many portals with the same authentication mech-

anism. By employing SSO, users can be authenticated once to gain access to

resources that they have access permission for.

• JAAS Plug-in: the Java Authentication and Authorization Service (JAAS) im-

plements a Java version of the standard Pluggable Authentication Module (PAM)

framework. JAAS authentication is performed in a pluggable fashion which al-

lows applications to remain independent from underlying authentication technolo-

gies

5.2.3 Public Interfaces

This section introduces the interfaces between GAMA components and the

environment. The GAMA public interfaces allow end users and managers to interact

with the system.

• Management Web Interface: the Management Web Interface exposes the man-

agement functionalities to the environment. It allows super users such as site

administrators to interact with the GAMA server.

• Web-service Interface: user authentication, management, authorization func-

tions exposed as web-services for access by external applications or users.

• User Self Registration Web-application: it provides a web interface for user

self-registration.

• LDAP Interface: it provides LDAP communication protocol for integration with

external applications. Many applications use LDAP for authentication purposes,

and this interface allows these applications to interact with GAMA.

• MyProxy Interface: this interface allows MyProxy clients to interact with the

legacy MyProxy installation.

37

5.3 Information Exchange

5.3.1 Needlines

Needlines are logical communication channels that carry a certain type of in-

formation. They also represent dependencies in the system as they are usually directed

from one operational node to another. While Figure 5.1 captures all GAMA needlines,

the main needlines are described below:

• Management Web Interface to GAMA-lib: it carries management requests to

GAMA-lib, where they are processed. Management requests include resource

management (e.g. add/remove resources) and user management (e.g. add/remove

users) requests. Needlines connect the management interface to GAMA-lib,

where these management requests are implemented.

• Web-service Interface to GAMA-lib: this needline carries end-user requests to

the GAMA-lib, where they are processed. For example, an authentication re-

quest, which validates the identity of a user or an authorization request, which

determines a user’s access rights are transmitted to GAMA-lib via this needline.

• User Self Registration Web-application to GAMA-lib: while a user inputs

required information in the user self registration web-app, GAMA-lib needs to

process the data (i.e. add the user along with associated information into the

database). This needline provides communication means to transfer user registra-

tion data to GAMA-lib.

• LDAP Interface to GAMA-lib: the LDAP interface allows LDAP-clients to in-

teract with GAMA mainly for LDAP-based authentication purposes. This need-

line transfers these requests to GAMA-lib.

• MyProxy Interface to MyProxy: GAMA offers MyProxy and MyProxy inter-

face to support legacy applications. The needline carries MyProxy requests such

as issuing short proxy certificates.

38

• GAMA-lib to User Profile Repository: it allows GAMA-lib to store or retrieve

user information. During user registration, for instance, the needline carries user

profile information to be stored in the profile repository.

• GAMA-lib to Resource&Authorization Directory: a wide variety of informa-

tion such as resource names, user roles, and access rights are stored in the Re-

source&Authorization directory. This information is required to process many

requests like resource update or resource authorization. The GAMA-lib to Re-

source&Authorization Directory needline allows GAMA-lib to store/retrieve in-

formation about resources and access control in order to process a variety of re-

quests.

• GAMA-lib to Remote Credential Management: this needline carries user iden-

tity management requests such as user authentication or renews myproxy certifi-

cate requests.

• Remote Credential Management to User Credential Repository: this needline

enables access to user’s credentials (e.g. certificates), which is require to process

many requests like user authentication or resource authorization.

• Remote Credential Management to Certificate Authority (CA): it carries

certificate-related requests to the CA such as issue/renew certificates.

5.4 GAMA-lib Services

This section summaries the essential services of the GAMA-lib. It is impor-

tant to bear in mind that not all of the services will be made available to public as a

few are designed for internal use. To provide a service, GAMA-lib typically needs to

communicate and collaborate with several underlying components.

39

GAMA Server Management &Administration Services

Some of the important GAMA server administration services, which are usu-

ally managed by GAMA admin are captured below:

• Start/stop the GAMA server and all related tools and technologies.

• Configure the GAMA server such as setting tuning variables (e.g. database cache

processing and indexing).

• Run server integrity tests to ensure GAMA is properly installed, and it communi-

cates with relevant components.

• Create/Delete GAMA site entities such as GAMA projects or administrative do-

mains.

• Register a user as a site administrator by, for example, granting the site adminis-

trator role to that user.

• Get usage statistics like number of users/resources. The data could be overall

usage or site specific.

Resource Management Services

Some of the important resource management services, which are usually man-

aged by resource manager are captured below:

• Define resources in the form of a resource directory tree. The context in which

resources are created can be either a domain or another resource.

• Delete a resource along with all of the associated records from the GAMA server.

• Modify resource attributes (e.g. add/modify/delete resource attributes)

40

User Management Services

Some of the important user management services, which are usually managed

by user or site manager are captured below:

• Create a site user in the GAMA server.

• Modify a user profile (e.g. add/modify/delete profile attributes)

• Retrieve user information and profile attributes.

• Delete a user along with all of the associated records from the GAMA server.

• Reset user password by administrator. The administrator decides what the new

password should be.

Access Control Services

Some of the important access control services, which are usually managed by

resource or site manager are captured below:

• Create/delete access control entities (i.e. capabilities or roles) in a given context

(i.e. resource, site).

• Assign capabilities to roles (e.g. assign addUser capability to site administrator

role).

• Grant/Deny access control entities like roles and capabilities to user entities

(users/groups).

End-user Services

Some of the important end-user services are captured below:

• Create user through self-registration web-app and send email to the user with

activation instruction.

41

• Authenticate user via shared password and issue a proxy certificate to calling ser-

vice. A certificate represents a user in a current session.

• Change user password through shared secrets (e.g. old password, email address).

• Update a user profile (e.g. address, phone number, email address, etc.).

Resource Access Services

GAMA offers the following resource access service:

• Determine if a user has permission to perform the intended action on a resource.

5.5 Logical Data Model

This section describes the models that the GAMA system uses. Logical data

models are essential to capture and fix the language and concepts of the architecture as

they describe entities and their relationships that cover specific parts of the domain.

5.5.1 Users, Resources, Roles, and Policies

Dependencies between resources and policies are captured in Figure 5.2. It

is organized in two main parts, which are separated by dashed boxes. The left hand

side describes the entities related to user identity and authentication concepts, while the

right hand side captures the entities related to access control and resource authorization

concepts.

User Authentication:

Subjects could be users, external applications, agents, etc. The identity of

a subject in GAMA is captured by the concept of principal. A principal is a system-

defined identity that identifies a subject in a communication session. A subject can have

multiple identities in different systems, and, thus, can have multiple principals. In addi-

tion, principals are identified by the number of credentials such as username-password

pairs or smart-card identification. An authentication controller challenges a subject for

42

correct credentials and relates a principal to the subject for authentication purposes. The

GAMA authentication controller is an instance of a general authentication controller that

issues short-lived proxy certificates that will serve as user identity within one domain of

authority for the time of a session. Proxy certificates are signed by a trusted third party

certificate authority, Since they are short-lived, they might be renewed for long running

services.

Resource Authorization:

The basic entities of the authorization domain are resources, which need pro-

tection. In the authorization domain, resource is a general term that corresponds to a

broad range of entities such as GAMA project, administrative site, file, database, web-

service, etc. Resources can be either items or groups, where groups can contain further

groups or items as composite. Resources are managed by resource providers. Also, Re-

sources are associated with several capabilities, which are actions that can be performed

on them such as read, write, delete, and more. The concept of granting or denying a

capability in the context of a resource is called permission, which provides the means to

reasonably limit the access to various resources. In order to perform a capability/action

on a specific resource, the principal needs a granted permission. A common way to de-

fine permissions is through roles. Capabilities are assigned to roles which constitute the

core of the authorization policy of the system. In addition, roles are granted/denied to

principals subject to a specific resource. This means that the principal now has all per-

missions that are implied by the role. For instance, a “resource owner” role has various

capabilities such as “create resource”, “delete resource”, etc. By granting a “resource

owner” role to a principal in the scope of a resource, the principal gets all implied capa-

bilities such as create resource or delete resource.

Resource providers enable subjects to access resources. They enforce access

control restrictions using an authorization controller. After the authorization controller

allows access, the resource provider performs the requested action on the resource. To

make the access control decision, the authorization controller checks all permissions

that are defined for the accessing principal. Moreover, it contacts the policy/rules engine

43

Figure 5.2: Resource-Policy Domain Model (adopted from [32])

to evaluate additional access control policies. For instance, an access policy could be

“access is only permitted between 7am and 7pm.” GAMA authorization controller, a

specific authorization controller used for GAMA, enforces the authorization policy.

The link between the authentication and the authorization parts is twofold.

On the policy definition side, by assigning roles to principals, users have per-

missions to access resources. Specific permissions can be granted/denied on certain

resources and permission policy rules can be defined. On the policy enforcement side,

subjects are accessing resources via resource providers (for instance, by accessing a pro-

tected web URL or a web-service). Subjects carry a proxy certificate which directly or

indirectly provides information about the access rights of the user. Push variant mode

(directly): encodes a user’s access rights in the certificate. Pull variant mode (indirectly):

allows resources to use the identity from the proxy certificate to query the GAMA server

for authorization permissions of users.

44

5.5.2 Security Data Model

While the previous section, 5.5.1, presented a high-level description of the

GAMA logical data models, more detailed explanation of the GAMA security data

model is presented here. Figure 5.3 captures the GAMA security policy by showing

the logical entities and relationship between them. The GAMA security policy is based

on role-based access control (RBAC) model, which was formalized in 1992 by David

Ferraiolo and Rick Kuhn [23].

In our model, capability is simply an action that can be performed on a re-

source such as read, write, execute, etc. Capabilities are usually defined by adminis-

trators in a particular context. In GAMA, a context refers to a resource or a site. A

resource can be either a resource item such as a grid cluster or a resource group which

contains further nested resources. A site can be the GAMA root, project, administrative

site, nested site, or etc. GAMA contexts are stored in a hierarchical tree-like structure.

Therefore, the context of an entity also represents the scope of that entity. For example,

if a capability is defined in the GAMA root, the entire tree structure is the scope of that

capability and, hence, all the security entities have access to the capability. However, if

a capability is defined in a GAMA project site, the scope of the capability is the sub-tree

rooted at the project, so the GAMA root and other projects do not have access to the

capability.

Similar to capabilities, roles are defined in a context by administrators. Like-

wise, the context of a role embodies the scope of it. Moreover, capabilities are assigned

to roles; hence, roles group capabilities together to implement a Role-Based Access

Control (RBAC) Model. For instance, a “manager” role might have capabilities such

as create, delete, and write, while a “regular user” role might have capabilities like read

and write.

Under the RBAC framework, users are assigned to roles based on their com-

petencies and responsibilities. The capabilities (operations) that a user is permitted to

perform are based on the user’s role. In other words, when users are assigned to roles,

they inherit the capabilities granted to those roles. Therefore, there is no need to as-

45

sign the same set of capabilities to each user when a role can be assigned. In addition

to granting roles to users, it is possible to grant roles to user groups. A user group is

simply a collection of users. By granting roles to user groups, all members of the group

inherit all role’s capabilities. Finally, user entities (user, user groups) are assigned to

roles in a context, and the context serves as the scope of the assignment. For instance, a

user can have the “site administrator” role in one context (e.g. calit2 site), while he has

the “regular user” in another context (e.g. SDSC site).

Additional capabilities can be granted or denied to a user entity. Often fine

grained control over authorization is required to manage exceptions to established roles.

Users may inherit from several roles, yet a few capabilities granted by these roles may

need to be denied for specific users. Conversely, the user may need additional capabili-

ties that are not granted to any predefined roles that they are assigned to. Consequently,

the GAMA security policy allows for direct grant/deny capabilities to user entities. As

more users require these capability tweaks, administrators define new roles for man-

aging policies rather than assigning individual capabilities to users. In addition, the

GAMA security solution allows contexts to “acquire” security policies from their parent

context in order to ease the burden of creating a security policy. Usually, GAMA con-

texts “acquire” their security policies from their parent context since it makes a given

security policy easier to maintain. Only when there are exceptions to the “master” secu-

rity policy, individual contexts are associated with a different security policy.

In essence, the GAMA security policy associates roles/capabilities to users in

a context. In other words, it says “who” can do “what” and “where”.

Role- Based Access Control (RBAC) Advantages:

Since GAMA’s security policy is based on RBAC, it offers the same bene-

fits as other RBAC solutions. David Ferraiolo and Rick Kuhn discussed the following

advantages of RBAC security systems [23]:

• Centrally Administering Security: one important advantage of the GAMA se-

curity policy is flexible administrative capabilities. Once capabilities and roles are

46

Figure 5.3: GAMA Security Data Model (adopted from [32])

defined in the system, they stay relatively constant and change slowly over time.

The administrative task consists of granting/revoking roles/capabilities to users.

When a new user enters the organization, the administrator simply grants existing

roles/capabilities to the user. When the user’s responsibilities in the organization

change, the administrator revokes his existing roles/capabilities and simply grants

him new ones. Finally, the “acquire” feature reduces the burden of maintaining

security policies by allowing contexts to acquire their parent’s policy.

• Principle of Least Privilege: the principle of least privilege suggests that users

should be given minimum set of privileges required to complete a job. It consists

of identifying the user’s job, determining the minimum set of privileges required

to perform that job, and restricting the user to a domain with those privileges only.

Through the use of GAMA’s RBAC, enforcing minimum privileges for system

users can be easily achieved.

• Separation of Duties: separation of duties requires that, for particular sets of ca-

47

pabilities, no single individual be allowed to execute all capabilities within the set.

An administrator can use the GAMA’s RBAC to enforce a policy of separation of

duties. One of the frequently used examples explaining separation of duties is the

separate capabilities needed to initiate a payment and to authorize a payment. No

single individual should be capable of executing both actions [23]. Considering

this case in GAMA, an administrator is required to ensure that an individual who

serves as payment initiator does not serve as payment authorizer. This could be

implemented by ensuring that no one who can perform the initiator role can also

perform the authorizer role.

5.6 GAMA Deployment Architecture

Section 5.2.1 captured the logical architecture of GAMA by describing opera-

tional nodes and needlines. It did not state any information about technologies and tools

that will be used as system components and nodes. In this section, we present the de-

ployment architecture of GAMA which depicts the mapping of the logical architecture

to the physical environment. Figure 5.4 shows this mapping by displaying chosen tech-

nologies/tools and their relationships. Moreover, for the vital operational components,

we describe the process and motivations for selecting their corresponding tools.

5.6.1 GAMA Technology Selection Process

The arguments for selecting some GAMA technologies and tools are ex-

plained here. We only describe the selection process of key technologies that play im-

portant role in providing GAMA vital services such as user authentication and resource

authorization.

User, Resource, and Authorization Repository

The logical architecture diagram displays the repositories for user profiles, re-

source information, and authorization entities. One of our early technology selection

48

Figure 5.4: GAMA 2 Deployment Architecture (adopted from [32])

decisions was to determine what kind of storage mechanism to use to store this infor-

mation. Considering a directory and a database as possible options, we have decided

to store the relevant information in a directory for several reasons [44]. First, databases

need to process various read as well as write requests, whereas directories support high

volumes of read access. Therefore, directories are optimized for read requests. The in-

formation that will be stored in GAMA is relatively static and will not change rapidly.

For instance, user profile data such as user name and email is read frequently but up-

dated rarely. The popularity of read request in GAMA encourages employing a directory

service to store related data. Another important advantage of directories over relational

databases is the hierarchical nature of them. It is desirable to store GAMA information

in a tree-like hierarchical structure. Users and resources among other entities are usually

associated with a context such as a site, and a directory provides a repository to store

this information in a hierarchical fashion.

Directories are usually accessed using a client/server model of communica-

tion. This is an advantage since it allows GAMA to collectively store user, resource,

and authorization data in a separate machine. However, a well-defined message proto-

col is needed for accessing and updating information in a directory. The Lightweight

49

Directory Access Protocol (LDAP [44, 11]) defines a standard method for accessing and

updating information in a directory. It has gained wide acceptance as a directory access

method and is employed as a directory access protocol in GAMA. In particular, OpenL-

DAP [11] which is an open-source directory software suite supporting LDAP protocol is

used in GAMA. OpenLDAP provides both a directory server and LDAP protocol in an

out-of-the-box installation which minimizes the installation and configuration time. In

addition, extensive online resources support and documentation allow new developers to

quickly become familiar with the software. For example, OpenLDAP provides JLDAP

[11] which is an API library for Java, enabling developers to easily access, manage,

update, and search information stored in a directory.

In brief, GAMA uses OpenLDAP to collectively store user, resources, and

authorization data in a single directory and to provide LDAP message protocol for ac-

cessing and managing the stored information.

Credential Management Technologies

The Certificate Authority

GAMA is a GSI-based security solution that relies on a third-party certificate

authority (CA) to authenticate system entities. Although there are many certificate au-

thorities, we have chosen CACL [30] as a certificate authority component in GAMA. In

GAMA, CACL will issue and sign X.509-based user and host certificates. One of the

advantages of CACL is that it is based on a client/server model. Therefore, it can run

on an isolated locked-down machine with no end-user access, and its services are ac-

cessed solely through calls from web-services. In addition, CACL was developed in San

Diego Supercomputer Center, and can be downloaded and used free of charge. Since

CACL’s production in 2000, it has been successfully running at SDSC. Another factor in

selecting CACL is the fact that it was designed to be employed in grid computing envi-

ronments. Therefore, CACL’s development team has made significant effort to speed up

and simplify the creation process and use of digital certificates [30]. Moreover, CACL

was employed in the previous versions of GAMA and successfully stood the tests of var-

50

ious real world projects. Finally, since some members of the GAMA 2.0 development

team were already familiar with CACL, using CACL to provide an implementation of a

certificate authority was a reasonable choice.

The Online Credential Repository

Standard web security protocols employed between a web client and web

server are not sufficient to address many security challenges in distributed systems like

grids. For instance, they do not support delegation of access rights. GAMA has em-

ployed the MyProxy [36] tool to bridge the incompatibility gap between web and grid

security. MyProxy is an online credential repository designed to enable grid portals

to use the protected resources in a secure manner [36]. It is used in GAMA because

of the several important advantages that it offers. Extensive online documentation and

resources, free downloading and easy configuration among other reasons have encour-

aged the GAMA team to use the MyProxy tool in the new version of GAMA. Moreover,

MyProxy’s unique features such as scalability, delegation support, and credential re-

newal can greatly improve a user’s interface to grid security and reduce the complexity

of grids [36]. Another reason to select MyProxy is its wide-acceptance in the grid portal

community. Several projects such as National Computational Science Alliance, NPACI,

NASA Information Power Grid, and the previous version of GAMA have employed

MyProxy. The feedback from these projects has been positive suggesting that Myproxy

can be successfully deployed in real-world projects.

5.7 GAMA Use Cases

This section presents key use cases that show essential interactions between

end users and the GAMA system. In particular, the use cases are presented in sequence-

diagram format describing user authentication and resource authorization. Furthermore,

these use cases describe user registration process as well as the administrators’ usage of

the system.

51

Figure 5.5: User Registration Use Case

User Registration

To register, users access the registration web portal to complete their profile

as it is suggested by Figure 5.5. A user profile typically consists of several user-related

information such as user name, last name, email, login name, password and more. Once

the front-end web portal validates a user’s email address, the user’s profile along with

the user’s site id are passed to the GAMA-lib. The GAMA-lib stores the user’s profile

in LDAP tree, and then calls CACL to generate a long-lived certificate for that user. In

addition to making a public-private key pair and a long-lived user certificate, CACL en-

crypts the user’s private key with the supplied user password for authentication purposes

(see user authentication use case). Furthermore, CACL sends the user’s certificate and

public-private keys to MyProxy for future user authentication and short-lived certificate

generation.

User Authentication

Figure 5.6 captures interactions made for user authentication. To login, a user

accesses the login web portal to input his login name and password. Then the GAMA-

52

Figure 5.6: User Authentication Use Case

lib’s user authentication service is called to determine if the user is authenticated to the

site that he is trying to login. Subsequently, the user’s credentials such as user name

and password are sent to MyProxy to generate a short-lived certificate. Before issuing

the proxy certificate, MyProxy attempts to decrypt the user’s private key with the user’s

password. If successful, short-lived proxy certificate is issued and returned to the portal.

Otherwise, a denial error message is sent back.

Resource Authorization

Users usually access a resource to perform an action such as read, write, ex-

ecute, etc. As the Figure 5.7 suggests, the user’s proxy certificate is presented to a

resource. Then the resource calls the check permission service of the GAMA-lib which

is available via web-services. It supplies the service with userID, resourceID, and ca-

pabilityID (identifying the user’s intended action). With the help of OpenLDAP, the

GAMA-lib identifies user’s roles and capabilities, and determines if the user can per-

form the intended action. The result is sent back to the portal.

Administrator Usage

Figure 5.8 shows how administrators interact with GAMA. An administrator

uses the admin web-application to interact with the system. After a successful login into

53

Figure 5.7: Resource Authorization Use Case

Figure 5.8: Administrator Usage Use Case

the system, an administrator can perform several actions like add users, add sites, delete

resources, etc. The administrator’s doAction request which contains the administrator’s

ID, action type (like addResource), and the action parameters (such as resourceName)

is passed to GAMA-lib where it can be processed. The GAMA-lib, first, ensures that

the administrator is “authorized” (i.e. has the capability) to perform the intended action.

Then it executes the action which usually results in updating the LDAP directory.

Chapter 6

GAMA 2.0 Implementation

6.1 Introduction

This chapter discusses the implementation of the GAMA’s internal alpha re-

lease. The author of this document had a significant contribution in the implementation

phase. This contribution includes installing and configuring many relevant tools such as

OpenLDAP. In addition, the author implemented the majority of the gamaLib services

using many well-known programming techniques and patterns. Then he applied vari-

ous testing techniques such as unit testing and scenario testing to examine the gamaLib

source code. Finally, the author of this thesis designed and implemented a detailed ex-

ception handling solution to adequately report unrecoverable errors to end-users. While

he was not involved in designing and implementing the user interface, a summary of the

front-end implementation is presented in this chapter.

The rest of the chapter is organized as follows: first, we present the related

tools and technologies that were used in implementing GAMA such as testing frame-

work. Then we discuss the organization and structure of the source code. This is

followed by a section describing the implementation details of the alpha release. We

supplement this with a section on exception handling suggesting how exceptions are

processed in GAMA. Then we discuss GAMA’s testing strategies. Finally, we end this

chapter by briefly talking about implementation security as well as discussing some

54

55

open issues related to the alpha release.

6.2 Technology Selection

Development Languages

The GAMA 2.0 development team selected Java as the primary programming

language to implement the architecture described in the previous chapter. Java offers

many key features that are valuable in developing GAMA 2.0. For instance, it is de-

signed to make distributed computing easy with networking capabilities that are inher-

ently integrated into it [13]. In addition, security plays an important role in its design

as it promotes writing extendable and easy-to-maintain code. Because the underlying

technologies such as LDAP and MyProxy are Java based, and the development team

has extensive Java experience, Java has been selected to implement the back-end of the

GAMA 2.0 architecture. The GAMA front-end, however, is implemented in Groovy.

Groovy is a scripting language employed in the GAMA 2.0 front-end implementation

since it integrates well with Java, while it offers many additional benefits such as clo-

sures and dynamic typing [7].

Build Tools

Ant and Maven are two most popular build tools, and both are used in devel-

oping the GAMA 2.0. Since the author of this work was the primary developer imple-

menting the GAMA 2.0 back-end and he was already familiar with Ant, he decided to

use Ant to compile and run the back-end code. Maven, however, has been employed in

developing the front-end and integrating it to the back-end code. Maven provides the

key features of Ant, while it makes project management tasks easy, which is crucial in

the integration process.

56

Version Control System

Since GAMA 2.0 is a collaborative project, a version control system is re-

quired to manage and monitor the code development process. We have selected SVN as

our version control system since it has been successfully used in many projects and is

supported by extensive online resources and documentations. In addition, SVN is open

source and in comparison to other subversion alternatives like CVS, SVN offers great

improvements such as efficient branching and tagging as well as detailed versioning.

Development Environment

We were provided with a Linux-based server for development purposes. The

GAMA development team was excited about the server because of two main reasons.

First, it was a spare server, so the development team could freely change its configu-

ration, install or remove various tools, and add or delete users. In addition, a few key

components of GAMA such as MyProxy were already installed on the server.

To expedite the development process, the author decided to use Eclipse frame-

work to implement the GAMA 2.0 back-end. Eclipse offers several key features such as

automatic indentation, powerful refactoring, and static analysis tools. Moreover, it has

a flexible debugger that speeds up the debugging and testing process.

Deployment Framework

The back-end GAMA server requires various services and software packages

such as CACL, MyProxy, web-service libraries, and more. These technologies are usu-

ally difficult to install and a few of them require a significant amount of configuration

after installation. To alleviate the installation and deployment burden on the administra-

tor, we have employed the Rocks clusters management tool [37]. Rocks installs various

GAMA components with minimum system administrator intervention. In addition, it

performs many operations such as configuring various tools, deploying web-services,

and starting the necessary services using startup scripts. In short, the Rocks clusters tool

57

is employed to provide a fully functional GAMA back-end server running out of the box

with minimal effort on the part of the system administrator [18].

Logging Services

Log4j is a popular Java logging utility which is employed in implementing

GAMA 2.0. Perhaps, the main advantage of Log4j is that logging behavior can be con-

trolled by editing a configuration file, without modifying the application code. Another

distinctive feature of Log4j is the notion of inheritance that allows inserting logging

statements at arbitrary granularity. These advantages, augmented with Log4j’s easy

installation and usage, encouraged employing Log4j as the logging service.

Testing Framework

We strive to make GAMA 2.0 defect free to the maximum extent possible by

testing it under various conditions. JUnit, the de facto standard unit testing library for

Java, has been chosen as the testing framework in GAMA 2.0. In particular, JUnit 4

promises to simplify testing by exploiting Java 5’s annotation feature to identify tests

[8]. In GAMA, we have employed various testing techniques such as unit, functional,

and scenario testing using the JUnit 4 framework.

6.3 Code Organization

This section describes the organization of GAMA 2.0 code. It shows how

various GAMA 2.0 packages are structured based upon the multiple tiers of GAMA

2.0’s architecture. Moreover, it focuses on the back-end code structure which is one of

the author’s main contributions.

Top Level Directory

Figure 6.1(a) depicts the top level directory which contains the following main

components:

58

(a) Top Level Directory (b) gamaLib Directory

(c) gamaLib-src Directory

Figure 6.1: GAMA 2.0 Code Organization

• GamaLib: a Java API for accessing and manipulating the account data. The core

back-end implementation resides here.

• GamaAdmin: web-application for administering the gama appliance. It contains

the code for administrator interfaces.

• GamaSSO: web-application for single sign-on. The GamaSSO is a web-

application that provides login component.

• GamaReg: web-application for user registration.

• Ldap: various files related to LDAP configuration.

• Myproxy: various files related to myproxy configuration.

• Rocks: GAMAv2 appliance as a rocks roll. It bundles all GAMA technologies to

provide an out-of-the-box solution.

59

GamaLib Directory

The author’s main contribution was implementing the gamalib which has the

following main directories as it is suggested in Figure 6.1(b):

• Lib: contains a wide range of libraries that are used in developing the back-end

such as log4j, junit, and LDAP libraries.

• Logs: contains log statements saved as files.

• resources: contains various configuration files such as the log4j configuration file.

• src: contains the back-end implementation code.

Gamalib-src Directory

Figure 6.1(c) describes the gamaLib-src directory which is made of two sub-

directories: main and test. The following directories reside in the main directory:

• Exceptions: contains all exceptions that gamaLib may throw.

• Gamalib: has the implementation of a wide range of GAMA services such as

resource and user management.

• Ldapdriver: Contains driver code that connects to the LDAP server and per-

forms relevant operations such as add, delete, and more. It is made of two sub-

directories. Command directory contains the LDAP-related commands and the

exception directory has GAMA LDAP exceptions.

• Proxydriver: the structure of the proxydriver directory is similar to the ldapdriver

directory. Namely, there are two important sub-directories, the command direc-

tory, which has the myproxy-related command and the exception directory, which

contains the myproxy-related exceptions.

Test sub-directory is another important part of the gamalib. It contains the following:

• Gamalib: test cases that target gamalib services.

60

• Ldapdriver: test cases that examine the ldapdriver implementation.

• Proxydriver: proxydriver test cases.

6.4 Code Implementation

6.4.1 Drivers

In designing and implementing GAMA 2.0, we have strived to make it plug-

gable and extendable. As a partial fulfillment of this requirement, we designed and

implemented two drivers; ldapdriver and proxydriver. The ldapdriver hides the under-

lying repository technology, OpenLDAP, which is employed to store user and resource

information from the gamalib. At the same time, the proxydriver shields the gamalib

from the online credential management service that GAMA 2.0 uses: MyProxy utility.

As core technologies change rapidly, it is pivotal to make gamalib independent from

them to the maximum extend possible. By hiding gamalib from low-level components,

drivers promote weak coupling which results in reducing the complexity of the system.

The drivers connect to the intended servers (i.e. OpenLDAP and MyProxy

servers) and perform specific operations. By considering various operations like ad-

dUser, addResource as commands, the Command design pattern is employed to imple-

ment the drivers. The Command pattern provides well-desired loose coupling since it

decouples the object that invokes the operation from the one that knows how to perform

it. This allows gamalib to treats commands as “black box” without knowing how they

are implemented. This provides a logical separation of duties and makes code easier

to maintain. Furthermore, the Command pattern offers other benefits. For instance,

it expedites debugging as logging commands in execution suggests the state in which

an error has occurred. Moreover, by considering commands as first class objects, the

Command design pattern allows commands to be manipulated and extended like any

other object. At the same time, adding new commands is easy since it does not require

modifying the existing commands.

61

Figure 6.2: ldapdriver Command pattern

Ldapdriver

Figure 6.2 shows the high-level structure of the Command pattern in ldap-

driver. A typical usage scenario is as follows: an ldapdriver client like gamalib instanti-

ates a concrete LDAP command such as addUser. Then it calls the command manager

with the command. The command manager or the invoker is responsible for executing

the command and subsequently returning the result to the client, gamalib. The benefits

of the Command pattern, discussed above, are present here. For instance, as seen in

Figure 6.2, gamalib is not aware of OpenLDAP which is the underlying data repository.

Ldapdriver Commands

While the previous subsection discussed the overview of the Command pat-

tern in ldapdriver, here we present many ldapdriver commands and discuss how they

are implemented. Figure 6.3 shows a simplified snapshot of how commands are struc-

tured in ldapdriver. In a nutshell, we have divided the commands into two categories,

GamaEntryCommand and GamaAttributeCommand. Commands that target entries in

the LDAP directory are in the GamaEntryCommand group, while commands that mod-

62

Figure 6.3: ldapdriver commands

ify attributes of a particular entry belong to the GamaAttributeCommand category. ad-

dUser, deleteResource, and searchSite are among many commands that target specific

entries in the LDAP directory. For instance, addUser creates a new entry correspond-

ing to the new user, while deleteResource deletes a resource entry from the directory

tree. Nevertheless, commands like updateUserAttribute and addGroupMember mod-

ify attributes of existing entries; therefore, they reside in the GamaAttributeCommand

group. Because commands are structured in a hierarchical fashion, it is easily possible

to maintain and extend existing commands as well as add new ones when desired.

GamaEntryCommand

Here, we discuss a few crucial entry-related commands.

• GamaAddCommands consist of several commands that add entries to the LDAP

tree. For example, GamaAddResourceEntryCommand adds a resource along with

its associated attributes to the LDAP directory. Each GamaAddCommands re-

quires a siteDN as parameter which uniquely identifies the parent site in which

the entity will be added.

• GamaDeleteCommands consist of several commands that delete entries from

the LDAP tree. For example, GamaDeleteResourceEntryCommand deletes a

63

resource along with its associated attributes from the LDAP directory. Each

GamaDeleteCommands requires an entryDN as parameter which uniquely identi-

fies the entry that will be deleted.

• GamaGetCommands consist of several commands that return all attributes of an

entry. For example, GamaGetResourceAttributesCommand returns all resource

attributes. Each GamaGetCommands requires an entryDN as a parameter, which

uniquely identifies the entry that its attributes will be returned as a map of attribute

names to values.

• GamaSearchCommands consist of several commands that search the LDAP tree.

For example, GamaGetSiteResourcesCommand takes a siteDN as a parameter,

searches for resources in the site, and returns them as a list of entries.

GamaAttributeCommand

Several commands that modify attributes of existing entries are presented be-

low:

• GamaUpdateCommands consist of commands that update some of the attributes

of an entry. A map structure is used to hold new attribute values and the map is

passed to commands as a parameter. Also, each GamaUpdateCommands requires

an entryDN as a parameter which uniquely identifies the entry that its attributes

will modify. GamaUpdateUserAttributesCommand, for instance, might update a

user’s personal information like his/her telephone number or address.

Authorization Commands

Ldapdriver has many commands that collectively implement the GAMA secu-

rity policy mentioned in chapter 5. Although describing all authorization-related com-

mands is beyond the scope of this report, a summary of key commands is discussed

here.

64

• GamaAdd/RemoveCommands: ldapdriver has commands to add/remove a capa-

bility to/from a role. For example, GamaAddCapabilityToRoleCommand takes

two parameters (capabilityDN, roleDN), and adds the new capability to the role’s

capability list. Using this command, for example, we can add deleteCapabil-

ity to managerRole. GamaDeleteCapabilityFromRoleCommand, on the other

hand, removes a capability form the role’s capability list. Similar to these com-

mands, GamaAddUserToGroup and GamaDeleteUserFromGroup adds/deletes a

user to/from a group respectively.

• GamaGrant/RevokeCommands: GamaGrantCommands grant a role or capabil-

ity to a user in a particular context (scope). For instance, GamaGranCapability-

Command may grant executeCapability to a user in the scope of a resource. Sim-

ilarly, GamaGrantRoleCommand may grant managerRole to a user in the context

of a site. In addition, GamaRevokeCommands revoke a role or capability from a

user in a context. GamaRevokeCapabilityCommand can revoke executeCapabil-

ity from a user in the scope of a resource, while GamaRevokeRoleCommand may

revoke mangerRole from a user in a context like site.

• GamaCheckPermissionCommand: this perhaps is one of the critical commands in

ldapdriver that implements resource authorization. It takes three arguments (capa-

bilityDN, contextDN, userDN) and it determines if the user carries the desired ca-

pability in a given context. For instance, upon a write request, a database calls this

command using its own DN, writeDN, and e userDN. Then GamaCheckPermis-

sionCommand searches the LDAP tree to identify the user’s group memberships,

roles, capabilities in the appropriate scope. Using this information, GamaCheck-

PermissionCommand derives a list of user capabilities and determines if the de-

sired capability is in this list.

65

Proxydriver

The author of this thesis was not involved in implementing the proxydriver,

although similar to the ldapdriver, it uses the Command design pattern. More specifi-

cally, GamaProxyCommandManager is responsible for executing MyProxy commands

such as createUserCertificate or authenticateUser.

Gamalib

Section 5.4 presents a set of services that GAMA 2.0 provides to public.

GamaLib implements many services using popular programming principles such as in-

heritance and polymorphism. While the previous section discussed the significance as

well as the usage of drivers in gamaLib, here we focus on the gamaLib implementation.

GamaLib is composed of four interfaces that provide GAMA 2.0 services as well as

many additional classes that help implement them. Before discussing the interfaces and

their implementation, we summarize two most important components of gamalib: the

GAMA entity identification system and the entity attribute management system. These

two components are frequently employed in implementing the services.

GAMA Entity Identification System

Figure 6.4 depicts the gamaLib’s entity identification system. In gamaLib,

entities such as users, resources, roles are uniquely identified by their ID. As Figure 6.4

suggests, a context can be either a site or a resource, while a user entity object can be a

user or a group.

The entity identification system simply reflects the naming mechanism of the

underlying data repository without explicitly relying on its schema. Therefore, chang-

ing the back-end’s repository or its schema will not affect the gamaLib identification

system. Since OpenLDAP is used as the back-end repository, an entity ID in gamaLib

corresponds to an entry’s distinguished name (DN) in the OpenLDAP directory tree.

66

Figure 6.4: GAMA Entity Identification System

Figure 6.5: Entity Attribute Management System

Entity Attribute Management System

While the entity identification system uniquely identifies gamaLib entities,

the entity attribute management system, simplified and shown in Figure 6.5, represents

attributes associated with an entity. It also provides a mapping from gamaLib entity

attributes to OpenLDAP entry attributes. For example, GamaUserId uniquely identifies

a user entity in gamaLib, while GamaUserAttributes contains the user’s attributes such

as user name, site, and address. Moreover, GamaUserAttributes relates these attributes

such as “site” to LDAP attributes like “OU” (organizational unit).

67

GamaLib Services

There are four interfaces that collectively list all gamaLib services that

have been implemented so far: GamaUserManagement, GamaResourceManagement,

GamaAuthorizationManagement, and GamaAuthenticationManagement. In this sec-

tion, we summarize these interfaces and discuss what kind of services each of them

offers.

• GamaUserManagement: as the name suggests, this interface presents user-related

services. Figure 6.6(a) shows the services that have been successfully imple-

mented. For instance, createUser takes contextID and userAttributes as param-

eters then calls proxydriver to generate a user certificate and ldapdriver to store

user attributes. It returns the userID, which subsequently can be used in other

services like getUserAttributes.

• GamaResourceManagement: there are several resource-related services. Get-

SiteResources, for example, takes a siteID as the parameter and returns a list

of resources that belong to the site. Figure 6.6(b) depicts the resource-related

services.

• GamaAuthorizationManagement: a wide variety of authorization services are

listed in Figure 6.6(c). There are services for managing authorization entities like

createRole and deleteCapability. In addition, there are services for relating these

entities to users and groups like grantCalability, revokeRoleFromUser. Finally,

there are services for determining users’ capabilities like getUserCapabilities and

checkPermission.

• GamaAuthenticationManagement: Figure 6.6(d) shows the authentication ser-

vices. As of now, there is only one authentication service, authenticateUser, which

calls proxydirver with user’s login and password and returns a short-lived proxy

certificate.

68

(a) gamalib user-related services (b) gamalib resource-related services

(c) gamalib authorization-related services (d) gamalib authentication-related services

Figure 6.6: gamaLib Services

Front-end Web-applications and Web-services

Because the author did not contribute in designing and implementing the front-

end interfaces, this section only presents a short description of them. The GAMA front-

end consists of several web-applications that allow end-users to access GAMA 2.0’s ser-

69

vices. Specifically, management web-application provides a complete administration of

the GAMA appliance which includes managing users, resources, sites etc. At the same

time, user registration web-application allows users to request account on the associ-

ated GAMA appliance. Account requests are held until an administrator approves them.

When a request is approved, an email is sent to the user with an activation link. Once

the user clicks the link, verifies his email and selects a password, the web-application

creates the account for the user by calling appropriate gamaLib services. Another ma-

jor component of GAMA frond-end is the Single Sign-On web-application that allows

users to authenticate once to access their resources.

Front-end web-applications and gamaLib are installed on the same machine.

This allows the web-applications to easily access various gamaLib services. However,

user authentication and resource authorization services, two essential gamaLib services,

are exposed to public via web-services calls. This is an advantage as they can be called

from environments and portals that run on different machines.

6.5 GAMA Exception Handling

During the GAMA 2.0 development process, we dedicated a significant

amount of time designing and implementing a robust exception handling component.

Realizing that it is important to adequately report unrecoverable errors to end-users as

well as to resolve recoverable conditions without user’s intervention, GAMA 2.0 of-

fers a detailed, yet flexible, exception handling solution. Figure 6.7 shows a simplified,

high level overview of GAMA’s exception handling component. It strives to achieve

two pivotal goals of GAMA 2.0 implementation, namely, technology independence of

gamaLib as well as extendability. It achieves the first goal by wrapping technology-

specific exceptions in more generic exceptions. More specifically, GAMALDAPExcep-

tions abstract away LDAP exceptions, while GAMAProxyExceptions hide MyProxy

exceptions. GamaLib uses these two types of exceptions to throw higher-level ex-

ceptions that are independent from underlying tools. The GAMA front-end, subse-

70

Figure 6.7: GAMA Exception Handling

quently, uses the gamaLib exceptions to report appropriate error messages to users. For

example, when adding a user who already exists, ldapdriver throws GamaLDAPEn-

tryAlreadyExistsException. GamaLib implementation, then, catches this exception and

throws GamaEntryAlreadyExistsException which shields the fact that LDAP is the un-

derlying data repository. The later exception can be used in the GAMA front-end to

notify that the user already exists in GAMA. It is important to note that in addition to

wrapping lower-level exceptions, gamaLib throws library-specific exceptions as well.

Revisiting the user creation example, gamalib throws an exception if user’s login or

password is missing before the drivers are called.

We employ programming techniques such as the Factory pattern and poly-

morphism in developing the exception handling unit. Moreover, the exception handling

solution is multi-layered corresponding to the levels of abstraction like drivers, gamaLib.

Therefore, it is easily possible to extend, modify, and delete the existing exceptions as

well as to add new ones.

6.6 GAMA Testing

The GAMA development team designed and implemented a comprehensive

testing solution. Similar to the exception handling component, it is multi-layered corre-

sponding to the levels of abstraction such as drivers and gamaLib. GamaLib test compo-

nent examines the gamaLib code. Each testing module such as ldapdriverTests consists

of many unit tests that individually examine small parts of source code. These unit

tests collectively constitute scenarios that model the real use of the GAMA system.

For example, the gamaLib test-component consists of several unit tests that target var-

71

ious gamaLib services such as addSite, addUser, checkPermission. Using the JUnit’s

testsuite feature, we have orderly bundled these test cases to create tests that examine

gamaLib code based on hypothetical scenarios.

6.7 Implementation Security Discussion

Performing a comprehensive security analysis on GAMA 2.0 implementation

is beyond the scope of this document. This section, nevertheless, briefly describes a few

steps that mitigate the risk of malicious attacks.

Front-end web-applications, gamaLib services and drivers, as well as under-

lying repositories reside on a protected, locked down machine with no end-user access.

Consequently, drivers (ldapdriver and proxydriver) can communicate with correspond-

ing repositories in clear-text. Moreover, web portals can easily invoke many gamaLib

services and these services do not need protection as they are not exposed to public (i.e.

only portals have access to them).

Unlike other gamaLib services, user authentication and resource authorization

services are exposed to the public as they are solidly accessed through web-services

calls. To protect these services from malicious attacks such as snooping user’s password,

they run over a secure communication channel, https.

6.8 Alpha Release Open Issues

In this chapter, we presented a high-level overview of GAMA 2.0 implementa-

tion. It is important to bear in mind that the discussion given in this chapter corresponds

to the internal alpha release. Although many core features of GAMA have been suc-

cessfully implemented, there are still many open issues that need to be addressed before

future releases. Here we discuss some of these issues:

• “Acquire” feature: we spent a tremendous amount of time designing and imple-

menting the security policy and resource authorization. As mentioned before,

72

there is a scope associated with any security-related assignment such as granting

a role to a user. The scope is a sub-tree rooted at the context, where the assignment

is created. Therefore, contexts inherit their parent’s security policies. However, it

would be nice to allow contexts to define new policies without “acquiring” any se-

curity policies from their parent contexts. This feature, although not implemented,

promotes a more powerful and flexible security solution. This feature will be im-

plemented as part of the beta release since the development team has decided to

focus on testing, debugging, and refactoring the current implementation for the

alpha release.

• GamaLib services access control: currently, gamaLib does not ensure that its

clients have the adequate access rights to call the library’s various services. It

solidly relies on the front-end portals to call appropriate gamaLib’s services. It

might be beneficial to expose management services via web-services calls so they

can be accessed from portals running on remote servers. In this case, only clients

with sufficient access rights should be able to execute these services. One ap-

pealing solution to ensure that a service caller has the desired access right to call

the service is to internally employ the GAMA’s authorization mechanism. This

can be done by obtaining DN of the caller from the current thread. Then using

the caller’s DN along with additional information, we can call GAMA’s check-

Permission service to ensure that the caller has appropriate capability to perform

the indented action. Taking the addSite service as an example, checkPermission

service can be called to make sure that the caller has the addSite capability before

adding a site.

• Ldap-based authentication: LDAP is employed for authentication purposes in

many projects. To make GAMA system appealing to as many projects as pos-

sible, we support LDAP-based authentication in GAMA as shown in Figure 5.4

As it can be seen from the Figure, OpenLDAP is connected to MyProxy via the

SASL mechanism. This implies that LDAP-based projects can employ GAMA,

73

even though MyProxy is ultimately used for authentication purposes. For the al-

pha release, the link between OpenLDAP and MyProxy is not implemented, so

MyProxy is called directly for authentication-related requests. For the beta re-

lease, we plan to implement the link and fully support LDAP-based authentica-

tion.

Chapter 7

GAMA 2.0 Evaluation and Analysis

7.1 Introduction

This chapter evaluates design and implementation of GAMA 2.0. First, the au-

thor depicts a few advantages of GAMA 2.0 over previous versions of GAMA. GAMA

2.0 offers several new features and enhancements that were not included in GAMA

1.X such as resource authorization support. Then the author compares GAMA 2.0 to

a couple of popular identity management solutions that were originally described in

section 1.5. Moreover, performance of gamaLib has been evaluated in terms of exe-

cution time of various gamaLib services. The author describes the evaluation process

and optimization techniques that have successfully reduced the execution time of many

inefficient gamaLib services. Table 7.1 summarizes the advantages of GAMA 2.0 over

GAMA 1.X and other related identity management solutions, which include support

for resource authorization and LDAP-based user authentication. Moreover, unlike other

solutions, GAMA 2.0 offers a service-oriented and pluggable architecture.

74

75

Table 7.1: GAMA 2.0 vs Related Identity Management Systems
GAMA
2.0

GAMA
1.X

PURSE GridAuth FusionGrid

Service-oridented Ar-
chitecture

YES YES NO NO NO

Pluggable Architecture YES NO NO YES NO
Resource Authoriza-
tion

YES NO NO NO YES

LDAP-based Authenti-
cation

YES NO NO NO NO

Simple User Interfaces YES YES YES YES YES
Easy Deployment YES YES NO NO NO

7.2 GAMA 2.0 vs GAMA 1.X

7.2.1 Authorization Support

GAMA 1.X has an option to use CAS [38] for resource authorization. CAS

explicitly adds user permissions to a retrieved proxy which can subsequently be used

for authorization purposes. It is up to the resources to use the user’s proxy certificate to

determine if he is authorized to perform intended operation based on internal policies.

Although GAMA supports CAS, it was never proven to be useful and stable because not

many end resources know how to use CAS authorization mechanism [18]. Therefore,

communities that employ GAMA seek other solutions to fulfill their authorization re-

quirements. CAMERA[3] project, for example, attempts to resolve GAMA 1.X’s lack

of authorization by granting the same access rights to all authenticated users. Therefore,

after successful authentication, all users carry the same access rights and can perform

similar operations. Because many communities have many users with different access

rights, simply assigning equal authorization permissions to all community users is not

sufficient. Often, communities require fine-grained authorization mechanisms that can

support various users with different access rights. Consequently, these projects need to

complement the GAMA authentication solution with a third party authorization mecha-

nism.

To address the challenges due to lack of useful authorization support in

76

GAMA1.X, a flexible resource authorization solution has been designed and imple-

mented in GAMA 2.0. The fine-grained authorization mechanism is based on RBAC

models which provides a powerful access control solution based on users, groups, roles,

and capabilities. It is flexible enough to be employed in many communities with various

security requirements. GAMA 2.0 enforces push-mode authorization approach where

upon authorization requires, a resource can easily contact the GAMA server via web-

services to obtain user’s access rights. Also, since the authorization solution is part of

the GAMA 2.0 package, it can be easily configured and used without spending signifi-

cant time and effort.

7.2.2 LDAP-based Authentication Support

GAMA 1.X augments CACL certificate authority with MyProxy certificate

repository to provide a flexible user authentication solution. During user registration,

CACL encrypts the user’s private key with the supplied user password and sends it to

MyProxy for future user authentication and short-lived certificate retrieval. Upon au-

thentication, MyProxy attempts to decrypt the user’s private key with the user’s pass-

word. If successful, short-lived proxy certificate is issued and returned to the portal.

Otherwise, a denied error message is sent back. One of the great advantages of GAMA

1.X’s user authentication is that user’s password is never stored in the back-end server.

Consequently, it is extremely difficult for unwanted third parties to discover and alter

passwords.

GAMA 1.X has been successfully employed and tested in various projects

such as CAMERA. GAMA 2.0 follows the same authentication strategy as GAMA 1.X.

However, since GAMA 1.X explicitly relies on CACL and MyProxy, many communi-

ties that desire alternative types of authentication are hesitant to employ it. For example,

a wide variety of projects would like to use LDAP for authentication purposes. Ldap’s

powerful yet flexible authentication mechanisms, augmented with its wide acceptance

as the main directory access method, encourage these projects to employ a LDAP-based

authentication solution. To attract the projects that desire to use LDAP server for au-

77

thentication, GAMA 2.0 is designed to support LDAP-based user authentication. The

deployment architecture, Figure 5.4, in the architecture chapter shows that GAMA sup-

ports LDAP-based authentication. As seen in the Figure, OpenLDAP is connected to

MyProxy via SASL mechanism. Therefore, OpenLDAP delegates authentication re-

quests to MyProxy where they can be properly processed. This implies that LDAP-

based projects can employ GAMA 2.0 for authentication, although ultimately MyProxy

is used for authentication purposes. It is important to note that while the GAMA 2.0

architecture supports LDAP-base authentication, this feature has not been implemented

in the alpha release.

7.2.3 Pluggable Architecture and Implementation

The previous versions of GAMA had explicit reliance on the employed tech-

nologies such as MyProxy and CACL. As the grid security technologies are rapidly

changing and improving, it is very difficult to incorporate new relevant technologies

into the old versions of GAMA. In addition, there are many projects that want to use

their own existing technologies. For example, they may already have a customized cer-

tificate authority in place, or they already have a repository that they would like to use

to store user certificates. It is extremely difficult to use these project-specific tools in

GAMA 1.X as it is tightly coupled to very explicit technologies. Also, GAMA 1.X does

not support a complete exception handling component to properly report errors to end-

users. In terms of testing the implementation, GAMA 1.X lacks a comprehensive and

flexible testing solution that examines various parts of code.

GAMA 2.0 was designed to resolve many GAMA 1.X’s limitations like the

ones mentioned above. Special effort has been made to design a multi-tier, pluggable,

and service-oriented architecture that can cope with rapidly evolving relevant technolo-

gies. GAMA 2.0 has removed all hard coding of very specific technologies that were

implemented in GAMA 1.X and replaced them with a plug-in system. In particular, it

introduces various resource adapters such as MyProxy adaptor to hide the underlying

technologies such as MyProxy certificate repository. These adapters (drivers) have been

78

successfully implemented to shield the gamaLib from low-level components. Moreover,

unlike GAMA 1.X, the 2.0 version has employed well-known programming techniques

like the Factory pattern and polymorphism to implement a robust exception handling

component. Realizing that it is important to adequately report unrecoverable errors to

end-users as well as to resolve my recoverable conditions without user’s intervention,

GAMA 2.0 offers a detailed yet flexible exception handling solution. At the same time,

GAMA 2.0 employs various testing techniques such as unit testing and scenario testing

to exam different parts of the system. The GAMA test-component is extendable and the

test cases can be easily compiled and run via build scripts. Therefore, as the team is

implements the rest of GAMA 2.0’s services and functionalities, new test cases can be

easily introduced to examine new added functionalities.

7.3 GAMA 2.0 vs Other Identity Management Systems

Section 1.5 described a few current identity management systems; namely,

PURSE, GridAuth, and FusionGrid. Here, we discuss advantages and disadvantages of

these systems with respect to GAMA. However, instead of individually comparing these

solutions to GAMA 2.0, we collectively discuss them in a few relevant contexts. For

example, we analyze the communication mechanisms employed in these solutions. Then

we report how they address resource authorization issues and challenges. Furthermore,

we compare their architecture design and implementation.

7.3.1 Communication Mechanisms

All discussed solutions share a common goal which is to simplify identity

management tasks for end-users. To achieve this goal, they propose security systems

that consist of two major components: a back-end server which manages user creden-

tials and a set of front-end portals that provide interfaces for end-users. Nevertheless,

these systems employ different communication mechanisms. In GAMA 2.0, for in-

stance, essential back-end services such as user authentication and resource authoriza-

79

tion services are exposed to public via SOAP-based web-services calls. Using web-

services to provide remote procedure calls offers several benefits. For example, user

login portlets can be installed on a remote portal that communicates with the GAMA

server via web-services. This promotes transparent and automatic proxy retrieval step

in the environment that a user tries to log into. Portal developers can benefit from this

as they have access to a user’s short-lived proxy certificate without explicit knowledge

of MyProxy or GAMA. The PURSE portal, in contrast, runs on the same machine that

CA and MyProxy are installed. Therefore, when a user logs into a portal, the portal

environment somehow needs to retrieve the user proxy certificate from the MyProxy

server.

GridAuth provides client APIs that use standard HTTP over SSL to commu-

nicate with a back-end server. Because these APIs are developed for specific languages,

they can only be integrated into external applications that are implemented in the same

programming languages as the client APIs. With respect to GridAuth, GAMA offers

some pivotal advantages as its web-services are not based on a programming language

or data model. Also, web-services promote much easier integration process by formal-

izing communication parameters, and requiring less memory and custom-code.

7.3.2 Authorization Support

PURSE and GridAuth, similar to GAMA 1.X, only provide user authentica-

tion solutions without explicitly managing resource authorization. Therefore, to have a

complete security system, communities that employ PURSE or GridAuth need to sepa-

rately resolve their resource authorization concerns. Through grid-mapfile mechanism,

for example, authorization decisions are made downstream at the resource level. Nev-

ertheless, grid-mapfiles has several major shortcomings such as lack of scalability and

expressiveness. A distinct advantage of GAMA 2.0 system over PURSE and GridAuth

is its role-based authorization component. It is scalable as it stores authorization-related

data in a centralized repository, and it does not require change in each participating

site when user’s policy changes. Moreover, GAMA 2.0 authorization system employs

80

groups, roles, and capabilities to support broad range of policies and permission types

that native operating systems do not support.

In contrast to PURSE and GridAuth systems, FusionGrid supports resource

authorization. Its authorization system is called ROAM, and similar to GAMA 2.0 au-

thorization component, it provides an easy-to-manage and comprehensive system for

ensuring that users are allowed to access intended resources. ROAM and GAMA 2.0

authorization component share many similarities. For example, they both avoid the push

model of authorization and use the pull mode. So upon authorization request, a resource

consults back-end server to determine if the connecting user is authorized. Using the

pull mode, the authorization path is completely transparent to the user. Moreover, both

of the solutions store authorization entities in a centralized repository to ease the burden

of maintaining and managing authorization policies. By allowing various resource and

permission types, FusionGrid and GAMA 2.0 provide flexible yet powerful authoriza-

tion solutions. They both, for instance, consider an entire site as resource and support

relevant permissions such as access.

Despite the shared similarities between FusionGrid and GAMA 2.0 autho-

rization systems, they differ in one crucial front. FusionGrid authorization has been

designed and implemented in a very specific environment to meet the needs of a certain

group of users. It is a custom authorization system that fulfills GridAuth community

requirements. Therefore, the end result appears to be closely coupled to FusionGrid

environment and users. GAMA 2.0 authorization solution, on the other hand, can be

employed in many projects. Although GAMA 2.0 was developed to meet the require-

ments of certain communities, significant effort has been made to make a product that

can be shared and used in a wide range of non-crossing communities. By supporting

roles and groups, GAMA offers a more advance and flexible authorization solution than

FusionGrid. Moreover, while FusionGrid ROAM system stores users, resources, and

authorization data in a relational database, GAMA 2.0 stores them in a LDAP directory.

GAMA 2.0 has an advantage in this regard since many projects and applications are

LDAP-aware, and GAMA 2.0 can be easily integrated into them.

81

7.3.3 Architecture Design and Implementation

One clear advantage of GAMA 2.0 over other discussed systems is its packag-

ing and deployment. To alleviate the installation and deployment burden on administra-

tors, GAMA employs the Rocks clusters management tool. The rocks installs all GAMA

components and performs post-install configuration to provide a fully functional GAMA

back-end server “out-of-the-box.” To install other systems, however, the administrator

needs to spend significant time and effort downloading and configuring many security-

related technologies that are not designed for interoperability. To install PURSE, for

example, the administrator has to download tools such as SimpleCA, MyProxy, and

MySQL database. Then, he needs to configure these technologies and make sure that

they are properly installed and can communicate to one another. These tasks can be

extremely time-consuming and tiresome.

All security systems that we discussed share one common weakness. They

centrally manage authentication and authorization services which create a single point of

failure. While these systems realize the importance of this risk, yet only a few have taken

steps to mitigate it. FusionGrid, for instance, attempted to address this weakness by

implementing primary and secondary servers. It copies relevant contents of the primary

server to the secondary server on a daily basis. Therefore, in the event of a failure, client

interfaces automatically switch over to the backup server and users continue interacting

with the system. Although, GAMA 2.0 has not addressed the single point of failure

weakness, its developers plan to provide a fault tolerance system in the near future. One

appealing solution is to follow in FusionGrid footsteps, and implement primary and

secondary servers.

Out of the mentioned systems, it seems that only GAMA 2.0 and GridAuth

are based on pluggable architecture. They have an edge over other discussed systems as

they do not explicitly rely on any technology or tool. Nevertheless, these two systems

have taken a different approach to provide technology independent solutions. GAMA

2.0 introduces various resource adapters such as MyProxy adaptor to hide the underlying

technologies like MyProxy certificate repository. GridAuth system, on the other hand,

82

includes a plug-in stack made of existing plug-ins each one implementing required inter-

face functions such as login. It appears that FusionGrid, and to smaller extent PURSE,

are hard coded to very specific employed technologies, and it is extremely difficult to

incorporate new relevant technologies into these systems.

7.4 GamaLib Performance Evaluation

GamaLib is the core part of GAMA 2.0 which provides management, authenti-

cation, and authorization services. In designing and implementing gamaLib’s services,

considerable effort has been made to ensure that they are technology-neutral, easy to

maintain, and easy to extend. Although performance has not been a driving factor,

many communities would desire efficient implementation of GAMA 2.0 that responds

to requests in a timely manner.

This section discusses gamaLib performance evaluation process. It uses se-

quence of benchmarks to determine the efficiency of gamaLib services. Moreover, it

presents a few optimization steps that have effectively reduced the running time of these

services.

7.4.1 GamaLib Benchmarks

To measure execution time of essential gamaLib services, several benchmarks

have been developed and tested. A description of these benchmarks is listed below.

createSitesTest

1. Invokes createGamaRoot service to create gama root which, in turn, creates

system-defined entities such as system defined capabilities and roles.

2. Invokes createNewProject service to create a project under root.

3. Invokes createNewSite service to create two sites under project site (siteA and

siteB).

83

4. Invokes createNewSite service to create two sites under siteA (siteA1 and siteA2).

getGamaSitesTest

1. Invokes getSites service to return sites belonging to siteA (i.e. siteA1 and siteA2).

2. Invokes getAllGamaSites service to return all gama sites (i.e. siteA, siteB, siteA1,

and siteA2).

getSiteAttributeTest

1. Invokes getSiteAttributes service to return siteA’s attributes (i.e. name, telephone,

address, etc.).

2. Invokes getProjectAttributes service to return project’s attributes.

updateSiteAttributeTest

1. Invokes updateProjectOptionalAttributes service to update the description at-

tribute of project.

2. Invokes updateSiteOptionalAttributes service to update siteA’s telephone number.

searchSitesTest

1. Invokes searchSites service to return all sites with the partial name “site” that

belong to siteA (i.e. siteA1 and siteA2).

2. Invokes searchSites service to return all sites with the partial name “siteA2” that

belong to siteA (i.e. siteA2).

createResourceTest

1. Invokes createResource service to create two resources in siteA1

(siteA1Resource1 and siteA1Resource2).

2. Invokes createResource service to create two resources in siteA2

(siteA2Resource1 and siteA2Resource2).

84

searchResourcesTest

1. Invokes searchResources service to return all resources with the partial name

“siteA1Resource1” that belong to siteA1 (i.e. siteA1ResourceA1).

2. Invokes searchResources service to return all resources with the partial name “re-

source” that belong to siteA1 (i.e. siteA1ResourceA1 and siteA1ResourceA2).

3. Invokes searchResources service to return all resources with the partial name

“siteA2Resource1” that belong to siteA1 (i.e. result set is empty).

createUserTest

1. Invokes createUser service to create a user at the root level (rootUser1).

2. Invokes createUser service to create two project users (projectUser1 and projec-

tUser2).

3. Invokes createUser service to create two siteA1 users (siteA1User1 and

siteA1User2).

4. Invokes createUser service to create two siteA2 users (siteA2User1 and

siteA2User2).

createGroupTest

1. Invokes createGroup service to create a group called siteA1Group1 in siteA1 with

two members siteA1user1 and siteA1user2.

2. Invokes createGroup service to create a group called siteA2Group1 in siteA2 with

two members siteA2user1 and siteA2user2.

getUserAttributesTest

1. Invokes getUserAttributes service to retrieve rootUser1 attributes.

2. Invokes getUserAttributes service to retrieve siteA1User1 attributes.

85

updateUserAttributesTest

1. Invokes updateUserOptionalAttributes service to update email and postal address

of siteA1User1.

getGamaUsersTest

1. invokes getAllGamaUsers service to retrieve all gama users (i.e. roo-

tUser1, projectUser1, projectUser2, siteA1User1, siteA1User2, siteA2User1, and

siteA2User2).

getResVisibleUsersTest

1. Invokes getResourceVisibleUsers service to return all users who can access

siteA1Resource1 (i.e. rootUser1, projectUser1, projectUser2, siteA1User1,

siteA1User2).

createRolesTest

1. Invokes createRole service to create a role called anonymousUser with read capa-

bility. This role is created in the root site.

grantRolesTest

1. Invokes grantRole service to grant anonymousUser role to anonymous user in the

root site.

2. Invokes grantRole service to make rootUser1 the gamaAdmin (i.e. grant gamaAd-

min role to rootUser1 in the root site).

3. Invokes grantRole service to make projectUser1 projectAdmin (i.e. grant projec-

tAdmin role to projectUser1 in the project site).

4. Invokes grantRole service to make projectUser2 admin of siteA1 (i.e. grant

siteAdmin role to projectUser2 in siteA1).

86

5. Invokes grantRole service to make members of siteA1Group1 admin of siteA1

resources (i.e. grant resourceAdmin role to siteA1Group1 in siteA1).

getUserCapsTest

1. Invokes grantCapability service to grant addUser capability to siteA1User2 in

site1A2.

2. Invokes denyCapability service to deny siteA1User2 the executeResource capa-

bility in site1A2.

3. Invokes getUserCapabilities to retrieve siteA1User2 capabilities in siteA1.

4. Invokes getUserCapabilities to retrieve siteA1User2 capabilities in siteA1.

siteAdminPermissionTest

1. Invokes checkPermission service to determine if projectUser2 has the addUser

capability in siteA1.

2. Invokes checkPermission service to determine if projectUser2 has the addSite ca-

pability in siteA2.

resAdminPermissionTest

1. Invokes checkPermission service to determine if siteA1User2 has the ad-

dResource capability in siteA1.

2. Invokes checkPermission service to determine if siteA1User2 has the addUser

capability in siteA1.

authenUserPermissionTest

1. Invokes checkPermission service to determine if siteA1User2 has the writeRe-

source capability in siteA1Resource1.

2. Invokes checkPermission service to determine if siteA1User2 has the read-

Resource capability in siteA1Resource1.

87

Table 7.2: execution time and LDAP access frequency of each benchmark (before opti-
mization)

Benchmark Name Execution
Time in sec

#of LDAP
Accesses

#of LDAP
Reads

#of LDAP
Writes

createSitesTest 2.178 87 55 32
getGamaSitesTest 0.328 23 23 0

getSiteAttributeTest .045 4 4 0
updateSiteAttributeTest .030 2 0 2

searchSitesTest 0.16 8 8 0
createResourceTest 0.188 16 10 6

searchResourcesTest 0.153 9 9 0
createUserTest 0.346 27 17 10

createGroupTest 0.105 10 8 2
getUserAttributesTest 0.070 4 4 0

updateUserAttributesTest .051 2 0 2
getGamaUsersTest 0.410 30 30 0

getResVisibleUsersTest 0.325 25 25 0
createRolesTest 0.055 3 2 1
grantRolesTest 0.465 39 27 12

getUserCapsTest 0.470 35 32 3
siteAdminPermissionTest 0.356 30 30 0
resAdminPermissionTest 0.570 46 46 0

authenUserPermissionTest 0.939 72 72 0

3. Invokes checkPermission service to determine if siteA1User2 has the addSite ca-

pability in siteA1Resource1.

7.4.2 Evaluation Procedure and Result

The gamaLib source code, the benchmarks, and an OpenLDAP installation all

reside in a Linux-based virtual machine. A test suit runs all the benchmarks in the order

that they are described in the previous section. The test suit, which deletes all LDAP

entries before and after running the benchmarks, can be invoked via an Ant script.

Table 7.2 displays the execution time and LDAP access frequency of each

benchmark. The benchmarks are relatively simple with fast execution time and con-

sidered gamaLib services communicate with an OpenLDAP server. Therefore, LDAP

access data is extremely useful in identifying inefficient benchmarks and services.

88

Optimization Steps

Considering the number of LDAP accesses (i.e. LDAP read or write) as a

strong performance evaluation metric, Table 7.2 suggests many gamaLib services have

performance problem. To reduce the execution time of various gamaLib services, the

author has considered and implemented a few optimization steps. Because LDAP is the

major backend repository, these steps focus on minimizing LDAP accesses and apply-

ing relevant LDAP tuning techniques such a indexing. A summary of the optimization

approaches is described below.

Refining LDAP Search Queries

Some benchmarks such as createSiteTest are expected to have a large number

of LDAP accesses due to creation of system defined capabilities, roles, users, and more.

However, other benchmarks such as getGamaUsersTest should require much fewer

LDAP accesses than corresponding values reported in Table 7.2. Revisiting gamaLib’s

LDAP search queries revealed the root cause of the problem: gamaLib services were

making many “simple” LDAP queries to obtain the needed data. Therefore, an optimiza-

tion step would be to merge these simple queries to construct fewer but more “complex”

search queries. For instance, getUserAttributes service performs several LDAP searches

to obtain information such as user’s unique identifier, creation time, and attributes. As

LDAP offers flexible and powerful filtering mechanism, all user information can be ob-

tained via one search query. In essence, we can achieve significant performance gain

by reducing the number of LDAP accesses. The latter can be achieved by exhausting

the LDAP filtering mechanism to create complex search queries that would return the

desired data in a few steps.

Performance Tuning the LDAP directory

Another optimization step is to exploit several LDAP tuning mechanisms. In

particular, indexing is a popular technique that if employed correctly, it can significantly

89

improve search performance. As applying the previous optimization technique results

in complex search queries with several filter terms, it seems that indexing can reduce the

running time of many read-based gamLib services. Therefore, we have created indices

to match the popular filter components used in many gamaLib search queries such as

objectClass and Organizational Unit (OU). Other tuning techniques such as increasing

cache size, though not implemented in this work, might result in further performance

improvement. The development team will consider these techniques in the future if

necessary.

Evaluation Results After Optimization

Table 7.3 displays benchmarks’ execution time and LDAP access data after

applying the mentioned optimization techniques. It is clear that these optimization steps

were successful in improving the performance of various gamaLib services. Refining

LDAP search queries technique, in particular, significantly reduced the benchmarks’

execution time by decreasing their total number of LDAP accesses. However, createRe-

sourceTest and createSiteTest have witnessed an increase in the number of LDAP writes.

This is due to creation of various internal “entity containers” such as user container and

capability container which ultimately stores entities like users and capabilities as they

are created. Creating these containers at the time of creating a site or a resource poten-

tially decreases the performance of the corresponding services (i.e. createSite service

and createResource service). For instance, it is evident from the tables that createRe-

sourceTest benchmark did not benefit from this optimization. Nevertheless, other ser-

vices such as createUser, createCapability, and createRole greatly benefited as they can

assume that containers already exist and they neither need to create them nor to check

for their existence.

Taking advantage of LDAP’s indexing mechanism effectively improved the

performance of heavily search-based services. For example, this technique has reduced

the execution time of checkPermission service. Table 7.3 suggests performance im-

provement in all benchmarks that invoke checkPermission service. This is very encour-

90

Table 7.3: execution time and LDAP access frequency of each benchmark (after opti-
mization)

Benchmark Name Execution Time in sec #of
LDAP
Ac-
cesses

#of
LDAP
Reads

#of
LDAP
Writes

Without
Indexing

With In-
dexing

createSitesTest 1.775 1.55 59 1 58
getGamaSitesTest 0.123 0.116 2 2 0

getSiteAttributeTest 0.02 0.014 2 2 0
updateSiteAttributeTest 0.049 0.047 2 0 2

searchSitesTest 0.078 0.058 2 2 0
createResourceTest 0.527 0.485 20 0 20

searchResourcesTest 0.091 0.076 3 3 0
createUserTest 0.177 0.167 7 0 7

createGroupTest 0.45 0.038 2 0 2
getUserAttributesTest 0.047 0.045 2 2 0

updateUserAttributesTest 0.065 0.050 2 0 2
getGamaUsersTest 0.085 0.073 1 1 0

getResVisibleUsersTest 0.076 0.071 2 2 0
createRolesTest 0.014 0.011 1 0 1
grantRolesTest 0.321 0.303 15 5 10

getUserCapsTest 0.253 0.202 9 6 3
siteAdminPermissionTest 0.256 0.166 7 7 0
resAdminPermissionTest 0.273 0.185 8 8 0

authenUserPermissionTest 0.453 0.281 12 12 0

aging as checkPermission is one of the essential gamaLib services which will be called

frequently by communities that use GAMA 2.0 as their identity management solution.

Chapter 8

Conclusion

GSI-based security systems are usually difficult to deploy and use. GAMA

1.X employs web-services technologies and the Rocks clusters management tool to

overcome these limitations. Nevertheless, its lack of usable authorization support and

LDAP-based authentication makes GAMA 1.X unattractive to many communities. In

addition, GAMA 1.X is tightly coupled to the employed technologies. As a result, it is

difficult to replace these technologies with more recent and mature ones. GAMA 2.0 re-

solves these issues by providing a flexible, fine-grained resource authorization solution

and support for LDAP-based user authentication. Moreover, its multi-tier architecture

is pluggable to cope with the rapidly evolving relevant technologies.

The essential design goal for GAMA 2.0 is to make grid security simple for

system administrators as well as for users by providing functionalities such as resource

authorization and user authentication. As a result, administrators are not required to

spend significant time and effort aggregating separate authentication and authorization

solutions. Moreover, since GAMA 2.0 uses web-services to expose its authentication

and authorization capabilities, they can be accessed remotely from portals running on

different machines. To alleviate the installation and deployment burden on the adminis-

trator, GAMA 2.0 employs the Rocks clusters management tool. Rocks installs various

GAMA 2.0 components with minimum system administrator intervention and performs

many operations such as configuring tools, deploying web-services, and starting the

91

92

necessary services through startup scripts. In addition, since grid end-users such as sci-

entists and researchers that have little or no computer security background desire simple

experience with grids, GAMA 2.0’s back-end component creates and manages users’

credentials on behalf of them. Also, its front-end consists of a set of portals that provide

various interfaces for users.

GAMA 2.0 was developed to address security concerns in many non-crossing

communities. By having frequent requirement elicitation sessions with potential GAMA

2.0 clients, the development team was able to harness requirements that many non-

overlapping, academic-related projects share. Taking these requirements into account,

in design and implementation phases, resulted in a flexible architecture that can be ap-

plied to many projects. For instance, significant effort has been made to develop a cen-

tralized, fine-grained resource authorization solution based on RBAC models. This so-

lution is flexible in that it can be employed in a wide range of communities with different

goals and requirements. Furthermore, GAMA 2.0’s architecture supports LDAP-based

authentication to attract many projects that desire this form of user authentication.

We have successfully implemented the GAMA 2.0 reference infrastructure.

Realizing that grid security technologies and tools are improving quickly, the develop-

ment team has strived to make the implementation technology independent and extend-

able. The alpha release uses adapters (drivers) to hide the underlying technologies such

as OpenLDAP and MyProxy. Moreover, the Command design pattern was employed

to implement the drivers. The Command pattern provides well-desired loose coupling

since it decouples the object that invokes the operation from the one that knows how

to perform it. Moreover, by considering commands as first class objects, the Com-

mand design pattern allows commands to be manipulated and extended in a similar way

as any other object. At the same time, adding new commands is easy since it does

not require modifying the existing ones. In developing the exception handling compo-

nent, we have used well-known programming techniques such as the Factory pattern

and polymorphism. The exception handling solution is multi-layered corresponding

to the levels of abstraction such as drivers. Therefore, it is easily possible to extend,

93

modify, and delete the existing exceptions as well as to add new ones. Furthermore,

the GAMA development team designed and implemented a comprehensive testing solu-

tion. It consists of many unit tests that individually examine small parts of source code

and collectively constitute scenarios that model the real use of the GAMA system. Al-

though performance was not the driving factor in implementing GAMA 2.0, a sequence

of benchmarks revealed that some GAMA 2.0 services take a long time to execute. A

few optimization steps were successfully implemented that reduced the execution time

of many services. These steps focused on refining search queries to minimizing LDAP

accesses and applying relevant LDAP tuning techniques such as indexing.

As for future work, the development team will explore new methods to make

GAMA 2.0 more service-oriented and pluggable. Although the current pluggable archi-

tecture is based on adapters, it will be intriguing to investigate alternative approaches

that result in a pluggable system. For instance, GridAuth uses a plug-in stack that con-

tains the required plug-ins (see section 7.3.3). Moreover, in the alpha release, only

authorization and authentication services can be accessed through web-services calls.

The development team will analyze the advantages and disadvantages of exposing other

services to public via web-services technologies. For instance, accessing services that

write into back-end repositories such as user registration service will make GAMA 2.0

more portable at the cost of increasing vulnerability to malicious attacks. In addition,

there are still a few features that have not been implemented in the alpha release such

as certificate delegation. Furthermore, LDAP-based authentication is supported by the

GAMA 2.0 architecture, but currently not implemented. The development team intends

to resolve these open issues among others before subsequent releases.

Bibliography

[1] Akenti Certificate Schema. http://ww-itg.lbl.gov/Akenti/docs/ AkentiCertifi-
cate.xsd. Visited on December 08, 2008.

[2] Biomedical Informatics Research Network (BIRN) Project. http://www.nbirn.net/.
Visited on December 08, 2008.

[3] Community Cyberinfrastructure for Advanced Marine Microbial Ecology Re-
search and Analysis (CAMERA) Project. http://camera.calit2.net/. Visited on
December 08, 2008.

[4] DataGrid Project. http://www.edg.org/. Visited on December 08, 2008.

[5] Definition of Internet. http://www.nitrd.gov/fnc/Internet res.html. Visited on De-
cember 08, 2008.

[6] GridAuth Credential Management System. http://www.gridauth.com. Visited on
December 08, 2008.

[7] Groovy Programming Language. http://groovy.codehaus.org/. Visited on Decem-
ber 08, 2008.

[8] JUnit 4 Testing Library. http://www-128.ibm.com/developerworks/java/library/j-
junit4.html. Visited on December 08, 2008.

[9] Network for Earthquake Engineering Simulation (NEES) Project.
http://nees.ucsd.edu/. Visited on December 08, 2008.

[10] One-Time Password Authentication Solution. http://msdn.microsoft.com/en-
us/magazine/cc507635.aspx. Visited on December 08, 2008.

[11] OpenLDAP Software. www.openldap.org. Visited on December 08, 2008.

[12] Security Assertion Markup Language (SAML) Specification.
http://xml.coverpages.org/saml.html. Visited on December 08, 2008.

[13] The Advantages of Java. http://www.theallineed.com/webmasters/07072580.htm.
Visited on December 08, 2008.

94

95

[14] WS-Resource Framework. http://www- 106.ibm.com/developerworks/library/ws-
resource/ws-wsrf.pdf. Visited on December 08, 2008.

[15] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Gianoli, F. Spataro,
F. Bonnassieux, P. Broadfoot, G. Lowe, L. Cornwall, et al. Managing Dynamic
User Communities in a Grid of Autonomous Resources. Arxiv preprint, 2003.

[16] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Gianoli, F. Spataro,
F. Bonnassieux, P. Broadfoot, G. Lowe, L. Cornwall, et al. Managing Dy-
namic User Communities in a Grid of Autonomous Resources. Arxiv preprint
cs/0306004, 2003.

[17] O. Ashford et al. Collected papers of Lewis Fry Richardson. 1993.

[18] K. Bhatia, S. Chandra, and K. Mueller. GAMA: Grid Account Management Archi-
tecture. In 1st IEEE International Conference on e-Science and Grid Computing,
2005.

[19] J. Burruss, T. Fredian, and M. Thompson. Simplifying FusionGrid security. In
Challenges of Large Applications in Distributed Environments, 2005. CLADE
2005. Proceedings, pages 95–103, 2005.

[20] J. Burruss, T. Fredian, and M. Thompson. ROAM: An Authorization Manager for
Grids. Journal of Grid Computing, 4(4):413–423, 2006.

[21] R. Buyya and R. Buyya. High Performance Cluster Computing: Programming
and Applications. Prentice Hall PTR Upper Saddle River, NJ, USA, 1999.

[22] D. Chadwick and A. Otenko. The PERMIS X. 509 role based privilege manage-
ment infrastructure. Future Generation Computer Systems, 19(2):277–289, 2003.

[23] D. Ferraiolo and D. Kuhn. Role Based Access Control. 15th National Computer
Security Conference, pages 554–563, 1992.

[24] I. Foster and C. Kesselman. The Grid: Blueprint for a Future Computing Infras-
tructure, 1999.

[25] I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security architecture for
computational grids. In Proceedings of the 5th ACM conference on Computer and
communications security, pages 83–92. ACM Press New York, NY, USA, 1998.

[26] I. Foster, V. Nefedova, M. Ahsant, R. Ananthakrishnan, L. Liming, R. Madduri,
O. Mulmo, L. Pearlman, and F. Siebenlist. Streamlining Grid Operations: Defini-
tion and Deployment of a Portal-based User Registration Service. Journal of Grid
Computing, 4(2):135–144, 2006.

[27] W. Hommel and M. Schiffers. Supporting Virtual Organization Life Cycle Man-
agement by Dynamic Federated User Provisioning. In Submitted to 13th Workshop
of the HP OpenView University Association (HP-OVUA), Nice/France, 2006.

96

[28] R. Housley, W. Polk, W. Ford, and D. Solo. Internet X. 509 Public Key Infrastruc-
ture Certificate and Certificate Revocation List (CRL) Profile, 2002.

[29] S. Krishnan, K. Baldridge, J. Greenberg, B. Stearn, and K. Bhatia. An End-to-End
Web Services-Based Infrastructure for Biomedical Applications. In Grid Comput-
ing, 2005. The 6th IEEE/ACM International Workshop on, pages 77–84, 2005.

[30] W. Link. CACL, A CA System with Automated User Authentication. San Diego
Supercomputer Center, 2003.

[31] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. Peer-to-Peer Grid Computing
and a .NET-based Alchemi Framework. High Performance Computing: Paradigm
and Infrastructure, 2006.

[32] M. Meisinger. GAMA 2.0 Architecture Document. Internal Document, Available
Upon Request, 2008.

[33] M. Meisinger. GAMA 2.0 Requirements Document. Internal Document, Available
Upon Request, 2008.

[34] G. Moore. Cramming more components onto integrated circuits (reprinted from
electronics, pg 114-117, april 19, 1965). Proceedings of the Ieee, 86(1):82–85,
1998.

[35] P. (née Broadfoot) Hopcroft, A. Martin, P. R. Group, and O. U. C. Laboratory. A
Critical Survey of Grid Security Requirements and Technologies. Oxford Univer-
sity Computing Laboratory, 2003.

[36] J. Novotny, S. Tuecke, and V. Welch. An Online Credential Repository for the
Grid: MyProxy. In Proceedings of the Tenth International Symposium on High
Performance Distributed Computing (HPDC-10), pages 104–111, 2001.

[37] P. Papadopoulos, M. Katz, and G. Bruno. NPACI Rocks: tools and techniques
for easily deploying manageable Linux clusters. Concurrency and Computation:
Practice & Experience, 15(7):707–725, 2003.

[38] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and S. Tuecke. A community
authorization service for group collaboration. In Policies for Distributed Systems
and Networks, 2002. Proceedings. Third International Workshop on, pages 50–59,
2002.

[39] A. Pereira and V. Muppavarapu. SM Chung http://doi. ieeecomputersociety.
org/10.1109 TDSC. 2006.26” Role-Based Access Control for Grid Database Ser-
vices Using the Community Authorization Service. IEEE Trans. Dependable and
Secure Computing, 3(2):156–166, 2006.

[40] F. Shuman. History of Numerical Weather Prediction at the National Meteorolog-
ical Center. Weather and Forecasting, 4(3):286–296, 1989.

97

[41] J. Steiner, C. Neuman, and J. Schiller. Kerberos: An Authentication Service for
Open Network Systems. In Proc. Winter USENIX Conference. Dallas), 1988.

[42] M. Thompson, W. Johnston, S. Mudumbai, G. Hoo, K. Jackson, and A. Essiari.
Certificate-based Access Control for Widely Distributed Resources. In Proc. 8th
Usenix Security Symposium, 1999.

[43] S. Tuecke. Grid Security Infrastructure (GSI) Roadmap. Grid Forum Security
Working Group Draft, 2001.

[44] S. Tuttle, A. Ehlenberger, R. Gorthi, J. Leiserson, R. Macbeth, N. Owen, S. Rana-
handola, M. Storrs, C. Yang, I. T. S. Organization, et al. Understanding LDAP
Design and Implementation. IBM, International Technical Support Organization,
2004.

[45] G. von Laszewski. Grid Computing: Enabling a Vision for Collaborative Research.
Lecture Notes in Computer Science, pages 37–52, 2002.

