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RESEARCH ARTICLE
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Abstract
Abiotic stresses such as drought, heat or salinity are a major cause of yield loss worldwide.

Recent studies revealed that the acclimation of plants to a combination of different environ-

mental stresses is unique and cannot be directly deduced from studying the response of

plants to each of the different stresses applied individually. Here we report on the response

of Arabidopsis thaliana to a combination of salt and heat stress using transcriptome analy-

sis, physiological measurements and mutants deficient in abscisic acid, salicylic acid, jas-

monic acid or ethylene signaling. Arabidopsis plants were found to be more susceptible to a

combination of salt and heat stress compared to each of the different stresses applied indi-

vidually. The stress combination resulted in a higher ratio of Na+/K+ in leaves and caused

the enhanced expression of 699 transcripts unique to the stress combination. Interestingly,

many of the transcripts that specifically accumulated in plants in response to the salt and

heat stress combination were associated with the plant hormone abscisic acid. In accor-

dance with this finding, mutants deficient in abscisic acid metabolism and signaling were

found to be more susceptible to a combination of salt and heat stress than wild type plants.

Our study highlights the important role abscisic acid plays in the acclimation of plants to a

combination of two different abiotic stresses.

Introduction
The evolution of land plants was accompanied by the acquisition of acclimation and adaptation
mechanisms to fluctuating environmental conditions. In the last decade, multiple pathways
underlying the response of plants to abiotic stresses such as drought, salinity and heat were
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uncovered. The majority of these were studied in plants subjected to a single abiotic stress
applied under controlled condition. In nature, however, different stresses can occur simulta-
neously impacting plants in a manner that differs from that caused by a single stress condition
applied individually [1–5]. The transcriptome of plants grown under a combination of drought
and heat stress was shown for example to be different from that of plants subjected to drought
or heat stress applied independently [2, 6, 7]. A recent transcriptome analysis of Arabidopsis
thaliana plants subjected to several different abiotic and biotic stresses as single stresses, or in
combination, revealed that approximately 60% of the transcripts expressed under stress combi-
nations cannot be deduced from studying the single stresses comprising the stress combination
individually [8]. In addition, specific physiological and molecular responses of plants to differ-
ent combinations of abiotic and biotic stresses were identified [9–14]. These findings indicated
that some of the mechanisms required for the acclimation of plants to a combination of differ-
ent stresses are distinct from those required for acclimation to a single stress condition [2, 4, 5,
15].

Salinity and heat stress are a major cause of damage to agricultural crops worldwide [15,
16]. Salinity stress can cause Na+ toxicity that affects K+ uptake, and results in the impairment
of enzymatic activities as well as inhibition of metabolic pathways [17, 18]. Heat stress can
cause alterations in membrane fluidity that affect the function of membrane-bound ion trans-
porters [19–21]. Some of the plant responses to salinity and heat stress are regulated by abscisic
acid (ABA). Abscisic acid mediates stomatal closure to prevent water loss caused by osmotic
stress under high salt stress [22]. In contrast to salinity stress, ABA-dependent stomatal closure
might be disadvantageous for the acclimation of plants to heat stress because it could prevent
leaf cooling via transpiration. In addition to its role in stomatal responses, ABA was shown to
play an important role in the regulation of transcript expression during heat stress [23]. A
recent study demonstrated that hydrogen peroxide can enhance ABA-dependent expression of
heat shock protein 70 (HSP70) and enhance the tolerance of plants to heat stress [23]. In addi-
tion, temporal and spatial interactions of ABA with reactive oxygen species (ROS) signals (the
ROS wave) were shown to play a key role in the regulation of systemic acquired acclimation of
plants to heat stress [24, 25].

It was previously thought that the harmful effects of salinity stress could be accelerated
when this stress is combined with heat stress because enhanced transpiration could increase
uptake of salt into the upper parts of the plant [5, 26, 27]. A recent study demonstrated none-
theless that a combination of heat and salt stress had less harmful effects compared to salinity
alone in tomato [28]. It was proposed that accumulation of glycine betain and trehalose could
be a key process in the response of tomato to a combination of heat and salinity [28]. The accu-
mulation of these compounds under the stress combination was shown to be correlated with
the maintenance of a lower Na+/K+ ratio, higher cellular water content in cells and improved
photosynthetic performance compared to plants subjected to salinity stress alone [28].

Here we used transcriptomics, physiology and genetic analyses to study the response of Ara-
bidopsis thaliana to a combination of salinity and heat stress. Our study revealed that in con-
trast to tomato [28], Arabidopsis plants (ecotypes Colombia or Landsberg erecta) were more
susceptible to the combination of salt and heat stress than to each of the different stresses
applied individually. Interestingly, the stress combination caused a decrease in the level of K+

ions in leaves resulting in a higher ratio of Na+/K+ without altering the level of Na+ ions com-
pared to that observed in salt stress alone. Our RNA-Seq analysis revealed that the expression
of many transcripts in Arabidopsis was specifically altered in response to the stress combina-
tion (699 transcripts were significantly up regulated and 585 were significantly downregulated),
and that the expression of many of these transcripts was associated with the plant hormone
ABA. In support of this finding mutants deficient in ABA metabolism (aba1) and signaling
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(abi1) were found to be more susceptible to the stress combination than wild type plants. Our
study highlights the important role of ABA in the acclimation of plants to abiotic stress
combinations.

Materials and Methods

Plant material and growth conditions
Arabidopsis thaliana (cv Columbia) Col, sid2 [29], lox3 [30], ain1-1 [31],mbf1c [32], apx1 [24,
33], Ler (cv Landsberg erecta), aba1 and abi1 [34] were grown on soil mixture (MetroMix 200,
SUN GRO) in 240-cm2 inserts under controlled conditions: 21°C, 12-h light cycle, 100 μmol
m-2s-1, and relative humidity of 70% (E-30 AR-66, Percival Scientific) as described before [7].

Stress treatments
Two different stress treatments were used in this study: A 3 day treatment that was used to
study survival, growth, and chlorophyll content following stress combination, and a 1 h treat-
ment that was used to conduct RNA-Seq, qRT-PCR, and Na+ and K+ analysis following stress
combination. All treatments were performed in parallel. Salinity stress was imposed on 12-d-
old plants by adding 150mMNaCl to the nutrient solution [35] for 15–17 days. Heat stress was
applied by transferring 25-d-old plants grown in the presence or absence of salt stress to a
growth chamber with the following cycle; 06:00–09:00, 21°C; 09:00–17:00, 43°C; 17:00–09:00,
21°C. Plants were grown for a total of 3 days under these temperature conditions. The 12h light
period was imposed from 08:00 to 20:00. As shown in Figure A in S1 Fig, this treatment
resulted in a daily 1 h ramping of temperature from 20 to 43°C that was followed by a 7 h treat-
ment at 43°C and a 1 h decline of temperature from 43 to 20°C. Following the 3 day stress cycle
plants were recovered under controlled conditions for 7 days and survival rate, growth parame-
ters, and chlorophyll concentration were scored. Because we were not able to observe differ-
ences in growth parameters between control, heat, salinity or the stress combination
immediately after the stress treatment, these parameters were scored following the 7-day recov-
ery. For plant survival measurements, plants were scored as survived if their meristem and the
3 newest leaves were green after the 7 day recovery period.

For RNA-Seq, qRT-PCR, and Na+ and K+ analyses, 25-d-old plants grown in the presence
or absence of salinity stress as described above were transferred to a growth chamber set for
44°C, incubated for 1h and sampled. All plants, i.e. salt-stressed plants, plants subjected to heat
stress without salt, salt- and heat-stressed plants, and control plants kept at 21°C were sampled
at the same time for analysis. As shown in Figure B S1 Fig, this treatment resulted in a 30 min
ramping of temperature from 20 to 43°C that was followed by a 30 min treatment at 42.5°C. A
portable USB datalogger (Model OM-EL-USB-2-LCD-PLUS, OMEGA Engineering, INC.,
Stamford, Connecticut, USA) was used to measure growth chamber internal temperature and
humidity parameters.

Molecular and physiological analyses
Total chlorophyll was determined according to [36]. The expression of several transcripts was
examined by quantitative real-time PCR [37] using the StepOnePlus real-time PCR system
(Applied Biosystems). The quantitative PCR data were analyzed with StepOnePlus software
v2.0.1 (Applied Biosystems). Threshold cycle values for genes encoding ABA response protein,
Glyoxylase 17, RbohD, NCED3, CAT2 and Cor78 were calculated with the cycle threshold of
EF1-a as an internal control. Primer pairs used for amplifications are shown in S16 Table
online.

Salt and Heat Stress Combination
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LA-ICP-MS analysis
For elemental analysis of Na and K, leaves were divided into five sections from the tip to the
base, where the leaf and stem meet. Laser ablation-inductively coupled plasma-mass spectrom-
etry analysis (LA-ICP-MS) was performed using an in-house Peltier cooled ablation cell, as
described before [38], constructed for use with an UP-213 laser system (NewWave Research,
Fremont, CA) coupled to a Bruker, (formerly Varian 820MS) quadrupole ICP-MS to analyze
23Na and 39K ions within the Arabidopsis leaves. A whole, frozen, Arabidopsis leaf was placed
on a square glass cover slip (No.1, 22mm x 22mm, Corning, Corning, NY). The cover slip was
placed directly atop the Peltier cooling device of the ablation cell, inserted into the laser abla-
tion chamber, and the cell was then purged with He gas. The leaf was then located and brought
into focus using the motorized stage and visualized with a CCD camera. Once in focus, two
straight-line continuous raster patterns were created for each of the five leaf sections, one to
the left of center and one to the right of center, for a total of ten ablations per leaf. The laser set-
tings for each raster consisted of a 10s laser warm-up followed by laser ablation with the follow-
ing settings: laser spot size of 100 μm, a 150 μm raster spacing, scan rate of 100 μm/s, 10Hz
repetition rate, and a laser output of 30%.

RNA-Seq
For RNA-Seq analysis, three independent biological replicates, each composed of leaves pooled
from at least 20 different plants grown as described in “Stress treatment”, were used per experi-
mental condition. Total RNA was isolated and purified as described previously [24] and RNA--
Seq analysis was conducted using an Illumina HiSeq2000 at the University of Wisconsin-
Madison Biotechnology Gene Expression Center (http://www.biotech.wisc.edu/services/gec).
GO annotations of the transcripts identified by our RNA-seq analyses were obtained from
TAIR (https://www.arabidopsis.org/tools/bulk/go/index.jsp). RNA-Seq data was deposited in
NCBI GEO repository under the accession/reference number GSE72806.

Bioinformatics analysis
GO annotations of the transcripts identified by RNA-Seq analyses were obtained from The
Bio-Analytic Resource for Plant Biology (http://bar.utoronto.ca/). The overlap between tran-
scripts up-regulated in leaves in response to short-term high light exposure and transcripts up-
regulated in response to ABA, ethylene (ACC), brassinolide (BL), cytokinin (CK), gibberellin
(GA), auxin (IAA), MJ, SA, H2O2, O2

- or 1O2 [39–43], or in response to different abiotic
stresses [7, 8, 44–52] was determined as previously described [33, 37].

Statistical analysis
We performed next generation RNA sequencing (RNA-Seq) for differential expression profil-
ing and characterization of transcript processing events. Three biological replicates were
obtained as described above. Single-end Illumina sequencing generated on average 14 million
reads per sample, with each sequence read of length 50 nucleotides. We utilized the services of
frequently used, publicly available RNA-Seq analysis software, namely, Bowtie [53], Tophat
[54] and Cufflinks [55], for alignment of single-end reads onto the reference genome, parsing
the alignment to infer the exon-exon splice junctions, and performing the differential expres-
sion analysis of annotated genes. Pre-alignment filtering of the Illumina data was performed
with Tophat and Bowtie programs that perform pre-alignment filtering. Only clean reads were
kept for further downstream analysis. TAIR9 genome-build, Bowtie version 0.12.8.0, Samtools
version 0.1.18.0; TopHat run version 2.0.4 and Cufflinks version 2.0.2 were used using default
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parameter settings (program-author-provided). Transcripts expressing differentially in two (or
more) conditions were identified by examining the difference in their abundance under the
two conditions. The abundance of a transcript was measured in terms of “Fragments Per Kilo-
base of transcript per Million fragments mapped” (FPKM), normalized for the transcript
length and total number of cDNA fragments for a sample replicate. The difference in expres-
sion was obtained as the log of fold change in abundance between the two conditions. Statistical
significance test for differential expression of each transcript was performed based on a nega-
tive binomial model estimated from the data [55]. The fold change of genes with multiple iso-
forms was assessed by summing up the FPKMs for all isoforms of a gene and then measuring
the difference between the two conditions [55]. Although this type of analysis excludes the
effects of differential splicing, it provides a measure for differential expression. Other statistical
analyses were performed by one-tailed Student’s t-test as previously described [56]. Results are
presented as the Mean ± SD or SE (� P<0.05; �� P<0.01).

Results

Growth and survival of Arabidopsis plants subjected to a combination of
salinity and heat stresses
Wemeasured growth and physiological parameters of Arabidopsis (Col) subjected to salinity,
heat stress and a combination of salinity and heat stress (Figs 1 and 2). The three stress treat-
ments resulted in a significant decrease in both shoot fresh and dry weight as well as rosette
diameter, with the largest decrease caused by the stress combination (Fig 1). Although 100% of
plants were able to survive salinity or heat stress applied individually, only about 40% of plants
were found to survive the stress combination. In addition, leaf chlorophyll content was signifi-
cantly decreased under both heat stress and a combination of salinity and heat stress, but not
under salinity alone, with the largest decrease observed under the heat and salinity stress com-
bination (Fig 1).

Na+ and K+ contents in plants grown under salinity, heat and a
combination of salinity and heat
Na+ and K+ concentrations were measured in leaves of Arabidopsis plants subjected to salinity,
heat and a combination of salinity and heat stresses (Fig 2). As expected, compared with plants
grown under controlled conditions, Na+ concentration was approximately 200% higher in
plants subjected to salinity. The K+ concentration in salt-treated plants was also elevated, but
only by 60% compared to control. In heat-treated plants, both the Na+ and K+ contents were
reduced slightly compared to control. In plants grown under a combination of salinity and
heat stress, the Na+ concentration increased to almost the same level as in plants subjected to
salinity alone, however the K+ concentration was significantly reduced compared to the K+

content of salt-treated plants. These changes in Na+ and K+ contents resulted in a pronounced
increase in the Na+/K+ ratio of plants grown under a combination of heat and salinity stress.

Transcriptomic analysis of plants subjected to salinity, heat and a
combination of salinity and heat stress
To examine global changes in the transcriptome of Arabidopsis leaves subjected to salinity,
heat stress and their combination, we performed RNA-Seq analysis (Fig 3A and S1–S14
Tables). As shown in Fig 3A, 50 transcripts were common between the 164 transcripts signifi-
cantly up-regulated by salinity and the 3981 transcripts up-regulated by heat stress. An overlap
of 552 transcripts was observed between the 794 and 4870 transcripts that were significantly

Salt and Heat Stress Combination
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Fig 1. Acclimation of Arabidopsis thaliana ecotype Col plants to salt, heat and a combination of salt and heat stress. (A) Growth parameters,
chlorophyll content and survival of plants subjected to salt, heat and a combination of salt and heat stress. (B) Representative images of plants subjected to
the different stresses. * or **, Student’s t test significant at *P < 0.05 or **P < 0.01 compared to control (n = 30). Error bars represent SD.

doi:10.1371/journal.pone.0147625.g001
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down-regulated by salinity or heat stress, respectively. Compared to non-stressed plants, the
steady-state level of 4009 transcripts was up-regulated and 4975 transcripts were down-regu-
lated by the combination of salinity and heat stress. Out of the 4009 up-regulated transcripts,
77 were also up-regulated by salinity. In contrast, 3282 of the 4009 up-regulated transcripts
were common to both the stress combination and the heat stress treatment. A similar high
number of down-regulated transcripts (4326) were common between the heat stress and the
stress combination. In addition to shared transcripts differentially expressed during salinity or
heat stress, the combination of salinity and heat stress contained 699 transcripts specifically
up-regulated, and a further 585 transcripts specifically down-regulated, in response to the
stress combination (Fig 3A). The transcriptome of plants subjected to a combination of salinity
and heat stress was therefore significantly different from that of plants subjected to heat or salt
stress, harboring many transcripts that specifically responded to the stress combination.

To corroborate the transcriptomics results obtained by RNA-Seq analysis, we quantified the
expression of several transcripts using qPCR (S2 Fig). Two transcripts, encoding an ABA
response protein (At3g02480) and Glyoxylase 17 (At1g80160) were upregulated by heat stress
and a combination of salinity and heat stress; Two transcripts, NCED3 (At3g14440) and Cor78
(AT5G52310) were upregulated by all stresses employed in this study; and RbohD
(At5g47910) was specifically upregulated by a combination of salinity and heat stress. In con-
trast, the expression of CAT2 (At4g35090) was not altered during salinity but decreased in
plants subjected to heat or a combination of salinity and heat stress.

To dissect the transcriptome response of Arabidopsis to a combination of salt and heat
stress we identified and categorized into groups the 699 transcripts that were specifically up-
regulated in response to a combination of salt and heat stress. As shown in Fig 3B, compared to
all other hormone-response transcripts, those associated with ABA responses were the most
highly represented (over 11% of all transcripts) in this group. In contrast to ABA response
transcripts, GA and SA response transcripts that could belong to pathways that antagonize
ABA function [57, 58] were the least represented compared to other hormone-response tran-
scripts (Fig 3B and S3 Fig). Surprisingly, many of the transcripts that were specifically up regu-
lated in response to a combination of salt and heat were also up regulated in response to light
stress. Out of the 699 transcripts that were specifically up-regulated by the combination of
salinity and heat stress, 104 transcripts were identified by other studies as salt or heat response
transcripts. These were therefore removed from the list of salt and heat combination specific
transcripts. The resulting 595 transcripts (S15 Table) were then subjected to a GO annotation
analysis. As shown in Fig 3C, transcripts of unknown function and transcripts involved in tran-
scription or response to abiotic or biotic stimulus were significantly more represented in this
data set.

Fig 2. Na+ and K+ ion content, and Na+/K+ ratio in leaves of Arabidopsis plants subjected to salt, heat and a combination of salt and heat stress. **,
Student’s t test significant at *P<0.01 compared to control (n = 27). Error bars represent SE.

doi:10.1371/journal.pone.0147625.g002
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Fig 3. Transcriptomic analysis of Arabidopsis plants subjected to salt, heat and a combination of salt
and heat stress. (A) Venn diagram showing the overlap between transcripts significantly up- or down-
regulated in response to salt, heat and a combination of salt and heat stress. (B) Representation of ROS-,
hormone-, and abiotic/biotic stress- response transcripts within the group of transcripts that are significantly
up-regulated in response to the combination of salt and heat stress. (C) GO annotation of the transcripts
specifically up-regulated in response to a combination of salt and heat stress.

doi:10.1371/journal.pone.0147625.g003
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ABA is required for acclimation of plants to a combination of salinity and
heat stress
The high representation of ABA-response transcripts, compared to all other hormone-
response transcripts, among the salt and heat combination specific transcripts (Fig 3B)
prompted us to study the response of different mutants impaired in hormone signaling/metab-
olism to a combination of salt and heat. We therefore compared the response of wild type
plants to that of mutants impaired in ABA, ethylene, salicylic acid (SA), or jasmonic acid (JA)
signaling to salinity, heat stress and their combination (Figs 4–6 and S4–S6 Figs).

Because the genetic background of the mutants impaired in ABA metabolism/signaling is
Landsberg erecta (Ler), we first studied the response of Ler to salinity, heat stress and their
combination (Fig 4). Similar to Col plants, either salinity or heat stress alone and the combina-
tion of salinity and heat stress all significantly decreased Ler fresh and dry weight and rosette
diameter, with the more severe effects observed in response to the stress combination. The
reduced survival of Ler in response to a combination of salinity and heat stress was almost the
same as that of Col plants (40%; Figs 1 and 4). Ler plants were however slightly more sensitive
to heat stress compared to Col with approximately 3–4% of Ler plants not surviving the heat
stress (Figs 1 and 4). In addition, the chlorophyll content of Ler decreased significantly under
the three stress treatments (Fig 4).

To study the involvement of ABA in the response of plants to salinity, heat stress and their
combination, we studied the acclimation of the aba1mutant that is deficient in ABA biosyn-
thesis, to the single and combined stresses (Fig 5). Compared to wild type Ler plants, aba1
plants showed reduced fresh weight, plant diameter and survival rate in response to a combina-
tion of salinity and heat stress. Fresh weight and diameter of aba1 plants was also reduced
under heat stress, but the difference in diameter between wild type and aba1 was not statisti-
cally significant. To further investigate the involvement of ABA in the response of plants to
salinity, heat stress and their combination, we studied the acclimation of the abi1mutant, defi-
cient in ABA signaling, to the same stresses (Fig 6). Compared to wild type Ler plants, abi1
plants displayed reduced fresh weight, plant diameter and survival rate in response to a combi-
nation of salinity and heat stress. In contrast to aba1, the dry weight of abi1 plants was however
significantly reduced compared to wild type under both heat and heat and salinity
combination.

In contrast to mutants deficient in ABA synthesis or signaling (Figs 5 and 6), mutants defi-
cient in the synthesis of, or response to, SA, JA, or ethylene were found not to have a significant
difference compared to wild type (cv Columbia) in their acclimation to salinity, heat stress or
their combination (S4–S6 Figs).

The acclimation of Arabidopsis to salt and heat stress combination is
different from that to drought and heat stress combination
To compare between the acclimation of Arabidopsis plants to salt and heat stress combination
and the acclimation of Arabidopsis plants to drought and heat combination, we studied the
acclimation of plants altered in the expression of two different proteins important for Arabi-
dopsis tolerance to a combination of drought and heat, to a combination of salinity and heat
stresses (S7 and S8 Figs). Plants that constitutively overexpressed the multiprotein bridging fac-
tor 1c (MBF1c) were previously found to be more tolerant to a combination of osmotic and
heat stress [32]. In contrast, Arabidopsis plants deficient in cytosolic ascorbate peroxidase 1
(APX1) were more sensitive to a combination of drought and heat stress [59]. We therefore
tested the acclimation of plants deficient in MBF1c (mbf1c) or APX1 (apx1) to the combination
of salt and heat stress. Both mutants were similar to wild type in their acclimation to salt, heat

Salt and Heat Stress Combination
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Fig 4. Response of Arabidopsis ecotype Ler plants to salt, heat and a combination of salt and heat stress. (A) Growth parameters, chlorophyll content
and survival of plants subjected to salt, heat and a combination of salt and heat stress. (B) Representative images of plants subjected to the different
stresses. * or **, Student’s t test significant at *P < 0.05 or **P < 0.01 compared to control (n = 30). Error bars represent SD.

doi:10.1371/journal.pone.0147625.g004
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Fig 5. Response of aba1 plants to salt, heat and a combination of salt and heat stress. (A) Growth parameters and survival of plants subjected to salt,
heat and a combination of salt and heat stress. (B) Representative images of plants subjected to the different stresses. * or **, Student’s t test significant at
*P < 0.05 or **P < 0.01 compared to WT (n = 30). Error bars represent SD. Absolute values for the graphs shown in (A) are presented in S9 Fig.

doi:10.1371/journal.pone.0147625.g005
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Fig 6. Response of abi1 plants to salt, heat and a combination of salt and heat stress. (A) Growth parameters and survival of plants subjected to salt,
heat and a combination of salt and heat stress. (B) Representative images of plants subjected to the different stresses. * or **, Student’s t test significant at
*P < 0.05 or **P < 0.01 compared to WT (n = 30). Error bars represent SD. Absolute values for the graphs shown in (A) are presented in S10 Fig.

doi:10.1371/journal.pone.0147625.g006
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and the combination of salinity and heat stress (S7 and S8 Figs), suggesting that the acclimation
of Arabidopsis plants to a combination of salt and heat stress is mediated by mechanisms that
are different from those involved in the acclimation of Arabidopsis to a combination of
drought and heat stress.

To further compare between the acclimation of Arabidopsis to salt and heat stress combina-
tion and the acclimation of Arabidopsis to drought and heat combination, as well as other
stress combinations, we compared the set of transcripts specifically up-regulated in response to
the salt and heat stress combination (Fig 3A), to that of transcripts specifically up-regulated in
Arabidopsis in response to other stress combinations [7, 8, 52]. As shown in Fig 7, little overlap
was found between the different sets of transcripts specifically up-regulated in response to salt
and heat (this study), heat and high light, salt and high light, drought and heat, cold and high
light, or drought and nematodes (Fig 7A). As shown in Fig 7B, only 76 transcripts were com-
mon between the response of Arabidopsis to salt and heat combination and the response of
Arabidopsis to drought and heat combination, supporting our findings with thembf1c or apx1
mutants (S7 and S8 Figs).

Discussion
The ability to sense and acclimate to a combination of different abiotic stress conditions is par-
ticularly important for field-grown plants. In the case of salinity and heat stress combination
the increased transpiration associated with heat stress is thought to worsen the harmful effects
of salinity because it could increase the uptake of salt into leaves and roots under the stress
combination [26, 27]. In our study, the growth and chlorophyll content of plants was indeed
significantly more impacted by the combination of heat and salt stresses, compared to each of
these conditions applied individually, supporting a negative interaction between these two
stresses (Figs 1 and 4). Interestingly, the stress combination was not found to elevate the level
of Na+ in leaves compared to that found in salt treated plants in the absence of heat, but instead
resulted in an altered K+ levels (Fig 2). In contrast to the harmful effects of the salinity and heat
stress combination on Arabidopsis plants reported in this study (Figs 1 and 4), a similar stress
combination was previously reported to have less damaging effects on tomato plants compared
to salt stress applied individually [28]. The difference in tolerance to the salinity and heat com-
bination between tomato and Arabidopsis could suggest that different plants respond differ-
ently to the same stress combination. In addition, differences in the timing and intensity of the
salinity and heat stress treatments could explain the differences between the different experi-
mental systems. One apparent difference between the response of Arabidopsis and tomato
plants might be their Na+ and/or K+ homeostasis. When the different plants were grown under
a combination of salinity and heat stress, tomato displayed a reduction in the Na+/K+ ratio
[28], whereas in Arabidopsis the Na+/K+ increased (Fig 2). In tomato, the inhibition of Na+

transport and uptake was shown to be a key mechanism of protection against a combination of
salinity and heat stress [28]. In contrast, in Arabidopsis, Na+ uptake under salinity was not
affected by the heat stress combination, whereas K+ uptake increased under salt stress but was
markedly reduced by the combination of salinity and heat stress. The effects of the stress com-
bination on Arabidopsis might therefore be associated with mechanisms altering K+ and not
Na+ levels. Given the importance of K+ homeostasis under salinity [60], the mechanisms con-
trolling Na+ and K+ homeostasis of different plants under a combination of salinity and heat
stress should be addressed in future studies.

A considerable number of transcripts were specifically up-regulated in response to a combi-
nation of salt and heat stress, suggesting that the response of plants to this stress combination
includes unique pathways that are not directly involved in the acclimation of plants to salt or
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Fig 7. Specificity of stress combination-specific transcripts. (A) Overlap between transcripts specifically and significantly up-regulated in response to a
combination of salt and heat stress, and transcripts specifically and significantly up-regulated in response to other stress combinations. (B) Venn diagram
showing the overlap between transcripts specifically and significantly up-regulated in response to a combination of salt and heat stress, and transcripts
specifically and significantly up-regulated in response to a combination of drought and heat stress. References used for the meta-analysis are [7, 8, 52].

doi:10.1371/journal.pone.0147625.g007
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heat stress applied individually (Fig 3). An extensive overlap of differentially expressed tran-
scripts in response to salinity and heat stress combination and heat stress was nonetheless
found (Fig 3A). This finding could indicate that heat stress responses might dominate the accli-
mation response of Arabidopsis to the salinity and heat stress combination. At least when it
comes to the role of ABA in these responses, our results support such an interaction because
ABA was found to be involved in the acclimation of plants to heat stress, as well as a combina-
tion of salinity and heat stress (Figs 5 and 6). Involvement of heat response pathways in the
acclimation of plants to salt stress was previously suggested by the up-regulation of HSFs and
HSPs in response to both salinity and heat stress [61]. In addition, overexpression of Arabidop-
sis HSP17.8 in lettuce resulted in enhanced tolerance to salt stress [62].

The involvement of ABA in the acclimation of plants to abiotic stress combination, demon-
strated with two different mutants impaired in ABAmetabolism/signaling (Figs 5 and 6), is a
new finding described in this manuscript. This involvement could be related to the function of
ABA in the regulation of gene expression during stress combination, or reflect the role ABA
plays in stomatal regulation during stress. Further studies are required to address these ques-
tions. In addition, further studies are required to examine what other stress combinations could
require ABA signaling in different plants. In light of previous studies that suggested an antago-
nistic relationship between ABA and GA or SA signaling [57, 58], the higher proportion of ABA
response transcripts relative to GA and SA response transcripts in the data sets of transcripts
specifically upregulated in response to a combination of salt and heat stress (Fig 3 and S3 Fig)
further supports the involvement of ABA in the response of plants to this stress combination.

Previous studies uncovered several signaling pathways involved in the response of plants to
a combination of drought and heat stress. These included the function of MBF1c, ethylene and
APX1 [7, 59, 63]. Results presented in this manuscript do not however support a role of these
mechanisms in the acclimation of plants to a combination of salinity and heat stress (Figs 3B
and 7, S3 and S6–S8 Figs). Thus, little overlap was found between salt and heat combination-
specific transcripts and drought and heat combination-specific transcripts (Fig 7), low repre-
sentation was found for ethylene response transcripts in the salt and heat combination-specific
transcripts (Fig 3B and S3 Fig), and knockout plants deficient inmbf1c, apx1, or ain1 (involved
in ethylene responses) did not show enhanced sensitivity to salt and heat combination (S6–S8
Figs). Together, these results suggest that significant differences exist in the acclimation
response of Arabidopsis to different combinations of stresses (i.e. heat and drought versus heat
and salinity). Meta-analysis of overlap between transcripts specific to different abiotic stress
combination has indeed revealed very little overlap between the transcripts significantly upre-
gulated in response to salt and heat stress combination (this study), and transcripts signifi-
cantly up-regulated in response to other stress combinations (Fig 7; [7, 8, 52]). More studies
are however needed to address the overlap between different abiotic stress combinations.

Our study reveals that different plant species could differ in their acclimation response to a
combination of salinity and heat stress, highlights the unique role of ABA in the response of
Arabidopsis plants to a combination of salt and heat stress, and demonstrates a high degree of
specificity in the response of plants to different abiotic stress combinations.

Accession Numbers
Arabidopsis Genome Initiative locus identifiers for genes mentioned in this article are as fol-
lows: ABA response protein (At3g02480), glyoxylase 17 (At1g80160), RbohD (At5g47910),
NCED3 (At3g14440), Cat2 (At4g35090), Cor78 (At5g52310), APX1 (At1g07890) and MBF1c
(At3g24500). RNA-Seq data from this study was deposited in NCBI GEO repository under the
accession/reference number GSE72806.

Salt and Heat Stress Combination

PLOS ONE | DOI:10.1371/journal.pone.0147625 January 29, 2016 15 / 21



Supporting Information
S1 Fig. Temperature and humidity measurements for the heat and heat and salinity combi-
nation treatments. (A) Temperature and humidity measurements over a 24 h period used in
the 3 day stress treatment to monitor survival rate, growth parameters, and chlorophyll con-
centration. (B) Temperature and humidity measurements over a 4 h period used in the 1 h
stress treatment to conduct RNA-Seq, qRT-PCR, and Na+ and K+ analyses. The temperature
and humidity monitor was placed in and out of the chamber at the same time the plants were.
(TIF)

S2 Fig. Expression of selected transcripts in response to salt, heat and a combination of salt
and heat stress measured with qPCR.
(TIF)

S3 Fig. Proportion of ABA, GA and SA response transcripts in the data sets of transcripts
specifically upregulated in response to salt, heat and a combination of salt and heat stress.
(TIF)

S4 Fig. Acclimation of sid2 plants subjected to salt, heat and a combination of salt and heat
stress.
(TIF)

S5 Fig. Acclimation of lox3 plants subjected to salt, heat and a combination of salt and heat
stress.
(TIF)

S6 Fig. Acclimation of ain1-1 plants to salt, heat and a combination of salt and heat stress.
(TIF)

S7 Fig. Acclimation ofmbf1c plants to salt, heat and a combination of salt and heat stress.
(TIF)

S8 Fig. Acclimation of apx1 plants to salt, heat and a combination of salt and heat stress.
(TIF)

S9 Fig. Absolute values for Fig 5A.
(TIF)

S10 Fig. Absolute values for Fig 6A.
(TIF)

S1 Table. Transcripts significantly up-regulated in response to heat stress.
(XLSX)

S2 Table. Transcripts significantly up-regulated in response to salt stress.
(XLSX)

S3 Table. Transcripts significantly up-regulated in response to a combination of salt and
heat stress.
(XLSX)

S4 Table. Transcripts significantly up-regulated in response to salt and heat stress but not
salt and heat stress combination.
(XLSX)
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S5 Table. Transcripts significantly up-regulated in response to salt and a combination of
salt and heat stress.
(XLSX)

S6 Table. Transcripts significantly up-regulated in response to heat and a combination of
salt and heat stress.
(XLSX)

S7 Table. Transcripts significantly up-regulated in response to salt, heat and a combination
of salt and heat stress.
(XLSX)

S8 Table. Transcripts significantly down-regulated in response to heat stress.
(XLSX)

S9 Table. Transcripts significantly down-regulated in response to salt stress.
(XLSX)

S10 Table. Transcripts significantly down-regulated in response to a combination of salt
and heat stress.
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S11 Table. Transcripts significantly down-regulated in response to salt and heat stress.
(XLSX)

S12 Table. Transcripts significantly down-regulated in response to salt and a combination
of salt and heat stress.
(XLSX)

S13 Table. Transcripts significantly down-regulated in response to heat and a combination
of salt and heat stress.
(XLSX)

S14 Table. Transcripts significantly down-regulated in response to salt, heat and a combi-
nation of salt and heat stress.
(XLSX)

S15 Table. Transcripts specifically up-regulated by a combination of salt and heat stress.
(XLSX)

S16 Table. Primer pairs for qRT-PCR.
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