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 Content-based music analysis has attracted considerable attention due to the rapidly growing 

digital music market. A number of specific functionalities, such as the exact look-up of melodies 

from an existing database or classification of music into well-known genres, can now be 

executed on a large scale, and are even available as consumer services from several well-known 

social media and mobile phone companies. In spite of these advances, robust representations of 

music that allow efficient execution of tasks, seemingly simple to many humans, such as 

identifying a cover song, that is, a new recording of an old song, or breaking up a song into its 

constituent structural parts, are yet to be invented. Motivated by this challenge, we introduce a 

method for determining approximate structural sequence representations purely from the 

chromagram of songs without adopting any prior knowledge from musicology. Each song is 

represented by a sequence of states of an underlying Hidden Markov Model, where each state 

may represent a property of a song, such as the harmony, chord, or melody. Then, by adapting 
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different versions of the sequence alignment algorithms, the method is applied to the problems 

of: (i) Exploring and identifying repeating parts in a song; (ii) identifying cover songs; and (iii) 

extracting similar sections from two different songs. The proposed method has a number of 

advantages, including elimination of the unreliable beat estimation step and the capability to 

match parts of songs. The invariance of key transpositions among cover songs is achieved by 

cyclically rotating the chromatic domain of a chromagram. Our data-driven method is shown to 

be robust against the reordering, insertion, and deletion of sections of songs, and its performance 

is superior to that of other known methods for the cover song identification task. 
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1 Introduction 

The proliferation of the Internet has facilitated the acquisition of digital music. However, digital 

recordings, especially older recordings, are not always tagged with appropriate metadata. 

Therefore, content-based automatic music analysis, such as organizing songs into genres, music 

summarization, locating a specific song, or finding a cover version among thousands of songs, 

has attracted considerable attention in recent years. 

Various groups of researchers have focused on content-based automatic music analysis. 

Normally, automatic music analysis comprises two steps. The first is numerical representation of 

a musical property, such as timbre, pitch, and tempo, called a “feature.” Features can be based on 

either the time domain signals or the frequency domain spectrum. For example, features such as 

the root mean square (RMS) and the zero-crossing rate (ZCR) are based on the time domain 

signals, while information such as the mel-frequency cepstrum coefficients (MFCC) [1],  

chromagram [2], and key strength [3] rely on the frequency domain spectrum. Some of these 

features, such as MFCC, the chromagram, and the fluctuation pattern [4], are designed to 

simulate human perception. Algorithms are applied to an extracted feature or set of features to 

achieve the goals of the musical analysis. However, feature selection is crucial. If a suitable 

feature is not selected, the analysis results will not be efficient even if the most sophisticated 

algorithm is used. Some of the important features and their properties will be discussed in 

sections 2 and 3. 

More recently, Venkatachalam et al. [5] and Wells et al. [6], [7] achieved remarkable success in 

identifying exact song recordings from different sources. Using their method, only a short 
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section (around 15 s) of a query song is needed to achieve identification. In brief, the short 

section is divided into frames with some overlap. Signals above 11,025 Hz are filtered to avoid 

high frequency noise. For each frame, the volume of signals in the time domain is normalized by 

histogram equalization. Then, the discrete cosine transform (DCT) is used to partition the signals 

into 15 frequency bands. Finally, the mean and variance over the frames of each band are 

calculated to represent the fingerprint of a piece. The search by range reduction (SRR) technique 

is used as the search engine. SRR starts with the space containing all the fingerprints in the 

database at stage 0; at stage J, the search space is reduced to the distance between the first J 

components of the fingerprints in the database and the first J components of the query’s 

fingerprint smaller than reasonable constants. This process continues until the search space is 

small enough. The authors claimed that the false positive or false negative rate is less than 3.4%, 

regardless of whether the scale is large or small. 

Widely used in speech recognitions, MFCC is also used in automatic music analysis [4], 

including the areas of music similarity measurement [8][9][10], classification of genres [11], 

[12], and identification of artists [13], [14]. Williams and Ellis [15] claimed that MFCC can 

remove or hide the phonetically irrelevant aspects of the signal and may not be suitable for 

speech/ nonspeech discrimination. They used a neural network to estimate the posterior 

probability (PPF) of a feature, and calculated statistics such as the mean per-frame entropy and 

the average probability “dynamism.” They assumed that the audio signal is pre-segmented, and 

thus they were actually able to discriminate between the voice and music instead of segregating 

them. The lowest error rate of the method is 1.4%. Berenzweig, Logan, Ellis, and Whitman [8] 

tried to segment the music and the speech parts of FM signals using a hidden Markov model 

(HMM).  Many features are examined in their studies, such as cepstral coefficients, log-PPFs, 
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entropy, and so on. The lowest error rate that they achieved was 19%. The objective of both 

methods [8], [15] was to discriminate the speech and music parts of FM signals, and therefore, a 

phonetically relevant feature, such as the MFCC, was preferred.  

Zhang [16] studied the patterns of a feature associated with a musical property and classifying 

music pieces by tree structure. The tree structure and the features used at each stage are shown in 

Figure 1. A threshold is set for each branch. For example, Zhang claimed that the average ZCR 

curves of purely instrumental music should be smoother (without peaks) than the curves of vocal 

music, and the spectrogram of purely instrumental music does not contain many ripples. Hence, 

in this method, some statistics, such as mean and variance, are calculated; a threshold can be set 

for each branch. However, the performance of the system was not evaluated. Furthermore, the 

pattern of a spectrum in a real case may not be as clear as that shown in [16]. Finally, Zhang's 

paper gives us a good understanding about using the spectrogram for different types of music, 

but the method may not be practical.  
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Figure 1 Tree structure of Zhang’s method 

 

Kosina[17] classified 63 metal, 65 dance, and 61 classical pieces of music by utilizing MFCC, 

ZCR, energy, and beat in the K-nearest neighbor (KNN) algorithm. The reported accuracy rate 

was 86.24% for k = 4 and 84.12% for k = 3. Although the results were satisfactory, metal, dance, 

and classical music are highly dissimilar genres; the performance of the system is unknown if the 

selected genres are similar. Furthermore, Malheiro [18] applied a three-layer feed-forward neural 

network (FFNN) [19] to classify classical music (flute, piano, violin, choral, and opera) using the 

perception of amplitude, ZCR, spectral centroid, and uniformity of the spectrum. The accuracy 

of the classification of the flute, piano, and violin music with 20 neurons was about 85%, of 

choral and opera music with 25 neurons about 90%, and of all five genres with 20 neurons 
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around 64%. In addition, Li and Guo [20] applied a support vector machine to classify music. 

The features they used were (1) Perceptual feature sets: total spectrum power, subband powers, 

brightness, bandwidth, and pitch frequency, and (2) the cepstral feature vector, MFCC. The mean 

and variance of these features over the frames of a song were computed to represent the song. 

They reported that using the perceptual feature sets and MFCC with eight MFCC coefficients 

applying a support vector machine (SVM) yields the lowest error rate, which is less than 11%. 

They also reported that SVM is the best classification method among SVM, nearest neighbor 

(NN), 5-NN, and nearest center (NC).  

Most of the methods above constitute supervised learning. For unsupervised learning, the k-

means algorithm is simple and has been used in many research studies. However, choosing an 

unsuitable k may result in bad clustering. The fuzzy C-mean algorithm is similar to k-means; 

however, it gives the degree of belonging to a cluster instead of making a hard decision. 

However, setting a suitable C is also crucial to obtaining good results. Pampalk, Rauber, and 

Merkl [4] proposed a method to cluster songs by applying the fluctuation pattern (the rhythm 

pattern) in the self-organizing map (SOM). SOM is similar to the fuzzy c-means algorithm in 

that it does not make a hard decision, and hence, the relative similarity among songs can be read 

on the map. In section 3.3.4.3, instead of using the fluctuation pattern, different features or sets 

of features are examined to find the best feature or feature set to classify the genres.  

For automatic music summarization, or segmentation, Foote [21] proposed the checkerboard 

method based on a frame-by-frame self-similarity matrix that calculates the pairwise distance of 

the MFCCs between the frames of a song. The simplest checkerboard is a 2 × 2 unit kernel, 

which is [
1 −1
−1 1

]; a larger kernel can be obtained by using the Kronecker product of the 2 × 2 
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unit kernel with a matrix of one. The novelty scores are calculated by correlating a predefined 

checkerboard kernel with the similarity matrix sliding along the main diagonal. Thus, a novelty 

score measures the self- and cross-similarity of the past and future regions at a given time. A 

cutting point is at a moment with high self-similarity and low cross-similarity corresponding to a 

point with a local maximum novelty score. Foote and Cooper [22] tried to segment “Wild 

Honey” by U2 using MFCC and to cluster these segments by singular value decomposition 

(SVD). They showed a good agreement between manual and automatic segmentation of the 

song. However, in this method, it is not easy to determine what checkerboard size is suitable, 

since a larger checkerboard will result in many missing cutting points and a smaller 

checkerboard will result in many unnecessary cutting points. Another researcher, Logan[23], 

employed a fixed-state unsupervised HMM in a song’s MFCCs in order to explore the most 

memorable excerpt by finding the sections corresponding to the most frequently occurring state. 

A similar method was proposed by Aucouturier and Sandler [24]. The authors concluded that a 

better result is obtained by using MFCCs together with several features, such as linear prediction 

and discrete cepstrum. However, a priori knowledge of the number of HMM states is crucial in 

these methods. We propose a method that adopts the chromagram in section 4.1.5. Several other 

research groups [25]–[28] used the chromagram (pitch class profile) [29] to extract chords or 

keys, a method that demonstrated great promise for automatic music analysis. A chromagram 

captures the melody similarity and is less sensitive to timbre. Hence, our method focuses more 

on the similarity of the melody than do the other MFCC-based methods described above.  

Despite significant progress in the field of song identification by Venkatachalam et al. and Wells 

et al. [5]–[7], [30], a similar but not identical topic, cover song identification, still presents a 

challenge. A cover version is a new recording of an old song. Typically, the melody of the 
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original song is retained but other critical properties, such as the performing instruments, rhythm, 

and structure, may be altered. Hence, unlike song identification, which requires an exactly 

matching algorithm, cover song identification requires a robust matching algorithm. A method 

based on the correlation of the two songs’ beat-synchronous chromagram (BSC) [31] achieved 

the best performance in the cover song recognition task at the 2006 MIREX conference. To 

improve the system’s robustness against the variation of a cover version, we propose a method 

based on the hidden Markov model (HMM) and the local sequence alignment algorithms 

presented in section 4. Instead of calculating the cross-correlation of the BSCs [31] directly, we 

align the state sequences derived from the HMMs of chromagrams, which further improves the 

robustness of the models. Moreover, a local alignment algorithm may perform better than the 

cross-correlation of the entire songs, especially when the structure of the cover version is 

different from the query song owing to the reordering, insertion, and deletion of some parts. Due 

to allowing gaps in the sequence alignment method to alleviate the tempo variation, tempo or 

beat estimation is not required, and therefore, a constant hop chromagram (CHS) is utilized in 

our method; thus, the complexity of the system is reduced. Furthermore, because a local 

alignment algorithm is used, matching that relies on the Smith–Waterman alignment may be 

more appropriate than the Needleman–Wunsch–Sellers algorithm (global alignment) [32] or 

dynamic time wrapping [33], [34], especially when the input query consists of only parts of the 

song. 

In addition to cover song identification, “Songs that sound like other songs” [35] is also a 

fascinating area. A short section of a song might sound like that of another song, or a new song 

might be composed by connecting sections of several other songs with suitable key 
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transpositions. Though the local sequence alignment of fixed-state HMMs is still used to explore 

similar sections of two songs, a superior method, a state-splitting state (SSS) HMM, is proposed 

for the task.  

The HMM and sequence alignment algorithm are also used in Bello’s method [32]. However, 

our method, a fixed-state or SSS HMM, is entirely data-driven. More specifically, our method 

adopts k-means clustering to extract the initial conditions of an HMM, whereas the initial 

conditions of Bello’s method are given by prior knowledge of the musical chords [36], which 

may not be adequate for a wide variety of genres. Furthermore, in contrast to a predefined 

alignment score, the score in our method is based on the distance between the empirical mean of 

different states. Finally, knowledge of the beginning and ending points is necessary in the 

Needleman–Wunsch–Sellers algorithm used in Bello’s method [32], which limits its usefulness 

for some applications   

2 Features 

Audio signals are composed of many properties, such as amplitude, tempo, pitch, volume, and so 

on. The first step of automatic music analysis is to decide which property is most important for 

the analysis. A musical property can be transferred into a numerical representation called a 

feature. The features used in audio signal analysis are divided into categories: physical and 

perceptual. A physical feature is based on a statistical analysis of the signal’s properties, such as 

the ZCR, whereas a perceptual feature, such as MFCC, is designed to simulate human 

perception. Although humans can hear the detail of audio signals, it is sometimes not crucial for 
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a human to identify sounds. Stereo signals were therefore transferred into mono by averaging the 

two channels throughout this study. Some of the features are introduced in this section.   

2.1 Root-mean-square Energy (RMS) 

The volume of audio signals can be represented by the root mean square (RMS) energy. The 

RMS is computed by taking the root average of the square of the amplitude. Calculating the 

RMS energy of a human's voice is simple, and it is sometimes a good indication of a human’s 

mood. For example, the RMS energy value of one's voice is larger when one is happy and lower 

when one is unhappy:  

𝑥𝑟𝑚𝑠 = √
1

𝑛
∑𝑥𝑖

2

𝑛

𝑖=1

 

2.2 Zero–crossing Rate 

The ZCR is the number of zero crossings or sign changes in the time domain per interval. The 

ZCR relates to the fundamental frequency, since a sinusoidal signal will cross zero twice. 

However, in general, the tone of most audio signals is not pure. ZCR cannot completely 

represent all the information about the fundamental frequency since the partials at higher 

frequencies also cross zero in the time domain [37].  Due to the pronunciation of consonants, the 

ZCR curves show a number of significant peaks for a singing voice [16]. The ZCR curves are 

calculated as 

𝑍𝑛 =∑|𝑠𝑔𝑛[𝑥(𝑚)] − 𝑠𝑔𝑛[𝑥(𝑚 − 1)]|𝑤(𝑛 −𝑚),

𝑚
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𝑠𝑔𝑛[𝑥(𝑚)] = {
    1 𝑥(𝑛) ≥ 0

−1 𝑥(𝑛) ≤ 0
 

𝑤(𝑛) = {
1
2⁄      0 ≤ 𝑛 ≤ 𝑁 − 1

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

We will show that ZCR is effective for identification of instruments in section 3.3.4.3.2. 

2.3 Mel-frequency Cepstral Coefficient (MFCC) 

 

MFCCs are often used in speech or speaker recognition. They are also suitable for music 

information retrieval [1].    

MFCCs are derived as follows [17]: 

1. Take the short time Fourier transform of the signal and obtain the amplitude spectrum;   

2. Take the logarithm of the amplitude; 

3. Convert to the mel spectrum;  

4. Take the discrete cosine transform (DCT). 

The human auditory system’s response is linear in frequencies lower than 1 KHz and logarithmic 

in frequencies higher than 1 KHz. Hence, the mel spectrum is applied in step 3. In a nutshell, the 

mel spectrum is computed by multiplying the spectrum by each of the triangular mel weighting 

filters and integrating the result. DCT in step 4 approximates the Karhunen Loève transform (KL 

transform) when the samples’ correlation is high. Hence, DCT decorrelates the mel-frequency 

Spectrum 
Logarithm of the 

amplitude 

Mel-scale 

spectrum 
DCT MFCC 
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spectrum. Therefore, most of the information about the mel-frequency spectrum tends to be 

concentrated in a few low-frequency components of DCT.    

2.4  Fluctuation Pattern 

 

The rhythm pattern can be measured by the fluctuation pattern. Briefly, the fluctuation pattern is 

based on a spectrogram, but the frequency bands are modified according to a human’s 

perception, and then the amplitude is transferred into db scale. Finally, the FFT (fast Fourier 

transform) is applied again on the time domain of the human perception-based spectrogram. The 

detailed process is as follows.  

1. Divide the whole sequence of a song into sub-sequences of at least 2 s. Normally, a 

fluctuation pattern is measured every 6 s. 

2. The spectrum of a sub-sequence is computed using 23-ms Hanning windows with a 50% 

overlap. 

3. Terhardt outer-ear modeling is calculated, and the frequency is wrapped into 40 critical-

bands according to the Bark scale [38], which considers the fact that the resolution of a 

Spectrum 

Wrap Frequencies into 40 

Critical Bands  

(Terhardt Ear Model) 

Masking 

Effect 
db scale 

Modulation Frequency  

(FFT on Each Critical Bank) 

Weighted by the 

Fluctuation 

Strength 

Fluctuation 

pattern 
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human’s hearing in a frequency is different in different frequency ranges, as shown in 

Figure 2 . 

4. A masking effect is the occlusion of a quiet sound by a louder sound when both sounds 

occur simultaneously at similar frequencies. The pre-defined masking matrix, which 

takes the influence of the jth critical band on the ith critical band into consideration, is 

applied. Hence, the spectrum is spread across critical bands.  

5. The amplitudes are transformed into the dB scale. 

6. The FFT is computed on each critical bank for each 6-s sequence to obtain the 

modulation frequency 

7. A human’s hearing sensation is most sensitive to a modulation frequency (rhythm 

frequency) of around 4 Hz, and sensitivity gradually decreases until a modulation 

frequency of 15 Hz. Hence, the amplitude-modulation is weighted by the fluctuation 

strength and retains only 0 Hz to 10 Hz, as shown in Figure 3 . 
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Figure 2 Terhardt outer-ear model (from MA toolbox) 
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Figure 3 The fluctuation strength vs. the modulation frequency 

 

For each sub-sequence (6 s), a three-dimensional figure, as shown in Figure 4, is obtained. The y 

axis is the critical bands; higher channels or critical bands mean higher frequencies, but the 

frequencies of the critical bands are not linear. The x axis is the frequency of the rhythm from 0-

10 Hz, and the z axis, the color, is the strength of the fluctuation.  

The strength of the critical bands (y-axis) can be summed for each rhythm frequency (or 

modulation frequency) (x-axis) to obtain the summary fluctuation pattern for each sub-sequence 

(6 s). Hence, the dimension of the fluctuation pattern is reduced from a 3-D matrix to 2-D 

vectors, called the summary fluctuation pattern, which loses the information about the source of 
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the critical band of the rhythm. Figure 5 is the summary fluctuation pattern vs. time of a demo 

song. The x-axis is the time position. The y-axis is the rhythm frequency from 0 to 10 Hz. The 

color, or z-axis, is the rhythm strength.  

 

 

Figure 4: The first 44-s fluctuation pattern of the demo song 
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Figure 5: The summary fluctuation pattern of the demo song 

2.5 Unwrapped/Wrapped Chromagram 

2.5.1 Chromagram Estimation  

 

Figure 6 Shepard’s helix of pitch perception 

The human auditory systems’ perception of pitch is a function of tone height and chroma, and 

can be represented as a helix, as shown in Figure 6 [39]. The tone height characterizes the 

vertical dimension and the chroma characterizes the angular dimension. A semitone is defined as 
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𝑓1

𝑓2
= 2

1

12. There are 12 semitones (chroma), that is C, C#, D, D#, E, F, F#, G, G#, A, A#, within a 

chromatic octave. The tone height indicates to which octave a note belongs. Hence, the 

perception of two C notes with different tone heights will be different. An unwrapped 

chromagram distributes the energy along a different pitch and does not wrap the chroma with a 

different tone height, as shown in Figure 7 (a). On the other hand, a wrapped chromagram is 

composed of a 12-dimensional vector, which represents the relative intensity in each of 12 

semitones in a chromatic scale, as shown in Figure 7(b). Similar to the short-time Fourier 

transform (STFT) and MFCC, a short-time chromagram representation is available, as shown in 

Figure 8. 

The basic approach for obtaining a chromagram is as follows [40]: 

1. Calculate the constant Q spectrum of the input signal. 

- 𝑓𝑘 = (2
1

12)
𝑘

𝑓𝑚𝑖𝑛 is the kth spectral component; 

- Q is the "quality factor" defined as 𝑄 =
𝑓𝑘

𝛿𝑓𝑘
;  

- Window length for the kth bins  

𝑁[𝑘] =
𝑓𝑠

𝛿𝑓𝑘
=

𝑓𝑠

𝑓𝑘
𝑄    where 𝑓𝑠  is the sampling rate. 

- 𝑋𝐶𝑄[𝑘] =
1

𝑁[𝐾]
∑ 𝑤[𝑘, 𝑛]𝑥[𝑛]𝑒

−
𝑗2𝜋𝑄𝑛

𝑁[𝑘]𝑁[𝑘]−1
𝑛=0   where 𝑤[𝑘, 𝑛] is the window function 

2. Obtain chromagram vector : 

𝐶𝐻(𝑏) = ∑ |𝑋𝐶𝑄(𝑏 + 12𝑚)|
𝑀−1
𝑚=0   

where b is the chromagram bin index (1,2…12) and M is the number of octaves spanned in the 

constant Q spectrum 
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                                               (a)                                                                                           (b) 

Figure 7 Chromagrams: (a) Unwrapped chromagram; (b) Wrapped chromagram   

   
 

                                            (a)                                                                                            (b) 

Figure 8 Short-time chromagram: (a) Unwrapped chromagram; (b) Wrapped chromagram 

 

2.5.2 Key Transposition 

Human perception of pitch is less sensitive to the absolute pitch but more sensitive to the relative 

pitch. As a result, melodies in different keys can be perceived as being the same.  

Figure 9 shows the wrapped/unwrapped chromagram of a song. The pitch of the song is raised 4 

and 12 semitones without altering the tempo, using free software “Audacity.” The chromagrams 

when the pitch is raised 4 and 12 semitones are shown in Figure 10 and Figure 11, respectively. 

An octave is constructed of 12 semitones. Hence, raising the pitch of a song 12 semitones 
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changes the tone height but does not alter the position of the chroma, while raising the pitch 4 

semitones changes the position of the chroma. To make the comparisons shown in Figure 9, 

Figure 10 and Figure 11 easier to read, please pay attention to the root notes, defined as the notes 

with the maximum strength. In comparison to Figure 9, in Figure 10, the notes move up four 

positions. However, in Figure 11, the notes of the unwrapped chromagram still move up 12 

positions, as compared to Figure 9, while those of the wrapped chromagram remain the same. 

Therefore, it can be concluded that the wrapped chromagram ignores the octave information, 

while the unwrapped chromagram retains it. Hence, by cyclically rotating the chromatic domain 

of the wrapped chromagram, a key invariance in the wrapped chromagram among songs sung in 

different keys is achieved.  

  

(a)                                                            (b) 

Figure 9 Chromagram of the song:  (a) Wrapped chromagram; (b) Unwrapped chromagram 
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(a)                                                             (b) 

Figure 10 Chromagram of the song raising the pitch four semitones: (a) Wrapped chromagram; (b) Unwrapped 

chromagram 

 

  

(a)                                                             (b) 

Figure 11 Chromagram of the song by raising the pitch four semitones: (a) Wrapped chromagram; (b) Unwrapped 

chromagram 
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The key, which is a system of relationships between a series of pitches having a tonic, is an 

important feature in Western music. There are two key modes: major and minor. Hence, there are 

24 keys. A key profile is the chroma distribution of a key and has been established through 

experiments [2]. The key strength is calculated by the cross-correlation of the chromagram with 

the key profile, as shown in Figure 12. The dominant key of a piece is detected reliably if the 

maximum value of the key strength is larger than 0.5, while if the maximum value is less than 

0.5, the key of the piece is not well recognized by the method.    

 

Figure 12: Key strength 

 

C C# D D# E F F# G G# A A# B
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Key strength

tonal center

s
tr

e
n
g
th

 

 

maj

min

Spectrum Wrapped 

Chromagram 

Key Profile 

Key Strength 



22 

 

3 Music Feature Interpretation  

3.1 Self-similarity Matrix 

A self-similarity or similarity matrix is a non-parametric method to represent the structure of a 

song. A feature or a combination of features can be used to construct the similarity matrix. 

Basically, any pixel in the similarity matrix is the pairwise designed distance between two 

frames. Depending on the application, the distance can be the cosine, n-norm, or any properly 

designed distance.  

Suppose a song is segmented into N frames and the feature (𝑣) is a B-dimensional vector. The 

similarity matrix (𝑆) will be a 𝑁 × 𝑁 matrix. A pixel or element at position 𝑖, 𝑗 on the similarity 

matrix 𝑆(𝑖, 𝑗) is the distance 𝑑(𝑣𝑖 , 𝑣𝑗) of 𝑣𝑖 and 𝑣𝑗 , where 𝑣𝑖: 𝑅
𝐵 is the feature vector of the 

𝑖𝑡ℎframe and 𝑑: 𝑅𝐵 × 𝑅𝐵 → 𝑅 is the distance. Since 𝑑(𝑣𝑖 , 𝑣𝑗) = 𝑑(𝑣𝑗 , 𝑣𝑖), the similarity matrix 

is symmetric. Finally, if two sections within a song are similar in terms of a feature, a sub 

diagonal corresponding to the shorter distance between frames will be shown in the similarity 

matrix.   

3.2 Interpretation  

In order to identify which property is captured by a feature, we chose a Chinese song sung by a 

famous group, Lollipop. We cut the first 30 s of the song and replicated the sub-section twice at 

30 s and 60 s; hence, the total length of the demo song was about 90 s. The song does not have a 

strong bass. A self-similarity matrix was adopted to check a feature’s sensitivity to a property. If 

the feature is sensitive to the variation of a property, the distance between two similar sub-

sections is much shorter than between dissimilar sub-sections. Hence, a sub-diagonal structure is 
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obvious in the similarity matrix. In the demo track, since a 30 s sub-section is replicated at 30 s 

and 60 s, two subdiagonals beginning from 30 s and 60 s should be obvious in the similarity 

matrix, as shown in Figure 13, if the feature can detect a property’s variation well. The similarity 

matrix of the MFCC, key strength, wrapped and unwrapped chromagram, and RMS are shown in 

Figure 13. 

In Figure 13, the subdiagonals begin at 30 s and 60 s due to the replication. In addition, MFCC 

shows a clear edge at about 7 s, 37 s, and 67 s. After listening to the song carefully, we decided 

that this might be due to a sound generated by a crystal whose timbre is different from that of the 

rest of the song. Therefore, it may suggest that MFCC is a feature that is sensitive to the timbre 

variation.   

 

   (a)                                                                (b) 
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                                          (c)                                                                 (d)                                

Figure 13 The similarity matrix of (a) MFCC, (b) key strength, (c) wrapped chromagram, and (d) unwrapped 

chromagram  

3.2.1 Key Variation 

The pitch of the sub-section after 45 s of the demo track was raised by 4 or 12 semitones of the 

key using “Audacity” software in order to check whether a feature is sensitive to the pitch 

change. Again, 12 semitones make an octave. Hence, raising the pitch of a section 12 semitones 

changes the tone height but does not change the position of the chroma, while raising it by 4 

semitones does change the position of the chroma. Therefore, the sensitivity of the variation of 

the octave and chroma can be examined.   

The similarity matrices of MFCC, key strength, and wrapped/unwrapped chromagram are given 

in Figure 14. Due to clear edges at 45 s and the missing subdiagonals in the similarity matrix, all 

the four features can detect the variation of the chroma, but the MFCC is the least sensitive. As 

for octave variation, namely raising the pitch 12 semitones, the MFCC and unwrapped 

chromagram can detect it, but the key strength and wrapped chromagram cannot. Consequently, 

the wrapped chromagram and key strength ignore the octave information, but the unwrapped 

chromagram retains it. 
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MFCC raising the pitch 4 semitones                                 MFCC raising  the pitch 12 semitones 

 
   Key strength raising the pitch 4 semitones                      Key strength raising  the pitch 12 semitones 

 \ 

Wrapped chromagram raising the pitch 4 semitones      Wrapped chromagram raising the pitch 12 semitones 

 

 

 



26 

 

  

Unwrapped chromagram raising the pitch 4 semitones       Unwrapped chromagram raising  the pitch 12 semitones 

Figure 14: The similarity matrix when the pitch is raised 4 semitones and 12 semitones.  

 

3.2.2 Remove/Reduce Vocal Signals  

Normally, vocal signals tend to be balanced in the left and right channels of a stereo sound, but 

the background accompaniment is not. Hence, to remove the vocal signals, a track should be 

recoded to stereo. The simplest method is to subtract the left channel from the right or vice versa. 

However, in general, the assumption about the balance of the vocal signals between the two 

channels and the imbalance of the background accompaniment is not true. Hence, a more 

sophisticated method to remove vocal signals is to adopt a band stop filter to filter or suppress 

the signals of the human voice.  

In this study, the subtraction method was sufficient for our goal, and hence, we did not apply any 

filter. The vocal signals of the demo track after 45 s were removed by the subtraction method. 

Figure 15 shows the similarity matrices. All the features retain the sub-diagonals' structure at 30 

and 60 s.  Therefore, we may conclude that all the features are insensitive to the removal of the 

vocal signals. 
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          MFCC                                                                            Key strength 

 
        Wrapped chromagram                                            Unwrapped chromagram 

Figure 15: The similarity matrix of reducing vocal signals after 45 s of the demo track.  

 

3.2.3 Wahwah Effect 

We also ran an interesting effect, the Wahwah effect provided by Audacity, after 45 s of the 

demo track, in order to check if a feature that detects the change in a sound can be as sensitive as 

a human’s perception. In the manual of Audacity, it is stated that “[Wahwah] is using bandpass 

filter to create its sound. A low frequency oscillator is used to control the movement of the filter 

throughout the frequency spectrum. Adjust the phase of the left and right channels when given a 

stereo selection, so that the effect seems to travel across the speakers.” Although the two 

channels of the signals are transferred into a single channel by taking the average, the sound with 

the Wahwah effect is still completely different from that without it. The Wahwah effect was 
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applied on the demo track after 45 s and the results of the similarity matrixes are shown in Figure 

16. The results are similar to those when the vocal signals were reduced, showing that these 

features are not sensitive to the Wahwah effect. 

 
      MFCC                                                                           Key strength 

 
        Wrapped chromagram                                                      Unwrapped chromagram       

Figure 16 The similarity matrixes of the Wahwah effect after 45 s  

 

3.2.4 Tempo Variation 

The tempo of a recoded song can be changed without changing the pitch, using Audacity. The 

algorithm for increasing or decreasing the tempo of a recoded song without changing the pitch 

can be found in [41]. It is called the Overlap-add (OLA) algorithm. Briefly, a song is segmented 

into overlapping frames, for example, 30 ms with 50% overlap. To increase the tempo, some 

frames are removed or repositioned/realigned while keeping the STFT of the desired signals as 
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close as possible to the original or the envelope of the squeezed song as similar as possible to the 

envelope of the original by searching the nearby frames that are “maximally” similar to the 

removed one. 

𝑦(𝑛) =
∑ 𝑣(𝑛 − 𝐿𝑘 + ∆𝑘)𝑥(𝑛 + 𝜏

−1(𝐿𝑘) − 𝐿𝑘 + ∆𝑘)𝑘

∑ 𝑣(𝑛 − 𝐿𝑘 + ∆𝑘)𝑘
 

where 𝑣(𝑛)is the window function, 𝐿𝑘 is the window position, and ∆𝑘 is the tolerance shift 

factor. The numerator shows that the input signals are segmented into frames at 𝜏−1(𝐿𝑘) + ∆𝑘 

and repositioned 𝐿𝑘, and then added together to form the output signal. Instead of segmenting at 

exactly 𝜏−1(𝐿𝑘), shifting within ∆𝑘 is acceptable in order to obtain the maximal similarity. 

We increased the tempo 10% and 40% to examine the appearance of the similarity matrixes.  

Figure 17 shows that as the tempo increases, the slope of the subdiagonal due to the repeating 

sections will also change. Hence, the information about the tempo variation, without altering the 

timbre of a song, is kept in the time-domain scale regardless of the feature.    

 

MFCC 
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Key strength 

 
Wrapped chromagram 

 
Unwrapped chromagram 

Figure 17 Similarity matrix of increased tempo. Left: increase of 10% after 45 s; right: increase of 40% after 45 s 

To examine whether the fluctuation strength can really capture the rhythm, we used the same 

song sung by Lollipop as before, but kept only the first 30 s without replication.  

Figure 18 shows the figures of the fluctuation pattern as the tempo increases. As we expected, 

the dominant tempo moves from the 4 Hz to 5.7 Hz due to the faster rhythm.  
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 Figure 18 Fluctuation pattern: The tempo of the demo song is increased by up to 40% of the original tempo.  

 

A summary of the results in this section is shown in Table 1. 

Table 1 Summary of the features’ response to the tempo variation 

                      Feature 

Effect                 

MFCC Key strength Wrapped 

chromagram 

Unwrapped 

chromagram 

Raise 4 Semitones Not Sensitive Sensitive  Sensitive Sensitive 

Raise 12 Semitones Sensitive Not Sensitive  Not Sensitive Sensitive  
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Reduce Vocal Not Sensitive Not Sensitive Not Sensitive Not Sensitive 

Wahwah Not Sensitive Not Sensitive Not Sensitive Not Sensitive 

Increase Tempo Slope Change Slope Change Slope Change Slope Change 

 

3.3 Music Feature Analysis by Clustering  

3.3.1 K-means 

K-means is an algorithm for clustering M samples in to K groups where K <M. It minimizes the 

intra-cluster variance, that is, ∑ ∑ (𝑥𝑖 − 𝜇𝑖)
2

𝑥∈𝑆𝑖
𝐾
𝑖=1 , where there are K groups 𝑆𝑖 , 𝑖 = 1…𝐾, and 

𝜇𝑖 is the centroid  of the samples 𝑥𝑖 belonging to 𝑆𝑖. 

K-means clustering is sensitive to the number of clusters (K). We will show in section 3.3.4.1 

that k-means might not be a good method for clustering songs due to the difficulty of selecting 

the best K if the number of genres or clusters cannot be decided in advance.  

3.3.2 Fuzzy C-mean 

Fuzzy c-means is similar to k-means, but, instead of giving a hard decision of data belonging to a 

cluster, it gives a soft decision that is the degree of data belonging to each cluster. For each 

sample, 𝑥𝑖, there is a coefficient that gives the degree of the sample in the 𝑗𝑡ℎ cluster, say 𝑢𝑖𝑗.  

The goal of fuzzy c-means is to minimize the objective function 

𝐽𝑚 = ∑ ∑ 𝑢𝑖,𝑗
𝑚‖𝑥𝑖 − 𝑐𝑗   ‖

2𝐶
𝑗=1

𝑁
𝑖=1 , 

where m is a real number greater than 1, N is the number of data, and C is the number of clusters. 
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The center of a cluster is the means of all points, weighted by its degree of belonging to the 

cluster, which is 𝐶𝑗 =
∑ 𝑢𝑖𝑗

𝑚𝑥𝑖
𝑁
𝑖=1

∑ 𝑢𝑖𝑗
𝑚

𝑥
   

The degree of data 𝑥𝑖 in a cluster j is defined as 𝑢𝑖𝑗 =
1

∑ (
‖𝑥𝑖−𝑐𝑗‖

‖𝑥𝑖−𝑐𝑘‖
)

2
𝑚−1

𝐶
𝑘=1

 .  

The algorithm is designed to update 𝐶𝑗 and 𝑢𝑖𝑗 iteratively, such that 𝑚𝑎𝑥𝑖𝑗{𝑢𝑖𝑗
𝑘+1 − 𝑢𝑖𝑗

𝑘 } < 𝜀. 

When m is equal to 2, 𝑢𝑖𝑗 is the probability of sample 𝑥𝑖 in cluster j; otherwise, 𝑢𝑖𝑗 is 

proportional to the probability of sample 𝑥𝑖 in cluster j.   When m is close to 1, the cluster center 

closest to the point is given much more weight than the others, and the algorithm is similar to k-

means. 

3.3.3 Self-organizing Map (SOM) 

An SOM, which projects the high dimensional data onto a lower dimensional map, contains 

neurons represented by the weight vectors. The dimension of weight vector 𝒎 = [𝑚1…𝑚𝑑] is 

the same as the dimension of the feature vector 𝒙 = [𝑥1…𝑥𝑑]. The best-matching unit (BMU) is 

defined as the neuron closest to the feature vector, that is, ‖𝑥 −𝑚𝑐‖ = min
𝑖
‖𝑥 − 𝑚𝑖‖. SOM is 

similar to the k-means algorithm. However, not only is the best-matching weight vector updated 

but also the neighboring weight vectors are moved toward the feature vectors such that the 

neighboring neurons have similar weight vectors.   

The sequential training algorithm for the weight vector 𝑚𝑖 of unit 𝑖 is 

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝑥(𝑡) − 𝑚𝑖(𝑡)] 
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where 𝛼 is the time varying learning rate, and ℎ𝑐𝑖 is the time-varying neighborhood kernel. The 

neighborhood kernel is a non-increasing function of time. c and i represent the winner unit c and 

neighboring unit i. There are several different choices of neighborhood functions, for example, 

bubble, Gaussian, etc. However, in general, Gaussian is used [42]. The neighborhood function 

will shrink with time [19].   

The algorithm is  

1. Randomize the neurons or the weight vectors of the map; 

2. Select an input feature vector; 

3. Calculate the distance between the input vector and the weight vector for each neuron in 

the map. Then, find the BMU, that is, find the neuron among all neurons in the map 

having the shortest distance; 

4. Update the neighborhood of the BMU by moving them closer to the input vector 

𝑚𝑖(𝑡 + 1) = 𝑚𝑖(𝑡) + 𝛼(𝑡)ℎ𝑐𝑖(𝑡)[𝑥(𝑡) − 𝑚𝑖(𝑡)]; 

5. Repeat from step 2 until t reach the preset criteria.  

Normally, a clustering result of SOM is represented by a unified distance matrix (U-matrix). The 

U-matrix visualizes the distances between neighboring map units. A good cluster should have a 

valley structure, that is, a lower neighborhood-distance area surrounded by high neighborhood-

distance edges. However, when the data gathered at a region of the map can still form a cluster, 

even the high neighborhood-distance edge does not exist. In general, an area with larger values 

of the U-matrix indicates that the variation within a cluster is larger and vice versa.  
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The component plane shows the value (not distance) of one component (𝑥𝑖) from a feature vector 

𝑥 = [𝑥1…𝑥𝑑]  in each map unit. The component plane can imply the discriminability of a 

component related to the others in the feature vectors for an application.   

3.3.4 Results 

In the following subsections, 12 albums and more than 100 songs were prepared and used. The 

information of these songs, including the singer, player, and genre, is provided in  

 in the Appendix.  Every song was segmented into 0.5-s frames, and the mean and the variance 

of the features was calculated to represent a song.  

3.3.4.1 K-means 

Xu, Maddage, and Tian [43] claimed that the variance of MFCC 3 can distinguish between vocal 

and instrumental music. Since the k-means algorithm is sensitive to the choice of k, the ANOVA/ 

Tukey method was applied before k-means in an attempt to examine how these albums are 

distributed given the features’ statistics results of the songs.  

Figure 19 shows the multiple comparison of the variance of MFCC 3 at the 10% level. MFCC 3 

can roughly separate these albums into four groups. The first group includes Classical, 

Choirboys, Piano, and Violin. Except for Choirboys, the first group contains only instrumental 

music, but String is misclassified into the second group. The majority of the second group is 

music with vocals, including Sarah, Morrissey, Mariah, String, and Usher. The remaining albums 

are in the third and fourth groups.  

Hence, we assume that to cluster the vocal and instrumental music the best choice of the value of 

k is 4 for the variance of MFCC 3. Figure 20 shows the misclassification of the vocal and 
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instrumental music vs. the different choice of k using the variance of MFCC3 on k-means. When 

k is larger than 2, a cluster is defined as an instrumental music cluster when most of the songs in 

a group are instrumental music, and the vocal music in this group is set misclassified, and vice 

versa.  Although k should be set equal to 2 normally, to separate vocal from instrumental music, 

and this definition of misclassification might be problematic, the results still show the 

discriminability of the variance of MFCC 3 and suggest that it is not easy to determine the 

number of clusters, k, without any prior knowledge.  

According to the above, setting k = 4 is better than setting arbitrary k. In addition, the outcome of 

k-means is sometimes sensitive to the initial choice of the centroid. Therefore, 150 replications 

are required here.  The number of misclassified songs is 25 for k = 4 and the centroids of the k-

means are at 96.89, 319.23, 759.75, and 1395.12. Finally, the majority of misclassifications are 

for Choirboys.      
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Figure 19 Multiple comparison of the variance of MFCC 
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Figure 20 Misclassifications of the vocal and pure music vs. k 

Figure 21 shows the multiple comparison of variance of MFCC1 and MFCC2. The lower order 

of the MFCCs should contain more information about the mel spectrum due to the property of 

the DCT in the final step of MFCC. However, it is very difficult to tell from Figure 21 which 

properties MFCC1 or MFCC2 can discriminate. 
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Figure 21 Multiple comparison of variance of MFCC1 and MFCC2 

 

The multiple comparison of the mean ZCR in Figure 22(a) suggests that it discriminates between 

Symphony (labeled as Classical) melodies played by the Piano, and Violin well. Since the violin 

is a string instrument, it is reasonable that the mean ZCR cannot separate them well. 

Furthermore, the mean ZCR is not a suitable feature for separating vocal and instrumental music. 

In Figure 22 (b) only the multiple comparison of instrumental music and songs sung by 

Choirboys is shown.  The figure implies that the mean ZCR can discriminate between the 

instruments, including Choirboys.  Finally, the results of the k-means by setting the initial 

centroids at 500,700,1000, and 1300 for these selected albums show that ten songs are 

misclassified. The centroids are actually at 542.71, 789.2, 1082.3, and 1527.7. Almost all the 

misclassifications are of Violin and String, since the centroid of Violin and String (1527.7) is too 

high.   
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            (a) All albums                                              (b) Selected albums only 

Figure 22: Multiple comparison of the mean ZCR  

Figure 23 shows the multiple comparison of variance ZCR. A comparison of Figure 22 and 

Figure 23 shows that the discriminability of instruments is better when using the mean ZCR than 

when using the variance ZCR. 

 

Figure 23 Multiple comparison of the variance ZCR  

 

3.3.4.2 Fuzzy C-mean 

In this subsection, 77 songs and 7 albums given in Table 6 in the Appendix are analyzed. The 

features and their dimension are given in Table 2. 
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Table 2 The dimension of the features  

Feature Dimension  

Spectral Centroid Overall Standard Deviation 1 

Root Mean Square Overall Standard Deviation 1 

Zero Crossings Overall Standard Deviation 1 

MFCC Overall Standard Deviation 13 

Spectral Centroid Overall Average 1 

Root Mean Square Overall Average 1 

Zero Crossings Overall Average 1 

MFCC Overall Average 13 

 

Table 3 is the clustering result of fuzzy c-means with k = 6 and m = 2. The highest probability 

cluster (or hard decision) of each song is given in the “In cluster” column, which shows that  

cluster 1 tends to Violin, cluster 3 tends to Male vocal, cluster 2 tends to Female vocal,  cluster 4 

and cluster 6 tend to Symphony or Choirboys, and cluster 5 tends to Piano. In addition, some of 

the hard decisions of Sarah Brightman’s songs are in cluster 4, which tends to Symphony, but the 

probability is not as high as that of Symphony. The second highest probability of these songs 

(Sarah Brightman's) is in cluster 3, which corresponds to Male vocal. This may be because Sarah 

Brightman’s songs contain both vocals and background accompaniment similar to Symphony.   

Table 3 Clustering result of fuzzy c-means with k = 6 and m = 2 

Symphony 
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Song 

index 

1 2 3 4 5 6 7 8 9 10 11 

Cluster 1 
0.04

3 

0.01

48 

0.01

58 

0.04

59 

0.10

85 

0.04

88 

0.06

25 

0.04

79 

0.03

9 

0.03

36 

0.05

07 

Cluster 2 
0.03

71 

0.01

15 

0.01

19 

0.01

83 

0.03

26 

0.01

57 

0.03

99 

0.02

61 

0.01

99 

0.01

36 

0.04
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3.3.4.3 SOM 

In the following section, the analysis of 15 albums and 188 songs is described. The information 

of the albums is in Table 8 in the Appendix. Compared to Table 7, in Table 8, two jazz and one 

rap album are added.  

The results of clustering the songs by MFCC, ZCR, unwrapped chromagram, and fluctuation 

pattern are discussed in sections 3.3.4.3.1 to 3.3.4.3.4. The best feature set for clustering the 

songs is a combination of MFCC and ZCR as shown in section 3.3.4.4.  
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3.3.4.3.1 MFCCs 

Figure 24 and Figure 25 show the unified distance matrix (U-matrix) of the MFCC mean. The 

labels in Figure 24 and the numbers in Figure 25 are the albums’ abbreviations and the song 

indexes, respectively. Hence, Figure 24 shows the albums’ distribution on the map, whereas the 

distributions of the songs are shown in Figure 25. In Figure 24, the instrumental music and 

choirboys’ songs are congregated in the upper left. In addition, the songs of the violin and piano 

are not far apart. The genre of jazz gathers at the lower left. Classical and string songs are 

aggregated at the center. The songs sung by females tend to gather in the upper part of the U-

matrix, while those sung by males tend to gather in the lower part. Furthermore, the variation or 

the distance among the neurons is larger for the vocal than for the instrumental music. In 

addition, a clear edge is shown at the upper right of the U-matrix. This suggests that the MFCC 

mean may distinguish between vocal and instrumental music.      

The U-matrix of the MFCC variance is shown in Figure 26. In the figure, according to the 

distribution of the rap songs, the MFCC variance seems to have a better ability to classify the 

songs than the MFCC mean. The songs played by the piano and violin form a group. Choirboy’s 

songs gather together. Classical music is also congregated. The rap songs are also captured. 

Female 1 and 2 are at the lower left. Male 2 is at the lower right. Similarly, Male 1 and Female 4 

are gathered at the center, and so on. However, Figure 24, Figure 25, and Figure 26 show that 

MFCC seems to fail to identify the songs played by the piano and violin. Figure 27 and Figure 

28 are also the U-matrix of the MFCC mean and variance, respectively, but the size of the U-

matrix is reduced from 20 × 10 to 8 × 5 to show more clearly that it is not sufficiently accurate 

to distinguish the piano and violin songs. 
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The component planes of the MFCC variance are shown in Figure 29. The songs sung by 

females tend to have a higher value of the variance, and the instrumental music and songs sung 

by males tend to have a lower value.  
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Figure 24 𝟐𝟎 × 𝟏𝟎 U-matrix of the MFCC mean with the album labels 
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Figure 25 𝟐𝟎 × 𝟏𝟎 U-matrix of the MFCC mean with song index 
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Figure 26 U-matrix of the MFCC variance with the album labels 
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Figure 27 𝟖 × 𝟓 U-matrix of the MFCC mean with the album labels 
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Figure 28 8×5 U-matrix of the MFCC variance with the album labels 
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Figure 29 The component planes of the MFCC variance show that the songs sung by a female tend to have higher value of 

variance, but the instrumental music and songs sung by a male have a lower value. 
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3.3.4.3.2 Zero-Crossing Rate 

 The U-matrix of the mean ZCR of the instrumental music is shown in Figure 30. The songs of 

piano are at the upper left, the classical music is at the center, and the songs of the violin and 

string are distributed in the lower part of the figure. These results are coincident with the result in 

previous section: the mean ZCR is a suitable feature for identifying instruments. In addition, a 

comparison of the mean ZCR and the variance ZCR in Figure 31 shows that the mean ZCR 

clusters instrumental music better, especially in the case of classical music.  

 

Figure 30 U-matrix of the mean ZCR for albums of instrumental music  
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Figure 31 U-matrix of the ZCR variance for albums of instrumental music 

Figure 32 also shows the U-matrix of the mean ZCR, but the albums of Jazz 1 and Jazz 2 are 

included. The figure shows that the mean ZCR fails to cluster jazz music. Figure 33 shows the 

U-matrix with the song indexes on the map. Most of Jazz 2’s songs contain the sounds of a 

trumpet, and hence these results may suggest that the mean ZCR fails to identify the trumpet. 

Songs 131, 133, and 134 in Jazz 1 are played by a piano with some electrical instruments in the 
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background, and hence it is reasonable that they are mapped close to the piano. Songs 135 and 

136 in Jazz 1 contain more electrical instruments than songs 131, 133, and 134. The timbre of 

songs 131, 133, and 134 is different from that of songs 135 and 136, and song 138 in Jazz 1 

contains a small amount of vocals. Hence, they are far apart on the map. 

 

Figure 32 U-matrix of the mean ZCR including the album of instrumental music, Jazz 1, and Jazz 2 with the album labels 
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Figure 33 U-matrix of the mean ZCR including the album of instrumental music, Jazz 1, and Jazz 2 with the song index 

Figure 34 and Figure 35 show the U-matrix of the mean and the variance ZCR containing all the 

songs, respectively. When the database containing all the songs is used, it is not very obvious 

which properties the mean ZCR can identify.   
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Figure 34 U-matrix of the mean ZCR including all the albums with the album labels 
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U-matrix
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Figure 35 U-matrix of the variance ZCR including all the albums with the album labels 

Zero crossing variance

U-matrix
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3.3.4.3.3 Unwrapped Chromagram 

Figure 36 shows the 8 × 5 U-matrix of the mean unwrapped chromagram containing the vocal 

music. The songs sung by females are gathered at the left and the center; the rap songs are at the 

bottom and the songs sung by males are grouped at the upper and lower right.  

Figure 37 is the U-matrix of the mean unwrapped chromagram of the instrumental music. It 

shows that the unwrapped chromagram is a good feature for identifying the instruments and 

genres of the instrumental music.  

Figure 38  and Figure 39 are the U-matrix of the mean unwrapped chromagram of all the songs. 

The songs of the piano and Jazz 1 are distributed at the upper left; classical music and string and 

violin songs are at the upper right; the songs sung by a male are at the lower right; the songs sung 

by a female are at the lower left, and the rap songs are gathered at the bottom; however, the 

distributions of the songs of Jazz 2 are not well defined.  

Although the unwrapped chromagram is designed to represent notes or chroma, it still contains 

information about the pitch. Hence, is not surprising that the unwrapped chromagram has the 

ability to cluster the genres or instruments. 



62 

 

 

Figure 36 𝟖 × 𝟓 U-matrix of the mean unwrapped chromagram of vocal music 
Unwrapped Chromagram mean

U-matrix
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Figure 37 8×5 U-matrix of the mean unwrapped chromagram of instrumental music including Jazz 
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Figure 38  20×10 U-matrix of the mean unwrapped chromagram including all the songs Unwrapped Chromagram mean

U-matrix
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Figure 39 8 × 5 U-matrix of the mean unwrapped chromagram of the all songs 

Figure 40 is the variance unwrapped chromagram U-matrix of the vocal music. In Figure 40, it 

can be seen that rap songs are grouped at the lower left. Most of the songs sung by women are at 

the lower right and center of the map, while those sung by males are at the upper left.  
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In Figure 41, the variance of the unwrapped chromagram of instrumental music shows that it can 

be used to classify genres or instruments.  

The 20 × 10 U-matrix of the unwrapped chromagram of all the songs is shown in Figure 43. 

Roughly, the group of rap songs is at the lower left, the songs sung by females are at the lower 

right, those sung by males are at center left, and instrumental music is in the upper part of the 

map. The results can be read more easily by reducing the size of the U-matrix to 8 × 5, as in 

Figure 44.   

By comparing Figure 40 and Figure 42, one can see that the mean unwrapped chromagram has a 

better ability to separate songs sung by females and males, while the variance unwrapped 

chromagram separates the rap songs better. 
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Figure 40 : 20×10 U-matrix of the variance unwrapped chromagram of the vocal music  

 

 

U-matrix 

  

  

F3 
CB 
CB 
CB 
CB 
CB 
CB 

F3 

M1 

M1 

F1 
M1 

M1 

M2 

F4 
M3 

M2 

F4 

M1 
M3 

M3 

Rap  
Rap  

Rap  

CB 

F3 

F3 
M1 
M2 

M1 

F4 

F1 

F4 

Rap  

F1 

F3 

CB 
M2 
M3 

M1 
M2 

M1 

M2 

M2 

F4 

F4 

Rap  

Rap  
Rap  

Rap  
Rap  

CB 
CB 

M1 

M1 

F4 

M1 

M3 

F4 
M3 

Rap  

Rap  

M3 
Rap  

F3 

CB 
M2 

F4 
M2 

M3 

M3 

Rap  

F4 
Rap  

F1 
F2 

M1 
M1 

M3 

F3 

M2 

M3 

F4 

F2 

F4 

M3 

F4 

F3 

F1 
M1 

F3 

F2 

F2 

F2 

F1 

F4 

F3 

F2 

F1 

M3 

F1 

F1 

F1 

F1 

M3 

F1 

F2 

F2 

F1 

F2 

M2 

M3 

M3 
M3 

M3 

F3 

F1 
F2 
F2 

F1 
F2 

F1 

F1 

F2 

F1 
F2 

F1 
F1 
F1 



68 

 

 

 

Figure 41:  8×5 U-matrix of the variance unwrapped chromagram of the instrumental music 

U-matrix 
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Figure 42 8×5 U-matrix of the variance unwrapped chromagram of the vocal songs 
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Figure 43 20×10 U-matrix of the variance unwrapped chromagram of all songs 

U-matrix 
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Figure 44 8×5 U-matrix of the variance unwrapped chromagram of all the vocal songs 

3.3.4.3.4 Fluctuation pattern 

Although fluctuation patterns are used to evaluate rhythm, different genres might have different 

rhythmic properties. Hence, the clustering of songs according to the fluctuation pattern was also 
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examined, as suggested in [4]. Figure 45 and Figure 46 show the U-matrix of the mean and 

variance of the fluctuation pattern, and suggest that it can be used to discriminate between 

instrumental and vocal music. As compared with MFCC, the fluctuation pattern wraps the 

frequency domain into 40 critical bands in accordance with human perception. However, the KL 

transform of the final step of obtaining the MFCC preserves the most information about the 

frequency. As compared with the fluctuation pattern, the unwrapped chromagram has 70 

frequency bands, which is more than the fluctuation pattern has. Accordingly, MFCC and the 

unwrapped chromagram retain more frequency information than the fluctuation pattern. Hence, 

this may be the reason that the discriminability of the songs sung by females and males when the 

fluctuation pattern was adopted is not as good as when MFCC or the unwrapped chromagram 

was adopted. 
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Figure 45 8×5 U-matrix of the mean fluctuation pattern 
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Figure 46 8×5 U-matrix of the variance fluctuation pattern 

 

3.3.4.4 The combination of MFCC and ZCR  

The discriminability of the features is summarized in Table 4. In addition, the previous 

discussion shows that variance of MFCC classifies the albums well, except for those containing 
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piano and violin music, and the mean ZCR has a better ability to identify the instrument. Hence, 

the combination of the two features was evaluated for classifying the pieces of music using 

SOM. The results are shown in Figure 47 and Figure 48, which are 8 × 5 and 20 × 10 U-

matrices, respectively.  In Figure 47, it can be seen that the combination seems to separate these 

genres well, except for the songs of the piano and the choirboys. However, when the size of the 

U-matrix is increased to 20 × 10, the songs played by the piano and sung by choirboys are 

actually separated. Hence, we can conclude that a feature set in which MFCC and ZCR are 

combined outperforms a single feature.  

Table 4 The discriminability of the features is summarized 

.Feature Discriminability 

ZCR Instruments 

Variance of MFCCs Fails to classify the piano and violin 

Unwrapped chromagram: 

instrumental music 

Classifies instrumental music well, including jazz 

Unwrapped chromagram: 

vocal songs 

Mean separates female and male songs better, but 

variance separates rap better 

Unwrapped chromagram: 

 all albums  

Not good 
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Fluctuation pattern Does not separate songs sung by females and males 

as well  as MFCC 

MFCC+ZCR Best feature set for discriminate between the albums  
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Figure 47 8×5 U-matrix of MFCC variance and mean ZCR 
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Figure 48 20×10 U-matrix of MFCC variance +mean ZCR 
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4 Applications 

4.1 Structure of a Song 

A song might contain several parts, such as the introduction, bridge, or the chorus. A pop song 

normally repeats the bridge or the chorus parts many times. The goal of the structure analysis 

here is to extract a good recurring section to constitute the thumbnail of a song, i.e., to perform 

music summarization. Figure 49 (a), (b), and (c) are the chromagrams of the repeating sections of 

Annie Lennox’s “Don’t Let It Bring You Down” corresponding to the sections 0-57 s, 57-114 s, 

and 114 s-187 s. In other words, the sections 0 s-187 s can be broken into three similar 

subsections. However, a proper beginning and ending point are normally not easy to find. 

 

 

Figure 49 The chromagrams of the repeating sections of Annie Lennox’s “Don’t Let It Bring You Down.” Please pay 

attention to trends that dominate chromas, which are the notes with the maximum strength. 
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Inspired by the sequence alignment of biotechnology, we think we can use any alignment 

algorithm to find the repeating parts of a song. However, since the chromagram is composed of 

12-D chroma vectors, we need to convert the chromagram into a sequence of symbols or states. 

Each state can represent similar chroma vectors. In addition, we hope that by transferring similar 

chroma vectors into states, instead of comparing the chroma vectors directly, our method will be 

more robust against the variation of similar melodies. Finally, melodies are composed of a series 

of notes or chords. The note or chord that follows another is not arbitrary. Hence, this property 

makes HMM a good selection. 

4.1.1 Hidden Markov Model Estimation 

An HMM [44] consists of transition probabilities, emission probabilities, invisible hidden states, 

and observations. A state transition obeys the Markov property: given the present, the future does 

not depend on the past. Each state generates observations according to its emission probability. 

Given a set of observations, the parameters of an HMM, such as the state transition probabilities 

and the emission probabilities, can be derived by the Baum-Welch algorithm, which is a special 

case of the expectation-maximization algorithm. Conversely, given the HMM and the 

observations, the most likely state sequences can be obtained using the Viterbi algorithm.  

In our case, depending on the applications, a 5-12 state HMM is used. In our experience, for 

most applications, five states are sufficient to represent a song. However, if precise cutting points 

are needed, the number of states can be increased up to 12. The emission distribution follows a 

single independent Gaussian distribution. In addition, instead of using a supervised learning 

method, the initial conditions are given by the statistics results of the k-means clustering of the 
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chroma vectors with k equal to the number of states of an HMM, without any prior musical 

knowledge or training data. 

4.1.2 State-Splitting State Hidden Markov Model (SSS HMM) 

After the fixed-state step of the HMM described in section 4.1.1, we found that a five-state 

HMM state in our task can be further split into several states. For example, Figure 50 shows the 

chroma vectors when the state index is at state 1 in the sequence of the five-state HMM of The 

Beatles’ “Day Tripper,” which can be split into four sub-states, as shown in Figure 51. 

The procedure of the SSS HMM is summarized in Figure 52. After the HMM and the most likely 

state sequence of a song are obtained by the procedure described in section 4.1.1, the chroma 

vectors corresponding to each state are extracted, and then, the k-means clustering analysis is run 

for each state, with the number of clusters, k, defined as the following: 

1. The mean of a state’s chroma vectors is calculated to produce a mean vector. 

2. k is set to the number of local maxima of the mean vector that are above the average of 

the vector’s elements. 

3. Run the k-means analysis with k defined by step 2. If it fails to converge, then reduce k 

by 1. 

4. Check the number of elements in each cluster. If the number of elements is less than a 

predefined threshold, reduce k by 1 and return to step 3. This step ensures there are 

enough frames in each cluster so that the following retrained HMM will be more stable.  

After running the k-means analysis for each HMM state derived as in section 4.1.1, a new HMM 

of the song is trained with the number of states equal to the number of clusters defined by steps 

1–4 above. Furthermore, the initial conditions of the new HMM, such as the mean and variance, 
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are set according to the statistics results of the cluster. Finally, a new state sequence of the song 

is decoded using the Viterbi algorithm.  

 

 

Figure 50 The chroma vectors with state index 1 in the sequence of the 5-state HMM of The Beatles’ “Day Tripper” 
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Figure 51 The chroma vectors shown in Figure 50 can be split into the four sub-states by k-means 
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Figure 52 The method of State-Split-State HMM 

4.1.3 State Sequence Alignment 

After transferring the chromagram into the states or symbols of a sequence, the next goal is to 

extract similar sub-sequences within a sequence or among sequences. Hence, the Smith-

Waterman algorithm [45], a dynamic programming algorithm, is used to determine the optimal 

local alignment of two sequences with respect to the scoring matrix (W) and gap penalty (G). A 

similarity matrix (S) for the two sequences is built as 

S(𝑖, 𝑗) = max

{
 

 
𝑆(𝑖 − 1, 𝑗 − 1) +𝑊(𝑆𝑡𝑎𝑡𝑒𝑠𝑒𝑞1, 𝑆𝑡𝑎𝑡𝑒𝑠𝑒𝑞2)

𝑆(𝑖 − 1, 𝑗) − G

𝑆(𝑖, 𝑗 − 1) − G
0

, 

where 𝑊(𝑆𝑡𝑎𝑡𝑒𝑠𝑒𝑞1, 𝑆𝑡𝑎𝑡𝑒𝑠𝑒𝑞2) is the score between the states of sequence 1 and sequence 2, 

and G is the gap penalty   

When 𝑆 has been constructed, its negative components are set to 0. The optimal local-aligned 

section is obtained by backtracking from the largest component in S until the first 0 is 

encountered. 

The Smith-Waterman algorithm is often used to align amino acid, protein, or nucleotide 

sequences in biotechnology. Figure 53 shows an example of finding the optimal local alignment 

of the two amino acid sequences, “A A T G T” and “A T G A C.” Assume the score of a 

matched label is 1 and a miss-matched label is -1, and the gap penalty is -2. First, the elements of 

the first row and column are set to 0 in Figure 53(a). Then, the first labels of the two sequences 

are “A.” Hence, 𝑆(1,1) = max{

𝑆(0,0) + 1
𝑆(0,1) − 2
𝑆(1,0) − 2

0

= 1 as shown in Figure 53(b). Moreover, the second 
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label of the sequence “A A T G T” which is “A” is matched to the first label of the sequence “A 

T G A C”; therefore, 𝑆(1,2) = max{

𝑆(0,1) + 1 =    1
𝑆(0,2) − 2 = −1
𝑆(1,1) − 2 = −2

0

= 1 in Figure 53(c). Furthermore, the 

third label of the sequence “A A T G T,” which is “T,” is miss-matched to the first label of the 

sequence “A T G A C,” which is “A.” Hence, 𝑆(1,3) = max{

𝑆(0,2) − 1 = −1
𝑆(0,3) − 2 = −2
𝑆(1,2) − 2 = −1

0

= 0 in Figure 

53(d). The matrix (𝑆) can be filled by following the procedure, and the highest value in the 

matrix is 3. Hence, the optimal local alignment can be obtained by backtracking from the highest 

value cell, until the first cell with zero value is encountered in Figure 53(h). The optimal local 

alignment of the two sequences is “A T G.”  

    

                                       (a)                                                                     (b) 
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                                       (c)                                                                     (d)    

     

                                       (e)                                                                     (f)   

    

                                       (g)                                                                     (h)    
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Figure 53 An example of finding the optimal local alignment of the two amino acid sequences, “A A T G T” and “A T G A 

C” 

4.1.4 Score for the Local Alignment 

For each state of a song, the empirical mean over frames of the chroma vectors in the state is 

used to represent the state. The pairwise Euclidian distance (𝑃) between the states’ mean vectors 

are then calculated. In order to increase the score (W) of the aligned states and decrease the score 

of the misaligned states, the scoring matrix (W) is defined as 

𝑊 = 𝑑𝑖𝑎𝑔(1) −
𝑃

𝑚𝑎𝑥(𝑃)
 

Since the maximum score will be 1, the gap penalties from 0-1.3 are examined. 

The best performance is normally achieved when the gap penalty is set to 1.  

4.1.5 Method of Music Summarization 

The goal of music summarization is to obtain the most distinctive section by which a listener can 

easily identify the song. The excerpt is normally a recurring section. To extract a repeating 

section, as shown in Figure 54, the song’s sequence estimated from its own SSS HMM or 5-state 

HMM is used, and then, the local self-alignment is applied on its own state sequence. Of course, 

the perfect alignment from beginning to end always yields the highest score, whereas, due to 

local alignment of the Smith-Waterman algorithm, a section corresponding to a sub-optimal 

score, where the aligned sequences’ length is less than half the length of the whole song,  

generally constitutes replication segments that can be marked as the summary of the song. 
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Figure 54 Music summarization method. First, the chromagram of a song is extracted.  Then, the HMM model is trained 

using the initial condition according to the statistics results of k-means, or SSS HMM is trained as described in 3.1.2.  The 

most likely state sequence is decoded. Finally, the sequence is aligned to itself. The maximums score will be the whole 

alignment of the sequence. However, the sub-sequence corresponding to the suboptimal alignment score with the length of 

the sub-sequence less than half of the song is selected. 

 

4.1.6 Cover Song Identification  

A cover version is a new recording of an old song. Owing to the similar melodies of the cover 

version and the original song, our method can be applied to the task of cover song identification 

with some modifications.  For the purpose of comparing our findings with published results, the 

performance of the system was first evaluated using the 80 pairs of songs (160 different songs) 

specified in [46]. For each pair, one song was sampled as the query song and the other reserved 

as the reference candidate. There were 80 query songs in total, and for every query song there 

were 80 reference candidates in the database. One of the 80 reference candidates was the cover 

version of the query song. Our goal was to determine the correct cover version from the set of 

reference candidates for a query song. 
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As shown in Figure 55, in our method, an HMM is first trained for each reference song. Each 

HMM contains five hidden states. The chromagram of a song is used as the observed output of 

the HMM. The probability is assumed to be a single Gaussian distribution with a full covariance 

matrix. The initial means and the covariance of the probability for each state are estimated by the 

empirical means and covariance of the k-means clustering with k = 5. In order to stabilize the 

HMM, if the length of a chromagram does not exceed a threshold (1500 frames in this case), the 

chromagram will be replicated and padded at the end of the original chromagram. 

The chromagram of a query song is extracted and then cyclically shifted in the chromatic domain 

to capture the 12 key shifts. The set of the reference songs’ HMMs are then applied to the shifted 

chromagrams of a query song in order to estimate the state sequences of the query song 

corresponding to the set of HMMs. This gives 12 × 80 state sequences to be estimated for every 

query song. Finally, the Smith-Waterman sequence alignment algorithm is applied to all 12 × 80 

sequences to identify the correct reference for the query song. In consequence, a 12 × 80 

alignment score vector is obtained for each query song. The reference song with the largest 

alignment score is selected as the cover version of the query song.  

In general, the alignment of longer sequences tends to create a larger alignment score. Normally, 

the length of a pop song is about 4–5 min, and a portion of a song might repeat many times. 

Hence, the length of a query song’s sequence in our case is limited to 700 frames, that is, about 

175 s, to prevent the alignment algorithm from developing a score bias for longer sequences.  
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Figure 55 Method of cover song identification 

 

4.2 Extraction of Similar Melodies from Two Different Songs  

In cover song identification, the two members of a pair are expected to have similar melodies. 

However, while the melodies of two different songs may be diverse, the two songs may have a 

short segment that is similar. The goal of this part of our study was to extract these segments. 

Similarly to cover song identification in section 4.1.5, an HMM or a SSS HMM was trained and 

the sequence was estimated for one song (called song 1); the other song’s chromagram was 

rotated, and then the 12 sequences of the rotated chromagram, given song 1’s HMM, were 

obtained. Finally, the local alignment method was applied to align the sequences of the two 

songs. The start and end points of the alignment were recoded, and mp3 or wav files of the 

segments were extracted so that by listening to them we could evaluate the performance of our 

method. We selected a song on YouTube and some songs on the Internet specified in [35] as our 

test songs.  
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4.3 Results 

4.3.1 Data-Driven Chord Sequence Representation  

Bello [28] claims that the relative semitone of a chord should be (n, n+4, n+7) for the major triad 

and (n, n+3, n+7) for the minor triad, where n is the root note. Since our method is unsupervised, 

the states in different songs represent different properties of chroma vectors, and hence, a chroma 

vector corresponding to a state in different songs is not comparable. Therefore, for each song 

(𝑗 ∈ 1,2…160), a mean chroma vector (μ̃𝑖,𝑗) is calculated where 𝑖 is the state index (𝑖 ∈ 1,2…5)   

                                                             μ̃𝑖,𝑗 =
∑ 𝑣𝑘,𝑖,𝑗𝑘

𝑛
            

where 𝑣𝑘,𝑖,𝑗 is the chroma vector of frame 𝑘 at state 𝑖 of song j and n is the number of frames at 

the 𝑖𝑡ℎ state of the  𝑗𝑡ℎ song 

Consequently, there are five mean chroma vectors representing five states for each song. Since 

there are 160 songs in our database, 800 mean chroma vectors (μ̃𝑖,𝑗) represent the states of the 

160 songs. 

We further grouped these chroma vectors (μ̃𝑖,𝑗) into 12 groups (μ̃̃𝑖,𝑗,𝑐) according to the root note 

(𝑐) which has the maximum strength among the 12 chroma of a chroma vector, and then 

calculated the average (𝜇𝑐) for each group, that is, 

                                 𝜇𝑐 = 𝑚𝑒𝑎𝑛𝑖,𝑗(μ̃̃𝑖,𝑗,𝑐) where {c ∈ 1,2…12} 

Figure 56 and Figure 57 show the 𝜇𝑐 of the HMM  and SSS HMM method, respectively. In the 

figures, it can be seen that, although n+3 and n+4 are not very obvious, the chroma indices n and 

n+7 tend to have large values, which is coincident with the musical knowledge. These tendencies 



93 

 

are completely data-driven, without adopting any prior knowledge of music before training the 

HMMs. Thus, this property shows that an HMM state represents a chord instead of a harmonic. 

 

Figure 56 𝝁𝒄 of the fixed-state HMM. The chroma indices n and n+7 tend to have a larger strength, which is coincident 

with the musical knowledge of a chord. 

 

Figure 57 𝝁𝒄 of the SSS HMM. The chroma indices n and n+7 tend to have a larger strength, which is coincident with the 

musical knowledge of a chord. 
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In addition to examining the chromagram, we asked Szu-Ying Wang to listen carefully to the 

tracks of a state to verify which common musical property is captured by a state. Szu-Ying Wang 

is an assistant professor at the National Hsinchu University of Education who was awarded a 

doctorate in Musical Arts by the University of Maryland. We found that the representation of a 

musical property for a state differs from state to state and from song to song. For example, state 1 

of the Best of the Boomtown Rats’ “I don’t like Mondays” captures the glissando with E-e over 

three octaves, the melody with E-E-D-E, D-C by the piano and singer, and syncopation. The 

melody of state 2 modulates to a half step lower key with many G, F, D, and C notes. The 

sections in state 3 are flat, containing many lyrics with E-F-E-F. Most of the melody in state 4 is 

G-C-C-F and the register in the state is wider than in the other states. State 5 captures clapping 

C-B-A-G in a descending scale (bass line), the lyrics “Tell Me Why” with the melody E-D-C, 

and “I Don’t Like Mondays” with C-C-D-C-G-C. 

The other example, the Beatles’ “Day Tripper,” shows that state 1 covers the melody E-G-A-B-

E-D played by the electronic guitar. We feel that the tracks in state 1 repeat a motif many times. 

The melody in state 2 has a wider register than in state 1. State 3 captures C- E_flat- G. State 5 

captures the bass line notes of G-B-D-F, and the notes repeat many times. Finally, sometimes the 

harmony is captured, such as in state 1 of “A Whiter Shade of Pale.”  In a nutshell, the property 

captured by a state is still an open problem due to the unsupervised learning of our method. 

4.3.2 Music Summary 

The aim of automatic music summarization is to extract the most memorable portion of a song. 

Normally, the section of a pop song by which a listener can identify the song is repeated several 

times. The sub-optimal local self-alignment method is suitable for this task.  



95 

 

The self-alignment of the whole song always has the highest score. However, the section 

corresponding to the sub-optimal score, where the length of the aligned sequence is less than half 

of the whole song, is identified as a summary of the song. For example, Figure 58 shows the 

chromagram of Annie Lennox’s “Don’t Let It Bring You Down.” The white line in Figure 59 

represents the most likely state sequence derived from the HMM.  Applying the Smith-

Waterman algorithm in the state sequences indicates that section 0–111 s is aligned with section 

51–183 s, as shown in Figure 60, which shows the two state sequences of sections 0-111 s and 

51-183 s together, without applying the local alignment algorithm. The two sequences do not 

align well. However, if the local alignment algorithm is used and the gaps are inserted properly, 

as shown in Figure 61, the appearance of the two state sequences is similar. The representation of 

the alignment of the two state sequences is converted into the labels of amino acids in Figure 62. 

Listening to the overlap section in more detail, we found that the section from 51 s to 111 s is a 

replication of the sections from 0 s to 51 s and 111 s to 183 s. Owing to the gap insertion, the 

different lengths of these segments are reasonable. 

 

 

Figure 58 Chromagram of Annie Lennox’s “Don’t Let It Bring You Down” from 0 s to 200 s 
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Figure 59 Chromagram of Annie Lennox’s “Don’t Let It Bring You Down” from 0 s to 200 s. The white lines in the figure 

represent the most likely state sequence derived from the HMM 

 

Figure 60 Chromagram of the repeating sections of Annie Lennox’s “Don’t Let It Bring You Down” extracted using our 

algorithm. The white line in the figure represents the state sequence of the HMM. 
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Figure 61 State sequence of 0-111 s and 51-138 s sections without applying the Smith-Waterman algorithm and inserting 

gaps  

 

Figure 62 Aligned state sequence of the 0-111 s and 51-138 s sections applying the Smith-Waterman algorithm and 

inserting gaps 
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Figure 63 Convert the representation of  the alignment of the state sequence into the amino acid sequence. A vertical bar 

indicates that the two labels match and a horizontal bar among the sequences means a gap is inserted.  

 

Another example is Annie Lennox’s “A Whiter Shade of Pale.”  The fixed-state HMM shows 

that the section from 105 s to 289 s is a replication of the section from 3 s to 181 s, and by 

applying the SSS HMM method, the section from 7 s to 140 s is found to align with the section 

from 113 s to 248 s. The similarity of the chromagrams of the aligned sections is shown in 

Figure 64, in which the upper two figures correspond to the chromagram of the sub-sections 

extracted by fixed-state HMM, and the lower figures correspond to the sub-sections obtained by 

the SSS method. Both fixed-state HMM and SSS HMM capture the recurring parts well. 
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However, SSS HMM is preferred, as the sections derived from the state are more compact and 

have less overlap. 

 

Figure 64 Chromagrams of repeating sections’ of Annie Lennox’s “A Whiter Shade of Pale”: (a) 3 s–180 s and (b) 105 s–

290 s using fixed-state HMM; (c) 7 s–140 s and (d) 113 s–248 s using SSS HMM 

We found that the extracted repeating sections sometimes contain an overlap section. In general, 

there are two kinds of overlap, as shown in Figure 65 and Figure 67, in which section A and 

section B represent the aligned sections of the sub-optimal self-alignment. First, if the length of 

the overlap is short in Figure 65, subsections 1, 2, and 3 are aligned with subsections 3, 4, and 5, 

respectively, and subsection 3 is the overlap. Only subsections 1 and 2 are retained for music 

summarization owing to the similarity of subsections 1 and 3. Annie Lennox’s “A Whiter Shade 

of Pale” is used as an example; the chromagrams of each subsection are shown in Figure 66. 

When the length of the overlap is around half the length of the aligned sections, as in Figure 67, 

3                       (a)                 180 105                   (b)                290 

7                     (c)                  140 3                     (d)                 248 
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subsections 1, 2, and 3 are similar; hence, only subsection 1 has to be retained. Japan’s Quiet 

Life’s “All Tomorrow’s Parties” and Annie Lennox’s “Don’t Let It Bring You Down” are 

examples of such a case; the chromagrams of Annie Lennox’s “Don’t Let It Bring You Down” 

corresponding to the subsections 1, 2 and 3 in Figure 67 are shown in Figure 68. For more 

illustrations, please refer to [47]. 

 

 

 

Figure 65 Assume Section A is aligned with Section B and Subsection 3 is the overlap. 

The length of the overlap is short. Subsections 1, 2, and 3 are aligned with subsections 3, 4, and 5, respectively, and 

subsection 3 is the overlap. That subsection 1 of the section A is aligned with subsection 3 of section B and subsection 3 of 

section B and section A is the overlap implies that subsections 1 and 3 are similar. In addition, subsections 3 and 5 are 

similar due to subsection 3 of section A being aligned with subsection 5 of section B. Hence only subsections 1 and 2 are 

retained for music summarization owing to the similarity of subsections 1, 3, and 5. 
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Figure 66 (a), (b), (c), (d), and (e) Chromagrams of Annie Lennox’s “A Whiter Shade of Pale” corresponding to 

subsections 1, 2, 3, 4, and 5, respectively, in Figure 65 

 

  (a)   (b)   (c) 

  (d)   (e) 
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Figure 67 Assume Section A is aligned with Section B and subsection 3 is the overlap. 

The length of the overlap is around half the length of the aligned section. Similar to (a), we can conclude that subsections 

1, 2, and 3 are similar; hence, only subsection 1 has to be retained. 

 

Figure 68 (a), (b), and (c) Chromagrams of Annie Lennox’s “Don’t Let It Bring You Down,” corresponding to the 

subsections 1, 2, and 3 in Figure 67.  

4.3.3 Cover Song Identification 

To compare our results with published data, we evaluated our system’s performance using the 80 

pairs of song specified in [46]. In each pair, one song was selected as the reference song and the 

other reserved as a query song. In other words, the 160 songs were separated into two sets, 

namely a reference set and a query set. Each set contained 80 songs. For each query song, one of 

the songs in the reference set was the correct cover version of the query song. The purpose of the 

task was to identify the correct cover version from the reference candidates for every query song.  
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The fixed-state HMM method identified 41 out of 80 query songs (51.25%), giving a mean 

reciprocal rank (MRR) of 0.559 at a gap penalty of 1, and SSS HMM identified 40 out of 80 

query songs (50%) to give an MRR of 0.556 at a gap penalty of 0.5. The performance of the 

different methods is summarized in Table 5. The precision and recall data of our method, with 

the alignment score normalized such that the sum of the score vector for each query song is equal 

to 1, are shown in Figure 69. When the normalized score is above 0.028, the precision is about 

85%. In general, the sequence alignment methods perform better than Ellis' method [48]. Despite 

the similarity in the performance of the sequence-alignment methods, the complexity of using  

CHC is lower than that of using the BSC or SSS HMM method. In addition, the gap penalty of 

SSS HMM has to be set at a smaller value than that of fixed-state HMM. We may conclude that 

the SSS method is more sensitive to tempo variations. Therefore, local alignment using fixed-

state HMM is preferred for the task of identifying cover songs. 

Table 5 Performance of different methods in the cover song identification task 

Method Sequence Alignment Correlation 

CHC by 
HMM 

CHC by  
SSS HMM 

BSC BSC 

Precision 51.25% 50% 53.75% 38.75% 

MRR 0.559 0.556 0.57 0.44 
 

 



104 

 

 

Figure 69 Recall and precision of our method. When the normalized score is above 0.028, the precision is about 85%. 

 

4.3.4 Tolerance of Tempo Variations  

In order to investigate the effect of tempo variations in our method, 15 songs, such as The 

Beatles’ “We Can Work It Out,” were chosen. The tempo of these songs was then altered by up 

to ±20% of the original tempo using “Audacity” software [49]. Following the procedure depicted 

in Figure 55, an alignment score between the tempo-changed version and the original song was 

obtained. Figure 70 shows that the percentage of the 15 songs’ average score decreases as the 

tempo deviates from the original tempo at a gap penalty of 1. When the deviation is 0%, the song 

is self-aligning and always yields the highest score, and the gap penalty is set to 1. The more the 

tempo deviates from the original, the more the score decreases. When the tempo deviates to 

±20%, the scores decrease to 60% of the original. As we do not know the ground truth of how 

similar the tempo of a query song and its cover version is, the tolerance of the tempo variation 

between a query song and its cover version cannot be reported. However, the margin between the 
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average score of the correctly identified cover pairs and the average score of the misidentified 

songs is about 39%, as evaluated using Ellis’ database [46]. This may suggest that our method 

should have at least 5% tolerance to the tempo variation on average. 

 

Figure 70 Percentage of the decrease in the alignment score as the tempo deviates from the original tempo. 

 

4.3.5 Extraction of Similar Melodies from Two Songs 

Recently, a YouTube video called “Singsing Rabbit” [50] caught our attention. This song was 

composed by combining sections of ten songs flawlessly. In order to check whether our proposed 

methods can extract the similar melodies from the original ten songs and Singsing Rabbit, the 

chromagrams of all of the songs were extracted. To overcome the key variation, the 

chromagrams of the ten original songs were cyclically rotated and then the state sequences of the 

songs were decoded by the given HMM of Singsing Rabbit (which is the only trained HMM in 

this case). Finally, the state sequence of Singsing Rabbit was aligned with the state sequences of 

its ten constituent songs. The aligned parts were recoded for listening. Four and six songs were 
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identified correctly by fixed-state HMM and SSS HMM, respectively. We found that in 

“Singsing Rabbit” at least two sections taken from the original songs are short (one or two 

phrases), so that our method could not detect them. In addition, comparing the two HMM 

methods, the SSS HMM performs slightly better than the fixed-state HMM method. Finally, the 

start and end points of the correctly identified sections are more accurate using the SSS HMM 

than the fixed-state HMM method. 

In order to compare the two HMM methods in more detail, we made a new song by connecting 

segments from 23 songs. We selected a short segment, normally a phrase of around 5 s in length, 

from each of the 23 songs. These sections were then connected to make the new song. The HMM 

of the new song was trained; thus, the most likely state sequences of the new song and the 

original 23 songs were obtained. Finally, the sequence alignment method was applied to the new 

song and the 23 original songs to test the ability of our methods to capture the matched melodies 

of the new song and the original songs. Unfortunately, the fixed-state HMM method was unable 

to identify correctly any section of the original songs in the new song, whereas the SSS method 

could identify 14 out of the 23. 

Similar songs, unlike cover songs, are different songs with some sections that sound similar. The 

similar sections can be short. For example, the similarity between Coldplay’s “The Scientist” and 

Taylor Swift’s “Haunted” is limited to the introduction. Of the 26 pairs of similar songs listed on 

the “Sounds Just Like” website [35], 19 were selected as our test samples. Our SSS method was 

employed to extract the sections of these 19 pairs that resemble each other. The extracted 

sections were listened to carefully, and 15 of the 19 extracted sections were perceived to be 

similar. The four mismatched pairs are Green Day’s “Waiting” and Petula Clark’s “Downtown,” 
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REM’s “It’s the End of the World As We Know It” and Bob Dylan’s “Subterranean Homesick 

Blues,” Led Zeppelin’s “Babe I’m Gonna Leave You” and Chicago’s “25 or 6 to 4”, and 

Disney’s “A Spoonful of Sugar” and John Williams’ “The Imperial March” from the film The 

Empire Strikes Back. Although the author of the website claims these four pairs of songs sound 

similar, we believe that they are similar in terms only of atmosphere, not of melodies. An 

interesting result is worth mentioning. The similarity between The Beatles’ “Tomorrow Never 

Knows” and The Chemical Brothers’ “Let Forever Be” and between Fats Domino’s “I’m 

Walkin” and Will Smith’s “Switch” lies in the background drums, and the extracted excerpts are 

coincident with this property. 

5 Conclusions 

In this dissertation, we have described preliminary research on data-driven music chord-sequence 

analysis. We introduced some of the features used in content-based music analysis and showed 

that a combination of MFCC and ZCR is the best feature set for clustering different genres. We 

also presented a robust representation of music that is purely data-driven and utilizes melody 

(chromagram) as the basic feature. The representation is computed in a completely unsupervised 

manner allowing the data to dictate the nature of the “states” that are learned by HMM.  This 

allows us to capture what is important in a song, i.e., the states, and how they interplay over time, 

i.e., the sequence. Our representation allows us to use a “local” alignment/matching algorithm 

that enables us to perform approximate matching and compute the similarity of music.  We 

showed that for the cover song identification application our method performs better than the 

best state-of-the-art algorithm in the literature. We also presented two other applications where 

the “approximate matching” capability allows us to summarize a song or break up a song in 
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terms of well-known melodies. Future work can apply our method to different genres and use 

complementary features, such MFCC, to augment the capabilities of the chroma-based 

representation that we have used. 

 

6 Appendix 

Table 6 Songs used in the section of 3.3.4.2 

Symphony 

1 Herbert Von Karajan: Brahms Symphony No.1 - I Un poco sostenuto-

Allegro 

2 Herbert Von Karajan: Brahms Symphony No.1 - II Andante sostenuto 

3 Herbert Von Karajan: Brahms Symphony No.1 - III Un poco allegretto e 

grazioso 

4 Herbert Von Karajan: Brahms Symphony No.1 - IV Adagio-Allegro no 

troppo, ma con brio 

5 Herbert Von Karajan: Haydn Symphony No.103, Drumroll - I Adagio-

Allegro con spirito 

6 Herbert Von Karajan: Haydn Symphony No.103, Drumroll - II Andante piu 

tosto allegretto 

7 Herbert Von Karajan: Haydn Symphony No.103, Drumroll - III Menuetto 

8 Herbert Von Karajan: Haydn Symphony No.103, Drumroll - IV Finale 

Allegro con spirito 
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9 Herbert Von Karajan: Haydn Symphony No.104, London - I Adagio-

Allegro 

10 Herbert Von Karajan: Haydn Symphony No.104, London - II Andante 

11 Herbert Von Karajan: Haydn Symphony No.104, London - III Menuetto 

Allegretto 

Piano 

12 Robert Casadesus_A la maniere de...Borodine (Valse)[1913] 

13 Robert Casadesus_I. Modere 

14 Robert Casadesus_I. Noctuelles 

15 Robert Casadesus_I. Pavane de la Belle au bois dormant 

16 Robert Casadesus_II. Mouvement de Menuet 

17 Robert Casadesus_II. Oiseaux tristes 

18 Robert Casadesus_II. Petit Poucet 

19 Robert Casadesus_III. Anime 

20 Robert Casadesus_III. Une Barque sur l'ocean 

21 Robert Casadesus_IV. Alborada del gracioso 

22 Robert Casadesus_Pavane pour une infante defunte [1899] 

Violin 

23 Nicolo Paganini: 24 Caprices Op. 1 For Solo Violin No.1 In E 

24 Nicolo Paganini: 24 Caprices Op. 1 For Solo Violin No.2 In B Minor 

25 Nicolo Paganini: 24 Caprices Op. 1 For Solo Violin No.3 In E Minor 

26 Nicolo Paganini: 24 Caprices Op. 1 For Solo Violin No.4 In C Minor 
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27 Vanessa Mae: Partita No. 3 in E For Solo Violin BWV 1006 I. Preludio 

28 Vanessa Mae: Partita No. 3 i E For Solo Violin BWV 1006 II. Loure 

29 Vanessa Mae: Partita No. 3 in E For Solo Violin BWV 1006 III. Gavotte en 

Rondeu 

30 Vanessa Mae: Partita No. 3 in E For Solo Violin BWV 1006 IV. Menuet I 

31 Vanessa Mae: Partita No. 3 in E For Solo Violin BWV 1006 V. Menuet II 

32 Vanessa Mae: Partita No. 3 in E For Solo Violin BWV 1006 VI. Bourree 

33 Vanessa Mae: Partita No. 3 in E For Solo Violin BWV 1006 VII. Gigue 

Male 

34 Morrissey: All You Need Is Me 

35 Morrissey: Everyday Is Like Sunday 

36 Morrissey: First of the Gang to Die 

37 Morrissey: I Have Forgiven Jesus 

38 Morrissey: I Just Want to See the Boy Happy 

39 Morrissey: In the Future When All's Well 

40 Morrissey: Irish Blood, English Heart 

41 Morrissey: Let Me Kiss You 

42 Morrissey: Redondo Beach 

43 Morrissey: Suedehead 

44 Morrissey: That's How People Grow Up 

Female: 

45 Leona Lewis: A Moment Like This 
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46 Leona Lewis: Angel 

47 Leona Lewis: Better in Time 

48 Leona Lewis: Bleeding Love 

49 Leona Lewis: Footprints in the Sand 

50 Leona Lewis: Here I Am 

51 Leona Lewis: Homeless 

52 Leona Lewis: I Will Be 

53 Leona Lewis: I'm You 

54 Leona Lewis: Take A Bow 

55 Leona Lewis: The Best You Never Had 

Choirboys 

56 The Choirboys_Corpus Christi Carol 

57 The Choirboys_Danny Boy Carrickfergus 

58 The Choirboys_Do You Hear What I Hear 

59 The Choirboys_Ecce Homo 

60 The Choirboys_He Ain't Heavy, He's My Brother 

61 The Choirboys_In Paradisum 

62 The Choirboys_Panis Angelicus 

63 The Choirboys_Pie Jesu 

64 The Choirboys_Tears in Heaven 

65 The Choirboys_The Lord Bless You and Keep You 

66 The Choirboys_The Lord Is My Shepherd (Psalm 23)  
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Sarah Brightman 

67 Sarah Brightman_Attesa  

68 Sarah Brightman_Canto Della Terra (feat. Andrea Bocelli)  

69 Sarah Brightman_Chanson D'enfance 

70 Sarah Brightman_Heaven Is Here 

71 Sarah Brightman_Let It Rain  

72 Sarah Brightman_Pasion (feat. Fernando Lima)  

73 Sarah Brightman_Pie Jesu From Requiem 

74 Sarah Brightman_Schwere Traume 

75 Sarah Brightman_Storia Damore 

76 Sarah Brightman_Symphony 

77 Sarah Brightman_The Music of the Night 

 

Table 7 Songs used in the section of 3.3.4 

Index Abbreviation Singer or player Type  # of 

songs 

1 'Christina' Christina Aguilera Female Pop 21 

2 'Leona' Leona Lewis Female Pop 14 

3 'Classical' Herbert Von Karajan Symphony 11 

4 'Choirboys' The Choirboys Religious 11 

5 'Piano' Robert Pure music  12 
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6 'Sarah' Sarah Brightman Female  Pop & 

Classical 

11 

7 'Violin' Nicolo Paganini & 

Vanessa Mae 

Pure music 11 

8 'Morrissey' Morrissey Male Pop & rock  15 

9 'Daniel' Daniel Powter Male Pop 11 

10 'Mariah' Mariah Carey Female Pop 14 

11 ‘String’  String Essentials Pure music  7 

12 'Usher' Usher Male R&B 18 

 

Table 8 Songs used in the section of 3.3.4.3 

Index Abbr. Singer or 

player 

Type  Song index # of 

songs 

1 F1 Christina 

Aguilera 

Female Pop 1-21 21 

2 F2 Leona Lewis Female Pop 22-35 14 

3 F3 Sarah 

Brightman 

Female Pop & 

Classical 

36-46 11 

4 F4 Mariah Carey Female Pop 47-60 14 

5 CB The 

Choirboys 

Religious 61-71 11 

6 M1 Morrissey Male Pop & Rock  72-86 15 
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7 M2 Daniel 

Powter 

Male Pop 87-97 11 

8 M3 Usher Male R&B 98-115 18 

9 Rap Hurricane Male Rap 116-129 14 

10 Jaz1 Fourplay Jazz 130-138 9 

11 Jaz2 Sonny 

Rollins 

Jazz 139-147 9 

12 Cla Herbert Von 

Karajan 

Symphony 148-158 11 

13 Pia Robert Pure music  159-170 12 

14 Vio Nicolo 

Paganini & 

Vanessa Mae 

Pure music 171-181 11 

15 Str  String 

Essentials 

Pure music  182-188 7 

 

The features are extracted by MIRtoolbox from University of Jyväskylä.  

The SOM Toolbox by Esa Alhoniemi, Johan Himberg, Juha Parhankangas and Juha Vesanto is 

used. 
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