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Significance

On most occasions, interruption 
of a stable antiretroviral therapy 
would lead to significant HIV 
viremia rebound. HIV post-
treatment controllers (PTCs) are 
a rare group of people with HIV 
(PWH) who are able to control 
their rebound HIV to a very low 
level during analytical treatment 
interruption (ATI). It is important 
to understand the mechanisms 
behind this phenomenon. In this 
study, we revealed several 
important viro-immunological 
features associated with post-
treatment control, and these 
findings can shed light on future 
HIV cure studies.
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MEDICAL SCIENCES

HIV post-treatment controllers have distinct immunological 
and virological features
Behzad Etemada,1, Xiaoming Sunb,1,2 , Yijia Lia,1,3, Meghan Melberga, Daniela Moisic , Rachel Gottlieba, Hayat Ahmeda, Evgenia Agad, Ronald J. Boschd, 
Edward P. Acostae, Yuko Yukif,g , Maureen P. Martinf,g , Mary Carringtonb,f,g , Rajesh T. Gandhih, Jeffrey M. Jacobsonc, Paul Volberdingi, 
Elizabeth Connickj , Ronald Mitsuyasuk , Ian Frankl, Michael Saage , Joseph J. Eronm , Daniel Skiestn, David M. Margolism , Diane Havliri, 
Robert T. Schooleyo, Michael M. Ledermanc , Xu G. Yub, and Jonathan Z. Lia,4
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HIV post-treatment controllers (PTCs) are rare individuals who maintain low levels 
of viremia after stopping antiretroviral therapy (ART). Understanding the mechanisms 
of HIV post-treatment control will inform development of strategies aiming at achiev-
ing HIV functional cure. In this study, we evaluated 22 PTCs from 8 AIDS Clinical 
Trials Group (ACTG) analytical treatment interruption (ATI) studies who maintained 
viral loads ≤400 copies/mL for ≥24 wk. There were no significant differences in demo-
graphics or frequency of protective and susceptible human leukocyte antigen (HLA) 
alleles between PTCs and post-treatment noncontrollers (NCs, n = 37). Unlike NCs, 
PTCs demonstrated a stable HIV reservoir measured by cell-associated RNA (CA-RNA) 
and intact proviral DNA assay (IPDA) during analytical treatment interruption (ATI). 
Immunologically, PTCs demonstrated significantly lower CD4+ and CD8+ T cell activa-
tion, lower CD4+ T cell exhaustion, and more robust Gag-specific CD4+ T cell responses 
and natural killer (NK) cell responses. Sparse partial least squares discriminant analysis 
(sPLS-DA) identified a set of features enriched in PTCs, including a higher CD4+ 
T cell% and CD4+/CD8+ ratio, more functional NK cells, and a lower CD4+ T cell 
exhaustion level. These results provide insights into the key viral reservoir features and 
immunological profiles for HIV PTCs and have implications for future studies evaluating 
interventions to achieve an HIV functional cure.

HIV | analytical treatment interruption | post-treatment controller | reservoir | T cell

Strategies that can induce sustained HIV remission without antiretroviral therapy (ART) 
remain an elusive goal (1, 2). Therapeutic approaches to control HIV replication in the 
absence of ART require alternatives to the traditional model of HIV therapeutics. There 
have been reports of HIV remission with the use of hematopoietic stem cell transplantation 
(3, 4), but such a strategy carries significant toxicity and mortality risk that precludes its 
adoption into general clinical care. The existence of HIV elite controllers (ECs) indicates 
that the goal of ART-free HIV remission is possible, but ECs frequently have favorable 
genetic profiles (5) that are not easily translatable to the development of therapeutics.

Post-treatment controllers (PTCs) may serve as a more tangible goal for studies aimed at 
achieving HIV ART-free remission. While the majority of people with HIV (PWH) experience 
viral rebound within 4 wk of ART discontinuation (6–8), there are rare individuals who demon-
strate sustained virological suppression for months or years after an analytical treatment inter-
ruption (ATI) (9–12). In the Control of HIV after Antiretroviral Medication Pause (CHAMP) 
study, we described a cohort of HIV PTCs identified in several AIDS Clinical Trials Group 
(ACTG) ATI studies and other cohort studies (13). We found that early initiation of ART 
increased the chances of post-treatment control but that PTCs could also be identified in those 
who initiated ART during chronic infection. The CHAMP study represents the largest PTC 
cohort to date, but which host and virological factors are associated with post-treatment control 
remains understudied. To this end, we performed an in-depth evaluation of the genetic, viro-
logical, immunological, and inflammatory characteristics of these PTCs compared to a group 
of post-treatment noncontrollers (NCs) who demonstrated rapid viral rebound after an ATI. 
The identification of characteristics associated with post-treatment virological control may lead 
to the recognition of PTC candidates prior to ART discontinuation and targeted mechanistic 
studies that could inform development of therapeutic strategies for HIV remission.

Results

Baseline Characteristics and Viral Load Trajectory. We included 59 participants with 
available stored samples in this analysis, including 22 PTCs and 37 NCs from ACTG ATI 
studies. Baseline age, sex, race, duration of ART, and percentage who initiated ART during 
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early/acute infection were comparable between the PTC and 
NC groups (SI Appendix, Table S1). Approximately 30% of the 
PTC and NC participants received an experimental intervention 
(primarily a therapeutic vaccine) prior to the ATI per the parent 
study protocols (SI Appendix, Table S2).

First, we compared the viral load (VL) trajectory during ATI 
in PTCs and NCs. As expected, PTCs and NCs experienced dif-
ferent levels of viral rebound, with NCs having a higher peak VL 
(PTCs vs. NCs: 2.5 vs. 4.3 log10 copies/mL), although VL peaked 
before post-ATI week 10 in both groups (Fig. 1A). VL subse-
quently declined to the set point between weeks 10 and 25 and 
fluctuated around the set point until ART was resumed or the end 
of follow-up (Fig. 1A). When stratified by the duration of HIV 
infection before ART initiation, acute/early-treated PTC and NC 
participants followed a similar trajectory of viral rebound as the 
chronic-treated participants (SI Appendix, Fig. S1A). A subgroup 
of participants had pre-ART VLs available, and there was no sig-
nificant difference between two groups (SI Appendix, Fig. S1B). 
CD4+ T cell counts between two groups were not significantly 
different before and during ATI (Fig. 1B), and as expected, VLs 
were higher in NCs compared to PTCs at both the early and late 

post-ATI time points (Fig. 1 A and C). ART levels were undetect-
able during ATI in PTCs.

Human leukocyte antigen (HLA) typing information was avail-
able for 56 participants. PTCs and NCs demonstrated comparable 
distribution (Fisher’s exact test, P = 0.7) of protective and suscep-
tible HLA-B alleles (14) (SI Appendix, Fig. S1C).

Longitudinal Analysis of HIV Reservoir Size. In the Viro-
Immunological Sustained CONtrol after Treatment Interruption 
(VISCONTI) study, one of the most detailed studies describing 
PTCs in early-treated PWH, HIV reservoir size measured by 
total cell-associated HIV DNA (CA-DNA) showed a tendency of 
declining in five of eight PTCs (12). However, this analysis was 
limited by small sample size and restricted to only early-treated PTCs 
and total HIV DNA levels. In order to characterize HIV reservoir size 
in a more comprehensive way, we evaluated multiple HIV reservoir-
related markers longitudinally in this study. We performed an intact 
proviral DNA assay (IPDA) (15) in a subgroup of participants with 
available samples (PTC: n = 11, and NC: n = 13) since only intact 
proviruses have the potential to produce infective virions (16). 
During suppressive ART (pre-ATI), levels of intact, defective, and 
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Fig. 1. Pre-ATI and ATI characteristics. (A) Viral load (VL) trajectory before and during ATI. Each participant’s viral load trajectory is depicted in dotted lines in 
the background, and Loess curves with 95% (CI) are shown. (B) CD4+ T cell count before and during ATI. (C) VL before and during ATI. Time point selection for 
PTCs and NCs is described in the Methods section. ****P < 0.0001.
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total HIV DNAs were not significantly different between PTCs and 
NCs. However, during the ATI, intact, defective, and total HIV 
DNAs were significantly higher in NCs than in PTCs (Fig. 2 A–C 
and SI Appendix, Fig. S2A). There was no significant difference in 

the percentage of intact HIV DNA between PTCs and NCs either 
before or during the ATI (SI Appendix, Fig. S2A).

While on suppressive ART, there was no significant difference 
in the expression of the HIV reservoir as reflected by levels of 
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Fig. 2. Longitudinal analysis of HIV reservoir. Longitudinal (A) intact provirus from IPDA, (B) total provirus from IPDA, (C) defective provirus from IPDA, (D) CA-RNA, 
and (E) expression ratio (CA-RNA/total HIV DNA). Between-group comparison was conducted with the Wilcoxon rank-sum test adjusted for multiple time point 
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unspliced cell-associated RNA (CA-RNA) (Fig. 2D). During the 
ATI, PTCs maintained stable levels of CA-RNA at both the early 
and late time points. In contrast, NCs demonstrated rapid 
increases in CA-RNA during the ATI, with significantly higher 
levels compared to PTCs at both the early and late ATIs (Fig. 2D). 
We also evaluated longitudinal proviral transcriptional activity by 
evaluating the CA-RNA to total HIV DNA ratio (CA-RNA/total 
HIV DNA). After treatment interruption, NCs demonstrated a 
significantly higher CA-RNA/total HIV DNA expression ratio 
compared to the PTCs (Fig. 2E) that was concordant with dra-
matic increases in the HIV reservoir and plasma viral load after 
treatment interruption in NCs but not PTCs.

During the pre-ATI time period, CA-RNA was largely associ-
ated with levels of the 3′ defective HIV DNA (Fig. 2F and 
SI Appendix, Fig. S2B). This finding may be related to the enrich-
ment of 3′ defective proviruses previously identified in central 
memory T cells and the relatively high levels of central and tran-
sitional memory T cells in the peripheral blood mononuclear cells 
(PBMCs) on suppressive ART (17). After treatment interruption, 
this relationship was maintained in the PTCs during both early 
and late ATIs. However, the differences in HIV reservoir activity 
were accentuated between PTCs and NCs during the late ATI 
period as intact and total HIV DNAs became highly correlated 
with rebound viral load and CA-RNA only in NCs but not PTCs 
(Fig. 2F and SI Appendix, Fig. S2B).

Longitudinal T Cell Composition, Immune Activation, and 
Exhaustion. Mounting evidence has shown that T cell composition, 
activation, and exhaustion significantly correlate with residual 
viremia on ART (18), tissue reservoir size (19), HIV persistence (19, 
20), and ultimately, clinical outcomes (21–23). In the VISCONTI 
study, PTCs and ART-treated participants had a comparable 
level of CD8+ T cell immune activation (CD38 and HLA-DR 
expression) (12), but the trajectory of T cell profiles during ATI 
remains uncertain. Thus, we investigated the dynamics of T cell 
composition, activation, and exhaustion in PTCs and NCs. A 
subgroup of participants (PTC: n = 10, and NC: n = 25) had T 
cell subsets and cellular inflammatory markers available for the pre-
ATI and early ATI time points. Prior to ATI, PTCs and NCs had 
comparable CD4+ T cell counts (median 886 vs. 814 cells/mm3,  
P > 0.9). However, PTCs had a significantly higher CD4% (median 
45.8% in PTCs vs. 34.4% in NCs, P = 0.02) and CD4/CD8 ratio 
(median 1.7 in PTCs vs. 1.1 in NCs, P = 0.045) (Fig. 3 A–C).

Due to the large number of features derived from multiparametric 
flow cytometry assays, we summarized the dynamic changes in a 
nonparametric normalized scale in Fig. 3A. T cells were categorized 
based on their expression of CD45RO levels into a mature/high 
functional group [total T cell (of the parent CD3+ T cell count), 
central memory (TCM), and effector memory T cells (TEM)], an 
immature/terminally differentiated/low functional group [naive 
(TN), stem cell-like memory (TSCM), and terminally differentiated 
effector memory T cells (TTDEM)]. Before ATI, differences in CD4+ 
T cell-related phenotypes between PTCs and NCs were observed as 
PTCs had a higher CD4/CD8 ratio, higher mature/functional CD4+ 
T cell%, higher nonfunctional CD4+ T cell immune activation%, 
and lower functional mature/functional CD4+ T cell exhaustion 
evaluated by PD-1 expression% (Fig. 3 A–C). During early ATI, 
both PTCs and NCs demonstrated increases in the levels of CD8+ 
T cell activation, although only those from the NC group reached 
statistical significance (%HLA−DR+CD38+ in CD8+ T cells in 
Fig. 3C). NCs had significant increases in activation levels in total 
CD4+ T (pre-ATI vs. early ATI, median 0.96% vs. 1.25%, pairwise 
Wilcoxon signed-rank test, P = 0.007), CD4+ TCM (0.89% vs. 
1.25%, pairwise signed-rank test, P = 0.01), and TEM (1.47% vs. 

2.40%, pairwise signed-rank test, P = 0.03), while PTCs maintained 
stable activation levels in these CD4+ T cell subsets (global summary 
in Fig. 3A and %HLA−DR+CD38+ in CD4+ T cells in Fig. 3C).

HIV reservoir measures did not show a significant correlation 
with specific T cell profiles before or during early ATI (SI Appendix, 
Fig. S3A). We observed a significant high-level correlation between 
PD-1 expression across different CD8+ T cell subsets pre-ATI vs. 
early ATI (SI Appendix, Fig. S3B), suggesting a potential epigenetic 
imprinting at the exhaustion-related gene locus in CD8+ T cells 
reported previously in HIV (24) and hepatitis C (25) infections.

Gag-Specific IFN-γ and IL-2 Secreting CD4+ T Cells Linked with 
Smaller HIV Reservoir Size. There is a complex interaction between 
HIV-specific T cells and the reservoir that shapes the landscape 
of HIV reservoir establishment, latency, and evolution (26–28). 
HIV-specific CD4+ T cells are the preferential target for HIV 
infection (28) but are also associated with viral control during 
acute infection (27). In parallel, HIV-specific CD8+ T cells play an 
important role in viral control (29, 30). It remains unknown how 
HIV-specific T cell dynamics affect or are affected by viral rebound 
and reservoir kinetics in PTCs and NCs. Pre-ATI, PTCs, and NCs 
had largely comparable levels of Gag-specific CD4+ and CD8+ T 
cells producing CD107a, IL-2, and MIP-1β (Fig. 4A). However, 
the level of Gag-specific TNF-α+ CD8+ T cells was significantly 
higher in NCs (Fig. 4 A and B). During early ATI, the Gag-specific 
CD4+ IFN−γ+ T cell levels became significantly higher in PTCs 
than in NCs, followed by a modestly higher level of CD4+ IL-2+ 
T cells (Fig. 4 A and B). Levels of polyfunctional HIV-specific 
CD4+ and CD8+ T cell responses were largely undetectable for 
both the PTCs and NCs. Pre-ATI, we observed a strong negative 
correlation between pre-ATI Gag-specific CD4+ IFN−γ+ T cells 
and CA-RNA (Fig. 4 C and D). None of the pre-ATI CD8+ T 
cell markers correlated with HIV reservoir restriction/expansion 
(Fig. 4C). During the ATI, higher Gag-specific CD4+ IFN−γ+ and 
IL-2+ T cell levels were also associated with lower rebound VL 
and CA-RNA (Fig. 4 C and D), suggesting their potential roles in 
restricting HIV reservoir expansion and viral rebound. In contrast, 
we did not observe a significant link between Gag-specific CD8+ 
T cells with HIV rebound viral load (Fig. 4C).

Activated Functional NK Cells Correlated with HIV Reservoir 
Restriction. A growing body of evidence has suggested significant 
roles of natural killer (NK) cells in HIV control (31, 32). Hence, 
we next evaluated NK cell phenotype and functional dynamics 
during ATI. Globally, NK cell profiles between PTCs and NCs 
were similar (SI Appendix, Fig. S4), although PTCs tended to have 
a more activated CD56-negative (CD56-) NK cell phenotype 
during early ATI compared to NCs (SI Appendix, Fig. S4, purple 
columns). PTCs had significantly higher levels of activation markers 
including %CD38+ in CD56- NK pre-ATI and %CD69+ in total 
NK (Fig.  5A and SI  Appendix, Fig.  S4). Certain NK function 
markers and %CD38+ in total NK were negatively correlated with 
CA-RNA before ATI (Fig. 5 B and C). During early ATI, %CD69+ 
in total NK and CD56dim NK became negatively correlated with 
rebound VL (Fig. 5 B and C). These results suggest a potential role 
of NK cell activation and function in restricting CA-RNA before 
ATI and suppressing viral rebound during early ATI.

Dynamics of Soluble Proinflammatory Markers during ATI. Several 
important soluble proinflammatory markers, including soluble 
CD14 (sCD14) and soluble CD163 (sCD163), are associated 
with morbidities and mortality in HIV infection (33). However, it 
remains largely unclear how they are associated with viral rebound 
during ATI. To this end, we evaluated the dynamics of certain 
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inflammatory markers in PTCs and NCs. Pre-ATI, there were no 
significant differences in any of the inflammatory markers between 
PTCs and NCs (Fig. 6A). During ATI, we observed significantly 

higher interleukin 10 (IL10) and interferon-γ (IFN-γ)–induced 
protein 10 (IP10) in NCs compared to PTCs. NCs also experienced 
a significant increase in the levels of IP10, sCD163, IFN-γ, and IL10 
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during the ATI (Fig. 6A). Overall, there were stronger correlations 
between reservoir size and inflammatory markers in NCs than in 
PTCs, especially during early ATI (Fig. 6B). This finding suggests 
that pronounced VL rebound and HIV reservoir expansion in 
the early ATI period are tightly linked with a hyperinflammatory 
environment in NCs but not PTCs.

Viro-immunological Network Associated with 
Post-treatment Control

In order to define a minimal set of the most important pre-ATI 
viro-immunological features associated with post-treatment con-
trol, we used the sparse partial least squares discriminant analysis 

(sPLS-DA) (34) to evaluate a subgroup of 28 participants (PTC: 
n = 8, and NC: n = 20) with complete pre-ATI viro-immunolog-
ical data (including CA-RNA, cytokines, T cell subsets, and NK 
subsets/function; due to missing data, IPDA and T cell functional 
profiles were not included). Fourteen features were selected from 
the pre-ATI time point, which were able to clearly separate PTCs 
from NCs (Fig. 7A). The major contributing factors (contribution 
>5%) for Component 1 highlighted an enrichment of elevated 
pre-ATI %CD4, CD4/CD8 ratio, CD56- NK activation in PTCs, 
along with low levels of CD4+ T cell senescence (%CD4+ TTDEM), 
CD4+ T cell exhaustion, and CA-RNA (Fig. 7B). These factors 
had an excellent accuracy to distinguish PTCs from NCs pre-ATI 
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(area under the curve of ROC, 0.91) (Fig. 7C). Altogether, factors 
selected by sPLS-DA were highly correlated with other immuno-
logical features in this dataset (Fig. 7D). Notably, unsupervised 
clustering using selected features was able to distinguish most 
PTCs from NCs; however, PTCs demonstrated a heterogeneous 
enrichment in these favorable features, with overall low levels of 
unfavorable features (Fig. 7E).

Similarly, we conducted sPLS-DA to explore viro-immunological 
features during early ATI (PTC: n = 6, and NC: n = 22). Seventeen 
features were selected from the early ATI dataset that distinguished 
PTCs from NCs (SI Appendix, Fig. S5A). The major contributing 
factors (contribution >5%) again highlighted an enrichment in high 
levels of %CD4, CD4/CD8 ratio, %CD4+ TCM, and exhaustion 
of CD4+ TSCM (SI Appendix, Fig. S5B). In contrast, high levels of 
CD4+ T cell activation (HLA-DR+ and CD38+ in total CD4+ T, 
TCM, and TEM), T cell exhaustion (PD1+ in CD4+ TCM and CD8+ 
TEM), immature T cells (CD4+ TSCM), and inflammation (IP10) in 
early ATI were enriched in NCs (SI Appendix, Fig. S5B).

Discussion

In this study, we performed longitudinal virological and immu-
nological profiling to identify important features accounting for 
post-treatment control. We show that PTCs are capable of 

controlling their HIV reservoir expansion and expression during 
ATI along with plasma viral load control. This control over reser-
voir expansion and rebound is further tied to a lower level of 
proinflammatory markers, lower levels of activation in mature/
functional CD4+ T cell groups, and more robust HIV Gag-specific 
CD4+ T activity, NK cell activation, and function. Furthermore, 
we defined a set of pre-ATI virological and immunological markers 
that differentiated PTCs from NCs.

Elevated levels of HIV DNA and CA-RNA have been associated 
with earlier timing of viral rebound in previous studies (6, 35, 
36). In our study, detectable levels of pre-ATI proviral DNA and 
CA-RNA could be found in both PTCs and NCs and did not 
preclude the possibility of post-treatment control. In general, HIV 
reservoir size was more limited in PTCs and in the multivariable 
analysis; lower levels of pre-ATI CA-RNA contributed to the abil-
ity to differentiate PTCs from NCs. In addition, a number of 
PTCs were found to have transient periods of detectable viremia 
during ATI but no evidence of reservoir expansion or increased 
cellular viral RNA expression. There was also little fluctuation in 
T cell subset proportions in the PTCs, with largely stable levels 
of CD45RO+ T cell population (mostly TCM and TEM) and 
CD45RO-T cell population (mostly TN and TSCM). Together, 
these findings suggest that an efficient antiviral immune response 
may mediate the virological control by limiting the expansion and 
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transcription of the viral reservoir. The marked differences in HIV 
reservoir size and activity at the late post-ATI time point are espe-
cially notable given that PTCs were sampled a median of 96 wk 

after ATI, while NCs were sampled a median 16 wk after ATI. 
Our findings on reservoir dynamics are consistent with the 
VISCONTI study (12) and a recent report on two PTCs from 
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Blazkova and Gao et al. (37), who also report stable HIV reservoir 
size during treatment interruption in PTCs. Differences in HIV 
transcription between HIV PTCs and NCs were also recently 
reported using a droplet digital PCR platform that measured levels 
of initiated, 5′-elongated, midelongated, completed, and multiply 
spliced HIV transcripts (38). The results showed that after treat-
ment interruption, there was no significant increase in HIV tran-
scriptional initiation in either PTCs or NCs. Instead, the primary 
differences were in the dramatic increases in multiply spliced and 
completed transcripts in NCs that were not seen in PTCs. 
Together, these studies highlight the ability of PTCs to limit viral 
transcription as a distinguishing feature for HIV post-treatment 
control.

PTCs demonstrate a unique set of immunological profiles com-
pared to NCs, highlighting their capability of maintaining lower 
inflammation and T cell activation (especially in CD4+ T cells) 
along with reservoir restriction. This could potentially play a role 
in the reduced susceptibility to viral replication as activated CD4+ 
T cells have been linked to a higher level of HIV proviral transcrip-
tion (39), susceptibility to new infection (40), and HIV viral per-
sistence (41). This finding is also in stark contrast with HIV elite 
controllers (EC) and viremic controllers, who have been found to 
have significantly higher levels of T cell activation than those on 
ART (2, 12, 42, 43). In addition, ECs have also been found to 
have elevated levels of several soluble inflammatory markers despite 
maintaining viral control, suggesting that ECs maintain viral con-
trol at a cost of systemic inflammation (44). In comparison, PTCs 
demonstrate a lower level of soluble proinflammatory markers 
during ATI, especially IP10 and IL10. We also demonstrate a lack 

of correlation between viral reservoir expansion and proinflamma-
tory markers in PTCs when compared to NCs. The elevated IP10 
levels in NCs are likely related at least in part to increased resump-
tion of viral replication as previous reports showed that participants 
of the Strategies for Management of Antiretroviral Therapy study 
who were randomized to the drug conservation arm were also 
found to have higher IP10 levels (45), and IP10 levels have been 
associated with elevated viremia in other studies (46, 47). In con-
trast to PTCs, NCs were found to have increasing sCD163 levels 
post-ATI associated with rebounding viremia and is consistent with 
a small study of participants treated during primary infection who 
underwent an ATI (48). sCD163 is a marker of monocyte/mac-
rophage activation and has been associated with the development 
of noncalcified coronary plaques in both chronic-treated PWH 
and HIV ECs (49–51). In conjunction with the elevated markers 
of T cell activation, these results highlight the rapid reactivation of 
both the innate and adaptive immune system in response to viral 
rebound and underscore the risks of long-term treatment interrup-
tion in NCs (52). In comparison, PTCs showed no significant 
increases in either T cell activation or soluble markers of monocyte/
macrophage activation. These intriguing results are likely due to 
the low levels of viral replication seen in the PTCs and suggest that 
PTCs could be at lower risk of adverse clinical outcomes compared 
to either NCs who undergo treatment interruption or potentially 
HIV ECs.

In defining potential mechanisms of HIV post-treatment con-
trol, we identified both T cell and NK cell functional activity that 
could be playing a role in limiting the size of the HIV reservoir 
and suppressing viral rebound. We evaluated levels of Gag-specific 
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T cell activity and found a higher level of HIV-specific CD4+ cells 
expressing IFN-γ and IL-2 in PTCs compared to NCs. These 
markers were significantly associated with a restricted reservoir 
size and lower viral rebound during early ATI. Immune profiling 
of HIV elite controllers has shown an enrichment in protective 
HLA alleles and polyfunctional HIV-specific CD8 T cell responses 
that point to this as a vital immune mediator of natural HIV 
control (5, 53). In contrast, Gag-specific CD8+ T cells did not 
seem to contribute to post-treatment control or reservoir restric-
tion, which suggests that PTCs are able to achieve HIV remission 
through alternative immune pathways. The association of HIV-
specific IFN-γ+ CD4+ T cell activity with viral kinetics after treat-
ment interruption is consistent with the results of the ACTG trial 
A5197, a study of an Ad5 HIV gag therapeutic vaccine. In that 
trial, levels of HIV-specific CD4+ cells expressing IFN-γ were 
inversely associated with viral load set point (54).

In addition to Gag-specific CD4+ T cells, we also demonstrated 
several NK cell features that were associated with post-treatment 
control and a lower level of HIV CA-RNA and rebound viral 
load. NK cells play a significant role in restricting HIV replication 
during untreated infection (55). Emerging evidence has suggested 
that NK cells, especially mature subpopulations (56) including 
CD56- and CD56dim (57) NK cell activation and function, are 
associated with early ART initiation in PWH and viral control 
in ECs (58). In a humanized-mice model study, Kim et al. 
demonstrated that adoptive NK cell infusion into humanized, 
HIV-infected, virally suppressed mice delayed viral rebound dur-
ing ATI and decreased the tissue reservoir diversity (32). In a 
pediatric HIV cohort, an HLA-I signature favoring killer cell 
immunoglobulin-like receptor (KIR) education and subsequent 
NK cell function was also linked to slower disease progression 
(59). In addition, antibody-mediated NK cell activation was 
recently found to be associated with delayed viral rebound in an 
ATI cohort study (60). Furthermore, the VISCONTI study has 
also demonstrated an important role of NK cell function in con-
trolling HIV infection (61). These findings in sum have pointed 
to an important role in HIV restriction by NK cells across differ-
ent clinical phenotypes in HIV infection. Further deep immu-
nophenotyping of NK cells KIR typing would be warranted to 
further reveal the underlying mechanisms between HIV control 
and NK cell phenotype/function.

This study has a few limitations. First, due to sample availability, 
only a subgroup of participants had IPDA, soluble proinflammatory 
markers, and flow cytometry data available. Participants with sup-
pressed viral load tested by a standard clinical assay rather than a 
single-copy assay, which precluded us from detecting a difference 
in very low-level viremia between PTC and NC groups. Second, all 
participants were enrolled >15 y ago while they were suppressed on 
older ART regimens, although the ACTG study A5345 demon-
strated that viral rebound kinetics for NCs did not differ in those 
receiving newer ART regimens (7). Third, further work needs to be 
done to evaluate the role of intact proviral integration sites in defin-
ing post-treatment control, especially as proviral integration into 
areas of deep latency has been described in ECs (62, 63) and PWH 
receiving long-term ART (64). Given limited PBMC availability 
for cell function assays, Pol- and Nef-specific T cell functions were 
not able to be evaluated. Finally, we did not evaluate the contribu-
tion of humoral immunity in post-treatment control. It is likely 
that HIV post-treatment control is a multifactorial process, and 
humoral immunity may play a key role in those with less robust 
NK and/or T cell activity. As shown in a recent study, two PTCs 
with >200-wk follow-up demonstrated distinct mechanisms for 
maintaining post-treatment viral control (37). One participant 
demonstrated stronger T cell response, while the other showed 

strong autologous neutralizing antibody activity that was postulated 
to have mediated viral control (37). Further studies are underway 
to evaluate humoral immunity and post-treatment control.

In summary, PTCs serve as a natural model for sustained HIV 
remission and thus represent a crucial population for future HIV 
cure research. Our study expands the understanding of post- 
treatment control, and the set of distinguishing viro-immuno-
logical features of PTCs may help identify those likely to achieve 
HIV post-treatment control prior to an ATI and could be fac-
tored into the design of future ATI trials. In addition, our results 
suggest that therapeutic strategies boosting both HIV-directed 
CD4+ T cells and NK cells may be required to achieve ART-free 
HIV remission.

Materials and Methods

Study Population and Time Points. We included PTC and NC participants who 
were originally identified in the CHAMP study (13) from prior AIDS Clinical Trials 
Group (ACTG) analytical treatment interruption (ATI) studies (54, 65–71). PTCs 
maintained viral loads ≤400 HIV RNA copies/mL at ≥2/3 of time points for ≥24 
wk after the ATI. NCs were identified among those in the same study arm who did 
not meet the PTC criteria and had available stored samples. Viro-immunological 
profiling was conducted prior to ATI and during ATI (early and late). For this study, 
we planned on evaluating viro-immunological responses during early and late 
ATI courses. Due to a more rapid and pronounced viral rebound in NCs, ART was 
resumed earlier in this group, and they in general had a shorter ATI duration 
(SI Appendix, Fig. S6). Early post-ATI viro-immunological profiling was performed 
a median of 4 wk post-ATI for NCs vs. 12 wk for PTCs, and the median post-ATI 
weeks for the late ATI profiling were 16 and 96, respectively. The slightly delayed 
early post-ATI sampling for the PTCs was to assess the viro-immunological phe-
notype in PTCs after any transient early post-ATI viral rebound, which was seen 
in a subset of PTCs prior to viral control and described in the original description 
of the CHAMP study (13).

Study Approval. Participant samples were collected according to protocols 
approved by the Mass General Brigham Institutional Review Board. This current 
study protocol was approved by Mass General Brigham Institutional Review Board 
with the protocol #2014P000661/BWH. Participants provided a written informed 
consent in accordance with the Declaration of Helsinki.

HIV Reservoir Quantification. CA-RNA was isolated from cryopreserved 
peripheral blood mononuclear cells (PBMCs) using the AllPrep DNA/RNA Mini Kit 
(Qiagen). Unspliced CA-RNA level was quantified using a real-time PCR approach 
with primers/probes targeting conserved regions of HIV LTR/gag as previously 
described (6, 72). Cell numbers were quantified by the real-time PCR measure-
ment of CCR5 copy numbers. Cellular integrity for RNA analysis was assessed by 
the measurement of total extracted RNA and evaluation of the IPO8 housekeeping 
gene (73). CA-RNA levels below the limit of quantification (20.73 copies/million 
PBMCs) were categorized as below quantification/detection range and assigned 
the values of 20.73 RNA copies/million PBMCs for analysis.

Intact Proviral DNA Assay (IPDA). IPDA was performed at AccelevirDx per the 
protocol published in their previous study (15).

HLA Typing. HLA class I typing was performed following the PCR-SSOP 
(sequence-specific oligonucleotide probing) and the PCR-SBT (sequence-based 
typing) protocols recommended by the 13th  International Histocompatibility 
Workshop. We included protective and susceptible HLA-B alleles based on previ-
ous reports (14, 74) (SI Appendix, Table S3). Concurrent protective and susceptible 
alleles were counted as neutral alleles.

Soluble Markers of Inflammation. Soluble markers of inflammation were 
measured with ELISA-based assays. Plasma was analyzed for levels of IL-6, sCD14, 
IP10, sCD163, CRP, TNFR1 and TNFR2 (all from R&D Systems, Minneapolis, MN), 
D-dimer (Diagnostica Stago, Parsippany, NJ), and IL10 and TGFβ (both from MSD, 
Rockville, MD) per the manufacturers’ protocols. Since these markers were meas-
ured in two batches, we examined the batch effect of the overlapping tests and 
did not find batch effect (SI Appendix, Fig. S7).

http://www.pnas.org/lookup/doi/10.1073/pnas.2218960120#supplementary-materials
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Immune Phenotyping and Intracellular Cytokine Staining (ICS). Approximately 
106 PBMCs were used for T and NK cell phenotyping. T cells were stained with blue 
viability dye (Invitrogen) and for chemokine receptor CCR7 at 37 °C for 20 min and 
then followed by a master mixture of antibodies targeting CD3, CD8, CD4, CD45RO, 
CD95, HLA-DR, CD38, and PD-1 at 4 °C for 20 min. NK cells were stained with blue 
viability dye and antibodies targeting CD3, CD19, CD16, CD56, CD69, CD38, CD57, 
NKG2D, NKp30, and NKp46 (SI Appendix, Method).

T cell intracellular cytokine staining (ICS) was performed on PBMCs stimu-
lated with a HIV Gag peptide pool, and NK cell ICS was performed with PBMCs 
stimulated with K562 cells. For T cells, approximately 106 cells were stimulated 
overnight with anti-CD28/49d (0.5 μg/mL; BD) and 2 μg/mL synthetic peptides 
(overlapping 15- to 20-mer Gag peptide pools spanning the entire clade B 
consensus sequence of the HIV-1 gag sequence). NK cells were stimulated 
overnight with K562 cells with an effector-to-target ratio of 10:1, and brefel-
din A (1 μg/mL; BioLegend), Monensin Solution (1 μg/mL; BioLegend), and 
CD107a antibody were added after 1-h culture and incubated for an additional 
5 h. Cells stimulated with PMA (2.5 μg/mL) and ionomycin (0.5 μg/mL) served 
as a positive control, and R10 medium only served as a negative control. After 
stimulation, the cells were stained with surface antibodies against CD3, CD19, 
CD16, CD56, and blue viability dye at 4 °C for 20 min. Subsequently, cells 
were treated with a fixation and permeabilization solution according to the 
manufacturer’s protocol. Cells were stained for 20 min at room temperature 
with antibodies directed to IFN-γ, IL-2, CD107a, and TNF-α. Cells were then 
fixed by 2% PFA (Affymetrix), acquired on an LSRFortessa flow cytometer (BD), 
and analyzed using FlowJo (version v10) software (Tree Star). The proportion 
of cytokine-secreting cells had to be greater than 0.1% after subtraction to be 
considered a positive response.

Measurements of Antiretroviral Drug Concentrations. Plasma concentrations 
of nevirapine (NVP), abacavir (ABC), and lamivudine (3TC) were measured by a 
validated high-performance liquid chromatography method as previously described 
(75). ARV drug concentrations were compared to previously described steady-state 
pharmacokinetics for NVP (76), ABC (77), and 3TC (78). All assay methods have been 
validated internally and through external proficiency testing by the DAIDS Clinical 
Pharmacology Quality Assurance and Quality Control Program.

Statistical Analysis. We used the Wilcoxon rank-sum test to evaluate between-
group differences. P values for multiple comparisons involving >2 time points 
between PTCs and NCs were corrected with the Benjamini–Hochberg method. 
A within-group comparison between different time points was conducted with 
either the paired Wilcoxon signed-rank test if there were only two time points or 
Dunn’s test with Benjamini–Hochberg adjustment if there were three time points. 
Categorical variables were compared using either the chi-squared test or Fisher’s 
exact test. Correlations between HIV reservoir, viral load, and inflammatory and 
immune markers were determined with the Spearman test. Statistical analyses 

were performed with R (4.1.0) and Stata (13.0, College Station, TX), and figures 
were plotted with the R “ggplot2” package unless otherwise specified. Details in 
statistical models, including polar plot generation, PLS-DA, were included in the 
SI Appendix, Method section.

Data, Materials, and Software Availability All study data are included in the 
article and/or SI Appendix. Some study data available (Data are available upon 
request to the AIDS Clinical Trials Group by submitting a Data Request form: 
https://submit.mis.s-3.net/).
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