UC Irvine
ICS Technical Reports

Title

A Semantic Formalism and Associated Semantic Process for the Specification and
Translation of Programming Languages

Permalink
https://escholarship.org/uc/item/7db1s60n
Author

Hopwood, Marsha Drapkin

Publication Date
1974-03-01

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/7db1s60n
https://escholarship.org
http://www.cdlib.org/

A SEMANTIC FORMALISH AND
ASSOCIATED SEMANTIC PROCESS FOR
THE SPECIFICATION AND TRANSLATION

OF PROGRAMMING LANGUAGES

Marsha Drapkin Hopwood

Department of Information and Computer Science
University of California
Irvine, California 92664
March 1974

TECHNICAL REPORT #43 - MARCH 1974

A Semantlc Formallsm and Assoclated Semantic Process for .

the Spocification and Translation of Programming Languages

A disportation submlittod In partial satisfaction of the

requirements for the degroe Doctor of PhilOEOphy>

e

-~

UNIVERSITY OF CALIFORNIA

Irvine

N

in Information and Computer Sclence

by

Marsha Drapkin Hopwood

Connittee In charget

Profesgsor

Fred H. Tonge, Chairman

Professor Julian Foldman

Professor

Hark TFinkelsteln

1974

© 1374

MARSHA DRAPKIN HOPWOOD

ALL RIGHTS RESLCRVED

Tho dissertation of Marsha Drapkin Hopwood is approved, :
) : . . DEDICATION

and it is acceptable in quality and form for

publication on. microfllm: This di{ssertation is dedicated to my parents,

\\ kC\C}vu\ VQ—CJQ\M Cun

cammxtteo Chairman

Ida and Sidney Drapkin,

University of Callfornia, Irvine .

1974 : o

. - ' ' 151

CONTENTS

Acknowledgments o+ o o o o o e e e e e e e
Yithe o o 5 & o o o v s ¢ o o @ e v s e e w

ADSETYACT:s & o o o 3 ¢ o ¢ ¢ ¢ 4 2 0 s s 0 00

¢chapter 11 The Semantic Problem fox Progranning

Languagesd o« ¢ o o o ¢ v 0 ¢ o 0 0

Chapter 23 A Translator Hodel, « « ¢ ¢« o« o«

.

Approachos to Translatlon. + ¢« o o o ¢ s o

A General Semantic AnalyzeXs ¢« ¢ ¢ o o o

.

Inclusion of Semanties in Syntactic Speciflications

A Translator Hodel o o o o o s ¢ o o o
The Semantic Matching Proces8s. + « ¢ ¢ o
Special Hatch Treo Nodes o v v o o o o v

'

The Semantic Substitution Process. « o »

Chapter 3; The Tree Machines « + o o o o o s

Example. e e e e & & % B s st 2 0 ¥ 9 0

Chaptor &1 ‘Semantic Specification with Examples

from Algol 60 v v o ¢ & o o 2 v 0
Removing Superfluous SyntéX. ¢ o o« o » @

Making Operations Explicit (Expanalon) .

Counting S e e 8 e v 4 4 2 e 0 v e o v

Specifying Order of Exécutlona T

Copying. s 8 8 6 & ¥ . 8+ 0 v o0 * s ¥ 8

Creating Another Semantlc Specification,

Examplo. 2 6 8 ¢ ¥ 6 % & 4 & 3 ¥ 0 e e @
L

v

\d

’

.

vi
vii
viii

12
iy

17 |

19
-
30

32
. 39

59
54

- 56
58
50
63
64
67

CONTENTS

Chapter 51 Historlcal Perspectives of Semantic
Formallsms for Programming Languagese o o
'Language Hodelings o« o o o o o ¢ s o o o 270 o o0
Automated TranslatioNe o o ¢ ¢ ¢ ¢ ¢ ¢ o o » o .s.
Proofs Of COrrectnosi. s o+ o o« o o o s o ¢ o & & ¢
Formal Specification of Programming Languageg. . .
Vienna Dofinltloﬁul LANGUALO o o o o o o o v o o =«
Tha Cheatham Modal o« s« v + o o o o 6 o o ¢ ¢ o o
Chapter 6: Conclusion. + o« o ¢ ¢ o ¢ o 0 o ¢ o s o o
BIbILographye o o o ¢ o o s ¢ ¢ o0 ¢ o » s o2 s oo
Appendix I: Semantlc Specification of Algol 60 « o o .

“Appendix IIp An Example of the Application of Semantic

Transformations to an Algol 60 Program, .

Appondix III: An Implementation of the Semantic
X ' ANBlYyzZer o o ¢ o 8 ¢ 0 0o 6 4 9 o 0 s 0

: Appondix IV: A Cross-Reference by Syntactle Conatruct

“for the Semantle Speclfications ¢« o » « o

80
80
82
85
87
ag
92
99

210

244

279

~ ACKNOMLEDGMENTS

- .
» ’

I would like to' thank Professor TFred MN. Tbngc. my

advisor, who provided technical direction and guidance as
well as wunfailing encouragement throughout my graduate

education,

There are many othors who have assisted in thoe work
deseribod hers. 'In particular, I would like to thank
Professor Jullan Feldman, who provided advice and support.
His tireloéss offorts as Assistant Chancellor for Computing
created the campus computing syatenm on which this
dissertation and supporting programs wore prepar;d. Gregory
Hopwood, my husband, introduced me to some of the research
tools I used and provided eritical evaluation of this work,
the Carnegle Covporation of New York, the School of Soclal
Sclences, the Department of Informatlon and Computer
Selence, and . the Graduate Divislion of tge Universlty of

Californi& provided financial support. ' .

vi’

CVITA

October 31, 1944 - Born « Flushing, New York

19686 « B,S,, Stanford University

19661970 « Teaching and Research Assiastant, Department of
Psychology and Department of Informatlion and
Computer Scienco, Unlversity of California,
Irvine

1970+1972 - Lecturer, Unlvevslty of California, Ivvine

197241973 = Research Assoclate, University of Califovnia,v
Ivrvine

vil

ABSTRACT OF THE DISSERTATION

4 Semantic Formalism and Associated Semantlc Process for.
the Specification and Translation of Programming Languages
by

‘ Marsha Drapkin Hopwood
poctor of Philosophy in Information and Computer Science
Univorsity of Californla, Irvine, 1974

Professor Fred M, Tonga, Chairman

Dafinitions of the semantlics of programming languages
are ofton incomplete and ambiguous. In particular, it may
be difficult to determina what actlon is intended by a
particular construct in some Jlanguago,. A8 a consequoence,
different implementations of that language may produce
different results,

To help eliminate those differences which result fron
incomplete and amblguous language dofinltiéns, a formallieom

for semantlc specification and a semantic procuss are

introduced. A somantic spoclfitation for a programning .

language can be viewed as a set of state transformations,
The semantic process applies these ntave transformations to
a program ropresented és a trea indlcating the program
structure and produces a computation tree repregenting the

meaning of tho program.

The gsemantlc process can bo viewed 8s parr of 2
generalired table-driven translator for programming
languages, Although 8uch‘ a tranglator may not Dbe
particularly efficient, 1ts use produces transiations which

are conslstent with the semantic specification and thus

match - the intent of the specifier, As a gool. the

translator can be particularly useful for language debugging

and tuning.

To illustrate tha use of the semantic formallsm, a
semantic specification for Algol 60 and the results of its
application to several Algel 60 conatructs are glven, A

pemantic process coded Iin Lisp and a cross-referenco for the

somantic speclfication by syntactic' construct are also

glven,

ix

- Chapter 1 : . \

~—-

THE SENANTIC PROBLLK FOR PROGRAMMING LANGUAGES

There are many problems which arise In the study and
use of programming languages, Some of the loast woll
understood of these relate to determining what action will
be taken when a particular construct {n some programming
language 13 oaxecuted, that s, what the meaning, or
semantics, of the construct s, This secmantic problen

manifests itself in several forms. Thus we find:

1, It is often difficult to determine what actlon i=s

intended by a particular construct in somo -

progranming language, despite rather detailed
specifications given in English, Consider the

Algol 60 statements below:

Kistrues .
at=truey
if av £(x) then bicx

Suppose the evaluation of procedure "f" has a slide
effect which changes the value.of "x" to "false,"
Because of this, the value assigned to "b'" depends

on how the expression "a v f(x)" is evaluated, If

the entire expression iIs ovaluated and then a test

is dons to determine 4{f the cxpression Is true, "b"

will be assigned the value "false,” If one notlco;

i .-

2,

3,

that the entire oxpression evaluates to "rtrue' {f
any one of the components is 'true," then, since
nait evaluates to. '"true,"” "f(x)" need not be
evaluated, The value "true" will then be assipgned
to Mb 'll

The actlon taken when 'a particular construct is
executed méy differ among the various translators
for the lanpguage and among the varlous computers on
which the tranilator is implemented, Various trade
magazinos have capitalized on these differences by

running contests in which rcaders could submit a

" description of what they thought would happen when

certalin Fortran programs were ecxecuted, It is
interesting to note that the final authority in

such contosts was frequently not a language

‘spscification, but rather a particular Trortran

translator for a particular computer,

Even If tﬁgre {s no question about the meaning of

the constructs in some programming language,

producing'a translator for that lanpuage s usually
a major -offorsg. One of the oarliest algedralc
tranglators, the Fortran compller for the IDBM 704

computer, took approximately 25 man years to

. produca, Despite devices like tadle-driven

translators and other advances in our understanding’

of the processes invelvad in translation, compller

conatruction i{s often still time-consuming.
The primary purpose of this éiauortation 1s to provide a
model for programming language somantica and the semantlc
aspoct of fho translatign process in order to alleviate the

i

xinds of problems just described. ‘

To résolvg the difficulty Indicated 1n.»tha Algol
program given carlier, ;e have adopted an approach similar
to that of Garwick (1966),‘ namoly, that the meanlng of a
propram is determined by the translator for tho programming
lanpuage &{n which the program is written, This approach

must be extended to provide a moans for insuring

compatibility among different implementations of translators

for the same
idiosyncratic to the particular tranglator, :
There are many recasons why dlfferent translators for

the same language are incompatible, Some of these arlse

because the implementer may add refinements and extensions

%o a bssic language specification, Elimination of

tncompatibilities arising In this Way is. a management

problem and is not considered here, Other incompatibilitles

arise because of differecnces, such as word slze, 1in the

hardware of the target computers, While these differences

are a veal problem, they are in tho domain of numorical

analysis and are alno not considered hore, The remalning

Incompatibilitics arlse bLecause implemont&rq are forced to

translate a semantlc specification from a language like

laﬁguago. What a program does should not be

English to some computer language, Specifications in

English are not prec&uﬂ, for it is not the nature of Engliszh

" to encouraga or demand precise statement.

The method we propose for eliminating wachine-
independent Incompatibilitles among translators for the same

programming language 1s twofold, Flrst, we extend the

_ current notlions of table-driven translators to include &

table-driven semantic process, Second, we require that the
language dofinition include a semantic specification capable

of driving the semantic process, This not only provides a

"means for unanmbiguous semantic specification, but also

sinplifics - the production of translators, Once the

extended, op generalized, table~-driven translator s

‘{mplemented on a partlicular computer, specification tables:

for any programming language can be used to drive it.
The essence of this approach {s to view a translator as
a collection of language-independent processes and a

language Bpeciflcation‘ as a collection of process-

indepandent atate QQacrlptiona. The translator processes

are lexical. analysis, syntactic analysis, and semantle
analysia, The language specification state doscriptions are

lexlcal, 'ayntactlc, and somantic speciflcations of the

language to ba translated, Thease sorve as Inputs to the

corresponding processes., Anothar input te the translator is

the program to be tranalated, The output i3 a computation

tree, a tree structure which I{ndicates in a muchine-

Independent fashion the aotions to be taken when the program

{s exccuted. The remainder of the tranalation process is.

machine-dependent dnd involves elither interpreting the
-~

computation tree or “generating machine code 'for some

computer,

¥hile the munotlon of language-indepondeﬁt lexical and
syntactic analysis is not & new one, the incorporation in a
translator of a language;indopendent semantic analyslis
process which can bo driven by a process-indopendent
specification is. The notlon of procesa=-independent state
descriptiops for lexlcal and syntactlc specification of
programming languages is also not'a new one. Wa can write
lexical and Bystactlc specifications using. formallsms
kxnowing that these specifications can then be used to drive
corresponding processes, These specifications ape processs
independent Iin that Ehcy do not depond on the particular
algorithms implemented in tﬁe tranclator, The same should
be true for semantic speciflcation,

The simple example which follows {s a preview of the
notions of semantic specification and semantlc anaiyslu

.

which are olaborated in tho west of this dissertation,

Suppose we were doaling with the simple expression :language

whose syntax is given below {n Dackus Maur Form (Naup 1963),

<exp> t1¥ <term> | <exp> + <term>
<term> pin «factor> | <term> x <factor>
<factor> 11® (<exp>) | <id> | <integor>
<id» 1= ab | ¢

<integer> 11® 5 | 14

The output of the syntactic analysls process of our

, translator for the expression "ab ¢ 14" {s the parse trae.

<eXp>
. <eXp> + <term>
<torm> <factor> ..
<factor» <i{intoger>
<id> : 14

ab
The semantic analysis process takes this parse tree and the
semantlc 6pecification and produces a computation tree as

output, The elements of the semantic specification are

‘trees which describe chénges‘to be made to the parse tree by

the oeemantic process, for an expression language these

- ¢hanges include rearranging the parse tree, Jinserting

.opepators, and removing superfluous parae tree nodes, The

resulting computation tree then is

value L

access’

‘ Tﬁo‘remaining chapters and appendices develop in detall
the {deas of a semantic analysis process analogous to the
syntactic analyslis ﬁ%ocoss and a semantic specification

formallsm analogous “to the syntactlc specification

formalisms. Chapter 2 discusses approaches to translationb

and provides detalls on the programming language translation

processes, with emphasis on semantic analysla. Chapter 3

examines the output of the semantic analysis procosa, a

computation 1tree, and provides a framework for {ts

interpretation by viewing it as a program for a computer
whose basle data and control structures are trees. Chapter
4 describes the semantie specification formallsm and
{llustrates 4ts use with Algol 60 oxapples. Chapter 5
describes other approaches to somantie speciflcation,
Chapter 6 offers some conclusions about the usefulness of
this semantlic model, Appendix I gives & semantic
specification for Algod 60, Appendix II i{llustrates the
applicatlon by the semantic analyzer of the senmantic
Qpeciflcation to an Algol 60 program, Appendix ILIX is a
semantic analyzor coded din Liap. Appondix IV gives a

crosg-raference of selected Algol 60 syntactic construots

and the semantic specification olements which rolate to

thom,

28,

Chaptei 2
A TRANSLATOR HODEL

APPROACHES TO TRANSLATION

There are two baslc approaches to welting translators.
One approach {s to taflor the translator to the particular
language being translated and to the partlicular computer on
which the translator {s being implemented, Such translators
are usually designed elther to generate high quality code or
to translate rapldly, The technlquea used to produce such
translators are frequently ad hoc. As a consequence it may
take a considerable amount of time to produce a translator
and 1t may be difflcult to debug, A translator may also be
extremely dffficult to modlfy, since many parts of the
translator may be affected by a change in the language being
tranalated,

A second approach.fo creating translators is to write
general purpose processors which are capable of doing some

part. of the translation process for a large class of

'programmlng ;anguagea. " These processors roquire

descriptions of tho partlcular language belng translated,
For example, one can write a syntax analyzor, or parser,
capable of parsing any language whose syntax can be

described . {n Backua Naur Form (DNF),” One such parser has

-

been descridbed by Earie& (1970),

It 1s quite time consuming to allow a parser to analyze
ecach individual chara@tt? of an input brogrnm. To avold
spending so much time® ;araing, one can also ﬁroduce a
general lexlcal analyzer which ©reads characters from the
input program and forms them into basic units, Ar tokens, of
the language being tvan;lated. Such a processor requires as
input a description of the'tokons of the language beling
translated. The reason time i3 saved is that the prdfgbn of
creating tokena {s much simpler than the procesa of éavalng.

and thus each processor need only be powerful onough to do

the gencral task required of irt,

Unfortunately, the rest.of the translation procasa ls

usually far less general, After some syntactically correct
construct s recognized, the process of generating code or
executing the construct is wusually ad hoc, Internal
translator structures must be manipulated and code specific
to a particular computer must bo generated or executed,

Up to the completion of syntactic analysis, this
syntax-directed approach avolds the diffliculties mentioned
‘for the first ad hoc approach, How o produce lexlcal and
syntactlic analyzers of the syntax-directod approach ‘'is weld

understood, Algorlthma are avallable {n the conputer

scloence litesrature (Gries (1971) collocts many of them);

implementations of these algorithms ave probnbly available

in many 'computor installations, Impiomontation of the

<

10

" semantlcs of a language is still time consuming, and the

difficulties of debugging and modifylng are atlll present
for thils component, For the earlior stages of the

translation process, however, all 'that is necessary is to

‘produce a correct specification of the language. Debuggling

and modifying is simply a matter of correcting a lexical or
syntactic spcolficatloh..no; of changing a processor,

If there were no ﬁew difficulties introduced by
ayntax-directed translation, the technique would prohably be
more widely usodf Hlowever, the uso of general processsors
for part of the translation process often provides more

power than i8 necessary for any particular language being

‘tranalated, Hence theae translators may be considerably

" slower than those produced using the first approach.

A galn in speed may be attained by mechanically

. producing lexical and syntkctlc analyzers tailored to the

' particular language being translated. Johnson, Porter,

Ackley, and Ross (1968) describe a system which gencrates

efficient lexlical processors for languagees from descriptions

"'of the lexicon, Such processors are approximately half as

fast as thoae hand-tafloved for the particular language, but

the authors olaim that this difference can be reduced

" consideradbly,

Hueh 1mprovnmonf can be mwade Iin syntactic analysls,

Farley's parvaing. algorithm can handle all context free

|, grammars, For prograwmming language grammars, that {s,

11

unambiguous context fres grammars, the time takan to parae a
program is proportional to the -length ‘or the square of the
length of the progvamz _ﬁapend&ng on thevparticular grammar,
This 1a the most ufftciont general algorithm’ described to
data and appears to be about as good as can be achieved,
For particular grammars which possess ‘cnrtnin propertlies,
parsers can be constructed mochanically to run in time
proportional to the length of the program wilth a
proportionality constant quite a bit smaller than in

Larley's algorithm. This gadn 1s possible because the

grammar is used to build tables which UInocorporate the

necessary Iinformatlion from the grammar, The grammar is then
discarded and tﬂe parger operates from these tables, - Wirth
and Weber (1966) describe a scheme for mechanically
constructing parsers for a class of programming languages
whose grammars, called precedenceo grammars, maka it posalble
to parse without backtracking, They describe facilitlies to
detect 1f the grammar ls 4in the correct form, to indlicate
where violations of this form (precedence violations) occur,

and to construct the precedence tables used to drive a

bottom-up parser, the algorithm for which is also provided..

Such a parser Is as fast, or very nearly 8o, as. would be
possible with a hand-tailored parser, ~ Similar echomes are
avalladble for top-down parsoers, The only disadvantage of
these gchomes {is that the grammar maj n&; be in an

acceptable form and the modiflications neccssary to ' put the

12

grammar in that form may either be {mpossible, hence
requiring a more general parser, or may sufflclently distort

the grammar to make code generation somewhat difficulrc,

A GENERAL SEMANTIC ANALYZER

The model for translation iproposod hero extends the
notion of a syntax~-directed translator to lnclude a general
proceaéor for semantic analysis. Thils semantlc analyzer has
two {nputs, a parse tree (output by the syntactlc analyzer)
and a specification of acficns modifying the parse tree to
be taken when certaln subtrees are found in the parse tree,
Thus, the parse tree represonts the particular program being
translated and the specification represents the semantle

rules for the language in which the program Is expressed.

" Bach element of the semantic speciffcation consists of two

trees, The specification may be viewed as & set of state

trangformations, That {s, if some part of the parse tree i3
in some particular state (reflecting some particular
syntactlce stﬁucture). that part of the parse tree Iis

transformed Into gome other state (roflecting some

" modifications to the structure), which expresses the meaning

assoclated with that structure, The output of the semantic
proceasor Is a computation tree, which represonts the

meaning of the program input to the translator, Figure 1

“ 41lustrates the semantic process, . ,

The computation tree may be viewed as a program for 2.

"gimple” intorpraeter, since the tree nodes represent simple

13

Semantic
Transformations .

< .
/

Parse___ .| Semantic _________aCOmputatlon
Troe Processor Tree

Figurc 1, The saomantic process,

oporators (e.g., addition and tranafer of control) or

operands, Alternatively, the computation tree may ba VLewad
as a program for & computer which has a tree as its basic
data and contfol structure, as opposed to the linear
structure present In most current computers. Berkling

(1971) describes a proposed computer based on binary treos,

The semantic proceasor ltself determines how to carry:

out the stato transformations described by the semantic
specification and then carrles them out, Since oach elemont
of the specification consists of <two trees, the processor
secka to find the first of these trees in the parss tree and

{f successful replaces that part of the parse tree by the

second tree In the specification elemént, The elemonts of

the specification are orderod, although this ordering may Iin

post cases be arbitrary.“ﬂach element of the specificatlion

is applied as many times ag it 1s applicable and then

discarded., Then the next elemont is considerod,

¢

14

The notion to be emphanized {&s that the cemantle

spocification is analogous to the lexlcal and syntactic
specifications, that is, It describes state transformations,
How these transfornations are made, the analysis process, is
the ‘provlnce of the processors and need not concern the

individual who specifles tho language.

INCLUSION OF SEMANTICS IN SYNTACTIC SPECIFICATIONS
Let us conclder language specification and translation
from the standpoint of the separation of specification and

process., Usually a language definition includes = ;yntax

specification given In something like BNF and a semantie

specification given In English; For example, the syntax of

Algol 60 (Maur 1963) defines syntactlically correct language

constructs, The form of the syntactlc specification

facilitates lts use as dinput to a parser but the sctual

dotalls raflect more than syntax, There are at least three.

kinda of non-syntactic concerns lngluded in the syntax:
1, Hany metavariables are included in the syntax so
that they may be discussed under semantics.
2, Some metalingulstic formulae (ayntactic‘equaciona)
are atructured to faclllitate codoe gunoratioﬁ.
3., The meaning of certain constructs lg {ncluded iIn
the syntax, .

puncan (1966) points out that about one fourth of the

metavariables found in the Algol 60 syntax are therc so that

they can, be discussed under semantlics, For oxample,

et

13

consider tho definition of a <formal parametar>y
<formal parvameter> pix <identifier> .,

This definition could easily be eliminated; It adds nothing

to the clarity of thewsyntax., It dis there ‘8o that sone

semantics {meaning) can be attached to an occurrence of a

formal parameter which i{a not appropriate to an identifler,
The structure imposed by the Algol 60 ayntax s

somewhat artificial since many metavarlables were Introduced

to fac{litate code generation, For example, conslder the .~

dofinition of a <for statemont>y

<for statement> ;1% <for clause> <astatoment>

<for clause> :t= for <varlable> 1= <for list> do .,

The definition ‘0f a <for clause> appears to have been
{ntroduced 8o that the recognition of a metalingulatic
formula can be complated beforo the wrecognition of a
<statement> in a <for statement>, This allows an Internal
label to be placed before the <atatemen§> in the code
generated for the <for statement>, ‘

Sometimes semantics avre Imbedded {n the Algol 60
syntax, An example of this {g seen In the syntax for
“arithmetic oxprénsions. Ignoring unary opaerators, one might
normally doflne an c¢xpression as an operand, or a‘sequance

of tWwo or more oporands separated by operatova, The Algol

60 syntax, however, Is much more structured, bocauge the'

precedence of opsrators is imbedded in the syntax. One can

argue that precodenco of operatora {o not & semantic lasue

i8

. or that because it ls easler to handle precedence In syntax

~than in gemantics, procedence conaslderations belong in the
'l

syntax. Ho matter what viewpoint one takes, however, it is
clear that more structure than ig ‘necessary to dofine the
form of oxpressions has been introduced.

Thus it can be seen that language ’speclflcatlonu can
contain more information than Is necessary to dafine a
language., Some of this additional detail may be burdensome
to produce, The separation of specification and process as
proposed here eliminates some of <the need for cextra

structure, In particular, the additional detall added to

the syntax to facilitate co@e generation may not be
necessary, s8ince transformations - do nor conform to any
notions of scope associated with "code generators by the
designers of Algol 60 and thus may incorporate as much or as
little context as is necesséry. This does not result in a
shift of structure from the syntax to the semantics, but
rather allows what structure is required to be introduced
wﬂeve it can be done with the least effort, Ffurther, I{f the
formal language apeclflcation designed to drive a translator
is distinct from user documentation, {t {3 not noecessary to

Include structure In the formal ayntax to facilitate

disoussion under semantics,

17

A TRANSLATOR HODEL’

Figure 2 1is a diagram of the flow of {nformation and

control in the proposed translator. The inputs and outputs

~ .
of the processors have already been described and are

indicated by solid lines in the diagram, Flow of control 1s

ind{cated by broken lines. The lexlcal processor reads the
first saoveral characters of the program, creates a tokel,
and passes the token and conérol to the syntactlc processor,
The syntactic processor uses this token In beginning the

parsing process. When this processor can proceod no further

without an additional token, control is veturned to the

lexical processor, which then reads a few more characters.

If the syntactic processor has recognized its goal, that is,

a program, then the process {s considereod complatad., A

parse tree is output and control is passed to the semantic

processor, The semantic processor then applles all the

state transformations to the parse tree whieh apply and when

there are no transformations left to apply, the process is
considered complefed and a compufation tree I3 output,

In a slightly different model the syntactlc processor
can pass control andb a pértial parse tree to the semantic
procesgsor cach time &
somantic processor can then apply all tho applicable state
transformations to the parse treec and roturn control and the
transformed tree to the syntactic processor, When a program

" has beon recognized and all the applicable ostate

syntax cquation is recognized. The

18

]

1

1

|

|

- A |

Lexical _J
pescription Lexlcal ==
of L Processor

Output of
Lexical Processoyy

— e e]

Syntactie
Description
of L

Syntactic
Processor

|

|

1
Ju

Qutput of
Syntactic Processor
(parse tree)

Rm o e e e e e e

Semantic -
Semantlic
Processor /~—=="
I
|
Output of i

Semantic Procassor
(computation trea)

P!gdvo 2, Flow of information and control in the translator.

19

¢ransformations have boen applied, the translation is

considered completed and a computation tree {s output by the

semantic processor.

In both models, no claim of efficlency 1is nade,

Alternating betwean syntactic and semantic proceasing may

result in some saving of space, since a complete parse tree
need not be constructed before semantic processing begins,
Othor means of increasing officiency are disoussed later,
but the proposed translator 15 not Intended, for now, to
compete with productlion translators,

The only part of this translator that {s substantially
different from other translators is the semantic processor,
This processor 15 really a sophisticated pattern matching
and replacement machanlsm similar to that found in languages
1ike Snobol; however, the somantlc processor works with tree
structurss, that {8, & parse trec and the eloments of the
semantic spoﬁification,. rather than character strings. We

shall now -considar the detalls of -the operation of the

cemantliec processor,

TQE SEHANTIC HAT&HING PROCESS .

In attempting to match an element of the fomantio
gpecification to the parse tros, the aemantic processor
traverses the relovant troos--in proordov.. (A preorder

traversal consists of visiting <the voot and then traversing

the subtrees of that yoot left=to-right in preorder, The

leftmost subtree I8 traversed first, thon the gecond from
' . !

20

i “the left and so on until the rightmost subtree iz traverssd.

For the troe

$

the nodes would be vialted In a preorder traversal in the
order A, B, €, D, E, F, G; Hy I, J.) The processor starts
at tho root of the parse tree and at tho root of the first
trea, called the match trea, {n the somantle spacification
element, .The parse trees Is traversed In preorder until a
noda Is found which matches the root of the match tree, If
no such node s found, the processor fails, the current
specification element ls discarded, and the next eleument ls
considered, If such a node is found, the processor
continues traversing both trees simultaneously, attempting

to match the nodes in the parse troe with the corresponding

nodes in the match ‘tree. This matching requires not only a

‘match of symbols stored at the nodes, but a structural match

as well, TFor example, the match tree
X

cannot bs found in the parse tree

X ' .

Y

21

The processor succeeds If this node-by-node comparisen’

natches a subtres of the parse trea, or the entire parse

tree, with the match troe, For example, gliven the parse

. . -, i
iroe g ‘
X
}] /f\
L T M
. 1 . ‘
G/\i |
and the match tree -) .

f ””,JL\\‘\\

‘"or the match tree

o
>>U

.35 uged, the attempt to match falls,

o
.

22

In the first of thesae two fallures, the match troeo does

‘not match & comploto‘ aubtree of the paras tree, In the

socond, the parse tree ls ‘exhausted while there are still
nodes to bs matched in the match tree, An Initlal attempt

to match may also fall {f corresponding nodes do ot match,

as would happen {f the match tree

ds used, These fallurves do not mean that the processor

falls to make a match using the specification element, but

" vather that this atteampt falls and other areas of the parse

tree nmust be conslidered,
Subsequent match attempts begin In thé parse tres at

the node following the node matched with ~the root of the

'mﬁtch tree in the previous attempt, For exaéple, given the

parse tree

. 'R

and the matoh true

X
b
the processor agucceeds on the fourth .aétompt. A match
attempt {s Dbegun at each of the first four nodes labelled
"X" visited in a preorder traversal, but only the match
attempt begun at the fourth node "X," l,0., the ona which ls

a son of "C," is successful,

SPLCIAL MATCH TREE NODES

It Is froquently cumbersome, if not imbosalblo, to
specify an entire subtres of the parse tree in the match
tree, For this reason eight special node types are defined
for wuse in the match troe, These nodes, which are

subscerinted to distineuish different {nantancas of tham_ anai

1.

L2,

3,

LN

H

uou[!i--A nonterninal nods matches any nonturzinal

symbol of the syntax found In a parse tree, If the
syntax I3 given in BiF, HOW nmurchey SLythng
enclosed In "<® and ">¥,

SYH[I)-~A symbol node matches any symbol at a node
{n a parse tree,

TERH[I)=-a terminal node matches any terminal
symbol of the syntax, that s, any symbol of the
source language,)

ARB[XJ=~Tho fathor of an ARD node in a match trae
ls matched to a parse tree node. ARB matches zero
or more sons {(and thelr comnplete subtrees) of tha

parse tree node. Thus ARB matches an arbitrary

. 8tructure, Tor example, given the parsga trec

‘

e o3

| PR
=
. >——:;>a
o3¢

and the nitch tree

,r”'JLN‘*~\

LARB(1) M,

5.

25

ARB[1] matches

G I
Because 1t matches complete oubtreos, an ARB node

doea not have any sons,

HIN[I]=wA minimum node matches the minimum depth

(possibly null) section of a subtres between what-

matches the father of MIN and tha son of HIN, VWhat
matches the son of the MIN node must be a
descendant of a node included in wh&t matches the
HIN nodea, For example, given the same parse tres

as above and the match trae

MINL1] matches

L]

If HIN[1] i3 matched to
A 3

in the left subtroe of the parse tree, the match
¢

-

Ge

26

attempt for the entire match téee falls., Thils
fallure ocours because 2 match tree must mnatch an
entire subtres of the parse tree ' and this
particular match for HIN[1] causes the match tres

to be matchod to

™\

Since that {5 not a completa subtraee of the parse
trea, the attompt falls,

A MIN match Is determinsd by two nodes, the
node that matches the father of tbe‘ HIN and the
node that matches thea ;on of the MIN. (A HIN node
must h#ve exactly one son,) Although the nodae that
matches tha father of ~a HIN node may have several
';ubtrees, only one of these can be involved in a
HIN match, The particular subtree Involved ls the
ona containing the node matching the son of the HIN'
nodej the othep subtrees must be matched by other
matéh tree nodes.‘

BND[{J,X]-~This {s the same as MIXH with tho.
addftfona)l constraint that the mateh s bounded,
thatlla, what matches BND caﬂnot include, in order,

all the J nearest ancestors of what matches BND,

For example, gliven tha same parse tree as above and

27

the match tree

_BND(2,1]

e R e B e 5

.

BND([2,1] matches

C/D\x.
BND(2,1] doos not match the structuras

N

X

[~]

since the 2 parse tres ancestors of thls structure,

namely,
L

}

are contained in the structure,

If a HIN nodo occurs in the J nearest
ancostors of a BND node, ‘what'matohos tho NIN node
‘may have a traee depth othar than one, This depth
{g counted in detormining the J ancestors. ?0!

oxamplo, glven the same parge tree as above and the

match treo

7.

8,

28

X
MIN?l]
A

BND[2,1]

B

HIN[1] matches null and has depth zeroﬁ BHD(2,1]

matchos
D
——””"\5“~.
[X
and the 2 nearest ancestors of what watches

BND[2,1] are

e3¢

.

IL[I]--It {8 often necossary 4in translation to

~genesrate unique symbols for use as Internal labels.

If there is a prohess, a aymbol generator, which
returns a unique symbol each time It Is invoked, an
IL néde will match any symbol so generated. .

s(IL, I2, + + s, INnd--"S" is a character string,
possibly ‘null, and differant from "“NON," USYH,"
WTERH," MARB," MHIN," VBND," or "IL," Each of the
1} is elther a asymbol or the sum or differencoe of
two aymbolnz' S{IL, Y2, + + sy In) is called 3
pubscripted node, An example of guch & node Is
bnfi+1,7), A subscripted match troe node matches 3

parse treo node {f the character strings aro the

29 o . 30

same in both and for each palr of corresponding modifled slightly, If at any point in the process & match

subsecripts, one of the following holds: . ' : for the next node in the match tree cannot be made, an

a. DBoth are the same number, attempt ls made to extend the most recent ARB, MIN, or BND

b. The subseript {n tho match tree noda s a .- . match., If this is successful, the match process continucs

string of characters which has Dbeen from‘ihat'polnt. If an ARB, HMIN, or BND cannot be found

matehed during this attempt to a number ' : which can successfully be extended, a new attempt to mateh

and that number is the same as the {8 made as before.

corregponding subacript In the parse tree. ' . :
: THE SEMANTIC SUBSTITUTION PROCESS

¢. The subscript 4in the match troe node has -. ' .
: When a match la successfully completed, the second

not boen praeviously matchod in this
tree, called the substitution treo, of the specification

i
!
attempt, in which caso it 1g matched to a)
E .element, 1is conslideved, Each node in the substitution trae
1]

number, i. o,, the corresponding subscript)
is visited, If {t I8 not one of the eight types of speclal

in the parse troa. -
: . nodes described above, no action i3 required and the next

For example, the match tree nods :
node !s visited, If the rode is an IL node and It has been
Mlr,2] !
: matched .to & node in the parse troe, {t is replaced by thae
matches the parse tree nodo e -
. : : . parse tres node, Otherwise, the symbol generator s
K(5,2] o
v invoked, the IL node is replaced by the newly gonerated
If the node B] S T o
) N R Lo synbol and a match between the IL node and the generated
ML3,11 ‘ , : : :
. ! . : : ' symbol is recorded., ' If the node ls & gubscripted one, ocach
oceurs later Iin the match trese and the , , K .
e . of tha non-numeric subscripts Ils replaced by the nunber to

correaponding node in the parse tree Iis
. which it was matched, Simple expreassions of the forw A + B

HL3,4), .} . . .
P o A - B are also allowable oubscripts and they are

then tho match attompt {s mnot succesaful aince I
’ evaluated when yeplacement i3 done.

has been matched to 5 earlier Iin thls attempt,
: After all the nodes In the substitution truae are

with the addition of these speclal nodeé, partioulaprly
visfted and replaced as necessary, the gubstitution troe {s

the ARB, HIN, and DND nodes, the matching procadure must be ‘ '
. - ‘ insorted into the parso tree in place of the subtree of the

a1

parse tree matched to the match tree,

An oxample of tho roesults of the match and substitution

processes is shown bolow. Given tho parse troae
/

[
3¢
e B e B) (e S

M{1]

)

and the match and substitutlion trees

and X{J+1)]
ARB{IF’—/’JL\\\\§T3] ARBElJ

respectively, the resulting treo ls

] |

' |
A x{21] ‘e

|

Chapter 3

THE TREE MACHINE

A 'computation tree can be viewed as a prog;an for a
computer which has a tree as lts basic data and control
structure, as was montloned in the last chapter, . Thu nodes
of the tree are operators and operands, The sons of an
operator node ;re its oporands, A tree machine program,
that is, a computatfon tree, {8 executed by traversing the
tree in endorder, As each node {8 oncountered, those that
are operands are piaced on an evaluation atack and those
that are operators are executed, An endorger traversal

starting at the root of a tree conslsts of traversing ths

subtrees of that root, left-to~-right, in endorder and then

vialtiné the root, For the tree

the nodes would bo visited in an endorder traverszal In the
order ¢, D, E, B, Iy ¥, J, I, G, A, Tha order of uxvucutlon
way be changed by operators which transfer control to other
parts of the troe, The exocutlon of those operators, which

reaemble the Dbranch and subroutine call operators of

2

33

conventional machines, &n sometimes alded by the inaclusion

of threads in the computation trees. These threads ave
auxiliary links and ars {ndicated by dotted lines. In the

tree /

the node E Is threaded to the node G, This, thread may be

used by an operator to change the execution order, The next
node is thon obtained using the thread rather than following
the
conditional one, the thread may or may not be used,

The +tres machine operatoras perform three kinda of
operations: atandard operatioﬁs, passive opo;utlons, and

runtime administrati{on operations, The standard operations

resemble the operations of conventional machines, for-

example, add, subtract, load, and store,

The passive operations have ﬁo analog in conventlional
machines, although they may be compared with no-operation
instructions, The operators of this cldss serve several

purposes, They may serve as a collection point for

(ancestor of) & sorfcs of rolated aubtreos, ocuch as all the
statements in a block, They may connect the components of a
construct, guch as the clauses in a conditional expression

(ifethen-else construct), They may also position

normal traversal order, I¢ the oparator s &

+

Iy

computations In tha tree so that the dosired offoct will be

achleved Dy endordor‘travoraal and exocutlon. Ho matter

what the purpose of a passive operator may be, no acction ia

taken when a troe node containing such an operator is

viaiied.

The vruntime administration operations, as tgeir name

indicates, manipulate the structures necessary to maintain

the appropriate . environment during execution of the

computation tree, Some of these operations correspond to

operations often parfaormed by operating systoms. An. example

{s the allocation and' deallocation of a block of data °

storage. Hany of the basic servicas provided by operating
nystemsvcnn be treated as oxteﬁslona of tho computer order
codaj the user, In fact, nocad not know that these services
are not hardware operations.

Other runtime admlniatr;tlon operations, such as saving
pointera to the current environment when entering a new
onvironmenf.' are not functions normally performed by
operating systenms, 'but are nonetheless noc;asapy for the
corresct execution of a bloeck structured program., At least
one computer now in use, the SYNBOL machine (Rice and Smith

1971), includes both the standard and the . runtime
adninfatration operations In tha order code,

Host of the Individual ‘oporatovs in the tree machine
order code perform only one of the three kinds of operations

(standard, passive, or puntime administration) montioncd, A

4

)

35

few operators, however, perform both standard and runtine
administration operations., An example is the operator "to,"
whicﬁ performs the- standard operations {nvolved in
transferring control fof\anothor location and "if necessary
also performs the runtime administration operations involved

{n exiting one or more blocks,

Both the standard and runtime ndmlnigtvation operations
make use of some auxillary structures in addition to the
computatlion tres, The standard operations use an svaluation
atack, which provides teomporary storage for oparands, and a
temporary varfable satack, which provides somewhat longoéA
term otorage than ths evaluation stack, The runtime
administration 6pcrations use a block activation stack,
which contains Information for all blocks which have been
entered but not exited, and a block accessiblility stack,
which contains informatlion necessary to vesolve reforences
to variables defined outside the block ocurrently being
executed, An additional structure, the trse traversal
stack, 1s part of the control function of the tree machine,
but may also be affected by the runtine adninlatration
opurations, ’

The evaluation stack functions 'in the same manner as

tho stack In a stack (zero address) comﬁutor. Lach time an

operand {3 encountorad lt’}hﬁgfiéid on the evaluation stackj

whenover an n=ary operator ls to be cxecuted, the topmost n

* elements of the evaluation stack are tho operands, Sone .

36

such tomporary storage s necessary {f the computation tree
ig not to be modifled during executlon.

The temporary variable stack provides temporary
storage, when necessary, for the values of actual arguments
in a brocedure call, In most schemes for handling argument
passing, addreasses of some sort are passed, In sone
spltuations, for example when an actual argument is an
expression consisting of more than a single variable, the
actual argumsnt has no address, The value of the
expression, once computed, can be stored on tho'tamporary
varlable stack and readlly referenced, . Although tuemporary
storage could be provided by using the evaluation stack or
by allocating ‘temporary ' variables along vith

programmer-defined varisbles at block entry, the use of a

geparate temporary variable stack clearly distinguishos this
utflization of storage from others and provides a

stralghtforward solution,

The block activatlon stack contains a chain of pointers

connecting, in reverse order of croation, the data areas for

" blocks which have boen ontered but not exited, Each data

aroa contains, In addition to astorage for local variables,
Information relevant to resumptlion of execution after the
completion of a block, such as a return uddross;

The block accesailbllity stack contains, for each black

B which has been entered but not exited, a chain of polnters

" to the data areas for those blocks whose data areas would be

.37

accesaidble from B {f B wvero ' the blookbourrently beling
exocuted, This stack provides information needed Dby the

current block, It 1s used to vesolve global references,

By

that is, referonces to varjasbles definoed outside the current’

block,

In some instances the chalns of pointers in the bloek

accessibility and block activation stacks are the same,
Differonces in these utﬁcks can occur if nonlocal varlables
in a block are definecd by the environment in which the block
is defined, rather than the environmont In which the block
{s executed, In particulayr, the slituation ocausing
difforences In the block accessibility and block actlvation
stacks can occurAln Algol 60 when a procedure Is called,

Consider the Algol 60 program below:

bepin real aj

procedure ¥j

Li: begin raal by

LN b 32 aj
, 1] ’
end X;
L2s begin real aj
L3: X3
. 1] .
end
end T

Assumo that the outermost block is labeled "LO," The
procedure "X" iz defined in block "LO" and the varlable Yat

in tho statomont labeled "H'" refors to the "ath declared Iin

e

the flrst line of the progid%. The procedure "X" i called

in the statement Jlabeled "L3" which oocurs in blook "L2,"

Thore {8 also a variadble "a¥ declaraed In blook "L2," This -

.

L

38

variable l& not accessible during the e¢xaecution of "X," At

labsl "H,” the block accesaf{bility stack entry for the

ourrent block contains polnters to th; data aroas for blocks

wL1® and "LO," while the block activation stack contalna

polntein to the data areas for blocks "Li,® "L2," and "LO."
The treo traversal stack and the pointer to the current

tree node are eimilar to the instructlion polnter (program

_gounter) and pointer update mechanlsm of conventlonal

computarag, Updating the current trco node pointer s the
same procens as viciting the next node In an endordsr
traversal,

It should be not?d that ‘th‘ various atacks are
functloﬁally separata, This does not preclude the

possibility of combining several of them In a single

-physlcal structure,

The example which follows {llustrates several of the
trea machine operators and Indicates how the evaluation
stack is used, The oxawple gives an Algol 60 construct, the
corresponding computation treo, and a step~by-atep oxccution'

trace, The execution trace Indicates the node being

' visited, the actlon taken when the node ls visited, and the

contents of the evaluatlon atack aftor the node 1s vicited,
The ocomputation tree Qoproaonta a program fragrmont and
differs in a few detalla from & computation tree for a
complete progranm, The most noticeable differonce {s that

varfable names appear iIn tho'cxample. while in a trec for a

39

complete program, variable names are replaced by reforences

to data block numbers and displacemonts within blooka.

B

TXAMPLE T e
Algol GO construct: L1 Di=A:sB[1,KIx(C-2)
Computation troe: '

label(1] L .

accé?gfgj—_'::jflsfol value -
! « - T

A accegs[Ql value 2

/

B 1 value access[0]
accegitoj L

X

Execution trace:

Node: L1

Actions Push the symbol "L1" onto - the evaluation .
stack, ’

Stack: L1 Cwa

" Node: label(1] :
Action: Pop the evaluation otack 1 time,

Stack: oo
Node: D .

Action: Push the symbol "D'" onto tho evaluation stack,
Stack: D Cwm .

Hode access[0] v A

Action: Riplaco the symbol on top of the evaluation
stack by the addroso of tho variable named by
: that symbol, ‘
Stacks address of D LT

Node1
Actiong
Stackt

Nodet
Actlont

Stacks

Node:
Actions

Stack1i

Nodet
Action:

Stacks

Nodet
Actiong
Stack:

Nodes)
Actiony

Stacky

40

A
Push the symbol “A" onto the evaluation stack,

Cmw

A
address of D

accessl0]

Replace the symbol on top of the evaluation

stack by the address of the variable nauwed by
that symbol,))

address of A Cem

address of D

1p(2]
push 2, the number of left parta, onto the

evaluation stack. .
2 Cmw
address of A

address of D

B

Push the symbol "B" onto the ovaluation stack,
Cow

2

address of A
address of D

1 .

Push the number 1 onto the evaluation stack,.
Cowm

B

2 .

address of A

address of D

K

Push the symbol "K" onto the evaluatlon etack.
K Cnw

1

B

2
addrass of A
addrass of D

Hodat
Actiont

Stack:

Node:
Actiony

Stacks

Hode:
Actiont

Stack:

Nodet
Actiont

Stacks

L:

accesal0]
Replace the symbol on top of the evaluation
stack by tho addross of the variable named by

that symbol, .

addreass”of X S '
1 . ~ N .

B *

2

address of A
address of D

value

Repiace the address on top of the evaluation
stack by tha valus of the ltem at that
address,

value of XK Coom

1 .

B

2

address of A

address of D

access(2] A
Roplace the name (third item from the top) of
the 2-dimonsional array by the address of the
array element deseribed by T3{T2,T1], where T1
is the top of the stack, T2 is tho sacond itenm
from the top of the stack, and T3 is the third
item from the top. Pop the evaluation stack
twice, '

address of B[1,X] Cww

2

addreas of A
address of D

'

value

Replace the address on top of the evaluation
stack by the value of the item at that
address, .

value of B[1,X] Cmw .

2

addroess of A

address of D

Hodes
Action:
Stacki

‘Nodes

Aotiong

Stacks

Nodet
Action:

Stacks

Nodes
Actiont
Stackt

Nodes
Actiong

'Staok;

42

¢ .
Push the symbol "C" onto the avaluation stack,

Cmm

[+]

value of B[1,X]
2

address of A
addreass of D

access(0)

Replace the symbol on top of the evaluation
stack by the address of the variable namoed by
that symbol. :

address of C Sme

value of B[1,K]

2

address of A
address of D

value

Weplace the address on top of the evaluation
stack by the value -of the Iitem at thav
address, :

value of C -

value of B[1,K]

2 .
address of A
addrqss of D

2 .
Push the number 2 onto the evaluation stack,
2 Cow

value of C
value of B[1,K]
2

address of A
address of D

Subtract the value on top of the evaluation
atack from the value &t the next to the top,
Store the result {n tho noxt to tho top, Pop
the stack,

value of C=2 Com !
value of B{1,K]

2

address of A,
addrons of D

43

Nodos X '

Actiont Multiply the value at the next to the top by
the value. on top of the ovaluation stack.
Store the result in the next to the top of the
gtack, Pop the stack, :

Stack! value of BL1,KIx(C=2) <ww
2 /
address of A
address of D

YNodet H

Actlon: Assign the value on the top of the evaluation
stack to the number. of ltems Indicated by the
next to the top. Addresses of theso ltems
begin two down from the top. Pop the
evaluation stack nt2 times whore the neoxt to
the top of the evaluation stack contalns n,

Stack: e

Node: H .

Action: no actlon

Stack: . . Cmem

The following tables 1list.each of the tree machine

operators, the numbey of opoerands Iits takes (L.0,, the
treoa), and its

number of sona it has In the computation

function, The Opebators are grouped as standard, passive,

op vuntime administration operators, although those preceded

by asterisks appear in more than one group, These operatora

are suffliclent for, and somewhat based on, .Algol 60, Other

languagos might require some differont oY new oporators,

although the overall approach would romaiq the sanme,

a4

TABLE %3 STANDARD OPERATORS
Number of
Opsrator Operands Function :)
(sons) (ST,52, « « « denote sons loft to right)
" 2 Exponentiation: S11S2,
x 2 Multiplication: .81xs2.
/ 2 Division: 51/82, 3
+ 2. Addlition: S1+52.
- 2 Subtractions 5182,
. 2 Equality teat: S1=S17,
> 2 Greater than test: S81>S2, ,
3 2 Greater than or equal test: 51252,
< 2 Loss than test: 51«52,
£ 2 Less than or equal testy; S1s52,
" 2 Inequality test: S1ixS2,
- 1 Megations =181,
A 2 And: S1a82,
v or; S51vs2,
o 2 Impilicationt 81282, . ,
= 2 , Equivalences 81352,
ts 2 Asafignmentt Assign the value, 82, to
the n locations which are sons of Si,
access(n) ntl Cot addressi Find the address of the
' variable 83 (L1f nz0) or array olement
. S§1[52, +» » +y S{nt1)] (Lf n>0),
argoln] n Procudure call argument collectory
Collact aa sons of this node and count

the number, Ny of avrguments n a
procedure call,

decall

erase
Paindbataiy

>
<]

-
t

|

>~
[}

!

label(n]

ipln]

mark

o
=
j
=

;|

firaturn

l

valus
PRS-

-}

~Subroutine return:

48

Subroutine callt Invoke

namad by the rightmogt aon with
argunents {ndicated by the sons of the
next to the vrightmost son, Take all
appropriate snvironment adjustmant
actiona,

Eraso stack: Erase the temporary stack

up to and including the last mark.
Stop executlon,

Conditional evaluation:
If true exscute next right brother., If
false oxecuto rightmost brother.

Label collector; Collect as sons of
this node and count the n labels,
S1, «+ + «4 Sn, on a statement.

Left part collector:
this noda and count the number, n, of

left parts In the left part of an
assignment statemant, ’
Mark stackt Put & mark in the temporary
stacks .

No operation,
pPush stack: Push the temporary stack.

control to
restore the

Transfer
the <calling vroutine and
previous environment.

Unconditional branch: Transfer control
to the statament in the coumputation trea
whose label is S1,

block exit actions bafore control is
transferroed, |) i
Get value; Obtain the valle at the

location indicated by &i1.

the subroutine

Evaluate S1,

Collect as sons of

46

TABLE 2t PASSIVE OPERATORS

Number of

Opsrator fperands

Function

{(sons)

$ 2

variable

Take all appropriate

=2

mixedln)

[pair . 2

nblock 2

Caxl4,3,k,14m] 0

. statement

(S1,52, « + » donote sons left to right)

Labels-statement connector:
the labels which are the song of S1 with
the statement S2.

Program-symbol tables connec%or: Connect
the computation tree program, the
program-symbol table separator, and the
symbol table tree for the program.

Argument node for ith argument: Connect
all the parts of the ith argument of a
procedure call,

collector; Collect as
all n
given

Array dimension
sons of this node
bound-upper bound pairs
dimensions of an array.

as the

and counditlonal

Connect the
condition (S1), the son to execute if
the condition is true (S2), and the son
to execute if the condition is false

(§3),

“expression
connector:

Conditional

Statement-expression collector:
as sons of this node n statements and
expressions, where the collection is to
be treated as a unit,

Array dimension lower-upper bound
connsctors Connect the lower bound and
upper bound of an array dimension,

block
name to
formal

name-formal paramecter
connector; Connect a procedure
the symbol table for the
parameters In the procedure,

Procedure

Symbol table (symbol collector): Collect
ag sons of this node symbols in Dblock i
at leval j where

k = nunber of units of varlables

) = pumber of unlts of own variables

m & block number of father block,

Assoclate .

lower

Collect’

stat(n) n
symbol n
B ALEAES

W7

Statement collectort Collect as sons of
this node n ntatoments, wheres the
collection Ls to bo treated as a unit,

Symbol~attributes connactori Connact a
gymbol and its n-l artributesn. :

L

TADLE 31 RUNTIHL ADHINISTRATION OPCRATORS

Humbor of
Operator Opcrands Tunction

denote song left to right)

(sons) (51,52, o o o
hii,3) 0 Block head; Save the current
_ environment. Allocate space for
’ ' variables. Allocate space for own

variables if this is the first. time the
block has been entered, 3

ptli,3) variable Block tail: Deallocate space for
variables local to this block, Restore
tho previous environment, .

2-3 Subroutine ecall: Save the current

feall
. environment including the return
address., Transfer control to the
youtine being called.
codeh 0 Code head: Indicate the beginning of a
gazttl
' code procedure body. The syntax and
cemantics of this code are machine-
dependent and are not specified in Algold
60.
codat varlable Code tail: Indicate the end of a code
Lo .
procedure body. The syntax and
semantics of this code avre mnachine-
dependent and are not specified in Algol
60, .
#Rpoturn -0 Subroutine return: Restore environments
AL ALY
as necessary, Go back to point of call.
hto X 3 Unconditional branchs Deallocate space
: » for variables anpd restore environments
as necessary, Transfer control <o

) statement labelled Si1,
The following tables 1list each of the standard and

runtine administration operators and lts gffect on the

varloug stacks, The passive operators have no effect on any

of the stacks,

49 ' | : o . ' 50

' . accossln] T(n+1)svaddress of T1 (If n=0) or address of the
array element T(n+1)[Tn, « « « T2, T1] (if n>0)e
Pop the evaluation stack n times.

TABLE 41 STANDARD OPERATORS

"

Ogerator‘ Lffect on Stacks
{71, 12, v ..+ denoto evaluation stack elements

from the top doqp.)

a»gstn] Push tha number, n, of arguments in a procedurs
. call onto the evaluatlon stack,

4 T2:s724T1., Pop the evaluation atacke . o
. ' wcall Save the current environwent, including the
* T2:=T2xT1. Pop the evaluation atack. pointer to the next computation tree node, in tha
: . accessibility and activation stacks. Enter the
/ 72:=72/T1, Pop the evaluation stack. : ; . block 4in which the procedure being called is
. ! S defined, allocating any space defined for the
+ 721272471, Pop the evaluation stack. ' : . block (formal parameter space) and creating new
' Lo) . entries in the accessibility and ‘activation
- T2:=T2-Ti. Pop the ovaluation stack. I stacks. Copy the subroutine call arguments from
: o the evaluation &tack into the formal parameter
® T2:2trus {f T2:Ti, false otherwise, Pop the slots. Put a block mark in the traversal stack
and traverse the computation tree without

e
evaluution stack.
exacuting until the ":" of the construct which has

the procedure name as label s recached., (This

1}
|
!
> Toietrue 1f T2>Ti, false otherwlse. Pop the
rrue 1a.88
evaluiation stack, . .) I same point Is reached by following the thread [from
. {-. the procedure name in the symbol table.)
2 T9¢=true L1f T22T1, false otherwlaae. Pop the [)
evaluation stacks ! erass Erase the temporary stack up to and including the
1 S
. last mark. :
< To;ztrue 4Ff T2¢T1, false othervise. Pop the i
evaluation stack. . i R halt Mo effect.
s T2:=true if T2sT1, false otherwise. Pop the .)) Y ' pake the appropriate descendant of the node on top
evaluation stack. . : S . - . of the traversal stack (the middle son if the top
. . : C of the evaluation stack is true, the right son if
» T2:sgrue i1f T2#T1, £false otherwlse, Pop the o , it is false). Pop the traversal stack if the
evaluation stack. S ; . ‘ right son s solected, Change the compuration
) oo . tree polnter, Pop the evaluation stack,
- Ti¢=ztrue if -T1 Is true , false otherwise, ,))
ot o labelln) Pop the evaluatio '
A T23=true 1if T2AT1 is true, false otherwise, PYop : . “"'““E] P n etack n times,
the evaluatlon stack. ’ 2plnl Push the number, n, of left parts Iin an assignment
. . statement onto the evaluation stack.
v T2:ztpuc LF T2vT1 is true, false otherwise, Pop . .
the evaluation stack. . Y " mark Put a mavk Iin the temporary stack,
) : : ' harzs
> T2:=strue if T2oT1 is true, false otherwise, Pop o . pull ' No effect
the e¢valuation stacks ' — .
S T2;:true LF T2sT1 4s trus, false otherwise. Pop ‘ usht , Push the tempovary stack,
the evaluation stack. ' : fpoturn Deallocate storage fop the pvoc:duro bloeck, Pop
I * tho accessibility and activation stacks and
e Store Ti at the locatlons whose addresses are . : : ~ . postore the old computation tree pointer, Pop the
given by Ti, for J3s5isT2+2, Pop the evaluation o graversal stack until a block mark is romoved,

stack T2+2 times,

52

51
hto Extract the block number and level fron T1, -If ; oo TABLE 51 RUNTINE ADNINISTRATION OPERATORS
the block number and lavel are not the same as for . :
the current block, do actions for bt (block tail) H . orator Effact on Stacks -
and pop traversal stack to last block mark until L Qperat>” —
the block number and level are the sane. Go to . pbh{i,J] Hake new entries In the block accessibility and
node bh (block“head) for the block in which Ti is ' . - activation stacks. - Allocate space for variables
dofincd and traverse tho computation tree without . . local to the block, copying values of own
" of ” : ‘ ’ variables Lf necessary., Put a block mark in the

executing (or stacking oporands) untll tho "
the labeled construct ls reached., (This same
point is roached by following the thread from the

Yabel in the symbol table.)

traversal stack.

pt{i,3) Deallocate space for variablaes local to tho block,
: gsaving values of own variables Lf necessary. Pop
the block amccecsibllity and activation stacks.

e

valuo ' T1:svalue at the address T,
hcall Same as under STANDARD OPLRATORS.
codeh The effect of code procedures {s wmachine-dependent
and honce the effect of this operator {8 also

machine-dependents

The effect of code procedures is machine~dependent’
and hence the cffect of thls operator is also

nachine-dependent.

Wpeturn Same as under STANDARD OPERATORS .
s —

codet
LA N

Same ab under'STANDARD O?ERATORS.

—

’ ' - e » o " ko .

JChaptcr 4
~
d /

SEMANTIC SPECIFICATION WITH EXAMPLES FROH ALGOL 60

A complete somantic specificatlion for Algol 60 is glven
in Appendix I. This chapter iLllustrates the kinds of

functions performed whon those spocifications are applied to

a parge troe. It also glves some indication of the effort
raquired <to produce a semantlc specification for another
languago..

The functions performed by the appiication of the"

semantic transformatlions ares

i, removing guperfluous

nodes from a parse treo which ard‘not meaningful in
arriving at a computation treej

2, making operations expliclite-putting nodes Into a

tpree which are impliecd but neod to be made explicit

at exacution}

3, counting--deternining the numbey of instances of a

construct and grouping them tqgather so they can be
treated as a unity .
4, opecifying order.of oxocution--arranging nodes in a

tree so that thoy are in the proper order for

oxecutiony and

5, copying--noving information from ons part of a troé

syntax=w-aliminating those

_contalins move than one function,

54

to another or replicating information, usually for
the purpose of gathering information in one place.
The semantic functlions ave lllustrated below. In the
example troes, the metalinguistic variables of Algol &0 have
boan'roplacod by two~lotter abbreviatlons, Apéendix I gives
tha correspondence between the abbreviations and the actual
metalinguiatic variables.

One or more of the semantic functions may be present in
an oloment (pair of trees) of the semantic specification.
In the percentagas given below for indlcating the number of

elomoents inoluding the variocus functions, each eloment which

1s counted once for each

function, Thus the percentages total more than one hundred,

REMOVING SUPERFLUOUS SYNTAX

Many of.the nodes In the parse tree for an Algol 60

.program can be eliminated in producing a computation tree.

The nodes may be superfluous for several reasons, These

includes
1. .The nodes were used in some transformation and are
. no longer nscessary,
2, The nodes are present bocause syntax was Introduced

in the language spacification to facilitate
discussion under semantics op to facllitate some
notlons held by the dosligners of the language
pelating to how -and when code should be generatad.'

This usually ylelds vrelatively long parse tree

55

branches in which cach node but the leaf has one

son, These nodes are not meaningful in arriving at

a computatlon tree.
-
) ’
3, The nmnodes are'present because the syntax notation
usad, BNF in tho case of Algol 60, {8 vecuraive, A

pocursive notatlion may lecad to a left-branching (if

loft recursion is wused) or rightebranching (if ‘-

right recursion i3 used) subtrea, These nodes are
not meaningful {mw arriving at a computation tree.
&n exanmple of the removal of superfluous syhtax can be
seon by considering the aseignment statement
A:=Bi=CtwD

which has the left-branching parac tres

———————"‘""‘_—‘—_—_———__—iénl‘
<ll>) <a9> .
r s b
<1ll> ;1p> <vr> 1
<lp> <v£:~‘§~_~?§ ' é
<vr> H é

i

the left-branching structure does not contribute to the’

meaning of the conatruct, In particﬁldr, all the'varlables
to the left of asafignment operators aro assigned tho value
of the right hand side, It would scom that all the left

parts should be on the same lavel, that la, brother nodas,

56

/ tppansformation B4,
<an>

/“’\ '
aj’\ CARBL2] --> W N e
ARE[1] <lp> ' ARBéaj

ARDES]
when applicd to the parse tree above and the regulting trooes

three timos, removaes this left-branching structure, yielding

/M_
. <ag> o
;

<1lp> <lp> <lp>
<vr> ;= v 1 . <vre> IE 6

i - b ¢
Approximately forty-five per cent of the trece

transformations for Algel 60 include removing superfluous

syntax.

MAKING OPERATIONS EXPLICIT (EXPANSION)

The gtatements one writes in some high level

programming language are usually a shorthand for a detalled
gequence of operations, One of the tasks of the semantlic
speaification {s to put in those things which are implied

but need to be made expliclt at runtime, In the assignment
statenent

Ar=By=Cs=D
;ha variable "D" {18 an exprossionj we have to dotormine the

address of "D" and then tho valua stored at that address,

For ‘the variables "A," "B," and "C," however, all thar has®

"to ba datermined iz the address of each, Transformations 87

<gv>
<yl
<id>

sYu(1]

and 88
<pr>
<vl>
NONéi]
Non(2]
accessl[k]

!
syylil

when applied to the tree

<VT> v <vr>
<sv> (Dl) <8L>
<v£> <vl> <v£>
<id> <id> <i£>

wady

TS

<vr>

<gv>

<vi>

accola[O]

<id>

SYHEI]

<pr>
<vr>

value

NON[1]

|
NON[2]

access[k]

SYH&i]

§7

58

make these detalls explliclit, ylelding,

A 1p[3]) <ae>
<vFF*"—————__‘——fﬁz:—n—-—__—-__"_?V?> V <ai>
<5J> ‘ <sv» <sl> <tm>
<vl> v.<v1> <vl> <fa>
accoesas[0] accesé[ol . accass[0) <pr>
<id» ' <id»> ' <id> <vr>

A B . 4 value .
<SV>

<vi> '
access{0)
cid>
. }
" Approximately thlrty-flV{ per cent of the tree

transformations for ‘Algol 60 include making operations |

explicit,

COUNTING

(X
There ave several situations In which .more than one
{nstance of a construct occur and theso instances arc to be

treated as a unit, For example, in the assignment statement

A32B3=Ci=D

the value "D" ls to ba assigned to the threo left parts "A,"

#g," and "C," In dolng the asslignment one nseds to know how

many variables are to be aublgnod the given value,

In order to group these Instances and count them while

they are beling grbuped, two different transformations nmust

be applied, The £irat of thesa inserts a collector node

which has a gubscript. The next transformation counts an

-

instance, adds one td the subseript, and makes a change 80

that the Iinstance cannot be countod agaln.

After several transformations, . the tree for the
assignmont statement above is
i
/

_’__‘__________.iﬂ%ﬂl_____________‘_ a9
<1p> <1p> <ip> : b
<vp> By <yr> e} <v£:--~‘73

i ok ¢

The collector node ggtol has already been inserted,

Transformation 86,
,I

-1
v

[\
1p[i) syu(2) -> 1pLi¢1) SYH[2],

ARB[1] <lp» ARB[2] ARB[1] sYH[1] ARBL2]

SYK(1] HE
when applied to this tree and then to the resulting trees as

often as applicable, counts the number of left parts in the

trec, yloelding

lpl3 ' <ay»
hgf] ; L)
<y 5> <vp> 13744 . . D

A B ¢ o :

Each application of ‘transformation 86 adds one to the

60 -

'subséript of tha lp node and removes one <lp> node, - The

removal of the <lp> node prevents counting the corresponding

loft part again using transformation 86,

In this example theras are supov?luouu <lp> node which
can .Be removed. If there had not been superfluous <lp>
nodes to remove, a marker would ha;e been I{ntroduced and
used to make changes. The transformation which introduced
the node &REOJ would also have placed a marker as the
leftmost son of the 1p(0] node. Each application of the
tpraneformation to do the counting would have added one to
the subscript and moved the marker over the son immediatoly
to the right of the marker., Eventually the marker would be
the wvightmost son of the 1ip node. Then & third
transformation would be used to remove thils marker.

Approximately thirty per cent. of the trae

transformations for Algol 60 Include a counting functlon.

" SPECIFYING ORDER OF EXECUTION

The order in which ‘information appears in a source

program is not always the order in which it should appear in

" the object program. Fop example, declarations must pracede

statements In an Algol 60 Dblock, If ona of these
declarations 1s a procedure doclaration, then sonme provision
must be made to avold "falling Into" the procedure upon
entering the block {n which it ls declared.

After geveral transfornations &’ partial tree ,

corroépondlng to a procedurs daeclaration would be

61

' <ub>»

—/\
> <id> . <p9>

TERA[i]

Transformation 43
<ub>
<dc> <pc> s
ARB{2] :
ARB(3] <id>» <ph>
. TERM[1) ARD[1] »
‘ <ub> ’
<dtf——”/}\\w

TERM[1]
ARB(1] - . peturn

when applied to the tree above, insorts a transfer around

the procedure body, yieldling
‘ ' <ub> ' A
<4W : .
uliy l gm

<id> . stat[2])
o TT———
TERM[1) K return

This transformation eliminates the ﬁoaaibility of

wgalling into" a procedure declaration, The problem of

peferencing a procedure from varlous locations in a progranm
{s s8till present, In fact, there is stfll the general
problem that information noeded for continuing the exccution
of a computation is not alvways avallable at the next node.
another speclfic example of this occurs at bplock ontry, vhen
it I8 necessary to reference Iinformation pertaining to
storage allocatfon for the block. To avold repeating the
{nformation at each node whero it wight be referenced,

Linking s done. For example, part of a parso treo.for a

program after many transformations might be

block(h,2] . sx(®

Tranaformation 212

R) 2p
anz: : HINE]—/\H\MEJ
blolk(4,3] stf,3ik,,nd =w> belfy3] asliid,Dial)

' 4
- aroda) . o oenI I o ARELL) o

1inks block allocation information (rlght branch) and the

e oo -y
——n e -—‘~
LZTEET TR T TSI _

oo ~ DA
g ~N\
,.t.t'iQ stlW 57,0021 0 1)
T3l - ’d

L ToLTmo==E=

69

Approximately fifteon per gent of the tree

transformations for Algol 60 include sapecifying order of
exscution, - ' '.
-
s /
COPYING

It {5 sometimes necessary to copy information fronm one

spot in a program to another, in some cases erasing the

original copy, in some cases not, For example, the symbols

defined in an Algol 60 declaratlon are ontered in a symbol
table; the actual declarations are discarded.

Part of a parse treo for a progran after many

trans formations might be

' ap
". '___’_,_.———-—-‘""m\.l. .
bl3,2] at[3,2,1,0,2]
<d% EZI—“——'-T~‘—‘-? . '

: > sym
localv(0] f'ﬂ—‘—:szj:“-~—5
] .

Xy 3z

intlgcv

64
Transformation 163
.=
HIN[1] , : NIN(2)
block(1,4] - V atlf,3,m,0,1]
ARBITT <abs ARBL2) 'Anxfgf—‘_—-—f:::zsjizgsj —>
localv(k]
TERIET) | ARBEA]
ARB[3] . .
ap
HIN[1] HIN[2]
block[1,3] o stli,3,m,0,1] .
- ARB{1] «<dc> ARBt23 ARB{S] symbol ¢ ARB{6)

locall[k*l] TERH[1] ARBL3] [x+m]

v ARB{4]
when applied to the tree above, copies tha integer variable

declared in the left branch into the symbol table of the

right branch, ylelding

ap
b Ty
b1k

168%03,2] .. , 5t(3,2;1,0,:2)
localvl[l]) f real xif"‘—§§i1::t~h~h§1

[=tutiatabaii

Approximately tWenty-£five per ceont of the tresa

transformations for Algol 60 Include copying,

" CREATING ANOTHER SEMANTIC SPECIFICATION

Producing a semantic spocification for a p}ogramming~

“language using this model Ls a matter of devermining what

65 -

the computation troes for'progvums written In the languagse

should look like, Hany of the transformations in a semantlc

specification corrospond to particular syntax equations.

The reasoning required to *produce these ls similar to that

-required to do direct code gencration for those equatlons,

These local transformations oeliminate syntax devices (like

left and right recursion) which have no semantlc content and -

produce operators and operands assontial

pweaning of tha syntactlo constructs,

The global transformatlona are required for those

situations where the information provided by a single syntax

equation Io not sufficlent tb identify what computatlon.troa

segment should be produced, This is the same situation in

which direct equation-by-equation code generation is

inadequate. A few global transformatioﬂs may also be used

to replace a group of local transformations when it is

convenlient to do so. For example, rather than have ove

transformation for each syntax equation which -creates

superfluous parse trée nodes, it is more convenlent to have

a few global transformations handle most of the elimination

of puperfluous nodes.

.

Another consideration In producing a spacification la
the generallty of the transformations, It is possible for a

single, generalized transformation to apply to several

constructs, Alternatively, more specific transformations

which cach apply to an individual construoct may "be used, ;

to exprass the

o operate faster.

66

The forwmer, mors general transformations ylsld a more

compact specificatlon, but the latter, more specific

tvansfornatlona' often make the semantic analysis procoess

In particular, the tree matching algor{thn

in the analysis process may do a lot of necdless

backtracking if there are few specific nodes In the
¢ransformations. This {s especlally noticeable 1f the next

node visited after an ARD, MIN, or BND noda is a SYH, NOX,

PERM, or other nonspecific node.

ordering the transformations must also be considered in

producing a semantic specification, For most of the

transformations in the semantlc specification for Algol 00

given in Appendix I, ordering 18 not - important, No matter

in what order the transformations' are applied, the rosults

are the sane, These transformations are assigned an order

" atrlotly for convenienca,

Some of the transformations do require ordering., For a
few, ordaring ls mandatory., For example, transformation 176
yemoves all remaining nonterminal symbols from the tree,
This transformation must coma after all other
trans formations wﬁich must 4include nonterminal asymbols to
ldentify the context in which they oparate,

Another kind of ordering occurs because two or mors
transformations may apply to & particular construct and cach

changes the construct in some way, Because all but the

‘#ivot of these transformations apply to & changed aubtree,

67

the transformations nust by ordered B8O that each

incorporates the changes made by the
transformations., TFor ek;mg}e, transformation 212 replaces a
node block(i,j] by two othor nodos, one of which lo bt(i,i1,.
Transformation 167 includes a nodo gigghfi.jj. If the order

of these tWo weare reversed; and 212 came first, then

transformation 167 would Include & node gg[i,j]'rather than

block[i,3].

EXAMPLE
The oloments of the semantic specification for Algol 60
are ordercd so that subtreos of a parse tresc may first be

handled separately (perhaps in parallel). When all these

local transformations are completed, the later, more global,

elements of the speciflication are applied,
The cxample which follows {llustrates the application

of tho scmantlie specification to a parse tree, To make it

easier to see the offects of each transformation on the

parge tree, certain subtrees are not explicitly given in

each treo, Thus in one tree ono or more subtrees may be

shown with a dashed line separating the subtree from its

root and with a number onclosed {n a ciipcle at the slde. In

the noxt tree, the oncireled number appears in place of the

subtree, Finally, In the trea

affecting tho subtree {s to bo applled, tho completo subtres

i{s reintroduced, In this example, the senantic -

apeeification is applied to the parse treo for the

previous-

to which a transformation

68
j asasignment ﬁtatenont .
AixBt=Cx(D~2).
The parse trea for this statement is
<an>
<ll> : <ag> .
PO
<ll> <lp> <ga>
<lp> . :;»;@ L <tm>-
;;r;(:> 7 _<sl> . <t£;"’——:;1:‘-§‘:?3>
<gv> ‘Yl’ <fl> l <pl>
<yl> <IA> <pl> (*—T"—:;Izs_-‘~7‘3
<i£> i <vl> <si> .
. l <sl> . <sT> <ad> <yn>
‘<vi> <tm> 1 <fa>
<id> <f1> <pr>
[<pl> <un>
<vl> 2
Lo col>
aab

The firat applicadble transforrmation {s number 084

<1m23 --> ARB[1] <lp> ARB(2),

ARE(1) <ip> ARB(3)

|
ARB[3]
This transformation collectas the left parts (the variables

69

to which the valus of the right part is assigned) at the

gams level In the tree, Two applications of this

transformation yield the trec
’

<aer>,

<lp>) <lp>»

After these two appll
The noxt applicable transformation is 85,

applicable.
<an>» 18
ARBfZS”"/f-~“;E§t13 -—> lRfES’——"—---§3F}1J.
ARB%QJ ‘ ARB%i] ~ ARB{2]

tho main purpose of which ls to insert into the trec a node
used to count left parts, The application of this

transformation ylelds the tree .] : e
iplo] <ag> .
/\ .
<ip> <1p>

Now the number of left parta in the assignment

]

statement can be counted, The next applicable
transformation, number 86
x ™ .
ApCi) SYM[2] ww> 1plitl)] SYH(2],
r‘:::::::___~___-;‘--_~_t
ARB(L] <lp>» ARBL2] ARBL 4] - ARBLH]
SYM(1] e ARBL1) SYH[1) ARB(2]

|
ARB[3]) . ARB[3]

catlons, transformation 84 is no longer o

L4144

70

does thia counting and also eliminates suporiluous

- assignmont operators,, ylelding

i£[2] <ae>

<gv>

<vi» . . .

<1d> . ' -
A

after two applications,-

The next two transformatlons are concerned with'

- {nserting operators to faetch the address and contents of 2

location. transformation 87

ki . wr> . <vr>
<gy> <sl>
<vl> o .--> <v£>'
<id> ‘ access[0])
syu(a) ' <id>
’ SYH[1]

" inserts the address fateh (access) operator before simple

variables, This transformation applies at four difforoent

places Iin the tree, ylelding

apl2]
<gv> <sv>
<vi> <vi>
access[0] access[0]
<$A> <id»

A , , B

after Ffour applications.
<pr>
<yp>»
NONEi)
nou(2l
access[k]

f
SYK[1]

: . access[0) <fa»>
Becess)

71

<ae>
<gay
<tm> /
——"”—"
<tm> <mo> <fa>
<fa> L4 <pr>
<pl> <ag>)
<Svp> <nay>
,,,——"’1“‘*--._
<0L> <ga> <ad> <tn>
<vi> <tm> - <fi>
<pl>
<i£> <pr> <ui>
c <vr» ;
<gv>
<yi>
accessf0]
<id>
D

Trangformation 88

<pr>

AVr>

- value'

' NONE!J

NoN[2)
accoas(k]

SYH&i]

72

{nserts the contents fetch (value) operator in arithmetic

exprossions, This transformation applies {n two different

placos in the tree, ylolding

o Cdpl2] <aT>
(:}—‘————’——f---n-z:) - <ga> S
) <ti> ’
b} <tﬁ;—’—“:;1:-§~‘:?§> .
‘fl> l <pl>
<pl> (——’*‘—::1:‘f~‘-‘~3
<vr> <3l>
!ﬁiﬂi <ga> <ad> <ti>
<BV> <tm> : - k <fax
<yi> <fa> <pl>
access(0) <pr> .
<id> <vp> ;
¢ yalue
<v£>
: . . access{0]
C ’ ‘ <id> K
. . o |

after tvo applications,

The noxt filve tpansformations manipulate the fors of

.-

‘arithmetio oxpreasions, Transformation 90

'

<pr>
(<ac>

ARB{1]

removes parontheses, ylalding the tres

1 .3

iaC3j________———‘———b~\-.~_:3?,

oS,

Transformatlon 117

NON[1]
syxilj_ <mo> SYML 2]
ARB({1] ARB(2] ARB[3]

<tm>
<fa>
<pr>

<yr>

<gVv>

<viy

access[0]

-

<sa>

<tm>

<qV>

<yi>

access(0])

<id»

D

SYM[1]
ARB(1]

<ae> .

ARSE;]

<moY>

ARB(2)

73

sYH[2]
ARBL3)

74

node which is the class operator for

moves the
multiplication (L.0., <multiplying oporator>) to a position

po that it is a father node of its operands., Application of

this transformation ylelds the tree

g2

: a/\l s
m. | <s;ls>

<ma>

——*’—_———1---_-‘~
<tm> X <fa>
<fa> <ag> .
<pr> <ga>
<vrp> . <gd> <ad> <ta¥»
value <tm> - <fu>
<si> <fi> <pi>
<vi> <pr> <ui>

aceess{0] <vr>
accesd

<id> value

é <sY>
-, . <v!>
» - ggggég[cl
<id»

D

Transformation 110

NON(1) : <ady
" 8YH(1] <ad> syul2] 114 SYH(1] ARB(2)
AR {2}’ Ané 2] ARI[SJ. ARD[1]

syu(2l

ARB(3]

.

}
' 75 76
is the pame as the previous transformation exaept that it - e . a : '
appliea to <;dding operator>, Application - of this : . .: - 1 f5f'""_‘f————__—“---:33>
transformation ylelds the tree : A (:5“"—;JL-—-"“I:) . <sl>
1 rﬁ//'\mf> - R - <tm> :
T o S o by
<ml> : B _ a :<pl> . <a£>
<tm> : ' i o L ' i ' ‘ <vxl-> <sm>
<fi> <ag> ; " ' Xﬁlﬂi <to> <f1> .
<p;!~> <ad> §) _ <sv> <far <pr>
<vr> <sa> - <tn> ; <vi> <pr> <un>
) l/_a_i_u_c_s_ ctm> ‘ ' <far .o " :) access(0) <vr>
<s$> <fa> <pr> E ' <id> value
<vg> <pr> _ Lun>. . 'i ’ : . . . é <gv>
accas‘xs[O] <yr> ’ 2 . o)) ' <vi>
<id> valus i) ' ' access0]
é <nl> o - ’ N » o © <id>
<v£> . h L ‘ A
accesal0] : . ., o rransformation 125 .
<id>) ' B ' . s’ > TERMLL)
P ' ARGL1) TERK[1) ARB[2] ARB(1] ARBL2)
Transformation 124) ,‘ - : ' . is the same as tho previous transformation except that it
<mo> ELTd TERH[1] . applies to tho addition class operator, ylolding the trae
ARST1] TERH[1) ARB[2] ARU[1] ARst2) ‘

replaces a class operator, &n thiz case the rultiplication ,

class operator, with the actual operator, ylolding the tree . o

-~

77
o .
<vF§""——’~N\~§§:E}> : <al>
<5l> ?ci> l /
<v1> <v1> <t71""’—’*-~‘""??a>
‘accesal0] access[0) <fa> . . '
<ié> <id> _<pr> l
A B ' <vr> <aE;—T””’-~.~.~:?T>
xgigg <t$> <far ,
<gv> <fa> <pl>
. ' <v}> <pr> . <un’>
. access[0] <vr> 2
<LA> ‘'value
c <gv>
<vi>

éccess[O]
<i£>
D
The last two tranaformations which apply eliminate

suporfluous nodes from the tree, Transformatlion 15¢

NON[1] ‘ 'Nouizj
Noufzj > ARB{1]"
ARB[1]

[——

roplaces two nontorminal nodes by a single nonterminal node,
This transformation c¢an be applied twenty-two times to the
treo above, ylelding, after the twenty-asecond application,

‘

78
the tree ,
. .
- wir | o
acéﬁ?gfzs‘—’_-~—:;;33a[O] l
<LJ> <14> <v£;"—'—f’ﬁ-“‘~:3‘>
A B value]
. acceis[O] <vi;””"’~\‘\\~?ih> .
Tab vakue }

[nccula[O]

<1L>

The last transformation which applies, numbor 176,

NON[1] o > : ARB(1] ,
ARB[1]
elinminates all vremaining nonterminal nodes., After nine

applicatfons, the resulting computation tree is

vam/_. .l,

accdass[0) accese[0]
. I L aeceés[O] vafﬁzﬂ—*—f’.~‘~fﬁ~‘3

é ggggéi[OJ
D
17 this assignment ostatement wore JIncluded Jin a
program, the resulting computation tree vwould not include

the variable namos "A "

would have been roplaced by

"D." "c'll

and "D," These names

referencos to tho blocks in

79

which they were declared and to the displacements within the

blocks. One or more of transformations 167=173 would have

[

been used to do thisfreplacomont. Other transformations,

including some from 1-30 and 130-166, would have been used

to bulld the table of information used in the roplacemont,

An example for a complate progran is given in Appondix Il.

v e e

. AChapteﬁ)

HISTORICAL PERSPECTIVES OF SEMANTIC FORMALISHS FOR
. PROGRAMMING LANGUAGES '

Semantic formalisms vfbr‘ prOgramming languages have
thelr roots din three overlapping arecas of ‘concern. These
ares

1, Language modollng--the desire to spocify. both

natural and artificlal languages completely and to

examine their properties;
2, Automated translation--the desire to mochanlze the
translation process for programming languages; and
3., Proofs of correctness-=the desire to axamine
notions of equivalence of programs culminating in

the proofs of correctneas of computer prograui.

- This chapter revliews some of the early devolopments in these e

three areas and describes some moro recont work in

formalisms for programming language description which is

relevant to the work of this dissertation,

LANGUACE HODELING

One of the earliest attempts to provide a complote

o specification of a programming language began in the late
1950*s and oulminated Iin the "Revised Report on the’

" Algorithmic Language ALGOL 60" {Haur 1963). The

81

specification for Algol 60 included distinct syntax and

semantlc descriptions along with oxamples, It nade use of

the BNF formallsm for ayntax dascription, Semantics waore

glven in English and the weaknoss of'znglish'an a semantlie

deseription language continucd to be pointud out for several

yeara in & number of articles, e.g+y Knuth (1967),

indicating gaps in the specification.
Another significant development wWas the Introductlon of

the programming language Lisp (¥cCarthy 1962), ¥hile Lisp

had an informal syntax specification {and a very simple

syntax), it had a rigorous interproter-defined semantic

specification, the formalism for which was the lambda

calculus. This has provided the ingsplration for a major

portion of the work done on semantie specification up .to the

present time,
The lambda calculus model for language aspecification

was dovoloped further by Landin (1965) and others (see, for:

exampla, Steel (1986)),

between both declarative and iméerativo constructs of Algol

60 and expressions of a structurally selmpler language of
applicative oxpressions, He also doescribed an abstract

machine for cvaluating applicative oxpressions,

t&@ natural 'language modeling

A third devolopmant was’

done by Chomsky (1963), In addition to categorizing

grammars based on the capabllity of the grammar to generate
speciffc kinds of languages, he also introduced the notion

L

Landin cstablished a covrespondenco'

82

of transformatlonal grammars, Because the standard grammars
vers not powerful enpugh to make a finite representarion of
all the structural 'varlations of English feasible,
tranaformations were Introduced. These were used ‘to take
ropresentations of Bnglinhvsen:encas and tran;form then into
semantically equivalent but structurally different
sentencas. For example, , the sentence ™"The girl threw the
ball,." (represeﬁted as a tree) nmight ba changed by a passive
voice transformation into the senteonce "The ball was thrown
by the girl.," Although this work was done to help formallze
tho syntax of a natural languago, the transformational nodel’

has since been used as a semantic formallism for programming

languages.

AUTOMATED TRANSLATION

Cfforts to automate ' the translation process for

. programning languages are surveyed in Feldman and Gries’

(1969), These eofforts began with the developuant of

techniques to construct syntactie analyzers automatically.
In general, an automatically constructed syntactlc analyzer,

or recognlzer, consists of a set of tables representing the

syntax of the language whose statemants are to be recognlzed

and a set of routines to use these tables. There is also a

_construction algorithm for bullding these tables from some

reprasontation of the syntéax as a grammar, (Alternacively,

both the tables and tho routines to use them may take tha®

form of a program written In a speclalized language.)

Automatioe conatruction of recognizers has the

advantages of saving time for human translator wrlters and

guaranteeling that thé recognizers follow the syntax of thé
e,

language. Also, most cantructing algorithms arae capable of

detecting ambigulty in grammars, and thus wake it posaglble
to eliminate potential problems which might not be detocted

until much later Iin the procoss of constructing &

translator.

There are several potential disadvantages to these
automatically constructed recognizera,. They may not bs very

efficient. They may require substantlal changes to the

syntactic specification
language, it may not be possible to modify the syntactia

speciflcation to £t the restrictions of certain

recognizers. In such a case ths language {tself must be

changed or the use of these racognizers I8 precluded,

Finally, either the grammar or the recognizer may have to be

altered {f semantics are to bo associated with the

recognizor, Whother these potential disadvantages are

sarious actual disadvantages in any situation {3 dependent

on the particular - language being translated and ' the

particular recognizer belng used, .

Onco automatle construction of recognlzoers beocanae

possible, the next step in automating the productlion of
tpanglators was the devolopment of tochniques to handle the
postsyntactic, or semantle, aspects of translation, Thesq

¢

of the languaga. For a particular

" semantlc metalanguage.

.yeprosentations of tho syntax and sgemantlcs,

84

efforts can be roughly divided into two categoriess

syntax~directed symbol processors and compiler-conpilers,

The syntax-directed symbol procoésors provide a means

for automatlc constructlon of a recognizer and facilities

for enbedding calls on semantic routlncn‘ within the

vecognition process, They also provide a collection of

programs used during the execution of the output of these

processes, Examples of this class of processors include the

go-called metacompilers Heta-1I and Tree-Heta.

The compller-compllers provide some means for automatic
construction of a recognizer and also attempt to automate
the postsyntactiec aspects of translation, A good
represontative- of this class is the FSL compiler-compiler
system developed by Feldman (1966) making use of FSL (Formal

Semantic Language) to describe the semantles of languages to

.be translated,

The FSL system provides a syntactlic metalanguage and

The formal specificatlon of 2

language ia written using these metalanguageys ., The
syntactic and semantic specifications are taken as inputs by

corresponding constructors which ‘produce tabulap

Once thess

tables are produced, the constructors and the formal

specifications can be discarded, Thesae tables along with a

‘collectlon of routines to use thess tables form a compiler,

The syntactioc mnetalanguage I3 a production language

85

which allows the embedding of calls to semantic routines.

rsSL, the sgemantic metalanguage in which. these semantic

routines are written, is an attompt to provide a

machinc-independéﬁt matalanguage incorporating facilitlos

which are likely to Dbe needed in writing a compller.

Machine-dependent aspects are nandled by primitive routines.

Statements in the semantlic metalanguage are

machine language code. This c¢odo conslats primarlly of

calls on the primitives routines.

using this system consists of a sayntax table, a semantice

table (consisting primarily of calls on

large collection of prinitive, maphine-dependont routines.

Other efforts,

compilers, are vrelovant to & discussion of automated

translation, but have not contributed to the model presented

. {n this dlssertation and are nat discussed further,

PROOFS OF CORRECTNESS
Semantic models which have been developed for exanining

notions of equivalence of programs are primarily axiomatic,

pather than constructive, in nature, These models deal with

abstractions of concepts of ' programs, @.8ey asglgnuentsa,

conditional constructs, and sequencling, vather than with

.complete progranming languages and as such are not directly
applicable to the approach taken in this disuortaflon.

pe Bakker (1969) surveys several axliomatic approaches

to semanties, These models conslder a set of varlables, a
¢

translated Iinto
Thus, a compilor produced’
primitives), and a-

including meta-assemblers and extendible

- problem of progr&m verification. He

.that tho progranm taeralnates, The

. as a sequence of subproblems, that is,

86

" set of unaspecifled functions depending on these variables,

and a formalizatlion of ~a property of progrand, Q.89
assignment, to bs atudloﬁ. Each provides a get of axioms
and inference rules which then can be used to examine the
squivalence in terms of effact of different éoquuncos of the

property, e.g+y Gequonces of assignment atatements, Other

approaches make use of flow dlagriams (directed graphs) to

{nvestigate sequencing, but are not essaentlally different

from the axiomatic methods.
An oxample of the application of these techniques to

complete programning languages is found in Floyd (1967), He

uses an informal, as opposed to mechanical, approach to the

consfders a progranm
represented as & directed graph, or flowchart, and
associates a transformation with each node and a proposition

with each edga, Each transformation is 8 computation step

involving the variables of the prograsm, Lach proposltion

specifles the conditlens to be satisfied by the variables of
the program in order for progran control to pass- along the

assoclated edge,

Program verification 1is considered in terms of tveo

problems, First is an attempt to prove that the progran

ylelds. the correct ronuit, second g an attompt to prove
first problem Is treated

starting with an

initial proposition, the attempt to prove covvocvncssuls a

f

87

sequence of attempts to prove that each subsequent

proposition is implled Dby the previous propoaltion and

transformation, The
intent of the program and {f this propositlon‘in implled by

the gcequence of steps,

the correct result 1f the program terninates, Proving that

the progranm terminates involves ohowing that there ls an

{nterpretation of the progranm variables under which the

final proposition is satlsfied.

The cffoctiveness of this technique depends on the

faliibility of the person supplyling tho propositlions and

carrying out the proof,

tochniques may eliminate human errov, but contemporary

mechanical theorem provers arve not yet - sophisticated enough

to carry out, in a reasonable amount of time and space, the

subtle manipulations often

verification process (Erepas, Levitt, Waldinger, and ¥aksman

1972, , ' S .

FORHAL SPECIFICATION OF PROGRAMMING LANGUAGES

The vremainder of this -chapter describes two nodels

which are dlraectly relevant to ths work presonted in this

dissertation, These are the YVYienna Definitional Language

developed at the IBH Vienna Laboratory to define PL/I

(Lucas, Lauor, and Stigleltner 19068) and tho augmented

grammar model of Choatham (1968),

final proposition should describe the

the program can be assumed to yield

The use of mechanical veriflcation

required in the progran

88

VICHNA DEFINITIONAL LANGUAGE
The deacrlption' of the Vienna Definitional Language

' (VDL) presented here is duo to Neuhold (1971). It is a

simplification of the actual model and does not exhivit the
generality required to handle all of PL/I.. for example.
Havertheless, the description does indicate the slgnxficant
concapts of the origlnal.

The Vienna Definitional Language {s a formalism for
doscribing both the syntax and semantica of programming

languages {n a machine-indepondent and Implementation-

independont fashion., The premise of this mothod is that the’

_ interpretive execution of a program constitutes a semantic

description of that program, The essence of the se¢mantie

specification method s tied to the dafinition of the

‘intcrpretav. that 13, the def&nition of 1ts instructions and

functions and of the 1nformatlon {t retains as lt executes a

program,

In oprder to make the interpratation process as clear
and simple as posaible and to maintaln machine independence,
the Interpreter and its inputs are abstractions rathcr than

concrete reallizations. The Interpreter Is an abstract or

conceptual machine, Its mechanisms are the same for all

language definitions, although the {information it must

rotain as it interprets programs, 1,e6.,, the atate of the

interpreter, vavies with the language, To simplify the task

of. the intevpreter, conslderations of form which are not

.

69

velevant to the substance (meaning) of a program are

eliminatsd from the program befora interpretation, Thus the

abstract interproter oporates on an abstract program,

An abstract program is represented as a tree, Each

branch has a name associated with It which identifies the

abstract program oegment it represanta, These names areo

wsed as selectors and, when applied to a tree, produce the

subtreec descendant from that branch. Further, there are a
sot of test functions, or predicates, to test if & tree
seyment is of & certaln class, Elemontary prodicates are
defined for describing elemontary tree segments (l.e., the
leaves or terminal nodes of trees) and gddltional praedicatas
can bo defined as combinations of the elementary predicates,

The abstract syntax for a language is -written in terms of
these selectors and praedicates, .

The abstract interprater operates on a4 tree structure
and performs transformations upon that satructurae, The
behavior of the interpretor constitutes an interpretation

and hence a somantic speciflcation of the abstract progranm

contalined Iin the tree structuro,

The tree structure on which the Interpreter operates '

contalns all the information which determlnes the ‘' state of

the interpreter, In addition to the abstract program, the

tree contalns a statement counter, storage for values of

progran variables, a control store, and a library. The

library contains dofinitibna of all the JInterpreter

90

tnatructiona, These definitions are particular to the
language beling defined, The control store Is dynaxic and

contalns those Interpreter Instructicns which arae to bs

" exocuted,

The mechanisms of the Interpreter can be Dbetter
underatood by considering how the interpretation progresses

from an initial state, Initially, the state consists of the

" abstract program to be Iinterpreted, an inltlalized statement

counter, an linstruction to (Interpret a program in the

control store, an enpty value stora, and a library

containing all the interproter Instructions. The cxecution
control, 1l.6., the iInterpreter, selects a leaf of the

contro)l tree, This specifies the instruction to be found in

the 1library and then executed, The execution of the

instruation causes the abstract program trce to be examined,

the statemant counter to be updated, and the control store

to be modifled, This control store modiflication may include
deletion of the selected leaf, insertion of tho result
réturned by the exegutlon ag an argument in the Instruction
wheré it {8 to be wused, and the insertion of additional
inotructions, Ths value store may also be modifled. The

execution control then selects another leaf of the control

tree and the Interpretation process continues until the

control store iy empty,
_%he formal definition of a language wusing the Vienna

node)l has several parts, A formal syntax speolficntldn in

v

91

BNF, for oxample, and & specification of the nmapping of

source programs into abstract programs are required. Tho

semantlc component igcl&des the instruction definitions in

the library, which are partlicular to the 1an§uago. and the

abstract interpreter mechanisms, These mochanisms include

the sequencing concepts of the {nterpreter, elementary

objects and functions, means for composition of objects and

functions, and operators for tree mod{ fication,

The formal definition of a language using the

transformational modol presented in this dissertation has

many of tho same parts required using the Vienna model., The

transformational model requires a formal syntax

spocification. The model deals with concrote (as opposed to

abstract) programns, and thus thers 18 nothing which

corresponds directly to the mappihg of source programs into

abstract programs, The transformational model does include

some preliminary manipulations, however, since it presumes

an adequate lexical analyzor 1o take charaoter strings and

produce asymbol tokens,

The significant differances between the models are {in

the soemantic component, The Vienna model assigns meaning to

a program solely on the basis of the interpretive executlon
of an abstraction of that program, Tho transformatlonal
node) assligns meaning to @& program basod on tho rosults of
an adalysia process applled to that program and the raesults

of tho interpretation of the output of that "analysis

" that the oomponents of the resulting

92

process, The 1ibrary of the Vienna wodel and the set of

tree transformations of the transformational model play

gimilar roles, In the latter model, however, the
information contained in the transformations {8 introduced
into the treec fo be interproted by a sep&ratc semantle
analysis procass, The mechanlsns of the -abstract
{nterpraeter of the Vienna model have analogs in the

mochanisms found in the analysis process and interpreter of

the transformational modol. For example, the somantle

analysls process mechanisms include tree modification °

operations, the interpreter mechanisms Include elcmentary

operations, and both include sequencing concepts,

rHE CHEATHAM MODEL

The work of Cheatham indicates that the mnotion of the

semantics, or meaning, of a program has two aspecis, The

fipst aspect assigns meaning to & program based on &

structural vepresentation vyesulting from an analysis

-process, This process takes a program whose language is

described by contéxt free grammar rules and associated
interprotations and produces data structures representing
the meaning of the program, These astructures Jlnclude a
c?mputation troe represonting the imperatives of the program
and data graphs vepresenting the declaratives of the

progranm, This is a representation of meanlng to thoe extent

structures are’

uﬁdoratoodo

93

The second aspect of semantics assigns meaning to &

program 'based ‘on results produced when the data structures.

ylolded by tha analysis procoss ars intarpreted. In this

context the interprater is an abstract or conceptual machine

for which the data atructures are a mashine language

progran. .
Becaute the work of this dissertation has nmuch in
conmon with the Checatham model, the detalls of both

approaches are somewhat similar, "The significant

differences are enumerated below.
1, The Cheatham model assoclates an interpretation

with each syntax equation.

tree transformations which are highly dopendent on

previous and subsequent transformations.
The transformational model associatea a body

of transformations (very similar to Cheathan's

{nterpretations) with the entire syntax. Semantics

that aro not generally tiled to a particular syntax

equation are readily exprogsible, For example,
this approach makes it easier to express such
things as numbor and type checking of avguments {n

a procedure call and data typo converaions, ¥hen

Cheatham conalders fgrtain fssuea llke context

senslitive interpretation of references and argument

checking, he is forced to oxpand the syntax 50 that

there aro equations with which to associate thd

‘¢

His interpretations are

2,

9%

1nterpretdtionu.
In assoclating interpretations with syntax equation
rocognition, the Cheatham. nodel limitvs the
languages which can bo modeled to those which can
be parseod without backtracking. ‘Hithout this
restriction, {t would be necessary to examine the
problen o} undoing Atransformations when
backtracking occﬁrs.

This question does not arice In the
transformation model, since the program ls
complately parsed {(and complate parse tree bullt)

before the transformations are applled. At any

' point during the parse and transformation phases,

<

however, the ' tree is 1lilkely to contaln more,

perhaps many more nodes than in the Cheatham model,

since his approach elininates nodes which are no

.longer . semantlcally useful as soon as they are

dilacovered,

In the Cheatham model, Interpretations are
implicitly ordered by the syntactie hierarchy.
that ls, when a syntax equatlon 1s recognlized, the
corrasponding interpretation is carried our,

In the tvansfovmation#l modal, transformations
are expllcitly numerically ordered, but the

ordering' is probably quite simlilar to Cheathan's

since the f£irat transformations considoy ‘the

.

98

grosser ~syntactic ontities in the parss tree,
Qaing the transformational model, however, ons can
place a fev housekooping transformations at the end
to oliminat:v superfluous nodes, " pather ‘than

conoider thelr elimination at each level in the

tree.

Cheatham uses an ideal language to {llustrate his

model and points out that his model sorves mainly
to point out tho desirability of a symnetric,
consistent language like the one he has used and
the usofulnoﬁs ‘of Ambit/G (a two-dimensional
graphic language) as a semantic hoat language.

The transformationai model is illustrated
using Algol 60, This language is not as suitable

for the model as Cheatham's and hence Indicates the

generality of the tochnique, " The semantic host’

language is two-dimensional and uses several tree

'pattern matching mechanisms. In addition, {t

introduces operators into the computation tree,
These operations are, by and large, conmmonly
accepted as the kinds of ?asic operations computers
can perform, 0f primary concern ls that 'both the
gyntactlic and nomantic apecifications should be
capable of driving a translator,

The interprotations for some declarations provided

in the Cheatham model are conditional programs,

LT

T

96

l.0., if the firat interpretation described cannot
be performed, a second interpretation is attempted,

This introduces another mechanism for sequencing

_through the Iinterpretations.

The sequencing mechaniss for the

transformational model is to start with the first
transforpation, apply It repeatedly until it no
longer applies, and then go to bthc next

transformation.

The symbol table in the Cheathan model is a

'co;lection of data graphs which arce highly

dependent on AmbIt/G. The attributes of symbols
are indicated by the shapes of boxes in which the
assoclated values are stored and by the orientation

of links bstween boxas.

The transformational model §ncludes synbol

information in the computation tree. The

_organizatlion used , is somewhat similar to the

proparty 1llst wused In Llsp. Each symbol bhas

various attribute-value palrs associated with It.

In addition there are symbol tables for each block

(danoted by a symbol table number and level) and

‘each tablo contalns a reference to the previously

.regnant tablo,

The Cheatham model dintroduces macros to handle

gonventlional variable declaration forms (integers,

8,

9.

97

: arrayn,‘und so forth) and thus translates them into

the language being defined,

The tfanuformat&onal model treats the handling ‘

of declarations as jﬁat‘ another 8ot of

tpansformations which Introduces the appropriate

information into the symbol table and caomputation
treo.

Because the Choatham model asaoclates
interpretations, which are at least in part the
semantic specification vof a language, with ayntax
oquations, the notion of a semantic analyzer s not
distinguished from a syngactic analyzer, Further,
the domain on which scmantic analysis operates is
determined by syntactie analysis, The Xkinds of
operations which are pérformea in producing the

computation treec and data graphs of the Cheatham

model are embedded’ In the operations of the host
semantic language. ‘

In the tranformational model, the semantlc
analyzer is a separate process, distinet from the
syntactic analyzer, The kinda of operations the
semantic analyzer performs, namely Btructural
pattern matching and replacement, sre madae explicit
in the description of the process,

That aspect of gsemantics which asalgns meaning to a

program . based on rosults produced by the

98

interpretation of the computation trea and

assoclated data graphs is handled similarly in both

models, In the Cheathanm nodél. the interpraoter ls

“deflined, primarily, by an Ambit/G program,

: Explanations of interpratev. functions and Ambit/C

mechanisna are provided In varying degrees of
formality and preclsion.

The trangformational model also defines an
interprater. The basic control and data structures
and operations of the interpreter are described in
detail, This description is dindependent of any
specific Implementation. . Thus the description does
not specify precisely how the various structures
Are to be dimplemented, but rather concentrates on

detailed specification of what manipulations are to

be performed, ‘
In. summary, the principle difference betwecen the
transformational model and the other semantic models {s that
the transformational . model defines a distinct semantic
analysis process which can be wused in conjunction with a
formal wgemantic speclification to produce a structural
represantation of the meaning of a program, While the
Cheatham model and the transformational model both use an
analysis process, the latter provides & definitlon of &
separate semantic analysis process and shows its application

to 8 widely used programming language.

Chapter 6
CONCLUSION

In the preceding chapters several aspects of the
semantiecs of programming languages have been presented,
This chaptor summarizes the results of the earlier chapters;
{ndicates several usos for this work, and points out some
possible oxtenaions and future research directions, ‘

In addition to Informatlon of historical interest, the

preceding chapters deal with two main topics., ~The first of

these {3 a formalism for the specification of the semantlc
components of programming languages. A semantic
gpocification for a progrqmming language'can be vieved as a
sect of state transformations, Each state transformation is
a pair of trees indicating an initlal state and a final
state Into which the Initlal state Is to be transformed.

The first tree of each palr describes a particular structure
and the sscond tree describes a modification to that
gtructure to make explicit lts me?ning. Appendix I shows
the usc of .this formalism to give a semantic specfficatlon
for Algol 60,

Tho second main toplc presented is & wemantlc process
whieh makes use of a formal specification of semantics to

perform part of the translatlon process for programming

99

~languages. The

100
process has two dinputs: a structural

parse tree) and the set of palrs of trees which conztitute a

senmantic specificatlion for the programming language in which

the program 4is written. As: output the procéss produces 2

computation tres, which is a representation of the meaning
of the program belng translated. Appendix II illustrates

the application of the semantic process to an Algol 60

progran.
The primary purpose of this work ls to model

programming language semantlcs and

process. The model helps to solve some problems present in

and arising - from less formal progranming language

' gpecifications, The - use of the smemantic descriptlion

formalism and the translator model can eliminate the

.

ambigulties 1n'programmlng language definitions and help to

eliminate machine~independent incompatibilities among

different Implementatlons of the same language.

While the primary purpose of this work ls <o model
semantics, an 4implemontation of the model for progravming
language translation described in Chapter 2 has sowve
practical applications, In order to do the implementation,
sovorai pleces of software have to be written, First, a

lexical analyzer and syntactic analyzer. which produces a

‘parae tree as output are required. These wmay De

. time~consuming, although 'not techalcally difficulr to

 pepresentation of the program belng translated (eegey 2:

the semantic analysis

101

produce. Second, & somantic analyzer to oparate on the

parse tree is Traguired,
difflcult than produéing a syntactic analyzer, primarily

pecause of the complexity of the matching procedures

required to handle the speolal nodes. The matching

procedures do not always match one node to another, but

rather may have to match a special

tree,. An implementation of a cemantic analyzer, coded in

Lisp, s given in Appondix III, Finally, a code generator
or interpreter to opoerate on the
analyzer; {,e., the computation tree, I8 required.

Up to the code generation or Interpretation stage,
translation s primarily . a machine-independent symbol
m&nipulation problem, A c;do generator, however, is a
machino-depondent translator component in that the object
codo it emlts s speciflc to some target machine., An
interpreter in this context is really an implementation of

the conceptual tree machine; computation trcea are programs

for the tree machine, Although an interpreter written in a

high level programming language may be a machine={ndependont

program, that is, inaepondont of'the physical machine on’

which it exscutes, it is dependent on the conceptual machine
defined by thoe high leve}‘“}gpguaga. Furthermore, tho
interpreter embodies the translation of trea nachine code to
a form executable on a particular nachine.

A variation of the translation model mentioned tn

Producing one {s somewhat mora

node to se¢ctiona of a

output of the semantia

- directly to syntactlc constructs and

102

Chaptear 2 Involves alternation between syntactlc analyals
and semantic analysis, This could readlly be accomplished

by keying tranaformations to syntax equations., The

recognition of a ayntax‘ equation would cause the

corresponding transformation to be carried out, This I3 a

procedure commonly followed in syntax-directed translatlon.

The approach which is likely to be most officient in

terms of both time and space Iz to alternate botween

syntactic analysis and semantlic analysis for many of the

transformations and apply the romaindor of the

transformations after the interleaved syntactic/semantle.

analysis ls completed. Some of the transformations relate

.applying them at the

time and place the syntactlc structure is recognized can

eliminate much futile tree searching, thus saving time, and

many unnecessary nodes, thus saving space, Cther

transformatlions are really of a global nature, for example,

those whose context 4includes more than a single statement,

These are more vreadily applied after the conpletion of
nyhtactic analyslis.

‘ As was mentioned in Chapter 2, generalized table driven
translation may not compare favorably in terms of efficlency

with more ad hoc means of translation, Improvements can be
made by selecting a syntactic analysis method no more

powerful than nocesaary, Some generallty could also be

" pemoved from semapntic analysls, QsBey elininating

.

103

backtracking in tros matching, 4if it could be shown thac'

this generality .1s not neoded for ~a particular semantio

spocification, Nonc'tholess, such tailoring may still not

~-
make the ospoed of table driven translation ' comparable to

that of some other moans of translation,

A generalized table driven translator as described in

Chapter 2 does have several uses,
is an ideal tool for language (as opposed to progran)

debugging. One could readily manipulate syntax and semantlo

specifications and observe the effoct of such wanipulations

on language constructs as they are passed through the

translator. The availability of a tool to debug and tune a

programning language definition should aimplify the deslign

process, The availability of an Implementation, albeit a

relatively inefflclent one, as .nodn as the formal

specifications are completed makes it posaible to consldep

carefully the strategles to be employed In a production

vorsion Dbofore a sizeable Implementation effort is

undertakon,

There are some additional consecquences of the semantle

formalism and semantle procoss‘ which relate to parallel

processing and program transferability. Hany of the

transformationa 4in the gemantic aspocification for Algol 60

are order-indopendent, If a parse tree c¢an be separated

appropriately Into several asubtroes, seyeral separate

semantic analyzers (one for each subtree) could operate in

An implementation of one

" (lexical, syntactic, and semantlc

104

parallel to apply transformations, (Alternatively, each

semantlc analyzer could, in turn, be used to apply certain

transformations to each subtree.) After the transformatlons

dealing with local context are applled, the resulting

subtrees can be recombined and the rehalning global

tranasformations can be applied,

Program transferability arises as a consequence of

programming language portability. A language which has a

complete lexical, syntactic, and semantic specification

using the formallsms described earlier can be imuwediately

transferred to any system which has a skeleton translavor

analyzers and codo

_generator) available.

Chapter 3 includes. several tables of troe nmachina
operators and Appendix I includes an Algol 60 semantic
specification which Incorporates those operators, If
uemantié specifications for some other programming languageé
ave written, &ome new operators mway be required, For a
language with a larger selection of data types and
allocation possibilities, e.g., PL/I, osoeveral addltional
access operators as well as expliclt allocation and
deallocation operators are vequired, A scunantic
uyectflcation for a character string processing language
Like Snobol night use substring oxtraction and concatenation
opdrators, rov. a language like Lisp, where a variable s

definod by its execution contoxt rvathor than {ts dufinition

105

context, differont access mechanisma as well as dlf!eQent
allocation-deallocation mechanlsms #re gequired. In
~general, the additlonal oporators required to glve a
semantic specificatzbns for other languages fall Into two
categorien: storage management and data manipulation.
Additional storage manégemont‘ operators are necessary to
handle varliable binding times and consequent allocation
strategles different from those of Algol 60. Add{tional
data manipulq}ion operators are necessary to handle & richer

variety of data typas, @38y characteyr atrings and

Cobol~like structurcs, than are found in Algol 60,

In addition to the use of transformations illustrated

earliey, there are at least two other potentlal wuses for

transformations as" part of

translatfon, These uses are’ error deteation and

optimization,

. The use of trans formations to accomplish error

detection has two aspects: detection and correction of what

are often class{flied as complle time errors and manipulation

of computations to faclilitate detection and correction of

what are often classified as run tine errors,

Transformatlons to detect complile time errors ave really

checks for consistency.,

’ianguago
{nclude echeeks to datermine I1f all variables and labels

roferenced aro also defined, If the arguments of a procadure

¢

" the semantio aaspegt of

epending on the progrumminé'

under consideration, such transformations might .

106

call correspond in number and tyhe to the paranmeters of the
procedura, and if vaﬁ}ablea in an expression or assipgnment
statement are’of compatible types., If errors ars found, the
transformation could modify the computation tree to indlcate
an error and, dopending on the kind of error, atteupt to
make a correction. TFor aexample, {f a varlable is referenced
but not defined, a tranaformation could ind{cate the error
(via an ervor raturn in the semantlc analyzer or viaz & node
inserted in the trea) and insert a declaration of the
variable in the local asymbol table.

Transformations to facilitate detection and subsequent
programmer correction of run tinme errors Involve the

insertion of additional nodes in the computation <troe to

‘monitor computations., ., Such insertions might includa

PL/l=1lke condition handling features, for example

monitoring array subscript usage to insure that the declared

range is not exceeded and handling overflow conditions.

Transformations to .accomplish computation tree

optim{zation are of the global type, that is, they are
appliad after the completion of syntactic analysis. Such
transformations rearrahge a computatlion tree into another
tree which {8 computationally equivalent but, Dby some
measure, more efficient, That is, the rearrangemesnt should
leave the results of executing the tree unchanged, but

should cause some improvements in the time or space needed

,to , compute the presults, Optimization really involves

107

changing the meaning of a program as ropresented in a

computation tree and, as in all optimization, there is the

danger that the rearrangemont may affect the computation in
/
some unanticipated way.

Anothor potential extension to the work presented here

deals with data handling,. The transformations for Algol 60

glven in Appendix I bulld a block structured symbol table

contalning relovant attribute information. For programning

tanguages in which data types are determined at complle

time, additlonal transformations might be Included to

{ndicate - the appropriate oparator and required typo

converaion functlions nocessary to evaluate & particular

expression, For example, the additlon of an Algol 60

{nteger variable and an Algol 80 real variable might include

the conversion of the integer to real and the use of a real

(floating point) addition operator,

might concern .access functions and additional . aspects of

data modeling.)
What seems to bo the most interesting extension to the

semantic modeling presented here is the development of

metrics for programming language somantlics,

syntax, there can be many sets of semantics for a‘language.

It would be theoretically Intoresting and potontlally of

practical value to have some moasure of how good 8

particular gemantic description of & language is for sonag

purpoese, Work with Fformal languages has rssulted in somé

Other transformations.

Just as with

108

olassificatifons of grammars according to thelr generality

(Hoperoft and Ullman (1969) survey these results.,). TFurther

efforta, e.g., De Remer (1971) and Earley (1970),.have

established some theoretical bounds on the time and space

required for syntactic analysis using different ¥evelu of
]

génerality in the syntax description. Analogous:results

would be desirable for semanticsa,

Theres ars several items one could examine in attempting

to determine suftable metrics, The number of

transformations Included §n a semantic description of a

programming language might give some measure of the powver of

the language being described, but the number alone does not

glve a good indication of the complexity of the

tranaformations. Classification of transformations using -
aome complexity measure might be analogous to classificatlon.
of formal language grammars, A starting point for.
developing such a classification for semantics wusing this
model would include a thorough examination of the functions

embodled {n the transformations, Theses functions could then

‘be classified according to the context they require, the

complexity of the operations they 'perform, the numbor of
specia) matching nodes they use, and so forth, A
transformation would then derive 1ts complexity measure from
the measures of lts component functlions plug’ any factors
about th? trangfornmatfon which might prove relevant, A

somantlec specification then could be classlfied by the

DUFINUWUY wmuy mewe oo,

."-muzyao?rv Sutsavd DaJJ IXeiuod 1uaya;;;3 uv“ vp tfotavy

*66C-56C *dd_ ‘9967 ‘pupyTTON-UlIJON
rmepasasuy *T023S ‘g ‘L 'pd +Juywueadoag woinduo)
d0j_stournsuvq TPwlo] UG @5UeR0jUC) SUTXI04 dI4I o043
Jo0 sdurpaadoad y'odenBueteiey deWTITA aAn0. *D °*d tuesung

' *oan-ggh *dd_‘T(RY ATnp ¢4 _*oN *h1 °*I0A ‘Xaaulgaeg
Futainduoy woj UOJILPTOOSSY EXIEN JO Ssuojledjunwuoc)

4t Sapunay (X)HT erduys, [upTyUeay ‘taouay . eqg
v1zz-ctt *dd 'ggpT *ssoad wnuoTd YXOA HBN ‘noy
21 *p P1 *30U0T08 BUOISAS UOTIPUJOFUL U S0OUBADY
'seqenﬁueq futmuedFoad JO SOTIURWOS, ‘M P taexyug Q-
~ *zzg-69z *dd ‘e9st

tAnTTM uyop ‘xaog moN *oong g °Y nue ‘aoaueye 't
27 ‘usng 'y ¥ *SPIT T °"TOA ¢ f3oToydAsd TedTaivwayley
Jo Yooqpuey ,°s23endupq Teanjey yo sysdyeuy yrwdoj oyl
03 uUoTionpougiul, *aolsaquazanysg *d *Hpue ueoy ‘Axsuoyd

*LSHY
‘ucinoy :ondey 9yl *Sodn3jonxas or3orIUAg rueoy ‘Aysuoyd

*5967 *ssaad ‘L °I °H

109pjaquey *Xe30Ag JO AdosULl ©y3 Fo saoodsy cweof ‘Lxswoyy

“rL6z=-n97 *dd 'L96 STTTH=-MPIDON INJIOX KON *u3dsoy ynes
ep7 +Zodenduv] pue swa3skg gJutumeasoad 'Buyrydwod
poiooarqg xeiuhg, *KAaTizes X pue cap ‘3 ‘L ‘weyzweyd

‘0967 *S31I0SNYOESSTUH
‘pyorynyey ¢savyo0ssy anindwo) $330snYyseseey
w*s03endueq Bujwueaioag Jo uoy:voy;;aads 27iuvubg puv
o71oeiudg oYl J0F TPPOX TPWIOI-TWIS Y, ‘af **3 L ‘wediveud

*zag~-t9e *dd ‘orey Tyadv
oo ey __tIoA $XJoutyoeH BuyINAduwo)l Jo0F UOT3IRTOOSSY
243y Jn Teuanop wtUOTITAOUI(JOTITIVEPI 09 TOOTV
203 6573uPmag DYMYITIOBTY Uy, °nexn °y *y pue ‘y *'p ‘erlog

: __*Bin-hon *dd ‘1r67 TTady ‘h CoN
toz-0 *ToA ‘sxoandmo) WO Buoy3IovsuURdy JddI ¢’ FOANIONIIS
sog] Bo poseg suyyoeH SBuyindwod vy, - *p snely ‘*BurrXacy

XHJYHSOI?EIﬁ

+goBensuey 3ujuueaload

UT Yoaeosex JBYIaNF I0F eoaw INFITNIF Axoa KLyreyaueiod
puv JuTisoxeluy uw °q 03 sweps 3T ‘J0ADHOH *jupmoanseocw
uy opew ©q ueos sgsoxZoad yonu oxogoq Tepouw OFIUTUSS
oyy JUTUTJOXL UT PUOP ©Q O3 BPOOU YIOA OJOH " e fyo3zexs 931nb
toganod Jo 'Bav E5TXI0W JO DUOTIPAOPYSUOD ©BOYL FO TTV
sgoy3yxarduod

avynoyiaed Jo guoTivmgogsueas Sufsn oysdyeur oyiuvuss

op o3 Aarwpooou gyuowexynbog oowds pue owyy oy3: uo poute3iqo
oq 3ySju spunoq *sysdreue 0J30e3uUhs YITH sY *guoysdraosop
oTauemos 3JuexeyIFP JdoF sysdyeue oTiuvuos JoF pouagnbex
sovds a0 OGwFy oY} aap;suo5 3y3jw oanseew goyiouy

*£L3yxeorduod aogwey Jo suoyaoung Sujdpoquo avyiouw

01 juoTrAJRbO 8] UoTiPLIOFEURAL ouo 31yl Hoys o3 3due3ljv uv

U} SuOTIVWXOFSURAI JO eoucTeATnbe Jo EUOTIRAOPTIUOD O3 PUOT

PIROO OTYL suorsvuxoysueay xeTdwod 3souw s3] yo A3rxordmod

60T

111

Elson, M. and S¢ T, Rake, "Code~Goneration Technique for
Largo-Language Compilers,” IBHM Systems Journal, Vol, 9.
Ho., 3, 1970, pp. 166-188,

£lspas, Dornard, Karl N, Levitt, Richard J. Waldinger, and
Abraham Waksman, "An Assuessment of Techniques for
Proving Program Corvectness," Computing Surveys, Vol,
4, No, 2, June 1972, pp. 97=147,

Feldman, J. A, "A Formal Semantics for Computer Languages
and its Application in a Compiler-Conmpiler.®

Communications of - the Assoclation for Computin
Hachinery, vol. §, Nol I, January 1966, pps 3=

Feldman, J. A. and D. Gries., "Translator Writing Systems."
Communications of the Assoclation for Computing

Machinery, Vols 11, No. 1, January 1968, pp. 77-147,

Floyd R. W. "Assigning Heanings to Programs," Mathematical
Aspects of Computer Science, Vol. 18, Ld. J. T,
Schwartz. Providence: Amecrican MHNathematical Soclety,
1967, pp. 19-32,

Garwick, J. V., "The Definitlion of Programming Languages by -

their Compilers," Procecedings of the IFIP Horking
Confercnce on Formal Languages for Computer
Programming. Ed, T, B, Steel. Amsterdam: Horth=-
Holland, 1966, pp. 139-147, ’

.

Gries,. David. Compiler Construction for Digital Computers.
New York: Jonn Wiley, 1371,

Hoperoft, John E, and Jeffrey D, Ullman, Formal Langusages
and their Relation to Automata, Reading,

Kassachusettss Addison-weslo;T 1969.

Ingerman, P. Z, "Thunks-=A' Way of Compiling Procedure
Statements with Soma Comments on Procedure
Declarations.” Communications of the Association for

Computing Hachinery, Vvol. 4, No, 1, January 1461, pps
59-60.

Irons, Edgar T. "A Syntax Directed Compiler for Algol 60,"

Communicat{ons of the Association for COmgutlng

Hachinery, vol. 4, No. i1, January 1961, pp. P 51<55,

Johnson ¥, L., J. H, Porter, S, I, Ackley and D, T, Ross,
"Automatic Generation of ELfficient Lexical Processors
Using Finite State Techniques,"® Communications of tho
Association for Computing Mdchinary, Vol, 11, No. 12,

Decenmbor 1968 ppes 805813,

112

‘Knuth. ponald E, The Art of Computer Programming, Vol. 1.

Reading, Massachusotts: Addison-Weslay, 1968.

Knuth, Donald E,., "The’ Remaining Trouble Spots in ALGOL 60,"
Communications of the Association for Comoutin
~omnu or Ihe Associdrion . 2L outang
Hachinery, Vol, 10, No. 10, October 1967, pp. Gi1-618,

Landin, P. J. "A Correspondence Between ALGOL 60 and
Church's Lambda-Notation." Communications of the
Assoclation for Computing Machinery, Vol. 8, fo. 2,
February 196%, pp. 89-101 and Vol, 8, yo. 3, Harch
1965, pp. 158-165,

Lauer, P. "Formal Definition of ALGOL 60." 1IBM Laboratory
Vienna, Technical Report TR 25,088, Docember 13, 1968,

Lindsey, C. M. and S. 6. van der Heulen, Informal
Introduction to ALGOL 68. Amsterdam: North-Holland,

177y -

Lucas, P., P. Lauer, and H. Stigleltner, "Method and
Notatlon for the Formal Definltion of Programming
Lanpuages," IBM Laboratory Vienna, Technical Report TR
25,087, June 1968,

Lucas, P, and K. Walk., "On the Formal Description of PL/I."
Annual Reviews of Automatic Programming. Vol., 6, Part
3, 1959, pp. 705-187,

"~

HeCarthy, John, Paul W, Abrahams, Daniel J. Edwards, Timothy
P. - "Hart, and Hichael I, Levin, The LISP .5
proprammers ' Hanual, Cambridge: H.1.T. Press, 1965,

Naur, P., ed. "Revised Report on the Algorithmie Languagé
ALGOL 60," Communications of the Association for
Computing Machinery, Vol. 6, Ho. 1, January 1963, pp.
1-17,

Neuhold, E. J. "The Tormal Descriptlion of Programming
Languages,” IBHM Systems Journal, Vol, 10, No, 2, 1987%,

pp. 86-112,

Randell, B8, and D, J, Russell, ALGOL 60 Implementation,
London: Acadenlc Prass, 1964,

Rice, R, and We R, Smith, VSYHUOL: A Hajor Departure from
Classic Software-Doninated von Neumann Computing
Systems,"” Procoedings of the Spring Joint Computer
Conference, Vol, 06, 1971, pP, 573§§§7£

113

Smith, ¥. R., R. Rlce, G. D. Chesley, T. A, Laliotls, S. F.
Lundstrom, M. A. Calhoun, L. D. Gorould, and T. G,
Cook. M"SYMBOL: A Large Expaerimental Systenm Exploring
Major Hardware Replacement of Software." Proceedings
of the Spring Joint Computer Conference, Vo)., 38, 31971,

pp. 601-616.,
Steol, T. B., ed. Procecedings of the IFIP Working
Conference on Formal Lanpuages for Computer
Programming, Amsterdam: North-Holland, 1966,

Warshall, S. and R, M, Shapiro, "A General~Purpose
Table~-Driven Compller," Programming Systens and
Lanpuages., rd., Saul Rosen. New VYork: McGraw-Hill,

T4G7, pp. 332-341,

yirth, MHicklaus and Helmut Weber.
of ALGOL, and its Formal Definition." Communications

of the Association for Computing Machinery, Vol. 4, No.
. “January 1966, pp. 13-23, 25 and Vol. 9, No. 4,

Fobruary 1966, pp., 89-99.

zwicky, Arnold M., Joyce Friedman, Barbara C. lHall, and
%onal uThe MITRE Analysis Procedure for

d E. Walker. y
Transformational Grammars,” Proceedings of the Fall

Joint Computer Conferenca, Vols 27, 1965, pp. 317-32b,

WLULER: A Generalization »

.

App&ndlx.l
SEHANTIC SPECIFICATION OF ALGOL 60

The table below gives the abbreviations used throughout

" ¢hls work for metalinguistic variables and the corresponding

variables, In the toxt these abbreviations are enclosed

within angle brackets ("<" and Y>"),

ABBREVIATION METALINGUISTIC VARIABLEL

ac actual parameter
ad adding operator
ae arithmetic expression
al array identifier
al array list
an assipnment statement
ao arithnetic operator
ap actual parameter part
ar array declaration
as array segment
at actual parameter list
ba - ' basic symbol
be Foolean expression
bf ~ Boolean factor
bh block head
bk bracket
bl . block
bn . bound palr list
bo ' Boolean sc¢condary
bp Boolean primary
br) bound pair

. bs basic statement
bt Boolean ternm
cn condivional statement

- . co . code

' cs compound statement

ct gompound tall
de declaration
de ,designational expression
af : decimal fraction

di digit

114

115

dolinmiter

decimal number

declarator

dummy statement

ampty

exponent part /
axpression

factor

for clause

function designator

for list element

formal parameter list

formal parameter

formal parameter part

for statement

for list

go to statement

if clause .
identifier
idontifier list
implication

integer

if statement

label

lower bound

letter

left part list
logical operator
left part

letter string

local or own type
logical value
multiplying operator
nunber

operator

open string .
parameter delimlter
procedure body
procedure .
procedure declaration
proper string
procedure heading
proceduro identifler
program

primary

procedure atatement
rolation

rolational operator
simple arithmetic expression
simple Boolean

~specificator

simple deslgnational expression

LT subscript expression

s8g string

8l . switch identifler

sl subscript list

an switch declaration

8o sequential operator

s8p specification part

ay specifier

8S switch list)
gt statement .
su) subscripted variable §
sV . simple variable

sW switch designator

td - type declaration

tl . type list

tm texrm

ty type

ub unlabelled block

ue unlabelled compound .
ul unsigned integer

ul unlabelled basic statement
un . unslgned number

up upper bound

us unconditional statement
vi © variable ldentifier

vp value part

vy - variable

The remainder of this appendix is concerned with a
semantle specification for Algol 60, The table below
sunmarizes tho functions performed by the application of the

218 transformations of that specification to Algol 60

programsg, The headlings indicating the functions refer to
removing superfluous syntax ({remove), making operations
axplicit (insert), counting, kpeclfylng order of c¢xccution

(arrange), and copying, as explainod in Chapter &,

FUNCTION

REMOVE
INSERT
COUNT
ARRANGE
COPY

REMOVE
INSERT
COUNT
ARRANGE
cory

REMOVE
INSERT
COUNT
ARRANGE
COoPY

REMOVE
INSLRT
COUNT
ARRANGE
COPY

REMOVE
INSERT
COUNT
ARRANGE
copyY

REMOVE
INSERT
COUNT
ARRANGE
copyY

«

X

28

67

29

w“

>

TRANSFORHATION NUMBER

30

69

by

XX XKoo

32

45

20

33

46

KKK~

» oo

22

35

48

61

49

a7

-~ 137

51

84

REHOVE
INSERT
COUNT
ARRANGE
coPY

REHOVE:
INSERT
COUNT
ARRANGE
cory

REHOVE
INSERT
COUNT
ARRANGE
coPY

REMOVE
INSERT
COUNT
ARRANGE
cory

REHOVE
INSERT
COoUNT
ARRANGE
copY

* REHOVE

INSERT
coult
ARRANGE
coryY

105

118

144

106 107 100 109
X X X
X X X
X

119 120 121 122

X X X X-
X

132 133 134 135
X
XX X

145 146 147 148

84y 85
X
X
X
97 98
X
X
X
110 111
X X
123 124
X X
X
136 137
X X
149 150
X
X

118

99 100 101 102 103 104

b4

X
X

X
X

X

X
X

X

X

112 113 114 115 116 117

X

X

X

X -

X
X

X

X

125 126 127 128 129 130

X

X

X

X

X
X

157 158 159 160 161 162 163 164
X X

REHOVE
INSERT X
counT X X X ¥ X X
ARRANGE }
COoPY , X X X X X X
170 171 172 173 17k 175 176 177
REMOVE % bd
INSERT £ X X X X
count . X
ARRANGE
CcoPY
163 184% 105 106 187 168 189 100
REMOVE
INSERT X X X X X X X X
COUNT
ARRANGE X X X X X X
copy)
196 197 198 199 200 201 202 203
REHOVE '
INSLRT X X X X X x x X
COUNT
ARRANGE .
cory X X X X
209 210 211 212 213 214 215 216
RENOVE :
IHSERT X X
couNT X
ARRANGE . X X X X X
coPY ¥ X .

A semantlc specification for Algol
transformations, 48 given bolow. .Bach

palr of trees, the first & match treo

subgtitution tree as desaribed In éhapter 2,

119

165 166 167 168 169

X

/

X X
X X X

178 179 180 181 162

191 102 193 194 195

X X
X X

204 205 206 207 208

X %
XX
217 218
%

%

60, containing 218 .

X X X

tranaformation is &

and the

second a

A grouping of

the transformations by the particular syntactic conatructs

on which they oporate is contalned in Appendix 1V,

120
Transformation 1t insert marker,
, <p > Y <no>
‘ <bl>» .. . ' : b <hl>»
ARB(1] ARB[1]
Transformation 21 Imsert marker, ’ ,
<po> <por
<cs> o s »] <cy>
'ARACIJ . : ARE[1]

Trans formation 33 bring all the statemonts in a compound.
tafl to the sams levol. .

<ub> <ub>
ARB[1] <ct> . ARBL1] ARB(2]
ARB[2] '

rransformation 4t Insert "statemant count node for counting
to be dona in transformations 70 and 71.

<ub>‘) <ub>
<bh> 3 ARB[2] <bh> statfo)
ARBL2] , h I Anaéxj

. . ARB[2]

Tpansformation 51 bring all the declaratiocne in a block head -’
to the same level.

<ub>

<uyb> v
ib£:--;§3121 ARJE:;-‘~IEETQJ

ARB(1]

121

Transformation 6: insert local vanrlable count node for array
declaration and make tho default array typo (real) expllecit,

<uh>
i::EEEEEEE=:::::%:-_____T o
ARB(1] bepin <de> ARDB[2] ,

T
r>

ari;;T-‘_IEEISJ
<ub>
Amel

real array localv[o0]

ARBL3]

Transformation 7; insert local varlable count node for array
declaration and make the dofault array type (real) explicit,

<ub>

AR£?T§EEE§:::EEEI—‘“K§B[23
<al>
r\\ .
array ARB[3]
<ub>

Axg;?§=::§§€:—"'xihtzj
real array localv(0]
}
ARB[3)

122

'Tranufornation 81 insart local variable count node for array

declaration.
<ub>)
ARJE;3~\::§§5157_._732> ARBL 2]

b |
dtlrmc” $
<ty>
ARJ[uJ-'

<ub>

ARJ;??=:::EE§:—___IEB[2]
ARJ;:?=:::§;;;;~.-—T3331v[0]'

ARBL3)

Transformation 9: insert local varlable count node for array
declaration,

<ub>
N Aurmcn

<ty>
AR&[NJ'
<ub> '

ARBL1] <de» ARB[2)

Akmlvlﬂ

T S Anuéa] S

123

Transformation 101 Ingert loscal varlable count node for
simple variable declaration,

<ub> . . <ub>
v

AR£?jj:EEEEEEZ?::E§§:Tf7K§E[2] ARBL1] <d&> ARB[2]

<td> ARB(4] localv{0]

[. R T
<lt> ARB[3]) © . ARB[3]
(ty>
‘ ARL[Q)

rransformation 111 insert local varloble ocount node for
simple variable declaration, -

<ub> <ub>

e e [~
ARBEIE\\\\Y <dc» ARBL2] ARB[1] <dc> ARBL2)

<td> ARB(CH) loc lvtdl
<it> ARBL3] . . ARB(3)
<tJ>)
ARA[“]

124

Tpansformation 12¢ Insert own variable count node for own
variable declaration.

<ub>

*

ARB(1]) bagin

<ub»>

ARB(1] <dc>

oun A

“Transformation 133

<ub>

<td>
<)t

own

L)

<J3> ARB(2)
s
<l£:~\~fzih[33
w'\w>
ARA[M]
ARB[2]

ROL4) ownv(0]}
ARBL3]

insert own variable count node for own
variable declaration,

<ub>

own
—

ARB[3])
<ty>

ARBLH)

D
AR£??§EEE§=::EE?:___I§§[2] . ARB[1] <de> ARB[2)

ARBCuJ_

ownv[0] °

ARJ(3]

125

Transformation 14: dinsert own variable count node for own

array declaration, .

<uh?>

‘ARZ[il begin <de> ARBL 2]

<ar>
<lt> array
912 <ty>
ARA[%J
<ub>
ARB[1] <decx ARB(2]

—— =
own ARB[4] array

ARB[3] .

ownv[0]

ARB[3]

Transformation 15: insert own varlable count node for own

array declaration.

<ub>
ARA[l] } <dc> ARB(2]

l <ar>)
<l£j=:::§§£;Z-—-;EET3]
own <ty>

ARl[u]
<\uh> ‘« .
ART(MN .

R~

e
own ARBL 4] array

ownv[0]

AR%[SJ

Transformation 161 make
declaration.

126

geparate block for procedure

<ub> '

<ub> .
Amm‘u ARBL3) ‘ARmul
<pi> ‘ '<ui>
Am!czq <p<!1> '.
AR&[2T

Transformation 171 make
dooclaration,

<ub»>

\
PSS ARBL3)

ARB(1] 3 <dc»

separate block for procedure

<ub>
ARACL] e RRBCO)
(\ﬂ!)
<p(|1>
ARB[2]

Transformation 18t Jinsert local variable count node for

formal paramater list.

<fp>

¢ <fl>)

ARB[1)

Trancformation 191 bring

<fp>
1olaIVEOJ

ARA[i]

all the formal parameters in 2

formal parameter list to tho same level and remove parameter

delimitersa,
1ocalv(0]

svumrzl

ARB[1] ARBL3)

Yocalv[0]
ARBL1] ARBC2]

127

rpansformation 20! insort markers in preparation for

counting formal parameters.

jocalv{0] . 13fn1v[03

<fo> ARB1] I A TS s %
<id> <il>

TEAH(I] TERM[1]

Transformation 21 count formal paramoteb. agsoclate
displacement number with Jit, and move marker to prevent the
paramcter from belng counted again. :

1ocalv(i] localv[i+1]

Te——

ARBLL] 7 <Fo» ARBL2] ARB[?TL“TEEF[1] 7 ARB(2)
<id> [i+1]

TERM[1]

Tpansformation 22: counting done, remeve markers.,

loealv({i]) localv({)
ARB&:J,

ARB[1] <For

Transformatlon 23: insert local variabls count node for
specification part. .

<gp> - <gp>
AR£ET?====3§TI*-—3 ARBL1) Tocalv(1)

ARB(2] ' ' © ARB(2)

rransformation 241 4insort local varlable count' node for

valueg part,

<vp> PE—— <vp>
[T ——
ARB[1] <il» H ARB[1) localv(i]
2ot

ARBL2] ARB[2]

128

Transformation 25t count speciflication or value variable and
make change to prevent the instance from balng counted

again.

locaiv(i] ‘ : localv[i+1]

synl1) —— sSYn({2] ARBLa] ;;;Efihzzziﬁif;E-._"?Eit3]
ARBL1] ARB(2] . ‘ Aknézl

Trans formation 263 remove superfluous ldentifier noie.

localv{1] localv(i])

<iJ> TBR&[;]

TERM[1]

Transformation 271 bring all specifliers to same levol.

<g p>

<sp> _ -
-<ar:_—__IE§Izz ' ‘ , Angz:g—-__xiitzJ

ARB[1)

‘Transformation 28; make the default array specifier type

(raal) explicit,

<ar> ' ' <sr>
array real array
Tpansformation 293 remove nuperfluous type node.
<aT:-.____~ <gr>
<ty> ARBL{1) TERH[1) ARD[1)

TERN(1]

© 129

rransformation’ 30: copy values attribute to formal parameter,

remove formal parameter name from value list,

and decrement
value liat count, .

<phi

— M) .
<pi> <Ep> 3 <vp> ARB[5)] /

ARt![sJ ' value T Isgaiv(d) . .
Amﬁncu ~ ARBL4]

localv(4]
AR&{;?-N-‘??RHfij ARDL 2]
[x] '

<ph>

<piZ;tiE%?%fz:::f——‘”?Vb> ARDLS]

ARJ[B] ‘ va[::§‘_‘13?31v[j-1]
arafa] ARBLI

localv(l]

ARJE;;\“‘TERHC1J ARBT 2]

[kl value

Transformation 31; all formal parameter names roemoved fron
value ligt, remove value part, : '

<pi>
i B o s ARBL2]

ARB{3) ARB[1] valug 1oca1ch]

ey .
<pijﬁ:5%::_——_-jﬁﬁle

ARG (3] ARI[lJ

130

Trans formation 32: dinsert marker in preparation for copying
apecifier to speaification variable,

<ap> *

e
ARB[3] <st> localv(i] ARBL 4]

oz S

ARB[2] TERH[1i] ARB[1]

<gp>

ARJ?ffzzszfiiz-_—_loca1v(1 ARBL Y]

geadulil Anatyt
ARSC2] # TEREC1) ARBL1]

1

cranoformation 331 copy specifler to specification varlable
and move marker over. that variable,

<gp>

—
ARJ?EE:::“?§?> Tocalivli) ARB[5]
"ARB(3] ARB{II\N~7“ TERN(1] - ARB(2)

<sp>

=
ARB[4] <5T> locdlvli] ARE(S] .
ARBL3] m:’m ARBL2)

ARB(3]

Transformation 3%; copying done, remove marker,
<€gpy . <gp>

N
ARB(3] «<sr» localv[i1] ARB[4) ARB[3] locdiv[i] ARB[4]

ARB[2) ARB{1] ARB[1]

Transformation 35; aqonmbine specification varlable lists,

<gp> <sp>
——— . —
xolaxvul localv[i] ARB[1] tocalvli+3) ARB[L)

slr2y’ amoks) C adgzr A

131

Transformation 363 romove empty valus part,

<ph> oo ' . ' <ph> . .
W . z\
ARB{1]) <VT> ARBL2T ARBL1] ARB(2]

~
/

 >

femptyd

Transformation 37: copy attribute of formal parameter named

in speci{fication llst to formal parametoer, Tamove naue from ,

specification list, and decroment specification list count.

<ph>
<pi> <fp> } <sp>
_lf_ie.l_xm
ARDCH] TERECL] ARBLS]
‘ , ARBL6]
localv(i]
ARBLL] FERNC1] ARB(2])
[x) ARB[3]
ARB(7]
<ph>
<pi» <fp> 3 <sp>
Ar3({7] ;gzggxtj-zl ‘ .

ARBL8] ARBLS]

Aﬁfiﬁlti]

ARB[1] TERM{1] ARBL2]
Cx2 ARBL 3] ARB(6]

Tranaformation 383 all formal parameters on spaciflication
1ist removed, remove specificatlon part.

- <ph> <ph>
CARB[1) <op> ARBL1Y
localv(0]
rransformation 39: remcve enmpty specification part.
<ph» ’ <ph>
ARB[1] <s?> ARBL1]
" <am>
Jompty#
rransformation 407 vemove superfluous type node.
<pd> . ‘ <pd>
<c£:--IEEI1i o ‘ - rzlgz:;-~—xggtxj

TERM[L)

Trans formation 41s

declaration local to procodure blocksy
label on the procedure body.

<ub>

<pd>

ARB(1] procedurs

<ph> <ph>

<pi> <fp>
<id> 1ola1v£13

TERM[1] ARJ[Q]

<ub>
<dc> Tpc>

H

|
Yocalv(0] ARB(1]

ARA[Q]

<id> <pb>

TBRMtlJ ARB(3]

make formal parameter
make procedure name &

’ ARL[S]

transformatlion 42: make procodure name a
procedure body. ’
<ub>
<pd>_
<p

ARB{1] procedure

RB[1] <i{d» <pb>

TERHL1] ARBL3)

AR

|

part

label

>

£3l

133

into

.

on tho

rpansformatio
and insert veturn {n procedurs.
<ub>
<dc> Tpc»

:

| T

ARB[3]) <ig> <p1>

TERM[1) ARB[1]

ARB[2]
<ub?>

<dc> to pe> H

AR!Z;;‘Ei;:;—j . IZE;;-_;UIl

1
o ———T
ARB[S] <id»>

TERK[1] ARB(1)

Trans formation U3
and insert return in procedure.

ub>
<pe»
|
IEEEEE_*_:T‘> <pb>
TElH[1] ARB[1]
<ud?»
. 3£=:::f;:;_"'7
Il[i] i I:E:;~_‘EEE£
CARBL3]) <ig> stat(2])

statl2]

TERN(1) ARB{I;--;:?3rn

134

n 43t Insert jump around procedure declaration

insert jump around procedure declaration

135

vransformation 45: dinsert ocount nods in preparation for
counting designational ecxprossions on a awitch list,.

<an> <an>

‘ARBC1] <sE> ARDC1] sifol

ARD(2] ARDC2]

Transformation 46: make switch declaration into procedure
declaration and create 'a separate block for 1t,

<dc>
<sn>_
swit;;‘—~‘:27:-_—?; gk?OJ
<id> ARB(1]
TERM[1]
<de>
[
S s T
iocalv[oj <id> i f:;:§—-—~;311

e |
ILlL] }-:::::éééé%-——-—.__~_

v switeh <id> mixed[2]
1 vaiue Integer - TERH[1] s1[0] return
' ARB{1)

Transformation 4#7¢ bring all donignational oxpreaaionn in a
switch list to the gmume level,

1lo
=
.

81[0]

ARDL1) AnJE;;—-.iZEEI1JW

Tranaformation 48: make first deaignatlonal expressfion {nto

condf{tional expresslon and count.

55?01\ ‘

<dao> ARB[2]
ARBC1]

Transformation 49; make designational

s1t13

ond ARB[2]

if <de> d
ARB{1]
value i,

_ccess[O]

x{d>

\4

expression In 2

awltch list into conditional expression and count.

s1f4] s1l1+1]
HINC1;h-‘:;::—_-_?E'> ARDCH] MINC1)
e nI[a]' '
' ARD[2] . cond
gg_g'-' g : ARB[1]

Aa£E:3-"ﬁ’

<de> ARB{ 4]
ARB[3])

cond .
if <de> ¥

l ARB[2]

yalue [its]

access(0]

<id»

v

137

Transformation 50¢ maka last dosignational expression in a
awitech list into conditional exprosslon and count.

s104] s1[1+1]

HIN[1) <de> HIN(1)

cond Anétzj ~ cond
ARgE:3-7 ARJE??“‘zond

1

AR][?J
alue (i+1)

]

<

|

B

ccass{0]
{id>
v .

Transformation 51t raemove ocount node for designational

expressions,

nixed(2] mixed(2)

s1(1] raturn cond roturn
ggég AR&[I]

ARB(1] .

Transformation 52¢ bring all local variables in typa llst
to same level, ' .

localv(0]

localv[o0]

f o—

<tls] . <tl>: .
Axgifi::::;-*—-??1> ARB[1] ARBL2)

ARBL2) e .

. ownv[o0]

138

fpansformation 531 bring all own variables in type list to

game level,

<tl>
N
. ARJE:;--IEFIQJ

ARECL] <:1>
§

ARB[2)
Transformation S4: bring-all local variables in array list
to sama level, K

yocalvlo] . localv(0]

<aJ> ’ '<a1>
<a[T::::;—~__IEEEQJ . ARJ;:;~“~K§BI2J

ARB[1]

Tranaformation 55¢° bring all own variables iIn array list to
same lavel,

ounv(0) " ownv(0]
| [
<al> -) <al>

<aitz:::;.-—_735321 ARB{1] ARDBL2).

ARB(1]

Transformation 56: pemove superfiuous nodes in type Lists,

localv(0] ' Localv(o]
<tl> ARB{;;‘-.-:?1> ARB[2]
ARJEIE~“_:FT> ARB(2) TERA[1]
<vi>
C<dds>

TERM[1]

139

Transformatfion 57t remove type llst,
localv[0] localv[0])
<tl> ARBJI]
~-
ARB[1) » /

Tpansformation 58: remove superfluous nodes in type liste,

ownv{0] ownv{0] ‘
<tl> ARB%lJ <tl> ARBL2)
‘\\\\t
ARBL1] <5¥> ARB(2] TERH[1]
<vi>
<id>
TERM(1]

Transformation 501 remove type liste

ownv[0] ownv(0] °
|

<tT> ARB(1]

ARD{1)

wpansformation 60¢ remove array deslaration deliniters,

<ag>

<as> .
<aff=:::;*-~?3§>A S <a£:~.f~733t2]
ARB(1] Anéczj : ARB(1)

eere o e

rransformation 61t copy

140

subscript range’ to each array
identifler to which it applles.

ARBE:S-_—:;F> <ai> U <bn> b
ARB[2] ARB[3] ARDBL4]

<ag> » -

ARJ[l] <ai> é <hn> J ¢a1>_ 1 <b‘> %
ARB(2) ARBLY) © ARE(3) szcuz

fransformatfon 621 remove guperfluous nodes.

<as> ' <as> .

B P NV YTEY P TRt
<11> : ,
TERM[1]

Transformation 633 remove guperfluous nodes and wake

subscript range an attribute of array identifier,

- —
_ARB[1) TERH[1] 4 <en>] ARB(3)

ARBL2) ') ') L

<as> . .
ARJEIE‘—_‘;EﬁH[1] ARBL3] . . T

<hbn>

ARBC2]

141
Transformation 641 insert bound pair count node,
<bn> <bn>
ARB[1] <bhr> bpl 1]
ARBL2] ARB{1]

ARI[?]

Transformation 65: count bound palr and remove delimiter to
prevent that instance from being counted again,

bplid . bplisil ‘
<b£?::::;~—__IEEE2] ARBI:§~‘-:;FIQJ
bpl9]
ARBL1]

Transformation 66: insert lower=upper bound pair connectbr'

node and remove superfluous nodes,

ppl4) »plil
ARBL1) <BE> ARBL 2] AR£CIJ alr ARB(2)
<1lbh> $ (UT)) <lh> <up>»
lons

ARB[3] © ARB{u4] ARB{3] AR

Transformation 671 remove superfluous nodes in array
declaration,

localv[o] o localv[0]
F:\
<al> ARDF;; SYHEIJ ARB[2)
<ai>) bplil °
J*‘w

ARB[1] sYM(1] ARB(2] ARB({3]

<bn>

bplil

ARB[3])

rrancformation 681 bring all statements in a compound tall
to the same lovel, o ’

<uyc>

ARJE:;‘-‘:ESTQJ

.

;o stat(0)

<uel .' s
ARJE:;--:ET>

ARB{2]

Transformation 69; insert statement count node,
<uc>
begin ARB[1] ARBEl]

Transformation 70¢ count satatament and remove nodes to

prevent the statanment from being counted again,

stat(1] e stat[{+1]
\-—\
;;;ZTEM—"?E?> 3 ARB[3] ARBC1] ARBC2)] ARB(3]
AR![2]

Trangformation 711 count statement and remove nodes to
prevent the statement from being counted agaln,

stat[i+1]

statL])
‘—k\
ARB(1] <5I> end ARB{3] ARB[1] ARB[2] ARB(3)
AR [21 ‘

Transformation 727 oconvert
statement to computation
nodes, .

<eny>
< ;:--—:I:€——‘_:§?> .
<1c> <uJ> Anétal
ARAC?]
i€ <be> Ihen
ARBL1]

Transformation 73

computation tree form, supply dofault olso

remova guperfluous nodes.

<cn>
<ig>
<ic> <ug>
ARA[?]
i€ <be> Xhen
ARBL1]

{fethen-alsae
tree form

143

condlicional
and romove superfluous

cond
if <usy <gt>

<io> ARBL2) ARB[3]

ARB(L]

convart {f«then condltional statement to

condition, and

cond

4 oap mi
I ARI[?]

<be>)

ALBE:]

Transformation 74: convert go to statement to computation
tree form and romove superfluous nodes. o

<gs>
—_—
zﬁ{z o SYM[1]

ARB[1]

€0
<’d>
. SIHCiJ

ARB[1)

14%

Transformation 751 ‘convert for statement to computation
tres form, making order of execution explicit, and insort
for 1ist element count node and internal label.

<fg>
<fc> . . <sTY>
‘:::::::\\\\\\\~ ARBL(3)
fob wowjal 7% NOWE2) &
. ArB{1] ARB(2]
stat(2)
b EEas(e)
3é\--_-7
g2 r-‘~‘-£§1§
stat(2]
<st> retufn
ARB[3]
stat(0]

\
»::?f?QN“_iﬁitil 7= ARDL2)

ARB(1)

frans formation 76t count elements of for 1list and renove

deliniter to prevent that element from being counted agaln,

statll]

= :

ARDBL1] NOleJ ik
ARB(S) © . ARBL3] ARBE“]

won{21 1 womfa) ARB{2]

ptat{i+1])
=
- ARB(1] Noui:] 'L amstal wonfsl ams{2)

ARB(S] ' ARB(4)

* 145

Transformation 77: romove superfluous for list noda,

<ft> ' . <fq>
<fe> . ARJ[1J
ARBL1] /

Transformatlon 78: copy and label for Jloop variable for
ecach for list element and make change to prevent copying for
that element again,

stat{4)
{
ARB[3] <td> noxi1] 1% <fq> ARBL1]
IL(1] ARDBLY]) ARIC?J
statli]
! T T T []
ARB[3] <fo> <id> NON[1] t ARB[1]
<id> ILf2] .
A [::EEEEE§5:=:::::T_~_____
1L{1] NONji] e ARB[2]
ARBLY4) .

Transformation 79: copylng and labeling dons, remove
superfluous nodes, i

statli] statl{{]
AR c?}‘"“?za» Noujzj] , ARBEl]
1L01) ARBL2]

146

ypannformatlion 803 convert step-until for llst eloment to
computation tres form, making operatlons and order of

‘axacution explicit,

<fe> .
b vonlar Nouiu =l mia, ali wontu)
1L{1] ARB{1) . ARB(2] ARB{3] | ARB(4]
ptat(s) : ¥
4o .

<1d> [;;:“h‘zond

Il[?] lb[?] stat{2] pull

1pl1) Now[2]
NANCIJ RB(2]

" ARB[11
B \-
it . 7 cond
| £\\\\ M~
< . 1, if 0, .

Nou[3) o.
NARB[3) HON[3] Q.

<pr> NON[H4]

NON[1) ARB[Y]

<fd> RB{1]

1L(3]
pl1) ¢

NON[L1]) <pr> NON]3)
ARS[1) HON[1] ARB(3)
| ARB[1]

147 148

Transformation 811 convert while for ~1llst element to : ‘ transfornation 633 combine for lists in a for clause.

conputation tree form, making operations and order of
' V “statli+3]

exccution explicit, o - : . - atatli) ' :
. . AT .
SRR «tls ARELA) o - ARB[£;~‘§~IE311]

<fe>

<1d> NoN(1] :5 -~ NONL2] while xou{sl S atlt[j]
ILL1) ARB[1] ARB{2] ARB(3] ‘ o ARA[?]
stat(2] . . ! . .
r“*-——____~ 4 . . : , ' ‘ Tranasformation 843 bring left parts in an asslgnuent
: 5%2:;‘5“\ oo : . ptatement to the same level,
—\. ‘ >
if stat[2] null) . : - : : <an> <
o [Seindod . | an>
N?N[SJ ca}l 3% .] , <l»> ARBL 2] ARB[1] <lf> Arnl2)
<id> ARB[3] <id> <Td> . ’ ARBC1) <1p» ARB(3] .
1L02] te ILél] IL{2] ' o ARB[3] '
1pf1] NON[2] S : : .
rrangformation 85 convert assignment statenent to
NON[1] ARBL2) : i computation tree form, making order of execution explicit
' ~.and insert loft part counter noda.

Transformation 82
conputation tree form, making opevations and order of .) .
‘ ‘ , AAB[iJ ARB[2] °

ARB(1] - . . v
: . L) - <an? : ‘ ’ ' :
convert remaining for- list elemonts to . ; : o ARBL1) NON[1) ‘ . . éi;;;-n‘f;3§f1]

exccution aexpliclt, ARB[2]
<fe> ‘ stat[2] R .
— T , : ’
<i£:“‘§335r1] = STTEe ' h 1 , :zgzgformatlon 867 count left part and remove superfluous
‘ 0 ——) A 1] s

1L(1] ARB[1] ARBL2)] <1§> e 'f““‘---.._____‘ ’f“‘"-—--_.._______
ipl1] S[HE13 i) o ‘ o ©ptdd SYN(2) 1plise] SYH[2]
HON{1] A 2[21' .) ARB{ 4] ARB[4)
ARB(1] - : ' o

. ARB[1] <p> ARB[2] ARB[1] SYN[1] ARBL2)
’ SYN[1] LI _ARB[3]

ARB(3]

149

Tpansformation 87i insert. address fetch node in almple
variable oxpression.

<vr> wr>

<svy> ’ B , <py>

<vi> ' <vi>-

<id> accessf0]

SYu[1l <ig>
sYH[1)

Transformation 088: insart value fotoh node in primary.
<p>

<yr>

value

HON[1]

. I |
Nogf;;~‘-‘;EET13 . , NOTLll“--T
aéless[k] : HON[2] ARDL1)

AR£C2] access[k]>

AR&[?]

Trans formation 893 insert value fateh node in gooloan
primary. !

<bp> fbf)

<yr> <yr> '
nopga] value

NoN[2] ARB(1] ' ‘ , i Nohtil-
achss[k] NO{;;;-._73311]

access(k)

I
ARB(2] . C

ARB[2]

i me Smaw e e

l

150
Transformation 90:"ranovo parentheses from primary,
<pr> <ag>
{2§=:E§§:__-'3 ARB[1)

ARBL1]

Transformation 91

<hp>
%

AARDCIJ

rransformation 92

remove parentheses from Boolean primary.

<be>
ARI[I]

convert procedure call statement with no

arguments to computation tree form.

<ps?>
<pl> <ap>
ARB[1]

fempty#

sTransformation 93

call
args(0] <pi>
ARB{1]

convert function designator with no

arguments to computation tree form.

<fd>
-<pi» <ap>

. ARBL31]) <om>

#empty¥

fcall
arps[0] <pi>
ARB[1]

154

Transformation 94%: Insert argumsnt count node i{n procedure
call atatement and remove paronthesea around argument list.

<p3> <p8>

<pl> can> . access(1)

ARBL2] (-::::--3 ’ ARBL1)]
ARDL1) ' ARB[2]

Transformation 951 Insert argument count node in function
designator and remove parentheses around argument 1ist,

<fd> <fd>

.<p{:\\\\:a > <pr:§-~::;:33[1]
o [sy suachs
ARB[2] cat>) E ARB[2] ARD[1) -

ARB(1] ‘

[

Transformation 96: count arguments in procedure call
statement and remove delimiters,

<ps> . <pa>
<pi> access[1) <pi> accesal[i+1]
ARB(3] .sYHu[i] <pa> ARB(2] ARB{3] ARB[i] ARBL2Y

ARB(1] ARB[4]

Transformation 97: count argument in function designatoy

and remove delimiters, i

<fd> <£d>

" <pi> access[1] «pl> accossli+1]

T P B
AR£[3] sSYM[1) <pT> ARB[2] ARL[aJ ARB[1) ARB[2]

ARB{1] ARBLH])

152

Tranaformation 981 convert procedure call otatement with,
argunents to computation tree form,

orase

(pa)
<pi» accoss(1] call
ARLC2] ARu[K) nabk armCil b
4 ;;§I;] . ARB(2)
Transfgrmatibn 89; convart . function designator with
arguments to computation trea forn.
<fd> . erase
<pi> acceas(i] : chll
ARBL2) sl mafi:;“ggggcgj <pi>
ARB&l] ARB{ 2]

Tranaformation 1003 Insert ' count. node for subscript
exprossions and remove superfluous nodes.

N ‘ . ‘n‘f>\

SYJEI;;:::E-_-_E?FI2]] <id> accessf1])
I]

<id>» . - ARB(1] TERM[1] ARB[1]

TLCRM[1])

153

count subscript oxprassion and remove’

Transformation 101:
being counted agalin,

nodes to pravent the expression from

<sy>
sYR[3) accesall] : : ;
SYH(£3\;::;_“‘_§?§T2J ARBL1]
ARBLH]
ARB{2] ’
ARBL[3]
<su>

SYN[3] access{i+1].
|
ARB[2] SYHE?] ARBL1]
ARB(4]

ARBL3]

Transformation 102:. counting done, remove superfluous nodes
and convert to computation trec order,

<su> accessll)
SYH(1] access[1] SYM[1] ARBL1])
ARB[2]

ARB(2] ARB[1]

Transformation 1031 convert i{f-then-aelse Booloan expresaion
to computation tree form and remove superfluous nodes,

, <be> cond
e) .
<ic> <sh> clse <ha> . >
RBL2] ARB[3] ARB(3)
if <be> then

——

ARB(1]

'

154

Teansformation 104 convert if-then-else arithmetic
expression to computation tree forn and remove superfluous

nodes. E "

<ae> cond
<lc> :;‘:———~Ez§3 <ag> : if <ga> <ue>
RBL21 . . - ARB[3] :1;> " ARB(2) ARA[S]
‘4f <by> then ' ALB[l], i’
ARI[i] o
Transformation 105t remove superfluous nodes in
designational expression,
<ad> <de>
<de> ARIEIJ'
ARl[!]
transformation 106t convert Lféthen-elne designational

expression to computation tree form and remove superfluous
nodes.

<de> .] <de>»
<ic» <ad> else <de> Eéﬂﬂ
AR£[2] ARBL3) gj?===f§§:-""733>
| do> arbe2) Anicaa
' ALB[!J

1f <b1> then

AR [1]'

fpansfornation 107; . remove superfluous nodes and convert
label to deslgnational oxpression,

;ad> v , <de>
<la» s i
<td>» ' TERMLLY) »

TERHC1)

155

.

Transformation 108: oonvert swlteh deslignator to call on
switch procedurae, :

<dT>) <de> /
<sd> . erlso .
<sl> caJ‘.l ‘
e

<8TT=EEE§=:::5§€:____3 mai;-—-:;§§[1] <iI>

I ARB{1)]) ARG{lJ TERM[1]
<i l

> <sBe>
TERH(1] o ARBéiJ

Transfornatlion 109: c¢onvert actual parameter noda to
argument node.

ar

ARB(1]

<ac>

ARB[1]

Transformat{on 110: convert array Ldentifier argument nodes
to dope vector indicator,

2 : - 2

<ai> , dv

| : T
<?d> <fd>
TERH(1] TERN[1]

Transformation 111; convert procedure Identifier argument
nodes to procedurs Iindicator,)

.

arg , arg

<|1> ' Elocedure

<id» ’ <§d>
TERH[1]

TERX[1]

A

i
156

Transformation 1121 remove superfluous . nodes from slimple
variable argument,
ar

arg
<Lx> A . ARB[1]
<ao>

<sa» s " - o : ’. "

<tn> 3

<fa>
<pr>
<vr>

value

ARDC1]

Transformation 1131 remove lupévfluous nodes from Boolean

variable argunment,

N - | 28
- . AkBL1]

157

Transformation 1i4%: Yrenove
argument and coavert to constant indicator,

arg o ' arg
<ox> / conastant

<ag>

<sa>
<tm>
ches
<pr>

<un?>»

TLRM(1)

Transformatlion 115: remove suporflucus nodes from Boolean
constant argument and convert to constant indicator,

arg ar

<ax>

constant

<be> TERN[1)

. €gb>
<im>
<Tt>
<hf>»
<ho>
<bp> s) ,
<lvy>

YTéRHC1J [

superfluous nodes fron numeric .

TERM[1] -

,::a

158

Tpansformation 1163 convert designational expreasion node
to deslgnatonal Indicator.)

ar . ' arg
do> | absts
Ain[i] AAB[I]
rraﬁafornntlon 117 converf .expreaaion 1nvélvlng
multiplication or division to computation tree form,
NON[1] <mo>

synl1] o> SYA[2] SYH[1] ARB(2)] SYH[2)
ARﬂ|1) ARl[?] ARB[3] ARB[1] ARB[3]

Transformation 118: convert expression involving addition

. or subtractlon to computation tree form.

Non[1] , <ad>

—
SYM[1] <ad> sYuf2) SYN(1] ARBL 2] SYHI?J
ARB{1] ARJ[?J ARBL3] ARB[1] ARB(3]
Transformation 119;: convert expression involving

exponantiation to computation tree fornm,

NoN[1] A

‘ [:
SYﬂil] T syuf2) SYH[1] ARB([2] syu(2]
ARB[1] ARBL2] ARBL3] RB[1] ARB[3]
rransformation 1201 convert expression {nvolving a

relatlional operator to computation tree fora,

NOoN[1]) ¢rT;===§:::::—__-__~‘~

SYH[1} <ro» SYH(21 SYH[1] ARBL2] SYN[2]

" ARBL1] ARB(2) ARBéaJ ARB(1) ARB(3]

‘ Transformation 1211
<sa>

Iad> SYH(1]

o+ ARB[1]
Transformatlon 122
ZOFQ,

‘35)

<ad> svnilj

- ARB{1]

Transformation 1231
form,

Thg:““-

- SYN[1]
Transformation 124
nodes,

<mo>

Transformation 125:
cad>

ARB[1] TERK{1]

Transformation 126
noda, '
<ro>

ARB[1) TERM[L)

ARBL1] TERN[1] ARB{ 2]

ARB(2]

159

remove unary plus,

: . BYH[1)

ARB[1] ~

convert unary minus to subtraction from

i..\smcn

ARB(1]

convert negation to computation tree

-
LYHIIJ a

remove superfluous multipllication ‘class

TERM[1]

ARB[1] ARD{2]

remove superfluous addition class node.

TERM[1]
ARB(2] ARB[1) ARB[2]
remove auporfﬁuoua relational class
TERM[1)

Aangu\mén

t
,xv_______nh__
RBL1] Abl[i]

Transfornation 127¢ replace enmpty by null statement,

co<am>

fempty#

Tpansformation 128

.

convert

labeled

computation tree fori and Insert label count node,

syYul1)
SYH(2] i sYNLa) ,
ARB{1] ARB[2]

rpansformation 1291

]

RN

Transformation 130:
to tho same level,

160
null
statement to
1bi[1] SYN[3]
?YMC2J ARDB[2)
ARB(1]

{nsert Iinternal label count node.,

count

ARB[3]

%EF_\: .
—
ARB[1) 1bL[1)

ARB[2]

Transformation 131t

insert

doolaration count node,

ARB[2]

ARB[3]

1b1[1] ARBL1]
%1d>
IL(1]
labels on a statement and bring
H
1bifi+1]) ARB{3)
ARB[1] ARB{2)
declaration for label and

H

=

<dg> ARB(S]

label(d) ARB[J]

' !
[;;:;‘~I32311[0J ARD[2] :

ARBEQJ

168 o . 166

tpansformatlon 1811 combine local declaratlons. rransformation 1441 copy type attribute to own variable.

<ub>_ . - : I C <dc> .
T .) . \.
ARB[1) <dc> ARB[S]\ <dc> ARBLS] 'mlzu[i] TERKL[2] ownv(0]

locaiv[o] " localvlol BN o Annfx] 7 TERM[3) ARBL2)

a2 srdu) _ ‘ o <de>
.) [T
TERM[1] TERM[2] ownv({0])

<ub> . . ‘:
— T ‘ .
' T ARB(1] ===;Eﬁﬁf33“”“? ARBL 2]
[\

AR&EIS“—‘;EE> ARB[3] ARBLS] ‘)

localv(0]

TERH(1] TERK[2]

ARB[2] ARBLU]
Transformation 1453 copylng done for own variable, remove

' marker and attribute,
Transformation 1%#2; combine label declarations, :

<dc> <de>
| |
e i . . . TERH TERH[2 ownv(0 ownv(0]
ARB[1] <dc> ° ARBL3] <de» ARB[5] ' ' Co o TERHLL] 2 -—T;,i___;. - !
: o Co . ARB(1Y ¥ - ARS[1)
localv([90] localv([0] - . o
-1 T . . . _ . .
ARB[2] ARB(4] o ' i Transformation 1467 insert marker in preparation for

copying type attribute to own array.

.
H

N) : <de>

i e : : :
RB{1] <de> ARB[3] ARB(5] SR : : : e~
') . IR pay ownv[0)

own ~ TERM[1] . array

localv(ec])
SYH[1] ARB[1)

ARJE;3-~‘IEETUJ ’ : . | v ﬁ
: - ' , bplil

rpansformation 143: 4insert marker in preparation for: ARB[2]

copying type atiribute to own variable,
<de>

<do> . : N | - : - J | | FEEEE&::ﬁn—‘-h‘—-,
f . : o ‘ S ~wunv[0]

. AR © oWn TERM[1] array

TERM{1] TERN(2] ounv{0] - no .
rerhCa] | ARBLL] ‘ o ' - R T < R
<des : ‘ o _ C ,i : ' ‘ bpli)
o DA , aRBL2)

TERK[L] TERBL2] ownv([0] ' .
—

S ———r—
¥ TERML3] ARD[1] .

161

Transformation 132: conbine declarations for local
variables of same type in a block.

~

< Ub._’ . M .
== /

AR CW> AREC3)
MI£EE;--I;;31VEOJ

sYu{1] ARB[!]

HIN([1] localv[0]
SYN[1] ARB[H]
<ub>
ARB:??:===fz:T::::i§§€;3_*-_KEEt3]

HIn[1] localv[0]

syi[1] Ann[lg‘hh‘iﬁitsj

Transformation 133: combine declarations for labels on a

statement,

F;zzgzzzzz:::___«-__t
ARB[1] <dc> ARBL2] <dc> ARB(3]

HIN(2] locaiv[0] -

sYNM[1] ARBL5]
BIN(1] locaivlol , '
SYN[1) ARB[H] '

1
—
ARB[1] <dc> ARB[2] ARBL3)

MIN[1] localv[0J——

schij ;;;;I?;~“;EEISJ

4
162

rransformation 1347 combine declarations for own variahles
of same type in a block. .

»<u?> T
ARB[1] <dc> ARBL 2] <dc> “ARB[3]

MIN[2] ownv[0]
syYu(1l ARB(S)
HIN[C1) ownv[0]
sYM{1) ARBL4]

<ub>

AR&E;;\-~:EE> ARB(2] ARBL3)

HEN(1] giﬂltol.

syl[1] ARB{:;—-—~XEETSJ

Tpanaformation 135t Insert marker in preparation for
copying type attribute for local varlable, .
CR— YR

TERH[1) localv[0] . TE£;223-~10ca1v[0]

[e
: rznu{;;--23311] § TLDRH(C2) ARBCA)

163

Transformation 136: dinsert marker in preparation for
copying type attribute to local avray..

A}

<dc>

e
TERM{1] array localv[0]

svn[r;—-7§3i1]

bpli

" ARB[2] .
<de>
TERHM[1] arvay logglvtol

T ——
¥ sYM(1] ARB[1]
hﬁ[f]

ARB[2]

Transformation 137: copy type attribute to local varlable
or label and move marker.

<dc>
TERNM[1] localv({0]

ARB[{J] TERM[2] ARDL2]
<de> ’

TERM[1] localv(0])
ARB[{J TERHK[2] K ARB{ 2]

TERM[1]

rng;;jﬁz:::ig;:;_-_-EZEEIY[oJ

164

Tpansformatlion 1383 copy type attribute to local array and
move marker.

<dc>

mtmar————re.

ARB[[;‘N-F 'SYHilll ARB(2]

bpli)
ARB{3]

<dc>

Tzé;E;;-—~:??az localv[0]
aroCi) SYALL) ¥ ARBL2)
TERNC1) arRay Bplil
ARBL3]

Trans formation 139: copying done for variable, 1remove

marker and attribute.

<de>
TERM[1] localv({0] ‘ . lolalv[O]

ARB[I;‘-~7 ‘ ~ ARs(1]

rransformation 140: copylng done for array, remove marker
and attribute. . ’

<de> + <de>
[,
TERM[1] array localv(0] Yocalv(0]

, ol ‘ ARBCL

‘

Transformation 1471

copy type attribute to own array
move marker.)

<dc>

\
g:ﬁf\\‘\\ ownv{0]

TERK{1] array /

o=
ARB 1]4‘~f;_““§7331] ARBL 2]
bplil
ARB[3)

<dec>

F\W
own TERM{1] array ownv(0)

[T
ARB{1] SYM({1] [ARDB(2]

B TR
own TERM[1] arra bp L]
ARB[3]

rransformation 148: copying done for array, remove marker

and attribute.

<dc> - <de>
owl\\\‘¥3§§[1] array ownvl{0]) owlv[o
ARB{1) AR£[1J

rpransformation 1491 combine own declarations,

<ub>
F‘*:===:::f=====:::f~_____~_ .
ARBL1] <dc» ARB(3] <dc> ARB(S]
ownv[0] OWIV[OJ
ARD(2] T '
<ub?>

ARB[1] <dc> ARB(3] Ai;?;]

ownv[0]
Ig\
ARB[2) ARBL4)

.

168

Tranafovnatlon 15037 mark the beglinning and and of a code
(machine=dependent) pvocodure body.

<co?» . ‘ codot
AR&[1J ‘ codeh ARB(1]

Transformation 1511 roemove firct of two nonterminal nodes.

NHon(1) ’ NoX(2]
non{2} ARBL1]
ARB({1)]

Transformation 152: augment progran tree with symbol table
branch. ’ .

<po>) ££
¥ ARB[1] <po> symtab

ARB[1]) blolk(ol

Transformation 1533 move label declaration to block in
which it. is contained,

<ub>

\ .]
Axg?:;‘*—"?a?> END[1,1] ARBLH)
© ARD[S) l

E:::--IE313]

IRB[2J

I e e BNDL1,1] ARBLA]

ARDLS) ARD[2)
lnn[s]

169

Transformation 1543 combine lLabel declaration with other
declarations in a dlock.

<ub> <ub>
ARBLLI] TTes <der ARBLM) ARJ???z:::EEr:_——_KEEIMJ
localv(o] ' 1013_13_[03 o
ARBC) ARE(2) ARBE3)
localv(0] ‘
ARiC2] '

Transformation 155; count program block and insort block
symbol table node,

ap

Hm_@_

oo mtu

ARB[1]

ap

Mf;EIE_.__7TTKqu ‘ ,
ﬁi‘@m blookfir1)

ulblock(i+1] ‘ :

A%B(l]

+ e e o e

. MlN[I] block[0] block(1])

v L

W =

170

tpansformatlion 1563 convert initial program block node tO
indicate block number and lovel, convert symbol table block
node " to indleate number, level, local and ovn allocation,
and number of containing block, and insert marker,

ap

<£::--Z§E?ab .
[s
ARB(2]

ulblock{1]
ARB[1) !
ap. .
hor Symtab
I:T.:-.o.o.ol ArBL2]
MIN[1] I~

block{1,1]

ARB[1]

in

Tpansformation 157: convert remaining progranm block nodes
to indicate block number and level, convert synbol table
block node to indicate number, level, local and own variable
allocation, and number of containing block and ingert

marker,

—a-'a .
M{;?IS“\"B~Qt§P ‘ .
I%§€§§—~—~X§§TBJ block(1] ARBL2]
st(1,3,0,0,p] '
ArBl1]

plockli,])
AéB[hi-~—g§BT1,1] ARBLS]

ulblock[l]
ARD[%J

ap

—

M£;E;3-‘-3xmtab

[
HIN[1] ARBTS] ARB[2]

gi(i,j,o‘o.PJ

S
§ RRBLIT TBtll,4+41,0,0,11

I
§

bloek[i,3]
A
ARB{4) BND[1,1] ARB[S]

block{1,9+1]
ARB[%J

trangformation 1583 remove-superfluous node,

2P
A£;E:;u-_;~ﬁ?ab)
ARB;QJ

. .
;f;E;;-_.Tiifzg

172

Tranaformation 1593 Loy procedure name declaration to
symbol table, increment local allocation, and move marker,

-2

F——
HIN[1) HIN[2]
g&[mLi:}.k-I,I.PJ
“\
ARB{5] # ARB[3]) »st(d,
" ARBL7

,3,b,¢1 ARB[6]

blockl[1,3]
ARBL1]) <pec> ARB(2]

II;:-‘XEFTuJ
ERM[1] '
Cap
[—

© MIN{1) MIN[2]

gg[m? =1,k,1,p]

ARB(S) pblock # ARBL3) st(L,7,a,b,c] ARBL6]
. Tsaxcxg“IEEIvl

TERH(1) proc [k-1]

ploex(1,4] - -

ARD[1] _ARB2)
I:;:;E:3~‘Iiitul

<{d>

4ERH[1]

-

173

Tpans formation 160: ocopy roal funotion procsdure name

declaration to symbol table, inorement loocal allocation by

two, and move marker.

ap, ’)
HI;E;E‘;E§TQ] : /

‘ut[m,j 1,k=1,1,n)

B e umceey
ARD 51 § ArB(u] stli,3,a,b,0] ARB[S]
ARB(7

blockl1,3]

e
ARB[1] TPC) ARB[2]
[
roal <id> ARB(3]
TE g[i]
ap
 —
IN[iJ MIN[2]
°t[mJin} 1kt1,1, nl

ARB(S] Ebloéi“‘"aboi‘? ARBLH] 8tL1,],8,b,¢] ARB[6]
TERM[1] ARB[?7)

PRY[1] real (k]

ERK[{1] proec [k=1]

ploekl[i,1]

_\
bt ARDL2]

ARBLLT
IZ;ZIEIS*IEFIaJ ' .

‘id>
IERHCl]

174

rpansformation 1611 copy integer function procedurc nane
declaration to symbol table, Jincrement 1ocal allocation by

two, and move marker,

ap

nﬁ;f;ihgfi}zl

. , stlh,1=1,k-1,1,0] -
S ARB{;;:§=i§§f;3TE£fI:1.a.b.c] ARB(6) §
o : ARBL7

bloak[i,i]
—
ARBL1]) <pec> ARB[2]

I:::zf:=ffiz—753133 -
TERM[1]
g_p_
win(2] WIRF21
st[m,j 1,k+1,1,n)
ARB 5] ﬁggggﬁ synbor § ARBLS) se(i,9la,b,e] ARBLSD

TERN{1] ARB(7])

ERM[1] intéger (k]

TERH[{! proc [k-11

K blockli,3) ‘
NSy

label{1) ARB[3]
1d>

ERM[1]

175

Transformation 162: copy Boolean procedure name declaration
to symbol table, Increment local allocation by two, and move

markoer,

.1—3_2'

T ———

N[1] HIN[2)

stim,3=1,k=1,1,n]
-.*‘M

ARB{5] ¥ ARB[4) stli,J,a,b,c] ARB[6]

x

ARBL{7]

o

loek[1,4]
\
A£;E;5‘2pc> ARB[2)

l{k_j
colean <id> ARB[3]

TE ul1l

ap,
[
MIN[1] MIN([2]
33[?,j-i.k+1,1,n3
{
ARB{S] %block svmﬁol d ARBEH] 33[1,j£a.b.0] ARBL6]

r<t:::::;\~\\sznc1 ARBL7]
ERM[1) Boolean [k]

TERK({1] procedure (k=1]

bloek{4,3]

Fediathabuly

A£;TT§:€“XEEIQJ

abell1] ARBL3]

<id>
izxxti]

176

ryansformation 163: ocopy local declaration elemant to
symbol table, increment local allocatlon, and move marker.

ap
HIN[1] HIN[2]

Eifiojrmvovlj

plock(1,1] ARBE:?===:7—-_IE§TsJ :

\‘\
AAB[I] <dé> ARB[2}

localv[k]
\
TERH[1] ARB[4]

ARB([3]

ap
Winge) EIW2]

gi[y3emy0,1]

r~_<:::::r_____7

bloekl{i,3) TERM(1) ARB(3] [k+m]

ANBLt] <ae ARR2)

localvikel)

ARBCH])

Trans formation 164§ al)l local declaration elemonts for
block copled, remové'dsclaration collector,

a - a
;T;;:;-*~——_§T5213 ;TZE;E__.-_—EYiizl

Eitisjvlvoom], . axl 13ritx,0,m]

blockfl,3] ARB[3) block[4,4] ARB[3)
r\.\
P T T Y123 ARDL1] ARB(2)

lotalvik]

171

Transformation 1651 copy own doalaration eleument to synbol
table, increment own allocation, and move marker,

2p
Hi;E:;——_TEEF2J ‘ /
stli,3.1,0,n]
ARBF:?::::i——__KEEEBJ R ' o
block(1,1] o

A£;?;3~—_—:E"> ARBL2]

ownvX]

TE&QE:;——-QREEE#J
ARB[3]

anp

MINC1] - HIN[2]
stli,j,1,0,m]

e
ARB&S] symbol ¥ ARB(6])

T£R£?:3—~—‘IEFT3J k1

bloek(i,]]
AAB[l] <dgc> ARB(2]
ownvik+t]
arbeu) N

2

Transformation 1661 all own

178

declaration olements for block

copled, remove declaration collector. .

HIN[1] HIN[2)

stli,3,1,0,m]

block(1,4] ARBL3]

> ARB(2]

¢
owlv(k] s

———

ARB(1] <

a
HIN[1] HIN[3)

g&[lijlminloj

ap’
MHIN[1] MIN[2]
g&[i.j,l,o+k.m]

bloek[1,§] ARBL3] °

AKEE;;~_-XEEtzl

" rpansformation 167: vreplace local procedure name by block
number, level, and displacement,

ARB{ 3] pblock

. ARD[si

block{f,1] TBR&[lJ

ARB[1) MINT 2] ARBL2]

<id>

TERM{1]

HIN[1] HINi3] Tt
gg[+3,myn,0]

ARBLY) [1l

bloek[1,3) TERH[1]

RoC11 HIN|

ARB[1) qufz] ARB[2) |
(1,3,1] ‘

ARD£5;~“~E§E%é§;_-ifif53
\N

ARsl4] . (1)

179

transformation 1687 vroplace local symbol name by Dlook
nunber, lovel, and displacement,

ap

H>;E:3‘-_§3§T33 . . ,

stli,4,myn,0])

ARB(3] symbol ARTES]
TanchE——_IEEEIE“"‘EIJ '

bloek{i,3]

i

AﬂEEIE“““EEi}zn ARDL2]
<id>
TERH[L]

o .

KIN[L] MIN[3]

stli,f,m,n,0]

ARBESJ gymbol ARB[S5]
synbol ARBLS)
rerhial ARECAT 1)

bloek(£,3]
AAB[I] HIN(2] ARB[2]

{i,3,21]

*

rransformation 1691 add to procedure name referenced in
block other than defining one the block number, level, and
displacemont of outermost block contalining & declaration of
that procedure name,

.

MIN[2] KINE2) :
. 8tln,0,p,a,b] ' ’T
Anuff?£:~2§§§gg ARB[3] HIN[3) AR;Eu]
r§:::::::{~§~\‘~éf[t.j,n.c.d)
TERH[1) ARB[2) (1
block(1,9) '

A£;EEE_‘~_§F611,1J ARDLS)

<id>

TERH[1]

ap

uJ;E:;—‘-QYﬁtzl

£ECQ¢Z¢P'a°b]
e

ARB[1] pblock ARBL3]) HINT3) ARB(4]

{\-‘-ﬁlmn.c.a

“TERM[1) ARB[2) {11

”

block[1,3]

. ARBL6] BND[1,1] ARBLS]

<id>
TERM[1]
[n,o,1]

181

Transformation 1701 add to symbol name referenced in block
other than defining one the block number, level, and

displacement of outermost block contalning a declaration of

that symbol,

ER v : /

winta] RIRL2]

280hy0.p,8,0]

ARB(1} symbol ARB(3] HINL3) ARBLH]
[tt:::::::;__“~;§;[i,j.n,p.d]
TERH[1] ARBL2) (1) '
lock(1,3]

ARDB(6] BHD[3,1] ARB(5]

o

<id>
TKRL[IJ

ap
xggzzg‘_—7ﬁiTzl
stln,o,p,2a,b]

ARBffj‘—gziiiﬁ;;;____XEﬁt3] WINLS] ARB(M) -

8tl4,9,m,0,d]

TERUCL] ARBL2) | (1)

»

block[L,33
A&B[s] BND(1,1] ARBL[5] ' '

<id>
TER¥L 1]
' fn' |l]

o

Transformation 1713 1f there is a matching procedure
declaration in a block batween the -block in whieh the
procedure is referanced and the block whosae -number, levsl,
and digplacement i3 currently attached to it, replace the
attachment by one for tha intervening block:

ap

NINLS] THMIN[1]

block(i,1] stfn,o0,a,b,c] ‘ ¥
ARB[3] MIN[3] ARB[#]

atld,e, v, h,p]

[eet————
ARB[5] Eblock ARB(S6]

MINT 2] ARB[9)

|
gg[f.j.m.p.ql

BLL) MINCH) ARB[2] TERH{1) ARBL7) [k] ARB{8]

>

<id>
TERM{1]

[n,0,1]

o

.\;——.
NLS) . HIN[1]

lock(1,§] stln,o,a,b,c]
ARB[3) MIN[3] ARB 4)

stlfd,e,y,h,2]
y! >
ARB[S] pblock ARB[6] HIN[2] ARB(9]

x

iﬁtlvjvnvpoqj
ARBLS]

ARBL1) HINC4] ARB(2) TERH[L] ARBL7) (k]
<id>
TERH(1]

fd,e,k]

183

Transformation 172: Lf there {8 a matching symbol name

declaration in a block betwoen the block in which tho symbol .

is rpeferencod and the block whose number, level, and
displacement {3 currently attached to it, replace the
attachment by one for the intervening block, ;

a

HIN[S] MINC1]

bloek[i,3] stln,0,a,b,e]

ARBE;?=:§§ESE—IEETu]

_B_t‘[d_!"vY'hvgj
ARB{EE‘ZEFBOL ARBLG) HINL2) ARBLS)

8tli,3,mp,q]

ARB{17 MIN[u4]) ARB[2] TERH[1] ARB[7] [k] ARB 8}
<id>
TER¥[1]
[nlo,1] ' o '
N .

-\ .
N{5) MIN[1]

=

loek(4,3] gl[n.o.a,b,c]

‘b‘

ARBL3] HMIN[3] ARBL4]

stld,e,y,h,g] ,

Ann{?3‘§§§EZI~I;E*€T—§TN¥23 ARBL9)

'33[1.3-N-P-q;

ARB(8)
ARBC1) MIN[4] ARB{2] TERMCL) ARBLT] [k ‘
cigr
TERM(1]

[dye,k]

. Transformation 1731 gppropr;ato assoclation made, dolate

symbol nama,

- <id> <id>
TERN[1] [n[o.l]
(njo,l] . .) "

§

Tpansformation 1743 change assignment to function procedurs
name to reference second of two words allocated for it.

®

IN(1] HIN[2]

=

. gﬁ[i.j.m.ngol

ARBL4) Block ARBLT]
A TERI[1 ARBLs] (k] ARB(6]

[§]
\

a0 ARB{3]
[

ARB(1] {1,3,x] ARBL2]):

ap .
HIN[1] HIN[2]

stli,i,mn,0]
Ana%zgﬁn‘-"FTagy ARBL7]
| , fﬁs) T3 AREL6)

\
(1] ARBLA)

| e

ARBL1] - accesal0] ARBL2)

[f,3ektt]

Transformation 1753 attach
procadure name declaration.

188

procedure symbol tabls to

53[1'%i§£f123~ .
ARB(1 pblock ARB(33
SYM[1] ARBL2]

9_2[5-'5’1""9“:]

‘E‘_E_Ckoj*i-'OtPDQJ ; ARB(S]

T ——
ARBC1§\~§_ESTBCk INTIRE

syn(1] ARBL2]

syM[1 ARBI®Y "
ARBLS5]
st(k,3+1,0,psq]
ARB(Y4 ‘

Transformation 176: remove all nonterminal nodes.

HON[1]

ARBL1]

Transformation 1773 insert

counting arguments,
args(i]
ARB&l]

Transformation 176t count
argument, and move marker,

arpgssli]
Ann[f?ttzih"ggg ARBL3)
A&u[z]

Transformation 1793 counting done, romove markey,

argss(i]
“*£~r~,_~“
ARB(1] #

ARB[1]

marker in preparation for

argan[O]
ARB{1]

argument, number particular

'

argos(i+1]

ARBLLY argli+1] J ARBL3).

ARs(2) .

arga(L] |
ARB]i]

186

Transformation 180: mwark value argumant.

a
HIN[1] MIN[2)
g_&[l.j;ﬂ.b.CJ
Aaa£:;§§‘giisck ARB(S)
-
TERM[1] ARBL6] [k atln,i+i,d,e,f]
ARB{7) symbol ARB[8)
Tnnif33——f3§=:j:[::‘§;§319]
‘eall
mark arpall] (i,3.%3
ARB(1] argim] ARB[3]
ARnl2])
HINCL) HIN[2]
: .El[iljtatbic]
fe1 gkt ~
ARDBL4] block ARHB(S]
: 5;;5?55__"IFFIBJ [x] srln,j+i,d,o,f]
' - AR3{7) aymbol 4RB[8]
‘ TERN[2] [m] value ARBL9)
ceoeall | .
mdvk - argslil [1,3,K)

ARB£:3-q‘3§?E[mJ ARBL3] N

ARB{2]

187

Transformation 181: mark value argument.

ap,
xmzl

23[,j,a.b,c]k

R

ARBMT\I pbTock ARBLS)
e
SERNC1) ARBLG] TK) EElm;itlsdse,f]
ARB[7] symbol ARB[8)

Tnkﬁm9]

fcall
A —
mark arps(l) {3,3,%]
ansl1] argled AREES]
ARBL{2]
a

HIN[1] MINC2]
stli,i,a,b,e]
Amm‘i& ARBLS)
PERSLLT ARBLST TK) Eilmyiti,d,e,f]
. ARB{7] symbol ARS[8)]

TERN[2] ([m] value ARB(9]

fcall ' o)
mhex EERRLL] [Ls3.k] .

E o BN
ARB(1] varg{m] ARBL3] .
ARB{2])

B

188

)

Tpansformation 1821 mnark all remaining arguments as name
arguments.,

argl1] _ : ‘ . nargll]
ARB(1) ARBEIJ

Trans formation 183t convert arvray value argumonts to
computation tree form. i

vargl{i] ’) argli]
9_3‘«_ _ ‘ TERK{1]
TiRH[l]

Transformation 184y convert aimple of subsecripted varlable.
value arguments to computation tree fora,

varg(i) arplil

acclss[j] access(3]

ARBL] . ‘ - o ARB&l]

Transformation 185t convert constant value argument tO
computation tree foram, inserting nodes to allocate space for
and copy constant, :

varglid - ' argli]
constant o . pushi I access[0]
TBRA[i] ‘ ﬁ empstack
L ' ’ ccess{0] TLRK[1)
lempatack
tompstack

189

Transformation 1863 convert oxpression value argument to
computation tree form, Inserting nodes to allocate spacgs for
and copy expression valua,

vargli] - arg(1] :
ARB&l] T usgt:::;:_—f‘;zEEBs[OJ
empatack
. ccags{0] RB[i]'
lempstack
. tempstack -
Transformatfon 107: convert array name argument to

computation troe from, inserting nodes to c¢reate an
evaluation procedurec.

narg(i] nargg}]
av : 1L{1] to 1 :
r%xx[z] I:;;;-‘_;:ll
L{1] Ixed[2]
TERH[1] Teturn

I1L02] .

Transformation 188: convert procedure name apgument ' teo
computation troe form, ingerting nodes to create an
ovaluation procsedura,

narg{{] narg(1])
. | T sSS——————
procedure IL{1l to 1
T£R£C1] ‘ ’ IL
——
TERH[1] . patlurn

" pargli) pargli) -

‘constant !L[li“iggf_‘T

Transformation 189: convert simple or subsepripted variable
name argument to computation tree form, JInserting mnodes to

. ereate an evaluation Prooedure.

nar ti] nargli]
a—jasm SR 172 EIa S e .
ARBEl] . 11[23 [:E;;_-‘—Eﬁlg,
' ‘ ILCL] mixed(2)
i:::::E;T-_-TETﬁrn
. lRB[l]
Transformation 190t convert designational expression

argument to computation tree form, inserting nodes to create
an evaluation procedurs.

nargli] narg[i]

desi . ;:;%T%EE§§==:€—_‘1

;;lf] ' : e (\@}_l
| 3 IL(1] mixed(2]

. RB{1] return

* ppanaformation 191t convert conatant. name argument to

computation trese form, inserting nodes to allocate space and
create an evaluatlion procedure,

e ———
arated ' xl[er\\\£££E?_-_£E1£

. IL[1] mixed(4)
. ‘;\\
Zusht] access[0) roturn

ltack

temLstack

191

yYyansformation 192: convert expression name argument to
computation tree form, inserting nodes to allocate space and
croate an evaluation procedura,

nareli] nar&[ij ;
ARB£1J ILEYTEEE§§==:T“T

. p;;;:—t;:~—_;EE3§BCOJ return -

tempstack

1

192

Transforrmation 193t copy I{nternal labels used for argument
evaluat{on to symbol table, copy evaluation procedurvu naumes
to symbol table, Increment local variable allocation, and
replace symbol references by block number, level, and

'displacament.
a
MIN[1) HINl2)
stli,d,k,b,e] 3

bloeck(1,4) ARB[7]) # ARB(8]

ARB{1] BND?i.l] ARB(2]

call |
mark args(nl] [x,Y,%]

ARB(3] narpfal] ARB[4]

u.[thz\\z

‘.
2y msl mts]

g_p
MIN[1]) MIN[2]
stli,gd,k+2,b,c]
ARB(7) symbol pblock ArB(B)
LC{;==E§§E-T??1J
. block(4,) LE2) 2aBel (k)

tl:‘,Aﬁnf;377ﬁﬁ?1.xj AWBL2]

call

——

#7707 Au[a) argla) ARBLW)
O [4,§,k01) X ;
' [1,3,k]

1,3,%) ARB(6]
1,3,k+1]

193

Transformation 194 copy internal labels used for argument

evaluation to symbol table, copy cvaluation procedure names
to symbol table, dincrement local variable allocation, and

replace symbol refercences by block mnumber, level, and
displacement, : . .

a

HIN[1) MiN(2] ' - R
stli,3,ksb,e]

block(1,§] ARB[7] 7 ARB(8]

Agg?f?::§§§f1723~—XE§t2]

mark argsin} [x,y,z]

[
ARB(3] narplfal ARBL[4]

i) o3

i Tt
;Itzl §ZEI3‘I§its: I:E;;.Zﬁital

518

E\\
n{1l MIN(2]

stli,9,k+2,b,¢] L
e L .
ARBf??“gzmgzzm*EEIZEi“‘? ARB(8] : '

' [g
[‘§=::::55£11\ proc [k+i]
block(1,1] LC2] label T[]

Aﬂu[l] Buvfl.ij ARBT 2]

fecall

mar args(nl [X,¥,2]
[——
ARB[3) arplal ARBLH)]
' '.(i,g,k¢1] to T 1

7
[L,d.%]

£,9,k] ARBLE)
(4y30ke2] DRECS)

transformation 1953 all symbols replaced by block number,
level, and displacement, remove markor. ’

_3__‘_[101 pkod,ml
ARB(1] ArBL2]

é}_[i.j lktl;m]

ARBLL ¥ ArB[2]
Tpunsformation 1963 insert argument collector for pvéfodura
call with no argumenta. . ’

call / call

£i1,3,%]) arpgs(0] Li,3,%]

rransformation 1971 convert functlon procedure call to
obtain value of address returned from call.

ap
[————
HIN[1] HIN[2]
. ﬂtifj’mcnnol

_ ARB(3] pblock ARBLY]
f£éall ARBIS] TR ARELS)

ARDLD) . EREL1) T1.3.k3
' Akngz]

2p)
MIN[1) MIN[2] o

!;trlnj ymyn,0)

Anné;;\-‘§£§1355 ARBLY)
asls) T ARBLE)

argsfd] (1,3.%)

ARB(2) :

value
call
ARBLL)

195

Transformation 1883 insert nodes to causa function
procedurc to return address.
ap
Mings) RIRE2] ;

££[i.j,a,b,c] i

ARBLH) fpblock ARB(S) . ,

mmn :

{abgl(m] ARB(3]
ARB{1) (4{,3,%x] ARB{2] ! , ,
a .
HIN(1] HIN[2]

stli $,a,b,cl

Akutum\ﬂ '

tmﬂ
Livertm) aiEiCe) - :
ARBCA] 2scEBa0)
[l.j!kﬂ]

/RB[iJ [i,3.k] ARB[2])
Transformation 199: {nsert nodes to cause functlon
procedure to roturn addross, ’ ,
feall yalue
ARB[1] ggl£

>
=
[
Lol
-
-l

'HIN[1] HIHi?]

196

Transformation 2003 {insert call of evaluation procedurc for

real variable name argument in referancing procedure.

a

access(0] pblock

[,1043 Annmz.a.bﬂx ._
_ARBL2 symbol ARB[3] 3

TERJFT?::::%EJ real {x]

2P

umn

' block
call ARBLL] stli, ,asb,cl

algaf0] —Valuo Aanczmw
| Tecossor :Yn_xm)
£43,%) '
i | .

197 T : : 198 -

Transformation 201: insert call of evaluation procedure for S rransformation 2021 insert call of evaluation procedure for

integer variable name argument Iin raferencing procedure.

Boolean variable name argument in referencing proceduroc,

ap

a
MIN[1] HIR[2) R , HFMH\WEH
ey | ; phibek
ARB(1] sx(i,],a,b,c] . ARBEL) st(i,3,a,b,c]
Arwtzmu ' ARB[2) symbol ARBL3]
TszJ intoger [k] . . TERN(1] m Tk
accesn[0] v; accesal0])
(i,3,%] L3,k
ap ap |
¥INC1) HINC2] mmn
Axagm.a,b,d ARBm.a,b.cJ
ARBL2] symbol ARBL3) - ARB[2m3]
TERN[1] 1] Integer (K] | szm“n %)
caly : ean) ’
abgalo] Talue ~Lm‘vuue
iccess[o] : égggggjol
Ei.s.kq ! Ilfi.j,kl ‘
' ﬂ .

199

Yprans formation 2031 ingsert call of evaluatlion procedure for
procoduro variable namo argumunt in reforencing procedure,

ARB[3]

ap
H ;EISQ-‘§YFTZJ
pblock
ARB{:;——.—TEEEITB.a.b,c]
Aaéc2§~k~zgﬁﬁgi
' TERM[1]
(4,5,%]
E._P_

——
vInga) MIN[2]

pblock

ARBm,é.b.C]

e :
(1} procédure k).

N
ARDCQﬁ symbol
\

ARB[3]

TERM[1]
call
££;2E33.-_3alue
iccess[O]
éi,j,k]

{1] procedurs [kl

Transformation 2043

label variable name argument in refercncing procedurc.

2p.

H

~

ap

;;:35‘753}21 B
bldck

=

NC1)

130k]

uxuinl

block _ v
i;;I??L‘-EEfITE.a.b.c] : .
,Aan[a§‘=:§§§§§§“‘xista; }
TERA(1] (21 label (K]

m 1a,b,c]

ARB[2]) synbol ARB[3]

serh(e] L) igbel Tk

200

{nsort call of evaluation procedure for

Transformation 2051 insort call of evaluation procedure for
awitch variable name argument in reforencing procedure,

ap,

wingay WDNE2) ;
Anb[:;—-EEfI73.a,b.oJ
ARB[2§C=:§§§§;;~—-I§EEGJ
TERH[;?=::?:3-_EEZEEL
ti,3,%3
ap
WIN{1] MIN[2]
ARB{:;T—_EEIITE,a,h,oJ
ARB[2 EXﬂ%éé;_fﬁfcaj
Tznncxshghffff-Ezzlgh
e

lccessCOJ

1,3,%1

202

Transformation 2061 insert call of evaluation procedure for
array variable name argunent in referencing procedure.

ap
RIN[1]

[1,3,k]
ap,

=

" eall

block
. ARB(1] stli,3,8,b,c]

GEIS___FTi32J

HIN[2)

CTERH[1] [1] array (k]

pblock
ARB[1] stli,3,a,b,c]

ARB(2] symbol ARB[3]

\
TERM[1] 1) ariay bi

‘aIEZEFT:.‘Value
ccess{0])
1,3,k

208 o ‘ o : ' 204

Transformation 207t dinsert call of evaluhtlon procedurs for . Trans formation 2087 insert call of evaluation procedurae for
real array varfable name argumont in referencing procedure. integar array variable name argumant in referencing
: . procedure, o)

a

;E;EIS_~EEF}2J Y ' - winril WIRT2)
pblock) o : I _ r_—___——_i _
- o ’ ! . pblock
AR»E:3~_;?EI‘3 a,b,cl : : o
N ’) . ARBm,ﬂ.b.C]
ARB[2]) "symbol ARB[3] : . . _ \moL WQ]
= A RB[2) symbol ARD

Tﬂﬂmﬂz [kl ‘ . o LF‘“\’\\\ m=mm
e . o ’ TERH[1] (1] 4integer array (8’3
A9 J
. : [i,3.%]
2%;___~__-‘_ | - .
nIn{1) HIN(2] ! ! Eﬁh________
: : HIN[1) uxnjz)
pblock L S ,
ARB{;;—T;;EE_E asb,cl - o { o
: A% ,:r"w’h\ v » . ‘ARBm.a,b c)
ARB({2 symbol ARB[3] : . : Iv
e : ' ARB2 bol ARB[3
TERHE?SN‘TIJ real arrvay ‘T}] . ‘ t symbo ,===:£~3__-_______— .
11 ' : TERH[lJ [lJ integer array (k]
Qe . . .
11
'algzzzﬁ-?aluo : o ' . gean
ccess[0] v S ‘ args(0) “Value
- lcceae[OJ

$434%] ' o ‘ . E
i) . : ‘ 1434%) L’

insexrt oall of evaluation procadure

Transformation 209t
name argument

Boolean array variable
procedurc.

ap

}W?] '
pblock
Axaéﬂs_iti.j.a.b.ﬂ
Axatzmal
Tznﬁ‘ﬁm T3
[L,3,%]
- :
bngey wERL2)
pblock
ARB[1) stli,3,a,b,c]
ARB[2) symbol ARB(3]
TER&??ﬁ;:%§3-§331ean array [k]
call

. access[0)

5%5.”

Transformatfion 210: all referonces marked, remove marker,

ji.j.k] [4,d

in referencing

205 206

for Transformation 211: {nsert label count node,

H

[apertss —Fet1]

t

{L.j.kJ\ARMﬂ

1,3,k
X Transformation 212¢ Insert program block head and tall
‘nodes and thread to and from block symbol table,
' i‘l’n\ g :
: HINC1) HIN[2) HIN[1) “f?] - ‘
: ’ | 4"—‘4,¢:"‘_ == \\
stl{,3,ksdynl 27 stli,§4k,1,n]
- /A/ - J })
(d
| ! ARB[2] % ARB{ 2] J/.
i blockl1,4] b101,) /;/
! /4
7
i ARB[1] P—’:;E_l'_jl__j“_ﬂ_}l//
i ghun il eeelpndynafiuudipet d
i Threadst
: .thread from bt[i,§] to atli,3,%,1,n]
thread from sat(i,3,k,1,n] to btli,]]
thread from DBh{{,j] to stli,j,k,2,n]
thread from st[i,j,k,1,n) to Dbh{i,j]

Tpansformation 213t thread procedure call to symbol table
fov block containing procedure declaration, .
. a
NIN[2] HIN[1] HIn{2l \
' stli,i,8,b,0] /El 1,4,3,b,c]
. ARB{2] ‘\ARB 2}
ok h call call A

A

\
\
R TSRS mm.n
. ¥

" fhraadst

thread from [1,§,k] to .g£[£.j.n.b.cj

207

Trans formation 2i4: thread Aprocoduvo nane deoclaration to

procedure name as. label on procedure body.

-

ap

MIN[1] HIN[2] » /

ﬂf_ci'joaobch '

~
ARB{4] pbloek ARBLS])

i;;;;EIE_~XEﬁisj rerkied Agsfsl TERB[2) [k)
ARoC1) TL3.%) ARSE2)

a ;

HIN[1] MIN[2]

g_[i,j.a.b,c]

ARBL7)

!<--~____._K_R_B_[“] ?_block ARB{5]
N i T Y
labelf1] ARBLITNTERN(1] ARB(6) TERM[2] [x3

= ==
ARB[1] Ei,j.k] ARBL2]

Threads:
thread from ([k] to

ARBE?].

on statement,

IN[L) MIN[2)

H

_S_S_[i-jtaobn"]

ARB[:?===§§§§:I___I§315]

[ROUURSERERER

208

_ opansformation 2151 thread label declaration to label usage

e

A;;EIE~—~TITB.k]. ARBL[2]

[:;:IEEE-‘KKEIa]~ TERN(1] ARBL6) TERN[2] [X]

el MIN[2)
tfi,3,a,b,¢c]

tenm e ARB[U] symbol ARBI[S]

-_——
—
el

ARBL7]

* labelf1] ARBC3]\\anL[1] ARBES] TERN[2) gﬁ)

— i ——— T — — —— — WO > S

e
-~ ARB[1] fi,j.k] ARBL2]

¢

Threadss
thread fron fk] to

ars(73

209

.

tpangformation 2161 throad label referonce to nynbol'tablo
block in which the label is declared.

ap a2
whiga HER2) o~ :m::/-
scli,3,a,b,0] ,fii[i.j.a.b,c]
' ARB{1] / ARBC;J
L‘ to :'
[1,5,%] i.'.:.!.:_ !

Threadsg:
thread from [£,J,k] to atli,J,a,> . :
Transformation 217: 4nsort label count node.
. . . '
r_ r\\t
ARB{1] - labell1] ARBLL]

[i,3,%]
1,3,%1

Trans formation 2183 inaert halt between program branch and
symbol table branch of computation troe,

a ap,

P
sYxL1l stl1,1,a,b,¢] SYM(1) halt 2ECITI'..b.°]
ARB[1] ARB[2 ARB(1] ARB[2

Appendix II

" AN EXAMPLE OF THE APPLICATION OF SLCHMANTIC TRANSFORMATIORS

TO AN ALGOL 60 PROGRAH

This appendix illustrates the application of gemantic

transformations to the parse tree for the following Algol 60

programg

begin :

Integer procedura factorfal(n); value nj integer n-

if nsl then factorials=l

else factoriali=n X factorlal(n-i).
integor p, “p. rosult;
--6-

Eesult~=factor1al(p)

end

The parse tree for this programi has been pirtitioned Into
six separate trees and the trapsfornatlons through 151 are
applied to ocach of these ‘trees separately. Then the
resulting trees are recombined into a single tree and the
romaining transformations are aﬁplled to that tree,

The transformed trees in this appendix are the output

. of the program in Appendix III, (A few trees have bsen
" yearranged by hand to accomodate page width vestrictions.)

Troees vare shown for the succeasful application of groups of

¢ransforpations, rather than for each transformation or for

Just the final transformation,
The parse trea for the main body of the prograw is

given balow, In that tree folf, #s2f, and fs3f vepresent

) ‘ 210 . '

statements, each 6f which {8 treated later,

<p >

<bl>»

<ub>

<bh>

<bh>

) <ct>
<gg> 3 <ct>)
<gt> ."_._(.1.
ﬂslﬂ
fiall
3 <de>
<tk>
<1F> <tl>»

\
<tf:hg;;23duro <p!> <pT>

(n?>.

§

211

Vol

I
=pL> £p> § fvp> <shH>

<gp> <{l> 3

<id>

factorial

"intepar

The successful application of transformation 1, 3
(twlce), 4, 5 (twice), 11, 16, 18, 20, 21, 22, 23, and 24
gollects énd counts statements, colleacts .local variables,

creates & block for a procedure declaration, collecxs,
oounts, and assoclates displacements with formal parametuers,
and inaserts gount nodes, for spocification and value

variables, The resulting tree is givon below,

<tl>
. <sl>
<v£>
’ <iL>
reLult
<vi>)
<1d>
p
<ub$)
<pd> !
<t)ﬁ%ww>
wts |
ﬂsIﬂ

<pi> pr> { <VL) <n%:\\

|

id»

e A

213

<sp> localv[i])

214

<t§>
gl.zae.‘:
value localv[i]
|

<id>

;ocalv[i) §
)

(1]

<id>

falcorial

’ lntager

The successful appllcation of transformations 26

“(twice), 29, 30, 31, 32, 33, 3, 37, 38, O, 2, 43, 52, 56

" (twice), 67, 70, and 71 collects and counts specificatlion

and value variables, coples ~ specification and value

" attributes to formal parameters and removes specification
and value parts, creates a declaration for formal parameters

" local to the procedurs block, labels the procedure with i{ts

name, Insepts a jump around the procedure, inserts a return

statement, and counts asatatemonts, The vesulting tres {s

givon below.

21%

A

po>

bl>»

R

<ub>
de> <de>» ptat(2)

\
s1f #s2d

integer localv[0]

I result Kk

<yb>

fi::\ig <pc> H -
l;;;;~;311 ‘ :

!

Iy gor factorlal SIatl2]

———a

<ut£\;§?hrn
return

fa3i

20865

localv(0]
|
n .
[??:5§§::‘Iﬁ?zgor.
The successful application of trans formations 129, 131,
135 (twice), 137 (three times), 139 (twlce), and 151 {(twice)

counts labels, inserts declarations for labels, coples type

attributes to Jlocal variables, and yromoves guperfluous

nodes, The reoulting treec s glven below

| e e e e T .

i

216

<po>
I\>ub>
<ub» [d9> atat[2)

ocalv(0] ﬂsil fa2f

result

nteper integen §

~dc>,£g pe> _ y
de> labell1] null

goﬂﬁg

localv[0]
0865 '
abel

Rdheahadiusn

‘ .

integer factorial stat(2)
€gt> return

#a34

20865

localv[o]) - :

T ooies Tmeger
The transformatfions 1-151 have now been applied, The
resulting tree ls reintroduced later,

The noxt p&rao tree, glven helow, is for an assignmont

* statement ¥8ld,

217

us>
Ibu> Yoy

Iul>

L ’
{:::‘---ao>

<lp> [sa>

lsv) Lfa>

|vi> lpr> ’

Lo Lo

bk

The successful application of transformations B4, 85,
86, 87, and 151 (ten times) collects and counts left parts

in an assignment sctatement, Yearranges tha format of the
gtatement, inserts an address fetch for a left part
varlable, and removas auporflﬁoua nodes, The r&eultlng treec
i{s given below, ‘

ul>

PYSSINEy

iEIIEh??n>
6.

access([0]

l ' "

<id>

This treoc {5 reintroduced later,

The next paiao troo,

statement #s2#,

<us>
<hs>
<yl>
‘a.> ’
<1.:\\‘733>
<1lp> <ga»
<vi:\73 <tm>
<sli <fa>
<vi> <pr>
<id> <fd>
rbiult <pi>
<id>
:fuctorlal

cae>

<sa>

cfa>
<pr>
2344
8v>
tvis

i1d»

ex>

ctm>

218

given below, is for an assignment

219

The 8uc§easful application of transformations 84, 85,
86, 87 (twice), 88, 95.. 99, 109, 112, and 151 (eighteen
times) collects and counts left parts in an assignment
statonment, lInserts valuo&;nd addross fetch / operators for
variables, collects, counts, and marks actual.parameters in

a function designator, rearranges the format of a function

designator, and raemoves superfluous nodos, The resulting

troe s given bolow,

<yl>
!
}ﬂ[l] <pr>

erage
fcill

~——— :
mark args(i) <$z> . ,

fa

torial

b1

arg
iccesnEO]

<ld»>

-

access[0)
<]d>

résult

This tree {5 reintroduced later,

= e e

Tho next parse trea, glven below, 1s for the

conditional statement #s3#, The saymbols #atf and #e5¢

represent two statements which are treated latox,

¢

220

<cn>

<ig> else <at>

<ic> <u1> das#

‘»
|

J::f:;;;;-?7a>

<tm> <tm> .

fa> ¢%a>

v

b o

PR
©

b 1

v

A

<
”
v
A

N
T

sv> ' 1

The successful application of transformations 72, 87,
ge, 120, 126, and 151 (sixtden times) rearranges the format
of a conditional statement, Inserts address and valuc fotch
oporatovb for a variable, vrearranges the format of an

arithmetic expression, and removes superfluous nodes, Tho

resulting tree is given helow.

cond

T

if <ys> <3t>

bp> ¥suf #sSf

A A

<yr> <un>
.
value

|
<vi>

accesal0])

<id>

¢

.

This tree 1z relntroduced later,

1

221

The next parse tree, glven below, i{s for the assignment

statement fs4f,

<bhs>

whs

<al>

<1l <ae>

abs <

<P{:\?3 <Lm>

<ii> <La>

faltorial <lp>
oo
A

The succesaful application of transformatlons

g4, 85,

86, and 151 (saven tiqoﬁ) collecta and counts left party lIn

resulting troe s given below,

<yl>
]

i{?z;\:}n>

i

<{d>

factorial

This tree ia reintroduced later,

.an assignhent statement and removes

superfluous

nodaes,

The

The last of the aseparate piarse troes, given balov, is

stm> J

‘for the assignment atatement fssf.

.

mo> <fa>
<ppr
<fd>

<pi> <ap>

{ qat>)
lac>

<

A

<

lp

™~

p
i

i
!
fal

<fa>
<pr>

VD>

<sy>

vi>
Iid>

>

v

,:
>

torfal

A A pe
& g o
& o x .
v v v

>

Lal) Pl
& 3
v

o
o]
v

< =]
- <
v v

-~
[~9
v

S A A A A A K e A
< .
e
v

.

<id>

factorial

ga» <ad» <tm>

<tm> .

<pr>

<un»

The successful application of

trans formations

223

o84, 85,

868, 87 (twice), 988 (twice), 95, 99,
and 151 (twenty-one times) collects
an assignment sfatement, inserts
operators for varlables, collects,’
paramaters in a function designator,
of a function designator, rearra
arithnmetic expvession,. and removes
resulting treo {s given below.

A

1r;:;-~f-?ua>

<id> R
factorial [:::~f~f~.?3?>
. value erlae
Lccess[b] fcill
L1d>, . mark ar 3[1] <!
1 ') g::_ fa
| Laes
buree |
‘ _J_c_c_c_s.g,[OJ
id>

The transformations 1~1531 have

geparate parse trees, The tre

109, 117, 116, 124, 125,
and counts left parts Iin
address and values fetch
counts, and marks actual

rearranges the format
nges the format éf an

auperfluous nodes. The

Itorial

now been applied to the

e glven below Is the

‘rocombination of those transformed troes.

<po>
<ub> :
dub> %de> Bbratl2] /-
ul>
LhraT T
cras'e
feall

‘\‘\—-
mark argu[l] <id»

| factorial
. . arg

Lccesa[ol

Lo,

L .

gfcess[OJ

<id>

pesult

r-\‘- v ‘
ip(1] <Tn> . Lo
6.

ccass[0]

faiiedidhtubuy

{d»

S e

localv(0]

P rchlt

225

1 lnt&gor
nteger
do> ££ <pc>]
de> <ig> ££££
gou6s
.localv[OJ~v
go865
dabel
t
intagor <185 starf2)
at> retrbrn
ggﬂﬁl
if <us> <s§>

——

e

A

226

mafizizzgfzi-zfd>

factorial

irg

aes>

1

\'2 ok d fun>

227 ' ‘ ’ : ‘ 220

l ' i. ‘ ' T A (id)
’ ! .
alue , -) g006S

ccang[0) . " . o ‘;' ocalvl{0]}

! <id> Lo o , |

value i .
ccenafl0] ' - g The 8suacessful applioation/ of transformations 151
<id>- ' ; B . (twice), 152! 1583, 154;' 155, 156, 157, and 158 removes
L . guperfluous nodes, o¢ollects and comblﬂea declarations, and

<id> counts and numbers blocks and Inserts corresponding gymbol

° factorial table headers into a symbol tables, The rasulting tree is

given below,

<Tl>
:T‘\\\\ o - . a ' . ap .
(13 i : . b T S aee,m
1 " | L , DNer2,2,0,0,1]
factorlal . . ’ L SRR .7 bloek[1,1)
i ’ block(2,2] 3des mtae(2) .

pr>
?~‘\~\‘ ' . ' S jul>
<yr> <un> . . L : ' v 1=

‘ S : RO :) T~

1! . ‘ ’ : o , t. . ' iR[xJ <pi
value . . , ! ‘ , ‘) orlsa

call

Accosa[OJ

o)

Ild) . N mark args(1] <id»
J L ‘ ‘ S o S N ! . ; factorial
factorial . ' ‘ ‘
! arg

access[0]

<id>

rasult
:B
1p(1] <un>

6

acceas[0]

Lias
P

localviol]
p rosult

integer
integer

<dec> to 1pC> !

P2

F‘t:z:::zz:___’
integer <Id> stat(2]

cond

{2

&cconn[OJ
id»

|
by

s3t> return

;~::I:~?Tl>

ig;:F\?an>

229

230

3
[
chll
magf:;:_gfziu?ld>
é?ctol&al
E_X:&
Ilau>
<yp> <un®,
1
value
l::::sfoj
id>
n
iccesa[b]
Lo
l .
<id>)
factorial
'E
J
C<fa>
4£nctor1a1

R

231

pr) .
} :
[
1l !
value N
iccosa[ol
+
Iid>
factorlal
<id>»
gLacs
localv{0]
J\EE?os
label

{1 value integer

The successful appllcation of transformations 161.'163

(four times), and 164 (twice) coples local symbol

declarations i{nto the symbol table for ' the block in whieh

the symbols arq declared and thon removes the declarations, ',

The vesulting tree i3 given bolow,

a

\\
<po> st[1 1,4,0,0]

pblock symbol symbol uymbol I axl2,2,2,0,1]
"”;;ctoﬁisr\k mbol symbol ¥
{1] valuo intdger Co]

'

o l"";‘:::fjt Intbgor (3]
. 1

ntegar (2]

fact&rlal Rrochuve [b]
ock[1,1]

;I:fitzjii‘itattel

! . IR C dul> <l

-
-4

hag
[+3
:—{ J—

accessl0])
. 'f) .’ ': ¢1d>4
rtsult

B ; ‘; ‘ 1‘;:3‘?3n>

oean[OJ
id>

L T—

fac{ovlal intégur [l]

——
[1] <id»

argsg
l »faltovlal

232

o

|

id> null
\louos
T
tabel{1]) statl[2]
Tst> return
cond
F:::-~__
if ul>
!

~—
mark args{1] <id>

t faltorial

arg
<ae?r

\ '

SYyyr> <un>

1.

value
cceas(0]) .

joaee

i1d>

<
-3
P
=3
@

fa—

cceosl[0])

233

!

<

fl

bp>

vr>

23y

11d>
¢1d>

factorial

M~

1pl1) <Tn> - %

'O
K4
d»

ctorial

<un>
A

alue
L1

Lccaua[ol

<{d>

factorlal

<id>

g0865

1d>

The successful application of tranaformations 1567 (five

times) and 160 (elght times) looks up symbols in the syabol

storage

area

for tha blocks

© table and replaces each by the number and level of tho block

.. 4n which it 19 declared and by a ‘displacement within tho

~The rasulting tree i3 given

.

below,
ap

—_—

%t[ig.u,o.o]"
1

p intager (2]

factorial grocgdura [b)
block{1,1]
bloek{2,2] stat{2]

<yl>

o

T

ipl1) <pr>

erase

fcall

—

accenn{0]

[J,1,3J

132

££?IS‘?}n>‘

b1dck dymbol Symbol symbol # 8€[2,2,2.0.1]’
R > A

factorlal 1ntérur [3]

factg;I;INEZEbol gymbol #

‘_N) .
magizt;astil {1,1,0]

ar'
acieus[ol

"tiﬁz.zl

40865 label (1)
n [{) value intéger [0}
result intdger (3]

sl

accass[0)

£1,1,2]

1re.
1o

2,2,1] puiy

labalf1]) stat(2)

{st> return

A

-]
?ﬂ:
(-3

i

e

1>

X

236

<vn> <Pr$

grdse

A
L4
[
v

V> <un>
. 1T
lcccss[O]
2,2,0]
433333[03'

237

t2,2,0]

[1,1,0] !

1pl1] <un>
1 "

{1,1,0]

xbp>
<
T~

<yr> <un?»

1.

valus
|
access(0]

32,2,0]

(1,1,01]

(2,2,1]

The successful appllcation of transformations 174 °

(twice), 175, 176 (elghtoen times), 177 (twice), 178

(twico), 179 (twico), 181 (twice), 184, 186, 19§ (twice),

197, 198, and 199 adjusts access to functlon procedure

nameg, rearranges the symbol table for a procedure, removes

all remaining nontorminal nodes, marks and counts actual

argunents {n & function procadure aall, expands argument

nre s

"exprossions, and lnsorts operators and operands to make

explicit the roturn of a value by a function procedure, The

resulting tras is glven bolow,

plock(1,1] stl

238

1,1,4,0,0]

pblock symbol symbol symbol

fac

[
result intager (3]

p integer 2]
1
factorial 1ntl5er [1}

. |
torial groclduro {6) Lt[2.2.2.0,1]
symbol sym ol

=
gougz\IEBol (1]

n [1] value lntggct‘fbj

block(2,2) stat[2]

mark ar 5[1] [1,1,0}

argl f
acc [0]
[1.1. b]
accessl0] .
[1,1,3]
ipl1) 6, .
. aLcosu[OJ .) : ,

(1,1,2]

jabel(l] %lxodC2J

stat{2) acceasf0]

[1,1,1]
.
cond return*

—

f 13 13

i

ipl1] %

call

e~ '

value erase

value

\
magg\Z;Tﬁfil 21,1,0]

arpl1]

239

pusht 1& acceanl0]

’

Lo

tompatack

dcconn(0]

tempstack

access(0] =

value 1,
accass{0)

2,2,0]

ompatack .

.ta the

. s .
P__[i.i],ha A _3;3

240

L
value 1.
lccéss{O]v
2,2,0]
1,1,0]
£2,2,1]

The successful application of transformations 211, 212

(twice), 213 (twice), 214, 215, 217 (five times), and 218

inserts a label collector node, threads blocks to

corrasponding symbol tables, threads procedure calls to the

symbol table for the block of the procedure decluratlon,
threads symbol table entries for symbola which are wusod as
labels to the labeled constructs, threads label references

symbol tables for the blocks of the label

. definitions, vemoves superfluous nodes, and inserts a halt

opepator, All the transformtions have now been applled and

the resulting tree, given below, is the computation trse for

the progran,

1,1,4,0,0) ,
S~
pblock symbol symbol symbol

B A \
: i result {nteger [3]
‘ intapoer (2]

factorial intlgcr [1]

factorial grobéduro [6] At[2.2.2,0.11

xmbol sym ol

252

241
l 308@] ! . value
1] value inthger (0] ’ call
g}!_,_cz.ij L.z] 3_1:_«1_1:_[2] ' &m.o]
’f\= ’ argl1]
_Emno ' pusht 1§ accessl0]
' ::Tl—; ' , access{0]™
mamstlj (1,1, 0] i value 1.
argl1] ; access{0]
acless[o I ' 2,2,0]
[1!1,2] ' tanpstack
access(0] ' i tenpstack
v ; zcc'esa[dj
! £2,2,01]
. i access(0]
" [1,1,1]
. . 15017 1)
o . ' 5 : a:!cess[O]
SR tdar
.}.abel[i] % , " ' ' ' X '
{1,1,0) sratxl2] accesafl0) valuo 1.
T1,434) ~ Locesstod
gond return | 2,2,0] . .
if 3y R S : thread from Q:u.n to stf1,1,4%,0,0] '
’\ R , . thread from BN[1,1) to 5tl1,1,4,0,0)
ipl1l . ' B Co thread from bt(2,2] to 5t[2,2,2,0,1) ‘
gy S fhrend oz B S E
T T ' ' . o thread from [1,1,0] to 51(1,1,4,0,0])

243

thread from [1,1,0] to st(1,1,4,0,01 -
thread from stliy1,%,0,T7 to bel1,1] s
t¢hread from st(1,1,4%,0,0] to bhl1,1) ° E .

thread from [0] to 1 i . . :

thread from §t(2,2,2,0,1] to bt[2,2]] - o c : Appendix III

thread from 5t(2,2,2,0,1] to bh(2,2] ‘ /

thread from [1] to : :
AN IMPLEMENTATION OF THE SEHANTIC ANALYZER

This appendix contains a semantis analyzer o§ded in the

o . Unlversity of callfornia, Irvine, dialect of Lisp 1.6,

' ‘ (DEFPROP FCHLIST
‘ (FCNLIST DRIVER
i : APLACE ,
‘ i ARB : .
ARD1
i BAKHAT
: BF
| . BND
! . , BUILD
i : BUILDY
i BUILD2
! COMMENT -
i EXTLHD
. . FAIL
'] ' : : : . FATHER
’ . . FIxN
' : . LINK
: - oot LLINK
! : o i HAKLST
: " - MARKT
o ' ‘ } MATCH -
s : ' HIN
, : HINA
. HPOP
: . . NANODE
' , : HOFTUN
.) : ‘ rop
' o] EEE PUSH
' , REPLACE
’ . o . RLINK
. ‘ v o . : ' e ’ RSPHD
: . co S ' . SCRIPT
= o SEARCH
‘ . _SLARCHD ‘
K SPLACE
STRIP
sunc

C o o 244

245

SUBHODE

SUBS

TAB

THREAD

THREADPRINT

TPR , .

TPRINT /

VAL

WALK)
VALUE)

(DEFPROP DRIVER
(LAMBDA NIL
(PROG {PRE PTRN)
(SETQ BASE 12)
(NCONC GRINPROPS (QUOTE (COMMENT)))
(SLTQ **NIL (QUOTE (®NIL NIL NIL NIL NIL NIL)))
(IHPUT TREES DSK: (TREE . DAT))
NXPAR:
(1¥Cc (QUOTE TREES) NIL)
(COND
((£q (SrTQ PRE (ERRSLT (READ))) (QUOTE $EQFS))
(oUTC (QUOTE TRACK) NIL)
(QUTC NIL T)
(RETURN T))
(T (SETQ PRE (CAR PRE))}))
(INC NIL NIL)
(SLTQ TMODE HIL)
(SLTQ TR (BUILD PRE))
(OUTPUT TRACK DSK: (XMPL , TXT))
(OUTC (QUOTEL TRACK) RIL)
(LINCLENGTH 1750)
(PRINT (QUOTE (PARSE TREE ISt)))
{TERPRI)
(TPRINT (LLINK TR) 1) .

(TERPRI) L

(OUTC HIL HIL))
(INPUT TRANS DSK: (TTTT . DAT))

NXPTN:
(1HC (QUOTE TRANS) NIL)
{conp
((£Q (SETQ NEXT (CRRSET (READ))) (QUOTE $EOFS))
(SLTQ MSTK NIL) . ’
{THREAD) .
(PRINT (QUOTE (ALL TRANSFORMATIONS TRIED))) .
(OUTC (QUOTE TRACK). NIL)
{PRINT (QUOTE (COMPUTATION TRLE I51)))
(TERPRI)
(TPRINT (LLINK TR) 1)
(TERPRI) -
{(SETQ TP TR) : '
(THREADPRINT TP)

246

(TERPRI)
(ouTC HIL NIL) n
(GO MXPAR:)) - .
(T (SETQ NEXT (CAR NEXT))
(SETQ PTRN (CAR NEXT))
(SLTQ S$BS (CADR NEXT)).
(SETQ NUMB (CADDR HEXT))))
’ (conp)
. ((HOT (NUMBERP NUNB))
v (SETQ THODL T))
(SCTQ TLST NUHB)) ¥
(SETQ HUHMB (CADDDR NEXT))) 3
(T (SETQ TLST NIL)))
(Ine MIL NIL) ‘
(SETQ PR (BUILD PTRN))
NXTRY:
(SETQ
DUHNY
(QuoTE ,
(NIL (®NIL NIL NIL NIL NIL NIL) NIL NIL NIL NIL)))
(SETQ PFLAG 0)
(SETQ FFLAG 0)
(SCTQ MSTK NIL)
(SETQ TP TR)
(SCTQ PP PR)
(SETQ ST NIL)
(SETQ STP NIL)
(SETQ ROOT .(LLINK TP))
(SETQ ROOT1 ROOT)
(SLTQ RSTK (CONS TP NIL))

L1y (COND
((HATCH (QUOTE TP)
{QUOTE ST)
(QuUoOTE PP)
(QUOTE STP))
(conp

((noT (OR (NULL TP) (NUL
((AND (NULL TP) (N&Li 9?3)99’)) (oo 1)
(NOFUN (QUOTE DRIVER)) ’
“(CoND
({REPLACE SBS)
(PRINT (LIST NUNB (QUOTE S)))
(OUTC (QUOTE TRACK) NIL)
(PRINT (LIST NUND (QUOTE S)))
, (COND
. ((RSPND) (SLTQ MSTK NIL) ’
' (TERPRI)
(TPRINT (LLINK TR) 1)

o O (TCRPRID))

{ouTC NIL MIL)
(MOFUN (QUOTE DRIVER))
(GO NXTRY$))

247 - o 248

(T (OUTC (QUOTE TRACK) KIL) ' e OF THE TARGET AND SOURCE LANGUAGES. SUDSCRIPTS ARE
. S ENCLOSED IN ANGLE DRACKETS (<>) AND ARE SEPARATED BY

(ouTC NIL T) .
(PRINT (QUOTE (REPLACE FAILED))) ‘ s COMMAS., FOR EXAMPLE, A BLOCK HEAD NODE XS WRITTEN
(RETURN NIL)))) : . <1/,J>!BH
(1 (60 L2:))))) S _ . AND <IDENTIFIER> IF WRITTEN
L21 (NOFUN (QUOTL DRIVER)) / S : » S1D.
(coup : . ‘ o R)
((rarL) (6o Lir)) C " THL OUTPUT IS GIVEN AS AN N-ARY TRLE WITH CONTROL
(T (PRINT (LIST NUHB (QUOTE F))) . : N S CHARACTERS FOR THE RUNOFF TEXT PROGRAH SO THAT
(coNnD B e SELECTIVE CAPITALIZATION AND UNDERLINING MAY BE DOXL,
((RSPND) (OUTC (QUOTE TRACK) NIL) : o THE GEMERAL FORH AND CONTENT ARL SHOWN IN THE TREES jof
(TERPRI) b APPLNDIX 11, ALTHOUGH PAGE PLACLCMENT HAS BEEN MODIFIELD
' BY HAND FOR SOML OF THEM. ' THIS OUTPUT FILE SMOULD BE RUN

(TPRINT (LLINK TR) 1) ‘ i
4 IN RUNOFF NOFILL HODEL."

(oUTC NIL NIL)))

(HOFUN (QUOTE DRIVER)) COUMENT)
(GO HXPTN:))))) A ’ . o E '
EXPR) : C (DEFPROP APLACE
S C L (LAHDDA(SPA STSA PA V)
{DEFPROP DRIVER ' ' {PROG (PA1 L1)
WINITIALIZLS, READS, AND WRITES SOURCE TREE, READS (conp
TRANSFORKATION, AND CALLS MATCH, IF HATCH IS SUCCESSFUL, . . ’ : _((HULL PA) (RLTURN HIL))
CALLS RLPLACE TO INSERT SUBSTITUTION TREE, IF REPLACE ‘ , L {(AND (EQ V (QUOTE ARY))
FAILS, THEN DRIVLR MALTS, OTMERWISE IT PRINTS SUCCESS _ _ : (HOT (NULL (LLINK (EVAL SPA)))))
AND, OPTIONALLY, THE RESULTLNG TREE AND TRILS AGALN i o i (PRINT (QUOTL (ERROR: ARB NODE CANNOT HAVE SO0N)))
WITH THE SAME TRANSFORHATION., IF MATCH FALLS, DRIVER o S .+ (RETURN NIL))
PRINTS FALLURL AKD, OPTIONALLY, THE CURRENT SOURCE . S ~° ((aND (NULL (CADR PA)) (EQ V (QUOTE ARB)))
TREE AND READS THE HEXT TRANSFORMATION, WHLN ALL THE- S . 8 " (LINK SPA (RLINK (EVAL SPA}))
TRANSFORMATIONS HAVE BLLN READ, DRIVER PRINTS THE : o . 7 (WOTUN (QUOTE APLACE1))
COMPUTATION TREE, AND READS THE HLXT SOURCL TRLEE. . . ' (RETURN T)) :
WHEN ALL SOURCE TRELS ARL PROCESSED, DRIVER HALTS. R oo .((AND (LQUAL (CADR PA) (CADDR PA))
.o : B ' E OTE HI Q- .
THIS PROGRAM IS INITIATED BY CALLING THE HAIN ROUTINE, I.Eey -, L RS '(Noruéo?qéognvaéf:cn:); H)) (EQ'V (QUOTE BHDIDIY -,
(DRIVER), THE FOLLOWING :gMﬂgugﬁAguigr?zhﬁgngggﬁg BLFORE ; o w0 (cowp g
INITIATING THE MAIN PROGRAM 8] , S e e y
SRACKETS AND GOMMAS MAY BL WRITTEN IN THE OUTPUT FILEs ~ 0 0w eis . o 0miiien o0 ‘iﬁgﬁt (RLINK (EVAL §PA))) .

(4ODCHR 133 (HODCHR 101 NIL)) . T g < ((HULL (LLINK (EVAL SPA
(HODCHR 135 (NODCHR 101 NIL)) . e T TO U LINK éPA N!L§ ’ "
‘) ’ iRnTURN T))

(HODCHR 54 (MODCHR 101 NIL)). . : ¢ S
' : C , AR © (T (LINK SPA (LLINK (EVAL SPA)}) (RETURN 1)2))
THE PROGRAM REQUIRES DISK FILES TREE,DAT CONTAINING SQURCE . : o . . ((HULL (LLINK (LVAL SPA))) .
TREES, TTTT.DAT CONTAINING TRANSFORMATIONS, AMD T e (LINK S5PA (RLINK (EVAL SPA)))
(RCTURN T))

XHPL.TXT FOR OUTPUT, SOURCE TRLES ARL CONVERTED TO BINARY o T Lo '

FORH (AS IN XKNUTH)., SOURCL TREL INPUT IS OF THE FORM L AR (T (LINK SPA (LLINK (EVAL SPA)))
(ROOT LLFTSUBTRELE RIGHTSUBTREL) X SN (SCTQ PAL (LLINK (EVAL SPA)))

WHLRE LACH SUBTRLL CAN DL AN _ATON OR LIST, TRANSTORHATION - v (GO RIGHT:)))))

i (HOFUN (QUOTE APLACE3))

INPUT IS OF THL FORH ‘ , ' o o

(HATCHTREL SUBSTITUTIONTREL NUMBER). ' [... 77 (uLInk SPA (CADR PA)) ' .
WHERE LACH TREL HAS THE FORH GIVEN FOR SOURCE TRLES, o S P {conp ((HOT (NULL (CADDR PA))) {GO PART:)))
THE THWO LETTER ABRBREVIATIONS FOR ALGOL 60 . - S Coe .. (coNp ({NULL (RLINK (EVAL SPA))) (RETURY T)))
HETALINGUISTIC VARIADLES GIVEN IN APPENDIX I ARE USED 4] o ; . (SETQ PA1 (CADR PA)) : . :
THE INPUT PHRECEDED BY A DOLLAR SIGN ($). AN. . ‘ S .. " RIGHT: .
EXCLANATION POINT (1) IS USED TO INDICATE TERNINAL SYHBOLS e (NOFUN (QUOTE APLACEY))

'
. . v, .

ey LR . . . ‘ . . .
\

PART!

EXPR)

249

(COND

({H0oT (NULL (RLINK PAL))) .
{SETQ PA1 (RLINK PA1)) '
(GO RIGHT1))

(T (RPLACA (CDDR PA1l) (RLINK (EVAL SPA)))
(SETQ Li (GENSYH)) ,
(SET Li PA1)

(RPLACA {(CDDDR (RLXNK (EVAL SPA))) L1)
(RETURH T)))

(HOFUN (QUOTEL APLACES))
(COND

{(£Q V (QUOTE ARB))
(LINK (QUOTE (CADDR PA)) (RLINK (EVAL SPA)))
(RLTURH T))
(T (LINK {(QUOTE (CADDR PA))} (LLINX (LVAL 6PA)))
(HOFUN (QUOTL APLACLS6))
{coup
({HOT (NULL (RLINK (CADDR PA)))})

(RPLACA (CDDR (LLINK (EVAL SPA)))
(RLINK (CADDR PA}))
(SETQ L1 (GENSYH))
(SET L1 (LLINK (LVAL SPA)))
(RPLACA (CDDDR (RLINK (CADDR PA))) L1)))
(NOFUN (QUOTE APLACE7))

(COND
&(NULL (RLINK (EVAL SPA)); (RETURN T))
7T (RPLACA (CDDR (CADR PA)) (RLINK
(SETQ L1 (GLNSYH))
- (SET L1 (CADR PA)})
(RPLACA (CDDDR (RLINX (EVAL SPA))) L)

(RETURN TIX)))))

(DEFPROP APLACE

YAFTER SUBSTITUTION TRED IS INSERTED IN
SOURCE TREE, APLACE REPLACES ARB, MIN, AND BXD NODES
BY WHAT HATCHES THLH "

COKHENT)

(DEFPROP ARB . n

(LAMBDACAT1 AST1 AT2 AST2) ' .
(PROG (PST1 PST2 X Y AFLAG) S

(SETQ PST1 (EVAL AST1))

(SETQ PST2 (EVAL AST_))

(SETQ ATLAG {ARB1 ATT (QUOTE x) AT2 (QUOTE Y)))
{COND ((NULL AFLAG) (RETURN NIL))

((HULL (SEARCH1 (CAAR HSTK) (CDR HSTK))) .
(GO DONEL)) .
(T (PRINT
(QUOTEL

(EVAL 5PAD))

(ERROR: THO ARBS WITH SAHE SUBSCRIPT)))

DONE:

EXPR)

(SETQ HSTK (POP MSTK))
(RETURN NIL))) : -

(NOFUN (QUOTE ARB))

{(coND ((NOT (NULL X)) (SET ASTI ('APPEND X PSTL))
(coNp ((NOT (NULL Y)) (SET AST2 (*APPEND Y P5T2))
(RETURN T)))

(DEFPROP ARB
"SETS UP FOR AND CALLS ARBL TO DO NATCH FOR ARB

HODE.

IF MATCH FAILS, RCTURNS NIL, OTHERWISE CHECKS TO

SEL IF ARD HATCH USING SAME SUBSCRIPT HAS BEEN KADE,
IF S0, RETURHS N1L, OTHMERWISE RETURHS TRUE."

COHHENT)

{(DEFPROP ARDB1
(LAHDDACALT1 A1ST1 A1T2 A1ST2)

(PROG

(APTL APT2 AP2T2 AP2T1 APT1B AP2TiB COUNT)

. (SLTQ COUNT FFLAG)

(SETQ APTL (LVAL A1T1))
(SETQ APT2 (EVAL A1T2))

(WALK A1T2 A1ST2) ., -
(SETQ AP2T2 (EVAL A1T2))

. {cOND ((NULL AP2TZ)

250

N
M)

(COND ((EQUAL APT1 *#NIL) (SETQ APTL NIL)))

{SETQ HSTK

(coNs (LIST APT2 APTL NIL (QUOTE X¥O))

THSTX))
(snr ALTL HRNIL)
(SET AiT? *ANIL)

RET 7))
. (énq (VAL AP2T2) (QuoTe *NIL)) (GO 13:))
((AND (NULL APT1) (NOT (HULL AP2T2)}))
{RETURN NIL))
. (T (SETQ APTiB (STRIP (VAL APTL}))))
(coun ((zQ (VAL AP2T2) APT18)
D ((EQ FFLAG 0)
(SETQ HSTK
{CcoNS (LIST APT2
HIL
APT1
COUNT
ST
. STP)
: HSTK))
(RETURH T))
O . (T (SETQ FFLAG (suBi rrLAc))
e (0 L4:))))
(Arou (VAL AP2T2)) (GO Lu:))
(r (SETQ M51K
 {CONS (LIST APT2

251

NIL
APTL
COUNT
ST
STP)
e HSTK))
(COND™ (({NANODE A1T1 A1ST1 ALT2 Aisra)
(coup ((EQ FFLAG 0) (RETURN T))
(T (SETQ FFLAG (SUB1 FFLAG))
(HPOP (VAL APT2))
(GO Lh4:)))) :
{T (SETQ MSTK (POP MSTK))

L4s (NOTUN (QUOTE ARB1))
(WALX ALT: A1ST1)
(SETQ AP2T1 (EVAL A1T1))

(COND ((NULL AP2T1) .
{coND ((ATOM (VAL AP272)) (RETURN NIL))
((EQ (CAR-AP2T2) (QUOTE ARB})
{SETQ HSTX
“(CONS (LIST APT2

©NIL
NIL
(QuUoOTE NO))
HSTK))
(SETQ MSTX o
(CONS (LIST AP2T2 .
NIL .
NIL
h (QUOTE NO))
HSTK))

(SET ALTZ *&HIL).
(RETURN T))
(T (RETURN HIL))))
({2Q (VAL AP2T1) (QUOTE %*NIL)) (GO Lu4s))
‘ (T (SETQ AP2TiB (STRIP (VAL AP2T1)))))
(COND ((EQ (VAL AP2T2) AP?TIB)
{(COND ((EQ FFLAG 0)
(SETQ HSTK
(CONS (LIST APT2
APTL
AP2T1
COUNT .
ST

sTP
HSTK))
. {RETURN T)) o
(T (SETQ FFLAG (SUBL FFLAG)) . ;
(60 Lu41)))) ‘ A
((ATOK (VAL AP272)) (GO L43)) ‘

(T (SETQ HSTK . : ’
(cons (LIST APT2 f . o .

(60 L4:1))))) ‘ o

252

APT1
AP2T1L
COUNT
ST -
STP)
xsrx))
(COND ((NANODE A1T! AIST1 A1T2 A15T2)
. (COND ((EQ FFLAG 0) (RETURK T))
(T (SETQ FFLAG (SUB1 FrLAG))
. (HPOP (VAL APT2))
(GO0 L41))))
“Ar (snro HSTK (POP HSTK))
© (G0 L41))IN))

EXPR)

(DEFPROP ARB1
"DOLS ARB MATCH,"
COMHENT)

(DEFPROP BAKHAT
(LAMBDA NIL

(PROG (PK PX1 PK2)
(SETQ PK (SEARCHL (CAAAR MSTK) (CDR HSTK))) .

(coND ((NULL PK) (RETURN T))
(T (SETQ PK1 (STRIP (CADAR HSTK)))
(SETQ PK2. (STRIP (CADR PX)))))
(CcoND ((EQUAL PX1 PK2) (SETQ HSTK (POP HSTK))
. (RETURN T))
) ’ {1 (SETQ MSTK (POP HSTK)) (RETURN NIL)))))
EXPR) . ,
(DEFPROP BAKHAT
"IPF A SUDSCRIPTED NODE OTHER THAN ARB, HIN, OR BND HAS
BEEN MATCHED, BAKMAT CHECKS TO SLE THAT. THERE IS HO OTHER
_ MATCH FOR THIS NODE MAVING THE SAHE SUBSCRIPT BUT HATCHING
A DIFPERENT STRUCTURLE. IF MATCHES ARE MOT IDENTICAL, IT

POPS MATCH STACK AND RETURKNS NIL, OTHERHISB TRUE."
COHHENT)

(DBPPROP BF
{LAMBDA(NO BFT2)

.(PROG (BFX)

' (COND ((EQ NO 0) (RETURN NIL)))
(SLTQ DI'X BFT2) ’
nr:a (couo ((EQ (LLINK (EVAL (FATHER BFX))) BFX)
- (RETURN .
(CONS (VAL (LVAL (FATHER BFX)))
(BF (SUBL HO) (EVAL (FATHER BFX))))))

‘?ij. , (T (SLTQ BEX (EVAL (FATHER DFX)))
S . (6o nrza))))) '

, 28 254

(DEFPROP BF ’ , : C (conp : .

“BYILDS LIST OF ANCESTORS 10 USE IN CHECKING . : . - {(¥oT (MULL BX))
BOUND CONDITIONS IN BND HATCH." ‘ i o : (SET BST1 (*APPEND BX (EVAL BST1)))))
CONMENT) . : - L {coup :

‘ ' = © ((NOT (NULL BY))

(DEFPROP BND : / o ! L (SET BST2 (*APPEND BY (EVAL Bsrn)))))

(LAMBDA(BTY BST1 BT2 BST2) ' S - (SETQ PFLAG 2)

(PROG (BX BY FLAG BLST W 21 22 %3 24 26 S1 B B1) ' : . (HOTUN (QUOTE BND))
. ’ : (RETURN T))) ,

(SETQ FLAG (MIN1 BTi1 (QUOTE BX) BT2 (QUOTE BY)))
(COND ((NULL FTLAG) (RETURN NIL)}))
(SETQ 26 MSTK) .

EXPR) o : y

. : (DCFPROP BND .
(COND ((LQ (CAAAAR 26) (QUOTE BKD)) L : WSETS UP FOR DOING BND HATCH WITH SOURCE TREE BT
- ’ ’ Lo AND HMATCH TREE BT2 AND CORRESPONDING HATCR TREL STACKS BST1

FIND:

(SETQ BLST :
(REVERSE i AND BST2. CALLS HINL TO DO HATCH AND THEN CHECKS BOUND
(BF (CAADR (CAAAR 26)) (CAAR zs))))) ! . CONDITIONS, ADJUSTS STACK APPROPRIATELY AFTER HATCH."

(T (SETQ %6 {CDR Z6)) (GO FIND1})) . ' :) COMMLNT)
(conp ((NULL BLST) (GO TRUE:))) o \
(SETQ ¥ (CAR 46)) .o . (DEFPROP BUILD
(SLTQ B BLST) ' . : (LAHUDA(L)
(‘SETQ 21 (CADR ¥)) . ; CoL (PROG (X)
(SETQ 22 (CADDR W)) . ’ (COND
(SLTQ 2% 21) ' R R ((NULL L) (RETURN (LIST NIL NIL NIL NIL NIL NIL))))
(coND ((OR (NULL 21) (EQUAL 21 22}) (GO TRUE1))) : o (SETQ X (LIST NIL (BUILD: L) NIL NIL NIL NIL))
(conup (C(NULL BLST) (GO0 TRUE:)})) T Co - (BUILD2 X NIL)
(SCTQ B1 (CAR BLST)) o e S (RPLACA (CDDDR X) NIL)

: . - . (RETURN X)))

L10¢s (COND
((EQ B1 (VAL 21))

(se£TQ 8 (CDR B))
(cond ((NULL B) (SETQ NSTK (CDR 26=) (RETURN NIL))

(T (SETQ B1 (CAR B))

EXPR)

(DEFPROP BUILD
#WrAKES S-EXPRESSION L AND CONSTRUCTS

(scTQ 21 (LLINX 21)) L : . ' TOP LEVEL INTELRNAL TREE REPLRESENTATION, EACH
(cond ((OR (NULL 21) (EQUAL 21 22)) o .7 . . TREE NODE HAS SIX FIELDS: VALUE, LEFTLINK,
(G0 TRUE3)) : S ' | RIGHTLINK, FATHER, THREAD1, AND THREAD2,"
(T (60 L1o:))))))) o . . COHHENT) ‘
L9: (SETQ fa z1) . 0 - T ~
“{¥ALK (QUOTE 21) (QUOTE S§1i : o .o
(cOND ((EQUAL 23 Zu4) (SETQ Si NIL))) . ' _ L : R (?EKPR%&(ggILni
(CconD ((NULL 21) (GO TRUE:)) - N : « . (cOND ((NULL L) NIL)
((EQUAL {VAL 21) (QUOTE *NIL)) (GO L91)) o b e e ((ATOH L) (LIST (SUBNODE L) NIL NIL NIL HIL ¥IL))
((EQUAL 21 22) (GO TRUE3)) L I AT

. (L1ST (SUBNODE (CAR L))

(T (60 L103))) B -
TRUEY s, I SR o) (DulLDL (CADR L))

(COND ((NULL (SEARCHL (CAAAR 26) (CDR Z6))) L . (BUILDL (CADDR L))
(co DONEI)) o S .) NIL
(T (PRINT .~ ‘ A S et HIL
, {QUOTE BT e . HIL))))
(ERROR: TWO BNDS WITH SAME sunscnxpr))) : et S, . 'EXPR) -
(SETQ MSTK (CDR %46))- ..y o
(RETURN NIL))) ' . o Co ' (DEFPROP BUILDI
DONE? " o R * WCONSTRUCTS INTLRHNAL TREE RCPRESLNTATION
: . L - INSERTING VALUB. LBFTLINK. AND RIGHTLINK FIELDS,"

(NOTUN (QUOTE BND)) , , A , iy

COMMENT)

(DEFPROP BUILD2
(LAMBDA(TRLE H)

(PROG (X) - o
(COND ((NULL TREE) (RETURN NIL)))}'. /

(SETQ X (GLNSYH))

(SET X H) .

(RPLACA (CDDDR TREE) X)

(BUILD2 (CADR TREE) TREE)

(BUILD2 (CADDR TREE) TREE) .
(RETURK NIL))) ' '

LXPR)

(DEFPROP BUILD2 .
WINSERTS FATHER LIKKS IN TREE,Y

COMMENT)

(DEFPROP COMMENT
(LAKBDA(X)
(PROGC HIL o
(PUTPROP (CAR ¥) (CADR X) (QUOTE COKHENT))
(RETURN NIL))) ' .
FEXPR) ’

(DEFPROP COHMENT
"PUTS CONHENTS ON PROPERTY LIST.Y
COHHENT) ‘

(DEFPROP EXTEND
(LAMBDA(TEXY)

(PROG NIL
(norud (QUOTE EXTEND))

(SETQ PP (CAAR MSTK)) .
(SETQ TP (CADAR HSTK))
{COND ((NULL TR) (SETQ TP (CADDAR HSTK))))

.(CcoOND ((EQ TEX1 (QUOTE ARD))
&SETQ §T §CADR (CDDDAR MSTK))) N

(SETQ STP (CADDR {(CDDDAR HSTK))))
(T (SETQ ST (CADDDR (CDDDAR HSTK)))
(SETQ STP (CAR (CDDDDR (CDDDAR MSTK))))
{SETQ PFLAG '
(CADR {CDDDDR (CDDDAR HSTKI)))))
(SETQ HSTK (POP MSTK)) ‘
(8£7TQ FFLAG (ADDY FTLAG))
(RETURN)
((EYAL (QUOTE TEX1))
{QUOTE TP)
{QUOTE §T)
(QUOTE PP)
(QUOTE STP)))))
LXPR) ‘

255

LY v

Tk

256

(DLFPROP EXTEND
WIF A NODE-BY-MODE HATCH MAS FAILED, AND AN ARB, HIN,

_OR BND NODE HAS BEEN HATCHED T0 A SOURCE TRLE NODE, FAIL

CALLS EXTEND TO ATTLMPT TO ENLARGE THAT MATCH TO INCLUDE
ADDITIONAL SOURCE TREE NODES. RLTURNS TRUE OH SUCCLSSFUL
EXTENSION, NI1L OTHERWISE." ’

-~ COMMENT)
: {DEFPROP FAIL

(LAMBDA NIL) §
(PROG (THP) .
NEWH 1
(SETQ PTLAG 0) .
(NOFUN (QUOTE FAIL))
(CoND '
({HULL MSTK)
(conp ((NULL R0OT) (RETURN NIL))
(T (GO NUROOT:))))
(T (SETQ THP (CAAAAR HSTK))
(cono
((OR (CQ THP (QUOTE TERH))
(CQ THP (QUOTE NON))
(LQ THP (QUOTE SYH))
(Lq THP (QUOTE 1L)))
(SETQ HSTK (POP HSTK))
(GO HEWM31))
((cQ THP (QUOTE ARB))
. (COND
((EQ (CAR (CDDDAR MSTK)) (QUOTE X0))

e t (SETQ HSTX (POP HSTK))

KR ' (GO MEWHM:))
_— o AT tsurq FFLAG (CAR (CDDDAR HSTK)))
e conbd
o ((LXTLND THP) (SETQ FFLAG 0) (RETURH T))
L (T (GO NEWH1)))))) -~ ‘
o (iggu%nq TP (QUOTE HIN)) (EQ THP (QUOTE BND)))

RIS ((CQ (CADDR (CDDDAR HSTX)) (QUOTE NO))
b © (SETQ HSTK (POP MSTK))
(GO NEWH1)) ‘
(T (SETQ FFLAG (CADDR (CDDDAR HSTK)))
(conp
C(EXTCND THR) (SLTQ FFPLAG 0) (RETURK T))

o ' (T (GO NLWH1)))))

)
: (T (SETQ MSTX (POP MSTK)) (GO NEWH1)))))
HUROOT: .

(VALK (QUOTE ROOT) {(QUOTE RSTK))

(CoND '

((NULL ROOT) (RETURN NIL))

((£Q (VAL ROOT). (QUOTE wiIL)) (GO KUROOT:))
(T (SETQ .

TROOT

(LIST (VAL ROOT)
(LLINK ROOT)
HIL
(FATHER ROOT))
(CAR (CDDDDR ROQOT)) /
(CADR (CDDDDR ROOT))))

(RPLACA (CDR DUMHY) TROOT)

(SETQ TP DUMKY)

(SETQ ST NIL))

(SETQ PP PR) . E

(SETQ STP NIL)

(SETQ ROOT1 ROOT)

(SCTQ FFLAG 0)

(RETURN T)))))

EXPR)

(DEFPROP FAIL
WAFTER NODL-BY-NODE MATCH OF SOURCE AND MATCH

TREES HAS FAILED, FALL MOVES TO NEST NODE IN SOURCE
TREC FROK WHICH MATCH MAY BE RETRIED, RESETS STARTING
POINTERS, AND RETURNS TRUE, IF THERE IS NO NEXT NODE
FROM WHICH TO BEGIN RETRY, FAIL RETURNS NIL.Y
COHHENT)

(DEFPROP FATHER
(LAMBDA (%) (CADDDR X))
. EXPR) .

(DEFPROP FATHER ‘
WRETURNS FATHER LINK FIELD OF CURRENT TREE HODE,."

COHMHMENT)

(DEFPROP FIXH

(LAMBDA{NODE TLEFT2)

(PROG (Fi F2 F3 F4)
(SETQ Fh NIL) : i
(COND ((ATOM NODE) (60 LFH1)))
(SETQ F3 0)
(SETQ F1 (CAR NODE)) .
“(cond ((NOT (ATOM F1)) (GO LF51)))
(SETQ F4 F1) ’ .
(SETQ F1 (CADR NODE))
(SETQ F2 (LEXPLODE F4))
(COND {(EQ (CAR rz) (QUOTE !))

(SLTQ F4 . .
(APPEND (QUOTE (1| _))
(CDR F2) .
{quote (1 _))))
(SETQ 3 (SUBL (LENGTH F2))))
(T (SETQ F4
(APPEND (QUOTE (| =))

257

LXPR)

258

.

r2
(QUoTE (| =)¥))
(SETQ F3 "(LENGTH F2))))
LF6: (SETQ F2 (LIST (CAR F1)))
Lrés (SETQ F1 (CDR F1))
(coND ((NULL F1)
‘ (SETQ NODE
{READLIST .

(APPEND F4
(LIST (QUOTE /[>)k

F2 ,

(LIST (QUOTE /1))
(SETQ Fd (*PLUS F3 3))
(6o LF3t))
(T (SETQ F2

(APPEND F2
(QUOTE (/,))
(LIST (CAR F1))))

(SETQ F3 (#PLUS F3 2))
: (GO LF6:)))
Lr4: (SETQ Fi (EXPLODE NODE))
(SETQ F2 (CAR F1)) ,
(SETQ F3 (LEHGTH F1)) :

" LFts (COND ((AND (EQ F2 (QUOTE /7)) (£Q F3 2))

(SETQ F3 1))
((EQ F2 -(QUOTE $))

{(SETQ NODE
(READLIST

(APPEND (QUOTE (<))
: {CDR F1).
(qQuote (»)))))
(SETQ F3 (ADDL F3)))
((EQ F2 (QUOTE }))
{SLTQ NODE , .
{READLIST
(APPEND (QUOTE (] _))

1
{GO0rE L D1y
(SETQ F3 (susi Fri))))

LF3t {PRINC HODE)
(RETURN (#DIF TLEFT2 F3))))

_(DEFPROP FIXN

WTAKES VALUC FIELD IN INTCRNAL FORH AND CONVERTS 10

© QUTPUT FORK WITH RUNOFF CONTROL CHARACTERS."
COMMENT) :

" (DEFPROP LINK

(LAHBDA(SPL PL)
(PROG (LBL LSPL)
{SETQ -LSPL {EVAL. SPL))

(coND ((EQ LSPL (LLINK (EVAL (FATHER LSPL))))
(RPLACA {CDR (EVAL (FATHER LSPL))) PL))
((£Q LSPL (RLINK (EVAL (FATHER LSPL))))

(RPLACA (CDDR (EVAL (FATHER LSPL))) PL)))

(conp ((HULL PL) (RETURN NIL)))

(SETQ LOL (GENSYM)) :
(SET LBL (LVAL (FATHER LSPL))) !
(RPLACA (CDDDR PL) LBL)))

EXPR)

{DEFPROP LINK
WINSERTS FATHER LINXS IN THE TREE RESULTING'

FROM RECPLACING WHAT MATCHES THL MATCH TREE BY THE
SUBSTITUTION TREE."

COMMENT)

(DEFPROP LLINK
(LAMBDA (X) (CADR X))
LXPR)

- (DEFPROP LLINK o
WRCTURNS LEFTLINKX FIELD OF CURRENT TREL NODE,"

COMMECNT)

(DEFPROP MAKLST
(LAMBDA(HXL1 HMKL2)
(conp ((NULL MXL1) HKL2) ,
({MULL HKL2) KXL1) . . .
((OR (ATOM MKL1) (EQUAL (STRIP HXL1) HKL1))
(COND ((ATOHM MXL2) (LIST MKL1 MKL2))
(T (APPEND (NCONS MKL1) HMKL2))))

(7 .
(COND ((ATOM HKL2) (APPEND MKL1 (LIST MKL2)))
(T (APPEND MKL1 MKL2)))))) .

EXPR)

(DEFPROP HAKLST .
HCREATES A LIST OF NODE AND THREAD HARKER ELEHENTS.

COMMENT)

(DEFPROP HARKT .
(LAMBDA(SUBT TLIST) o
(PROG (FROM TO STORL THP THX X) S *
{SETQ X SUBT)
HORE: '
. (coup ((NULL TLIST) (RETURN T)) o
(T (SETQ FROM (SUBNODE (CAAR TLIST)))
(SETQ TO {SULNODE (CADAR TLIST)))))
(SLTQ SUBT X) - .
{SETQ TLIST (CDR TLIST)) c

HALKL: : .
{HALX (QUOTE SUBT) (QUOTE STORE}) .

0

260

(SETQ THX (VAL SUBT))

(NOFUN (QUOTE HARKT1))

{(COND ({NULL SuBT) (RETURN NIL)})
((AND (NOT (ATOM THX))

(NOT (ATOH (CDR THX)))

(NOT (ATOM (CADR THX)))

(EQ (CAADR THX) (QUOTE TH))
(CQUAL (CAR THX) T0)) .

(SETQ THP (GENSYH)) .
(RPLACA , ’ §
suB .
(AP

(VAL SUBT)

(NcoNS (LIST (QUOTE TH) THP (QUOTE T10)))))})
((EQUAL THX TO) .
{SETQ THP (GENSYH))

(RPLACA

.SuBT

(L1ST (VAL SuBT)

gEND

(LIST (QUOTE TH) THMP (QUOTE T0)))})

(T (GO WALKi1)))
{SETQ STORE NIL)
~ (SETQ SUBT X)

WALK

23 . .
+(WALK (QUOTE SUHT) (QUOTE STORE))

(sETQ THX (VAL SUBT))
HOFUN (QUOTE MARKT2))
CcoND ((HULL susT) (RLTURN NIL))

((AND (HOT (ATOH THX))

(NOT (ATOM (CDR THX)))

(NOT (ATOM (CADR THX)))

(EQ (CAADR THX) (QUOTE TH)})
(EQUAL (CAR THX) FROH)).

(RPLACA

SUBT

(APPEND

(VAL sumTYy K
(NCONS

<

LIST (QUOTE TH) THP (QUOTE FROX)))))

(GO HORE:))
((CQUAL THX FRON)
(RPLACA

SUBT

(LIST (VAL SUBT)

(LIST (QUOTE TH) THP (QUOTE TRON))))

(GO HORE:))

(T (GO WALK21)))))

EXPR)

* (DEFPROP HARKT

"MASSOCIATES THREAD
APPROPRIATE NODES,®

.

'

HARKERS WITH VALUE FIELDS OF

262

264 ;
COMMEINT) : o : : T ((c? DONE1))
‘ . . . A ‘ T (PRINT
(DEFPROP MATCH - ! ‘ ' T U S (QUOTE
(LAHBDA(TREE STK1 BTN STK2) S s ot e _ (ERRORt- TWO HINS WITH SAHE SUBSCRIPT)))
(PROG E:iixT;RE§ g;ig) ‘ o) ‘ : (SETQ MSTK (POP MSTK))
CALK BTH sTKD) / L o i . DONE+ (RCTURN NIL)))
(SETQ T1 (EVAL TREE)) . : T - . R S (COND }
Eiﬁﬁ% {%Né?v?ﬁui{N%%>) (snrq HTX (VAL T2))) o i e : B (éé:gr (RULL HX)) (SET HST3 (RAPPEND WX PSTL))))
(con (T (COND ((NOT (NULL T1)) (RETURN NIL))I)) o S ©((NOT (MULL NY)) (SET NST2 (%APPEND XY PST2))))
CONOLL 1) . ' S : : (SETQ PFLAG 2) .
(boxo) . . : o (RETURR T))) .
((¥uLL T2) (RETURN T)) Co) b EXPR)
o - - : © (DLFPROP MIN "
(fgxgo (NOT (ATON HTX)) ‘ o : . HﬁéﬁH?DA (L) (*CXPAND L (QUOTE *HIN))) .
. . 0 W
(LQ (CAR HTX) (QUOTE ARB))) : . . , . : : '
(RETURH (ARB TREE STK1 PTH STK2))) : (DEFPROP MIN - o B
(T (RCTURN NIL)))))) . . . ' USLTS UP FOR DOING MIN NODE HATCH, WITH S
(T (SETQ T1B (STRIP (VAL T1))))) : - . . SOURCE TREE MT1 AND MATCH TREE HT2 AND CORRESPONDING .
(coMND CL) HATCH STACKS HST1 AND MST2. CALLS MINL TO DO HATCH - ' 7 O
(gggwgis KTX) _ © % AND ADJUSTS STACK APPROPRIATELY AFTER HATCH." St
! . o e g COMHENT) § DU
((HOT (EQUAL (VAL T1) TiB)) - L : : R
(SETQ MSTX : Coel T : . " (DEFPROP NIN1 .
(coNsS (LIST (LIST T4B) (VAL T1)) HSTKD)) . . : < (LAMBDA(MITI M1ST1 H1T2 M1ST2)
(RETURN T)) : : - . N - (PROG (PT1 PT2
(T) X . C . ‘P2TY
(COND ’ R . ‘ P2T2 |
((NOT (ATOM MNTX)) ' , : ~ Co ‘ TARYY
(SETQ FF (NANODE TREE STK1 PTH 6TK2)) o - : TARY2
(NOFUN (QUOTE HATCH)) s T * TARY3
(RLTURH FF)) : , : p2Tip '
{T (RETURN_NIL))))))) ; COUNT
EXPR) ' . . v e - PSAVE) o
(DCFPROP MATCH - : B E %gg;g Foav ;rtﬁg; -
S e : S P) ‘
WCOHTROLS NODE-BY-NODE MATCHING OF S e b - {(SETQ PT1 (EVAL HIT1)) .-
PARSC AND MATCH TREES.") B oo . (SETQ PT2 (EVAL N1T2)) . -
COMMENT) , . .. e L {coHD ((HULL PT_) (RETURN HIL)) '
' Tk o oo ((EQ (VALTPT_) (QUOTE *NIL)) (RETURK HIL)))
(DEFPROP MIN : ’ . . W L51 (WALK M1T2 H1ST2) !
. , L ' w v (BLTQ P2T2 (EVAL H1T2))

(LAMBDA(HTL MSTL UT2 MST2)
(PROG (PST1 PST2 MX MY NFLAG) : . ‘ L {coND ((NULL P2T2) (RETURN NIL))
(SETQ PSTL {LVAL ¥ST1)) ‘ : ' st ((EQ (VAL P272) (QUOTE #NIL)) (60 LS5:1))
(SETQ PST2 (EVAL MS5T2 ' (t (60 L71))) .

)) ' . , .
(SETQ HFLAG (MINI HT1 (QUOTE HX) MT2 (QUOTE HY))). ' ' ‘ ' L6t {(WALK H1T1 H1S8T1)
‘ ' L7t (SETQ P2T3 (LVAL HiT1)) .

(HOPUN (QUOTE HKIN)) - : , Co
(coup ((NULL MFLAG) (RETURN NIL)) . ' L Do {coND ((NULL P211) (RLTURN NIL)Y)
((NULL (SEARCK1 (CAAR HMSTK) (CDR HSTK))) e e IR ((£Q (VAL P27T3) (QUOTE *NIL)) (GO Le1))

263

(T (SETQ P2T1B (STRIP (VAL P271)))))
{COND
{((EQ P2T1B (VAL P2T2))
(COND
((LEQ TFLAG 0) .
(SETQ R : /.
HSTK i
(COHNS
(LIS§)9T2 PTL P2T1 NIL NIL counr ST SYP PSAVE)
STK
(sct
H1ST1
(PUSH
(PUSH
NIL

)

(LIST (VAL P2T1)
(LLINK P2T1)
NIL
NIL
HIiL
NIL)))
(SET
H1ST2
(PUSH
(PUSH
. NIL
{LIST (VAL PT2) NIL (RLINK PT2) NIL N!L NIL))
(LIST (VAL P2T2)
(LLINK P2T2)
NIL
NIL
HIL
NIL)))
(RETURN T))
(T (SETQ FFLAG (SUB1 rrnnc)) (Go LGl))))

§(ATOH (VAL P272)) (GO ,
T (SETQ TARY1 (CAR (VAL Pzrz))) o o

{CcoMD
((OR (EQ TARYL (QUOTE ARB))
(EQ TARYL (QUOTE HIN))
(EQ TARY1 {QUOTEL BND)))
(PRINT
(LIST (QUOTE ERROR3:)
TARYL K
(QUOTE CANNOT)
(QUOTE FOLLOW)
(CAR (VAL PT2))))
(RETURN NIL))
(T (SETQ
HSTX
(cous

(LIST (VAL PT1) WIL (RLINK PT_) NIL NIL NIL))

.,

i wte . v = =

e ——— it 20 o st . s — S

i
o

264

(LIST PT2
PT1
paTi
NIL
HIL
COUNT
ST
STP
PSAVE)
HSTK))
(SETQ TARY2 (EXPLODEC P2T1D))
(SCTQ TARY3- (CAR TARY2))
{COND
((LQ TARY1 (QUOTE SYH))
(COND
((CLQ P2T1B (QUOTL *NIL))
(SETQ MSTK (POP HSTK))
(GO L61))
(T (SETQ
HSTX
(cous (LIST P27T2 (VAL P2T1)) HSTK))
(COND
((BAKMAT) (GO L653))
(T (SETQ MSTK (POP KSTK))
(GO L6:)))))) .
((EQ TARY1 (QUOTE TLRH))

(coND
((OR (EQ TARY3 (QUOTE 1))
(EQ TARYD (QUOTE $))
(LQ P2T1D (QUOTE #NIL)))
(SETQ HSTK (POP HSTK))
(GO L6:))
(T (SETQ
MSTK
(cons (LIST P2T2 (VAL Parx)) HSTR))
(COND
((BAKHAT) (GO L65:))
(T (SETQ HSTK (POP MSTK))
(GO L6:)YN)))
((zo TARY1, (QUOTE HON))
{conD
((zo TARY3 (QUOTE $))
(SETQ -
HSTK
(coNs (LIST P2T2 (VAL 9211)) HSTK))
{coup
({BAKHAT) (GO LGS:))
(T (SETQ HSTK (POP MSTK)) (co L6:1))))
(T (SETQ HSTX (POP HSTK)) (GO L6:))))
((AND (EQ TARYL1 (QUOTE IL))
(LQ TARY3 (QUOTL G))
(Hor. (NULL (CDR TARY2)))

’

265

(NUMBERP (READLIST (CDR TARY2))))
(SETQ MSTK

(coNs (LIST P2T2 (VAL P2T1)) MSTK)) .

(CoND]
((BAXMAT) (GO LG6S51))
(T,(SETQ STK (POP HSTK)) (G0 L6:))))
((SCRIPT M1T1 M1T2) (GO L651))
(7 (SETQ MSTK (POP MSTK)) (80 L6:)))))))
LE51 (COND . ‘
((EQ FFLAG 0)
(SET .
H1ST4 . '
(PUSH]
(PUSH

HIL
(LIST (VAL PTL) NIL (RLINK PT1) NIL NIL NIL))
(LIST (VAL P2T1) (LLINK P2T1) NIL NIL NIL NIL)))
(norun (QUOTE HINL)) .
(SET
M1ST2
{ PUSH
(PUSH

NIL
(LIST (VAL PT2) NIL (RLINK PT2) NIL NIL NIL))

(LIST (VAL P272) (LLINK P2T2) NIL NIL NIL NILY))
(NOFUN (QUOTE MINL)) ‘ .

(RCTURN T))
(T (SETQ FFLAG (SUB1 FFLAG))

(HPOP (VAL PT2))
(G0 L6:)))))
EXPR)

(DEFPROP HIN1
“DOLS MIN AND BND MATCH,™
COMMENT) .

(DEFPROP MPOP
(LAMBDA(ITEH) X
{CoOND ((NULL HSTK) NIL) _
((EQUAL ITEH (CAAAR MSTK)) (SETQ HSTK (POP HSTK)) 7)

(T (SETQ HSTK (POP MSTK)) (HPOP ITEN))))
EXPR) ..

(DCIPROP HPOP
WpPOPS MATCH STACK UNTIL ITEM IS REMOVED AND RETURNS TRUE

OR UNTIL STACK IS LHPTY AND RETURNS NIL,"
COHHENT)

{DEFPROP NANODE . " .
(LAMBDA(NTREE NSTK1 NPTN NSTK2) L
(PROG (NTL NT1B A B C REST) . .
(SETQ NT1 (VAL (EVAL NTREE)))

266

B (CAR (VAL (EVAL NPTN))))

NTLB (STRIP HT1))
((EQUAL NTi NT1B) (SETQ REST NIL))
(T (SETQ REST (CDR KT1))))
A (EXPLODLC NT1B))
¢ (CAR A))
((EQ B (QUOTE SYH))
(COND ((ELQ NT1B (QUOTE #xIL)) (RETURN RIL))
(T (SCETQ MSTK
(CONS (LIST (EVAL NPTH) HT!)
' HSTK))
(RETURN (BAKHAT)))))
((EQ B (QUOTE TERH))
(HOFUN (QUOTE NAHODEL))
(cOND ((OR (EQ C (QUOTE #))
(£Q ¢ (QuOTE $))
(EQ HT: (QUOTE #*NIL)))
(RETURN HIL))
(T (SETQ MSTK
(CONS (LIST (EVAL XPTH) NTL)
HSTK))
(RETURN (BAKHAT)))))

.({eQ B (QUOTE NON))

(coMD ((EQ C (QUOTE $))
. (SETQ MSTK
(CONS (LIST (EVAL NPTH) XT1)
MSTK))

(RETURH (BAKHAT)))
(T (KETURN XNIL))))

* ((AND (EQ B {(QUOTE IL))

(EQ C (QUOTE 6))
{NOT (NULL (CDR A))) '
(NUHBERP (READLIST (CDR A))))

"~ (SETQ HSTK .

(CONS .(LIST (EVAL NPTN) MT1) XSTK))
(RETURN (UBAKHAT)))

((O0R (EQ B .(QUOTE ARB))
(EQ B (QUOTE HIN))

(EQ B (QUOTE BND)))

(SETQ GG .
((EVAL (QUOTE B)) NTREE
NSTK
NPTH
NSTK2)),

{(NOFUN (QUOTE MANODE))
{RETURN GG)) X '
(T (RETURN (SCRIPT NTRLE NPT D)

b

(DCFPROP NANODE . '
_ HATCHING FOR ALL SUDSCRIPTED NODLS,."

267

(DEFPROP NOFUN : .
(LA¥BDA (NFF) NIL) o :
EXPR) - . oo !

(DEFPROP NOFUN ~
wWrHIS FUNCTION IS USED "TO HAVE SOMETHINO TO BRBAK

ON WHILL DLBUGGING, IT PERFORMS NO FUNCTION."
COMMENT) :

(DEFPROP POP
(LAMBDA (STAC) (CDR STAC))

EXPR) . !

(DEFPROP P
"POPS TOP ELEHENT FROM STACK,"

COMMENT)

(DLFPROP PUSH X
(LANBDA (STAC ITEM) (CONS ITEH STAC)) : .

EXPR)

(DEFPROP PUSH
WPUSHES ITEM ONTO STACK.Y

COHMENT)

(DEFPROP REPLACE
(LAMBDA(SUBST) .
(PROG (SP SR STS VL P Q VALSP REST VALSPD)
(SETQ SP (BUILD SUBST))
(coup
((HOT (NULL TLST))
(COND
({HOT (MARKT SP TLST))
{PRINT (QUOTE (ERROR IN THREAD LIST)))
(RETURN NIL)))))
. 23370 SR §P)
NXT: (WALK (QUOTE SP) (QuoTE STS))
{coNp
(({HULL SP)
(LINK (QUOTE ROOT1) (LLINK sn))
(COND .
((HOT (NULL (RLINK R0OOT1))) e v
(RPLACA (CDDR {LLINK SR)) (RLINK ROOT1)})
(SETQ Q (GENSYH))
(SET Q (LLINK SR)YT
(RPLACA (CDDDR (RLINK Roori)) QN
{RETURH T)) ,
(T (SETQ VALSP (VAL SP))))
(COND ,
{(ATOM VALSP) .
(SETQ P (SLARCH VALSP)) :

268

(coun ((NULL p) (GO NXTt))
(T (RPLACA SP (CADR P)) (GO HXT1))))

(T (SETQ VALSPB (STRIP VALSP)) :
{COND
((NOT (EQUAL VALSPB VALSP))

(SETQ REST (CDR VALSP)))-

(T (SETQ RIST NIL)))))

{conp

(CATOM VALSPYH)

(snro P (SLCARCH VALSPB))

(COND
((NULL P) (GO KXT1)
(T (RPLACA SP (APPEND (CADR P) REST))
(GO HXT:)))) . :
(T (SCTQ VL (CAR VALSPB))))
{(conp
((OR (EQ VL {QUOTE SYH))
(EQ VL (QUOTE NON))
(EQ VL (QUOTE TERM)))
(SETQ P (SLARCH VALSPB))
(NOFUN (QUOTE REPLACL))
{coNp
((HULL P) (RETURN NIL))
(T (RPLACA SP (MAKLST (CADR P) REST))
(GO NXT:))))
" ((EQ VL (QUOTE IL))
zsnTo P (SLARCH VALSPB))
NOFUN (QUOTE REPLACE))
(coxp
((NULL P)
(SETQ Q (czusvu))
(stTQ
HETK
(CcoNS
(LIST (LIST (coPY VALSPB) NIL HIL NIL NIL N1L)

Q)

(coun (2NULL REST) (RPLACA SP Q))
(T (RPLACA VALSP Q))))
(T (RPLACA SP (HAKLST (CADR P) RESTY)))
(GO NXT1))
((OR (LQ VL (QUOTL ARB))
(EQ VL (QUOTE HIN))
(E£Q VL (QUOTE BlD)))
{SETQ P (SLCARCH VALSPB))
(NOFUN (QUOTEL REPLACE)) .
{COHD :
((HuLL P) (Rzruuu NIL))
((APLACB (QUOTE SP) (QUOTE srs) P YL) (GO uxrx))
I (RETURN NIL}))))
(r NOFUN (QUOTE’ REPLACE)) A
wmw :

((SPLACE VALSPD)
(SETQ P (SEARCH VALSPB))
{COND.
((AND (NULL REST) P) (RPLAOA SP (CADR P)))
((AND P REST)
(RPLACA SP {APPEND (CADR P) REST))))
(GO MXT1))
(T (RETURN HIL))))))

EXPR)

(DEFPROP REPLACE
"BUILDS SUBSTITUTION TREL AND INSERTS IN SOURCE
TRCE IN PLACE OF HATCHED NODES."

COMMENT) .
¢

(DEFPROP RLINK
(LAMBDA (X) (CADDR X))
EXPR)

(DETPROP RLINX ‘ :
PRETURNS RIGHTLINX FILLD OF CURRENT TREE NODE."

COMHENT)

(DCFPROP RSPND
(LAHBDA NIL (COND ((EQ (READ) (QUOTE Y)) T) (T NIL)))

EXPR)

(DEFPROP RSPND

MTAXES TCRMINAL INPUT TO DETERHMINE WHETHER ro
PRINT CURRLHT SOURCE TREE.M
COMMENT)

(DEFPROP SCRIPT
{LAMBDA(STL ST2)
(PROG (SS1 SS2 S51B €1 €2 CTR PS XX YY THRD)
(SETQ CTR 0)

R

(SETQ SS51B (STRIP 5S1))
(coMp ((EQUAL S$S1 SS1B) (SETQ THRD Nxb))
(T (SETQ THRD T)))
(coNnp
((ATOM SS1B) (RETURN NIL))
((AND (NOT (ATOH (CAR $851B))
(NOoT (ATOM (CAR 552)})
(SETQ 5S1B (CAR 5S51B))
(SETQ $82 (CAR 582))
(GO TEST:))
((nOoT (EQ (CAR 551B) .(CAR 852))) (Rsruxn NIL)))
(SETQ §51B (CADR S51B))
(SETQ SS2 (CADR 852)) '
(GO TEST:)

~—

2690

270

nxsvn
(SETQ SS1B (CDR SS51B))

(58TQ 6§52 (CDR §52))

. TEST
(coND
((on {NULL SS1B) (NULL S§S2))
(coNp
((AND (NULL S51B) (NULL §52))
(COND
(THODE
{COND
{THRD '
(SETQ ,
MSTK
(cons (Lxsr (LIST (cnn §51)) §81)
HSTK))))I))

(RETURN T))
(r (Go CLEAR:)))))
(SCTQ €1 (CAR 551B))
(8ETQ €2 (CAR S582))
(CoND
((NOT (ATOM C2))
(SETQ XX (CADR C2))
(scTQ PS (SEARCH (LIST xx)))
(COND
({NULL PS)
(SETQ YY C1)
{COND
((EQ (CAR €2) (QUOTE *PLUS))
(SETQ YY (#*DIF YY (CADDR €2))))
) (T (ssTo YY (%PLUS YY (CADDR c2)))))
', (SETQ HS
: (cons (LIST (LIST (LIST XX)) YY) ¥5Yx))
(SETQ CTR (ADDY CTR)) .
.((co NXSUB1))
T

((nq (CAR c2) (QUOTE *oxr))
. (COND .
((EQ €Y .
(EVAL. .
(LIST (QUOTE #DIF)
(CADR PS)
(CADDR €2)))) .
(GO ¥XSUD3:))
(T (GO CLEAR:))))
((EQ (CAR €2) (QUOTE *PLUS))
{ conp '
((£qQ c4
(EVAL
(LIST (ouorn *PLUS)
(CADR PS)

271

CADDR €2)))) .)
(T (GO CLEAR1)))) :
(T (G0 CLEAR1))))))
((NUMBERP €2)
(coNp ((EQ ci~c2) (GO NxsuB1)) (T (GQ CLEAR:))))
(7 (SLTQ PS (SEARCH (LIST C2))) / .
{ COND
((NULL PS) .
(SETQ HSTK v :
(CcONS (LIST (LIST (LIST €2)) €1) KSTK))
(SETQ CTR (ADDL CTR)) ’) .
(GO NXSUB1))

(
" (GO NXSUB1))
b
)

l

.
;

(T
(coND ((EQ €1 (CADR PS GO NXSUBt))

N (
(T (GO CLEAR:)})IN)))

(COND
((2EROP €TR) (RETURN HIL))
(T (SETQ MSTK (POP HSTK))
(SKTQ CTR (SUBL CTR))
(GO CLEAR:))))) -

EXPR)

(DEFPROP SCRIPT)
WMATCHES SUBSCRIPTED NODES OTHER THAN ARB, MIN, BND, IL,

NON, TERH, AND SYH,"
COMMELNT) . .

(DEFPROP SEARCH ..
(LAKBDA (ITH) (SEARCH1 ITH HSTK))

EXPR) : . ,

(DEFPROP SEARCH '
WSUPPLIES STACK TO SEARCH FOR ITEH AND CALLS SEARCHL "

COHMENT)

(DEFPROP SEARCH1

(LAMBDA(ITEM1 MSTX1)

{conp ((NULL MSTK1) NIL)
((CQUAL ITEM1 (CAAAR HSTX1)) (CAR MSTK1))
(T (SLCARCHL ITEM1 (CDR HSTK1)))))

EXPR)

(DEFPROP SEARCHI1 ‘
USEARCHES STACK HSTX1 FOR ITEMY,

RETURRS)POINTER 70 ITEM1 IF ITEMA FOUND, NIL OTHERWISE,"

COMHENT . ' .

(DEFPROP SPLACE
(LAHDDA(SACEL) ‘
(COND {{NULL (CDR SACE1)) {SUBS (CAR sacs:))),

T 272

(T (SUBS (CADR BACE1)))))
LXPR)

{DEFPROP SPLACE :
#"APTER SUDSTITUTION TREE IS INSERTED IN SOURCE TREE,
S§PLACE CALLS SUBS, SUBSCRIPT EVALUATION ROUTINE."

- COMMENT)

(DLFPROP STRIP
(LAMBDA(VALFD)

(COND (TMODE
(COND ((AND (NOT (ATOM VALFD))

(M0T (ATOM (CDR VALFD)))
(NOT (ATOM (CADR VALFD)))
(EQ (CAADR VALFD) (QUOTE TH)))
(CAR VALFD))
(T VALFD)))
(T VALFD)))
EXPR)

(DEFPROP STRIP
WPAKES A VALUE FIELD WITH POSSIBLE THREAD HARKERS

© AND RETURNS A VALUE FICLD WITH THE HARKERS STRIPPED OFF."
COMMENT) ' :

(DEFPROP SUBC
(LAMRDA(MC 2ZC PLC DIC)
(PROG NIL
(COND :
“{(HOT (NULL (EVAL PLC)))
(SET PLC NIL)
{COND
((AND (NUHBERP WC) (HUMBERP 2C)) :
(RETURN (EVAL (LIST (QUOTE *PLUS) ZC ¥C))))
((NUMBERP ZC) .)
(RETURN (LIST (QUOTE *PLUS) WC ZC))) i
(T (RCTURN (LIST (QUOTE %PLUS) 2C WC))}))
e ((NOT (NULL (EVAL DIC))) v '
' ' (SET DIC NIL) o

eoon {COND

((AND (MUHMBERP WC) (NUHDERP 2C))
(RETURN (EVAL (LIST (QUOTE %DIF) 2¢C ¥C))))
((NUBBERP £C)
(RETURN .
(LIST (QUOTE *PLUS) '
, (ngAg (LIST (QUOTE *DIF) ¢ ¥C))
. z¢))
L (T (RETURN (LIST {QUOTE *DIF) ZC ¥C)))))
, ' {T (RETURN NC))))) .
., EXPR)

_(DEFPROP 8UDC

R

o o s _ : 274

273 .
WLVALUATES SUBSCRIPT EXPRESSION IN SUBSCRIPTED NODE.® . .. oo v (SETQ ACE2 (CAR ACE1))
COHMHENT) } : e . (COND ((NOT (ATOM ACE2))
o : LT o L : ‘ (coND ((SUBS (CDR ACE2))
(DCFPROP SUBKODEL . . ’ . : o o (RPLACA ACE) (EVAL ACE2)))
(LAMBDA(L) ' ' ‘ (T (RETURN NIL))))
(PROG (PL DI W X Y Z) / : . L : ((NOT (NUMBERP ACE2))
(SETQ X (EXPLODEC L)) ' ’ . : . - (SETQ PB (SEARCH (LIST ACE2)))
(coNp ((NOT (EQ (CAR X) (QUOTE <))) (RETURN L)) S o . (COND ((HULL PB) (RETURN NIL))
(T (COND ((NULL (CDR X)) (RETURN L))))) L R . (T (RPLACA ACE1l (CADR PB))))))
L2t (SETQ X (CDR X)) - s - C (SETQ ACE1 (CDR_ACE1)) '
(coND ((EQ (CAR X) (QUOTE »)) oo ! : (COND ((NULL ACE1) (RETURN T))))
(SETQ ¥ {(READLIST ¥)) S - ! A (GO 5UBS1t)))
(srrQ ¥ o i = EXPR)
(APPEND . .) .
b ! (DEFPROP SUDS . . :
(LIST : : ; . WREPLACES SUBSCRIPT EXPRESSIONS BY ACTUAL SUBSCRIPT
(suBC ¥ % (QUOTE PL) (QUOTE DI))))) VALULS."
(conp E(NULL {CDR X)) (RETURN (CON3 Y HIL))) - COMMENT)
T . . ' -
(RETURN . _ (DEFPROP TAB ; .
(LIST {READLIST (CDR X)) ¥Y))))) . : © (LAMSDA(HARG1 TLEFT1)
((EQ (CAR X) (QUOTE /,)) - : CT (PROG NIL
(SETQ ¥ (READLIST W)) . o e RIGHT: ,
(SETQ Y » ~ (COND ((*GREAT MARG1 (*DIF (LINELENGTH NIL) TLEFT1))
(APPEND . R . . (PRINC (ASCII 40)) -
Y . L : o : : (SETQ TLEFT: (SUBI TLEFT1))
(LIST ‘ o co P .. (60 RIGHTt))"
(susc ¥ 2 (QUOTE PL) (QUOTE DI))))) - o : ‘ .. ((EQ MARG1 (*DIF (LINELENGTH NIL) TLEFT1))
(SETQ ¥ NIL) _ v S (RETURN TLEFT1))
(60 L2:)) : o ’ .~ (T (TLRPRI) (SETQ TLEFT1 1750) (GO RIGHT:)))))
({£Q (CAR X) (QUOTE +)) : EXPR) i :) : ,
(SETQ PL T) ‘ I . - A
(SETQ 2 (READLIST ¥)) : o . (DEFPROP TAB .
(SETQ ¥ NIL) . ; B #WSPACES TO APPROPRIATE COLUMN FOR. PRINTING OF VALUE FIELD
(6o L2:)) ! v, BY TPR."
((EQ (CcAR X) (QUOTE =)) . . g COMHENT))
(SLTQ DI T) ’ P .
(SETQ Z (READLIST W)) o L (DEFPROP THREAD
(SETQ % NIL) ' CL - . {LAMDBDA NIL
(G0 L2:)) o e e i (PROG (THR WLKSTK TOLST FRHLST TOPT TOPF GENS VALT)
(T (SETQ W (APPEND ¥ (LIST (CAR ¥)))) , ‘ ‘ (SETQ THR TR) '
(G0 L21)))))} : o ' HOREN:
LXPR) ‘ ;! L e e C(WALK (QUOTE THR) (QUOTE WLKSTK))
' o e B (COND ((NULL THR) (GO TFROHS:)))
(DEYPROP SUBHODE . L - ’ ' . (SETQ VALT (VAL THR))
WPARSES SUBSCRIPT LXPRESSIONS," . o ' o B e (COND ((EQUAL VALT (STRIP VALT)) (GO HORLN:))
COMHENT) o i : ' Lo " © (T (SETQ VALT (CDR VALT))))
' . ETt
(DEFPROP SUBS . ' ‘ - ~ (HOFUN (QUOTE THREAD1))
(LAMBDA(ACEL) ' : . ' o (COND ((NULL VALT) (RPLACA THR (CAAR THR)) J
(PROG (ACE2 PB) o v (GO HOREN1))
‘ i ' ‘ . . ((EQ (CADDAR VALT) (QUOTEL T0))

SUBSLt e [

(SETQ TOLST
(APPEND
TOLST
. (NCONS
(LIST (CADAR YALT)
~ (CONS (CAAR THR)
(8z7Q VALT (CDR VALT))
(GO. HORET1))

1

{(£Q (CADDAR VALT) (QUOTE FROM))

(SETQ FRHMLST
{APPEND
FRHLST
(HCONS
{LIST (CADAR VALT)

(CONS (CAAR THR) (CDR THR))}))}

(SETQ VALT (CDR VALT))
(GO HORET:)))
FRONS ¢

(NOFUN (QUOTL THREAD2))

(SCTQ WLXSTK HIL)

(SETQ THR TR)

(WALX (QUOTE THR) (QUOTE WLKSTX))
NXTF:
{(HOFUN (QUOTE THREAD3))

(COND ((MULL FRMLST) (GO TO0St))

(T (SETQ TOPF (CAR FRHLST))))
(SETQ VALT (CADR TOPF))
(SETQ GENS (CAR TOPF))

HYTN:
(COND ((LQUAL THR VALT)

278

5008 THR))))))

(COND ((NULL (CAR (CDDDDR THR)))
(RPLACA (CDDDDR THR) GENS)
(SLETQ FRHLST (CDR FRMLST))

(GO RXTF:t))

((HULL (CADR (CDDDDR THR))).
(RPLACA (CDR (CDDDDR THR)) GENS)

(SLTQ PRMLST (CDR FRMLST))

(GO HXTF1))
(T (PRINT
(LIST (QUOTE

(TOO HANY THREADS FROM))

' (VAL TIIR)))
(RETURN NIL))))

(T (¥ALK (QUOTE THR) {QUOTE WLKSTK)) - o

{COND
((HULL THR)
(PRINT

(RETURN NIL)))

(QUOTE (TOO MANY THRBADS FOR TREE)))

(GO NXTH:)))

TOSt (XOFUN (QUOTE THRLADH))
(COND ((MNULL TOLST) (RETURN r))

0

" EXPR)

27

(T (SETQ TOPT {CAR TOLST))
(SET (CAR TOPT) (CADR TOPT))
(SETQ TOLST (CDR TOLST))
(GO TOS1)))))

" (DEFPROP THREAD

S ¢ (TCRRRI)

WINSERTS THREADS IN SUDSTITUTION TREE,"
CONMENT)

(DEFPROP THREADPRINT
(LAMBDA{TREEP)
(PROG (STORE) .
NEXT1{COND
(2HALK (QuoTE rnncp) (quore sroxs))
coND - .
((NULL (CAR (CDDDDR TREEP))) (GO NEXT1))
(T (FRINC (QUOTE THRLAD))
(PRINC (ASCII 40))
(PRINC (QUOTE FROH))
(PRINC (ASC1I 40)) :
(FIXN (VAL TRELP) 1750)
(PRINC (ASCII 40))
(PRINC (QUOTE TO))
(PRINC (ASCII 40))
(FIXN (VAL (EVAL (CAR (CDDDDR TREEP)))) 1750)
(TERPRI) '
(conp
((HULL (CADR (CDDDDR TREEP))) (GO NEXT:))
{T (PRINC (QUOTE THREAD))
. (PRINC (ASCII 40))
b (PRINC (QUOTE FROM))
: © (PRINC (ASCITI 40))
. (rIxn (VAL TREELP) 1750)
e S (PRINC (ASCLI 40))
R * (PRINC (QUOTE 70))
C ’ (PRINC (ASCII 40))
(FIXN (VAL)(EVAL (CADR {CDDDDR Txnz?))))
1750

(GO HEXT:))))))
(T (RBTURN TN))
EXPR)

(DEFPROP THREADPRINT.
WPRINTS THREAD FILLDS IN A TREE,"

" COMMENT)

(DLFPROP TPR ,
(LAMDDA(TREL MARGN TLEFT) ‘
(SETQ TLEFT (TAD MARGN TLEFT))
(COND ((NULL TRLE) NIL)

277

i

TOH TREE) (SETQ TLEFT (FIXN TREE TLEFT)))
(SETQ TLEFT (FIXN (STRIP (CAR TREE)) TLEFT))
{(COND
((CADDR TREE)
(TPR (CADDR TREE) i
(SDIF (ADD1 (LINELENGTH NIL)) TLEFT)
TLEFT))) r

((A
(7T

(COND :
((CADR TREE) (TPR (CADR TREE) MARGH TLEFT))))))

EXPR)

(DEFPROP TPR ’] .
WPRINTS VALUE FIELDS OF TREE WITH BROTHERS ON SAHE LEVEL

AND LEFTHOST SON IN SAHE COLUHHN AS FATHER."
COMMENT)

(DETPROP TPRINT
(LAHBDA(XTRLCE HARG)
(PROG (LEFT) (SETQ LEFT 1750) (TPR XTREE 0 LEFT)))

EXPR)

(DEFPROP TPRIXNT

WSLTS OUTPUT LINE LENGTH AND CALLS TPR, TREE OUTPUT
ROUTIHE," '
COMMENT)

(DEFPROP VAL
(LAMBDA (X) (CAR X))
EXPR)

(DEFPROP VAL
WRCTURNS VALUL FIELD OF CURRENT TREE NODE."
COKMLKT))

(DCFPROP WALX
(LANBDA(TREE STACK)

{ PROG iTPTR STX)
SETQ TPTR (EYAL TREE))

(SETQ STK (LVAL STACK))
(NOFUN (QUOTE WALX))
(coud ((NULL TPTR) (RETURN NIL))
((AND (NULL {VAL TPTR)) (NULL-(LLINK TPTR)))
(SET TRELL NIL) o
(RCTURN NIL)) -
((EQ (VAL TPTR) (QUOTE %HIL))
(coND ({HULL STK) (SET TREE NIL)
(RETURN HIL))
((NULL (RLINK (CAR STK)))
(SET STACK (POP STK))

(SET TREE WHNIL) ' , .

(RETURN #**NIL))
(T (SET TREE {RLINK.(CAR STX)))
' i .

!
i

(SET STACK (POP STK))
. (RETURN (VAL (EVAL TREE)))))}
€T (COND ((EQ PFLAG 0)
(SETQ STK (PUSH STK TPTR)))
(T (SETQ PFLAG (SUBL PFLAG))))
(SET STACK STK) .
(coNp ((HULL (LLINK TPTR))
: (SET TREE #**NIL) =
(RETURN ®#NIL))
(T (SET TREE (LLINK TPTR))
(RETURN (VAL (LLINK TPTR)))}

EXPR)

(DEFPROP WALX . i
NGETE NEXT HODE IN TREE IN A PREORDER
TRAVERSAL, UPDATING THE TRAVERSAL STACK,"

COMMENT) .

278

NI

Appendix IV
/

A CROSS-REFERENCE BY SYNTACTIC CONSTRUCT
FOR THE SEMANTIC SPECIFICATION

Below 1s a cross-reference table of selected Algol'GO'

syntactic constructs and the numbers of the semantic

trans formations which deal with them,

CONSTRUCT TRANSFORMATION NUMDER
program 1-17, 41-44, 46, 132, 134, 141, 249, " -

: . is2-158, 212, 218

declaration §-67, 105-108, 110, 116, 131180,

153, 154, 159166, 175, 198210,

type .. s2, 53, 5659, 132, 134, 135, 137,

139, 143-145

array
150, 146-148

switeh T usas1, 105~ 1oa, 116

procedure 16-44, 150, 159 162, 175, 198-210

statement " 1.y, 70-06, 92, 94, 96, 98, 174,

177-187, 213 .

asgignment 84-86, 174 ‘ ,

go 1o | T i

procedure .92, 94, 096, 96, 177«3197, 213

conditional 72, 73

for 75-83

nnA

6-9, 14, 15, 54, S5, so.ev. 136, 1aa.a‘

P

[OPRR PP

-

\)
280
sxpression ’ 87-93, 100-126
arithmetic - 87, 68, 90, 100- 102, 104, 109-112,
. ‘11u. 117-119, 121, 122, 124, 125
Boolean o 09, 91, 103, 313, 115, 120, 123, 12¢
“designational 105-108, 116
~label L 120-131, 133, 142, 153, 211, 215, §216

function designator - .93. 85, 97. g9

varfable . §6,.58, 60-63, 74, 70-82, 87-89, 100,
: : 107, 108, 1310-113, 129, 159-174

	Z699.C3_43
	Z699.C3_43-001
	Z699.C3_43-002
	Z699.C3_43-003

