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Multi-threaded Rendering Unstructured-Grid Volume Data
on the SGI Origin 2000

Christian Hofsetz Kwan-Liu Ma�

University of California-Davis

Abstract

This paper presents a work-in-progress. The objective of our
study is to derive an optimal design for high-performance
rendering of irregular-grid volume data on the increasingly
popular, distributed shared-memory parallel supercomput-
ers. We experiment with a multi-threaded volume rendering
algorithm for three-dimensional unstructured-grid data and
discuss its performance on the SGI Origin 2000. Our pre-
liminary test results demonstrate good rendering rates with a
moderate number of processors. But we observe surprisingly
poor processor scalability. We thus investigate how task par-
titioning and runtime memory management affect, in partic-
ular, the scalability of parallel rendering. We discover that
in terms of algorithmic complexity and programming effort
to attain the optimal performance on a shared memory ar-
chitecture it can be as challenging and demanding as on a
distributed-memory architecture.

Keywords: Distributed shared-memory, memory manage-
ment, multithreading, parallel rendering, performance eval-
uation, unstructured meshes, volume rendering

1 Introduction

Increasingly, 3-d unstructured meshes are used in many sci-
entific and engineering applications to model complex struc-
tures and phenomena to lower the simulation-time process-
ing and memory requirements. For large-scale problems,
massively parallel supercomputers are used to attain high
level of accuracy and reduce simulation time, but the sheer
size of the solution data generated by the large-scale sim-
ulations easily overwhelms scientists’ capability to analyze
and understand them. Appropriate visualization tools for
large-scale unstructured-grid data are therefore in pressing
need. Lacking appropriate data analysis and visualization
tools often forces scientist to reduce the solutions by coars-
ening which defeats the original purpose of performing the
high-resolution simulations.

In many cases feature extraction and data management
techniques can be used to solve the large-scale data visu-
alization problems, but distributing both the large amount
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of data and visualization calculations to a parallel computer
continues to be a reliable way allowing scientists to look at
their data at the highest possible resolution. Coupled with
other techniques, parallel rendering can also meet the de-
mand of time-critical visualization applications. In this pa-
per, we describe the design of a multi-threaded algorithm
for rendering three-dimensional unstructured-grid data, its
multithreaded implementation, and performance on the SGI
Origin 2000 (O2K) which is a distributed shared-memory
(DSM) system.

SGI describes the O2K as a scalable shared-memory pro-
cessor system that offers the benefits of both shared-memory
systems and distributed-memory systems. Two CPUs are
connected through a "hub" to a memory to form a "node".
Multiple nodes are linked in a hypercube configuration
through a set of routers. Each processor is a MIPS R10000.
Since memory is physically distributed, the memory access
time depends on the proximity of a CPU to the memory that
it accesses. A program must use the cache efficiently to
achieve good performance.

Our goal is to achieve the best rendering rates and paral-
lel efficiency possible on the O2K, and to compare the per-
formance with a message-passing code [10, 9] using MPI.
We use a small 16-processor O2K in our laboratory for code
development. Tests are performed on much larger systems
operated at the NASA Ames Research Center and the Los
Alamos National Laboratory using up to 120 processors with
a data set from an aerodynamic simulation.

2 Parallel Rendering Unstructured-
Grid Data

Unstructured meshes are used to model objects with complex
geometry by applying finer meshes only to regions requiring
high accuracy, both computing time and storage space can
be reduced. This adaptive approach results in computational
meshes containing data cells which are highly irregular in
both size and shape. The lack of a simple indexing scheme
for these complex grids makes visualization calculations on
such meshes very expensive.

Preprocessing is often used to derive, for example, con-
nectivity and/or visibility information for facilitating the ren-
dering calculations. Further improvement can be made by



using parallel and distributed rendering. However, the ir-
regularities in cell size and shape of unstructured-grid data
make load balancing particularly a challenging problem. The
development of parallel algorithms for rendering data on
unstructured-grid (or, more generally, on non-Cartesian grid)
has thus received a growing attention.

2.1 On Shared-Memory Computers

Williams [18] used an 8-processor SGI 4D/VGX to render
unstructured-grid data, and Uselton [16] experimented with
a ray-casting volume rendering code on an SGI Power Chal-
lenge by using up to 19 processors for curvilinear-grid data.
They all achieved very good parallel efficiency numbers.
Wilhelms, et al. [17] developed a hierarchical and paralleliz-
able volume rendering technique for non-Cartesian and mul-
tiple grids. This algorithm favors coarse-grain parallelism
for a shared-memory MIMD architecture.

Nieh and Levoy [11] designed a parallel volume render-
ing algorithm based on a task-queue image partitioning tech-
nique, and implemented it on the Stanford DASH. They
obtained nearly linear speedup using up to 48 processors.
Later, Lacroute [5] ported his shear-warp volume rendering
algorithm to DASH. While he obtained impressive rendering
rates, poor scalability was observed on DASH when using
up to 32 processors for that implementation. Both Nieh’s
and Lacroute’s renderers are for rendering regularly sampled
data.

A very thorough study on parallel shared-memory archi-
tectures using rendering applications was done by Palmer,
Totty and Taylor [13]. They studied memory hierarchy ef-
fects and their interaction with parallel partitioning and load
balancing on a 16-processor SGI Power Challenge by using
volume rendering applications. One frame per second can be
achieved for rendering a one-gigabyte MRI data set. How-
ever, the efficiency of the renderer beyond 16 processors is
unclear.

The most impressive results were reported by
Challinger [3]. for her work on the BBN TMC2000
(an MIMD distributed shared-memory architecture) using
up to 128 processors for rendering curvilinear data. As
high as 80-90% parallel efficiency was observed. Compared
to unstructured-grid data, parallelization of rendering
calculations for data on rectilinear or curvilinear grids is a
slightly easier problem because of the data layout and access
order can be determined straightforwardly to improve cache
performance.

2.2 On Distributed-Memory Computers

Most of the previous efforts on distributed-memory parallel
computers were targeted to utilizing a large number of pro-
cessors to solve large-scale data visualization problems. For
example, Palmer and Taylor [12] developed a distributed-
memory ray-casting volume renderer for unstructured grids
and demonstrated it on Intel’s 512-node Touchstone Delta

system. Their algorithm incorporated an adaptive screen-
space partitioning scheme designed to reduce data movement
caused by changes in the viewpoint.

To render unstructured-grid volume data, Ma [7] used a
graph-based partitioner to keep nearby cells together on the
same processor, providing good locality during the ray-cast
resampling process. The algorithm is somewhat clumsy to
use for postprocessing visualization applications because it
requires both a preprocessing step to derive cell-connectivity
information and a pre-partitioning step whenever the number
of processors changes.

Ma and Crockett [8] later developed a highly scalable al-
gorithm based on a static load balancing scheme coupled
with an asynchronous communication strategy which over-
laps the rendering calculations with transfer of image data.
This algorithm uses a cell projection method which removes
the need for preprocessing data to generate, say, cell con-
nectivity information. A low-cost parallel space partitioning
step is performed and the resulting partitioning tree is used
in the rendering step to restore locality which is lost in the
round-robin data distribution step. This optimization results
in more efficient image compositing and reducing runtime
memory requirements.

2.3 On Origin 2000

The rendering performance of Ma and Crockett’s algorithm
which uses message-passing communication is superior on
distributed-memory parallel computers like Intel Paragon,
IBM SP2 [10], and SGI Cray T3E [9]. Excellent scalability
over several hundreds of processors has been demonstrated.
When running the same renderer on the O2K, we observed
very poor scalability as soon as more than 16 processors
were used.

Figure 1 and 2 show the execution time components for
64 processors on the SGI/Cray T3E and on the O2K, respec-
tively. The disparity in performance on two very different
architectures is apparent. Specifically, when increasing the
number of processors used from 16 to 32 on O2K, parallel
efficiency drops from 84% to 26%. The test data set used
contains 567,863 tetrahedral cells. Although this dataset
is considered small, it helps reveal the communication and
overhead cost. A large data set would result in timing results
making the overhead time negligible.

We have not been able to completely identify the ex-
act cause of this significant performance degradation on the
O2K, but we suspect that poor memory management in-
hibits scalability. Notably, Figure 2 reveals certain linear
dependency which might have been a result of poor im-
plementation in system software. On the other hand, the
message-passing algorithm is highly asynchronous and in-
volves constantly sending many messages during the whole
course of the rendering calculations. It seems the asyn-
chronous processing implemented works against the O2K’s
share-memory processing. Our results are consistent with
the findings in [4, 2], which have motivated this work.
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Figure 1: Execution time components of the message-
passing code on SGI/Cray T3E using 64 processors.
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Figure 2: Execution time components of the message-
passing code on the O2K using 64 processors.

We are curious to see how a multi-threaded implementa-
tion of volume rendering for unstructured-grid data would
perform on the O2K. Our conjecture is that better render-
ing efficiency can be achieved on the O2K by carefully ex-
ploiting its distributed share-memory architecture. We have
learned from others quite different results. Both Lueke [6]
and Cavin [2] showed that high scalability on O2K seems to
be an unattainable goal for some application problems, but
Parker et al. [14] were able to demonstrate over 90% parallel
efficiency using up to 128 processors on the O2K for ray-
tracing rendering large-scale volume data. The scalability
the latter achieved proves the O2K a scalable parallel archi-
tecture. We, therefore, would like to verify with our own
experimental results using a different rendering algorithm..

Main 

Thread

Projector

Merger

Cell block

Segment buffer

Figure 3: A threaded rendering process.

3 Multi-threaded Rendering

Our multi-threaded rendering algorithm works as follows.
The renderer starts with a thread which is responsible for
reading data from disk, preprocessing the data, creating other
threads for doing the actual rendering calculations, and de-
livering the images. We call this starting thread the main
thread. There are two types of rendering threads: projec-
tors and mergers. Each projector thread retrieves a subset of
the data cells prepared by the main thread, scan-converts the
cells, stores the resulting ray segments to a buffer.

Each merger thread is responsible for an image area, col-
lecting ray segments contributing to that area, sorting, and
if possible merging the segments to derive the correspond-
ing pixel value. Rendering of a frame finishes when all cells
and segments have been processed. The main thread then
updates viewing parameters, and is ready to render the next
frame. Figure 3 gives a pictorial description of this rendering
algorithm.

3.1 Multi-threading on O2K

A thread is a light weight process and has its own sched-
uler. All threads in a process share the state of that pro-
cess. Proper coordination between threads is needed such
that one thread does not accidentally change data that an-
other thread is working on. Multi-threaded programming is
therefore mainly about careful synchronization and schedul-
ing of the threads. We has chosen Pthreads for portability.

On a multiprocessor computer like the O2K, multiple
threads can run in parallel on different processors to perform
different jobs. Highest efficiency is achieved by overlapping
I/O with computation, and by having multiple threads work
on different pieces of data concurrently.

Generally, using Pthreads on a distributed shared-memory
computer like the O2K, how data are distributed among pro-
cessors is not known. Explicit control of memory and threads
allocations, while not impossible, is not a portable capabil-



ity. Sondak and Perry [15] examines the performance of
a matrix transpose code on the O2K using different mem-
ory placement strategies. They show that the default thread
and memory placement always results in poor performance.
In our study, we have also verified that controlled memory
placement does improve the rendering efficiency.

3.2 Cell-Projection Rendering

We adopt the cell projection method because of its flexibil-
ity. Without losing generality, in this study we only consider
tetrahedral cells. Each cell thus has four faces and 4 ver-
tices. We also assume that the data value in a cell varies lin-
early. The cell-projection process scan-converts each of four
faces to an accumulation buffer, and each pair of projected
points form a segment. While each cell can be projected in-
dependent of other cells, merging all the resulting segments
requires a sorting of the segments in depth order. By using
Porter-Duff’soveroperator, merging (i.e. compositing) seg-
ments corresponds to the same pixel is equivalent to tracing
a ray through the collection of data cells. Note that the four
faces can be projected in any order, and the projection is al-
ways consistent.

3.3 Data Structures

Since the ray segments which contribute to a given pixel ar-
rive in unpredictable order, each ray segment must contain
not only a sample value and pixel coordinates, but also start-
ing and ending depth values which are used for sorting and
merging within the pixel’s ray segment list. For the types of
applications currently envisioned, we expect from 106 to 108

ray segments to be generated for each image; at 16 bytes
per segment, aggregate runtime memory requirements are
on the order of 107 to 109 bytes per frame. Clearly, ef-
ficient management of memory is essential to the viability
of our approach. Before we describe the memory manage-
ment method in Section 3.4, we first introduces the basic data
structures the renderer uses.

The data must be organized in a way that the projector
threads avoid competing for memory. The most important
data structures used by our algorithm include:

1. space partitioning tree

2. cell blocks

2. projector job queue

3. segment buffer

4. merger job queue

Before rendering begins, a preprocessing step performs par-
titions and produces a hierarchical representation of the data
space using a k-d tree [1]. We use a k-d tree because of its
ability to adapt to the structure of the data. The resulting k-
d tree is then used to guide the rendering step such that ray

projector
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buffersegment 
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Figure 4: Memory management is based on a pre-allocated
space, and job queues.

segments can be merged as soon as they are generated, and
the more ray segments can be merged early the lower run-
time memory requirements. We have chosen object-space
partitioning because it allows us to do view-independent op-
timization. As pointed out by Palmer, Totty and Taylor [13],
the image-space partitioning can produces cache thrashing
due to the lack of locality in accessing the volume data.

Each leaf of the space partitioning tree is a cell block
which contain a small number of cells in the same neighbor-
hood. The cell block is a job distribution unit. We make each
cell block self-contained to facilitate shared-memory pro-
cessing but overall memory requirements increase slightly
because a small portion of data are duplicated. This storage
overhead depends on the depth of the k-d tree. In practice,
for a six-, seven- or eight-level tree, the storage overhead is
about 0.3%, 1.6%, or 3.5%, respectively for our test data set.
This storage overhead is rather small and therefore should
not be a concern.

The raw data set contains an array of voxels and an ar-
ray of cells. Each cell consists of four ids to the voxel ar-
ray. Each element in the voxel array contains thex, y, and
z coordinates and data value(s) of the voxel. The cell block
packs the data by combining the original cell and voxel ar-
rays. The resulting savings compensates for the additional
storage space required by grouping cells into blocks.

Before projectors begin to work on the cell blocks, a
traversal of k-d tree according to the starting view position
orders the cell blocks and places them into a projector job
queue. Then each projector retrieves cell blocks from the
top of the queue. When the bottom of the queue is reached,
the projectors’ job is done. The use of a job queue simplifies



load balancing.
To scan-convert cells, each projector creates a segment

buffer for each merger. A segment buffer is simply an array
of segments produced by the projector for a specific image
area. When a segment buffer is full, the projector place the
content of the buffer to a merger job queue. Each merger
retrieves ray segment periodically from this queue. While
the size of the seqment buffer is presently determined exper-
imentally, we believe it can be adjusted according to runtime
rendering performance.

3.4 Memory Mangement

To efficiently maintain the buffers and queue used by the ren-
derer, good memory management is probably the most cru-
cial task. We must avoid frequent memory allocations and
deallocations, and must also improve locality. We have de-
veloped a dynamic mechanism which we callmemory-on-
demandto conserve memory and to improve memory local-
ity. This management method pre-allocates a memory space
and trys to reuse this space as much as possible.

The projector job queue is created by using the pre-
allocated space. Rather than re-creating the queue for every
frame, we found it is much more efficient to reuse the same
job queue. As a result, the k-d tree is traversed only once,
and the order of the cell blocks in the queue is fixed. Ren-
dering of consecutive frames starts from different ends of the
queue. This approach not only removes the need to re-insert
the cell blocks into the queue but also exploits data locality.

Each projector also obtains free space from the pre-
allocated space to set up a segment buffer for each merger.
When this buffer becomes full, the projector places the
pointer to this buffer to the corresponding merger’s job
queue. The projector then obtains another buffer space and
continues working on other cell blocks. The merger is busy
as long as its job queue is not empty. When the content
of a segment buffer in a merger job queue is processed, the
merger returns the buffer space to the free pool of spaces so
it can be reused. The use of a pre-allocated, shared space re-
moves the need to constantly allocate and de-allocate mem-
ory space. Figure 4 illustrates such an arrangement.

3.5 Synchronization and Termination

The key to efficient multi-threading is to avoid using global
variables. We cannot completely avoid using global vari-
ables due to the needed coordination between threads. As
soon as the projectors and mergers are created, the main
thread blocks and waits until a frame is finished. Each pro-
jector thread proceeds or blocks according to the content of
the projector job queue and its local segment buffer. The
same segment buffer is also used to coordinate between each
projector and each merger. All threads are synchronized to
start the rendering of the next frame, and are notified by the
main thread to terminate.

Figure 5: A close-up view of the wing and its attachment.

3.6 Experimental Results

For performance study, we used the same data set described
in Section 2.3 which contains about half a million tetrahedral
cells. The data set was obtained from simulation of flow over
an aircraft wing with an attachment.

All test results are based on the average time of render-
ing using ten different viewing directions. Two starting view
positions were used. One is a close-up view of the wing as
shown in Figure 5, and the other gives a view of the overall
domain as in Figure 6.

Figure 7 shows ideal speedup versus the measured
speedup numbers using one merger and up to 23 projectors
for the close-up view. Because of the use of merger(s), the
measured speedup numbers are calculated relatively to the
smallest configuration consisting of one merger and one pro-
jector. Comparing with a true sequential version would be
unfair and result in superlinear performance. However, with
this setting, using between four and 14 projectors, we still
obtain superlinear speedup numbers. This is due to good
cache coherence, a result of using our memory-on-demand
mechanism which exploits the memory locality. The scala-
bility decreases as we use more projectors. We thought it was
because a single merger cannot keep up with all the projec-
tors. Our further test results show that adding another merger
doesn’t help improve performance much. In fact, as shown
in Figure 8 when using a small number of processors (e.g. 1-
16) the overall rendering performance seems invariant of the
number of mergers used. We observe similar performance
numbers for the full-volume view.

Figure 9 displays the impact of segment buffer depth on
performance using twenty projectors and one merger. The
buffer size varies from a minimum of 256 up to 4096. Nor-



Figure 6: Full view of the volume.
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Figure 7: Speedup numbers when using one merger and up to
23 projectors; image size=400�400 pixels; segment buffer
size=4096; k-d tree level=7; merger queue size=1024.

mally one expects that buffer size increases, performance
will improve, since less synchronization is needed between
threads. However, using a buffer size too large can eliminate
the benefits as mergers becomes idle and runtime memory
requirement increases.

We have also studied how the object-space partitioning
would impact the rendering performance by experimenting
with partitioning levels (tree depth) from four to 14. As
shown in Figure 10, a 7- or 8-level partitioning, which is
equivalent to about 4,000 cells per partition, gives us the best
result.

Finally, Figure 11 shows parallel efficiency achieved with
four mergers. While we can improve the rendering per-
formance for the 24-processor case (24 projectors and four
mergers), we cannot control performance consistently be-
cause the rendering performance is sensitive to not only the
particular system configuration we use but also other jobs on
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Figure 8: Rendering time using 1-13 mergers; image
size=400�400 pixels; segment buffer size=1024; k-d tree
level=7; merger queue size=1024.
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Figure 9: Rendering time using different buffer sizes from
256 to 4096 segments; image size= 400�x400 pixels; 10
projectors and one merger; k-d tree level=7, merger queue
size=1024

the same O2K.
The best rendering rates we can achieve is 3.7 seconds for

an image size of 400�400 pixels using 16 processors, and
this number is quite comparable to the performance of the
message-passing code. Our further tests using up to 120 pro-
cessors show that , the rendering performance of using more
than 24 processors deteriorates very quickly. This poor scal-
ability we have observed on O2K for both codes provides
a clear indication of the unsuitability of object-space paral-
lelism for distributed shared-memory architecture.

3.7 Conclusions

Our current implementation allows us to achieve maximum
performance on our 16-processor O2K. The rendering rate
is about 150-200k tetrahedral cells per second, and parallel
efficiency is over 95%. Without the memory management
implemented, the renderer would become orders of magni-
tude slower, and could only solve a much smaller problem.

Unfortunately, the rendering performance deteriorates
quickly when more processors are used which prevents us
from utilizing the much larger O2Ks operated at other super-
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Figure 11: Parallel efficiency with four mergers; buffer
size=4096; k-d tree level=7; merger queue size=1024

computing facilities to either achieve interactive rendering
rates or visualize larger data sets. The scope of our study so
far is thus limited.

We believe highly scalable rendering of large
unstructured-grid volume data on the O2K can be real-
ized. To achieve our goal, we plan to:

� investigate a hybrid algorithm based mainly on image-
space parallelism,

� re-evaluate our buffering scheme,

� carefully exploit O2K’s memory hierarchy, and

� use a mix of message-passing and multi-threaded pro-
gramming for large processor sizes.

The programming effort could be as great as using MPI for
a pure message-passing approach.

Finally, the choice of parallelization and rendering param-
eters can also have a significant impact on performance but

the situation here is quite complex due to the interaction be-
tween these parameters. Thus guidelines for selecting opti-
mal communication parameters are far from obvious, and a
detailed analysis on the O2K as well as a different distributed
shared-memory architecture is also the subject of ongoing
investigation.
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