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ARTICLE

Barium bioaccumulation by bacterial biofilms and
implications for Ba cycling and use of Ba proxies
Francisca Martinez-Ruiz 1, Fadwa Jroundi2, Adina Paytan3, Isabel Guerra-Tschuschke4, María del Mar Abad4 &

María Teresa González-Muñoz2

Ba proxies have been broadly used to reconstruct past oceanic export production. However,

the precise mechanisms underlying barite precipitation in undersaturated seawater are not

known. The link between bacterial production and particulate Ba in the ocean suggests that

bacteria may play a role. Here we show that under experimental conditions marine bacterial

biofilms, particularly extracellular polymeric substances (EPS), are capable of bioaccumu-

lating Ba, providing adequate conditions for barite precipitation. An amorphous P-rich phase

is formed at the initial stages of Ba bioaccumulation, which evolves into barite crystals. This

supports that in high productivity regions where large amounts of organic matter are sub-

jected to bacterial degradation, the abundant EPS would serve to bind the necessary Ba and

form nucleation sites leading to barite precipitation. This also provides new insights into

barite precipitation and opens an exciting field to explore the role of EPS in mineral pre-

cipitation in the ocean.
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The biological pump plays a crucial role in ocean chemistry
and the global carbon cycle1. Understanding past varia-
tions in the efficiency of the biological pump calls for the

reconstruction of ocean export productivity, which fluctuates
considerably over multiple time scales2. As there is a strong link
between particulate organic carbon (POC) and particulate Ba
fluxes in the ocean3, Ba proxies have been used to reconstruct
carbon fluxes and past marine export production4. Nevertheless, a
comprehensive understanding of nutrient cycling and export
production in past oceans, including the significance of the bio-
logical pump and its efficiency, are hindered by our lack of full
understanding of Ba cycling in the ocean and controls on barite
(BaSO4) formation in the water column. It is well known that
barite precipitates in undersaturated seawater as micron-sized
crystals in association with sinking biogenic debris5, and its
nutrient-like behavior and link to carbon remineralization at
depth have been widely demonstrated3,4,6. However, the pro-
cesses that lead to precipitation of barite in microenvironments
within sinking particulate matter are not well constrained. It has
been suggested that bacteria may play a role, since observations in
the ocean water column support a close relation between bacterial
activity and particulate non-lithogenic Ba in the water column7–9.
It has also been demonstrated that under experimental conditions
diverse marine bacteria from different habitats and of phylo-
genetically diverse species can promote barite precipitation10,11.
Seawater Ba isotopic composition likewise points to a biological
role in barite precipitation. This process preferentially incorpo-
rates the lighter isotopes of Ba with larger fractionation factors
than for inorganic barite, and the residual waters remain iso-
topically heavier12–14.

Although the microbial role in precipitation of sulfates has
been poorly investigated in comparison to the microbial invol-
vement in carbonates formation, microbial barite precipitation
has been described in hot springs environments, where bacteria
play a role either in oxidizing sulfur compounds to generate
sulfate or in accumulating Ba in microbial mats15,16. In marine
environments, bacterial involvement in barite formation has
recently been reported for a cold seep where barite precipitated
on filaments of sulfide-oxidizing bacteria. Laboratory experiments
with isolates of these sulfide-oxidizing bacteria also show that
under low sulfate conditions the sulfate generated by sulfide-
oxidizing bacteria fosters rapid barite precipitation localized on
the cell biomass17. In most previous experiments, bacteria pro-
vided the necessary sulfate for barite precipitation. However, this
is not analogous to the process occurring in the open ocean,
where sulfate concentrations in seawater are high; hence pro-
viding sulfate does not represent the role of bacteria in marine
microenvironments. Given that ocean seawater is generally
undersaturated with respect to barite due to low concentrations of
Ba, the formation of barite depends upon a mechanism that
serves to increase Ba concentrations at the sites of barite pre-
cipitation. Bioconcentration of Ba by phytoplankton has been
reported through culture experiments and Ba isotope-spiking
experiments18. Bearing in mind that the decay of phytoplankton
is bacterially mediated, bacterial productivity would increase
along with the availability of organic matter substrate and in turn
with export productivity.

In this context, we explore the potential of certain marine
bacteria to bioaccumulate Ba in biofilms so as to shed light on the
processes allowing marine bacteria in their natural habitat to
promote barite precipitation. Although past experimental work
and the close link between bacterial production and particulate Ba
abundance in seawater suggest a link between bacterial activity
and barite formation, the precise mechanisms for precipitation
and the specific role of marine bacteria in the process have not
been investigated. The capability of certain marine bacteria to

provide sulfate in culture experiments promoting barite pre-
cipitation had served to demonstrate the microbial role in barite
precipitation in low sulfate settings. However, this role is
underplayed in the sulfate rich seawater. We show here that Ba
bioaccumulation on bacterially produced biofilms is the crucial
step for barite formation. We also show how barite forms under
experimental conditions from an amorphous precursor that
evolves to barite crystal, and speculate that a similar process
occurs in the ocean.

Results
Bacterial cultures. Three marine bacterial strains were selected
for this study: Idiomarina loihiensis MAH1, Marinobacter
hydrocarbonoclasticus, and Planomicrobium okeanokoites (refer-
ences CECT-5996, DSM-50418, and DSM-15489, respectively).
These strains were chosen because they belong to three phylo-
genetically different genera widely distributed in the marine
environment. The first two are Gram-negative bacteria (γ−Pro-
teobacteria) and the third is a Gram-positive bacterium (Firmi-
cutes). Bacteria grown in a liquid medium and washed with NaCl
solution were suspended in synthetic seawater without sulfate,
allowing biofilm formation. Two concentrations of BaCl2 in the
media (2 and 20 mM) were used.

Scanning electron microscopy analysis. Scanning electron
microscopy (SEM) observations have demonstrated that Ba
accumulated in the biofilms produced by all three marine bacteria
in both media (2 and 20 mM Ba) after 24 h. Figures 1 and 2 show
the Ba accumulated in bacterial biofilms and the composition of
the precipitates. Energy-dispersive X-ray (EDX) spectra show the
elements bound to extracellular polymeric substances (EPS);
elements derived from the glass coverslips used for the experi-
ments (e.g. Si, K) are shown in a background spectrum (Sup-
plementary Fig. 1). The composition of the precipitates reveals
that a P-rich phase formed at the initial stages of Ba bioaccu-
mulation (Fig. 1a, b) and this phase later evolve into barite
(Fig. 1d, e).

High-resolution transmission electron microscopy. High-
resolution transmission electron microscopy (HRTEM) analyses
allowed the precise composition of the Ba precipitates to be
determined; EDX maps and spectra show the elemental dis-
tributions of Ba, P, and S in the biofilms, and the presence of
polyphosphate grains enriched in Ba in some cells (Figs. 3 and 4;
Supplementary Figs. 2, 3, 4). These results further demonstrate
that Ba is initially associated with P in the biofilms, and also that
these initial P-rich phases are amorphous or very poorly crys-
tallized, as evidenced by the selected area electron diffraction
(SAED) images that provide evidence of amorphous or very
poorly crystallized precipitates. In contrast, particles with higher S
content, which developed at later stages of the experiment, are
more crystalline. SAED images (Fig. 4b) obtained from S-rich
precipitates show the crystalline nature of these phases. The
obtained d-spaces for these crystals present a deviation from
those of pure barite crystals, as the precipitates are still relatively
rich in P. A wide range of compositions was observed, from initial
P-rich precipitates to intermediate phases with mixed P and S and
the almost complete substitution of phosphate by sulfate, with the
subsequent formation of barite crystals.

Composition of natural barite from seawater. Barite particles
from sinking particulate matter collected using a multiple-unit
large-volume in situ filtration system (MULVFS) from the ocean
water column (North Atlantic, Knorr cruise 98 sample WCR 82
H, September 1982) were analyzed under SEM for comparison to
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Fig. 1 SEM images of cells and EPS from I. loihiensis and the bioaccumulated Ba. a Cells, EPS, and Ba precipitates after 48 h of incubation in SSW2 medium.
The image was obtained by secondary electrons with the Inlens detector at 5 kV. b Same image shown in a in backscattered electron (BSE) mode by AsB
detector at 20 kV. Scale bar in a and b represents 300 nm. c Representative SEM-EDX spectrum (analyzed spot marked with an arrow in BSE image), in
which the vertical scale is enlarged to show the lower intensity of S peak in relation to P. Elements, other than those bound to EPS, derive from the glass
coverslips used in the experiments (e.g. Si, K), see Supplementary Fig 1 for a background spectrum. d, e I. loihiensis MAH1 after 96 h of incubation, and the
same conditions previously mentioned for photographs a and b. f Spectrum showing the enhanced intensity of the S peak in relation to P. Scale bar
represents 200 nm. Photographs d and e and corresponding spectrum were obtained with a Zeiss SUPRA40VP and the rest with an AURIGA FIB-FESEM
Carl Zeiss SMT
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Fig. 2 SEM images ofM. hydrocarbonoclasticus and P. okeanokoites bacteria. a, b Photographs ofM. hydrocarbonoclasticus obtained by the Inlens detector and
backscattered electron mode, respectively. Scale bar represents 1 μm. c Representative SEM-EDX spectrum. Incubation time was 48 h and the
medium SSW2. The corresponding spectrum also shows the composition of the Ba-rich aggregates. d, e Photograph of P. okeanokoites after 96 h of
incubation in SSW2 medium obtained under the same microscopy conditions. Scale bar represents 200 nm. f Composition of the precipitates shown
in d and e images
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the experimental precipitates. Similar to our experiments, in the
natural samples, P was also localized with Ba, particularly in very
tiny grains (Fig. 5), while in larger grains P is not noticeable by
EDX analyses.

Discussion
The importance of marine barite and Ba proxies for recon-
structing past ocean export productivity has been widely
demonstrated4. The precipitation of barite in undersaturated
seawater19 strongly suggests that biogeochemical processes rather
than purely abiotic processes must be involved in such pre-
cipitation. Although no explicit mechanism has been identified
for the nucleation and growth of barite crystal in the ocean water
column, diverse lines of evidence suggest that bacteria play a
major role. Dehairs et al.7 investigated particulate Ba content in
the North Pacific and show that the vertical distribution of par-
ticulate non-lithogenic Ba in the water column (composed pri-
marily from barite) closely follows trends in bacterial activity and
oxygen consumption. In the Australian sector of the Southern
Ocean, Jacquet et al.8 observed that mesopelagic Ba content is
correlated with bacterial activity, with an increasing abundance of
particulate Ba when bacterial activity is high. Similarly, Planchon
et al.9 show that mesopelagic particulate Ba distribution reflects

bacterial degradation of organic matter, and that this is related to
oxygen consumption and bacterial carbon respiration in the
Atlantic sector of the Southern Ocean. Experimental work also
demonstrated that phytoplankton may play a crucial role in
bioconcentrating Ba18, and since sinking organic matter serves as
a substrate for heterotrophic bacteria, the link between bacterial
abundance and export productivity may be a key factor for Ba
bioaccumulation in microenvironments in the ocean water col-
umn. Indeed, in natural environments, Ba enrichment associated
with microbial biomass has been described in diverse settings,
including thermal springs15,16,20, biofilms in the Roman Cata-
combs21, bacterial EPS at fumaroles in Solfatara Crater, Italy22,
and in filaments of sulfide-oxidizing bacteria in marine cold
seep17. Likewise, culture experiments demonstrated the capability
of bacteria to promote barite precipitation under laboratory
conditions10,11,23. In such experiments, bacterial metabolism
supplied the necessary sulfate for barite formation. Our experi-
mental work also provided new insights into precipitation
mechanisms, showing that phosphate groups are the main ligand
for Ba binding and that phosphate is eventually substituted by
sulfate to form barite. The binding of many elements to phos-
phate groups is a common biomineralization process leading to
microbially induced mineral precipitation. For example,
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Fig. 3 HRTEM EDX maps of Ba, P, and S in bacterial cells. a, b High-angle annular dark field (HAADF) STEM images and corresponding EDX maps showing
the distribution of Ba and P respectively in bacterial biofilms of I. loihiensis MAH1 after 48 h of incubation in SSW2 medium. c Combined map of Ba and P
showing the similar distribution of these elements . dMap of S showing the scattered distribution of this element within bacterial cells. Scale bar represents
400 nm
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Rivadeneyra et al.24 studied aragonite precipitation by Chromo-
halobacter marismortui and demonstrated that, over time, the
composition of bioliths changed from amorphous phases of Ca
phosphate and carbonate to precipitates made essentially of
aragonite and struvite. Furthermore, the ability of polyphosphates
to chelate metal ions has been widely demonstrated. In fact, the
intracellular chelation of heavy metals by polyphosphate may
serve to reduce heavy metal toxicity and improve cellular toler-
ance to metals25. We surmised that, in seawater, phosphate
groups on bacterial biofilms could play a major role in con-
centrating Ba, and act as nucleation sites for barite formation.
Although phosphate and sulfate groups have different sizes (the
phosphate group being larger), the mutual substitution of sulfate
and phosphate groups is a common process in nature, as are solid
solutions between phosphate and sulfate phases26. The adsorption
of divalent cations on EPS and cell walls has been widely
demonstrated15,27. Indeed, microbial mats and biofilms are
commonly enriched in calcium and magnesium as compared to
surrounding waters28. Trace metal incorporation by bacteria has
been demonstrated for other metals as well (e.g. U29) specifically
in the case of marine bacteria used in this study such as
I. loihiensis.

Our experimental work represents a step forward in this field
and demonstrates that common marine bacteria (I. loihiensis,
M. hydrocarbonoclasticus, and P. okeanokoites) can bioaccumu-
late Ba, which is essential for increasing Ba concentration and
establishing nucleation sites in microenvironments in which
barite precipitates. These results lead one to further hypothesize
that barite precipitation in the ocean water column is mediated by
Ba enrichment, initially bound to phosphate groups in biofilms
and other organic substrates, and that eventually the phosphate is
substituted by sulfate, which is readily available in seawater, to
form crystalline barite. While bacteria are known to play a role in
providing sulfate for barite precipitation in certain natural
environments such as sulfidic springs15,17,20, in the ocean water
column, where sulfate is abundant, the bacterial role would
consist primarily of providing biofilms that bind Ba as the first
step for barite precipitation. The bacteria would thus play an
indirect role in the precipitation process, providing binding sites
on EPS, cell walls, or in polyphosphate granules within the cells
where Ba can bind to phosphate, followed by substitution of
phosphate with sulfate to form barite. The observation of amor-
phous phosphate precursor associated with Ba in natural sinking
particulate matter collected using a MULVFS reinforces the

a b

c d

Ba H AMS 20 mM Ba CI2 48 h1

HAADF

MAG: 20.0kx HV: 300 kV

Ba P

Fig. 4 HRTEM images of bacterial biofilms. a HAADF images showing bacterial biofilms of I. loihiensis MAH1. b High-magnification photograph of
precipitates formed after 48 h of incubation in SSW2 medium. A selected area electron diffraction image is included in photograph b to show the crystalline
nature of the precipitates (the composition is shown in Supplementary Fig. 2). c Intracellular grains enriched in P (indicated with an arrow). d
Corresponding EDX map showing the Ba and P distribution (spectrum is provided in Supplementary Fig. 3). Scale bar represents: a 500 nm, b 200 nm,
c 500 nm, d 700 nm
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suggestion that in natural ocean water the bacterial biofilms
would provide phosphate groups as binding sites for barite
formation.

The bioaccumulation of Ba in the analyzed bacterial EPS would
also suggest that barite formation is not associated with a specific
organism as EPS is produced by an ample range of aquatic
microorganisms, particularly phytoplankton and bacteria. This
finding therefore opens a novel field surrounding the role of
transparent exopolymer particles (TEPs) in the binding of Ba.
TEPs play a major role in marine biogeochemical cycles and have
received considerable attention since they were first described in
the ocean30,31. They are ubiquitous in the aquatic system and
drive the downward flux of POC, contributing to particle
aggregation and the formation of the sinking marine snow32.
Indeed, the bioconcentration of Ba in phytoplankton shown
through culture and Ba isotope-spiking experiments18 also sug-
gests that EPS produced by phytoplankton could be similarly
significant for barite precipitation mechanisms in the ocean,
particularly because this production is quantitatively important.
The binding of certain metals (e.g., Th) to functional groups of
marine EPS (carboxylate, phosphate, and sulfate) has also been
demonstrated33 implying that a similar process may be prevalent
for diverse authigenic minerals. Notably, the role of the EPS in the
formation of other minerals (carbonates) has also been demon-
strated even in the absence of living cells34.

Crystallization of barite in the presence of organic compounds
is also consistent with the typical rounded and elliptical barite
morphologies found in seawater and marine sediments35,36.
Additional evidence supporting biological mediation includes
the distribution of Ba isotopes in seawater and particulate
barites12–14.

Based on all the above observations, we suggest that in regions
where productivity is high and large amounts of organic matter
are exported to depth and undergo bacterial degradation, EPS are
commonly produced by the abundant phytoplankton and bac-
terial cells37,38 and serve to bind the necessary Ba and form
nucleation sites, leading to barite precipitation. This finding is
consistent with the observed relationship between export pro-
ductivity, bacterial activity, and barite formation in the ocean.
Although additional research is needed to precisely describe the
role of EPS and other biofilms in barite crystal nucleation and
growth in the water column, our experimental work reveals a
mechanism by which Ba bioaccumulation on microbial biofilms,
and specifically in EPS, through phosphate binding groups would
serve as the nucleation foci leading to barite formation in the
ocean water column.

Methods
Culture media. Bacterial strains were cultured and maintained in a marine broth
(MB) medium (DIFCO laboratories, USA), with the following composition (in g/l):
NaCl, 19.45; MgCl2, 8.8; peptone, 5; Na2SO3, 3.24; CaCl2, 1.8; yeast extract, 1; KCl,
0.55; NaHCO3, 0.16; ferric citrate, 0.1; KBr, 0.08; SrCl2, 0.03; H3BO3, 0.02;
Na2HPO4, 8; Na2SiO3, 4; NaF, 2.4; NH4NO3, 1.6. The medium was used in liquid
and solid forms; to prepare the solid medium, 2% purified agar-agar (OXOID
laboratories, England) was added. For the Ba bioaccumulation experiments, sulfate-
free synthetic seawater (SSW) was used to avoid inorganic barite precipitation. The
composition of the SSW was (in g/l): NaCl, 19.45; MgCl2, 5.9; CaCl2, 1.8; KCl, 0.55;
NaHCO3, 0.16; KBr, 0.08; SrCl2, 0.03; H3BO3, 0.02; ferric citrate, 0.1; Na2HPO4,
0.008; Na2SiO3, 0.004; NaF, 0.002; NH4NO3, 0.001; and pH 7.6. This SSW was used
with two concentrations of BaCl2: 2 mM (SSW1) and 20 mM (SSW2), both being
higher than those found naturally in seawater. These concentrations served to
expedite the process and allow for easy detection of the Ba bioaccumulation under
the experimental conditions.

Ba accumulation tests. Bacterial cells were grown and maintained in MB medium.
Bacterial growth was monitored in the liquid MB by measuring the optical density
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at 620 nm. Ba accumulation tests were performed using bacterial biofilms produced
by each of the selected strains. Cultures destined to biofilm formation were grown
in liquid MB medium (100 ml) in 250 ml sterile Erlenmeyer flasks, incubated at
28 °C, and shaken continuously at a speed of 180 r.p.m. Cells were grown to late
exponential phase and aliquots of 10 ml of the bacterial cultures were centrifuged at
10,000 r.p.m. for 10 min at 4 °C. The collected cells were rinsed three times with
NaCl solution (3.5% w/v) to remove ingredients from the medium, in particular
sulfates. The cells were re-suspended in sterile test tubes containing 10 ml of either
SSW1 or SSW2. To promote biofilm formation, pieces of glass coverslips sterilized
by autoclave (for 20 min at 120 °C) were aseptically placed in these previously
prepared liquid-bacterial suspensions (one per each test tube). A minimum of three
replicates per run were performed. The test tubes were incubated for 24, 48, and 96
h at 28 °C under shaking at 180 r.p.m.

Electron microscopy analyses. SEM and HRTEM were used to analyze the Ba
bioaccumulated on bacterial biofilms. For this purpose, the glass coverslips were
aseptically collected from the test tubes and immediately fixed in 1 ml of 2.5%
glutaraldehyde solution (prepared in 0.2 M cacodylate buffer with 0.4 M sucrose
and 0.1% NaCl to reach an osmolarity of 1220 mOsm similar to that of MB and
SSW media). Samples were kept at 4 °C until their preparation for electron
microscopy analyses. The fixed glass coverslips were dehydrated using a series of
ethanol rinses (at 50; 70; 90; 100 vol% 3 × ; 10 min each), exposed to critical-point
drying (in LEICA EM CPD 300 Critical Point Dryer) and coated with carbon prior
to observations. The biofilms were characterized using SEM (AURIGA FIB-FESEM
Carl Zeiss SMT and Zeiss SUPRA40VP), equipped with EDX detector system
(Centre for Scientific Instrumentation, University of Granada). Biofilms were also
analyzed by means of HRTEM; for these analyses, the coverslip surfaces with
biofilms were scraped with a scalpel and then dispersed in ethanol by sonication for
~3 min. Samples were then collected and deposited on carbon-film-coated
copper grids for observation. Data were collected using a FEI TITAN G2 60-300
microscope with a high brightness electron gun (X-FEG) operated at 300 kV
and equipped with a Cs image corrector (CEOS). For analytical electron micro-
scopy (AEM), a SUPER-X silicon-drift windowless EDX detector was used.
Digital X-ray maps were collected on selected areas of the samples and mapped
for Ba, S, and P. SAED patterns were also acquired for identification of
crystalline phases. Regarding the analyses of barite particles from the ocean water
column, representative pieces of the filters were coated with carbon for SEM
observation.

Data availability. The datasets generated during the current study are available
from the corresponding author.

Received: 15 September 2017 Accepted: 29 March 2018
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