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ABSTRACT OF THE DISSERTATION

Online Learning of Large Margin Hidden Markov Models for
Automatic Speech Recognition

by

Chih-Chieh Cheng

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Lawrence K. Saul, Chair

Over the last two decades, large margin methods have yielded excellent per-

formance on many tasks. The theoretical properties of large margin methods have

been intensively studied and are especially well-established for support vector machines

(SVMs). However, the scalability of large margin methods remains an issue due to the

amount of computation they require. This is especially true for applications involving

sequential data.

In this thesis we are motivated by the problem of automatic speech recogni-

tion (ASR) whose large-scale applications involve training and testing on extremely

large data sets. The acoustic models used in ASR are based on continuous-density hid-

den Markov models (CD-HMMs). Researchers in ASR have focused on discriminative
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training of HMMs, which leads to models with significantly lower error rates. More re-

cently, building on the successes of SVMs and various extensions thereof in the machine

learning community, a number of researchers in ASR have also explored large margin

methods for discriminative training of HMMs.

This dissertation aims to apply various large margin methods developed in the

machine learning community to the challenging large-scale problems that arise in ASR.

Specifically, we explore the use of sequential, mistake-driven updates for online learn-

ing and acoustic feature adaptation in large margin HMMs. The updates are applied to

the parameters of acoustic models after the decoding of individual training utterances.

For large margin training, the updates attempt to separate the log-likelihoods of correct

and incorrect transcriptions by an amount proportional to their Hamming distance. For

acoustic feature adaptation, the updates attempt to improve recognition by linearly trans-

forming the features computed by the front end. We evaluate acoustic models trained

in this way on the TIMIT speech database. We find that online updates for large mar-

gin training not only converge faster than analogous batch optimizations, but also yield

lower phone error rates than approaches that do not attempt to enforce a large margin.

We conclude this thesis with a discussion of future research directions, highlight-

ing in particular the challenges of scaling our approach to the most difficult problems in

large-vocabulary continuous speech recognition.
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Chapter 1

Introduction

This thesis aims to apply large margin methods developed in the machine learn-

ing community to the challenging large-scale problems that arise in automatic speech

recognition (ASR). Over the last two decades, large margin methods have yielded excel-

lent performance on many tasks. However, the scalability of large margin methods re-

mains an issue due to the amount of computation they require. This is especially true for

applications involving sequential data. In this thesis, the demands of large-scale ASR

motivate us to investigate online methods for large margin classification of sequential

data.

1.1 Motivation

Most existing systems for ASR are based on continuous-density hidden Markov

models (CD-HMMs), whose parameters must be estimated from large training corpora

of transcribed speech [HAH01]. The simplest approach to this problem is maximum

likelihood (ML) estimation, which attempts to maximize the joint likelihood of the

training data. However, ML estimation has well-known limitations for ASR. At best,

CD-HMMs provide only an approximate model of the tremendous variability observed

in real speech. When such models are estimated from training data, improvements in

their joint likelihoods do not always translate into fewer recognition errors. This real-

ization has led researchers to develop other objective functions for parameter estimation

that more closely track the error rate (however it is measured).

1
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A great deal of research in ASR has focused on discriminative training of HMMs

[BBdSM86, Nad83, JK92]. Perhaps the most popular framework for discriminative

training is maximum mutual information (MMI) estimation. In this framework, model

parameters are estimated to maximize the mutual information between the desired rec-

ognizer output and the acoustic features computed by the front end. More recently,

building on the successes of support vector machines [CV95, Vap98] and various ex-

tensions thereof [THJA04, TGK04] in the machine learning community, a number of

researchers in ASR have also explored large margin methods for discriminative training

of HMMs [JLL06a, LYL07, YDHA07, SS09].

In ASR, a major challenge of discriminative training arises from the combina-

torially large number of possible phonetic transcriptions per speech utterance. To suc-

ceed, discriminative methods must separate the likelihood of the correct decoding from

all incorrect hypotheses. The need to consider incorrect hypotheses makes discrimina-

tive training much more computationally intensive than ML estimation. Large corpora

are typically managed by parallelizing batch computations of parameter updates across

many different nodes, then combining the individual results to average over training

utterances. For large-vocabulary ASR, discriminative training can also be accelerated

by using lattices to provide a compact representation of alternative hypotheses [WP00].

Nevertheless, the scaling of discriminative methods to large-scale problems remains an

important area for ongoing research.

A similar problem of scaling confronts researchers in machine learning, whose

algorithms must deal with data sets of ever-increasing size. The demands of large-scale

applications have led to a resurgence of interest in online learning algorithms [BL04,

BB08]. These algorithms update model parameters after the presentation of each labeled

example, thus eliminating the need to store or manipulate the entire data set in memory.

Not only are these online algorithms simpler to implement and more feasible for large-

scale learning, but in many cases they converge more quickly and perform better than

their batch counterparts.



3

1.2 Overview

Motivated by the potential of this approach for ASR, in this thesis we investigate

an online algorithm for discriminative training of HMMs. The algorithm optimizes the

parameters of acoustic models in an incremental fashion, updating them after the decod-

ing of each training utterance. The first main contribution of this thesis is to propose a

particular reparameterization of acoustic models that lends itself very well to this type

of training. We present experimental results for acoustic models trained in this way on

the TIMIT speech corpus [LKS86]. The TIMIT corpus is a small-scale but still widely

used benchmark [GMAP05, PPK07, SSL07, DYA06] for evaluating new approaches to

hidden Markov modeling in ASR. We systematically compare the effects of different pa-

rameterizations, initializations, and averaging schemes on convergence rates and phone

recognition accuracies. Our results illustrate a set of best practices for online, discrimi-

native training that yield the most consistently significant and rapid reductions in phone

recognition error rates [CSS09c].

The second main contribution of this thesis is to investigate online updates for

large margin training of HMMs [JLL06a, SS07b, SS07a, LYL07, YDHA07, PKK+08,

SP08]. The goal of large margin training is to assign significantly higher scores to cor-

rect transcriptions than competing ones; in particular, the margin between these scores is

required to grow in proportion to the total number of recognition errors [SS07b, SS07a,

PKK+08, SP08, TGK04]. Empirically, large margin training has improved the perfor-

mance of many systems beyond other leading discriminative approaches. We propose

online updates that incrementally adapt the model parameters after a margin-based de-

coding of each training utterance. Comparing online versus batch implementations of

large margin training, we find that the online methods converge more quickly. We also

find that they yield acoustic models with better performance on phone recognition than

other approaches—both online and batch—that do not attempt to enforce a large mar-

gin [CSS09b].

The third main contribution of this thesis is to study online updates that simul-

taneously transform the acoustic feature space used for ASR. Specifically, we show

how to adapt the acoustic features computed by typical front ends in order to increase

the margin of correct recognition. We adapt the feature space by learning highly dis-
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criminative linear projections of acoustic features concatenated from multiple adjacent

analysis windows. Optimizing the acoustic features in the front end presents new chal-

lenges for online learning. First, the optimization landscape becomes considerably more

complex. Second, the projection matrix appears to be especially sensitive to the choice

of learning rates. To deal with these difficulties, we explore many different schemes

for initialization and parameter-tying [You92, DM94]. Interestingly, our best results are

obtained by training several recognizers in parallel while tying the projection matrix

used to compute acoustic features in their front ends. In our experiments, this form of

parameter-tying across different recognizers yields consistent improvement beyond the

already significant gains of large margin training.

We have published our preliminary explorations of these ideas in three previous

studies [CSS09c, CSS09b, CSS09a]. In this thesis, we provide a unified presentation of

these ideas and also include additional experiments on larger model sizes and different

training paradigms.

1.3 Organization

The organization of this thesis is as follows. Part I of the thesis consists of Chap-

ter 1 to 5, which provide background necessary to understand our main contributions.

Chapter 2 reviews large margin methods for binary, multiway, and sequential classifica-

tion, highlighting the different optimizations required for each of these settings. Chap-

ter 3 reviews previous work on online learning algorithms, focusing especially on how

these algorithms have been applied to large margin classification. Chapter 4 describes

the use of hidden Markov models for ASR; we review the currently most popular ap-

proaches to discriminative training, as well as the major challenges posed by increas-

ingly large training corpora. Chapter 5 provides more background on acoustic modeling

in ASR, as well as benchmarks for current leadning approaches.

Part II of the thesis consists of Chapter 6 to 8, in which we explore the use of

online algorithms for large margin training of HMMs. Chapter 6 introduces the basic

form of our online updates for discriminative training of HMMs. Chapters 7 and 8

extend these updates to incorporate large margin constraints and to adapt the acoustic
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feature space. Each of these chapters also presents experimental results on the TIMIT

speech corpus; by interleaving results in this way, we hope to convey the evolution of

ideas and practices that guided our own investigations.

Finally, in Chapter 9, we summarize our most important findings and discuss

future directions for research.



Chapter 2

Large Margin Methods

In this chapter we review large margin methods on different types of classifica-

tion problems. Large margin methods have been discussed in a number of literatures

since the 1960s [DH73, Cov65], and among them, support vector machines (SVMs)

are probably the most successful and widely used in pattern recognition. The initial

form of SVMs was proposed in [BGV92] by using kernel functions to nonlinearly map

input vectors to a high dimensional feature space and by constructing a maximal mar-

gin classifier in this space. Following the first paper, soft margin machines were in-

troduced in [CV95]. Both of these methods can be carried out by efficient numerical

algorithms. However, for various reasons, it is more challenging to apply SVMs to mul-

ticlass classification problems [CS01, SS06] and especially to sequence labeling prob-

lems [JH98, ATH03, SS07b]. We give an overview of SVMs in Section 2.1 and review

other large margin methods and their extensions to multiway classification and sequence

labeling problems in Sections 2.2 and 2.3.

2.1 Support vector machines

The generalization of a learning algorithm is controlled by two factors: the em-

pirical risk, and the confidence interval which is determined by the model complex-

ity [Vap95]:

R(f) ≤ Remp(f) + Ω(f), (2.1)

6
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where R and Remp are the actual risk and the empirical risk of a decision function f ,

and Ω is the confidence interval of the function. We can always find a classifier in a very

high dimensional space (Ω increases) which separates the training data with zero error

(Remp = 0), but the generalization of the classifier may be poor. On the other hand,

classifiers working with few free parameters or in a low dimensional space might not

even obtain satisfactory error rates on the training data. There seems to be an inherent

tradeoff between these factors. However, SVMs showed an elegant way to finesse this

tradeoff: they keep the first term equal to zero by mapping input vectors to a very high

dimensional space and minimize the second term in that space. The generalization error

of SVMs is shown to be bounded by the number of support vectors, regardless of the

dimensionality of the feature space.

SVMs provides state-of-the-art performance in many applications of pattern

recognition. The key ingredients of SVMs are the maximal margin hyperplane and

the kernel method: SVMs nonlinerly map the input vectors into a very high dimensional

space, then find a maximal margin hyperplane in that space. A tight error bound is de-

rived, and a convex optimization problem is formulated. All of these contribute to the

success of SVMs.

The simplest setting of SVMs is a binary classification. Given a set of training

data {(xi, yi)}Ni=1, where xi ∈<d and yi ∈ {−1, 1}. In binary classification, we seek a

hyperplane to separate the positive and negative labeled data (Fig. 2.1). Let f : <d → <
be a linear discriminant function:

f(x) = w · x + b, (2.2)

where the label of an unknown example x is inferred from

g(x) = sgn (f(x)) . (2.3)

For a hyperplane with a discriminant function f(x), the margin is defined as the mini-

mum distance from a correctly classified training point to the hyperplane; that is,

ρ = min
i
yif(xi) ≥ 0 ∀i (2.4)

assuming that the training data are linearly separable. The margin ρ plays an important

role in the generalization error bound in the SVM theory because it is related to the
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Figure 6. Linear separating hyperplanes for the non-separable case.

where the µi are the Lagrange multipliers introduced to enforce positivity of the ξi. The
KKT conditions for the primal problem are therefore (note i runs from 1 to the number of
training points, and ν from 1 to the dimension of the data)

∂LP

∂wν
= wν −

∑
i

αiyixiν = 0 (48)

∂LP

∂b
= −

∑
i

αiyi = 0 (49)

∂LP

∂ξi
= C − αi − µi = 0 (50)

yi(xi · w+ b)− 1 + ξi ≥ 0 (51)
ξi ≥ 0 (52)
αi ≥ 0 (53)
µi ≥ 0 (54)

αi{yi(xi · w+ b)− 1 + ξi} = 0 (55)
µiξi = 0 (56)

As before, we can use the KKT complementarity conditions, Eqs. (55) and (56), to
determine the threshold b. Note that Eq. (50) combined with Eq. (56) shows that ξi = 0 if
αi < C. Thus we can simply take any training point for which 0 < αi < C to use Eq. (55)
(with ξi = 0) to compute b. (As before, it is numerically wiser to take the average over all
such training points.)

3.6. A Mechanical Analogy

Consider the case in which the data are in R2. Suppose that the i’th support vector exerts
a force Fi = αiyiŵ on a stiff sheet lying along the decision surface (the “decision sheet”)

Figure 2.1: An illustration of the hyperplane constructed by SVM [Bur98].

VC-dimension [Vap82]. Thus, it is desirable to find a classifier f ∗ which maximizes the

margin

f ∗ = argmaxfρf = argmaxf min
i
yif(xi). (2.5)

f ∗ is known as the optimal hyperplane [Vap82]. Without any constraint on the parame-

ter w, the maximum does not exist since one can always choose w to make the function

value f(w) arbitrarily large. However, by imposing a lower bound on w such that ρ = 1,

the max-min problem (eq. (2.5)) can be transformed into an equivalent constrained op-

timization

min 1
2
‖w‖2 (2.6)

s.t. yi(w · xi + b) ≥ 1, ∀i,

which represents the well-known quadratic programming problem of SVMs.

Another key element of SVMs is the kernel method. The basic idea of kernel

methods is to imagine a nonlinear feature mapping φ : Rd → F that maps the examples

from the input space into a feature space F . The dimension of the feature space can

be very high, or even infinite, such that in this space we are much more likely to find a

hyperplane that separates the training data. The direct computation for kernel methods

is very expensive, since the dimension of the feature space is potentially infinite. There-

fore, the so-called kernel trick is usually implemented, in which an implicit mapping of

φ is induced by a kernel function. The kernel function defines the inner product of ex-
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amples in the feature space, without an explicit computation of the nonlinear mapping,

and the computation is typically implemented through a kernel matrix to facilitate the

caching of the values. In order to incorporate the kernel trick, the objective functions

have to be written in terms of inner products of examples. The constrained optimization

task in eq. (2.6) can be formulated with respect to its dual variables by applying a La-

grangian. The optimization in the dual form remains a constrained quadratic problem

in terms of dot products between input vectors, and thus makes it easy to apply kernel

tricks in the computation.

SVMs are obtained by solving a problem in convex optimization - specially, a

problem in quadratic programming (QP). The QP for SVM has many special properties,

which can be exploited to develop more efficient solvers. In the early stage, SVMs

were solved by standard techniques, such as interior point (IP) methods [BV04]. IP

methods for SVMs are very accurate; however, their running time is cubic in the size of

the training data N , and their memory requirement is O(N2). This complexity makes it

difficult to use standard QP solvers for medium to large scale applications of SVMs.

The quadratic memory requirement comes from the assumption that the full ker-

nel matrix is available. Computing a full kernel matrix is consuming in both time and

space. To overcome this issue, many researchers have proposed decomposition meth-

ods [Pla99, Joa99]. Working on the dual representation of eq. (2.6), these methods break

the full-scale optimization problem into a sequence of smaller, more manageable QP

problems. Specifically instead of solving for all Lagrange coefficients at the same time,

they select a working set of coefficients at each iteration and solve the corresponding

subproblem for the working set. An extreme case of this approach is sequential minimal

optimization (SMO) [Pla99], which selects two examples at a time to form a minimum

subproblem. While working set methods are simple to implement, they still have a time

complexity that is super linear in the training set size N [SSSS07].

In effect, all batch methods have a bottleneck in the complexity with respect to

the training set size N . As the training set grows larger, the scalability of the SVM al-

gorithm becomes an issue. Recently the demand for large scale applications has revived

the interest in online learning and gradient based methods for SVMs. Many researchers

have published works along this line [SSSS07, KSW01, Zha04]. It has even been shown
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that a simple stochastic gradient descent (SGD) method can yield comparable results as

a state-of-the-art solver [Bot07], but 10+ times as fast. These results have inspired our

own exploration of online learning algorithms, especially for large margin methods,

which we discuss in the next chapter.

So far, we have assumed that the training set is linearly separable. In practice,

a separating hyperplane might not exist. Or, imagine if there are many noisy examples

in the training data which cause a large overlap between different classes of data. In

this case, the maximal margin hyperplane defined in eq. (2.6) may be entirely deter-

mined by the noisy examples. To overcome this sensitivity to the noise, we can relax

the margin constraints and introduce a slack variable to measure how much they are

violated [CV95]:

min 1
2
‖w‖2 + C

∑
i ξ

2
i (2.7)

s.t. yi(w · xi + b) ≥ 1− ξi, ∀i.
ξi ≥ 0

The loss function for so-called soft margin hyperplanes consists of two terms - one

that regularizes the model complexity, and one that penalizes the margin violations. The

slack variable ξi represents the distance from each example xi to the margin, see Fig. 2.1.

The problem in eq. (2.7) can also be written as the unconstrained optimization

L =
1

2
‖w‖2 + C

∑
i

[1− yi(w · xi + b)]+, (2.8)

where [z]+ = max(0, z) is the so-called hinge function. Unconstrained optimizations

generally converge more quickly than constrained optimizations, making them more

suitable for gradient based methods.

2.2 From binary to multiclass

So far we have discussed the use of SVM for problems in binary classifications.

However, many real world problems have more than two classes, and there have been

many attempts to generalize SVMs to this setting [PCSt99, WW99, CS00, CS01]. In
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this section we briefly review how large margin classifiers have been applied in this

setting.

The goal of multiway classification is to map an unknown input x∈<d to a set

of predefined classes c ∈ {1, 2, . . . , C}, where d is the input dimensionality and C is

the number of classes. Multiclass learning algorithms with SVMs have been discussed

by many authors. The classical approach in [SBV95] considers the multiclass problem

as a collection of binary classification problems. In the one-versus-rest approach, C

binary classifiers are constructed, where each classifier uses a hyperplane to separate

one class from the other C − 1 classes. An input is assigned to the class with the

maximum positive distance from the input to the separating hyperplane for that class.

An alternative approach is the one-versus-one method, which constructs C(C + 1)/2

classifiers for separating each pair of competing classes. The overall classification is

then made by a voting method that combines these pairwise decisions to choose the most

likely label. Despite the simplicity and effectiveness of this framework, it cannot capture

the correlations between classes since each binary classifier is trained independently of

all the others.

The previously mentioned approaches decompose the multiway classification

problem into multiple independent binary classification problems. However, it is also

possible to train multiclass SVMs with a single optimization [WW99, CS01, ASS00].

To do so, a piecewise linear classifier is constructed for each of the C classes, and the

overall decision rule is given by:

g(x) = argmaxc [(wc · x) + bc)] , c = 1, . . . , C. (2.9)

There are two important formulations for these types of multiclass SVMs [WW99,

CS01]. Weston et al. [WW99] proposed to find an optimal hyperplane which yields

the margin separating the target class from all other classes. In this approach, the bi-

nary classification is extended by generalizing the constraints in eq. (2.6) to guarantee

a margin from each example to the yperplane for all competing classes. Therefore, the

number of constraints becomes N × C, which grows proportional to the number of

classes in the classification problem. The required optimization is a single QP, but it is

correspondingly harder to solve than the original one for binary SVMs.

Crammer et al. [CS01] proposed a slightly different formulation. These authors
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defined the loss of a classifier as the difference between the discriminant score of the

target class and that of the inferred class. The difference between these two works is that

Crammer et al. only penalized the most incorrect (or most nearly incorrect) decision

boundary , while Weston et al. penalized all competing class boundaries which grow

proportionally to the number of classes. In the work of Crammer et al., the constrained

optimization is given by

min 1
2

∑
c ‖wc‖2 + γ

∑
i ξ

2
i (2.10)

s.t. maxc{wc · xi + 1− δyi,c} −wyi
· xi ≤ ξi, ∀i

where c denotes the index of classes. Here, δyi,c denotes the indicator function which

returns 1 if yi = c and zero otherwise. In this equation, for simplicity we have dropped

the bias bc for each hyperplane; biases can be incorporated in the optimization with

a little extra care [SSSS07]. The optimization is most easily solved by transforming

it into its dual form with N unknowns (one for each training example). The authors

develop a specialized solver by decomposing this dual QP into N smaller QPs (with C

constraints in each) and applying iterative methods to solve the small QPs. A number

of tricks are used to accelerate the computation, including greedy example selection and

kernel values caching. Multiclass SVMs based on eq. (2.10) have certain advantages

over collections of independently trained binary SVMs; however, the computation of

independently trained binary SVMs might be more efficient [RK04].

Notwithstanding the above successes, it remains challenging to apply traditional

SVMs to multiclass problems, especially large-scale applications. There are two main

issues. First, in order to obtain a nonlinear decision boundary in the input space, a kernel

matrix must be constructed with as many rows and columns as the training examples.

This generally necessitates the use of subset methods, as well as the caching of kernel

values. Second, the complexity grows with the number of classes - either linearly or

quadratically - depending on how the binary classification is generalized to multiway

classification.

Another line of research in parallel to SVMs has suggested an alternative way to

generalize large margin classifiers to multiway classification. In [SS06], a large margin

classifier based on Gaussian mixture models (GMMs) is introduced. The class bound-

aries defined by GMMs are innately nonlinear in the input space; therefore, in these large



13

margin classifiers, no kernel method is needed to obtain a nonlinear decision boundary.

We begin by reviewing these GMMs with only single Gaussian component per

class. The inference in large margin GMM is done by computing the minimum Maha-

lanobis distance among those from the example x to class centroids c = {1, . . . , C}:

g(x) = argminc{(x− µc)TΣ−1
c (x− µc) + θc}. (2.11)

In eq. (2.15), the parameters µc and Σc are the mean and covariance matrix of the Gaus-

sian model for class c, and θc is a scalar offset for calibrating the scores of different

classes.

In order to simplify the representation of the decision boundary (analogous to

linear SVMs), [SS06] reparameterized the Gaussian density function by an enlarged

parameter matrix Φ:

Φ =

[
Σ−1 −Σ−1µ

−µ>Σ−1 µ>Σ−1µ+ θ

]
. (2.12)

The decision function in eq. (2.15) can be rewritten in terms of this new parameterization

as:

g(x) = argminc{zTΦ−1
c z}, where z =

[
x

1

]
. (2.13)

As in eq. (2.9) for multiclass SVMs, the discriminant function has a piecewise linear de-

pendence on the classifier parameters. Note how the Mahalanobis distances are defined

in terms of the positive semidefinite matrices Φc.

Inspired by SVMs, large margin GMMs also attempt to separate the data from

the decision boundaries of competing classes by a large margin. Fig. 2.2 shows the de-

cision boundary defined by large margin GMMs (for two classes), which is an ellipsoid

rather than a half-plane (as in binary SVMs). The constraints in large margin GMMs

are given by:

zTi Φczi ≥ 1 + zTi Φyi
zi, ∀c 6= yi. (2.14)

where z is defined as in eq. (2.13). Large margin GMMs are trained by relaxing these

margin constraints via slack variables ξi and solving the constrained optimization:

min
∑

c trace(Φc) + C
∑

i ξi (2.15)

s.t. zTi Φczi − zTi Φynzi ≥ 1− ξi, ∀i, c.
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Figure 1: Decision boundary in a large margin GMM:
labeled examples lie at least one unit of distance away.

mixture EM margin
1 4.2% 1.4%
2 3.4% 1.4%
4 3.0% 1.2%
8 3.3% 1.5%

Table 1: Test error rates on MNIST
digit recognition: maximum likeli-
hood versus large margin GMMs.

where M is the number of mixture components (assumed, for simplicity, to be the same for each
class). We fold these multiple constraints into a single one by appealing to the “softmax” inequal-
ity: minm am ≥ − log

∑
m e−am . Specifically, using the inequality to derive a lower bound on

minm zT
nΦcm zn, we replace theM constraints in eq. (7) by the stricter constraint:

∀c $= yn, − log
∑
m

e−zT
nΦcmzn − zT

nΦynmn zn ≥ 1. (8)

We will use a similar technique in section 3 to handle the exponentially many constraints that arise
in sequential classification. Note that the inequality in eq. (8) implies the inequality of eq. (7) but not
vice versa. Also, though nonlinear in the matrices {Φcm}, the constraint in eq. (8) is still convex.
The objective function in eq. (6) extends straightforwardly to this setting. It balances a regularizing
term that sums over ellipsoids versus a penalty term that sums over slack variables, one for each
constraint in eq. (8). The optimization is given by:

min
∑

nc ξnc + γ
∑

cm trace(Ψcm)
s.t. 1 + zT

nΦynmn zn + log
∑

m e−zT
nΦcmzn ≤ ξnc,

ξnc ≥ 0, ∀c $= yn, n = 1, 2, . . . , N
Φcm & 0, c = 1, 2, . . . , C, m = 1, 2, . . . , M

(9)

This optimization is not an instance of semidefinite programming, but it is convex. We discuss how
to perform the optimization efficiently for large data sets in appendix A.

2.4 Handwritten digit recognition

We trained large margin GMMs for multiway classification of MNIST handwritten digits [8]. The
MNIST data set has 60000 training examples and 10000 test examples. Table 1 shows that the large
margin GMMs yielded significantly lower test error rates than GMMs trained by maximum likeli-
hood estimation. Our best results are comparable to the best SVM results (1.0-1.4%) on deskewed
images [8] that do not make use of prior knowledge. For our best model, with four mixture compo-
nents per digit class, the core training optimization over all training examples took five minutes on a
PC. (Multiple runs of this optimization on smaller validation sets, however, were also required to set
two hyperparameters: the regularizer for model complexity, and the termination criterion for early
stopping.)

3 Large margin HMMs for sequential classification

In this section, we extend the framework in the previous section from multiway classification to
sequential classification. Particularly, we have in mind the application to ASR, where GMMs are
used to parameterize the emission densities of CD-HMMs. Strictly speaking, the GMMs in our
framework cannot be interpreted as emission densities because their parameters are not constrained
to represent normalized distributions. Such an interpretation, however, is not necessary for their use
as discriminative models. In sequential classification by CD-HMMs, the goal is to infer the correct
hidden state sequence y = [y1, y2, . . . , yT ] given the observation sequenceX = [x1, x2, . . . , xT ].
In the application to ASR, the hidden states correspond to phoneme labels, and the observations are

Figure 2.2: An example of the nonlinear hyperplane constructed by large margin

GMM [SS07b].

This formulation can also be extended by replacing the single Gaussian log-likelihood

for each class c by the log-likelihood of a Gaussian mixture model for each class.

Eq. (2.15) is a convex optimization which can be solved by general interior point

methods. However, interior point methods for this problem do not scale well to large

training sets. In practice, the optimization is performed by a specialized gradient-based

method. This is done by rewriting the optimization and incorporating the constrains via

a hinge function. Specifically, we consider the loss function:

L =
∑
c

trace(Φc) + γ
∑
i

[zTnΦynzn − zTnΦczn + 1]+. (2.16)

The loss function in eq. (2.16) can be easily minimized by gradient-based methods for

unconstrained optimization.

2.3 Sequential classification

So far we have discussed classification for i.i.d. data. Data correlated in time

or in space give rise to problems in sequential classification. Applications of sequential

classification include natural language processing, speech recognition, computational
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biology, and internet data analysis. The most popular models for sequential classifica-

tion are hidden Markov models (HMMs).

The goal of sequential classification is to map a sequence of unknown inputs

{xt}Tt=1 ∈ <d into a sequence of labels y with CT possible outputs, where T is the

length of the input sequence and C is the number of possible classes at each time t.

This goal is not easily accommodated by large margin classifiers such as SVMs. Re-

call that the training complexity of SVMs increases at least linearly with the number

of classes. In the sequential classification, the number of classes grows exponentially

with the sequence length. This exponential growth makes it difficult to naively apply

multiclass SVM algorithms to these problems. It remains an active research area to con-

struct large margin classifiers that incorporate the temporal correlations of sequential

examples [ATH03, JLL06a, SS07b, JFY09].

Following the work by Crammer et al. [CS01], Altun et al. [ATH03] proposed

the first formulation for combining a large margin classifier and an HMM. The hidden

Markov support vector machine (HM-SVM) first defines the feature mapping φ(x,y) to

map an input sequence x and its label sequence y to an extended feature space. Inspired

by HMM, HM-SVMs include two types of features. The first type describes attributes of

the given label; the second type describes the interaction between neighbouring labels.

The inference is done by

f(x) = argmaxy∈YF (x,y; w), (2.17)

where

F (x,y; w) = w · φ(x,y) =
∑
t

F (x,y; t) (2.18)

can be viewed as the summation of individual likelihoods and state transition likelihoods

given a sequence x. The feature mapping is designed to ensure that the inference can

be performed by Viterbi-decoding like algorithms. The feature mapping can also be

implicitly defined by specifying a kernel K on the input space

K((x,y), (x′,y′)) = φ(x,y) · φ(x′,y′). (2.19)

The constrained optimization in HM-SVMs can be written as

min 1
2
‖w‖2 (2.20)

s.t. F (xi,yi)−maxy 6=yi
F (xi,y) ≥ 1 ∀i.
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[ATH03] performed this optimization with a Perceptron-like algorithm. There are two

important contributions of this work: 1) although the algorithm works on sequential

data, the number of constraints remains linear in the sequence length; 2) the algorithm

imposes few limitations on the data and works well for large feature sets and long se-

quences. Note, however, that the model used in the paper is essentially a discrete hidden

Markov model; it is unclear how to apply the algorithm to classify sequences of contin-

uous feature vectors such as those that occur in automatic speech recognition.

However, if a kernel learning setting is desired in order to benefit from the sparse-

ness in the feature space, the dual representation of eq. (2.20) has to be investigated, and

the constraints have to be expanded to represent all possible hypotheses. In this case,

the number of constraints grows exponentially as the length of the data.

Taskar et al. [TGK04] proposed a similar framework for structure learning based

on large margin methods. The max-margin Markov networks (M3 nets) differs from

HM-SVM by two distinctions. The first one is its incorporation of a variable-sized

margin, instead of the 0− 1 loss as in eq. (2.20). In particular, the optimization problem

is formulated as

min 1
2
‖w‖2 (2.21)

s.t. F (xi,yi)− F (xi,y) ≥ ∆(yi,y) ∀i, ∀y,

where ∆(yi,y) denotes the per-label loss between the ground-truth sequence yi and

the hypothesis y. The variable-sized margin makes the optimization more dedicated to

the sequential classification applications, and can be generalized to minimize other loss

functions used in the evaluation.

The second distinction is their simplification of the constraints in eq. (2.21) based

on the assumption of a chain Markov network. They replace the exponential constraints

by constraints over cliques and each node, which results in a polynomial-sized formula-

tion. Eq. (2.21) is then optimized by the SMO algorithm in dual representations. Note,

however, that both HM-SVM and M3 nets are developed for discrete sequences, such as

handwriting recognition and part-of-speech tagging.

Unlike the applications with discrete sequences, hidden Markov models and

Gaussian mixture models are the most widely used for modeling continuous data, espe-

cially for applications of ASR. While generative models such as HMMs have achieved
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a good performance in modeling speech data, discriminative models have yielded state-

of-the-art performances in the recent developments. The emergence of large margin

methods in machine learning, especially on the nonlinear models, have also drawn a

great deal of interest in the speech community [LYL07, SS07b, JLL06b, KSSSC07].

Motivated by applications in ASR, Sha et al. [SS07b] proposed an extension of

large margin GMMs for problems in sequential classification. For these models, they

first define the discriminant function as the logarithm of the continuous-density HMM

D(x, s) =
∑
t

log a(st−1, st)−
∑
t

zttΦstzt, (2.22)

where Φst is defined as in large margin GMMs. The output space can be viewed as the

space containing all combinations of label sequences y, which is combinatorial in the

sequence length T . Inference is performed by Viterbi decoding in this space:

ŷ = argmaxyD(x,y). (2.23)

As in large margin GMMs, large margin HMMs seek to separate the data (xi,yi) from

all competing classes/sequences y by a large margin:

D(xi,yi)−D(xi,y) ≥ H(yi,y), ∀i,y ∈ Y , (2.24)

where H denotes the Hamming distance between the two sequences, and Y is the com-

binatorial output space of the label sequences. To handle the exponentially many con-

straints in eq. (2.24), the algorithm collapses them into a single convex constraint using

a softmax inequality, while keeps the problem convex; see [SS07b] for details.

The resulting optimization is given by:

min
∑

c trace(Φc) + C
∑

i ξi (2.25)

s.t. log
∑

s6=yi
eH(yi,y)+D(xi,y) −D(xi,yi) ≤ ξi, ∀i, c

Φc ≥ 0 ∀c.

To perform this optimization, [SS07b] developed a special-purpose solver that first com-

putes a good initialization using conjugate gradient methods, then refines the results by

a projected subgradient method.
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A potential shortcoming of all the methods in this section is that they are batch

methods for sequential classification. For very large data sets, as occur in ASR, it may

not be possible to store all the training sequence in memory. This motivates our discus-

sion of online methods in the next chapter of the thesis.



Chapter 3

Online Learning

The history of online learning can be traced back to early learning systems,

which required simple algorithms due to the limitations of the hardware. However, to-

day’s large datasets have led to a resurgence of interest in online algorithms, especially

for large-scale applications such as automatic speech recognition (ASR). While the first

online learning algorithms emerged from applications focused on simple settings - such

as binary classification with linear models - these algorithms have now been extended to

a wide range of applications, including multiway classification [SS99, CS03, KSST08]

and sequence labeling problems [Col02, MCP05, MP06]. In this chapter we review

previous work in online learning, focusing especially on work related to large margin

methods and large-scale applications.

Online algorithms usually work in rounds. In each round, the algorithm sees

an example and updates the parameters to improve its model. Online algorithms differ

from batch algorithms which accumulate statistics over an entire training set and update

model parameters after each such pass. Online algorithms emerged to compensate for

the main disadvantages of batch algorithms (e.g., the need to store large amounts of

training data in memory, the massive computation required per model update), which

can hinder large-scale applications [BL04].

19
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3.1 Perceptron

The simplest and the most fundamental online algorithm is perhaps Rosenblatt’s

Perceptron [Ros58]. The perceptron is an algorithm for binary classification. Given

a sequence of examples {(x1, y1), (x2, y2), . . . , (xN , yN)}, the goal of binary classifi-

cation is to map an unknown observation x to a class label c = {+1,−1}. Here we

assume that the training examples are received in a sequential manner; namely, at time

t, the incoming example is (xt, yt).

The perceptron attempts to learn a linear discriminant function f(x) = wTx.

The decision rule g(x) for the perceptron is given by

g(x) = { +1 if f(x) > 0,

−1 if f(x) < 0.
, (3.1)

Whenever a misclassification occurs, the parameter w is updated by

wt+1 ← wt + ytxt. (3.2)

The algorithm iterates through the whole training set until there are no more misclas-

sifications (if the examples are linearly separable) or until the error rate is as small as

possible (if they are not).

In addition to its extreme simplicity, the perceptron provably converges to an

error-free hyperplane in a finite number of iterations when the data is linearly sepa-

rable [FS99]. However, convergence does not occur if the examples are not linearly

separable. In this case, because the learning rate of the basic perceptron is fixed, the

algorithm may exhibit severe fluctuations.

Although the basic perceptron cannot handle non-linearly separable data [Bis96],

extensions of the algorithm have been proposed to cover this case (e.g., choosing a non-

linear feature mapping [CV95, SB00], or replacing the linear model by a deep architec-

ture [Bis96]).

When the data is linearly separable, the perceptron algorithm will eventually

converge to the optimal separating hyperplane. However, the data might be non-linearly

separable or we do not want to wait until the convergence. When this happens, the ques-

tion is how to force the perceptron algorithm to converge to a single “nearly optimal”
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solution. One solution could be using a decreasing learning rate ηt, which is originally

suggested in the context of stochastic gradient descent (SGD) in the backpropagation

for neural network training [LBOM98]. Another solution, provided by [FS99], is to use

the classifier which has survived for the longest time in the online updates. The more

training examples the perceptron correctly classifies, the more likely it is the perceptron

may also correctly classify an unknown data.

The alternative version of the perceptron algorithm seeks an optimal classifier

from the sequence of classifiers generated in the online learning without the assump-

tion of linear separability. The algorithm in [FS99] works by counting the number of

survivals of every perceptron generated in the online learning, and the final prediction

is voted by all these perceptrons, which they call a “voted perceptron”. Given a list of

weighted perceptrons {(f1, c1), (f2, c2), . . . , (fk, ck)}, in which ci is the weight of the

ith perceptron fi, the voted perceptron computes the prediction for an unknown input x

by

ŷ = sign(
k∑
i=1

cisign(fi(x))). (3.3)

The weights ci are determined by how long one hypothesis fi survives in the training

examples. The voted perceptron attempts to model the data that are not linearly sepa-

rable or to accelerate convergence to an optimal hyperplane (which in general takes a

long time) even when the data are linearly separable. Intuitively, the voted perceptron

looks for good hypotheses by examining which simple perceptrons survive the longest

time. Then, in the final voting, these good hypotheses are assigned heavier weights.

Geometrically, the optimal hypothesis is estimated by constructing a weighted average

of all the suboptimal hypotheses based on the survivals during training. [FS99] derived

a generalization bound for the voted perceptron under the condition that the data are

almost linearly separable.

The experiments in [FS99] show that this alternative algorithm for training large

margin classifiers converged faster but generalized poorer than traditional SVMs on

MNIST dataset. Nevertheless, the voted perceptron helped the convergence by a sig-

nificant amount than the standard perceptron, especially in the non-linearly separable

condition (i.e., in the low dimensional feature space).

In the implementation, the voted perceptron has to store every single updated
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perceptron and its count of survivals. This prevents the voted perceptron being scaled

to a larger training set or unlimited data. An equivalent method, average perceptron, is

more memory efficient and exhibits the same theoretical and experimental properties as

the voted perceptron [FS99]:

ŷ = sign(
k∑
i=1

cifi(x)). (3.4)

The average perceptron has been adopted in many perceptron-like algorithms to stabilize

the fluctuations in the online updates [Col02, Zha04].

3.2 Multiclass Perceptron

We have discussed the extension from binary classification to multiway classifi-

cation for large margin methods in Section 2.2. In a similar way, we can generalize the

original perceptron to handle multiclass problems [DH73, CS03, FSSSU06].

The goal of multiway classification is to infer the class label c ∈ {1, 2, ..., C} of

an unknown observation x from the training set {xi, yi}Ni=1 with N observations. Let

wj indicate the weight vector associated with the jth class. The goal of the multiclass

perceptron is to learn weight vectors such that

wT
yi
xi ≥ max

j
wT
j xi, ∀(xi, yi). (3.5)

In other words, it is desired that the score of the correct class is greater than those of all

competing classes.

The optimization problem is to ensure that eq. (3.5) is satisfied for as many

training examples as possible. A mistake-driven update can be developed for multiclass

perceptrons analogous to the one in eq. (2.9). Specifically, let ŷi denote the predicted

label of the training example xi, given by:

ŷi = argmaxj(w
T
j xi). (3.6)

Then, if a mistake is made (ŷi 6= yi) on this example, the parameters are updated by

wyi
← wyi

+ ηxi (3.7)

wŷi
← wŷi

− ηxi,
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Figure 3.1: An illustration of multiclass perceptrons for eq. (3.7). Suppose the training

example x of class 1 is misclassified by class 2, both weight vectors w1 and w2 are

adjusted by an amount proportional to x.

where η is a user-defined learning rate. The update rule is geometrically illustrated in

Fig. 3.1.

Multiclass perceptrons share the same basic features as binary perceptrons. They

are simple to implement and provably converge when the data is linearly separable.

When the data is not separable, convergence to a “nearly optimal” solution can be ob-

tained by decaying the learning rate and/or averaging the results over time, as discussed

earlier for binary perceptrons.

The multiclass perceptron algorithm was derived as a special case of so-called

ultraconservative learning algorithms in [CS03]. At each iteration, these algorithms

update the weight vectors for all classes with higher overlaps than the target class. In

particular, let E = {r 6= yi|wr · xi ≥ wyi
· xi} denote the error set for example (xi, yi).

When E 6= φ, the update rules are given by:

wt+1
yi

← wt
yi

+ xi, (3.8)

wt+1
r ← wt

r −
1

|E|xt, ∀r ∈ E.

The number of errors made by the classifier is invariant to scale transformations

wi → λwi of all the weight vectors. However, by imposing a minimum norm constraint

on all the weight vectors, a unique solution is obtained. In fact, by incorporating a large
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margin constraint, eqs. (3.7-3.8) can be viewed as a form of stochastic gradient descent

on the loss function for multiclass SVMs.

3.3 Structured Perceptron

The perceptron algorithm has also been generalized to sequential classifica-

tions [Col02]. It was first applied in this way to improve part-of-speech tagging by

hidden Markov models (HMMs). In this thesis we review the structured perceptron

algorithm for sequential classification in more general terms.

Given a set of training data {(xi[1:ni]
,yi[1:ni]

)}Ni=1, where xi[1:ni]
is the ith obser-

vation sequence of length ni and yi[1:ni]
is its true label sequence, our goal is to learn a

weight vector w such that we can accurately predict the label ŷ of any observation x as

ŷ = argmaxyw
Tφ(x,y). (3.9)

Here φ(x,y) maps the observation/label sequence to a set of features which encode im-

portant correlations. For example, in part-of-speech tagging, the feature may count the

co-occurrences of certain words, tags, and histories. More generally, the feature vector

φ(x,y) counts the number of emissions and state transitions over the whole sequence.

The weight vector in eq. (3.9) plays a role analogous to the (log) emission and state tran-

sition probabilities in discrete HMMs. The optimization in eq. (3.9) can be performed

by dynamic programming algorithms such as Viterbi decoding.

Assuming the data are linearly separable, we can look for a weight vector w

such that

wTφ(xi[1:ni]
,yi[1:ni]

) ≥ max
y

wTφ(xi[1:ni]
,y[1:ni]), ∀i. (3.10)

More generally, we can attempt to minimize the difference between the left and right

terms in the above equation whenever an error does occur. As in the original perceptron

algorithm, this can be done by updating the weight vector in an online fashion. For

sequential classification, the mistake-driven update is given by:

wt+1 ← wt + η(φ(xi[1:ni]
,yi[1:ni]

)− φ(xi[1:ni]
, ŷi[1:ni]

)), (3.11)

which is performed whenever an error occurs (i.e., yi 6= ŷi).
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Table 3.1: A summary of Perceptron-based classification for different applications.
Perceptron-based updates

Binary wt+1 ← wt + ηytxt

Multiclass
wyi
← wyi

+ ηxi
wŷi
← wŷi

− ηxi
Structured wt+1 ← wt + η(φ(xi[1:ni]

,yi[1:ni]
)− φ(xi[1:ni]

, ŷi[1:ni]
))

For part-of-speech tagging, this update rule has a simple intuition. Suppose that

φ(xi1:ni
,yi1:ni

) counts the number of co-occurrences of particular words and tags. If a

unique word in the sequence xi was incorrectly tagged in the decoded label sequence

ŷi, then the update rule would increase (by +η) the corresponding weight for the correct

word-tag count and decrease (by +η) the corresponding weight for the incorrect word-

tag count. A table of the perceptron algorithms discussed in this chapter is summarized

in Table 3.1.

3.4 Online learning in large margin methods

The main difficulty in SVM training arises from the large quadratic program-

ming problem (eq. (2.6)). With as many constraints as labeled examples, the primal

problem becomes unmanageable for large training sets. For this reason, most state-

of-the-art SVM solvers work in the dual space of the SVM optimization problem (see

Chapter 2). The dual has two advantages: 1) it lends itself naturally to the kernel tricks,

and 2) the solution is sparse, enabling active set methods that focus on a subset of train-

ing examples. These so-called “decomposition methods” or “subset methods” are based

on incremental updates. Although decomposition methods have greatly reduced the

training times for SVMs, the amount of computation still scales super linearly in the

number of labeled examples; also, these algorithms do not have known asymptotic rates

of convergence (see Section 2.1). Thus, it remains an ongoing research problem to find

the most efficient way to solve the quadratic programming problem in SVMs.

The above issues have inspired a number of online learning algorithms for com-

puting maximal margin hyperplanes, including perceptron-like approaches [SSSS07,

CDSSS03, CKS03, LL02]. The first work in this area was done by Li et al [LL02],
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whose Relaxed Online Maximum Margin Algorithm (ROMMA) converted the batch

optimization in SVM to an online task. Recall that the constraints in SVM optimization

eq. (2.6) form a convex polyhedron with one constraint per labeled example. For online

learning, this suggests that at each iteration t, the hypothesis wt must be chosen to satisfy

the constraints generated by all previous examples. ROMMA relaxes this requirement

by replacing the polyhedral constraint with two simpler linear inequalities. With this

relaxation, the mistake-driven update rule reduces to solving a least square problem. On

the MNIST data set, ROMMA yielded better results than voted perceptrons (but wirse

results than SMO, an active set method for solving the batch optimization in SVMs).

[Bot07] has suggested that online learning algorithms may obtain comparable

results as batch algorithms in less training time. The most straightforward online al-

gorithms for SVMs applies stochastic gradient descent (SGD) to the unconstrained op-

timization problem in eq. (2.16). A number of researchers employ this idea. [Zha04,

KSW01] adapted SGD to the SVM optimization (similar to eq. (2.16)) with a sophis-

ticated tuning of the regularization term and learning rate. More recently, Shalev-

Schwartz et al. [SSSS07] developed a more sophisticated solver, which attempts to

combine the advantages of online and batch methods. They use a subgradient method

on mini-batches of training examples, decomposing the training data into chunks and

performing online updates on these small subsets of examples. All these algorithms can

be combined with kernel methods. For linear SVMs, a simple SGD solver has been

shown to obtain comparable results (on the MNIST dataset) as state-of-the-art batch

implementations, such as SVM-Lite [Joa99].

As discussed earlier, an important key to the success of SVMs is the use of

kernel methods. By mapping the input vectors into an arbitrary high dimensional feature

space, these methods ensure that the data becomes linearly separable, or at least nearly

so. The feature mapping is defined implicitly through the kernel function, which is

then used to compute the kernel matrix of inner products between training examples. In

the dual formulation of SVMs, the training examples appear only through these inner

products [Bur98].

However, kernel-based online algorithms are in general working in the primal

formulations (e.g. the algorithms in [LL02] and [FS99]). When an error occurs, the
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weight vector is updated by adding a component in the direction of the mistaken training

example:

wi =
i∑

j=1

yεj
xεj

, (3.12)

where εj is the index to the training data which makes an error in the jth update, also

known as support vectors. According to eq. (3.2), the decision rule can be represented

in terms of dot products between the support vectors and the unknown input, which is

of the general form to apply kernel tricks.

The weight vector in eq. (3.12) is represented by a combination of the erroneous

instances, which must be stored as a support set. It is clear that if the data is not lin-

early separable, then the updates will never stop, requiring unbounded memory. Several

researchers have addressed this problem in the past. Crammer et al [CKS03] proposed

the first online algorithm to overcome the unbounded accumulation of support vectors:

they control the memory requirement by setting a “budget” on the support set and prun-

ing redundant support vectors whenever new candidate support vectors are added to

the set. There are many open issues in this line of research, such as how to identify

redundancy and how to prune support vectors. These issues have also been studied

by [DSsS08, OKC08, DCP08].



Chapter 4

Automatic Speech Recognition

Research in automatic speech recognition (ASR) began several decades ago and

still remains active. The earliest techniques were based on our understanding of hu-

man speech production and perception, and attention was focused on small-vocabulary

applications, such as isolated word recognition. In the 1970’s, the field of ASR was

revolutionized by statistical methods that modeled the density of the speech signal, as

represented by a sequence of acoustic feature vectors. Over time, hidden Markov model

(HMM) have emerged as the leading statistical framework for ASR [JR05].

Today we face difficult challenges in large-vocabulary speech recognition, mul-

tilingual transcription, and speech-to-speech translation [PP02, GY08]. Some of these

tasks have already been commercialized, owing to the high accuracy of current ASR

systems. This accuracy (though still not perfect) has been due to steady advances in

acoustic modeling and statistical estimation. In this chapter we review the current foun-

dation of ASR, with a special focus on recent advances in acoustic modeling.

4.1 Basic architecture of a speech recognizer

The input to a continuous speech recognizer is a speech waveform recorded from

a microphone. Typically, the speech signal is analysed every 10ms with a sliding win-

dow of 25ms in length. Based on this analysis, the front end of the recognizer segments

and converts the waveform into a sequence of acoustic feature vectors. Finally, the

acoustic feature vectors are fed into a decoder, which is the heart of a recognizer. The

28
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Fig. 2.1 Architecture of a HMM-based Recogniser.

represented by the acoustic model is the phone. For example, the word
“bat” is composed of three phones /b/ /ae/ /t/. About 40 such phones
are required for English.

For any given w, the corresponding acoustic model is synthe-
sised by concatenating phone models to make words as defined by
a pronunciation dictionary. The parameters of these phone models
are estimated from training data consisting of speech waveforms and
their orthographic transcriptions. The language model is typically
an N -gram model in which the probability of each word is condi-
tioned only on its N − 1 predecessors. The N -gram parameters are
estimated by counting N -tuples in appropriate text corpora. The
decoder operates by searching through all possible word sequences
using pruning to remove unlikely hypotheses thereby keeping the search
tractable. When the end of the utterance is reached, the most likely
word sequence is output. Alternatively, modern decoders can gener-
ate lattices containing a compact representation of the most likely
hypotheses.

The following sections describe these processes and components in
more detail.

2.1 Feature Extraction

The feature extraction stage seeks to provide a compact representa-
tion of the speech waveform. This form should minimise the loss of

Figure 4.1: An overview of the architecture of a modern speech recognizer [GY08].

process is illustrated in Fig. 4.1.

Given a sequence of acoustic feature vectors X = (x1,x2, . . . ,xT ), the goal

of the decoder is to find the sequence of words W that generated the utterance. The

inference is done by computing maximum a posteriori (MAP) word sequence:

Ŵ = argmaxWp(W|X) = argmaxWp(W)p(X|W). (4.1)

Note that the length of the word sequence can vary from hypothesis to hypothesis in a

continuous speech recognizer; the best length is determined by the MAP inference of

Ŵ in eq. (4.1).

The first term p(W) in eq. (4.1) is the recognizer’s language model, while the

second term p(X|W) is the recognizer’s acoustic model. The language model estimates

the probability of word transitions in a given language. It is usually represented by an

N -gram model, where N is an integer. Namely, the probability of a word Wk appearing

in a sentence depends on the preceding N − 1 words:

P (Wk|W1,W2, ...,Wk−1) = P (Wk|Wk−n+1, ...,Wk−1). (4.2)

The language model can be learned by counting the co-occurrence frequencies of words

in text documents. The function of a language model is to prune the search space of

hypotheses during decoding. If a sentence is unlikely to appear in one language, the

decoder will eliminate this sentence based on its small word transition probability. To

define the space of hypotheses, modern ASR systems usually assume a predefined vo-

cabulary. A dictionary lists all the words in the vocabulary, as well as specifying their

constituent phonemes (i.e., the smallest units of speech that are used in a particular

language).
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All of the blocks in Fig. 4.1 are customized and integrated to optimize the per-

formance of the decoder. Next, we review the modules for acoustic feature extraction

and acoustic modeling.

4.2 Acoustic feature extraction

The front end of the recognizer typically analyses the speech signal in sliding,

overlapping windows of length ∼ 25ms. A new frame of acoustic features is created by

sliding these windows in intervals of ∼ 10ms over the speech signal. The duration of

each frame is so short that the spectral information within each frame is assumed station-

ary. The spectral information is computed by a Fourier transform or linear prediction

analysis [GY08].

A number of different feature extraction techniques have been studied in

ASR [Her90]. Here we review the computation of Mel-frequency cepstral coefficients

(MFCCs). To compute MFCCs, the Fourier spectrum is first smoothed by a set of band-

pass filters that are uniformly spaced on a Mel-scale of the frequency spectrum. The

Mel-scale is inspired by human listeners, whose frequency selectivity is linear for fre-

quencies under 1000Hz and logarithmic for higher frequencies. The filter outputs are

passed through a log-compression in order to make them approximately Gaussian, then

decorrelated by a discrete cosine transform (DCT). Alternatively, similar decorrelation

effects can be obtained by Linear Prediction method or KL transform [Gal99]. The pur-

pose of decorrelation is to enable the low-order coefficients of the DCT to be modeled

as independent Gaussian variables. Usually the first 13 coefficients of the DCT are re-

tained as the so-called cepstral coefficients. Alternatively, similar decorrelation effects

can be obtained by Linear Prediction method or KL transform [Gal99].

Most statistical methods for ASR assume the signal in each frame is stationary

and model successive frames as independent (conditioned on the words being spoken).

However, this is a poor assumption for real speech. One way to incorporate the correla-

tion between neighbouring frames is to compute the first and second derivatives of the

MFCCs and append them to the feature vector. Thus the final feature vector for ASR

consists of 39 dimensions in total, and a sequence of these feature vectors are passed to
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Figure 4.2: An overview of the process of acoustic feature extraction, which is exem-

plified in MFCC computation [You96].

the recognizer’s acoustic model for further processing.

4.3 Acoustic modeling

An acoustic model computes the likelihood p(X|W) of acoustic feature vectors

X given words W. Most commonly this is done with a hidden Markov model (HMM),

which defines a joint distribution over sequences of hidden states (e.g. words) and obser-

vations (e.g. feature vectors). An HMM is parameterized by an initial state distribution,

a transition matrix, and an emission density in each state [Rab89]. The emission densi-

ties in ASR are usually parameterized by Gaussian mixture models (GMMs).

Most recognizers use phonemes to represent the basic units of speech [GY08].

Each phoneme is typically modeled by a left-to-right HMM with three hidden states. A

word HMM is constructed by concatenating the corresponding HMMs for its constituent

phonemes, and the HMM for a sequence of words is constructed similarly by concate-

nating the word HMMs. Fig. 4.3 illustrates the state space of a 3-state left-to-right
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Figure 4.3: A typical 3-state HMM for a phoneme, with one additional state at the front

and at the end for silence and transition between phonemes [You96].

HMM, with two additional states at the front and end to model silence and phoneme

transitions.

Parameter estimation in HMMs is traditionally handled by the

expectation-maximization (EM) algorithm for maximum likelihood estimation:

θMLE = argmaxθ
∑
i

log p(Xi|Wi; θ), (4.3)

where θ denotes the parameters to configure the HMM. The HMMs for correct word

sequence can be constructed by concatenation. However, when the exact locations of

phoneme boundaries are unknown, the states st of the HMMs must be treated as hidden

variables. An auxiliary function for the log-likelihood log p(Xi, s; θ̂) is given by

Q(θ̂, θ) =
∑
i

∑
s

p(Xi, s; θ) log p(Xi, s; θ̂), (4.4)

where θ̂ denotes the parameters to be updated given the current parameters θ. The up-

dates are obtained by maximizing the right hand side of eq. (4.4), which in turn computes

statistics of the posterior distributions p(st|X i
t ; θ). These statistics can be computed effi-

ciently by forward-backward algorithms, and when the emission densities are Gaussian

mixture models, closed form expressions can be derived for the maximization and pa-

rameter updates [Rab89].
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At test times, the search for the most likely word sequence must trace over the

whole hypothesis space. This space is usually represented by a trellis, where each node

in the trellis is a word (or word sequence) allowed by the language model. The decod-

ing can be efficiently performed by dynamic programming algorithms (e.g. the Viterbi

algorithm), with language models helping to eliminate unlikely paths and speed up the

search.

4.4 Discriminative Training

As mentioned in the previous section, parameter estimation in generative mod-

els is most commonly handled by EM algorithm for maximum likelihood estimation

(MLE). The success of MLE is generally based on several assumptions: 1) the under-

lying parametric model is correct, 2) the true language model is known, and 3) the size

of the training data is infinitely large [Nad83]. These assumptions are hard to met for

real speech signals, notwithstanding the many efforts that are made in the acoustic fea-

ture extraction (i.e., log compression, DCT, and derivative features) to accommodate the

framework.

Many have suggested [Vap98] that one should solve classification problems di-

rectly rather than estimating a generative model of the data as an intermediate step. Tis

observation has raised interest in discriminative training methods, which attempt to min-

imize the classification error directly instead of estimating the parameters of a generative

model for the underlying distribution.

Discriminative training methods have significantly improve the accuracy of ASR

in the last two decades. Here we briefly review MLE and compare it with the two most

popular discriminative training methods for ASR. For simplicity, we begin by reviewing

the basic ideas in the context of multiway classification for i.i.d. data (see Chapter 2).

Finally, we discuss the extension to sequential classification, focusing on the challenges

that arise in ASR.
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4.4.1 Maximum Likelihood Estimation

The decision rule for classifying an unknown data x into one of the C classes is

ŷ = argmaxcp(c|x) ∝ argmaxcp(x|c)p(c). (4.5)

If we assume that the prior distribution for each class c is known, then what we need

to learn for this decision rule is the class conditional distribution p(x|c) over x. MLE

is the simplest approach to learn the distribution p(x|c) from training examples; the

parameters are estimated by maximizing the likelihood:

θMLE = argmaxθ

N∏
i=1

p(xi|yi; θ) = argmaxθ

N∑
i=1

log p(xi|yi; θ), (4.6)

where θ is the parameter set and N is the number of training examples. Note that the

parameter set θ can be separated into C disjoint sets θ = {θc}Cc=1, and that in MLE, the

parameters of each class can be learned independently.

The success of MLE is not guaranteed when the data’s underlying distribution

does not match the form of the model. Nor does it yield the best-performing classi-

fier when the amount of training data is limited. Both these difficulties arise in ASR.

Not surprisingly, these limitations of MLE have generated interest in other methods for

parameter estimation.

4.4.2 Conditional Maximum Likelihood

The decision rule in eq. (4.5), based on maximum a posterior (MAP), suggests

another approach to parameter estimation [Nad83]. Instead of maximizing the joint like-

lihood of training data given the class labels, the intuition behind conditional maximum

likelihood (CML) is to estimate parameters which directly maximize the log-probability

of correct classification:

θCML = argmaxθ

N∑
i=1

log p(yi|xi; θ)

= argmaxθ

N∑
i=1

log
p(xi, yi; θ)

p(xi; θ)
, (4.7)
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We can rewrite the right hand side of eq. (4.7) as the difference between the likelihood

of the data given the correct class label and the overall likelihood:

θCML = argmaxθ

N∑
i=1

{log p(xi, yi; θ)− log
∑
c

p(xi, c; θ)}. (4.8)

Thus, to maximize this objective function is to increase the gap in log-likelihood be-

tween the correct labeling and all other hypotheses.

A related estimator is based on maximizing the mutual information between

examples and labels:

θMMI = argmaxθ

N∑
i=1

log
p(xi, yi)

p(xi)p(yi)
, (4.9)

where we omit θ for simplicity. When the prior probabilities of class labels are fixed,

the so-called maximum mutual information (MMI) estimator [BBdSM86] in eq. (4.9)

is equivalent to the CML estimator in eq. (4.7). This equivalence usually holds in the

training of large vocabulary speech recognizers.

4.4.3 Minimum Classification Error

Another appealing approach is minimum classification error (MCE) [JK92],

which aims at minimizing the generalization error, i.e. the probability of misclassi-

fying an unlabeled example Pr(x,y)∼D[g(x) 6= y], where g(X) is the decision function

such as the one defined in eq. (4.5), drawn from the same underlying distribution as the

training data. Unlike CML, MCE works directly on the misclassification error rate, but

both these approaches share the same benefits of discriminative training [NJ02].

MCE algorithm are derived by defining a discriminant function and minimizing

an objective function that serves as a surrogate for the misclassification rate. For the

discriminant function g(x), we can use the posterior probability

g(x, y) = p(y|x; θ); (4.10)

thus the Bayes decision rule can be written

ŷ = argmaxcg(x, c). (4.11)
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The goal of MCE is to directly minimize the number of misclassifications; to do so, we

would estimate

θMCE = argminθ

N∑
i=1

δ(ŷi 6= yi), (4.12)

where δ(z) is an indicator function equal to one if and only if the argument z is true.

However, the misclassification count in eq. (4.12) is nondifferentiable and hence difficult

to optimize. Juang et al. [JK92] suggested an alternative approach. They defined the

surrogate measure:

d(xn) = −g(xn, yn) +

[
1

C − 1

∑
c 6=yn

g(xn, c)
η

]1/η

, (4.13)

where η > 0 is a trainable parameter. Note that as η →∞, eq. (4.13) reduces to

lim
n→∞

d(xn) = −g(xn, yn) + g(xn, y
∗), (4.14)

where y∗ is the predicted class with the largest discriminant value among classes other

than yn.

The surrogate measure is differentiable, but it does not closely track the misclas-

sification count in eq. (4.12). A final objective function for MCE training is obtained by

projecting eq. (4.14) into the interval [0, 1] by sigmoid transfer function:

`(d(xn)) =
1

1 + exp(−αd(xn) + β)
. (4.15)

Here α is a heuristically chosen parameter that tunes the sharpness of the sigmoid func-

tion. Bounded between 0 and 1, the loss in eq. (4.15) serves as a differentiable approx-

imation of the misclassification count in eq. (4.12). The optimization for MCE training

is usually done by gradient-based methods [LM05, MHR+07].

4.4.4 Challenges for sequential classification

New challenges arise when discriminative training is extended to problems in

sequential classification. Given training sequences {(Xi,Wi)}Ni=1, where Xi and Wi

are sequences of observations and class labels, the goal of learning is to estimate param-

eters that correctly label new observation sequences drawn from the same underlying
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Fig. 2.6 Example lattice and confusion network.

longer correspond to discrete points in time, instead they simply enforce
word sequence constraints. Thus, parallel arcs in the confusion network
do not necessarily correspond to the same acoustic segment. However,
it is assumed that most of the time the overlap is sufficient to enable
parallel arcs to be regarded as competing hypotheses. A confusion net-
work has the property that for every path through the original lattice,
there exists a corresponding path through the confusion network. Each
arc in the confusion network carries the posterior probability of the
corresponding word w. This is computed by finding the link probabil-
ity of w in the lattice using a forward–backward procedure, summing
over all occurrences of w and then normalising so that all competing
word arcs in the confusion network sum to one. Confusion networks can
be used for minimum word-error decoding [165] (an example of min-
imum Bayes’ risk (MBR) decoding [22]), to provide confidence scores
and for merging the outputs of different decoders [41, 43, 63, 72] (see
Multi-Pass Recognition Architectures).

Figure 4.4: An example of a typical word lattice to represent hypotheses for a sen-

tence [GY08].

distribution. In speech recognition, the class labels can be words or phonemes, and for

concreteness we assume they are words. Consider the case of MMI as discussed in the

previous section. In this case, the parameters are estimated as:

θMMI = argmaxθ

N∑
i=1

log
p(Xi,Wi; θ)∑
W p(Xi,W; θ)

, (4.16)

where the denominator in the logarithm sums over all possible word sequences. Note

that the number of possible hypotheses grows exponentially with the length of each

sequence.

The optimization of the MMI criterion in eq. (4.16) requires maximizing the nu-

merator while minimizing the denominator. The numerator is the only of these terms that

appears in ML estimation. The overall computation for MMI training is dominated by

the denominator and affected greatly by the size of the vocabulary, the language model,

and the contextual acoustic models. For large vocabulary speech recognition, where it is

common to use cross-word context-dependent acoustic models and long-span language

models, it is generally impossible to compute the sum over all hypotheses in the denom-

inator. To improve the efficiency, most state-of-the-art systems implement a word lattice

(Fig. 4.4) that provides a compact representation of the most likely hypotheses [GY08].

For sequential classification, another difficulty of discriminative training arises

from the numerical optimization of eq. (4.16). ML estimation is very appealing in

ASR due to its simplicity and efficiency; the EM algorithm scales very well , even

to large-vocabulary ASR. Early approaches to discriminative training were based on

gradient methods which converge more slowly than EM updates for ML estimation.

Later, [GKNN91, VOWY97] proposed the extended Baum-Welch (EBW) algorithm for
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spanning nodes k to l, the forward probability is
given by

a s a P w P w , 14Ž . Ž . Ž .Ýl k acoust k , l lang k , l
k

where P is the maximum likelihood of wordacoust
w hypothesised between the time instances cor-k , l
responding to nodes k and l, and P is thelang
language model probability of w . The back-k , l
ward probabilities b are computed in a similark
fashion starting from the end of the lattice.

4. For each pair of nodes k and l, the corresponding
a and b are propagated into the sequence ofk l
model instances corresponding to word w , andk , l
statistics are accumulated. For simplicity, statis-
tics are accumulated across the best state se-
quence between nodes k and l. Thus, the poste-
rior occupation probability remains constant
within each word and is given by

a P w P w bŽ . Ž .k acoust k , l lang k , l l
g s , 15Ž .k , l LL

where LL is the total lattice likelihood computed
by summing the forward probabilities over all
hypothesised end words. Given g , a Viterbik , l
alignment is then performed for the arc spanning
node k to node l using the acoustic model for
word w to give the required component occupa-k , l

Ž .tion probabilities g t for each HMM state jj,m
and component m within the model.

5. The statercomponent occupation probabilities
computed in step 4 for each of the numerator and

Ž .denominator lattices enable the statistics u OO ,j,m
genŽ . Ž 2 . genŽ 2 . genu OO , u OO , u OO , g and g de-j,m j,m j,m j,m j,m
fined in Section 2.1 to be accumulated over all
training utterances.

6. When all training utterances have been processed,
new parameter estimates are calculated according

Ž . Ž . Ž .to Eqs. 4 , 5 and 8 with D being adjusted on
a per-phone basis according to the procedure
described in Section 2.2.

In order to save computation, each successive re-
estimation cycle is repeated from step 2 rather than
from step 1 on the assumption that the high likeli-
hood statercomponent alignments encoded within
the initial set of lattices do not change during train-
ing.
The computational steps involved in the imple-

Fig. 2. Discriminative training framework for LVCSR systems.

mentation of this discriminative training procedure
are illustrated in Fig. 2. The top left and right
branches of the diagram show the calculation of
statistics for the numeratorrdenominator parts of the
MMIE objective function, respectively. For each
training utterance, the numerator or denominator lat-
tice is loaded into the recogniser and reduced to a
word graph. Recognition is performed using the
current HMM set and the language model scores
from the word graph. A new output lattice is then
produced containing the original language model
scores and new acoustic scores. This is followed by

Ž . Ž .the computation of forward a and backward b
probabilities for each node in the lattice. In a post-
processing step, the two sets of statistics are com-
bined to calculate new parameter values according to

Ž . Ž . Ž .Eqs. 4 , 5 and 8 . This is optionally followed by
an up-mixing procedure whereby component occu-
pancy statistics are used to split selected mixture
components as described in Section 2.3.

4. Experiments

4.1. Lattice generation

For the experiments reported here, lattices were
generated by the HTK LVCSR system using state-

Figure 4.5: A sample framework of discriminative training for large-vocabulary speech

systems [VOWY97].

discriminative training. The EBW updates are re-estimation formulae based on statistics

that can be computed from forward-backward algorithms. The re-estimation is stabi-

lized by a scaling factor that must be heuristically determined. Currently EBW is the

most effective and efficient algorithm for discriminative training in ASR. In large vo-

cabulary speech systems, the algorithm requires the generation of word lattices, and one

forward-backward pass for each EBW update and re-scoring of the lattices (see Fig. 4.5).

In addition, it is usually implemented in parallel on a cluster of fast machines.



Chapter 5

Baseline Experiments

In Chapter 4 we discussed the general framework for ASR used in modern

commercial and laboratory systems. In this chapter, we shift focus to the problem of

phoneme recognition, which can be viewed as speech recognition without the benefit of

a language model. The experimental settings in phoneme recognition are slightly dif-

ferent than those of word recognition, as described in the previous chapter. Phoneme

recognizers have a much smaller hidden state space than word recognizers, making it

possible to experiment more easily with alternative learning strategies. For this rea-

son, research in phoneme recognition remains useful for improving our understanding

of more general problems in ASR [SRP09, WEK+09, DRrMH10, Cra10, SNE+10].

We begin by reviewing basic notation for continuous-density HMMs (abbrevi-

ating to CD-HMMs) and their use for phoneme recognition. We also report several

previous benchmarks for acoustic modeling, against which subsequent models will be

judged. Unless specified otherwise, the notations here will be used in the remaining

chapters of this thesis.

5.1 Continuous-density hidden Markov models

CD-HMMs define a joint probability distribution over sequences of hidden states

s = {s1, s2, . . . , sT} and observations x = {x1, x2, . . . xT}. The joint distribution is ex-

pressed in terms of the initial state distribution P(s1), the hidden state transition matrix

P(st+1|st), and the emission densities P(xt|st). In terms of these quantities, the joint

39



40

distribution is given by:

P(s,x) = P(s1)
T−1∏
t=1

P(st+1|st)
T∏
t=1

P(xt|st). (5.1)

For phoneme recognition, each hidden state represents a sub-word linguistic unit (such

as a phoneme), and each observation corresponds to an acoustic feature vector. The

emission densities for ASR are parameterized by Gaussian mixture models (GMMs),

with mixture weights P(c|s), mean vectors µsc, and covariance matrices Σsc for the cth

component of each hidden state. In terms of these parameters, the emission densities are

given by:

P(x|s) =
∑
c

P(c|s)√
(2π)d|Σsc|

e−
1
2

(x−µsc)>Σ−1
sc (x−µsc). (5.2)

Given a sequence of observations x, we can infer the most likely hidden state sequence

s∗ as:

s∗ = argmaxs logP(s|x,Θ). (5.3)

The inference in eq. (5.3) depends on the parameters of the CD-HMM, which we col-

lectively denote by Θ. The right hand side of eq. (5.3) can be computed efficiently by

dynamic programming. In particular, of all possible sequences of hidden states, the

Viterbi algorithm recursively constructs the one with the highest posterior probability.

5.2 Generative versus discriminative approaches

The simplest form of training for CD-HMMs is ML estimation. ML estimation

is based on viewing CD-HMMs as a generative model of speech. For joint examples

{(xn,yn)}Nn=1 of observation sequences and target state sequences, this approach aims

to maximize the joint log-likelihood:

ΘML = argmaxΘ

N∑
n=1

logP(yn,xn|Θ). (5.4)

Once the overall model architecture is specified, maximum-likelihood estimates of the

parameters in CD-HMMs may be computed by the Expectation-Maximization (EM)

algorithm. The EM algorithm monotonically increases the log-likelihood in eq. (5.4)



41

with each update, and does not involve tuning parameters such as learning rates. All

these properties make it very attractive as a starting point for ASR.

However, ML estimation has one serious drawback: increasing the joint likeli-

hood in eq. (5.4) does not generally decrease the error rate of the recognizer. Recent

empirical [NJ02] and theoretical [LJ08] analyses have highlighted the shortcomings of

ML estimation when the estimated models are not perfectly matched to the data. To

overcome these shortcomings, we must consider discriminative methods for parameter

estimation in CD-HMMs.

Discriminative training of CD-HMMs has a long history in ASR [BBdSM86,

Nad83, JK92], and new work continues to appear in this area. The fundamental idea

behind discriminative training is to seek parameters that minimize the error rate rather

than attempting to model the data itself. One popular method for discriminative training

in ASR is based on maximizing the mutual information (MMI) between observations

and states:

ΘMMI = argmaxΘ

N∑
n=1

log
P(xn,yn|Θ)

P(xn|Θ)P(yn|Θ)
. (5.5)

The maximization is typically done by gradient ascent or extended Baum-Welch up-

dates; both methods require computing derivatives of the right hand side with respect

to the parameter Θ. Closely related to MMI is conditional maximum likelihood (CML)

estimation:

ΘCML = argmaxΘ

N∑
n=1

logP(yn|xn,Θ). (5.6)

CML differs only slightly from MMI in its estimation of transition probabilities and lan-

guage model parameters; the methods are equivalent if these parameters are not updated.

Another popular discriminative method is minimum classification error (MCE), which

directly minimizes the number of sequence misclassifications. In MCE, the parameters

are found by optimizing:

ΘMCE = argminΘ

N∑
n=1

sign
[
max
s 6=yn

log
P(xn, s|Θ)

P(xn,yn|Θ)

]
, (5.7)

where sign[z] = 1 if z > 0 and sign[z] = 0 if z ≤ 0. Since the right hand side of eq. (5.7)

is nondifferentiable, MCE usually replaces the max function by a softmax function, then

optimizes the parameters by gradient ascent.
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Discriminative training of CD-HMMs is more complicated than ML estimation

for several reasons: (i) probabilities (and their gradients) must be computed not only

for desired state sequences, but also for competing ones; (ii) many update rules involve

learning rates, which must be carefully tuned; (iii) convergence is not as fast or as stable

as the EM algorithm for ML estimation.

5.3 TIMIT corpus

All our experiments in phoneme recognition are benchmarked on the TIMIT

speech corpus [LKS86, ZSG90]. The waveforms in TIMIT were digitally recorded at

20kHz 16-bit PCM format in a quiet environment, then downsampled to 16kHz for fur-

ther processing. Each wavefile in the TIMIT corpus is associated with an orthographic

transcription (.txt), a time-aligned word transcription (.wrd), and a time-aligned phonetic

transcription (.phn).

TIMIT was jointly designed by researchers at MIT, SRI International, and Texas

Instruments (TI). The database contains 2342 distinct sentences and 630 speakers. The

sentences are phonetically balanced to represent the full diversity of pronunciations in

American English. The sentences can be categorized into three types:

• SA sentences: calibration sentences provided by SRI which illustrate the differ-

ence between dialects. The two SA sentences are the same across all dialects in

the corpus.

• SX sentences: phonetically compact sentences provided by MIT which cover all

practical phonetic pairs. A total of 450 distinct SX sentences are evenly distributed

throughout the corpus.

• SI sentences: randomly selected sentences provided by TI which illustrate the

same phonetic sequence in different contexts. Every SI sentence is unique, and

each speaker in the corpus utters three of them.

Each speaker in the TIMIT corpus reads two SA sentences, five SX sentences, and three

SI sentences; in total there are 630 speakers and 6300 sentences. The speakers (70% are

male and 30% are female) represent eight dialectal regions of the United States. In our
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Table 5.1: The list of phonemes used in TIMIT corpus. The corresponding pronuncia-

tion is underlined in the example .
Phoneme Example Phoneme Example

epi silence K kit
pau start/end DX batter
IY beat JH judge
IH bit CH church
EH bet S sat
EY bait SH shut
AE bat Z zoo
AA Bob ZH azure
AW down F fat
AY buy TH thing
AH but V vat
AO bought DH that
OY boy M met
OW boat N net
UH book NG sing
UW boot EN button
ER bird L let
AX about R rent
IX roses W wit
B bet Y you
D debt HH hat
G get EL battle
P pet BCL glottal stop
T ten QCL glottal stop

experiments, we omit the SA sentences because they are the same across the speakers

and might bias the training.

The corpus is partitioned into a non-overlapping training set and test set. The

training set contains 462 speakers, with 8 sentences uttered by each speaker, which

results in 3696 sentences in total. The complete test set has a subset known as the “core”

test set. We evaluate our models on the core test set, which contains 192 sentences from

24 speakers. We validate our models on a separate development set, also selected from

the complete test set, which contains 400 sentences from 50 speakers.

The lexicon in TIMIT contains 48 phonemes commonly used in American En-
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glish. Table 5.1 shows each phoneme in ARPABET notation along with an exam-

ple [RJ93].

5.4 Existing benchmarks

The benefits of discriminative training have been demonstrated in many different

tasks and applications. We used the TIMIT speech corpus [LKS86] to evaluate the

competing models discussed in this thesis. The speech signals in this corpus have been

manually segmented and aligned with their phonetic transcriptions. These transcriptions

provide ground-truth labels for benchmarking different acoustic models on the problem

of phoneme recognition.

We adopted the same methodology as recent benchmarks on this data set [SS09].

For the front end, we computed acoustic feature vectors of mel-frequency cepstral coeffi-

cients on sliding windows of speech, with 39 dimensions in total. For each utterance, we

performed cepstral mean subtraction, but not endpointing. For the back end, we trained

CD-HMMs using the manually aligned phonetic transcriptions as target hidden states.

We did not introduce or optimize word insertion probabilities to lower the frame and

phone error rates. The CD-HMMs had 48 hidden states (one per context-independent

phoneme) and GMMs that varied in size from one to 128 mixture components. We

used the standard partition of the TIMIT corpus, yielding roughly 1.1 million, 120K,

and 57K frames respectively for training, test, and holdout data. This standard partition

corresponds to 5 hours of training utterances and 30 minutes of test utterances.

We measured performance by comparing the hidden state sequences inferred by

Viterbi decoding of CD-HMMs to the phonetic transcriptions provided by the TIMIT

corpus. In calculating error rates, we followed the standard practice of mapping 48 pho-

netic classes down to 39 broader categories [LH88]. In general, we report two types

of errors: the frame error rate (FER), computed simply as the percentage of misclassi-

fied frames, and the phone error rate (PER), computed from the edit distances between

ground truth and Viterbi decodings [LH88]. The phone error rate provides the more rel-

evant metric for ASR. However, in some instances, we also report the frame error rate

because it is more directly minimized by the algorithms we study in later sections.
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Table 5.2: Phone error rates for CD-HMMs of varying size on the TIMIT speech corpus,

as obtained by maximum likelihood (ML), conditional maximum likelihood (CML),

and minimum classification error (MCE) estimation. The results in the first four rows

are from previous benchmarks [SS09]. The left column shows the number of mixture

components per GMM.
# mixture Phone Error Rate (%)

component ML CML MCE
1 41.5 36.4 35.6
2 38.0 34.6 34.5
4 34.9 32.8 32.4
8 32.3 31.5 30.9

16 30.8
32 31.8
64 33.4
128 35.9

Table 5.2 presents previous benchmarks [SS09] on the TIMIT speech corpus, as

well as some additional results on larger models trained by ML. The table shows the

phone error rates of CD-HMMs trained by ML, CML, and MCE. Note that discrimina-

tive training leads to significantly lower error rates than ML estimation for models of

the same size. The results in Table 5.2 will provide useful baselines for the models we

discuss in subsequent sections. Also, except where otherwise noted, the ML models in

Table 5.2 were used to initialize all discriminatively trained models mentioned in this

thesis.

Chapter 5-8, in part, is a reprint of the material as it appear in IEEE Journal

of Selected Topics in Signal Processing 2010. Chih-Chieh Cheng; Fei Sha; Lawrence

K. Saul, IEEE Signal Processing Society, 2010. The dissertation/thesis author was the

primary investigator and author of this paper.



Chapter 6

Online Updates for HMMs

This chapter describes our framework for online learning of discriminatively

trained HMMs. Discriminative training was originally formulated for classification of

i.i.d data [Efr75, Nad83]. After years of effort, researchers in ASR and NLP have ex-

tended the idea to sequential data [Mer88, KVY93, WP00]. One important research in

this line of work was [Col02], which applied Perceptron-style online learning to dis-

criminative training of discrete HMMs. Motivated by the results of [Col02], we con-

sider a similar scheme for discriminative training of continuous-density HMMs - partic-

ularly the sort used for acoustic modeling in ASR. The continuous-density functions in

these HMMs are parameterized by Gaussian mixture models (GMMs). Conventionally,

these GMMs are parameterized in terms of their means, covariance matrices and mixing

weights. We show how to reparameterize the GMMs for more efficient online learning

by Perceptron-style updates.

This chapter is organized as follows. In section 6.2, we describe the perceptron

algorithm for HMMs in general terms. In sections 6.3 through 6.5, we consider how

to parameterize the acoustic models used in ASR for this type of training and discuss

various issues that arise from different parameterizations. Finally, in section 6.6, we

present experimental results on the TIMIT speech corpus. Our results highlight the

parameterizations of acoustic models that yield the most consistent and rapid reductions

in phone error rates.

46
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6.1 Introduction

Discriminative training of CD-HMMs has a long history in ASR [BBdSM86,

Nad83, JK92], and new work continues to appear in this area. The fundamental idea

behind discriminative training is to seek parameters that explicitly minimize the error

rate rather than attempting to model the data itself. Discriminative training of CD-

HMMs is more complicated than ML estimation for several reasons: (i) log-likelihoods

must be computed not only for desired state sequences, but also for competing ones;

(ii) most update rules involve some form of gradient descent, requiring careful tuning

of learning rates; (iii) convergence is not generally as fast as the EM algorithm for ML

estimation. Therefore, it is useful to consider procedures that simplify or accelerate

discriminative training. In this chapter, we explore the potential of online updates to

achieve these goals.

Our approach is motivated by one of the simplest and oldest algorithms for online

learning: namely, the perceptron [Ros58]. Perceptrons use a mistake-driven update rule

to learn linear decision boundaries between classes of positively and negatively labeled

examples (see Chapter 3). An exciting line of recent work has generalized the percep-

tron algorithm to discriminative training of discrete HMMs [Col02]. The perceptron

algorithm for discrete HMMs combines simple additive updates with Viterbi decoding

of training examples. On problems in part-of-speech tagging [TKMS03] and base noun

phrase chunking [KM01], this algorithm outperformed other leading approaches to dis-

criminative training. We seek to replicate these successes in HMMs for ASR.

New difficulties arise in the perceptron-like training of CD-HMMs that are not

present in discrete HMMs. These difficulties are rooted in the parameterization of emis-

sion densities. For example, in CD-HMMs, online updates must adapt the means and

covariance matrices of multivariate Gaussian distributions. However, simple, additive

updates can violate the positive definiteness of covariance matrices, thus requiring fur-

ther computation to maintain these constraints.
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6.2 Mistake-driven updates

Perceptron training in HMMs is based on a so-called discriminant function over

observation and hidden state sequences:

D(x, s) = logP(s1) +
∑
t>1

logP(st|st−1) +
∑
t

logP(xt|st). (6.1)

The discriminant function is essentially the logarithm of the joint probability distribution

in eq. (5.1). For simplicity, we have suppressed the dependence of the discriminant

function on the parameters Θ of the CD-HMM. In terms of the discriminant function, a

target state sequence y will be correctly inferred from the observation sequence x if:

∀s 6= y, D(x,y) > D(x, s). (6.2)

Note that eq. (6.2) defines a set of inequalities for all incorrect transcriptions s 6= y.

In our experiments, the target state sequences are the manually aligned phonetic tran-

scriptions in the TIMIT corpus. In this work, we make the simplifying assumption that

there is a unique target state sequence (as opposed to considering multiple valid target

sequences that decode to the same word sequence).

In general, it is not possible for a model to satisfy all the constraints in eq. (6.2).

We use the following loss function [SS07b] to measure the total constraint violation

across the entire training corpus:

L(Θ) =
∑
n

[
max
s6=yn

D(xn, s)−D(xn,yn)

]+

, (6.3)

where [z]+ = max(z, 0) indicates the nonnegative hinge function. The right hand side

of eq. (6.3) computes a weighted count of the training utterances that do not satisfy the

constraints in eq. (6.2). In particular, each incorrectly decoded utterance is weighted

by the log-likelihood gap between the correct transcription and the Viterbi decoding, as

computed by eq. (5.3).

To minimize the loss function in eq. (6.3), we consider the online, mistake-driven

update:

Θ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s

∗
n)] , (6.4)
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where η>0 is a carefully chosen learning rate. Note that the update in eq. (6.4) is only

applied when Viterbi decoding returns an incorrect transcription s∗n 6= yn. The update

can be viewed as a form of stochastic gradient descent [Bot04] on the loss function

in eq. (6.3), which has also been studied in the related context of graph transformer

networks [BLB97]. The gradient in eq. (6.4) computes the fastest search direction in

parameter space to minimize the log-likelihood gap between target and inferred state

sequences. For discriminative training, we may also adapt the parameters of acoustic

models in such a way that they no longer define a properly normalized joint distribution.

In particular, we need not enforce sum-to-one constraints on the rows of the transition

matrix nor the mixture weights of GMMs.

Perceptron training updates parameters in a sequential manner, looping through

all the training examples until either the algorithm converges or no longer reduces the

average number of classification errors. We follow a similar procedure for updating the

parameters of acoustic models for ASR. In general, mistake-driven updates will not con-

verge to a fixed set of parameter estimates if the training examples cannot be perfectly

classified. However, convergence to a fixed set of parameter estimates can be obtained

by averaging the parameters from perceptron training across different updates of the

training examples [FS99, Gen02]. In practice, this sort of averaging reduces the noise in

the parameter vector by damping fluctuations in the decision boundary that occur dur-

ing training. Let Θ(j) represent the parameter estimates after the perceptron update in

eq. (6.4) has been applied for the jth time. We compute the averaged parameters Θ̃(r)

after r updates as:

Θ̃(r) =
1

r

r∑
j=1

Θ(j). (6.5)

Note that these averaged estimates are not themselves used during training; they are

only computed after training, then used for the classification of new test examples. In

addition to parameter averaging, convergence may also be obtained by decreasing the

learning rate over time; however, experimenting with this strategy, we found it to be

much less effective than parameter-averaging.
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6.3 Parameterization of GMMs

Conventionally, CD-HMMs are parameterized in terms of transition matrices

and emission densities. The choice of parameterization plays an important role in on-

line learning. For example, consider the update rules for the mixture weights P(c|s)
and the diagonal elements of the covariance matrices Σsc. Simple additive updates to

these parameters may not preserve their nonnegativity, which is necessary for the dis-

criminant function in eq. (6.1) to be well-defined for all possible observation and state

sequences. More generally, the choice of parameterization can significantly affect the

rate of convergence of online learning, as well as the nature of the averaging in eq. (6.5).

In the rest of this section, we flesh out these issues, concentrating mainly on

the parameterization of the GMMs. In general, the GMM parameters in HMMs play

a much more important role than the transition probabilities; moreover, the latter are

easily over-trained. Thus, in practice, if the transition probabilities are updated at all by

discriminative training, they should be adapted by a very small learning rate. We did not

update the transition probabilities in our experiments.

The GMMs in CD-HMMs are conventionally parameterized in terms of the mix-

ture weights P(c|s), means µsc, and covariance matrices Σsc associated with different

hidden states and mixture components. However, the most straightforward online up-

dates are given in terms of the log-mixture weights νsc = logP(c|s) and inverse covari-

ance matrices Σ−1
sc . The mixture weights are best updated in the log domain to ensure

that they remain nonnegative. It is also simpler to compute the derivatives in the update

rule, eq. (6.4), with respect to the inverse covariance matrices Σ−1
sc than the covariance

matrices Σsc. For the GMM parameters in CD-HMM, these considerations lead to on-

line updates of the form:

νsc ← νsc + η
∂

∂νsc
[D(xn,yn)−D(xn, s

∗
n)] , (6.6)

µsc ← µsc + η
∂

∂µsc
[D(xn,yn)−D(xn, s

∗
n)] , (6.7)

Σ−1
sc ← Σ−1

sc + η
∂

∂Σ−1
sc

[D(xn,yn)−D(xn, s
∗
n)] . (6.8)

The last update in eq. (6.8) can violate the constraint that the inverse covariance matrix

Σ−1
sc must be positive definite; when this happens, the zero or negative eigenvalues of
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the updated matrix must be thresholded to some small positive value so that individual

Gaussian distributions, computed from eq. (5.2), remain normalizable and finite.

Though simple in concept, the stochastic gradient descent in eqs. (6.6–6.8) may

require the careful tuning of multiple learning rates in order to succeed. Alternatively, a

common strategy is to only optimize the mean parameters of GMMs.

6.4 Reparameterization of GMMs

Building on ideas from previous work [SS09], we investigate a reparameteriza-

tion of GMMs that aggregates the mixture weight, mean, and covariance matrix param-

eters associated with each Gaussian mixture component into a single augmented matrix.

Let

γsc = − log

(
P(c|s)√
(2π)d|Σsc|

)
(6.9)

denote the log of the scalar prefactor that weights each Gaussian mixture component.

Then for each Gaussian mixture component, consider the matrix:

Φsc =

[
Σ−1
sc −Σ−1

sc µsc

−µ>scΣ−1
sc µ>scΣ

−1
sc µsc + γsc

]
. (6.10)

In eq. (6.10), the upper left block of the matrix Φsc is simply the inverse covariance

matrix Σ−1
sc , while the other elements of Φsc are determined by the interaction of the

mean µsc and covariance matrix Σsc. Note that in terms of this matrix, we can rewrite

eq. (5.2) as:

P(x|s) =
∑
c

e−
1
2
z>Φscz where z =

[
x

1

]
. (6.11)

We can use the reparameterization in eqs. (6.10–6.11) to adapt the matrices Φsc by

mistake-driven updates, as opposed to the GMM parameters in the previous section.

In this way, we can replace the three separate updates in eqs. (6.6–6.8) by the single

update:

Φsc ← Φsc + η
∂

∂Φsc

[D(xn,yn)−D(xn, s
∗
n)] . (6.12)

Our experiments in section 6.6 compare the performance of this single update to the

separate updates in eqs. (6.6–6.8).
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We impose a further constraint on the matrices Φsc that is not immediately im-

plied by the reparameterization in eq. (6.10); namely, we require them to be positive

semidefinite. Although the inverse covariance matrices Σ−1
sc are constrained to be pos-

itive definite, the matrices Φsc in eq. (6.10) do not inherit this property if the scalar

prefactors γsc are defined from existing GMMs as in eq. (6.9). Does this constraint limit

the representational capacity of our acoustic models? Naively, a positive semidefinite

constraint Φsc � 0 appears to suggest that the probability density P (x|s) in eq. (6.11)

cannot be arbitrarily large—that is, it cannot be arbitrarily peaked or concentrated about

its mean value.

In fact, the positive semidefinite constraints on Φsc do not limit the representa-

tional capacity of our acoustic models. The capacity is preserved by relaxing the con-

straint that these models define properly normalized continuous densities over the acous-

tic feature space. Note that in CD-HMMs, the Viterbi sequences are determined by the

likelihood ratios of emission densities in different states. Given any CD-HMMs, with ar-

bitrarily peaked emission densities, consider the unnormalized CD-HMM whose emis-

sion densities are multiplied by a constant factor across all states. The likelihood ratios

between states are unchanged. However, if the multiplicative factor is sufficiently large,

then all the likelihood ratios can be preserved by the reparameterization in eqs. (6.10–

6.11), provided that eq. (6.9) incorporates an additive offset from the logarithm of the

multiplicative factor. In this way, the reparameterized (unnormalized) acoustic mod-

els in this section can be initialized to replicate the exact decoding procedures of any

CD-HMM.

Note that like the earlier update in eq. (6.8) for the inverse covariance matrix,

the update in eq. (6.12) can violate the constraint that the matrix Φsc must be positive

semidefinite. When this happens, the updated matrix must be projected back onto the

cone of positive semidefinite matrices.

Unlike the earlier update in eq. (6.8) for the inverse covariance matrix, we can

also allow the matrix Φsc to have strictly zero eigenvalues. In particular, though eq. (5.2)

is not defined for singular covariance matrices, eq. (6.11) is perfectly well defined for

all positive semidefinite matrices Φsc � 0. Thus the online update in eq. (6.12) can

learn to use unnormalized Gaussians with unbounded (though nonnegative) variance
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if they do indeed lead to fewer classification errors. Essentially, zero eigenvalues in

the matrices Φsc indicate directions (perhaps invariances) in feature space that are not

useful for large margin classification. However, we do not allow the matrices Φsc to have

negative eigenvalues; otherwise, observations would be more likely to be associated with

particular states even as they deviated further away from the centroids of those states.

We emphasize again that the update in eq. (6.12) effectively removes the con-

straint that the Gaussian distributions are properly normalized. Note that for a prop-

erly normalized Gaussian distribution, the bottom diagonal matrix element of Φsc in

eq. (6.10) is completely determined by the mean µsc and covariance matrix Σsc. How-

ever, in discriminative training, we can update these matrix elements independently, no

longer enforcing normalization constraints on each Gaussian mixture component. The

resulting model does not define a proper density over acoustic feature vectors; however,

it uses the same decoding procedures (based on dynamic programming) as CD-HMMs.

6.5 Matrix factorizations

The update in eq. (6.12) has the potentially serious drawback that it can violate

the constraint that the matrices Φsc are positive semidefinite. Unlike the constraints of

normalizability or bounded variance that were relaxed in the last section, these con-

straints are important to enforce: otherwise a particular state s and mixture component c

could be deemed more and more likely even as observed acoustic feature vectors de-

viated further and further away from the state and mixture component’s centroid µsc.

Though updated matrices can be projected back into the cone of positive semidefinite

matrices whenever these constraints are violated, projected gradient methods tend to

converge more slowly than unconstrained methods, particularly when the projection and

gradient steps work at cross purposes.

We can reformulate our problem as an unconstrained optimization by a further

reparameterization, writing each matrix Φsc as the product of another matrix Λsc and its

transpose Λ>sc. The factorization

Φsc = ΛscΛ
T
sc (6.13)

makes explicit that the matrix Φsc is positive semidefinite. With this factorization, we
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can replace the update in eq. (6.12) by stochastic gradient descent in the matrix Λsc:

Λsc ← Λsc + η
∂

∂Λsc

[D(xn,yn)−D(xn, s
∗
n)] . (6.14)

Note that in this update, the square matrices Λsc (of the same size as Φsc) are completely

unconstrained.

The update in eq. (6.14) has potential advantages and disadvantages. As a form

of unconstrained optimization, it has the potential advantage of faster convergence since

it does not involve a projected gradient step. On the other hand, it has the potential

disadvantage of creating an optimization landscape with more local minima. In par-

ticular, note that for the special case in which each Gaussian mixture model has only

one mixture component, the difference of discriminant functions is actually linear in

the matrices Φsc. This simple optimization landscape is lost with the factorization in

eq. (6.14): the discriminant function is neither linear nor convex in the matrices Λsc.

Our experiments in section 6.6.2 attempt to determine which potential advantages and

disadvantages of this matrix factorization are realized in practice.

We note that the factorization in eq. (6.13) is not unique. While a matrix square

root satisfying eq. (6.13) can be computed by singular value decomposition, the matrix

Λsc is not uniquely determined unless additional constraints are imposed. One way to

obtain a unique factorization is by constraining Λsc to be positive semi-definite; how-

ever, such a constraint is precisely what we hoped to finesse by factorizing the matrix

Φsc in the first place. Another way to obtain a unique factorization – the Cholesky fac-

torization – is by constraining Λsc to be a lower triangular matrix. We were curious

whether such a factorization would accelerate learning (because a lower triangular ma-

trix has fewer parameters to estimate than a full matrix) or decelerate learning (because

optimizations sometimes converge more quickly in an enlarged parameter space). Since

the optimization is non-convex, we were also curious whether such a factorization might

provide a consistently better initialization. In section 6.6.2, we evaluate and present re-

sults for two ways of updating the matrices Λsc: one that constrains them to be lower

triangular, and one that does not.

The factorization in eq. (6.13) raises another issue related to the averaging of

parameter estimates as in eq. (6.5). For training, we can update the matrices Φsc directly

by eq. (6.12) or indirectly by eq. (6.14). However, the best approach for training does
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not necessarily correspond to the best approach for testing with smoothed parameter

estimates. Using the notation of eq. (6.5), one approach is to average the parameter

estimates for Φsc as:

Φ̃(r)
sc =

1

r

r∑
j=1

Φ(j)
sc =

1

r

r∑
j=1

Λ(j)
sc Λ(j)>

sc . (6.15)

Another approach is to average the parameter estimates for Λsc, then to square their

average as:

Φ̃(r)
sc = Λ̃(r)

sc Λ̃(r)>
sc , where Λ̃(r)

sc =
1

r

r∑
j=1

Λ(j)
sc . (6.16)

In section 6.6.4, we evaluate and present results for both types of averaging.

6.6 Experiments

We experimented on the TIMIT speech corpus (see section 5.4) to evaluate the

online updates described in sections 6.2–6.5. Our experiments were designed not only

to assess the potential benefits of discriminative training, but also to compare different

mistake-driven updates for online learning of HMMs.

Online updating of acoustic models for ASR raises several issues that do not

arise in perceptron training of discrete HMMs. Our experiments addressed three main

issues: (i) how should the GMMs be parameterized, in the same way as for ML esti-

mation (section 6.3), or by aggregating the parameters for each mixture component into

a single matrix (section 6.4)? (ii) how should we enforce the positive semidefiniteness

constraints on matrix parameters, by projected gradient methods in the original param-

eter space or by reparameterizing the matrices using singular value decompositions or

Cholesky factorizations (section 6.5)? (iii) in which parameter space should we aver-

age to obtain smoothed parameter estimates for testing (section 6.5)? Our experimental

results provide fairly definitive answers to these questions.

Before presenting the results, we briefly discuss our methodology. We examined

test error rates across a wide range of model sizes by varying the number of Gaussian

mixture components per hidden state. We report these results for acoustic models of dif-

ferent sizes to illustrate various general trends. In practice, however, the correct model
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size is not known in advance; it is a hyperparameter that must be determined by the per-

formance on held-out data. Thus, in each table of results that follows, we also indicate

in boldface the test error rate of the model that had the lowest phone error rate on the

TIMIT development set. The model selected in this way was often though not always

the best model on the test set.

6.6.1 Overall benefits of online learning

We begin by reporting results that confirm the well-known benefits of discrimi-

native training and online learning. Table 6.1 compares the best-performing CD-HMMs

obtained by ML estimation to the best performing acoustic models obtained by online,

mistake-driven updates. The latter used the matrix update in eqs. (6.13–6.14) and the

averaging scheme in eq. (6.15). The results show that the online updates lead to sig-

nificant reduction in both frame and phone error rates for models with up to sixteen

Gaussian mixture components per hidden state. The improvements in frame error rates

are larger than the improvements in phone error rates; this discrepancy reflects the fact

that the discriminant function more closely tracks the Hamming distance (not the edit

distance) between target and Viterbi phone sequences. For reference, Table 6.1 also

shows previously published benchmarks [SS09] from the two most popular batch ap-

proaches to discriminative training. It is interesting that for all model sizes, the online

updates outperform these batch approaches.

Though training times vary from experiment to experiment, we observed the

following general trend. For the smallest models (e.g., 1-2 mixture components per hid-

den state), the discriminative training took much longer than the initial ML estimation;

for medium-sized models (e.g., 4-8 mixture components per hidden state), the discrim-

inative training took roughly the same amount of time; finally, for the largest models

(e.g., 16-32 mixture components per hidden state), the discriminative training took less

time than the initial ML estimation. It seems that the speed-ups from online learning

are most pronounced for large model sizes; in particular, in this regime, the speed-ups

from stochastic gradient descent appear to more than offset the extra computations (e.g.,

Viterbi decoding of training utterances) required for discriminative training.
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Table 6.1: Frame and phone error rates for acoustic models of varying size, as obtained

by maximum likelihood (ML) estimation, online mistake-driven updates, and popular

batch methods for discriminative training. The batch results for conditional maximum

likelihood (CML) and minimum classification error (MCE) are reproduced from previ-

ous benchmarks [SS09]. The left column shows the number of mixture components per

GMM.
# Frame Error Rate (%) Phone Error Rate (%)

mix ML online ML online CML MCE
1 39.7 31.4 41.5 33.6 36.4 35.6
2 36.2 30.1 38.0 32.3 34.6 34.5
4 33.1 29.5 34.9 31.4 32.8 32.4
8 30.7 28.8 32.3 30.1 31.5 30.9

16 29.5 28.6 30.8 29.7
32 29.9 29.3 31.8 30.9

6.6.2 Benefits of reparameterization

As noted in section 6.3, for the conventional parameters of GMMs, it is often

necessary to tune separate learning rates for discriminative training to succeed. Our ex-

periments bore out these difficulties. The left column of Table 6.2 shows our best results

from discriminative training with the conventional parameterization of GMMs. In fact,

these results were obtained by updating just the mixture weights and mean vectors of the

GMMs; despite extensive experimentation, we were unable to obtain further improve-

ments by updating the inverse covariance matrices in parallel or even while holding the

other parameters fixed. Our results are consistent with previous anecdotal observations

in ASR: in practice, most of the performance gains in discriminative training have been

realized by optimizing the mean parameters in GMMs.

The reparameterization in section 6.4 greatly simplifies both the form of the

discriminant function, eq. (6.11), and the resulting online updates. The results in the

rightmost column of Table 6.2 reveal the benefits of this approach. These results were

obtained using the reparameterization in eq. (6.10), the update in eq. (6.12), and the

averaging in eq. (6.5). Note that mistake-driven updates based on the parameters Φsc

from eq. (6.10) leads to significantly lower frame error rates across all model sizes.
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Table 6.2: Frame error rates from discriminative training of acoustic models with dif-

ferent forms of online updates: updating (ν, µ,Σ−1) in eqs. (6.6-6.8) versus updating Φ

in eqs. (6.10–6.12).

# Frame Error Rate (%)
mix (ν, µ,Σ−1) Φ

1 37.0 32.2
2 36.5 31.5
4 35.8 31.0
8 33.9 30.9

16 31.8 30.5
32 30.1 30.4

6.6.3 Benefits of matrix factorization

We also experimented with the matrix factorization in eq. (6.13). Updating the

matrices Λsc by eq. (6.14) led to the results shown in Table 6.3. The middle column

shows the results when the matrices Λsc were unconstrained and initialized by singular

value decomposition; the right column shows the results when the matrices Λsc were

constrained to be lower diagonal and initialized by Cholesky factorization. For compar-

ison, the left column repeats the results from Table 6.2 for updating the matrices Φsc

by eq. (6.12). Note how the unconstrained factorization in eq. (6.13) leads to consistent

further improvements beyond those obtained by the reparameterization in eq. (6.10).

The factorization also leads to much faster convergence as measured by the numbers

of sweeps through the training data (shown in parentheses). Finally, as an additional

benefit, the factorized update also avoids the extra computation required to project the

updated parameters Φsc back into the space of positive semidefinite matrices.

Fig. 6.1 graphically illustrates the much faster convergence of the online, mistake-

driven updates using the matrix factorization in eq. (6.13). The figure compares the

frame error rates on the training and validation sets during training for the top left

(Φ) and middle (Λ-SVD) results in Table 6.3. When updating the matrices Λsc using

eq. (6.14), the training error drops rapidly, and the acoustic models appear to start over-

fitting after just a few sweeps through the training data. By contrast, when updating

the matrices Φsc using eq. (6.12), the training and holdout error rates drop much more
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Table 6.3: Frame error rates from the update in eq. (6.12) versus the update in eq. (6.14).

For the latter, we studied two different forms of matrix factorization, one using singu-

lar value decomposition (SVD), one using Cholesky factorization. For each result, the

number of sweeps through the training data is shown in parentheses.

# Frame Error Rate (%)
mix Φ Λ-SVD Λ-Cholesky

1 32.2 (243) 31.4 (32) 35.5 (149)
2 31.5 (258) 30.1 (37) 35.6 (61)
4 31.0 (296) 29.5 (6) 32.3 (2)
8 30.9 (131) 28.8 (2) 31.4 (2)
16 30.5 (7) 28.6 (3) 29.0 (2)
32 30.4 (2) 29.3 (3) 29.6 (3)
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Figure 6.1: Comparison of online, mistake-driven updates with and without the matrix

factorization in eq. (6.13). See text for details.

slowly.

6.6.4 Benefits of averaging

Parameter averaging is an effective technique for reducing the fluctuations in-

herent to online learning. Table 6.4 demonstrates the benefits of parameter averaging in

the setting of acoustic modeling, where it often leads to significantly reduced error rates.

Intuitively, we can view the online, mistake-driven updates on individual utterances as

stochastic gradient descent on the overall loss function. Parameter averaging smoothes

out the randomness in this process. Fig. 6.2 illustrates this intuition by visualizing how
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Table 6.4: Frame error rates from different forms of parameter averaging: no averaging,

averaging in Φ by eq. (6.15), and averaging in Λ by eq. (6.16). See text for details.

# Frame Error Rate (%)
mix no averaging averaging in Φ averaging in Λ

1 41.9 31.4 31.6
2 37.1 30.1 30.9
4 35.2 29.5 30.2
8 35.2 28.8 28.8

16 33.5 28.6 28.4
32 33.9 29.3 29.6

the GMM parameters across all states and mixture components evolve during training.

In particular, for the purpose of visualization, the figure shows the two dimensional

trajectory obtained by projecting these GMM parameters onto their first two principal

components. Note how the averaged parameter estimates “spiral” down more quickly to

the final solution.

As mentioned in section 6.5, for online, mistake-driven updates with the ma-

trix factorization in eq. (6.13), there are two possible averaging procedures. The results

show that better performance is generally (though not always) obtained by optimizing

the matrices Λsc while averaging the matrices Φsc. We can offer one possible intuition

for this trend. As noted earlier, the factorization in eq. (6.13) is not unique. Therefore

we can imagine a sequence of parameter estimates that involve different values for Λsc

but equal values for Φsc. (That is, the varying estimates for Λsc differ only by a unitary

transformation.) In this case, the constant value of Φsc will be returned by averaging

the matrices Φsc using eq. (6.12), but not by averaging the matrices Λsc using eq. (6.14).

Though this is a contrived scenario unlikely to occur in practice, it suggests that averag-

ing in Λsc can lead to nonsensical results.

Note that in eq. (6.15), we average from the very first parameter to the latest

updated parameter. This might give too much weight to the first several parameters since

they are not stable yet (see the points at the tail of the spiral in Fig. 6.2). An alternative to

the averaging scheme is “moving average”, which only looks back a fix number of points

other than all history. The results are shown in Table 6.5. We performed the experiments
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Figure 6.2: The trajectory of CD-HMM parameters during training. The figure visu-

alizes the parameters Φsc by projecting them onto their first two principal components.

Parameter averaging leads to faster convergence.

Table 6.5: Frame error rates from different lengths of parameter averaging: 10, 100,

1000, 2000. All are based on averaging in Φ by eq. (6.15) and updates in Λ by eq. (6.14).

See text for details.
# Frame Error Rate (%)

mix None 10 100 1000 2000 ∞
1 41.9 39.3 36.6 33.9 32.4 31.4
2 37.1 36.6 35.3 33.0 32.2 30.1
4 35.2 35.2 34.7 32.0 31.2 29.5
8 35.2 34.5 32.6 31.4 31.1 28.8

16 33.5 33.2 32.5 30.2 29.1 28.6

with four different lengths of history - 10, 100, 1000, and 2000 past updates. Again the

best model is selected by the validation set and marked by boldface.

Unlike averaging through all updates, moving average requires a temporary stor-

age of all parameters in the limited length of history. When it comes to a complicated

model, such as 32 and more mixture components for each state, the memory usage is

considerable. We can see from Table 6.5 that the length of history does help the per-

formance, and at some point the performance should meet the performance with infinite

averaging. However, due to memory constraint, we cannot buffer more than 2000 pa-

rameters in the past updates.
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Table 6.6: Frame error rates from differently initialized sets of model parameters, one

set with zero values, the other with maximum likelihood (ML) estimates. The left results

used the Φ-update in eq. (6.12); the right results used the Λ-update in eq. (6.14). See

text for details.

# Frame Error Rate (%)
mix Φ(0) =0 Φ(0) =ΦML Λ(0) =0 Λ(0) =ΛML

1 32.2 32.2 33.1 31.4
2 33.4 31.5 34.9 30.1
4 32.0 31.0 35.7 29.5
8 32.0 30.9 36.2 28.8

16 31.6 30.5 35.0 28.6
32 32.3 30.4 37.9 29.3

6.6.5 Benefits of initialization

For perceptron training in discrete HMMs, parameter values can simply be ini-

tialized as zeroes [Col02]. However, when GMMs are used in acoustic models, the

discriminant function is not generally a linear function of the parameters, and the re-

quired optimization is not convex. Thus, depending on the quality of the initialization,

the potential exists to get trapped in local minima.

Table 6.6 compares the results from online, mistake-driven updates using two

different sets of initial model parameters: one set with zero values, the other with ML

estimates. Two trends are clear. First, the ML initialization generally leads to better

performance, especially as the model size is increased. Second, the zero-valued ini-

tialization leads to worsening performance with increasing model size when we update

the parameters Λsc using eq. (6.14). These results suggest that the much faster conver-

gence from the matrix factorization in eq. (6.13) comes at the expense of creating a more

treacherous optimization.

6.7 Summary

In this chapter, we have explored various matrix updates for perceptron training

of CD-HMMs. As our main contributions, we analyzed numerous issues of parameteri-
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zation and smoothing that do not arise in perceptron training of discrete HMMs; we also

performed systematic experiments in ASR to understand how these issues play out in

practice. Our results show that not all forms of discriminative training are equally effec-

tive: indeed, matrix reparameterizations and factorizations can have a significant effect

on classification performance as well as rates of convergence. In particular, the best per-

formance of our approach was obtained by updates with the factorization in eq. (6.13),

the reparameterizations in eq. (6.12), and the averaging in eq. (6.15).

Chapter 6, in part, is a reprint of the material as it appear in Proceedings of the

Twenty Sixth International Conference on Machine Learning (ICML-09) 2009. Chih-

Chieh Cheng; Fei Sha; Lawrence K. Saul, ACM, 2009. Chapter 5-8, in part, is a reprint

of the material as it appear in IEEE Journal of Selected Topics in Signal Processing

2010. Chih-Chieh Cheng; Fei Sha; Lawrence K. Saul, IEEE Signal Processing Society,

2010. The dissertation/thesis author was the primary investigator and author of these

papers.



Chapter 7

Online Updates for Large Margin

HMMs

In this chapter, we extend the online updates from the previous chapter to incor-

porate large margin constraints. The best known large-margin classifiers are support

vector machines (SVM) [BGV92, CV95]. In binary classification problems, SVMs

compute the maximal margin hyperplane that separates the positively and negatively

labeled examples. These classifiers have strong theoretical guarantees on their general-

ization errors [Vap95].

Large-margin classifiers were originally formulated for classification of I.I.D

data. In this decade, they have been explored for problems in sequence labeling [ATH03,

TGK04]. In particular, a number of researchers in ASR have explored large mar-

gin methods for discriminative training of HMMs [JLL06a, LYL07, YDHA07, SS09].

Large margin training of HMMs seeks not only to minimize the empirical error rate,

but also to separate the scores of correct and incorrect transcriptions by the largest pos-

sible amount, thus achieving better generalization on unseen data [TGK04, THJA04].

This idea has been independently investigated by many researchers in acoustic model-

ing and ASR [KSSB+06, JLL06a, SS07a, LYL07, YDHA07]. Our main goal here is to

investigate simple, online updates for large margin training of acoustic models.

64
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7.1 Introduction

Recently, several researchers have proposed methods for large margin training

of CD-HMMs [JLL06a, SS07a, LYL07, YDHA07, PKK+08, SP08]. In large margin

training, acoustic models are estimated to assign significantly higher scores to correct

transcriptions than competing ones; in particular, the margin between these scores may

be required to grow in proportion to the total number of recognition errors [SS07a,

PKK+08, SP08]. Empirically, large margin training has improved the performance of

many systems beyond other leading discriminative approaches.

Large margin training in CD-HMMs has the same basic computational require-

ments as other discriminative approaches. The updates depend on computing statistics

of hidden states as well as gradients with respect to various model parameters. For each

update, these quantities must be computed and accumulated over all the utterances in

the training corpus. To cope with large corpora, researchers often parallelize this batch

computation across many different nodes, then combine the individual results as needed

to average over all the training utterances [VOWY97].

In this chapter, we investigate a different, simpler approach for accelerating large

margin training of CD-HMMs. We replace the batch computation described above by

an online, sequential computation based on the mistake-driven algorithm in Chapter 6.

Specifically, we optimize the CD-HMM parameters in an incremental fashion, updating

them after the decoding of each training utterance. We find that this approach converges

much more quickly than previously developed batch optimizations of large margin CD-

HMMs [SS07a]. We also find that it yields significantly more accurate acoustic models

than other approaches—both online and batch—that do not attempt to enforce a large

margin [CSS09c].

7.2 Large margin training

Let (x,y) denote an observation sequence and its ground truth transcription. The

essence of large margin training lies in the following observation: whereas for correct

recognition we merely require the inequalities in eq. (6.2), for correct recognition by a
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large margin, we additionally require that

∀s 6= y, D(x,y) > D(x, s) + ρH(s,y), (7.1)

whereH(s,y) is the Hamming distance between two hidden state sequences of the same

length, and ρ > 0 is a constant margin scaling factor. In other words, for large margin

training, the score of the correct transcription should exceed the score of any incorrect

transcription by an amount that grows in proportion to the number of recognition errors.

We can use dynamic programming to compute the hidden state sequence that

most egregiously violates the margin constraint in eq. (7.1). We use s̃∗ to denote this

hidden state sequence. From eq. (7.1), we have:

s̃∗ = argmaxs6=y [D(x, s) + ρH(s,y)] . (7.2)

The right hand side of eq. (7.2) can be maximized by a simple variant of the standard

Viterbi algorithm [?]. We emphasize that the margin-based decoding selects and pe-

nalizes incorrect sequences that are close in log-likelihood but far away in Hamming

distance. Put another way, if two competing sequences have the same log-likelihood,

then the margin-based decoding will select and penalize the one with more (frame-level)

transcription errors.

To measure the total amount of constraint violation in eq. (7.1), we define the

loss function:

L(Θ) =
∑
n

[
max
s 6=y

[D(x, s) + ρH(s,y)]−D(xn,yn)

]+

, (7.3)

analogous to the loss function in eq. (6.3). For online training of large margin HMMs,

we consider the following update rule:

Θ← Θ + η
∂

∂Θ
[D(xn,yn)−D(xn, s̃

∗
n)] . (7.4)

The update is applied whenever the margin-based decoding in eq. (7.2) yields a state

sequence that violates the inequality in eq. (7.1). Eq. (7.4) differs from eq. (6.4) in

one critical aspect: namely, we replace the usual Viterbi sequence in eq. (5.3) by the

sequence from margin-based decoding in eq. (7.2). This substitution changes the nature

of the optimization in an important way: even if an utterance is correctly decoded,
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eq. (7.4) may still update the model parameters. In particular, the parameters will be

updated if there exists an incorrect decoding whose log-likelihood is not sufficiently

well separated from that of the correct transcription.

Though the margin scaling factor ρ does not appear explicitly in eq. (7.4), it

directly affects the computation of s̃∗n. In fact, our experiments will show that the subtle

change in eq. (7.4) leads to profoundly different updates.

The online update in eq. (7.4) is written in terms of the parameters Θ of the

CD-HMM. In this model, we adopt the same parameterization of CD-HMMs that has

proven useful in the earlier models (sections 6.4 and 6.5). Also, in all the following

experiments, we only adapt the parameters of the GMMs, not the transition probabilities

of the CD-HMMs. To obtain smoother parameter estimates over time, the results from

eq. (7.4) can also be averaged as in eq. (6.5). We performed this averaging in all of our

experiments.

7.3 Experiments

Following the same experimental set-up as in previous chapters, we sought to

investigate the potential benefits of online updates for large margin training. All CD-

HMMs were initialized by ML estimation. Starting from these baseline CD-HMMs, we

then compared the performance of the different online updates in eq. (6.4) and (7.4).

For these comparisons, we used the parameterization in eq. (6.13) and the averaging in

eq. (6.5), since these choices yielded the best results for online updates without large

margin constraints. For the margin-based update, the results of training depend on the

margin scaling factor ρ. We experimented with a wide range of values for this scaling

factor.

7.3.1 Benefits of online large margin training

Table 7.1 shows the results from the best models trained in this way. (For the

margin-based results, we chose the scaling factor ρ that yielded the lowest phone error

rates on the held-out development set.) The results show that online updating with

margin-based decoding significantly reduces the frame and phone error rates across all
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model sizes. In general, the frame error rates improve more than the phone error rates;

this discrepancy reflects the fact that the margin-based updates more closely track the

Hamming distance (not the edit distance) between target and Viterbi phone sequences.

Nevertheless, comparing to the results in Table 6.1, we see that the gains from margin-

based decoding exceed the gains from all other methods (batch and online) that do not

incorporate large margin constraints.

For reference, table 7.1 also reproduces previous results obtained from batch im-

plementations of large margin training [SS09]. The objective function for batch training

differed slightly from the ones we use in eq. (7.3) for online learning; specifically, the

batch optimization minimized a soft-max approximation to the first term in eq. (7.3) us-

ing a projected subgradient method. The online updates do not quite match the perfor-

mance of the batch implementation; however, they are simpler to implement and require

fewer passes through the set of training utterances. Moreover, we will see in section 8.1

that the online updates can be extended in simple ways to achieve even further gains.

While Table 7.1 quantifies the effects of margin-based decoding on error rates,

Fig. 7.1 graphically illustrates the profound influence it exerts during training. To cre-

ate this figure, we computed the Hamming distance between the Viterbi decoding s∗ in

eq. (5.3) and the margin-based decoding s̃∗ in eq. (7.2) for each utterance during one on-

line pass through the training corpus. The figure shows a histogram of these Hamming

distances after they have been normalized by the number of frames in the utterance. The

histogram’s peak away from zero shows that margin-based decoding yields very differ-

ent competing transcriptions for discriminative training than standard Viterbi decoding.

The frame and phone error rates from large margin training depend on the value

of the margin scaling factor ρ. Fig. 7.2 shows this dependence for HMMs with 4-

component GMMs in each state. More generally, for phone error rates on the devel-

opment set, the optimal values of ρ were respectively 0.8, 1.0, 0.7, and 1.0 for HMMs

with 1, 2, 4, and 8-component GMMs. Training with ρ= 0 (i.e., without margin-based

decoding) produces the results shown in the middle columns of Table 7.1.

Fig. 7.3 illustrates the relatively fast convergence of online learning. The figure

shows the frame error rates on the development data set during training. For all model

sizes, most of the improvement from online learning occurs during the first 10-20 passes
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Table 7.1: Frame error rates (top) and phone error rates (bottom) on the TIMIT test set

for acoustic models of varying size, as obtained by maximum likelihood (ML) estima-

tion, online updates with standard Viterbi decoding, online updates with margin-based

decoding, and a batch implementation of large margin training [SS09].
# Frame Error Rate (%)

mixture Maximum Online Online Batch
component likelihood w/o margin w/ margin w/ margin

1 39.7 31.4 30.5 29.5
2 36.2 30.1 29.4 29.0
4 33.1 29.5 28.3 28.4
8 30.7 28.8 27.3 27.2
16 29.5 28.6 27.3
32 29.9 29.3 27.6

# Phone Error Rate (%)
mixture Maximum Online Online Batch

component likelihood w/o margin w/ margin w/ margin
1 41.5 33.6 32.8 31.2
2 38.0 32.3 31.4 30.8
4 34.9 31.4 30.3 29.8
8 32.3 30.1 28.6 28.2
16 30.8 29.7 28.8
32 31.8 30.9 29.0

through the training corpus. Many more passes are typically required for convergence

of batch methods.

7.3.2 Hamming distance reweighting

The Hamming distance in eq. (7.1) is simply the frame-wise difference between

two sequences. Thus it implicitly treats all phoneme substitution errors as equally sig-

nificant. However, that is not true. For example, the difference between the phonemes

/m/, /a/ (consonant and vowel) is perceptually stronger than that between /m/, /n/ (con-

sonant and consonant). This observation inspired us to explore alternative measures of

distance between phoneme sequences.

One idea that we explored is to compute a weighted Hamming distance between
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# Frame Error Rate (%) Phone Error Rate (%)
mix ML PT PT w/ margin ML PT PT w/ margin
1 39.3 30.0 28.2 42.0 35.2 33.4
2 37.1 27.6 26.2 38.6 33.2 32.3
4 31.4 26.0 ? 34.8 31.2 ?
8 28.1 26.5 ? 32.5 31.9 ?

Table 1: trained on Λ, average on Φ

# Frame Error Rate (%)
mix ML PT PT w/ margin
1 39.3 32.2 32.1
2 37.1 31.5 31.4
4 31.4 30.7 ?
8 28.1 30.4 ?

Table 2: trained on Φ, average on Φ

H(s∗, s̃∗)/|x|

s∗ = argmaxsD(x, s)
s̃∗ = argmaxs[D(x, s) + ρH(y, s)]

1

Normalized Hamming Distance

# Frame Error Rate (%) Phone Error Rate (%)
mix ML PT PT w/ margin ML PT PT w/ margin
1 39.3 30.0 28.2 42.0 35.2 33.4
2 37.1 27.6 26.2 38.6 33.2 32.3
4 31.4 26.0 ? 34.8 31.2 ?
8 28.1 26.5 ? 32.5 31.9 ?

Table 1: trained on Λ, average on Φ

# Frame Error Rate (%)
mix ML PT PT w/ margin
1 39.3 32.2 32.1
2 37.1 31.5 31.4
4 31.4 30.7 ?
8 28.1 30.4 ?

Table 2: trained on Φ, average on Φ

H(s∗, s̃∗)/length(s∗)

s∗ = argmaxsD(x, s)
s̃∗ = argmaxs[D(x, s) + ρH(y, s)]

1

Figure 7.1: Histogram of normalized Hamming distances between sequences from

Viterbi and margin-based decoding. The distances were computed during the fifth it-

eration through the training corpus for the best-performing large margin HMM with

sixteen Gaussian mixture components per hidden state.
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Figure 7.2: Frame and phone error rates on the development set as a function of the

margin scaling factor ρ. Results are shown for acoustic models with four Gaussian

mixture components per hidden state.
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Figure 7.3: Frame error rates on the development set during training. The triangles

mark the best models obtained for different numbers of Gaussian mixture components.

phoneme sequences. Intuitively, the weightings should depend on some sorts of simi-

larity measure between phonemes. This gives rise to two major questions: 1) How do
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Figure 7.4: The distance matrix of phonemes in TIMIT dataset, based on distinctive

feature compositions. The matrix is represented in a gray scale image, in which black

color means distance of 0.

we weight the phoneme substitution? Should we penalize or promote substitutions be-

tween closer phonemes? 2) Since phonemes are abstract objects, how do we define the

distance between them?

As discussed in Section 7.2, in large margin sequence classifiers we want to com-

pete with the strongest violator, and push the decision boundary away from it. Therefore,

in eq. (7.1) we favor a sequence with a larger Hamming distance as the competitor. Sim-

ilarly here, we weight the phoneme substitution by the “distance” between phonemes in

order to favor a sequence which is very different from the correct transcription percep-

tionally. The computation of weighted Hamming distance involves a distance matrix of

phonemes and a weighted count of the difference between two sequences.

Here we explore two metrics based on phonological rules from studies of hu-

man speech, production, and perception. The first metric is based on distinctive fea-

tures [CH68]. These are 22 unique phonological rules which are sufficient to analyse
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Figure 7.5: The distance matrix of phonemes in TIMIT dataset, based on phonologi-

cal tree. The matrix is represented in a gray scale image, in which black color means

distance of 0.

base units (e.g, phonemes) of any languages. In the distinctive feature representation,

each phoneme is composed of binary phonological features, denoted by + and - signs.

The encoding can be displayed as a matrix, where each column represents a phoneme

and each row represents a feature. The matrices for vowels and consonants in English

are shown in Table 7.2 and 7.3; for a complete table, see [CH68, Bn98]. Note that some

phonological features are left blank in the matrix, which represent “either + or -”. Since

the distinctive features are universal phonological features (capable of encoding any lan-

guages), some of them are not observed in English. In practice, the phonological feature

set may be changed by the regional effects in each language and the composition of any

particular dataset. We adopt a modified feature composition for TIMIT dataset reported

in [Bn98, LW01].
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Table 7.2: Distinctive feature matrix for vowels in English. The phonemes are denoted

in the labels of both TIMIT dataset and International Phonetic Alphabet (IPA). Each row

represents one distinctive feature, and the value are indicated by + and - signs. Blank

values mean “either + or -”. For the full phonetic definition of + and - signs and the full

list of sounds, refer to [CH68, Bn98].

TIMIT IY IH EH EY AE AA AW AY AH
sonorant + + + + + + + + +
syllabic + + + + + + + + +

consonantal - - - - - - - - -
high + + - - - - - - -
back - - - - - + + + +
front + + + + + - - - -
low - - - - + + - - -

round - - - - - - - - -
tense + - - - - - - - -

anterior
coronal
voice

continuant
nasal

strident

TIMIT AO OY OW UH UW ER AX IX
sonorant + + + + + + + +
syllabic + + + + + + + +

consonantal - - - - - - - -
high - - - + + - - +
back + + + + + - - -
front - - - - - - - -
low + + - - - - - -

round + + + + + + - -
tense - - + - -

anterior
coronal
voice

continuant
nasal

strident
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Table 7.3: Distinctive feature matrix for consonants in English [CH68, Bn98].
TIMIT B D G P T K JH CH S SH Z ZH F

(BCL)(DCL)(GCL)(PCL)(TCL)(KCL)
(DX) (Q)

IPA /b/ /d/ /g/ /p/ /t/ /k/ /dZ//tS//s//S//z//Z//f/

sonorant - - - - - - - - - - - - -
syllabic - - - - - - - - - - - - -

consonantal + + + + + + + + + + + + +
high - - + - - + + + - + - + -
back
front
low

round
tense

anterior + + - + + - - - + - + - +
coronal - + - - + - + + + + + + -
voice + + + - - - + - - - + + -

continuant - - - - - - - - + + + + +
nasal - - - - - - - - - - - - -

strident - - - - - - + + + + + + +

TIMIT TH V DH W Y HH R L M N NG EL
(HV) (NX)

IPA /T//v//D//w//y//h//r//l//m//n//N//L/

sonorant - - - + + + + + + + + +
syllabic - - - - - - - - - - - +

consonantal + + + - - - + + + + + +
high - - - + + - - - - - + -
back + - - - - -
front - + - - - -
low - - + - - - - - -

round + -
tense - -

anterior + + + - - - - + + + - +
coronal + - + - - - + + - + - +
voice - + + - + + + + + +

continuant + + + + + + - - - +
nasal - - - - - - + + + -

strident - + - - - - - - - -
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Table 7.4: Frame error rates (top) and phone error rates (bottom) on the TIMIT test set

for acoustic models of varying size, as obtained by maximum likelihood (ML) estima-

tion, online updates with margin-based decoding, and online updates with reweighted

margin-based decoding based on two types of distance measures - distinctive features

(DF), and phonological tree (PT).
# Frame Error Rate (%)

mixture Maximum Online Reweighting Reweighting
component likelihood w/ margin DF PT

1 39.7 30.5 30.5 30.7
2 36.2 29.4 29.0 29.6
4 33.1 28.3 28.5 28.1
8 30.7 27.3 27.7 27.7

16 29.5 27.3 27.0 27.4
32 29.9 27.6 27.7 27.1

# Phone Error Rate (%)
mixture Maximum Online Reweighting Reweighting

component likelihood w/ margin DF PT
1 41.5 32.8 32.5 32.9
2 38.0 31.4 30.8 31.2
4 34.9 30.3 30.0 30.3
8 32.3 28.6 29.1 29.4

16 30.8 28.8 28.5 29.3
32 31.8 29.0 29.3 28.6
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The distance between two phonemes is defined as the difference between the

distinctive features of the two phonemes. The resulting distance matrix of phonemes in

TIMIT dataset is shown in Fig. 7.4. The distance matrix is illustrated as a gray-scale

image, in which black denotes distance of 0. The distance in general follows our intu-

itions: phonemes in the same broad category (e.g. consonants) have smaller distances.

We perform the experiments by weighting the substitutions in Hamming distance with

the distance matrix, and train the model parameters by optimizing eq. (7.3). Again we

use validation set to select the best scaling factor λ. The results are shown in Table 7.4.

The Hamming distance reweighting yields marginal improvements on both frame and

phone error rates.

The second distance measure we explore for reweighting Hamming distances

is based on the phonological tree [RJ93]. The corresponding tree structure for TIMIT

dataset is shown in Fig. 7.6, in which each intermediate node can be viewed as a phono-

logical feature and each leaf is a phoneme. The leaf nodes under the same ancestor

share more phonological propertiesthan others. Therefore, we define the distance as the

total distance from the two leaves to their lowest common ancestor (LCA). For exam-

ple, the phonemes inside the same category “front vowels” have a distance of 2, and

those between “front vowels” and “mid vowels” have a distance of 4. Again from this

reweighted Hamming distance, we can represent the distance matrix by a gray-scale im-

age ( see Fig. 7.5). The results are shown in the last column of Table 7.4. However, the

reweighting based on the phonological tree does not improve the performance.

7.3.3 Forced alignment

Finally, we consider the applicability of our approach to other common training

scenarios. While the TIMIT speech corpus has manually aligned phonetic transcrip-

tions, most speech corpora do not have such information. For large margin training, our

framework requires target state sequences that specify the hidden state in each frame of

speech. When these alignments are not available from the corpus itself, what can we

use in their place? The simplest option is to compute forced alignments of the training

speech from whatever word or phonetic transcriptions are provided. To evaluate this

option, we experimented with large margin training where for target state sequences,
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we used forced alignments generated by seed CD-HMMs trained by ML estimation.

Table 7.5 compares the phone error rates from large margin training using manual ver-

sus forced alignments for different model sizes. Surprisingly, the results from forced

alignments are comparable to (and sometimes even slightly better than) those obtained

from the “ground truth” transcriptions. Thus it does not seem that precise knowledge

of phoneme boundaries is required for large margin training, provided that forced align-

ments of reasonable quality can be generated from a seed model.

Table 7.5: Phone error rates from large margin training using manually aligned phonetic

transcriptions versus forced alignments; see text for details.
# Phone Error Rate (%)

mix manual forced
1 32.8 32.9
2 31.4 30.9
4 30.3 29.8
8 28.6 28.9
16 28.8 28.2
32 29.0 30.6

7.3.4 Diagonal covariance matrices

Our final experiment was motivated by the fact that many researchers choose not

to use full covariance matrices in CD-HMMs for ASR. Table 7.6 compares the results

when HMMs with diagonal covariance matrices were estimated by ML versus online

updates for large margin training. For the latter, we used slight variants of the online

updates in eqs. (6.6)-(6.8); in particular, we constrained the covariance matrices to be

diagonal, and we computed gradients with respect to the large-margin loss function in

eq. (7.3). The results show that for purely diagonal covariance matrices, large margin

training also yields lower frame and phone error rates than ML estimation. However,

the improvements are not as substantial as those obtained from full covariance matrices

using the parameterization in eq. (6.10).
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Table 7.6: Frame and phone error rates for HMMs with diagonal covariance matrices, as

obtained by maximum likelihood (ML) estimation and online updates for large margin

training. The left column shows the number of mixture components per GMM.
# Frame Error Rate (%) Phone Error Rate (%)

mix ML online ML online
1 44.0 39.2 46.8 43.5
2 40.0 35.6 43.3 39.3
4 37.6 34.0 41.1 37.1
8 34.8 32.3 37.5 35.3
16 34.1 31.0 36.4 34.1
32 32.5 31.0 34.5 33.0
64 31.5 31.4 33.5 33.5

128 30.6 30.2 32.8 32.0
256 31.6 31.4 33.6 33.4

7.4 Summary

Online learning is an active area of research in machine learning [BL04, BB08].

Our main contribution in this chapter lies in adapting various recent approaches [Col02,

CSS09c] to large margin training of CD-HMMs. On TIMIT phoneme recognition, we

have shown that our approach is effective and efficient, not only attaining better error

rates than standard batch algorithms [SS09], but also speeding up training time signifi-

cantly. Anecdotally, we have attained similar performance as our own batch implemen-

tation of large margin training in roughly one third of the training time.

Scaling our approach to large vocabulary ASR presents several challenges. On-

line algorithms tend to update parameters very aggressively, thus exploring the param-

eter space more quickly than batch algorithms but also exhibiting larger variance on

consecutive updates. Future work will explore how to balance these tendencies. One

possible strategy is to chunk large amounts of data into small subsets, then to update the

model parameters using statistics on subsets as opposed to individual utterances. This

“minibatch” scheme lends itself naturally to parallelization since the computations on

subsets of utterances can be distributed across multiple machines. Within this approach,

however, further research is needed to determine the optimal subset size.

Chapter 7, in part, is a reprint of the material as it appear in Proceedings of
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the Tenth Annual Conference of the International Speech Communication Association

(Interspeech-09) 2009. Chih-Chieh Cheng; Fei Sha; Lawrence K. Saul, International

Speech Communication Association (ISCA), 2009. Chapter 5-8, in part, is a reprint of

the material as it appear in IEEE Journal of Selected Topics in Signal Processing 2010.

Chih-Chieh Cheng; Fei Sha; Lawrence K. Saul, IEEE Signal Processing Society, 2010.

The dissertation/thesis author was the primary investigator and author of these papers.



Chapter 8

Acoustic Feature Adaptation

Modern systems for automatic speech recognition (ASR) consist of two interre-

lated components: a front end for signal processing and feature extraction, and a back

end for statistical inference and pattern recognition. In most systems, the front end

computes mel-frequency cepstral coefficients (MFCCs) and higher-order derivatives of

MFCCs that capture changes over time [RJ93]. The back end then analyzes and in-

terprets these MFCCs using continuous-density hidden Markov models (CD-HMMs).

While the parameters of CD-HMMs are estimated from large amounts of speech, it is

less common for the parameters in the front end to be systematically optimized in the

same way.

In this chapter we continue a general line of research for end-to-end training

of speech recognizers. Specifically, we focus on the large-margin training framework

discussed in Chapter 6 and 7 of CD-HMMs and apply large-margin methods to jointly

optimize the acoustic features computed by the front end along with the CD-HMM

parameters estimated by the back end.

8.1 Introduction

Many researchers have noted the discrepancy between front and back ends and

shown that feature space adaptation indeed improves the performance by a significant

amount. In particular, adaptive methods are increasingly being applied at all stages of

pattern recognition, from the lowest levels of feature extraction to the highest levels of

81
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decision-making. Early influential work along these lines involved data-driven meth-

ods for robust feature extraction [SEK+00] and filterbank design [MH03, SWH+89,

HW91]. More recent methods include: (i) heteroscedastic linear discriminant analysis

(HLDA) [KA98] and neighborhood component analysis [SMCH07] to learn informative

low dimensional projections of high dimensional acoustic feature vectors; (ii) stochastic

gradient and second-order methods to tune parameters related to frequency warping and

mel-scale filterbanks [VG04, BVG04]; (iii) maximum likelihood methods for speaker

and environment adaptation [Gal98a, SFK+05] that perform linear transformations of

the acoustic feature space at test time; and (iv) extensions of popular frameworks for

discriminative training, such as minimum phone error [ZM05] and maximum mutual

information [MWS08], to learn accuracy-improving transformations and projections of

the acoustic feature space.

In this chapter, we show how to extend the large margin updates in eq. (7.4) to

learn a linear transformation of the acoustic feature space. The linear transformation is

parameterized by a projection matrix which maps the cepstral coefficients from multiple

adjacent analysis windows into a lower-dimensional acoustic feature vector. We derive

online updates to adapt the elements of this projection matrix after the decoding of each

training utterance. Our approach can also be viewed as a strategy for learning low-rank

decomposition of very large covariance matrices [WBS06, SMCH07].

The projection matrix affects how acoustic feature vectors are computed in every

frame of speech. For this reason, small changes to the projection matrix can have large

effects on recognition. This sensitivity presents a challenge for online learning, where

the acoustic feature space is constantly adapted based on the statistics of individual

training utterances. To mitigate the strongly biased gradients from individual utterances,

we experimented with different schemes for regularization and parameter-tying. Our

results show that parameter-tying helps to stabilize online learning by accumulating and

averaging gradients across otherwise independent computations.

Our work is distinguished from previous schemes for feature adaptation in three

ways. First, we consider how to jointly optimize the parameters in the front end along

with the acoustic models in the back end. Second, the feature adaptation is driven by an

objective function for large margin training, which seeks to separate the log-likelihoods
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of correct and incorrect transcriptions by an amount proportional to their Hamming

distance. Third, we explore parameter-tying not across different mixture components

or hidden states in the same HMM, but across different recognizers; in particular, we

train several different recognizers in parallel while tying the feature projection matrices

in their front ends.

8.2 Derivative features and linear projections

In most systems for ASR, the front end computes acoustic feature vectors from

mel-frequency cepstral coefficients (MFCCs). Typically, the first d0 = 13 MFCCs are

used in this analysis. Due to co-articulation and other temporal effects, the MFCCs from

one analysis window may contain information about the phonetic content in neighboring

windows. To capture this information, most front ends also incorporate MFCCs from

neighboring windows into their acoustic feature vectors. In particular, they compute

derivative features, such as delta and delta-delta MFCCs, and augment the feature vector

to include them.

The derivative features are computed by linearly combining MFCCs from neigh-

boring analysis windows. The weights used to combine adjacent MFCCs are fixed and

determined heuristically. Unlike most other parameters in modern speech recognizers,

these weights in the front end are not typically adapted to optimize performance.

To start, we consider how to optimize the linear transformation used to compute

derivative features in conjunction with the back end for large margin HMMs (described

in section 7.2). The standard derivative features are computed from a linear transforma-

tion of the raw MFCCs in nearby frames. Let ut denote the d0 = 13 MFCCs computed

at time t, and let vt denote the “stacked” MFCCs obtained by concatenating 4K+ 1

consecutive frames ut−2K , ut−2K+1, ..., ut, ..., ut+2K for some small value of K. The

first-order and second-order derivative features δ and ∆ are computed by

δt =

∑K
n=−K n · ut+n∑K

n=−K n
2

(8.1)

and

∆t =

∑K
n=−K n · δt+n∑K

n=−K n
2

. (8.2)
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Note that for computing these derivative features, there are many possible choices for the

number of neighboring windows and linear combination weights. It is straightforward

to compute higher order derivative features; however, such higher-order features provide

only marginal improvements in performance for most ASR.

Finally, let xt denote the acoustic feature vector derived from the MFCCs at time

t and their first and second-order derivatives. Then xt and vt can be related by the linear

transformation:

xt = H0vt, (8.3)

whereH0 is the projection matrix whose entries approximate derivatives by finite differ-

encing operations on nearby frames. Note that eq. (8.3) describes how acoustic feature

vectors were computed for all the experiments described in previous sections of this

thesis.

The matrix H0 is only one of many possible projection matrices that can be used

to compute acoustic feature vectors from MFCCs in adjacent frames of speech. By

learning projections other than the finite differencing operations in eqs. (8.1-8.2), we

hope to improve on previous results and benchmarks. In fact, both H0 and vt can be

extended to more general settings. For example, vt is usually defined as a context win-

dow of 13 or more consecutive frames in modern speech systems [SRP09], or vt can

be spliced log-spectral features. In the case of raw spectral features, H0 can be initial-

ized as the discrete cosine transform (DCT) for mel-frequency feature computation as

described in Chapter 4.

Our ultimate goal here is to learn more general projection matrices in the con-

text of large margin training for HMMs. In particular, we are interested in exploring a

different and adaptive linear combination on top of the traditional MFCC features.

8.3 Loss function for feature adaptation

Our approach builds on the online updates for large margin training in eq. (7.4).

Let x̂t denote the augmented feature vector of the stacked feature vector vt of MFCCs
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from 4K + 1 adjacent windows, as described in section 8.2:

x̂t =

[
vt

1

]
, (8.4)

and let zt denote the lower dimensional acoustic feature vector that appears in eq. (6.11).

We seek a projection matrix H ∈ <D×d that maps the high-dimensional vector x̂ of

stacked MFCCs to the low-dimensional acoustic feature vector zt; then for each window,

we can compute:

zt = Hx̂t. (8.5)

Note thatH has one extra row and column than the projection matrixH0 in eq. (8.3) due

to the augmented feature vector z that appears in eq. (6.11) for large margin HMMs. In

particular, we have d = 3d0 + 1 and D = (4K+1)d0 + 1, where d0 = 13 is the number

of MFCCs computed per window.

For acoustic feature adaptation in large margin HMMs, we update the projection

matrix H and the parameter matrices Φsc so that the constraints in eq. (7.1) are satisfied

for as many training utterances as possible. Let {(x̂n,yn)}Nn=1 denote the N labeled

feature-state sequences in the training corpus, where the observations live in the high-

dimensional feature space (before projection). For online learning, we examine one

utterance at a time and compute the hidden state sequence by eq. (7.2). Analogous to

sections 6.2 and 7.2, we define the loss function as:

L(H,Φ) =
∑
n

[
max
s6=yn

[D(x̂n, s)+ρH(s,yn)]−D(x̂n,yn)

]+

. (8.6)

Eq. (8.6) differs from eq. (7.3) in two respects: first, the observed feature vectors in

this context live in a much higher-dimensional space; second, in addition to the model

parameters Φ, the loss function also depends on the feature projection matrix H .

The margin-based loss function in eq. (8.6) depends on the matrices Φsc and H

through eqs. (6.1, 6.11) and (8.5). Specifically, we can write the discriminant function

as:

D(x̂, s) = logP(s1) +
T−1∑
t=1

logP(st+1|st)

+
T∑
t=1

log
∑
c

e−
1
2
x̂>t H

>ΦscHx̂t . (8.7)
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Note that while eq. (8.7) depends on the high dimensional (stacked) cepstral feature vec-

tors x̂t ∈ <D, the loss function can be computed entirely in terms of the low dimensional

features zt = Hx̂t. In fact, we can view H>ΦscH as storing a low-rank factorization

of an inverse covariance matrix in the high dimensional space of unprojected cepstral

features.

8.4 Low-rank factorization

The exponent in the last term in eq. (8.7) is essentially defining a distance func-

tion from example x̂t to class centroid Φsc on the projected space by

Distsc(x̂t) = x̂>t H
>ΦscHx̂t = x̂>t H

>ΛT
scΛscHx̂t = x̂>t Q

>
scQscx̂t, (8.8)

whereQsc = ΛscH , and by setting d ≤ D,Qsc is a low-rank factorization of the distance

metric QT
scQsc of cluster c of state s.

Low-rank factorization is the key to many linear dimensionality reduction tech-

niques such as linear discriminant analysis (LDA). It is often beneficial to reduce dimen-

sionality for classification in the sense that the computation at inference phase is faster

and also avoids overfitting at the training phase.

One might think by decomposing the projection matrix H>ΦscH into Q>scQsc,

we can minimize the loss function in eq. (8.7) by an update similar to eq. (6.14), except

the matrices are not square any more. However, this approach is ill-advised for several

reasons.

First, when computing the gradient in eq. (6.14), we need to calculate the outer

product of each example x̂tx̂>t (see Appendix A for details), and since x̂t inhabits a very

high dimensional space, the computation is costly in both memory and CPU time.

Second, the low-rank matrix Qsc is not a global projection matrix as opposed to

the projection matrix H in eq. (8.7) and many of its counterparts (e.g, LDA, neighbour-

hood component analysis (NCA) [GRHS05], constrained maximum likelihood linear

transformation [Gal98a]). A global projection matrix for feature vectors is often useful.

For example in the case of speaker adaptation, the model can be adapted to each speaker

by learning a transformation matrix for the speaker, without changing the original model

distributions.



87

Instead, we derive updates separately for Λsc and H .

8.5 Parameter-tying

The loss function in eq. (8.6) can be minimized by alternately updating H and

Φsc. However, we have noticed that small changes in the projection matrixH can drasti-

cally change the decoding results. This sensitivity is to be expected since the projection

matrix H is used to calculate acoustic features in every frame of speech.

One way to reduce this sensitivity is to perform some sort of averaging. Batch

training reduces this sensitivity by averaging over all the utterances in the training set.

However, batch training does not exploit the fact that many training utterances convey

redundant information. Some of the advantages of batch training can be obtained by

online updates that average gradients over “mini-batches” of training utterances. For

acoustic feature adaptation, however, we found that additional measures were needed.

The rest of this section describes a parameter-tying scheme that helps to mitigate

the strongly biased gradients from individual training utterances. In this scheme, we

tie the projection matrix H across several different recognizers whose parameters are

jointly updated after decoding each training utterance. By averaging the gradients across

multiple recognizers, we hope to obtain more stable online updates.

Parameter-tying in CD-HMMs has been widely adopted for

ASR [You92, DM94]. It has two main benefits: first, it reduces the memory footprint of

speech recognizers, and second, it reduces the number of free parameters that must be

estimated from limited training data. Our scheme for parameter-tying is subtly different

than previous approaches. Typically, parameters are tied across different hidden states

or mixture components in the same recognizer. For example, the related work [You92]

used a data-driven clustering procedure to tie similar states among triphone models in

the recognizer, where the similarity is determined by the Euclidean distance between the

state means. In our scheme, however, we tie parameters across multiple different recog-

nizers that are trained in parallel. These recognizers may have different model sizes (i.e.,

different numbers of hidden states and/or mixture components); or more generally, we

consider all recognizers sharing the same feature space, such as the HMMs in context
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dependent models. By tying the projection matrix, however, we force all the recognizers

to use the same front end.

Our approach is based on a global cost function for parallel training of multiple

models or recognizers. We index each available model by the superscript α; thus, each

model has its own (back-end) parameters Φα, as well as a shared (front-end) feature

projection matrix H . The global cost function is given by:

L =
∑
α,n

[
max
s6=yn

[Dα(x̂n, s)+ρH(s,yn)]−Dα(x̂n,yn)

]+

, (8.9)

where Dα(x̂, s) is the discriminant function for the model with parameters Φα. In our

implementation, the available models are large margin HMMs with one hidden state per

phone but different numbers of Gaussian mixture components per hidden state. Eq. (8.9)

differs from eq. (8.6) only in the accumulation of information across models. Thus, the

parameter-tying only affects the gradients for optimizing the tied projection matrix H ,

but not the gradients for optimizing each model’s individual (non-tied) parameter ma-

trix Φα.

8.6 Online updates

The objective function in eq. (8.9) lends itself to an alternating minimization

procedure. Such a procedure alternates between two phases, one optimizing Φ while

holding H fixed; the other optimizing H while holding Φ fixed. Because the optimiza-

tion is susceptible to local minima, we must also consider carefully how to initialize the

projection and parameter matrices in this context.

The online updates for minimizing eq. (8.9) are a straightforward extension of

those in the previous section. We alternatingly update the projection and parameter

matrices in the following way. First, we choose an utterance (x̂n,yn) at random from

the training corpus. Then, for each individual model, we update its parameter matrix by:

Λα ← Λα + ηΛ
∂

∂Λα
[Dα(x̂n,yn)−Dα(x̂n, s

α∗
n )] , (8.10)

where Λ is the factorized matrix of Φ (eq. 6.13), and the state sequence sα∗n is computed

from the margin-based decoding in eq. (7.2). The right hand side of eq. (8.10) depends
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on the current value of the parameter matrix ΦM and the projection matrix H . We

optionally repeat this online update for several additional utterances. Following these

updates for the model parameter matrices, we perform updates for the feature projection

matrix. Given an utterance (x̂m,ym) at random from the training corpus, we update the

projection matrix H by:

H ← H + ηH
∂

∂H

∑
α

[Dα(x̂m,ym)−Dα(x̂m, s
α∗
m )] . (8.11)

The right hand side of eq. (8.11) depends on the current value of the projection matrixH

and the parameter matrices Φ. Note that unlike the update in eq. (8.10), all models

contribute to the optimization of the projection matrix H through the summation in

the gradient. For more stable learning, we often perform the update in eq. (8.11) in a

mini-batch fashion, averaging over small sets of training utterances. We continue this

procedure, alternately updating the GMM and projection matrix parameters whenever

the results from margin-based decoding do not match the target transcriptions. The

scalar learning rates ηΦ and ηH determine the step sizes; in practice, we tune them

independently to achieve the fastest convergence.

8.7 Experiments

Our experiments had two main goals: first, to test whether feature adaptation

can improve phoneme recognition beyond the usual gains of discriminative training;

second, to investigate the potential benefits of parameter-tying in this context. Our base-

line systems were discriminatively trained HMMs with traditional cepstra, delta-cepstra,

and delta-delta-cepstra as features (the results are shown in Table 7.1). Our front end

computed d0 = 13 mel-frequency cepstral coefficients (MFCCs) in each analysis win-

dow; initial acoustic features were computed by linearly combining the cepstra across

13 consecutive analysis windows (i.e., including six windows on each side of the current

window); see eq. (8.3). To adapt the acoustic feature space, we concatenate all 169 cep-

stral features from these 13 windows, append a constant scalar feature of value one, and

then estimate a 40x170 projection matrix, as in eq. (8.5). We experimented on acoustic

models of different sizes, with 1, 2, 4, 8, 16 or 32 Gaussian mixture components per

hidden state.
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Since the optimization for acoustic feature adaptation is highly nonlinear, the

results can be sensitive to how model parameters are initialized. We used the following

scheme to obtain the positive results in this paper. First, we initialized all discrimina-

tively trained models by their maximum likelihood counterparts. Second, we initialized

all models with feature adaptation by setting the upper left block ofH equal toH0; thus,

the MFCCs from different windows were initially combined by computing standard

delta and delta-delta features. Third, in some experiments, we constrained the initially

zero elements of the projection matrix H to remain zero; in other words, though the fea-

tures were reweighted, the sparsity pattern of the projection matrix was not allowed to

change during learning. This constraint led to more reliable convergence in the models

without parameter-tying.

Table 8.1 compares the frame and phone error rates of acoustic models trained in

different ways: by maximum likelihood (ML) estimation, by large margin (LM) train-

ing (Section 7.2), by large margin training with feature adaptation (LM+FA) but no

parameter-tying, and by large margin training with feature adaptation and parameter-

tying across models of different sizes (LM+FA+PT), using both sparse and full projec-

tion matrices H . All discriminatively trained models were initialized from the same ML

baseline, thus starting from exactly the same performance. Also, for all these experi-

ments, we fixed the margin-scaling parameter in eq. (8.6) as ρ = 1, rather than optimiz-

ing it on held-out data (which is somewhat expensive). This choice was based on the

experiments in the previous section, where our results depended weakly on ρ as long as

its value was greater than some small threshold.

The results in Table 8.1 show three general trends: first, that feature adapta-

tion (LM+FA) improves performance beyond the already significant gains from large

margin training (LM); second, that feature adaptation works best in conjunction with

parameter-tying (LM+FA+PT) across different models; third, that the most general

scheme for feature adaptation (without sparsity constraints on H) leads to the most

improvement, provided that the learning is regularized in other ways. In particular, to

obtain the results in the last column of Table 8.1, we not only tied the full matrix H

across different models; we also employed a parameter-averaging update for the full

matrix H , as described in eq. (6.5). Without both parameter-tying across models and
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Table 8.1: Frame and phone error rates on the TIMIT test set for acoustic models of

varying size, as obtained by maximum likelihood (ML) estimation and online updates

for large margin training (LM), feature adaptation (FA), and parameter-tying (PT). See

text for details. The best results in each row are shown in bold.
# Frame Error Rate (%)
of H0 sparse H full H

mix ML LM LM+FA LM+FA+PT LM+FA+PT
1 39.7 30.5 30.4 29.2 29.2
2 36.2 29.4 28.1 28.1 27.8
4 33.1 28.3 27.4 27.4 27.5
8 30.7 27.3 27.4 26.6 26.4
16 29.5 27.3 28.2 27.5 27.5
32 29.9 27.6 29.7 28.1 28.5

# Phone Error Rate (%)
of H0 sparse H full H

mix ML LM LM+FA LM+FA+PT LM+FA+PT
1 41.5 32.8 32.2 31.9 31.5
2 38.0 31.4 29.6 30.3 29.5
4 34.9 30.3 29.3 29.2 29.1
8 32.3 28.6 28.8 27.8 27.7
16 30.8 28.8 29.6 28.6 28.5
32 31.8 29.0 31.3 29.6 30.0

parameter-averaging over time, learning with full matrices H yielded worse results on

both the development and test sets.

The exceptions to these trends are also revealing. For example, in the largest

model with 8 Gaussian mixture components per hidden state, the frame and phone error

rates are not improved by feature adaptation without parameter-tying; in fact, they are

slightly worse. The worse performance may be due to overfitting and/or unreliable

convergence. However, the performance in this model is improved when the feature

adaptation in the front end is tied across different recognizers. The parameter-tying

appears to mitigate the challenges of feature adaptation in large models. Specifically, it

appears to dampen the fluctuations that arise in online learning, when updates are based

on the decoding of individual training utterances. By tying the projection matrix across

different model sizes, the larger model benefits from information that is accumulated
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across different recognizers. Moreover, without parameter-tying, we observed that much

smaller learning rates were required to obtain small but consistent improvements from

acoustic feature adaptation.

Finally, we comment on convergence issues. In general, parameter-tying led

to better results but not necessarily faster training: that is, roughly the same number

of passes through the training data were required to converge (as measured by perfor-

mance on the validation set). However, while the update rule in eq. (8.11) accumulates

information across different models, we can always distribute the computation across

multiple nodes, summing up the gradients from individual models as necessary. When

implemented in this way, the total running time for learning is essentially equal to the

individual running time of the largest model in the ensemble of recognizers. This ap-

proach exploits parallelism in a similar way as many implementations of batch training

for large-scale ASR.

Fig. 8.1 compares the results from differently trained projection matrices. Specif-

ically, we compare the projection matrixH0 initialized by finite differencing (Fig. 8.1(a))

versus the best projection matrix learned by large margin training (Fig. 8.1(b)); that is,

the one used to obtain the best result in the fifth column of Table 8.1. The difference

between the two matrices is subtle but revealing. The discriminatively trained matrix

incorporates more frames in its computation in contrast to the first-order derivative com-

putation in the initial matrix H0.

As a comparison, we also show the transformation matrix obtained from LDA

on the same training data (Fig. 8.1(c)). LDA is a popular dimension reduction method in

both machine learning and speech recognition. Interestingly, the transformation matrix

from LDA also exhibits a pattern that suggests of differencing operations, but it gives

more weight to every first MFCC, which is the energy of the frame, while ignoring

the remaining coefficients. Table 8.2 shows the results from LDA transformation. We

performed LDA on the 169-dimensional spliced MFCC vectors, with class information

given by the phoneme transcription. The transformation resulted in a 39 × 169 matrix.

The results from LDA are slightly better than the ML results using first- and second-

order derivative features, but not as good as those from large margin training.



93

(a) (b)

(c)

Figure 8.1: The resulted projection matrices learned by: (a) differential operations for

derivative features; (b) large margin training with feature adaptation and parameter-

tying; (c) linear discriminant analysis performed on the same training data.
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Table 8.2: Frame and phone error rates of different acoustic feature transformations:

delta and delta-delta MFCC (H0), unconstrained discriminatively trained projection ma-

trix (full H), and LDA transformation.
# Frame Error Rate (%)
of H0 full H LDA

mix ML LM+FA+PT ML
1 39.7 29.2 36.3
2 36.2 27.8 34.6
4 33.1 27.5 31.6
8 30.7 26.4 30.0

16 29.5 27.5 29.4
32 29.9 28.5 29.7

# Phone Error Rate (%)
of H0 full H LDA

mix ML LM+FA+PT ML
1 41.5 31.5 39.2
2 38.0 29.5 37.3
4 34.9 29.1 33.4
8 32.3 27.7 31.7

16 30.8 28.5 31.3
32 31.8 30.0 31.3

8.8 Related work

Feature space projection, or dimension reduction for acoustic features, is not

new in the speech community. Transformations of the feature space have proven very

successful in many tasks, such as large and small vocabulary recognition and speaker

adaptation [KA98, SPGC00, THP+09, SZP01, GB01]: they are now a standard part

of the feature extraction process in modern speech systems [PP02, SRP09]. One ex-

planation of the success is that the traditional way to extract acoustic features, such as

MFCCs and their derivatives, is not geared to class discrimination. The main benefit of

MFCCs is that they decorrelate the spectral features from nearby parts of the frequency

spectrum, usually by discrete cosine transform (DCT). However, it is not clear that how

much benefit DCT has in terms of class discrimination despite it retains orthogonality

in the transformed space.

Perhaps the earliest work on acoustic feature transformations applied LDA to the

speech signal. LDA is a popular discriminative method for finding the projection which

best separates different classes of data, while maintaining a small variance within each

class [Fuk90]. LDA has shown consistent improvements in small-vocabulary speech

systems but mixed results on large vocabulary ones [SPGC00, HUN92]. Following

the notation in this chapter, and letting H denote a linear transformation matrix, LDA
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computes the transformed feature space y = Hx ∈ Rd by maximizing

J =
HBH

HWH
, (8.12)

where B is the covariance between classes and W is the covariance matrix within

classes. The maximum of eq. (8.12) has a closed form solution given by the eigenvec-

tors of W−1B. In the context of dimensionality reduction, one computes the low rank

projection Hd from the d < D eigenvectors of W−1B with the largest d eigenvalues.

The original form of Fisher’s LDA in eq. (8.12) is best suited when the classes of

data are Gaussian distributed with identical covariance matrices (but different means).

The maximum likelihood estimation of the restricted Gaussian model has been shown

to be equivalent to the solution of reduced rank LDA [Cam84], with a number of prior

assumptions. The first assumption is that the discriminative information only exists in

the first d-dimensional subspace; second, all Gaussian clusters are of equal variances.

Following the work, Hastie et al [HT96] generalized the approach to GMM-distributed

class data; however, the equal covariance restriction is still strictly enforced.

The assumption of equal covariance matrices may result in an inconsistency be-

tween LDA and the acoustic modeling subsequently used in speech systems, and this

might explain the non-optimal performance in those preliminary experiments. In order

to compute the relevant acoustic features with the most discriminative information and

also suited to the subsequent acoustic models, the equal covariance assumption has to be

relaxed. Heteroscedastic linear discriminant analysis (HLDA) [KA98] extends LDA by

dropping the equal covariance constraint among different classes. It has proven widely

useful in speech recognition [SPGC00, OHJ03, ZM05] and has been adopted as a stan-

dard step in acoustic feature processing [PP02, SRP09].

Kumar et al [KA98] initiated this line of work with a maximum likelihood-based

algorithm to optimize the feature space transformation along with the model parameters.

The approach was motivated by Campbell [Cam84], and released the equal covariance

constraints by modelling each class with a different covariance matrix. Given the data

of each class can be modeled by single Gaussian distribution, the log-likelihood LHLDA
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of the training data is

LHLDA =
N∑
i=1

−1

2
{(HTxi − µyi

)TΣ−1
yi

(HTxi − µyi
) + log((2π)D|Σyi

|)}+ log |H|,
(8.13)

where H is a D × D full rank matrix. By assuming that only the first d dimensions

of the transformed space contain the class discrimination information, the means µj ,

covariance matrices Σj , and the transformation matrix H can be partitioned into two

parts: one for the informative d components, and one for the globally invariant D − d
components. A joint optimization of all parameters is infeasible for eq. (8.13); however,

the task can be simplified by first calculating the optimal values of one parameter while

fixing the others. With a fixed transformation matrix, the optimization of the means and

covariance matrices can be done by the standard maximum likelihood estimation. By

differentiating eq. (8.13) with respect to means and covariance matrices, there are closed

form solutions for these parameters:

µ̂dj = HT
d x̄j (8.14)

µ̂D−d = HT
D−dx̄ (8.15)

Σ̂d
j =

1

Nj

(HT
dWjHd) (8.16)

Σ̂D−d =
1

N
(HT

D−dBHD−d). (8.17)

Substituting µ̂j and Σ̂j back into eq. (8.13), one can obtain a new likelihood function in

terms of H , which can be maximized by

Ĥ = argmaxH{−
N

2
log |HT

D−dB̄HD−d| −
∑
j

−Nj

2
log |HT

d W̄jHd|+N log |H|},
(8.18)

where B̄ and W̄j are the estimated between- and within-class covariance matrices with

respect to µ̂. Although the optimization of both model parameters and feature transfor-

mation are under the same objective function, the training of HLDA has to take place

in separate procedures. That is, the model parameters are obtained by EM algorithm

while fixing the transformation matrix, and the transformation parameter is learned by a

gradient method while fixing the Gaussian model parameters.

There are several alternative HLDA methods to learn the discriminative projec-

tion. Omar et al [OHJ03] proposed to use a discriminative objection function instead
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of ML criterion. The objective functions in ML-based HLDA projections aim at maxi-

mizing the distance between clusters at the reduced feature space. The authors argued

that the mutual information between the projected feature space and the set of clusters

might be a better objective for recognition. Similarly, Zhang et al [ZM05] proposed to

use minimum phone error (MPE) as the criterion to preserve during the projection.

Although ML-based and discriminative criterion-based methods incorporate the

feature projection in the objective functions, they do not learn feature transformation

parameters along with model parameters under the same optimization. To see this point,

for example in [KA98], they performed an EM algorithm for the model parameters,

one gradient-based search for the transformation parameters, and one more search for

the model parameters. Our framework distinguishes from others in the sense that it

learns both model-space and feature-space parameters simultaneously, until it meets the

convergence criterion.

More recently, neighbourhood component analysis (NCA) [GRHS05] has been

applied to speech recognition tasks. The goal of NCA is to find a distance metric that

maximizes the performance of k-nearest neighbour (k-NN) classification, where the dis-

tance measure is defined as DistNCA = (Ax − Ay)T (Ax − Ay). If A is a low-rank

matrix, finding the optimal distance metric ATA is equivalent to finding the optimal di-

mension reduction. Inspired by NCA, Singh-Miller et al [SMCH07] proposed to learn

the acoustic feature transformation to minimize the k-NN classification loss in the trans-

formed space. Although NCA is a discriminative method, it is not working directly

toward minimizing the loss measure for decision making in speech recognition. There-

fore, as shown in [SMCH07], the classification results are more promising than their

recognition results. Another potential difficulty of NCA is its ability to scale to large

datasets due to the fact that its complexity grows quadratically with the number of train-

ing data, and a parallelized computation is usually implemented.

Acoustic feature transformation is also widely used for rapid speaker adaptation.

Although addressing different problems than acoustic feature projection (i.e., dimen-

sionality reduction), the optimization of speaker adaptation problems requires solving

similar equations as the one described in HLDA [LW95, Gal98b, SZP01]. The suc-

cess of a speech model relies on a sophisticated training with a large amount of training
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data to cover the possible variability in the real environment. However, even the cur-

rent speaker-independent models have achieved a good performance, speaker-dependent

systems in general still yield an even better performance [LW95]. Yet the training of

speaker-dependent systems require a significant amount of data from each individual

speaker, which is impractical in most circumstances. Therefore, the goal of speaker

adaptation is to adapt a well-trained speaker-independent model to a speaker-dependent

model at testing phase by a small amount of speaker-specific data. The adaptation is

carried out by finding a transformation on the model parameters or on the feature space

such that the objective function is optimized given the speaker dependent training data.

Specially in the constrained maximum likelihood linear regression (MLLR), a

linear transform is applied to the feature vectors and learned by maximizing the like-

lihood of the acoustic data [Gal98b]. The objective function is identical to eq. (8.13),

but with several differences. The first difference is the full-rank transformation matrix

H in MLLR, which makes an efficient iterative algorithm based on forward-backward

probability feasible. Second, there is usually a very small amount of speaker-dependent

data available for training, and thus how to adapt all phone models with the limited

data is a practical issue. The training utterances may not contain enough data for every

phone model. A tying between similar states is usually committed to share the training

data [LW95]. This is analogous to the tying approach for training context-dependent

models [YOW94, DM94], but with flexibility regarding the available data in the utter-

ances (e.g. how/which states to tie).

Saon et al [SZP01] has noticed the parallelism between HLDA and MLLR, and

developed a speaker-dependent feature projection based on MLLR training for speaker

adaptation problems. This is a new merge of the front-end training phase and the back-

end testing phase, since conventionally the projection is done at the front-end feature

processing step, with training data, and the subsequent training, testing and adaptation

processes are all performed on the projected space. Supposedly the unknown testing

data may have a different projected space that contains the maximal discrimination in-

formation, and it is beneficial to capture this variation in addition to simply rotating the

feature space.

In light of all the above discussion, the acoustic feature adaptation proposed in
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this chapter is potentially applicable and relevant to speaker adaptation problems. There

are several insights. First, for the problem of a small amount of data, the parameter tying

exploited in Section 8.5 can serve as a base. Instead of tying between recognizers, the

tying can be performed among similar states in different phone models, as determined

by the available data. Second, the rank of the transformation matrix in our framework is

flexible. In contrast to HLDA, there is no need to learn a global projection in the rejected

space, and thus the training could be easier with our framework. A recent work of one

of our counterparts has shown a promising result in this direction [LSN10].

8.9 Summary

In this chapter we have explored how to optimize the acoustic features computed

by front ends for ASR. Extending the framework in previous chapters for large-margin

training of CD-HMMs, we showed that standard acoustic features could be discrimina-

tively reweighted to improve performance. Our best results were obtained by tying the

feature reweighting parameters across multiple recognizers and training these different

recognizers in an integrated manner. The parameter-tying across models was used to av-

erage the strongly biased gradients from individual training utterances in online learning.

Chapter 8, in part, is a reprint of the material as it appear in Proceedings of

the IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU-09)

2009. Chih-Chieh Cheng; Fei Sha; Lawrence K. Saul, IEEE, 2009. Chapter 5-8, in

part, is a reprint of the material as it appear in IEEE Journal of Selected Topics in

Signal Processing 2010. Chih-Chieh Cheng; Fei Sha; Lawrence K. Saul, IEEE Signal

Processing Society, 2010. The dissertation/thesis author was the primary investigator

and author of these papers.



Chapter 9

Discussion

In this thesis, we have explored the potential of online updates for discriminative

training of HMMs. We have also shown that such updates can be used for large margin

training and acoustic feature adaptation, yielding further improvements in performance.

We conclude by summarizing our main contributions.

In Chapter 6, we identified two reparameterizations of GMMs that lead to more

effective online updates. The reparameterization in eq. (6.10) aggregates the mean and

covariance matrix parameters of GMMs, yielding simpler gradients and eliminating the

need for multiple different learning rates. The further reparameterization in eq. (6.13)

leads to significantly faster convergence. Based on extensive experimental results, we

identified these reparameterizations, as well as the averaging in eq. (6.5) as best prac-

tices for discriminative training of HMMs using online updates. Moreover, as shown

in Table 6.1, acoustic models trained in this way performed better than acoustic models

trained by popular batch approaches such as CML and MCE.

In Chapter 7, we showed how to extend these online updates to incorporate large

margin constraints. Large margin training led to further improvements in frame and

phone error rates. Though the online updates for large margin training did not match the

performance of previous batch implementations, they were simpler to implement and

required fewer passes through the set of training utterances.

Finally, in Chapter 8, we used online updates for end-to-end training of speech

recognizers. In particular, we experimented with alternating updates that jointly adapted

the features computed by the front end in conjunction with large margin training of

100
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HMMs. For our best results, we developed a novel parameter-tying scheme that tied

the feature projection matrices of multiple different recognizers trained in parallel. This

scheme yielded further improvements in frame and phone error rates across all model

sizes; the results also surpassed those from previous batch implementations of large

margin training (without acoustic feature adaptation). Though acoustic features could

in principle be adapted within a batch framework, the required implementation and ex-

perimentation would be much more unwieldy.

One potential work for future direction is to apply this framework on large vo-

cabulary continuous speech recognition (LVCSR), since there exists a great number of

challenges in the problems of such a large scale, including the size of the models, the

size of the training/testing data, and the unlimited length of each data. As discussed

in Chapter 4, the LVCSR systems in fact employs a highly customized framework de-

voted to optimize the performance of the tasks. We briefly discuss how to extend our

framework to LVCSR systems in the following.

LVCSR systems usually model each phoneme by a context-dependent HMM

with three (or more) hidden states. These phone HMMs are concatenated to form

word HMMs, sentence HMMs, and so on. Parameter estimation depends on running

a forward-backward algorithm on a word lattice. Decoding is based on a two-pass de-

coder, with the first pass generating the lattice and the second pass performing a con-

strained search using a high-order N-gram language model [GY08]. This implementa-

tion raises challenges that do not appear in our framework, particularly the training data

with partial transcriptions and the decoding of a large word graph.

In our framework (see Chapter 6), we compare the statistics of the correct state

sequence s to the most likely competing sequence s∗. For the statistics of the correct

sequence, we need the correct transcription as provided by a frame-level phonetic tran-

scriptions. However, such transcriptions are not available for the large corpora used in

LVCSR. These corpora are transcribed at the word-level; the word-level transcriptions

do not provide frame-by-frame phonetic alignments.

The statistics from the correct sequence are also required in the discriminative

training of most LVCSR systems (e.g. for the numerator of the objective function in

MMI training). To obtain these statistics, a reference HMM for the correct sequence is
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built by concatenating phone HMMs consistent with the word-level transcriptions. The

frame-level phone labels are then obtained by a forced alignment of the utterance by

the reference HMM. The parameters of the reference HMM are usually initialized by

a previously built recognizer, and the reference HMM itself is usually represented by a

lattice.

When extending our framework to LVCSR systems, the same alignment is re-

quired to obtain frame-level transcriptions. In our case, we can perform the forced-

alignment once at the beginning or each update. We explored this idea in section 7.3.3,

where we used forced alignment to derive phonetic boundaries, not assuming they were

available from the transcription. Another idea is to perform the forced alignments

less frequently - say, once every several updates - as is done in direct loss minimiza-

tion [MHK10]. We believe either approach is viable for LVCSR implementation.

For discriminative training, we also need statistics from competing hypothe-

ses; these statistics are more expensive to compute. In LVCSR implementations of

MMI [VOWY97], a subset of competing hypotheses are encoded by a word lattice, and

a constrained search estimates the occupation probabilities by a forward-backward al-

gorithm. The lattice makes it possible to compute the statistics of the N-best hypotheses

as opposed to just the strongest competitor (as in Perceptron-like training). We can use

a lattice in the same way for the large margin HMMs in this thesis. In particular, the

derivatives of the discriminant function D(x, s∗) can be expressed in terms of the pos-

terior occupation probabilities (Appendix A). For one-best list, the required statistics

can be computed by a forward pass of decoding and a backward pass along the decoded

path. For N-best lists, the state occupation probabilities can be computed by forward-

backward algorithms that average over all paths encoded by the lattice.

A final concern for LVCSR is how to incorporate the large margin constraints.

Recently, a “boosted” variant of MMI has been proposed [PKK+08] which can be

viewed as enforcing a margin on competing sequences. In this approach, the margin

constraints were incorporated into lattice calculations by penalizing wrong alignments

on the fly. We can use a similar strategy for the margin constraints in our approach.

However, one question for LVCSR is whether the margin constraints are best formu-

lated in terms of frame-level Hamming distances. For ASR, the misalignment between
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two transcriptions is more appropriately measured by the word-level edit distance than

the frame-level Hamming distance. However, edit distance are more expensive to com-

pute, and it is unclear how to incorporate them into lattice computations for our frame-

work. One possible approximation is the “phone accuracy” used in minimum phone

error (MPE) criterion [PW02]; this possibility remains a direction for future work.

Another interesting direction is to apply the ideas in Chapter 8 to the problem

of speaker adaptation. Speaker adaptation has proved to improve the speech recog-

nition systems by a significant amount, and has become part of the standard process

in the state-of-the-art speech systems [GY08]. Inspired by a recently-developed line

research [LSN10, HLSN08], the incorporation of our framework for speaker adaptive

training is practicable, building on the basis of the acoustic feature adaptation introduced

in Chapter 8.

Finally, we conclude by mentioning the possibility of training on unlimited data -

for example, if the model is updated daily with renewed training data [BDG+09]. Online

learning has shown success in this regime for other applications [MSSV09]. Indeed, this

regime is precisely where one expects the biggest payoff from online methods, as we

have considered in this thesis.



Appendix A

Derivation of the gradients

The online update (eq.( 6.4)) is an instance of generalized stochastic gradient

methods. The major computation in the update is dominated by the gradient computa-

tion according to different parameterizations. In this work, we have described updates

in Φ (eq. (6.12)), in the factorized parameters Λ (eq. (6.14)), and in the projection ma-

trix H (eq. (8.11)). Here we show the derivation of the gradient with respect to Λ as an

example. Gradients with the other parameterizations can be derived in a similar way.

Recall that the loss function (eq.( 6.3)) is defined as

L(Λ) =
∑
n

[D(xn, s
∗
n)−D(xn,yn)]+ , (A.1)

where [z]+ = max(z, 0) indicates the nonnegative hinge function and s∗n is the Viterbi

decoding sequence. The order of the two terms inside the hinge function does not matter

too much - minimizing a loss function is equivalent to maximizing the negative loss

function - as long as the update is verified using either a gradient descent or a gradient

ascent method.

For simplification, we assume the HMM uses single Gaussian as its emission

density function. Thus the discriminant of an observation sequence x and a state transi-

tion sequence s (eq. (6.1)) can be written as

D(x, s) = logP(s1) +
∑
t>1

logP(st|st−1)− 1

2

∑
t

xTt Φstxt, (A.2)

in which we parameterize the Gaussian density function by Φst matrices (Section 6.4).

By taking gradient on D(x, s) with respect to the parameter of the kth state Φk, we
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obtain the equation
∂D
∂Φk

= −1

2

∑
t

δst,k(xtx
T
t ), (A.3)

where δl,r is an indicator function with a value 1 if l = r.

For a faster convergence by an unconstrained update, we need to work on the

square root matrix Λ (Section 6.5), where

Φ = ΛΛT . (A.4)

Combining eqs. (A.3) and (A.4), the gradient on Λ is decomposed and derived by chain

rule:

∂D
∂Λk

lm

=
∑
ij

∂D
∂Φk

ij

∂Φk
ij

∂Λk
lm

=
∑
ij

−1

2

∑
t

(xtx
T
t )ijδst,k(δilΛ

k
jm + δjlΛ

k
im)

= −1

2

∑
t

δst,k

∑
ij

(xtx
T
t )ij(δilΛ

k
jm + δjlΛ

k
im)

= −1

2

∑
t

δst,k(
∑
j

(xtx
T
t )ljΛ

k
jm +

∑
i

(xtx
T
t )ilΛ

k
im)

= −1

2

∑
t

δst,k(2(xtx
T
t )l(�)Λ

k
(�)m),

where (�) denotes all elements in the row or column. We can see that the gradient on the

lmth element in Λk is simply the dot product of the lth row in xtxTt and the mth column

in Λk. Hence, we obtain the gradient on the matrix Λk by

∂D
∂Λk

= −
∑
t

δst,k(xtx
T
t )Λk. (A.5)

In the context of online learning, we only see one observation at a time and therefore we

only need to calculate the gradient of the loss regarding the nth observation Ln:

∂Ln
∂Λk

= −step[D(xn, s
∗
n)−D(xn,yn)]

∑
t

(δs∗t ,k − δyt,k)(xtx
T
t )Λk. (A.6)

Finally, the update of the parameters accordingly follows those described in Section 6.5.
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It is straightforward to apply the gradient derivation to HMMs with Gaussian

mixture models. Instead of having the {0, 1} indicator, every outer product xtxTt is

weighted by the posterior probability p(km|xt), where m is the index of Gaussian mix-

ture component in the state k. Intuitively, the gradient can be viewed as a (weighted)

count of occurrences of state k (or Gaussian mixture component km) in the transcrip-

tion and the Viterbi decoding sequence. This is analogous to the Perceptron training on

discrete HMMs in [Col02], where they increase/decrease the feature weights based on

the occurrences of features in the transcription and the predicted sequence. However,

unlike their work, we work on continuous density functions, and the updates are thus

based on a sum of outer products of the examples in the sequences.

In our implementation, we launch the training and testing processes with MAT-

LAB interfaces, and the major computation is written in C language with the Basic Lin-

ear Algebra Subprograms (BLAS) library. The computation in each “pass” of training

data is almost the same as that of the batch counterpart of this work [SS09], except that

we need to do Viterbi decoding for every upcoming sequence and therefore add up some

overhead. Nevertheless, we can have thousands of updates done in one single pass of

training data in contrast to one single update for one pass in batch learning algorithms.
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