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CHAPTER 1. INTRODUCTION

It is generally agreed that numerical methods for the solution of initial boundary value
problems of continuum mechanics should be consistent, in some defined sense, with the
governing field equations, if they are to be successful according to the criteria of numerical
analysis. This minimal requirement is lacking in many of the numerical formulations for finite
deformation inelasticity reperted in the computational: literature. Mo amount of numerical
sophistication will compensate for this shortcoming. The research reported herein is essentially

a search for such consistency for a limited problem class.

Attention is restricted to materials characterized by constitutive equations which are
insensitive to the rate of deformation but which are appropriate for deformations of arbitrary
magnitude. Such rate-independent characterization includes hyperelasticity, hypoelasticity, and
elasto-plasticity. These material classes are the main constitutive focus of the following

developments.

Discussion of numerical consistency presupposes knowledge of the governing nonlinear
field equations, many aspects of which, for finite deformations, are still subject to conjecture.
Consequently, in this development of a numerical formulation for the finite deformation prob-

lem of rate-independent solids, two fundamental and distinct aspects are given attention:
(a) The mathematical description of the physical theory.
(b) The development of numerical solution procedures consistent with (a).

These two aspects are discussed briefly below.

Mathematical Description of Physical Theory

Emphasis is placed on the geometric interpretation of the concepts of continuum mechan-
ics. This is accomplished using the results of the calculus on manifolds and follows the work of
Marsden and Hughes [3]. The coordinate free notation removes the opacity given to many

results by layers of complicated coordinate formulas, revealing the heart of the theory. Such an



approach not only makes standard results transparent but has also led to new results in the area
of constitutive theory as well as lending itself admirably to the development of consistent

numerical solution algorithms.

As an example of new results in constitutive theory, the findings in Chapter 3, which con-
siders a spatial setting for the constitutive theory of hyperelasticity, may be mentioned.
Although a theory of finite elasticity is necessary for elasto-plasticity, the study of this subject
proves to be revealing in its own right. It is shown that the spatial (Cauchy) stress tensor is
derivable from a thermodynamic potential which is a function of the point values of the con-
vected metric tensor. This in turn leads to a specific rate form of the hyperelastic constitutive
equations involving the Lie derivative of the spatial stress field taken with respect to the spatial
velocity field. Furthermore, using results from geometry, other objective stress rates are inter-
preted in terms of the Lie derivative and conclusions drawn about the thermodynamic admissi-
bility for such stress rates as they appear in specific, but frequently used, constitutive equations.
It is noted that stress rates used in constitutive equations in the computational literature appear
to be selected only on the grounds of making the boundary value problem self-adjoint. This

practice may have serious consequences.

Constitutive theory for rate-independent elasto-plasticity employing an internal variable
formalism and developed within the framework of irreversible continuum thermodynamics is
considered in Chapter 4. The use of thermodynamic potentials which depend on the internal
variables leads to the additive decomposition of the rate of deformation tensor into elastic and
plastic parts, independently of any kinematic arguments or approximations. The consistent
thermodynamic approach leads to evolution equations for the spatial stress field and the spatial

internal variables in terms of their Lie derivatives taken with respect to the spatial velocity field.

A Consistent Numerical Solution Procedure

There is now a considerable body of literature describing a great diversity of numerical
formulations for the finite deformation problem of rate-independent elasto-plasticity. Many of

these formulations [5-10] have been based on the boundary value problem for rate of
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momentum balance, motivated by the rate nature of the constitutive equations. For certain
material classes, the rate problem may be characterized by a variational principle due to Hili
{11]. Conditions for the existence of such a principle demand that the constitutive relations
have a symmetry such that the stress rates are derivable from potential functions of the strain
rate [4]. Some objective stress rates do not admit the existence of such potentials and, accord-
ingly, the rate problem will not be self-adjoint [5,8]. Finite element formulations based on the
rate problem yield the nodal velocities as the solution, and these must be integrated if the dis-
placement field is required.

An equivalent incremental solution procedure, where the rate problem is numerically
integrated over a time step using a predictor/corrector technique, has been developed by a

number of workers [12-17].

The rate of momentum balance formulation is not employed in the present study.
Instead, an approach based on consistent linearization of the weak form of a variational equa-

tion equivalent to the boundary value problem of momentum balance is used.

There is an extensive literature in solid and structural mechanics dealing with concepts of
linearization. However, many of the proposed methods lack a sound analytical basis; conse-
quently, the relationship between the solutions of the linearized theory and its nonlinear pro-
genitor is often obscure. The material of Chapter 5 represents an application and extension of

the analytically consistent linearization theory presented by Marsden and Hughes [3].

In the present work, equations expressing the dynamic equilibrium of loaded bodies
employ the motion as an independent variable. The functional dependence on the motion of all
tensors, including the stress tensor, appearing in the equilibrium equations provides the basis
for consistent linearization. However, for the rate-independent material classes under con-
sideration, some objective rate of a spatial stress tensor will be expressed as a homogeneous
linear function of the spatial rate of deformation tensor. Since these rate constitutive equations
are not directly integrable, in general, the functional dependence of the stress tensor on the

motion is not available and the usual methodology of linearization is not effective. Using



geometric concepts involving the Lie derivative of the stress field taken with respect to the
incremental motion, the theory of linearization is extended in Chapter 5 to cover the case of

rate-independent constitutive equations.

The linearized weak form, consistent with the rate constitutive equations, provides a basis
for defining a finite element, Newton-Raphson solution procedure in which the resulting vari-
ables are the nodal incremental motions and which has so-called Total Lagrangian and Updated
Lagrangian interpretations. The relationship between the symmetry property of the finite ele-
ment tangent operator and the structure of the rate constitutive equations is considered. Since
the rate constitutive equations are not directly integrable, the stress update in the Newion-
Raphson procedure must be accomplished by numerical integration of the constitutive equa-

tions, taking proper account of the finite deformation effects occuring over the time steps.

Chapter 6 considers the evolution of the stress tensor subject to the constitutive equations
of hyperelasticity, hypoelasticity, and rate-independent elasto-plasticity. Taking advantage of
the geometric interpretation of the mechanics underlying the evolution of the stress tensor, an
algorithmic treatment of the integration problem is developed. The resulting incrementally
objective family of algorithms is intimately connected with the structure of the constitutive
equations and, in this respect, marks a departure from the work of others who have considered

the integration problem [13,16,17,47,51].

Examples of finite homogeneous deformation are considered in Chapter 8, where analyti-

cal solutions for a number of problems are developed. These problems serve two purposes:

(a) They illustrate that certain thermodynamically inconsistent (but frequently used) constitu-
tive equations lead to "non-physical” instabilities in the solution of boundary value prob-
lems. These instabilities are absent for thermodynamically consistent constitutive equa-
tions.

(b) They demonstrate the consistency and accuracy of the numerical solution procedure pro-

posed in this work.
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CHAPTER 2. CONTINUUM BASIS

2.1 KINEMATICS AND DEFORMATION RATES
A kinematic description of finite deformations, appropriate for the mechanics of solid con-
tinua, is considered in this section. Definitions of tensors required for later chapters are given

and connections among certain of these are established.

Coordinate Systems and Motion

A deformable body is assumed to be a smooth Euclidean manifold M which deforms in a
smooth Euclidean manifold N. A configuration of M is described by the mapping:
. M- N
The set of all configurations of M is denoted C(M) and called the configuration space. One
configuration in C(M), not necessarily corresponding to an actual configuration occupied by the
body, will be designated as the reference configuration and specified by ® € C(M).
With no loss of generality and for notational simplicity, it will be assumed that ® (M) is

the identity mapping. Accordingly, the reference configuration, to be denoted B, is defined by:

B = 1M).

Three coordinate systems, associated with the reference configuration, the ambient space

and a deformed configuration, are introduced along with the definition of motion.
(a) Material Coordinate System

The reference configuration B is endowed with a fixed material coordinate system {X“} so
that points in B are denoted X € B and have coordinates X4. The covariant base vectors, G 4,

associated with this coordinate system, generate a covariant metric tensor G, with the property:

d _
'J;(G) = 0

where t denotes time.



(b) Spatial Coordinate System
The ambient deformation space N is endowed with a fixed spatial coordinate system {x4},
so that points in N are denoted x € N and have coordinates x?. The covariant base vectors, g,,
associated with this coordinate system, generate a covariant spatial metric tensor denoted g.
Before defining the final coordinate system, which depends on the deformation, it is

necessary to introduce the description of motion.

Definition 2.1
A motion of the body in the deformation space N, relative to the reference configuration
B, is a curve in the configuration space C(M) given by:
x = ¢X,t):BXR— N
where ¢ is assumed to be a C ! regular mapping.
The motion ¢(X,r) evaluated for some fixed X € B is written as ¢,(X). The

configuration at time t, referred to as the current configuration, is denoted ¢,(B) .

A third coordinate system associated with the current configuration is defined as follows:

(c) Convected Coordinate System

The material coordinate system {X 4} defined on B is supposed to be mapped with the
body through the motion ¢, into the current configuration ¢ ((B). The convected coordinate
system so defined is denoted {¥*}, with points in ¢,(B) given by X € ¢,(B) and having coordi-
nates ¥*. Note that the material and convected coordinates of a given material point will be
identical. The covariant base vectors, g,, associated with {¥“}, generate a covariant metric ten-
sor denoted g [1].

Figure 1 depicts the three coordinate systems described above.

Associated contravariant metric tensors can be constructed from the covariant metric ten-

sors G, g, and g, and these are denoted G, g, and §*, respectively.

The deformation gradient is defined by




a
with components, F¢, = g; —- It is assumed that ¢ satisfies:

]

MI > 0 forall r€[0,00)

J = det[ 39X

which ensures that ¢! exists and allows the polar decomposition of F, such that:

F =RU = VR.
In the above expression, R is an orthogonal rotation tensor and U and V are respectively right

and left positive definite and symmetric stretch tensors.
Pull Back, Push Forward and the Piola Transformation

Definition 2.2

If v is a vector field defined on ¢,(B), the pull back of y through the motion ¢, defines

a vector field T on B given by:

%
I = ¢, ('Y)
In coordinates:
M = (F~1)Aa,ya
or
Py = Filgy,.
Again, this definition may be immediately generalized for tensors of higher order. For exam-
ple:
I8 = (Fnl)Aa (F—I)Bb*yab.

or

Tug = F'yFlpya.



Definition 2.3

If T is a vector field defined on B, the push forward of T through the motion ¢, defines a

vector field y on ¢,(B) given by:

Y = ¢I=k(r)

In coordinates:

or

Ya = (F_l) 4 al 4.
This definition may be immediately generalized for tensors of higher order. For example:
,yab = FaA FbB FAB

or
Yab ™ (F_!)Aa (F—I)BbFAB'
Definition 2.4

If v is a tensor field defined on ¢,(B), the Piola transformation of y with respect to the

motion ¢, defines a tensor field I' on B given by:

T =Jé, ()

9¢,

where J = det aX

Strain Measures

Definition 2.5

The right Cauchy-Green tensor C and the right spatial (Eulerian) deformation tensor ¢ are

defined by:

*
C = ¢, (g
¢ = ¢[.*(G)




In coordinates:

Cap = FuF'pgu
Cap = (F_I)Aa(Fw])BbGAB.

Definition 2.6

The left Cauchy-Green tensor b and the left material deformation tensor B are defined by:
b = ¢,, (G »)

®
Bz‘b;(g).

In coordinates:

bab == FaA FbBGAB
BB — (F )4, (F)5,g.
In the literature, the left Cauchy-Green deformation tensor is usually denoted B. Here b is

used for notational consistency.

Velocity Field and Flow
The material velocity of a motion ¢ is defined as a vector field V over the deformed

configuration, such that:

- 4
VX.,1) = dt(b(X,t)

The spatial velocity field v is defined by:

v = Vog¢, .

The spatial velocity gradient tensor 1 is given by:

in coordinates

[ = vo|, = vo, + T4 v"
where the vertical bar and comma denote covariant and partial differentiation respectively and

I' 74 is the Christoffel symbol of the second kind.
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The spatial deformation rate tensor d is defined by:

d = VSv = na+1"
and the spatial spin rate or vorticity tensor @ by:

w = Viv = K1 -17).

Definition 2.7

Let v be the spatial velocity field on N and ¢, the corresponding motion. Then the col-

lection

d’s,tl‘bs,t = ¢so¢r——l:¢t(3) "'"’¢S(B)

is defined to be the flow of v.

The Lie Derivative and Strain Rates

The Lie derivative [2,3], which gives a measure of the rate of change of a tensor with
respect to a vector field, is an extremely useful concept. In this section, the Lie derivative is
defined and simple applications to strain rate definitions are considered. In subsequent
chapters, the following definitions are drawn upon frequently as further applications of the Lie

derivative are considered.

Definition 2.8

Let v be the spatial velocity field on N and ¢, , denote its flow. If y is a possibly time

dependent C ! tensor field on N, then the Lie derivative of y with respect to v is defined by:

L) = [—5’; B v

§==t
Proposition 2.1

The Lie derivative has an alternative definition given by:

d *
Lv(')’) = ¢, ‘"Jt“‘l’r (‘Y)
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for the motion ¢, corresponding to v.

Proof

By Definition 2.7, the flow of v is given by ¢, , = ¢ o\ Accordingly,

Ly = [-55 b.007) " (y,)

§=1

- ¢,.[—,;,‘-’S—¢f(vs>

5=1

= P, u

d *
ar b, (7)
The alternative definition given by Proposition 2.1 is often the most useful in applications.

In view of the assumed invertibility of F, the following result is immediate:

% d &
b, (Lv(')’)) = —¢, (')')
dt
Coordinate formulas for the Lie derivative with respect to the spatial velocity field of second
order spatial tensors, expressed in terms of the covariant derivative, are given as follows [3]
(generalization to other orders is immediate):
[Lv('y)]ab = }-/ab - Valm'ymb - vbim,yam'

[Lv('y)]ab i’ab"VGIm'}'mbih vmlb')’am
[Lv(y)]ab = ').'ab + leaYmb + vmlb'yam

I

where the superimposed dot implies material time differentiation given by:

. _ 9y .
2% 6”-l~§7-yv.

Proposition 2.2

Let v be the spatial velocity field on N corresponding to the motion ¢,, then
(a) L,(g) = 2d
(b) L) = -2
where d is the spatial rate of deformation tensor. This important result is trivial but included

for completeness.
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Proof

(a) Using the coordinate formuias:

[Lv(g)]ab = gab + leagmb + Vmibgam

. 08as
But g, = ’5%'"+gab|cvc =0

since g does not depend parametrically on time and g,,], = 0 by Ricci’s Theorem. It fol-

lows that L,(g) = 2d.
(b) The proof is similar to (a) ® .

The following results on strain rate definitions are employed in subsequent chapters.

Proposition 2.3

Let v be the spatial velocity field corresponding to the motion ¢,, then

@) € =24, @
(6) L) = 0

() B = 2¢, (—d)
(d) L,b) = 0

Proof

(a) Using Definition 2.5 and Propositions 2.1 and 2.2 it follows that:

¢ - 24 @ - ¢ (L) - 26, @.

(b) Using definition 2.5 and Proposition 2.1 it follows that:

d
Lc) = ¢4 EG] = 0
Which is equivalent to:

¢ = —cl—17c or & =d—el—17e

Where e = Y2(g —¢) is the Eulerian strain tensor.

(c) and (d) follow similarly =
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2.2 STRESS TENSORS

Definition 2.9

The Cauchy stress vector t(x,1,n) is a vector field on ¢ ,(B) depending on the spatial
point x, time t and a unit vector n such that t represents the force per unit area exerted on a
surface element oriented with normal n. The symmeiric Cauchy stress tensor o is defined by

the Cauchy stress principle which states that:
t=o0"n

in terms of contravariant components ¢t = o n,,.

Definition 2.10

Starting with the contravariant components of the Cauchy stress tensor o, the first Piola-

Kirchhoff stress tensor P is defined as the Piola transform on the first index of o, that is;
PAa == J(F—I)Ab()’ba
Definition 2.11

The symmetric second Piola-Kirchhoff stress tensor S is defined by the pull back of the

second index of P by ¢,, that is:
S = (FHE, P4 = JFH, (F B0
Definition 2.12
The Kirchhoff stress tensor 7 is defined as the tensor density of o, that is,

T = Jo

From the above definitions it follows that:

L ] %*
S =J¢, (o) = ¢, (r).
2.3 OBJECTIVE STRESS RATES

The principle of material frame indifference requires that the intrinsic physical properties

of a body be independent of the body’s location or orientation in space. This principle is
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embodied in constitutive theory by the requirement that constitutive equations must contain

only objective tensor fields.

Definition 2.13

Let ¥ be a time-dependent tensor (or tensor density) field on N and let £ : N — N be a
mapping which defines a superimposed rigid body translation and rotation of ¢,(B). Then vy is

objective if it transforms under the mapping £ according to:

yt = £.(y).

It is noted that if T is a material tensor, then T, T, ¢, (), and ¢, , (') are all objective

tensors.

Proposition 2.4
Objective tensors (or tensor densities) have objective Lie derivatives taken with respect to

the spatial velocity field v.

Proof

The proof (which is intuitively clear from the above discussion) is straight-forward and

may be found in {3].

In subsequent chapters, it will be shown that a number of objective stress rate definitions
arise naturally from thermodynamic arguments. The definition of these stress rates and their

component representations are presented here for future reference.

Definition 2.14

Let 7 and o be defined on ¢é,(B) with spatial velocity field v corresponding to the motion

¢, Then:

(a) The Lie derivative of 7 with respect to v is defined by

d *
L,.(T) = b x E‘ﬁr (7)
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for contravariant components of 7:

L(r) = +—1r—7-17

or

ab
[L,,(*r)] = 7% — ya|, pmb . yb| pam

(b) The Lie derivative of o with respect to v is defined by

Lv(u-) = ¢t¥r

d *

— o)

dt ¢ ( ]

the contravariant component form is similar to that given in (a).

(¢) The Truesdell rate of o with respect to v is defined by

© -1 d_* -1
o = J ¢,* —d—t¢t (.I'O‘) = J LV(T)
for contravariant components of o:
O »
oc=0—-lo—cl"+oud
or
O
(a.)ab - d.ab o valmo.rnb . vb]mo_am + O_ab lem

Since T, o, and J are objective tensors and since the Lie derivatives of objective tensors

are also objective, it follows that all the stress rates given in Definition 2.14 are objective.

Definition 2.15

v
The Jaumann (or co-rotational) rate of o, denoted o, is defined for contravariant com-

ponents by:

v
g = 0—-wo+ow
or

v

(G,)ab — @b b b

¥ —wl,c™ —wl, o
The form of this objective rate for 7 is similar. The Jaumann rate and Lie derivative

coincide under the assumption that the spatial deformation rate tensor d is instantaneously zero.
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Stated alternatively, if the pull back and push forward operations in the definition of the Lie
derivative are performed with respect to only the rotational part of the motion ¢,, the Jaumann
rate results. These alternative views of the Jaumann rate prove to be useful in the construction
of algorithms for the integration of certain rate constitutive equations and are considered in

detail later.

Finally, it is noted that if the reference configuration coincides instantaneously with the

current configuration, then the Lie derivative is Hill’s convected derivative [4].

2.4 MOMENTUM BALANCE

Spatial Form of Linear Momentum Balance

Assuming the conservation of mass in ¢ ,(B), the localization of global linear momentum
balance leads to the field equations of momentum balance. Appending the boundary conditions
defines the boundary value problem of momentum balance:

dive + pb = pv x € ¢,(B)

x € 8(¢,(B));

- |

g 'n =

)

x —
where (dive)? = %], b is a body force field on ¢,(B), and p is the mass density in ¢ ,(B).
Tractions are specified on 9(¢,(B)); which has a unit outward normal n, and the motion is
specified on 8(¢,(B)),. Furthermore,

86, (B)); U 8(.(B)< — 8(e,(B))

Assuming the motion ¢, to be the independent variable, then, by the fundamental lemma
of the calculus of variations and the assumption of any necessary differentiability, the following
weak form of a variational equation is equivalent to the boundary value problem of momentum

balance:

G(x,m) = f tr{c-Vaq)dv + f p(v—b) ndv — f t-mda = 0 (2.1)
6B . (B 8(é,(B));

forall n€E, = {nl|n:¢,(B)xR—R’ suchthat n = 0ond(¢,(B8))
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and x€F, = {y|y:BxR—N suchthat y=Xon d(¢,(B))

Material Form of Linear Momentum Balance

Assuming the conservation of mass in ¢,(B) and the localization of giobal momentum
balance for ¢,(B) referred to B, leads to the field equations of momentum balance. Append-

ing the boundary conditions defines the boundary value problem of momentum balance:

DIVP +pzB = pgV X ¢ B
PTN =7 X € 98;

where (DIVP)? = P4|, B =bo¢,, and pg = Jp. Tractions are specified on dB; which has
a unit outward normal N, and the motion is specified on 9B Furthermore,
Assuming the motion ¢, to be the independent variable, the weak form equivalent to the

boundary value problem of momentum balance has the form:

Gxm) = [ r®Dmav+ [ ps(V—B) mav— [ 7naa = 0 (2.2)
B B IB

T

for all 'nEE,={’r)|’q:B><R—'R3 such that =0 on aBi]
and xEF,={y|y:B><R-—>N such that y =X on BB—i}

and where Dn = —gé'](—

Obviously, (2.2) can be obtained from (2.1) directly by means of a transformation from spatial
to material coordinates. In order for (2.1) or (2.2) to be formally well-posed, it is necessary to
specify how the stress tensor, ¢ or P, depends on the motion. For certain material classes
(including hypoelasticity and rate-independent elasto-plasticity) the constitutive equations are
expressed in a rate form from which the explicit dependence of the stress tensor on the motion
is not available. A method of dealing with this problem class, based on a theory of lineariza-

tion, is developed in the following chapters. The material version of the weak form, with
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domain independent of the motion, will be useful in this respect.

2.5 RATE OF MOMENTUM BALANCE

There is now a considerable body of literature describing a great diversity of numerical
formulations for the finite deformation problem of rate-independent elasto-plasticity. Many of
these formulations [5-10] have been based on the boundary value problem for rate of momen-
tum balance, motivated by the rate nature of the constitutive equations. For certain material
classes, the rate problem may be characterized by a variational principle due to Hill [11]. Con-
ditions for the existence of such a principle demand that the constitutive relations have a sym-
metry such that the stress rates are derivable from potential functions of the strain rate [4].
Some objective stress rates do not admit the existence of such potentials and, accordingly, the
rate problem will not be self-adjoint [5,8]. Finite element formulations based on the rate prob-
lem vyield the nodal velocities as the solution, and these must be integrated if the displacement

field is required.

An equivalent incremental solution procedure, where the rate problem is numerically
integrated over a time step using a predictor/corrector technique, has been developed by a

number of workers [12-17].

The rate of momentum balance formulation is not employed in the present study. How-
ever, it is useful to summarize the basic statements of the rate formulation for comparison with

an alternative formulation to be developed subsequently.

Weak Form For Rate Of Momentum Balance

Considering a material setting and assuming, for simplicity, that the body force field B
and applied boundary tractions T have vanishing material derivatives, the rate problem is given
by:

DIVP = pgV X € B

P'’N =0 X € 98-
6, (X) = X X € 3B,
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A weak form equivalent to the rate problem is given by:
ftr(l"'Dn)dV-Fpr.\;'ndV = 0 (2.3)
B B

for all

nek = [n[n:BxR-—'R%uchthatnw 0 on BBi]
and

¢, €k = [yly:BXR—'N such that y = X on aBi]

As before, Dy = —g%

Proposition 2.5

Considering contravariant components of stress, then:

(a) F-P = L,(x) +7-17

v

(b) =720+ @)%+ 717

(o) — Jlo +o-17]

(d) = JIL(o) + 01T + 0 tr@d]

(e) = J[;—Z(O'-d)5+o'-lT+atr(d)]
Proof

The proof follows from Definitions 2.10, 2.12 and 2.14 and is omitted here.

Proposition 2.6

The weak form of the material version of the rate of momentum balance (2.3) has the

alternative representations.
)]

J 7@ s+ Gy + [ pioqar = 0
#,(8) #(B)
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(i)
v LX)
J e VS =260 )5 V5 + (=-17): Vq Tl dv + f pV-mdv = 0
4(8) 65
(iii)
o]
[o: VS + (o-17):VqTldv + f p¥-mdv = 0
&8) $(8)
(iv)
L) Vi + (1) :Vn" + r(@o:Vqldv + f pV mdv = 0
#(8) &)
(v)
v 'y
[o:V5 —2(- )5V + (0 17): V" + r@o:Viq9ldv + f pv-mdv = 0
(B & (8
Proof

Substitution of (a) - (e) from Proposition 2.5 into (2.3), use of the properties of the
trace operator and transformation of the weak form (2.3) from material to spatial coordinates
results in (i) - (v).

If the stress rates appearing in (i) - (v) above are characterized by constitutive equations

of the form:

stress rate = Ld

where L is a fully symmetric fourth order tensor, then weak forms (i) - (iii) are symmetric with
respect to interchange of indices between V7 and Vv, whereas (iv) and (v) are not. Accord-
ingly, finite element formulations based on (i) - (iii) have symmetric tangent operators. This is
not the case for (iv) - (v). These conclusions correspond to the conditions for the existence of
Hill’s rate potentials [11] (stress rates lead to the self-adjointness of the rate problem if they are

derivable from potentials which are Legendre transformations of the potential for P).

Finally, in (i) - (v), it should be noted that terms in ¥ occur. If the corresponding dis-
placement field is required, the rate formulation will require the integration of a third order sys-

tem. This presents a significant challenge to the accuracy of numerical integration techniques.
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CHAPTER 3. CONSTITUTIVE THEORY FOR FINITE ELASTICITY

3.1 THERMODYNAMICS AND HYPERELASTICITY
The development here is restricted to isothermal elasticity, but generalization to thermoe-
lasticity does not change the results in any fundamental way. Defining D = ¢ *(d) = C, the
integral
Py(1) = an(P-i«*) dv = _gtr(SJ)) dv

represents the deformation power of the continuum at time t, referred to the reference

configuration B.

Definition 3.1

A body will be called hyperelastic if it satisfies the thermodynamic hypothesis that:

whenever ¢, (B) and ¢.,(B) differ by at most a rigid body displacement.

Using the axioms of local action and material frame indifference, it may be shown that the
necessary and sufficient conditions for the hypothesis to hold are:

(i) rr(P-F) and tr(S-D) are at each material point perfect differentials,

(i) there exists a functional ¥:B— R, called the material free energy density, which

depends only on the point values of F or C and is a potential for the stress such that:

OYE) - 0E o

P = P4 = 3.1
P3 oF PB 9Fb (3.1
and
B‘if(C) AB aﬁ’(C)
= g, S = A2
S 03 3C or § 2p 8 »

It may also be shown [19] that ¥ is an isotropic function whenever the material is isotropic.
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The constitutive equations of hyperelasticity (3.1) may be written in the alternative form:

i
=]

ps¥ — r(®P-F) (3.2)

or

pp¥ — r(S-D) = 0
which are expressions of the balance of energy equation (first law of thermodynamics) for
isothermal processes. By definition, (3.2) also has the representations:

pgV — tr(r-d) = 0 (3.3)
or

p¥ — tr(g-d) = 0
Under the present hypothesis for elasticity, all processes are non-dissipative, consequently the
second law of thermodynamics is satisfied trivially and does not require further elaboration. In
contrast, materials exhibiting inelastic dissipation must be considered within the framework of

irreversible continuum thermodynamics, c.f. Chapter 4.

Proposition 3.1

(i) Assuming that ¥: B—R isa C? function of the point values of C, then

—8 = AD (3.4)

is equivalent to (3.1),, thatis, S = 2pp %%,"

where A is the (second) material elasticity tensor defined by:

9%

A=4p; 2=
pBaCQ

The first material elasticity tensor will be defined in a subsequent chapter.

(ii) Equation (3.4) is objective.

Proof

Taking the material derivative of (3.1), and noting that the material derivative of a

material tensor is objective, supplies the result.




{
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Notice that the material elasticity tensor A is fully symmetric by virtue of the continuity
of ¥ and symmetry of C. In Section 3.2, spatial forms of (3.1) and (3.4) are developed. The
development of spatial forms of (3.4) is motivated by the observation that plasticity resuls
from kinetic processes at the microscale and it is natural that the constitutive hypothesis of
rate-independent plasticity lead to constitutive equations of spatial form in which components
of an objective stress rate are given as homogeneous linear functions of the components of the
rate of deformation. For the plasticity theory discussed in Chapter 4, solutions in the neighbor-
hood of points interior to the yield hypersurface are considered to be governed by the thermo-
dynamic hypothesis of hyperelasticity. Thus, for the convenience of solution procedures to be
described later, it is desirable to obtain spatial versions of (3.4), to which the plasticity equa-

tions will reduce under the necessary conditions.

3.2 CONSTITUTIVE EQUATIONS FOR ISOTHERMAL HYPERELASTICITY

In this section, the spatial version of the constitutive equation of hyperelasticity (3.1),,

that is,
oV
= 2p, 21
S P8 5C
and its equivalent form (3.4), that is,
d o _ 4.
7 S = A:D

are sought.
Referring to Figure 1, it is recalled that three coordinate systems have been introduced:

(1) Material coordinate system {X“} embedded on the reference configuration B with basis

vectors G 4 and covariant metric tensor G.

(2) Convected coordinate system {x*} deforming with the continuum and having basis vectors

g, and covariant metric tensor g.

(3) Coordinate system on the ambient space, having basis vectors g, and covariant metric

tensor g.
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Proposition 3.2
The convected coordinate basis vectors g, and convected metric tensor g, have the pro-
perties:
(i) 8o = VPl Ep (3.5)
(i) g =2
Proof
(i)  Let r be the position vector of a material point in the current configuration (see Figure 1),
such that [1]:

— or

“ o gxe
Taking the material time derivative (X® = constant) of this expression and noting that

r = v, leads to:

2 ov

g = T
[£9 axa

= vﬁlagﬁ
(ii) By definition,

gaﬂ = ga . Eﬁ
Taking the material time derivative of the above expression and using the results of (i),

leads to:
§a[3 = vy‘a—g.y‘_g.ﬂq’» vylﬁ—g—y'-g_a = 2da/3
thatis, g = 2d 8.

The spatial form of (3.1), is given by the following theorem.

Theorem 3.1

For a hyperelastic material under isothermal conditions, there exists a scalar function
lz:qs,(B) — R, called the spatial free energy density, which depends only on the point values

of g in ¢,(B) and is a potential for stress such that:

o = 2p Sy (3.6)




-
.

or

Proof

The deformation power of the continuum at time t is given by:

Py = frsD)av = [ v -dav
B &, (B)

Using the results of the previous proposition, it follows that:

tr(oc-d) = Yir (o8

and

Pty = [ harGDav
¢(B)
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Referring to the definition of hyperelasticity in Section 3.1, a necessary and sufficient condition

for the thermodynamic hypothesis to hold is that there exists a scalar potential $ per unit

volume of ¢ ,(B) which depends only on the point vatues of g in ¢ ,(B) such that

o = 2 -Q-l,_!_—
og
in which case
o §) = L3 = nio-d)
dr
is a perfect differential.
Deﬁning —lll- = —;—fp-' as the current free energy density per unit mass of ¢,(B), it follows
that :
o =28 9%
og dg
or

oy’ o
= el = ) P @
! og be og
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An objective rate form of (3.6) is developed in the next proposition.

Proposition 3.3

Assuming that J :¢,(B)— R is a C? function of the point values of g, then
(i)
o}
o = a:d 3.7
oy

is equivalent to (3.6),, that is, & = 2p -é—:
g

where a is the spatial elasticity tensor defined by:

3%

a = 4p—
og?

and

O
o = -I_ld’t#r

d #*

— J

v ¢, ( 0’)]
(Truesdell rate of Cauchy stress, see Proposition 2.5).

(i)  Equation (3.7) is objective.

Proof

(i) From (3.6),, for contravariant components of o,

o .
- 2% -
7T % T 7 8.,

ga X EB
Taking the material time derivative of this equation and using the results of Proposition
3.2, it follows that:
G = 4pa—i%:d+l~o' +o 17 ~ourd
ag
The last term in the above equation results from the material time derivative of p. Thus,

d—lo—-—oc1T+oud = a:d

[
|
o



(i)

But

= J 'L Ua) = Llog) +J oL ,(J)

o . d *
o =J"¢,s| 5 (Jo)
dt
For the contravariant components of o under consideration, it follows that:

Q
og=00—-lo—o1"+ou@

By comparison with the equation above,

O
o = a:d
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Since J and Jo are objective, it follows that L, (Jo) is also objective, and hence, equation

(3.7) is objective =

It is noted that the above result in the form of equation (3.7) is, by the invariance proper-

ties of tensors, valid in any coordinate system. Before generalizing (3.7) to include other stress

rates, it is useful to have the following result.

Proposition 3.4

The (second) material and spatial elasticity tensors, A and a, respectively, are related

through the motion ¢, by:

a = J ¢, A

Proof

By definition and using (3.1) »

(r) = 4 g,
Lv T) = ¢i-t _‘}?¢1 (T)
- a
= Gx dtS]
W d
=¢,* 2p3'56-2—1";t"c

&
But, by Proposition 2.3, —%C = 2¢, (d) and, by definition (see Proposition 3.1),

di

R 1
2[)5 '5‘6'{ = -EA

(3.8)
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Thus,

%
LV(T) = ¢[*(A :¢{ (d)) = (ﬁ[*(A) :d
[s]
But, by Proposition 3.3, L {r) = Jo = Ja:d, from which it follows that:

a = J ¢, .(A)
in components:
aemn — Jolpa pbopm. pn. gABMN g
The above proof has a straight-forward development in components but is omitted here.

Using the framework of the propositions above, the relationships of a number of stress

rates to gradients of the free energy potential can be developed as follows:

Proposition 3.5

The constitutive equation given by:

L v) = Ja:d (3.9)

8]
is equivalent to (3.7), thatis, ¢ = a:d

Proof

O -
From 3.7), ¢ = J7'L,(r) = a:d, thus, L,(r) = Ja:d = 4p, gﬁg“:d =
g

Propesition 3.6
Assuming that ¢': ¢,(B) — R is a C? function of the point values of g and is defined per
unit volume of ¢,(B), then:
(i)
L(og) = a':d (3.10)

X

is equivalent to (3.6), thatis, ¢ = p=
g




=
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where a' is the spatial elasticity tensor defined per unit volume of ¢ ,(B) by:

a = 4——-82_‘_1’2
og
(ii) Equation (3.10) is objective.

Proof

The proof follows the lines given for the proof of equation (3.7) in proposition (3.3), that

is, material time differentiation of:

o = 2

L
__l.ll gaX gﬁ
agaﬁ

and use of the properties of the convected metric tensor and base vectors (Proposition 3.2).

3.3 CONSTITUTIVE EQUATIONS FOR ISOTHERMAL HYPOELASTICITY
The rate form of the spatial constitutive equation of hyperelasticity (3.7) expresses the

linear dependence of the Truesdell rate of Cauchy stress 2 on the spatial rate of deformation
tensor d through the spatial elasticity tensor a. By hypothesis, a is a function of the deforma-
tion through its dependence on the point values of g. It is observed that (3.7) may be
expressed in terms of other stress rates if the difference between these rates and the Truesdell
rate of Cauchy stress is absorbed in the definition of the compliance tensor. In this case, the
compliance tensor will, in general, be a function of the stress tensor and the deformation from

the reference state (if r is involved). For example, if:

\'4
T = a:d (3.11)

Then (3.11) is equivalent to (3.7) if:

5abcd - J[aabcd+ O,bdgac + a_acgbd] (312)

O v
This follows from the definitions of o and 7.

In constitutive equations of this special kind, the difference between various definitions of
the stress rate is not essential. In this section, rate constitutive equations which are nor

equivalent to (3.7) are considered.
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A hypoelastic material is defined [20,53] by the minimal requirement that a spatial stress

rate is a homogeneous linear function of the spatial rate of deformation tensor. For example:

= :d (3.13)

Qg 9

= C:d (3.14)

where C is an isotropic tensor which depends on J and o in general. Usually, the dependence
of C on J and o is not sufficient to render (3.13) or (3.14) equivalent to (3.7) but, by speciali-
zation of C, the dependence may be sufficient, in which case it is seen that hypoelasticity con-

tains hyperelasticity, as they are defined here.

In the present study, the effect of choosing C in (3.13) and (3.14) to be a constant tensor
is investigated. Such a constitutive assumption has been used frequently in the computational
literature. Clearly, this assumption does not render (3.13) or (3.14) equivalent to (3.7). In
fact, the differences in these constitutive equations leads to marked variations in the solution
boundary value problems employing these definitions. It may be shown {20,53] thai, in gen-
eral, hypoelasticity is equivalent to elasticity only for infinitesimal deformations from an arbi-
trary reference configuration. The following result will be of some use when the integration of

(3.13) is contemplated in Chapter 6.

Proposition 3.7

v
The co-rotational rate of Kirchhoff stress 7 coincides with the Lie derivative of = with
respect to the spatial velocity field v under the assumption that the rate of deformation tensor d

vanishes. That is,

<«

= L(7)]a=0 (3.15)

Proof

By Definition 2.14(a) and the Polar Decomposition Theorem:

L) = @Fodp)) s 7;—’;<¢/*o¢ff>*<f)]
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where @ f and ¢ U are associated with pure rotation and stretching of material neighborhoods,

respectively.

It follows that:

L v(T) = ¢ er

a’ #* %
¢ u| =0/ [M’ (7)]”
Suppose that local material motion is characterized by pure spin such that ¢ ,”,(-) is the identity

mapping, corresponding to d = 0. Then:

d %
Ly g-0 = ¢fs ‘(};d’xR (’r)]
Noting that F=w- F, where w is the spin rate tensor, it follows that:

T o_

v
L(D|gmo=T—07-70 =71

for contravariant components of + 8
It is clear from the above proposition that the arguments of Proposition 3.3 cannot be

applied to find constitutive equations of the form (3.13) or (3.14) from thermodynamics.

Nevertheless, these equations are objective.

Homogeneous deformation problems governed by (3.13) or (3.14) display a yield-like ins-
tability phenomenon in which the material response softens at certain critical deformation states
(for example, one can demonstrate the necessity of a zero force to obtain an infinite deforma-
tion in one case, see Chapter 8). This phenomenon is referred to as hypoelastic yield [20] and
a number of examples are given in Chapter 8. For some problems the instability may occur at
small strains (although the effects are associated with terms arising from large deformation
analysis). Thus, for some problems, constitutive equations of the form (3.13) or (3.14) may be

quite inappropriate. This would appear to include the constitutive equations of elasto-plasticity.

o] v
The difference between o and r being responsible for an instability in the solution of problems,

o]
quite independent of physical processes. In Chater 4, a plasticity theory employing o is

developed.
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Finally, it is interesting to note that a rational theory of rate-independent plasticity can be

developed as a generalization of the theory of hypoelasticity [38,39]. A hypoelastic material has

a nonfading memory and behavior independent of time scale [20]. When the dependence of C

in (3.13) or (3.14) on 7 and J is adequate, a hypoelastic yield results. With respect to these

characteristics, rate-independent plasticity lies within the scope of hypoelasticity. However,

internal variables must be introduced into the theory to obtain correct loading-unloading and

hardening characteristics [39]. Such an approach to rate-independent plasticity, the subject of

the next chapter, is not employed here.
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CHAPTER 4. CONSTITUTIVE THEORY FOR ELASTO-PLASTICITY

4.1 THERMODYNAMICS AND PLASTICITY

This section deals with the application of thermodynamics to materials which exhibit rate-
independent plastic deformations. The development is appropriate for finite strains but is res-
tricted to isothermal conditions. Attention is focused on the definition of the thermodynamic
state and on the expression of the second law of thermodynamics. The formulation presented

uses an internal variable formalism.

Internal Variables and the Thermodynamic State

In the case of metals, plastic behavior arises as a consequence of slip rearrangements of
crystallographic planes through the motion of dislocations. The resulting plastic flow will be
modified by other microstructural phenomena such as twinning in crystals, grain-boundary slid-
ing and stress induced phase transformation. Point defects in the crystal lattice structure, such
as vacancies and solute atoms of different species, may introduce a strong viscous component

into the plastic deformation behavior.

It is well known that two substantially different dislocation arrangements, both of which
have resulted in the identical extension of a loaded specimen, lead, under the application of
subsequent loading, to quite different responses. Accordingly, the thermodynamic state is not
determined by the current state of stress or strain alone. The current extent of the local struc-
tural rearrangements produced by the operative microstructural mechanisms is included in the
definition of the thermodynamic state by supplementing the stress or strain tensors with a finite

set of internal variables.

The objective of the present work is to arrive at a macroscopic constitutive theory of plas-
ticity which will be characterized by as few variables as possible. Such a task is not without its

difficulties. As suggested above, materials deforming plastically will exhibit intense local inho-
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mogeneities in the material distribution and deformation at the microscale. In contrast, the
concept of local homogeneity is central to the framework of the continuum approximation. In
this dichotomy of view lies the challenge of developing macroscopic models from microscopic
considerations. It is currently believed that internal variables, which may be identified with

specific microstructural mechanisms, offer a viable thermodynamic approach to this problem.

The internal variables are objective tensors and are denoted collectively by the n-vector
{q) or simply q. Each component of g, denoted q,, will represent an internal variable. The
internal variables, being tensors, will have the usual material or spatial forms. However, in
these introductory remarks, no distinction willi be made between material and spatial descrip-
tions of the tensors q and so a slight abuse of notation is committed for the sake of economy.

This is rectified when a detailed development is undertaken.

The state variables, given by the stress or strain tensor associated with the current state
(and excluding temperature for the present isothermal development), are denoted A. Thus, as
suggested above, the thermodynamic state is fully defined by the state space vector denoted (A,

@). Again, A may assume a material or spatial description consistent with q.

In a formal sense, the number of internal variables, n, is chosen in view of the principle
of determinism [20]. This principle requires that the history and present values of the state
space variables, (A,q), be sufficient to uniquely determine the thermodynamic potential func-

tions, such as the free energy, etc.

The internal variables are assumed to evolve according to local rate equations [21]. Thus,
some objective time derivative of each internal variable is determined by the present thermo-
dynamic state. The internal variable hypothesis [22] assumes that the dependence of the ther-
modynamic potentials on the history of the state (principle of determinism) is achieved by their
dependence on the current values of the internal variables. More simply stated, the thermo-
dynamic potentials depend on the history of the state through their dependence on what the
state has produced, namely, the current values of the internal variables. The relevance of such

considerations to "path-dependent” plasticity described above should be clear.
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Characterization of Rate-Independent Plasticity

A theory of plasticity which includes rate-dependent and rate-independent effects may be

based on internal variables which are governed by rate equations of the form [21-23]:

q = (A, qA)
where the superimposed dot implies some suitable time derivative to satisfy objectivity require-
ments. The material will be rate-dependent if II does not depend on A and viscoplastic if there
is a region E in (A, g) space such that (A,q) € E implies I1 (A, q) = 0. On the other hand, a
material is rate-independent if Tl is homogeneous of the first degree in A [23]. Although
viscous effects may be important under certain loading conditions and despite the fact that
rale-independence may be viewed as a limiting case of rate-dependent response, the present

work is, nevertheless, restricted to the special case of rate-independent behavior.

Rate-independent plasticity is characterized by the existence of a region R in state space

(A, q) such that:
(a) R defines an admissible region of state space, which the state cannot leave, and is charac-
terized by a yield function f (A, q), such that:

(A,g) €int(R) — £ <0
(A,q) €R — f =0

all other states are inadmissible.
(b) if (A,q) € int(R) then g = 0.

The interior of R, denoted E, is called the elastic region. All internal variable rates vanish
at points in E or during unloading when the state lies on the yield surface (f = 0) but moves

towards points in E. During loading, when the state lies on the yield surface and remains on it,

the internal variable rates are non-vanishing. This situation is summarized by:

;< 0 - g = 0
f = 0 (unloading) — q = 0 (4.1)
f = 0 (loading) — § = AT (A,q)

where M\ is a scalar to be determined by the consistency condition during loading, that is,
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f (A,q) = 0, and where T is a tensor valued constitutive function.

A
The loading index f is introduced as:

A . af »
(A g, A) = ——:A (4.2)
f(A, q,A) 34
in which case it may be shown that (4.1) is equivalent to:
B a
q=1r<f> (4.3)

where

~1
r(A,q = wln Qi-r” r
dq
and <-> is the Macauley bracket,

It is noted that rate-independence is preserved in (4.3), which is homogeneous of the first

degree in A by virtue of (4.2). The product [Q-é—r -T'f in the last equation should be interpreted

]

appropriately for the order of q (here unspecified).

Second Law of Thermodynamics

A Lagrangian formulation in terms of material tensors is considered here, although the
spatial form of the resulting expressions will be derived. The state variable A is identified as
the Lagrangian strain tensor E defined by E = A(C — G). The internal variable vector is
denoted @ with components Q,, a = 1, ..., n. The internal variables are assumed to be
material tensors. The thermodynamic state is described by the state space vector (E, Q) in this

case.

The existence of the free energy per unit mass of B, denoted ¥(E, Q), is assumed on the
grounds that at any point in state space there are neighboring points that can be reached by
unloading. That is, an elastic process in which the internal variables have vanishing rates.

Such a state is one of constrained equilibrium [23].

The second law of thermodynamics, restricted for isothermal conditions, is expressed by

the local form of the Clausius-Duhem inequality [25]:

o
|
-

|
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—ps¥ +u(S-E) 20 (4.4)

The materia] version of the internal variable rate equation (4.3) is taken to be:

Q =R</> (4.5)
Since Q is homogeneous of the first degree in E, it is notable that the Clausius-Duhem inequal-
ity (4.4) is not sufficient to determine the constitutive equations for stress [23]. The usual
arguments regarding the satisfaction of (4.4) for arbitrary process must be supplemented by the
additional assumption that unloading processes (f < 0) are elastic (non-dissipative). In this

case, (4.4) is satisfied if and only if:

_ o
S PB 9 (4.6)
provided that the dissipation inequality:
oW 4
—== . R<Ff> =20 4.7
30 f> = (4.7)

is satisfied.
The dissipation inequality (4.7) implies that internal dissipative processes cannot increase
the free energy. This inequality acts as a restriction on the admissible forms of (4.5).

Introducing the complementary free energy, x, per unit mass of B, by the Legendre

transformation:

X = -—I—tr(S-E) - ¥
PB

it follows that (4.6) and (4.7) have the complementary forms:

- 9
E PB s (4.8)
EX_ . p -
) R<f> 20 (4.9)

Proposition 4.1
Assuming x is a C? function of the point values of S and Q, the constitutive equation

(4.8) is equivalent to:

E = M:S+N-Q (4.10)
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where M is the fully symmetric elasticity compliance tensor defined by:

82
OB ‘é;é“

I

M

and N is an inelastic compliance tensor defined by:

0%

N = 755008

(As above, the product N Q in (4.10) is to be interpreted appropriately for the order of ().

Proof
The result follows from the material time derivative of (4.8).

The detailed plasticity model to be presented in the next section and used for computa-
tional purposes later will be expressed in terms of spatial tensors defined on ¢, (B). Accord-

ingly, the spatial version of (4.10) is now considered.

Proposition 4.2
For all regular motions ¢ : B X R — N,

(i) Equation (4.10) is equivalent to

[e) O
d = m:o+ngq {4.11)

or

d = J'm:L(r)+J 7 L,(Jg) (4.12)

where the spatial elastic compliance tensor m is given by:
m = J¢,,(M)
and the spatial inelastic compliance tensor n by:
n = Jo,,(N)
The spatial internal variables g satisfy

g = Jﬂl(ﬁ:a(Q)

and

]
]
.
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0”0 = J"1¢1*[7%¢1*(J0’)
o _ - __d_ %
q = J ¢4 dtd,t Jg)

{(ii) Equations {(4.11) and (4.12) are objective.
Proof
o * #* *
(i) RecallingE=¢,(d),S =¢, (Jo) and using Q = ¢, (Jg), then (4.10) has the form:

% _ ‘d *J) d #*
é, d) = M.—c};qﬁ,( T +N"C};¢r(lq)

I

M, (L,Jo)) + N-&, (L,(Jg)

from which it follows that

d = ¢,,(M):L,(Jo) +¢,,N)-L,(Jg

using (4.13) and (4.14),

d = J'm:L,(r)+Jn-L,(Jg
(o] o
= m:g+nq

(ii) Objectivity follows from the properties of the Lie derivative (see Section 2.1) B

[0}
It is recalled from Definition 2.14 that o denotes the Truesdell rate of Cauchy stress.

Hypothesis

In accord with experimental evidence, it is postulated that processes which occur at fixed
values of the internal variables are governed by the equations of hyperelasticity, which are
independent of the history of deformation. Thus, m is independent of q and will usually be

assumed to be a constant isotropic tensor.

Uncoupled instantaneous elastic response corresponds to an additive decomposition of the

complementary free energy into elastic and inelastic parts {21].
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Proposition 4.3

The spatial elastic compliance tensor m is the inverse of the spatial elasticity tensor a (see

Proposition 3.3), such that:

Proof

From (4.8),

%% .88 _
P55t BE |
Using (4.6), it follows that M:A = [ where M = p, g% and A = pp %;‘%

Sincem = J ¢,,(M), from Proposition 4.2, and a = J~! ¢, .(A), from Proposition 3.4,

then d:,*(m):d),*(a) = ] whichimplies m:a =1 ®
In the event that (T =0 in (4.11) (that is, during loading in the elastic range or unloading
from the yield hypersurface), the above proposition demonstrates that (4.11) represents a
hyperelastic material model as discussed in Chapter 3.
Note that the material form of the internal variable rate equation (4.5) has a spatial

representation as follows:

. A
Q =R<f>
implies
d *(J ) R< A>
dr ¢, (Jg) = S
and
a
JLUg = J ¢, , R < f>
or
o} A
q=r<f> (4.13)
where
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Using (4.13), it is now seen that (4.11) and (4.12) have the identical form:

(o] A
d = mo+nr<f> (4.14)

Kinematic Considerations

Equation (4.14) has the interpretation that the total deformation rate d has an additive
decomposition into an elastic part and an inelastic or plastic part. This decomposition has been

obtained independently of any kinematic arguments or approximations. Introducing the nota-

tion:
(o}
d° = m:oc = J'm:L(7) (4.15)
and
o] A
4> = nq = nr<f> (4.16)

where d¢ is associated with the rate of total deformation when d” = 0, that is, elastic deforma-

tion and d” is associated with the rate of plastic deformation. Thus,

d = d° +d” (4.17)

A number of plasticity theories have been based on assumptions that are kinematic in
nature, and it is worthwhile to briefly contrast such an approach to the essentially thermo-
dynamic result of (4.17). One kinematic approach, introduced by Lee and Liu [26], is based on
the concept of the "intermediate configuration.” This approach is based on the assumption that
infinitesimal neighborhoods of plastically deformed material can be unloaded elastically without
any additional plastic flow. This assumption leads to the multiplicative decomposition of the

deformation gradient F, such that [26]:

F = FeF? (4.18)
The intermediate configuration € is defined by the (generally non-differentiable) map:
(F)':¢,(B) — Q
which describes the elastic unloading. The remainder of the motion is supposed to be plastic
and is described by the (generally non-differentiable) map F”, to within a rotation. Other

decompositions of the motion are possibie [27,28]. The intermediate configuration {2 has been
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utilized in a number of internal variable plasticity theories [22,29,30,31,35]. Also, important
attempts aimed at a finite deformation theory for single crystals based on an internal variable
description of microdynamic crystal defects have used the intermediate configuration [32,33].
A continuum model based on the above kinematical decomposition has also been developed by

Rice [34]. The incremental or rate form of (4.18) is {36]:

d = D+ D (4.19)

where
Df = [Fe Fo) 48
and
D? = [FeF? (FP) -1 (Fo) S
Often the elastic coupling terms in D” are ignored by order of magnitude arguments {36} or

otherwise incorporated into the theory [29,37].

It should be emphasized that (4.19) results from kinematical arguments whereas (4.17),
the basis of the present work, resulis from a thermodynamic development withoui kinematical
assumptions. While it is possible to compare (4.17) and (4.19) to obtain:

o A
D+ D = mo+nr<f>

there appears to be no compelling reasons to identify:
o}
e omle
A
DY o= ar<f>
4.2 A MODEL FOR RATE-INDEPENDENT PLASTICITY
A model for rate-independent plastic behavior will be developed by:

(a) Selecting a set of internal variables.

(b) Specifying the form of the internal variable rate equations (4.13), that is,

O A
q=r<f>
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(c) Specifying the form of the plasticity constitutive equation (4.16), that is,

QO
d/’ = n-g
Plastic Flow Potential
A normality structure for plastic deformation rates may be demonstrated in two ways:

(1) By the assumption of a material stability postulate such as Drucker’s (suitably generalized

for finite strain).
(2) By the assumption of certain restrictions on the internal variable rate equations.

In general, the first method is not a thermodynamic result but the second method, adopted

here, has a clear thermodynamic basis.
Letting x(o,q) be the specific complementary free energy in ¢,(B), the thermodynamic

O
force £ conjugate to the internal variable fluxes q is defined by:

- 9
£ (0,9 3q

Provided the following two restrictions on the internal variable rate equations are satisfied, a

plastic potential may be shown to exist:

O
(a) Local dependence hypothesis [34,40], the dependence of g on o is of the form:

(o]
q = §(é(o,9),9)

that is, the internal variable rate equation depends on the stress o only through its depen-
dence on £.

(b) The internal variable rates and their conjugate forces satisfy a generalized Onsager recipro-
city condition [41].

Under these conditions, there exists a flow potential [34,40,41] (o ,q) such that:

_ 80

P
d do

where A is a scalar to be determined from the plastic consistency condition. The satisfaction of

the above conditions has been investigated on the basis of dislocation mechanics for the case of
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single crystals [32,33]. In the sequel, the flow potential Q will be taken as the yield function f,

such that:

@ =2 oy (4.20)
o

o
Hardening Internal Variables
Two internal variables are introduced:
(1) A scalar o associated with the expansion of the yield surface for isotropic hardening, and

(2) A symmetric second order tensor 8 with units of stress associated with the translation of

the yield surface for kinematic hardening.

No relation to kinetic processes at the microscale will be pursued here, although such an

approach is desirable.

Following Prager [42], the translated stress space defined by:

8 = o—f
is used with « to define the state space vector, which is taken to be (8,a).
It is convenient in introducing the rate equations for « and 8 to work with the inverse of
(4.16), that is:

[e]
q = nl:d’

O
In fact, this equation will be generalized so that g is not linear in d” but merely homogeneous

of the first degree. The rate equations are assumed to be of the form:

o = 11(8,0) 0" + ry6,0) [d7:d71% (4.21)
B = ry,0)d” + 1,6,0) [d7 471" (4.22)
where the order of the respective r, should be apparent. Constitutive assumptions for the form
of the r; will be made subsequently. The terms involving r; and r; are associated with work

hardening rules in classical plasticity and the terms involving r, and r, with effective-strain har-

dening rules.
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Yield Function
The yield function f(8,a) is assumed to be an analytic function of the second and third
invariants of the deviatoric part of 8, denoted 8', where 8' = 8§ — %—tr (8)1. In this way, f will

be pressure-insensitive. For simplicity, a von Mises type criterion is taken, having the form:

f®Ba) = 8:8 + kla) (4.23)

where k is a scalar function of «.

The consistency condition during plastic loading on the yield surface requires f = dur-

ing a plastic deformation process. An expression for f is given by the following lemma.

Lemma 4.1
Suppose f is a scalar function of ¢ and q,, « = 1,...,n, then:

. o] o]
f = LA 8+ 87 Qo (sum on alpha)
do 0q,

where the last contraction is to be interpreted for the order of q,.

Proof

The second Piola-Kirchhoff stress tensor and material internal variable tensors are defined

by:

* #*
S = ¢[ (.]0'), Qa = ¢I (‘Iqa)
and let f(o,q) = f(S,Q,), then:
p o 8 g, A ¢
f - as ’S + aQa QC(

But, by definition,

. d  * * % O
5 = —{-j—;d),(J(r) = ¢, (L, (Jo)) = Jo, (o)

similarly,

B % O
Q. = J‘br (qa)



46

Using these results and the property of the contraction, it is easy to show that:

af

O
30. ) 4,

. e
f = J¢;*('g"s‘['):0'+.]¢y*(

Using the chain rule, it may also be shown that:

of, _ 8 of , _ oS
”’“"(as) o and ‘Id”"'(aQa) 0.

from which it follows that:

if;,o"— afo .

S = Pyl ‘a—l“l;'qa

Applying this lemma to (4.23), the consistency condition during plastic loading is given
by:
. O O
j=5+8, 9 (4.24)

where it is noted that, by definition:

o -1 d, * 14 .
a = J ¢,,*(-;1-t-¢,(./a)) = J —C—{;(Ja) = atr(d) + «
Before summarizing the model so far developed, observe that (4.11) has the alternative

form:

o = md-d") = a:d-dP) (4.25)

where, by hypothesis, a is independent of o, 8, and «.

Summary of Model

A general theory of isotropic and kinematic hardening can be constructed from (4.20) -
(4.25). However, in the sequel only isotropic hardening is considered, in which case the model

is summarized by:

o =a:(d-d"
df = )\'QI'(O',Q)
do
f = o:0 + kla) (4.26)

S A A
f aa.a+aaa 0

8}
a = I]Idp+ I‘z[dp.'dP]%

e
o
:
.
§
o
]
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Kinematic hardening is easily incorporated into the theory and is neglected here only for simpli-

city.

Elasticity Tensor
The spatial elasticity tensor a is assumed to be a constant isotropic tensor:
aijkl — Ag'jgk’ + M(g/kgjl + gilgjk) (4_27)
where A and p are material constants and g" are components of the spatial metric tensor.

A af o] O
From (4.26),, it is noted that / = 5;—:0 = 200

O
Introduction of (4.27) into (4.26), and defining £ = o' : o results, after some manipulations, in:

df = H(f)‘g—h&(a’:d)a’ (4.28)
2
o - a:d—mg)—’ﬁh“—-(a';d)a'

where H(-) is the Heaviside function and the hardening parameter h(a) is given by:

h = 40’ (a:a) — 2-3{— ry:0' + rye': 0" (4.29)

Rate Equation for o

The following constitutive assumptions are adopted:
(i) r; and r; are pressure insensitive and depend on & through o,
(i) (o'a,d”) and (—o',a,—d") give the same rates of a.

The simplest form of (4.26) s satisfying these conditions is given by:

r(o,a) = rila)e’ (4.30)

I‘Q(O",O() == rz(a)

Using these assumptions in (4.26) 5 together with (4.28) and (4.26) ; leads to:

o = HE) —8hﬁ (o' d)y (4.31)

where

yla) = —rila)k(a) + rya) o' 01" (4.32)
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Using the above assumptions in (4.29) together with (4.27) and (4.26); leads to:

hia) = —2————y — Buk(a) (4.33)

Ak (a)
da

where vy is given by (4.32).

The model may be summarized by:

o 2
o = a:d— H() léf-* (o' :do’ (4.34)
) 8u
a = H(g)«-—,;la':d (4.35)

where y is given by (4.32) and h by (4.33).

4.3 ISOTROPIC HARDENING MODEL FOR COMPUTATIONAL PURPOSES

In this section a simple constitutive model for isotropic hardening plasticity corresponding
to a Prandtl-Reuss type approximation is developed by further specialization of the model dis-
cussed in Section 4.2. This simple model will, nevertheless, serve adequately as a constitutive
basis for illustrating features of the algorithmic treatment of the boundary value problem of
momentum balance to be developed subsequently. The model will also allow comparison with
other studies which have used material models somewhat similar in form [5,7,8,9,13,14,16,17].
The resulting model is discussed in detail in [43]. It must be emphasized that the present
model and those referenced above are similar only in general form. The thermodynamic argu-
ments of Section 4.1 have lead to the use of the Truesdell rate of Cauchy stress, o, and the Lie
derivative of the Kirchhoff stress, L,(r), in the constitutive equations. Most of the models
referenced above employ the co-rotational rate of Kirchhoff stress. These differences have

been alluded to in Section 3.2 and will be discussed further in subsequent chapters.

The constitutive assumptions given by (4.30) are specialized to:

rif@) = 0 (4.36)
%}
2

For convenience k(o) in (4.26) 5 is replaced by the function K («) such that:

kle) = -—%Kz (4.37)
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and by constitutive hypothesis it is supposed that:

Q!(—=H= EE,

- = (4.38)

where H is the hardening modulus given in terms of the elastic modulus E and a strain harden-

ing modulus £,.

In this case, substituting (4.36) into (4.33) and using the result in (4.34) gives, in com-
ponents:

O

gl = [a'ifk’-zf{(g)n'f nk’] dy (4.39)

where a ¥ is given by (4.27) and n" by:

. 1ij
HU = g 7
2| A
K| == +1
[3 3u

o] O
Noting that K = Ha and using (4.36) in (4.35) together with (4.32) and (4.33) leads to:

o 1 )
K = + (o' d) (4.40)
1 1
Kl— + —
3u H
which is subject to the initial condition:
3 ¥
K@) = o, = [—zwo'ryP:alyP] (4.41)
Finally, the yield condition (4.26) is given by:
%o"fa"‘f —K? =0 (4.42)

Equations (4.38) - (4.42) represent the final model for isotropic hardening. Direct dependence
on « has been eliminated essentially by the introduction of (4.40) and the final form allows
comparison with many models in current use according to the comments given in the introduc-

tion to this section.
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CHAPTER 5
LINEARIZATION IN THE MECHANICS OF SOLIDS

5.1 DEFINITION OF LINEARIZATION

Introduction

Linearization is one of the most useful areas of mathematical analysis, not only for carry-
ing out the linearization of the field equations of thermomechamics but aiso because of its util-
ity in defining numerical procedures for the solution of nonlinear problems. Many properties of
nonlinear theories are linearization stable [3], which means that the linearized theory may be

used to deduce significant results about the nonlinear theory.

There is an extensive literature in solid and structural mechanics dealing with concepts of
linearization. However, many of the proposed methods are associated with the dropping of
higher order terms and lack any sound analytical basis. As a result, the relationship of the

linearized theories to their nonlinear progenitors is often obscure.

A consistent theory of linearization with special reference to finite elasticity is presenied
in [3]. The same theory with applications to nonlinear elastic plaies is given in [44]. Refer-
ences [3,44] provide a consistent method of linearization with a sound analytical basis. The

material in this chapter represents an application and extension of the results in [3,44].

In mechanics of solids and structures, the sources of nonlinearity lie in the constitutive
equations and the kinematics of motion. The terms "material” and "geometric" nonlinearity are
often employed in this context. The method of linearization discussed below will lead to con-
sistent definitions of linearized operators associated with "material" and "geometric" effects

without recourse to any ad hoc assumptions regarding approximations.

In the present work, equations expressing the dynamic equilibrium of loaded bodies
employ the motion as the independent variable. The functional dependence on the motion of

all tensors, including the stress tensor, appearing in the equilibrium equations provides the

.
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basis for consistent linearization [3,44]. However, for certain material classes, such as hypoe-
lasticity (including rate forms of hyperelasticity} and rate-independent elasto-plasticity, some
objective rate of a spatial stress tensor will be expressed as a homogeneous linear function of
the spatial rate of deformation tensor. The functional dependence of the spatial stress tensor

on the motion is not available.
The objectives of this chapter are three-fold:

(1) To consider an extension of the linearization theory presented in [3,44] to the constitutive
equations of hypoelasticity and rate-independent elasto-plasticity.
(2) To consider the consequences of (1) in defining the linearization of the linear momentum

balance equation as expressed through the weak form of a variational equation.

(3) To consider a numerical solution procedure for the boundary value problem of momen-

tum balance for finite deformation hypoelasticity and rate-independent elasto-plasticity.

General Theory

Formally, it is found that a consistent linearization procedure may be based on Taylor’s
formula for C! functions, in which case an estimate of the difference in solutions of the non-
linear and linearized equations may be obtained by using the implicit function theorem together

with Taylor’s formula [3].

Definition 5.1
Let X and Y be Banach spaces and f: Q=X —1 be a C! mapping. Let x' € Q, then the

linearization of f about x’ is given by:

Llfuly = f(x) + Df(x) -u (5.1
foru € Q.

In (5.1), Df(x) is the Frechet derivative of f at x'. In Euclidean spaces, Df is the linear

map whose matrix in the standard bases is the Jacobian matrix of f.
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MNote on MNotation

Equation (5.1) will often be written simply as;

Llful, = f+ Df-u
where it is understood that the terms on the right-hand side are to be evaluated at x' € (.
Assuming f to be Gateaux differentiable, Df-u can be related to the directional derivative

of f in the direction u, according to:

DI u = L [f(x' + ew)log (5.2)
It is noted that the directional derivative is a linear operator and follows rules similar to

ordinary differentiation when applied to maps defined by composition [3,44]. Higher deriva-

tives are defined by induction.

Motion Relative to a Deformed Configuration

The interpretation of (5.1) and (5.2) for the mechanics of a deformable medium are now
considered. As suggested above, the motion will play the role of an independent variable in the

field equations of thermomechanics.

Referring to definition 5.1, the point x' € Q will be interpreted as a "reference state”
defined by the motion ¢,: B— N, such that:
x' = ¢,X)
and about which the field equations will be linearized. The reference state ¢,(X) is not neces-
sarily, and in general will not be, an equilibrium configuration (that is to say, ¥ is not neces-

sarily an actual motion of the continuum).

Referring again to definition 5.1, the vector u € Q will be interpreted as an infinitesimal
deformation superimposed on the reference state §,(B), such that u:¢,(B) — N. A material
form of u is defined by U= uo¥,: B— N. The difference between these two forms is not
emphasized in what follows and (with an abuse of notation) u is used for both cases (see Fig.

2).
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Finally, the current configuration is defined by the regular motion ¢, where:

¢, = (P, +uw:B—N

such that
X = x +u (5.3)

5.2 LINEARIZATION OF THE STRESS TENSOR FOR NONLINEAR ELASTICITY

It is demonstrated in Section 5.4 that linearization of the stress tensor is necessary in
order to facilitate linearization of the boundary value problem of momentum balance. In the
case of nonlinear elasticity, linearization of the stress tensor proceeds without difficulty, since
the constitutive equations supply the functional dependence of the stress tensor on the motion.
This is not the case for hypoelasticity (including the rate form of hyperelasticity) where an
extension of the theory of linearization is needed and is considered in Section 5.3. The present
section provides motivation for the ideas in Section 5.3 as well as illustrating the basic metho-

dology of linearization.

The first Piola-Kirchhoff stress tensor, P, has a constitutive equation for nonlinear elasti-

city given by (3.1);. That is,

IV (F)

3F g’ in components P4 = pg j_‘ng (5.4)

P =
] ) FbA
Proposition 5.1
The linearization of the first Piola-Kirchhoff stress tensor P with nonlinear elastic consti-

tutive equation (5.4), about the reference state x', is given by:

LIPul, = P+A:Du (5.5

where A is the (first) material elasticity tensor defined by:

A = . with components A4%,% = 0% e
PBop2 '8 p b P8 Spe ot ¢

and Du = or Dw, = u|,

Ou
axX

(Note: Referring to the "note on notation" following definition 5.1, the right-hand side of (5.5)



is considered to be evaluated at the reference state x').

Proof

Using (5.2), it is noted that;

9 (x' + €n) = Du

0x

d
DFu—-dE

€= {)
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(5.6)

Applying (5.2) to (5.4) and using the properties of the directional derivative, it follows that:

DP-a = pgb%: %%,"‘g']:[DF-u] = A:Du

Referring to (5.1), the linearization of P is given by:

LPul, = P+A:Du =

Recalling the definition of the fully symmetric (second) material elasticity tensor A given

in Proposition 3.1, it is shown in [44] (for the case of rectangular cartesian coordinates - here

generalized) that A and A are related by:

ZaAbB — ACAEBFaCFmEgmb + SABgab

which emphasizes the dependence of A on the stress tensor defined in the reference state

Proposition 5.2

The linearization of the Cauchy stress tensor o, consistent with the constitutive equation

(5.4), about the reference state x’, is given by:

Llowly = a1 -0 (Vwl +2(c-Vu)S+a: V5

where a is the spatial elasticity tensor defined in Proposition 3.3 and

Vu = in components  (Vuw)?, = u?|,

ou
9x

Proof

(5.7

For contravariant components of stress, by Definition 2.11, o = J™'F-S-F7. Using

(5.2), and the properties of the directional derivative, it follows that:

o
]
|
!
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Do-u = —ou(Vu) +2(c-Va)¥+ J'F-(DS-u) -FT
where D(J)-u = Jir(Vu) has been used. Using the constitutive equation for 8 (3.1),, the
definition of A (Proposition 3.1) and the relationship between A and a (Proposition 3.4), it is
easy to show that:

JI'F(DS-w) FT = a: V%

Referring to (5.1), the linearization of o is given by:

Llculy, = ol = (Vwl +2(c-Vu)*+a:Vu =

In the next section, which deals with linearization of hypoelastic material models, a

theorem connecting the linearization of material and spatial tensors is developed, from which

the above result is easily deduced.

5.3 LINEARIZATION OF THE STRESS TENSOR FOR HYPOELASTICITY

For hypoelastic constitutive equations (including the rate form of hyperelasticity ¢.f. (3.7)
and rate-independent elasto-plasticity c.f. (4.31)), the methodology of the previous section is
not effective. For such material models, the functional dependence of the stress tensor on the
motion is not available since the rate constitutive equations are not directly integrable, in gen-
eral. The objective of this section is to extend the methodology of linearization to cover the

case of hypoelasticity.

Some preliminary results are required. It is useful to provide an alternative interpretation

of the directional derivative of a material tensor as given by (5.2).

Definition 5.2

Let .= (f,+eu): B — N and let A be a material tensor defined on B. The directional
derivative of A in the direction of an incremental motion u superimposed on the reference

state ¢, (B) is defined to be:

DAX,1) u = [——‘—1—-A(¢;1,t)] (5.8)
de =0

Figure 2 illustrates the configurations utilized in this definition.



56

Theorem 5.1

The directional derivative with respect to the incremental motion u of the Kirchhoff stress

tensor r, defined on the reference state ¥ ,(B), and the associated second Piola-Kirchhoff stress

tensor 8, defined on B, are related by:

DS u = ¥, L] (5.9)
where
=
d ¥ |
Lr) = |-=@.op;H () (5.10)
de =0 u
and :i ;
U, = ¢, +eun (5.11)
e = T(Pe,t) (5.12)

(See Figure 2.)

Proof

Using (5.10), it follows that:

d -1 *
7 Weov D) (fe)LO]

v 1Ly) = w‘[
- "Ez%"’"[("'*°“’7l]*(""]]lino

(4
-t

- [Lsfrd]

= DS-u
where the results of definition 5.2 have been used L]

Coordinate formulas may be developed for L ,(7) as follows. From (5.6), it is noted that:

DF-u = — = Du

which implies,
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DFlu = —F . [a“] -~ F1.Vu (5.13)
ox
Considering contravariant componenis of 7 (and referring io Figure 2 for the geometric view),

it follows that:

%
.o () = F-F v -F T-FT

a"’l a"’s
IX and F, = X

where F =

Substituting this result into (5.10) and noting that by definition,

d
e T, i = Dr-n
also, from (5.13),
[—-F ] = —F - Vu

and observing that [F J..q=F and [ .o = 7, it follows that:

Lr) = Drou—Vu'r—7-Vul

in components:

(L, (P)]%® = (D7 -w)® — 1%y, — r%u®|. (5.14)
Similarly, it may be shown that:
(L) = D7T-w) g+ 7u|, + 7uc, (5.15)
and
(L, = Dr-w?, —ru|, + 79 u|, (5.16)
It may also be shown that:
L) = L,(UUo) = Jour(Vu) + J L, (c) .17

where o is the Cauchy stress tensor and J = det(F). The proof of (5.17) follows from the

definition of L ,(-) given by (5.10) and is omitted here.
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Example 5.1

This example considers the linearization of the Cauchy siress tensor o for nonlinear elas-

ticity (c.f. Proposition 5.2). By theorem 5.1 and (5.17), it follows that:
Lyo) +otr(Vuw) = J ', (DS uw)
Considering contravariant components of stress and noting (as in Proposition 5.2) that:
J N, (DS u) = a:V5u
where a is the spatial elasticity tensor evaluated on ¢ ,(B), then:
Dou—Vuo—o-Vul +otr(Vu) = a:V5u
Solving for Do - u, the final result (5.7) follows immediately.

Proposition 5.3

The directional derivatives of the contravariant components of S and P are related by:
DS-u = [DP-ump'VuT]'F_T (5.18)

Proof
From the relationship S = P-F~7 and (5.13), the result follows immediately.
Using (5.18) in (5.9), it follows that Theorem 5.1 has the alternative form:
*
DP-u = P-Vul +y¢, [L,()]-FT (5.19)
when contravariant components of stress are considered. The preliminary results are now in

hand. However, before proceeding to the final conclusions of this section, a unification of

notation for constitutive equations will be helpful.

Unification of Notation for Constitutive Equations

Hypoelasticity (including the rate forms of hyperelasticity and rate-independent elasto-

plasticity) is characterized in this section by the universal constitutive equation:

L,(r) = L(J,7):d (5.20)
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where L is a fourth order isotropic tensor. All the constitutive equations considered in
Chapters 3 and 4 may be expressed in the form (5.20). The dependence of L on J and = will
reflect the difference between the various forms of constitutive equations, examples are given

below.

Linearization of Rate Constitutive Equations

It is demonstrated in Section 5.4 that DP -u is required for the linearization of the boun-
dary value problem of momentum balance. Thus, the issue of concern here is the evaluation

of (5.19) and of L ,(7) in particular.

Recalling Definition 2.8, the Lie derivative of = with respect to v is given by:

L(r) = "5;(4)30([),“1) *(rs)l (5.21)

§=1

dé .
pane =y and 7, means 7 evaluated a time s.
§={

where it is noted that
ds

Consider the definition of L () given by (5.10); that is,

L) = {—"—— Woow ) (TG)] (5.22)
d€ e={)

dp .
where it is noted that --E~] = u, from (5.11), and 7, means 7 evaluated on configuration
e=0

de

Y + eu.
Clearly, (5.21) and (5.22) define Lie differentiation of = with respect to v and u, respec-
tively.

Introducing the universal constitutive equation (5.20), it follows that:

&
—-‘1[¢So¢.;1] [T]] — LV (5.23)
ds s=t
Since (5.23) is assumed by constitutive hypothesis to be valid for any vector v emanating from

the current configuration, then the approximation:

L) = L:V5u (5.24)
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is immediately suggested. Furthermore,

lim L,(r) = L:V%u (5.25)

! H

It is shown in the next section that practical solution schemes for the boundary value problem

of momentum balance, based on the above theory, do satisfy the limit condition of (5.25).

Returning to (5.19) and using the approximation (5.24) results in:

&
DP-u = P-Vul + ¢, [L:VSu]-FT (5.26)
Expanding (5.26) for contravariant components of stress in (5.20) (see pull back, Definition

2.2) and noting that P = F~!- 7 leads to:

DP-u = F“l'[T~VuT+L:VSu] (5.27)

Some examples of the application of (5.27) follow the next proposition.

Proposition 5.4

Considering contravariant components of stress, then:

(¢}

(a) L,7) = Jo

(b) = J[L, (o) + otr(d)]

(c) = Z~2(r-d)s

() = Jlo - 20 D5 + or@]
Proof

The proof, which is straight-forward, follows from Definitions 2.10, 2.12, and 2.14 and is

omitted here.

Propositien 5.5

If constitutive equations are given in the form:

O
(a) 2:d = &
(b) = L,(o)
7

(c) = 7
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v
(d) = g

then the corresponding forms of the directional derivative of P are given by:

(@) DP-u = F [+ VuT +J3:V5u]

(6" = F ' le-Val +Ja: Vi + 7 (V)]

(¢ = Fllr-Va” +3: V5% = 2(r - V30)5]

(d") = F e - Vu' +Ja: V5% - 2(r- V505 + 7tr(V5Su)]

Proof
Consider Case (c) as being representative. By Proposition 5.4(c) and using (c) above, it
follows that:
Lir) = a:d-2(r-d)° = L:d
It follows immediately that L: ¥V 5u occurring in (5.27) may now be replaced by:
L:VS% = 3:V5% — 2(r-V5u)*

which, when substituted into (5.27), produces the required result.
The other results of this proposition follow similarly @

NOTE: No restrictions on the form of a are implied. In general, @ may depend on the stress
tensor and the results of the above proposition apply to all the constitutive equations considered
in Chapters 3 and 4 by suitable specialization of a. Furthermore, component forms of L
corresponding to (a) - (d) may easily be determined if a is specified. However, the component
form of L (which was introduced only for convenience of presentation) is not required for this

development. The above results play a central role in the subject matter of the next section.

5.4 LINEARIZATION OF THE BOUNDARY VALUE PROBLEM OF MOMENTUM
BALANCE

A weak form equivalent to the boundary value problem of momentum balance for the

current configuration ¢ ,(B), is defined in Section 2.4 by (2.1) or (2.2), such that:

Glxmg) =0 (5.28)

In general, this form is nonlinear with respect to the motion x but has a locally linear approxi-
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mation about the reference state x' = ¢, given by (5.1):

LlGul, =0 (5.29)

where
LIGuly = G&x',p) + DG(x',m) -u (5.30)
In evaluating DG - u, it is convenient to work with the material form given by (2.2) since,
in this case, the domains of the integrals are independent of the motion. It is assumed for sim-
plicity that B and 7 occurring in (2.2) are independent of the motion (this assumption is not

essential to the development). Then, referring to (2.2), it follows that:
DG-u = [ Dlr® Dw)l-uaV + [ ppii-mdv (5.31)
B B

where D (X) -u = u has been used.

In general, m will depend on the motion x and, accordingly, will make a contribution to
D[ (P-Dn)l-u. For example, (5.29) may be used as the basis for formulating problems of
reduced dimensionality, such as beam or plate theory [44], in which the motion x is restricted
to reflect the characteristics of the pérticular structural element under consideration. In this
case and for Galerkin type approximations, n may depend nonlinearly on the parameters
characterizing the motion [45,46]. In the present study, a continuum type approximation is
used which places no restrictions on the motion x and considers n independent of the motion.

Accordingly,
J Dlr@-DmI-wav = [ #(DP-ul Dn) av (5.32)
B B

Combining (5.29) - (5.32), the locally linear approximation to the weak form about the motion

x' =, is given by:
J wrpP-wl-Dmyav + [ ppii-naV = —Gxm) (5.33)
B B

Two forms of (5.33) are of particular interest:

o
|
it
|
)
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(i)  Material form. Equation (2.2) is used for the evaluation of —G (x',9),

J w(DP -ul - Dmyav + [ pgii-mav -
B B

Fondd — [ r® -Dp)av — [ py (V- B)-mav (5.34)
B B

Q>

3_
(ii) Spatial form. Transforming the left-hand side of (5.33) from material to spatial coordi-
nates (associated with the reference state ¢ ,(B)), using dV = J 7 'dv and (2.1) for the

evaluation of —~G (x',9),

f J Ve (IDP -ul -Dy) dv + f pi-ndv =
¥, (8) v (B)

f t-mda — f tir(o-Vn)dv — f p(V—b) mdv (5.35)
(B)) ¥.(8) ¥(B)

where p = J™lp g is the density in ¢,(B).

The work of Sections 5.2 and 5.3 is now brought to bear on DP - u occurring in (5.34) and
(5.35). For example, for nonlinear elasticity, Proposition 5.1 demonstrates that

DP-u=A: Du, where A is the (first) material elasticity tensor.

Applications to hypoelasticity (including rate forms of hyperelasticity and rate-independent

elasto-plasticity) are accomplished by the following discussion.

Proposition 5.6

If constitutive equations are given in the form:

[e)
(a) a:d = o
(b) = L,(r)
(¢) = L,(o)

A4
(d) = 7T

v
(e) = g

then the kernel J~'¢r([DP - u] - D) occurring in (5.35) has the corresponding forms:

(a) J ' (DP-ul-Dn) = tlloc-Vu’ +3:V5) Vgl

(") = trl(oc-VuT +J7'3: V5a) - Uyl

(c") = rlloc-Vul +3: VS + ot (VSu)) -Vl

(d") = trllo - Vul +J712:VSu - 2(e- V5u)%) - V1l

-

y

3

(
(
[
[
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(e = trl(c-Vu’ +3: V5% — 2(e- V505 + or(Viu) - Vi

Proof

Proposition 5.5 is used to evaluate DP-u. Noting that o =J"'% and

tr(F7'[-1-Dwn) = r([-1- Vq) supplies the required results ®

Since all the tensors in (a') - (e') are spatial tensors defined on the reference state §,(B),
it is convenient to use the spatial version of the linearized weak form given by (5.35). The

results (a’) - (e') may be substituted directly. For example, if by constitutive hypothesis

v
7 = a:d, then by Proposition 5.6 {d prime ) and (5.35), the linearized weak form is given by:

f riloc-VuT +J7'3: V5% — 2(c- V505 - Vyldv + f pi-ndv =
¥(8) ¥(B)

f t-mda — f ir(ec-Vydv — f p(v—b) -nav
(B ) ¥ (8)

which is linear in the incremental motion u.

Note on Symmetry

Linearized weak forms associated with (a), (b) and (d) in Proposition 5.5 are symmetric
with respect to interchange of indices between Vu and V% (providing a is fully symmetric)

whereas (c) and (e) are not.

It is interesting to note the correspondence between these conclusions and those reported

for the symmetry of the rate problem discussed in Section 2.5.

5.5 A NUMERICAL SOLUTION PROCEDURE

The results of Section 5.4 provide a basis for defining a Newton-Raphson iteration scheme

for the soiution of the boundary value problem of momentum balance.
It has been shown that the weak form (2.1) or (2.2) has a locally linear approximation

given by (5.29), such that:

Gix')p) + DG(x';p) 'u = 0 (5.36)

However, if (5.36) is solved for u, then, in general, G(x' + u,p) = 0. Thatis, x' +u # x,




5 where x is the solution corresponding to the actual motion ¢,.

A Newton-Raphson iteration procedure based on (5.36) and schematically represented by:

() G = G&'ym), DG -utl = K -ut!
(”) ui+1 = ___(K/)"]_Gi

i) x™*' = x'+u'*!

(iv) i — i+1, go(i)

will converge to the solution, provided that G is well-behaved between x° and x.

The linearized weak form (5.35) may be projected into a finite dimensional seiting by

using a finite element spatial discretization in which the resulting variables are the nodal incre-

mental motions. Some implementation details are given in Chapter 7. In this finite dimen-

sional case, the updating of the nodal motion proceeds according to (iii) in the scheme above.

However, the spatial stress field must also be updated at the finite element quadrature points.

Since the rate constitutive equations are not integrable, in general, this stress update cannot be
based directly on the nodal motion update. It is thus necessary to introduce a numerical algo-
rithm for the time integration of the rate constitutive equations in order to effect the update of
‘ the spatial stress field. Such a numerical integration algorithm, which takes proper account of

the effects of finite deformation occuring over the time steps, is the subject of the next chapter.
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CHAPTER 6
INTEGRATION OF RATE CONSTITUTIVE EQUATIONS

6.1 INTRODUCTION

This chapter is concerned with the evolution of the spatial stress tensor. That is to say, it
is concerned with the evolution of the components of the tensor and of the coordinate system

basis vectors to which the components are referred.

In the previous chapter, a Newton-Raphson solution procedure for the momentum bal-
ance equation, based on a finite element spatial discretization of the linearized weak form, was
proposed. This finite dimensional setting of the problem yields the nodal incremental motion
as the independent variable. Updating of the nodal motion is direct. However, the spatial
stress tensor and internal variables must also be updated at the spatial integration points by
temporal integration of their respective evelution equations. It is to the temporal integration of

the rate constitutive equations for the spatial stress field that the present chapter is addressed.

6.2 MATHEMATICAL BASIS

The objective of this section is to clarify the mathematical description of the mechanics
underlying the evolution of the spatial stress field. In so doing, an algorithmic treatment of the
integration problem is suggested. However, discussion of algorithmic issues, such as incremen-

tal objectivity, stability and accuracy, are deferred until Section 6.3.

The constitutive equations which govern the evolution of the stress tensor are here res-
tricted to be those of hypoelasticity (including rate forms of hyperelasticity) as described in
Chapter 3. Generalization of the following results for rate-independent elasto-plasticity is con-
sidered in Section 6.4.

In order to motivate the methodology of the present section, it is useful to anticipate the

algorithmic treatment of the problem. The loading process applied to the continuum is con-

sidered to be discretized in time. In particular, it is assumed that at time ¢, the configuration




67

¢ ,(B), denoied {1 ,, and the stress tensor o, at each material point in {1, is known. At time
f,+1, the continuum occupies the known configuration ¢ ,,,(B), denoted Q ,,;. The problem is
to determine the corresponding o .1 at each material (integration) point in {1 ,,;. Some impli-
cit numerical integration schemes [47,48] applied to spatial rate constitutive equations have
employed difference operations on the stress components of the form [o /) — o Y]l. However,

such quantities are of limited value. Consider the following argument.

Convected, spatial and material coordinate systems have been defined in Section 2.1. The
covariant basis vectors corresponding to these coordinate systems are denoted g,, g,, and G 4,

respectively. In Proposition 3.2 it has been noted that g, evolves according to:

d . 8| =

— = 6.1

dr (ga) v |agﬁ ( )
Furthermore, for a fixed material particle (X = constant), the basis vectors associated with the

spatial coordinate system g, evolve according to:

dg
BXZ vl = ybrnog. (6.2)

(although it is clear by Proposition 2.2 that the spatial metric tensor g satisfies g = 0).

4oy _ D

Noting that:
o = 77, @8 = 78, g,
it is seen that by virtue of (6.1) and (6.2) o, and o, will, in general, have components
referred to different basis vectors whether the spatial or convected coordinate system is
employed. That is to say, [ 2%, — 7% or [0 %, — ¢ 2] do not represent the components of

a tensorial quantity as a result of the evolution of the basis vectors over the time step.

On the other hand, the basis vectors G 4 associated with the material coordinate system

have a stationary evolution in time since

G, gx5

i 5 = O 6.3)

d _ 3
""1‘[’ (GA) = 81 (GA)+

The second Piola-Kirchhoff stress tensor S defined by:

S = ¢, (Jo) (6.4)
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is a material tensor on B and is in a one-fo-one relation with o through ¢, Since the G 4 are
stationary in time, the quantity

[Sn-i—l""sn] = [S;ffl "“S,?'B] GA®G5 (65)
might usefully be employed in a numerical algorithm since only the evolution of the com-

ponents 547 need be addressed.

The following development employs the material setting based on an arbitrary reference
configuration B, which is not necessarily and, in general, will not be the same reference
configuration employed in the momentum balance equation, discussed in Chapter 5. In fact,
advantage is taken of the freedom allowed in choosing B. A spatial development, equivalent to
the following material development, which considers the evolution of the stress tensor com-
ponents and basis vectors, is possible. However, the material setting, utilizing the concept of

Lie differentiation, leads to a very direct and appealing development.

By Definition 2.14(c), for a fixed material point X € B and a regular motion ¢,:R — N,

the Truesdell rate of ¢ is given by:

© - d , * - d
o =J l‘bz* ’;,’t“ﬁz (-]‘7)] =J 1¢t¥r ES
which, in view of the assumed invertibility of F, implies:
d #* o] *

o}
The last result in (6.6) follows from o = J™'L (r). The body is assumed to occupy the known
configurations Q,=¢,(B) and O, =4¢,.(B). An intermediate configuration

Q va = P 4o (B) is introduced, where

bria = ¢+ (1-a)d, 0<a<l (6.7)

Clearly, Q ,., is not, in general, an actual configuration occupied by the body. Figure 3 illus-
trates the configurations in use. It is also assumed that o, is known at each material (integra-
tion) point in {1 ,. The generalized midpoint rule [49,50] is used to numericaily integrate the

material raie equation (6.6), such that:
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g

0 0€ax1 (6.8)

S,,+1 - Sn = At

n+ta

where Af = f,,,— ¢, and (-),,, will be evaluated on the intermediate configuration (.

*
Using (6.6) and noting that S = ¢, (Jo) = ¢, (r), (6.8) has the alternative representations:

# * ®* O
¢,1Uo)—¢, o) = Atd,,,Uo) (6.9)

or

# & #
b n+1 (r) '—‘i’n(T) = At¢n+a(Lv(7)) (6.10)

In reference to the comments above, it is noted that (6.8) - (6.10) have components referred to
the stationary material basis vectors. Accordingly, they may be expressed in terms of their com-
ponents alone.

To simplify (6.9) or (6.10), it is advantageous to select the reference configuration B to
coincide instantaneously with Q ,.,. That is, ¢, = I, in which case (6.9) and (6.10) reduce

{o:

# * O
o1 — @, Jo) = At o) (6.11)

Tost— o (1) = Atrse (L,(r) 6.12)

Defining the deformation gradients:

aXM‘H

An+a = 6;(::; 0 \<\ [£4 < 1 (613)
where x, = ¢,, and Jacobian determinants:
Jpra = det (A, ) 0l (6.14)

then, for contravariant components of stress, (6.11) and (6.12) have the form:

O
T el ™ J"A”-(rn-A"Tz AtJn+aAn+a'0'n+a'AnT+a (6.15)
7’n+1"—An"rn'AnT= AtAn+a'Lv(T)n+a'AnT+a (6.16)

O
These equations become well-posed by introducing the rate constitutive equations for o 4, or

L (1) ,, Thisis considered in Section 6.3.
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Co-rotational Rate of Stress

Once again, the Truesdell rate of o and the Lie derivative of r with respect to v have

appeared naturally in the development. It is, nevertheless, interesting to see how algorithms

7
(6.15) and (6.16) might be modified for the co-rotational rate of r, denoted 7, which is a stress

rate often emploved in the computational literature. The following discussion is easily extended

v
to o.

Recalling Section 3.3, the motion ¢, is again assumed to be given by the composition
mapping:

¢, = ¢fod/ 6.17)

where ¢ X and ¢ “ correspond to rotation and stretching of material neighborhoods, respectively.

It is shown in Section 3.3 that:

v

T = Lv(7)|¢lu=] = (¢IR)*[-&% (¢1R) *(T)] (618)

From (6.18) it follows that:

Lh" @ = @ @ (6.19)
which is analogous to (6.6). The tensors in (6.19) will be material only in the event that the
actual motion of material neighborhoods is purely rotational, such that d = 0. If it is assumed
that such an approximation may be made over the time step, the generalized midpoint rule
applied to (6.19) yields, after choosing B to coincide instantaneously with Q .

v

Tn+l_Rn”rn'RnT = Aan%—a'TniLa'RnT-%a (6.20)
where the orthogonal rotation tensor R ,,, is defined by:
a5y :
R = 6.21
o axn+a ( )
AV v

It is noted that the constitutive equation for 7 is usually of the form r = a:d. This is
interesting, since it has been assumed that d is instantaneously zero for the development lead-

ing to (6.20). However, (6.20) is similar to results obtained in [16,51]. The algorithm (6.20)
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is unsatisfactory for two reasons:
(i) The approximation d = 0 instantanecusly is not appropriate.

(i) Evaluation of R,,, from &,,, (or from A,,, by polar decomposition) is not readily
accomplished.
The algorithms (6.15) and (6.16), in contrast, use the deformation gradient which is readily

computed.

A
It is shown in the following section how integration of 7 may be accomplished consistently

using (6.16).

6.3 NUMERICAL ALGORITHM
Equations (6.15) or (6.16) provide a basis for a numerical algorithm for the integration of
the rate constitutive equations of hypoelasticity (including rate forms of hyperelasticity). It
o]
remains only to find some approximation for o ,, or L,(7),4, occurring in (6.15) and (6.16),
respectively.

The following development is based on (6.16) although, since (6.15) and (6.16) are
entirely equivalent, either equation could be used. For convenience of presentation, the

universal constitutive equation (5.20) is reintroduced:

LJr) = L(UJ,7):d (6.22)

where it is again noted that all the constitutive equations of Chapters 3 and 4 are contained in

(6.22) if the dependence of L on J and 7 is adequate.

Example 6.1

If constitutive equations are given in the form:

O
(a) 3:d =&
(b) = [ (7)
v

(c) = 7
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then the corresponding L in (6.22) has the form:

(a’) Labmn - Jaabmn

(br) = aabmn

abmn __ Tnbgma - amgnb

(c") = q T

These results follow from definitions 2.14 and 2.15. Similar results may be constructed for

(o]
LJo)=a:d, o=a:d, etc.

Example 6.1 demonstrates that even when 2 is a constant tensor, L will, in general,
depend on J and 7. Of course, @ may itself be a function of J and = as in the case of rate-

independent plasticity.

Substituting (6.22) into (6.16) gives:

Torl — Ay 7y AnT = AtApa L(']rz+aa 7n+a):dn+a 'AnT+a (6.23)
Assuming that A , is known, it remains to evaluate A , 4, and to obtain approximations for d .,

and 7,4,

Evaluation of A ,4,

From (6.7) and (6.13) it follows that:

Apie = lal+ (1—a)A; ! (6.24)

Treating the components of these tensors as matrices, and using the following result from

linear algebra:

A!T+B Y ! = AA+B)'B=BQA+B A (6.25)

where A, B, and A + B are square nonsingular matrices, then (6.24) may be simplified to:
Ao = [=a)T+aA, ] HA, (6.26)
Approximation for d, .,
The displacement increment 8 over the time step Azt is:

3 = X,41— X, (6.27)

The spatial rate of deformation tensor at time 7,4, is approximated by:




|
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5
_ 1| o8
dyi, = Ar [axnm} (6.28a)
and the spin rate w,,, by:
A
1 98
Dnra = [ax,m,] {(6.28b)

From (6.27), (6.7), and (6.13), it follows that:

a8

= [al+0-a) AT '~ [aA, + Q—a) ]! (6.29)
axn+a

Using (6.25) to simplify (6.29), it follows from (6.28a) that d,,, is given by:

-1 5
iy = —Al—; ”(1 ~a)l + aA ,,] [A,, - I” (6.30)

This approximation for d,,, serves to restrict the admissible choices for « if the algorithm is to
remain incrementally objective with respect to superimposed rigid body rotations. Before dis-

cussing this issue, the final approximation, for 7,,,, is presented.

Approximation for 7,4,
The stress 7., defined on the intermediate configuration Q) ,,, is approximated by:

Tota = @@ 06l o) + (=) (b, 0 b7l " (7)) (6.31)

which, by the chain rule, has the representation:

Tora = @A le T Aply+ U—a) A A7, AT AT (6.32)
(6.32) may be simplified by noting from (6.26) that:

Al = U=a)A ' + al (6.33)

and

A7l A, = 0-a)I+aA, (6.34)
Since 7,4, is expressed in terms of 7, and 7,41 by virtue of (6.31), it follows that the algo-
rithm (6.23) is implicit in 7,4, in general. The solution of this implicit algorithm for T 441 May

be accomplished by use of an iteration scheme.

It is recalled that the integration algorithm is required for updating the stress tensor
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corresponding to Newton-Raphson iterations on the linearized weak form of the momentum
balance equation. The following subiteration scheme for the solution of 7,4, in (6.23) has pro-

ven to significantly improve the convergence rate of the Newton-Raphson scheme:
1. Setj=1

2. Initialize 7241 = T p41.

3. Solve:
7:4+1 = An'Tn'AnT+ AtA g i‘(Jn+a’Tr{_+-clz):dn+a 'AnT+a
4 If
J — J-1
el =l
|7 fall
stop.

5. j—j+l, if j > Jmax
stop.
6. Goto3.

In Step 2, 7,4 is the value of 7,,, determined from the previous Newton-Raphson iteration.
In Step 3, 743 is meant to imply the evaluation of 7,., according to (6.32) but with 7,4,
replaced by 7 /31,

In practice, the above scheme converged very rapidly in all cases (only 1 or 2 iterations

generally being required).

6.4 INCREMENTAL OBJECTIVITY

It is essential that the algorithm (6.23) with d,,, given by (6.30) and 7,4, by (6.32) be
incrementally objective with respect to rotation of material neighborhoods over the time step.

It is seen in this section that such a requirement leads to restrictions on a.
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Definition 6.1

Let R be the group of all orthogonal second order tensors and M the group of all positive
definite symmetric second order tensors. The algorithm defined by (6.23), (6.30), and (6.32) is

incrementally objective if:

(@) A, € R <=> d,, = 0 (6.35)
(b) A, e M <=> w4, = 0 (6.36)

where w4, is the spin rate tensor determined by the approximation (6.28b).
Condition (a) ensures that the integration algorithm reduces to:
Tarl = An Ty AnT
in the event that A, € R. Condition (b) ensures that no arbitrary rotations are introduced

under the stated conditions.

Proposition 6.1

The algorithm defined by (6.23), (6.30), and (6.32) is incrementally objective if and only

if o =0.5.

Proof

(a) Consider A, € R, such that A/-A, =1. From (6.30):

Widy, = (=) T+ aA, 17 A, -+ [A,-TT[A—a)I + aA ]l T
BL+aA,) A, +AJBI+aA,) T — (BI+aA,)! (6.37)
~ (BI+aA,) T

I

where 8 = 1 —~a.

But, using (6.25) and the condition A , € R gives:

Bl+aA,) = [(BT+aA DT
= [(BI+aA,,—1)_1]T

- [_L (_l_.I + ,zlt_An)—lA”]T

aff B
Lol 1,7
e A"(ﬁ1+ aA,,) (6.38)
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Similarly,

LA A, (6.39)

a

v 11
B+ aA,) = op (BI+

Substituting (6.38) and (6.39) into (6.37) yields:

- a1 e 1aya
20td,, = |(BI+aA,) B (ﬁl + aA,,) A,
+AN@BI+aA,) T~ L (—1—~I + -1-A,,)‘TI (6.40)
aff B o

From (6.40), it follows that:

dpog = 0 <=> a=p=05

(b) Consider A, € M, such that A, = A ] Using (6.25) to simplify (6.29) to:

08

= Bl+aA,) " (A,-D
axn+oz

where 8 = 1 —a, it follows from (6.28b) that:

WUtw,pg = Bl+aA,) ' (A,-D - AT-D@I+aA,) T (6.41)

But, since A, € M,

BI+aA,) ! = B+ ahA,) T

and noting that A , is a diagonal tensor, it follows from (6.41) that:

2At(l)n+a == O

Thus, @ 4, =0forala € [0,1] =

It is clear from part (a) of the above proof that the approximation for d,., given by (6.28a)
results in a restriction of « to 0.5. The parameter a was initially introduced into (6.8) to define
the generalized midpoint rule. Fortunately, this integration rule is unconditionally stable and
second order accurate at the value of « = 0.5 [49,50].

The algorithm described above is generalized for the case of rate-independent elasto-

plasticity as described in the next section.
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6.5 INTEGRATION OF THE CONSTITUTIVE EQUATIONS OF RATE-INDEPENDENT

ELASTO-PLASTICITY

The integration algorithm developed in Sections 6.2 - 6.4 is directly applicable to the con-
stitutive equations of hypoelasticity (including the rate forms of hyperelasticity). Extension of

the algorithm for the case of rate-independent elasto-plasticity is considered here.

The procedure is based on the additive decomposition of the spatial rate of deformation

tensor d into elastic and plastic parts:

d = d°+df (6.42)
according to the discussion of Section 4.1. The evolutionary equations for the problem
comprise the linear momentum balance equation, the rate constitutive equations for the spatial
stress field, and the rate equations for the internal variables. Due to (6.42), the evolutionary
equations admit an additive decomposition (operator split) into elastic and plastic parts
corresponding to the nonlinear elasticity wave operator and the plasticity flow rule operator
[52]. The product formula techniques of nonlinear semigroup theory may be applied to this
decomposition, resulting in a step-by-step integration procedure in which a nonlinear elasto-
dynamic problem is first solved, followed by the application of algorithms that bring in the plas-
tic part of the evolutionary equations. It is shown in [52] that these latter algorithms result in a
projection of the stresses corresponding to the solution of the elasto-dynamic problem, onto the
convex yield hypersurface. Thus, at every step, one first solves the incremental elasticity prob-
lem for the elastic "trial" stress, which is then projected onto the convex yield hypersurface.
This composition mapping of elastic solution S, and return mapping to the yield hypersurface
P, is depicted in Figure 4.

In order to obtain the "trial" stresses (S,), the nonlinear elasto-dynamic problem is solved

by means of the Newton-Raphson procedure discussed in Section 5.5. The elastic rate constitu-

tive equations are integrated using the algorithm defined by (6.23), (6.30), and (6.32).

The convergence of the product formulae requires consistency and stability of the algo-

rithms used for the elastic and plastic parts of the evolutionary equations [52]. It is shown in
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[52] that this places general restrictions on the form of the return mapping P. of the elastic .

trial stress. These restrictions are:

(a) Stability

The return mapping P, should be a contraction mapping such that if oy and o, are two

elastic trial solutions, P. must satisfy:

[P (o) — P o] < |log— o]

(b) Consistency

The return mapping P, should be a normal projection of the stress point very close to the

yield hypersurface.

The above formalism does not depend on any notion of smoothness of the yield hypersurface

and is applicable to arbitrary convex elastic regions with or without corners [52]. For hardening

plasticity, the yield surface will evolve according to its dependence on the internal variables. In

this case, the return mapping will project the trial stress onto the updated yield surface.

A number of return maps satisfying the above conditions have been proposed [55-57].
Error analyses of the resulting procedures have been considered for the case of infinitesimal §
perfect plasticity [56,57] and, in one case, finite deformation hardening plasticity [55]. The |
plasticity model used in the present study is restricted to isotropic hardening. Two algorithms |
have been implemented and are based on return maps, P, which are essentially finite
deformation/hardening generalizations of the projections reported in [56,57]. The algorithms
are: |

(i) tangent predictor-radial return

(ii) closest point projection (radial return).
These projections are illustrated in Figure 5. .

The essential features are:
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(a) In both algorithms, the elastic trial stress is obtained by integration of the equations of

hypoelasticity according to the discussion of the previous section.

(b) The so-called plastic contact stress o . (corresponding to the stress state at first contact
with the yield surface during the time step) is used to update the yield surface radius K by

integrating (c.f. eq. (4.40)):

1

K = 1 1. ° PR P

K- +1

( 3 H)

{c) In method (i), the tangent predictor stress point must be tangent to the updated yield sur-

face to maintain the contractive property of the plastic projection.

(d) All the above operations are in deviatoric stress space.

Pressure Calculations

For the plasticity model under consideration, (4.38)-(4.42), the trace of the Truesdell rate
of Cauchy stress is determined purely by the volumetric deformation rate and the elastic con-

stants. However, the pressure rate must be evaluated correctly. The pressure p is defined p by:

p = % ir(o)

Constitutive equation (4.39) may be written as:
[o]
o = a:d—2HE (a:dn
where the spatial elasticity tensor a is defined by (4.27) and the n terms by (4.39),.

It may be shown that under this hypothesis, the pressure rate is given by:

b= T+ —32~mu) i (d) + %mw-m

This equation may be integrated using the generalized mid-point rule, resulting in:

DPut1 = Pp + At (l})n+a

where (p) ., implies evaluation of p at time »n +a.

If the Truesdell rate of Cauchy stress in the constitutive equation above is replaced by

other objective stress rates, different expressions for the pressure rate will result. If the
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pressure is to be calculated independently, it is important that the correct definition of the pres- ‘

sure rate be used. }
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CHAPTER 7. FINITE ELEMENT IMPLEMENTATION

7.1 INTRODUCTION

A Newton-Raphson solution procedure for the momentum balance equation, based on a
finite element spatial discretization of the linearized weak form, was proposed and schematically
outlined in Section 5.5. The variables resulting in this formulation are the nodal incremental
motions which are directly updated to define the nodal motion. The corresponding spatial
stress field at the finite element quadrature points may be evaluated by integration of the spatial
rate constitutive equations using the algorithm developed in Chapter 6. Some details of the
finite element implementation of the Newton-Raphson solution procedure and integration algo-

rithm are considered in this chapter.

7.2 ITERATIVE SOLUTION PROCEDURE

A locally linear approximation for the weak form of a variational equation, equivalent to
the boundary value problem of momentum balance, is given by (5.33). This locally linear
approximation is based on a Lagrangian formulation referred to a reference configuration B
having an expression in material coordinates given by (5.34) and in spatial coordinates by

(5.35).

It is seen from Proposition 5.6 that for spatial rate constitutive equations the kernel
tr ([DP -ul-Dm) appearing in (5.34) and (5.35) is expressed most directly in terms of spatial
tensors (transformation of the results of Proposition 5.6 to material coordinates is possible but
would introduce additional complications into the expressions). For this reason alone, the form
(5.35), in which the Lagrangian formulation is expressed in terms of spatial tensors, is adopted
here as the basis for a finite dimension approximation using spatial discretization of the refer-

ence state i, (B) by the finite element method.
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The reference configuration B musi be selected and two possibilities are of interest:

(a) Total Lagrangian Formulation
The reference configuration B is selected to coincide with the initial configuration of the

continuum, such that:

¢, =1 (7.1)

It is supposed that p, and 7 on 9B: are specified. Using the result that:

t-npda = f 7 -n dA
3, (B, 38

then (5.35) has the form:

J7 e (IDP ul-Dpdv + [ T pgiimdv =

¥, (B) ¥, (B)
Fmdd— [ v Vv~ [ JppG-b) v (7.2)
5B w8 ¥,(B)

(b) Updated Lagrangian Formulation

The reference configuration B is selected to instantaneously coincide with the reference

state ¢ ,(B), such that:

¥, =1 (7.3)

It is supposed that p and t on 8(,(B)); are specified. From (7.3) it follows that J = 1,

and (5.35) has the form:

tr([DP -ul-Dn) dv + f pi-ndv =
$.(B) ¥,(B)

f t-mda — f tric-Vy)dv — f p(v—b) -mdv (7.4)
8, (B)); B ¥i(B)

For both (7.2) and (7.3), Proposition 5.6 is used to evaluate the kernel of the first integral
(for the updated Lagrangian formulation, J = 1 would be used in Proposition 5.6).

Following Section 5.5, notation for the Newton-Raphson procedure is introduced by let-
ting () ., denote (-) at time n+1 and iteration i. For example, if the constitutive hypothesis is

of the form:

2 q

= a:d (1.5)
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then, using Proposition 5.6(d") and (7.4), the updated Lagrangian formulation is defined by:

f rllo-VuT + a2V~ 2(e - V5w [ Inldvi + f p il pdvi,y =

¥,0(8) ¥,41(8)
S tmdain— [ vl Vodia- [ piabntl—il) ndvigle)
3% ,.1(B)] ¥i41(B) ¥41(8)

where J),; = 1 has been used.

Updating the motion is achieved by setting:
a4 = X tugy
The finite element discretization of (7.2) or (7.4) follows standard procedures [58]. It is noted
that (7.2) and (7.4) involve integration over the reference state and spatial gradients. The cal-
culations involving these terms are conveniently accomplished using the concept of iso-
parametric mapping, standard to all finite element codes. Integration over the reference state
will employ the Jacobian of the mapping from the current coordinates to the local finite ele-

ment coordinates. Spatial gradients are obtained by updating the finite element spatial coordi-

nates and using these quantities in the shape function routines that calculate gradients.

In the numerical examples given in Chapter 8, the total Lagrangian formulation (7.2) was
employed for two dimensional analysis using constitutive equations appropriate for conditions

of plane strain.
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CHAPTER 8. EXAMPLES

8.1 INTRODUCTION

If the finite deformation of a continuum is characterized by a spatially uniform spatial

velocity gradient, such that:

Vv = g (8.1)

then the corresponding deformations are referred to as being homogeneous. For hypoelasticity,
the time dependent spatial stress field corresponding to (8.1) will also be spatially uniform with
a vanishing spatial divergence. Consequently, the linear momentum balance equation will be

satisfied identically for any velocity field corresponding to homogeneous deformation.

It follows that complete analytical solutions to problems of homogeneous deformation
may be obtained if the constitutive equations can be integrated. In which case, the velocity
field may aiso be integrated to define the deformed configuration (i.e. the motion). As noted in
previous chapters, the constitutive equations of hypoelasticity and rate-independent elasto-
plasticity are not, in general, directly integrable (which fact motivated the numerical integration
procedure of Chapter 6). However, for a number of simple cases, analytical solutions may be
obtained and are considered in the following section.

Despite the simplicity of the homogeneous deformation states to be considered, they
retain considerable nonlinearity and provide a reasonable basis for evaluation of the perfor-
mance of the numerical solution procedure.

The solutions of the homogeneous deformation problems considered below are useful for
three reasons:

(1) They provide a clear illusiration of the non-physical instability of response due to certain

stress rate definitions used in the constitutive equations (hypoelastic yield phenomenon).

(2)  Analytical solutions to homogeneous finite deformation problems are valuable for assess-

ing the performance of numerical solution algorithms.

5
!
-

|
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(3) Solution algorithms must be effective on problems of homogeneous deformation if they

are to be useful in the inhomogeneous case.
Three problems are considered:
(a) Finite extension.
(b) Finite simple shear.
(c) Finite simple extension (with restrained Poisson effect) and simultaneous rigid rotation.

In all cases, dimension changes of a full order of magnitude are considered and in (b) rotation
through 360 degrees. The problem (b) provides an effective means of checking the incremen-
tal objectivity of the algorithm for integrating the constitutive equations., Finally, the problem

of an elastic-perfectly plastic cylinder subjected to internal pressure is considered.

8.2 HOMOGENEOUS FINITE EXTENSION

Kinematic Deseription

Consider a rectangular block whose edges coincide with the directions of the axes of a
Cartesian coordinate system {X,} 4 =1,2,3, in which X, represents the direction of loading. A

material point X in the undeformed block is mapped to x at time t, where:

}\,‘ L — (8.2)
defines the coordinate stretch ratios.

Restricting attention to plane strain, the spatial velocity field defined by:
Vi = aXxy, V; = kaxz, V3 = 0 (83)
where « and k are constants, corresponds to finite extension of the block in the X direction.
Since the spatial gradients of this velocity field are spatially uniform (independent of x), (8.3)

characterizes a state of homogeneous deformation.
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Constitutive Equations

An isotropic constant tensor a is defined (for Cartesian spatial coordinates) by:

a,jkl == /\8,j5k1+p,(6,k8j,+8,-,8jk) (84)

where A and u are the Lame constants.

Three constitutive equations are defined by:

O

o = a:d (8.5)
L) = a:d (8.6)

;7 = a:d (8.7

o]
where o is the Truesdell rate of Cauchy stress, L,(7) is the Lie derivative of the Kirchhoff

v
stress, and 7 is the co-rotational rate of Kirchhoff stress (see Definitions 2.14 and 2.15).

The direct integration of these constitutive equations is possible under the present defor-
mation hypothesis (8.3). Appendix I contains details of the direct integration of (8.5) - (8.7)

subject to (8.3).

Analytical Results

The following is a summary of results developed in Appendix I. For the prescribed velo-

city field (8.3) and constitutive equations (8.5) - (8.7), the stretch ratios are related by:

v

Inx;, Inx; =0 (8.8)

lnhz = "‘l

1—v

A

where v = m

For constitutive equation (8.5), the stress components and axial force associated with an

axial stretch ratio of A, are given by:

1
gy = “1’% ()\1) = 1] (89)
1-2v
I S . —:r]
78T T+ (1-2) [1 ) (8.10)

E
1+v

1
P, = Y,Y; (\y [1 — (A9 ”—‘] (8.11)




o
|
]
-
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where Y, and Y5 are the initial dimensions of the loaded cross section.

For constitutive equation (8.6), these quantities become:

o= b -
o33 = [1fy2][A1] ZIP:VI Ink, (8.13)
Po= vy [ )0 614

For constitutive equation (8.7), these quantities become:

v—1

E 1-v
oy = []-——pz][}\l] ln)\l (815)

E 2—1
P [1:;2][}”] ¥ I, (8.16)

-1
P, = Y2Y3[ EZ][M] Ini, (8.17)

1—v
In (89) - 8.17), £ = #G +2)
At u

A plot of axial force P versus stretch ratio A; for constitutive equations (8.5) - (8.7) is
given by the solid curves in Fig. 6. The axial force P increases uniformly with A for constitu-
tive equations (8.5) and (8.6), the difference between these curves being due only to J. How-
ever, the axial force (8.17) associated with constitutive equation (8.7) exhibits a maximum load
effect corresponding to the hypoelastic yield phenomenon discussed in Section 3.3. The critical

axial load P, occurs at a stretch ratio given by InA, = 1.

For this model, all stretch ratio values of A; > A, require an axial force P less than P,.

In fact,

This instability arises from the stress rate definition used in the constitutive equation. How-
ever, it is clear from Fig. 5 that even for axial stretch ratios less than A ., the axial force result-

ing from (8.7) is considerably different to that resulting from (8.5) or (8.6). (The axial forces

L P . . aP ) .
only coincide in the infinitesimal limit, which also has 7}\—1 equal for all constitutive equations.
1
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This is as it should be since the phenomenon under discussion is a finite deformation effect.)

The discussion above suggests that even for elasto-plastic constitutive equations expressed in

v
terms of r the non-physical instability associated with this stress rate may be significant. It is
interesting to note that the thermodynamic development of elasto-plasticity in Chapter 4
favored the Truesdell rate of Cauchy stress over the co-rotational rate of Kirchhoff stress for

the constitutive equations.

Numerical Results

The finite extension problem was solved by discretization of the block into four quadrila-
teral plane strain finite elements. Figure 6 shows the parameters employed in this analysis.
The constitutive models (8.5) - (8.7) were incorporated into a Newton-Raphson solution pro-
cedure according to the methods of Chapter 5. Updating of the spatial stress field at the ele-
ment quadrature points was accomplished by use of the time integration algorithm developed in
Chapter 6. Subiteration on the constitutive equations was used when appropriate; that is, for
(8.7). Axial load versus stretch resulis are shown as dots in Figure 6 for the three constitutive
models. The finite element procedure converged for a minimum of ten load increments over
the range corresponding to 1 < A < 2.

The results of the finite element analysis for the stress components and axial load were
within 0.1 percent of the analytical results presented above. Such results, for the finite element
mesh employed, may be interpreted as satisfaction of a generalized patch test. The Newton-
Raphson procedure generally required 4 to 5 iterations for convergence within a time step.

Finally, the numerical results for the coordinate stretch ratios satisfied conditions (8.8)

very closely over the range 1 < Ay € 2.
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8.3 HOMOGENEOUS FINITE SIMPLE SHEAR

Kinematic Description
Consider a rectangular block deforming with a spatial velocity field defined by:
vy = 2(1)(2, Vyp = V3 = 0 (818)
where « is a parameter. Since the spatial gradients of this velocity field, which corresponds to
finite simple shear of the block in the X|— X, plane, are spatially uniform, (8.18) characterizes

a state of homogeneous deformation.

Constitutive Equations
The constitutive equations are again those given by (8.4) - (8.7) in the previous example.
The direct integration of the constitutive equations (8.5) - (8.7) subject to (8.18) is considered

in detail in Appendix 1.

Analytical Results

The following is a summary of results developed in Appendix I. It is shown in Appendix
I that (8.18) represents isochoric deformation with J = 1. In this case, constitutive equations
(8.5) and (8.6) are equivalent. For these constitutive equations, the non-zero stress com-

ponents are given by hyperbolic functions:

oi; = wsinhQat) (8.19)
oy = wll — cosh(2at)] (8.20)
oy = plcoshQat) — 1] (8.21)

where t is time.

For constitutive equation (8.7), these stress components are given by trigonometric func-

tions:

gy = psin(ZaI) (8.22)
o = wull — cos2ar)] (8.23)
gy = ulcosQat) — 1] (8.24)
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It is noteworthy that once again, constitutive equations (8.5) and (8.6) result in stable and rea-
sonable behavior, whereas (8.7) leads to unstable response at relatively small deformations. It
is clear that (8.22) - (8.24) do not constitute reasonable behavior. Again, the phenomenon of
hypoelastic yield is seen to be associated with (8.7), which has a non-physical instability due to
the stress rate definition. It is recalled also that (8.5) and (8.6) are thermodynamically con-
sistent, whereas (8.7) is not.

In Fig. 7, (8.22) and (8.23)‘ are depicted by solid curves where 2a¢ in these equations is
replaced by x, for the unit cube under consideration (see Appendix I). Curves corresponding

to (8.19) - (8.21) are not shown.

Numerical Results

The finite shear of a unit cube corresponding to (8.18) was solved by discretization of the
block into four quadrilateral plane strain finite elements. The finite element mesh and values
of the material constants are shown in Fig. 7. The solution procedure follows that described for
the finite extension problem discussed above. Displacement control of the boundary nodes was

used to define the homogeneous deformation state of simple shear.

The finite element results corresponding to constitutive equation (8.7) are shown as dots
in Fig. 7. Convergence was excellent, even for the maximum step size corresponding to x,
increments of 0.2. Accuracy was within 0.1% of the analytical results presented above for the

full range of deformation considered.

Further Example
It is seen that (8.22) - (8.24) become unstable at 2at = -7—2T~ Clearly, (8.19) - (8.21)

experience no such instability. An example which further illustrates the unreasonable behavior
associated with (8.7) is depicted in Fig. 8. Here the torsion of an elastic annulus was numeri-
cally modeled for the constitutive equations (8.5) - (8.7). The deformed configuration of the
Truesdell rate model (8.5) is shown with a 50 degree angle of twist. The co-rotational rate

model (8.7) became unstable at a 28.5 degree angle of twist, corresponding to a principal shear
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s

strain (c.f. x;) of 1.87, close to 5

8.4 HOMOGENEOUS FINITE SIMPLE EXTENSION AND ROTATION

Kinematic Description

This section considers the problem of a rectangular block which is subject to simple axial
extension (that is, with restrained transverse Poisson effect) and simultaneous rigid rotation. A
solution for the stress components relative to the fixed spatial coordinate system is reguired.
This is accomplished in Appendix I by first solving the simple extension problem for the stress
components relative to a coordinate system rotating rigidly with the block. The resulting com-

ponents are then transformed to components referred to the fixed spatial coordinate system.
The spatial velocity field under consideration here and detailed in Appendix I is not the
same as in Section 8.2 due to the restraint on transverse deformation.
The purpose of this example is principally to check the incremental objectivity of the

integration algorithm.

Constitutive Equation

Only constitutive equation (8.7) is considered, although (8.5) or (8.6) would be equally

appropriate for testing the efficacy of the solution procedure.

Analytical Results

The analytical solution to this problem for constitutive equation (8.7) is detailed in
Appendix I. Referring to Fig. 9 and noting that 9(t) represents the rigid rotation of the block
at time t and A (¢) the axial stretch ratio (in the rotated coordinated frame), the analytical solu-
tion for two of the stress components (relative to the fixed spatial coordinate system) is given

in Appendix I, for a unit cube, by:

Tl _
2

2 «in?

coste sinto] | 1| __EG-»

sin?6 00520] v 1+2)(1—-20) Inx (8.25)
1—-v»
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The particular problem to be solved is defined by:

6(t) = 2t  and A(t) = 1+4¢
for 0K <1

Thus, the cube is stretched to double its length and simultaneously rotated through 360
degrees. The solid curves of Fig. 9 depict the analytical solutions (8.25) for this combination of

6 and A.

Numerical Results

The numerical solution was obtained (as in the previous examples) by discretization of
the block into four quadrilateral plane strain finite elements. The mesh is shown in Fig. 9. The
analysis is performed in the fixed spatial coordinate system with the 8 and A deformation states
imposed by suitable prescription of the boundary node displacements. The numerical integra-
tion algorithm for constitutive equation (8.7) used subiteration within the Newton-Raphson
equilibrium iterations. The siress components resulting from the analysis are shown as dots in
Fig. 9. They display accuracy to within 0.1% of the analytical solution over the full range of
deformation. Convergence was obtained for the problem using as few as ten equal increments
of (8.)).

This analysis' tends to confirm the incremental objectivity of the numerical solution pro-

cedure.

8.5 ELASTIC-PERFECTLY PLASTIC INFINITE CYLINDER
SUBJECTED TO TO INTERNAL PRESSURE

In this elasto-plastic example, the hardening model represented by (4.38) - (4.42) is spe-
cialized to perfect plasticity by setting £, = 0 in (4.38). The parameters employed are:
E = 207x101, » = 03, 7, = 3.1x10%
The problem was analyzed by considering a quadrant of the tube modeled with a finite
element mesh of 64 plane strain quadrilateral elements and employed displacement control of

the boundary nodes. The results, Fig. 10, compare well with the analytical solution [54].
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FIGURE 8. TORSION OF AN ELASTIC ANNULUS FOR MATERIAL
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APPENDIX I

The direct integration of constitutive equations (8.5) - (8.7) subject to homogeneous

deformation hypotheses corresponding to:
() Finite extension.

(ii) Finite simple shear.

(iii) Finite simple extension and rotation.

is considered.

() FINITE EXTENSION

See Section 8.2 for the problem description. The spatial velocity field is defined by (8.3):

v = ax;, vy = kax, v; = 0 (1.1

where a and k are constants (k is problem dependent). From (I.1) it follows that:

d“ = , d22 = feo (12)

with all other components of the rate of deformation tensor d being zero. The spin rate tensor

o associated with (1.1) is identically zero.

Equation (I.1a) may be rewritien as:

a —“J (1.3)

Integrating (1.3) results in:

Inky = at (1.4)

where A | is defined by (8.2). Similarly, it follows from (1.1) that:

InA; = kat, Inxy =0 (1.5)

Consequently,

x; = Xje*, x; = Xye* x; = X, (1.6)
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If the initial dimensions of the loaded cross section are given as Y, and Y5, the cross section at
time t has area:

Al = Yz Y3€ka[ = Y2Y3(}\1)k (17)
The constitutive equations to be integrated are (8.5), (8.6), and (8.7) and are considered in

turn.

{a) Truesdell Rate of Cauchy Stress

From Definition 2.14(c):

o
og=0—-lo—-—c1T+ourd (1.8)

Using (1.2), (8.4) and (1.8) in (8.5) results in:

cr1,~2a011+011(1+k)a == ()\+2p,)+)\ka
n 2k0022 + 0‘22(1 +k)a = ()\ +2u)ka + Ao (19)
(5’33 + 0'33(1 +k)a == Aa(l +k)

From the condition o, = o, = 0 is obtained:

-A v
"t2e  v—1 (1.10)

Integrating (1.9a) and (1.9c) subject to the initial conditions o 1;(0) = 033(0) = 0 and using

(1.4) and (1.10) leads to:

[M] _ 1] 1.11)

on =

BT (1+V)(l——2v) {[*‘] ‘"1] (L12)

The axial load required to produce an extension A is given by Py = o34 ,. Using the value of

k given by (1.10) in (1.7), it follows that:

v

A = Y, Y;00p* ! (1.13)

and

1EV]["‘][1"(“)71—1] (1.14)

Py = Y2Y3[
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{b) Lie Derivative of Kirchhoff Stress

From Definition 2.14(a), it is noted that:

L) = 7—17—7-17 (1.15)
Observing that 1=4d according to (I.1), using (1.2), (8.4) and (1.15) in (8.6) results in:

7"11”‘2(17'“ = ()\+2;u)a+k}\a
1.'22 - 2ka7‘22 = ()\ +2[l,) ka + ha ([16)
7"33 = )\Q(l‘f‘k)

* From the condition 75, = 75, = 0, (1.16b) yields:

k= = (1.17)
Integration of (1.16a) and (I.16¢) and use of (1.4) and (I.17) yields:
SRS
™ [lmyzl 2 [A] 1 (118)
T33 = EVZJMM (1.19)
4
Recall that o = J~ 7, where J = det(F). From (1.6) and (I.4) it follows that:
0
A v_
F=1]0 P10 (1.20)
0 0 1

Zv—1
from which J = (A{) *!.

From (1.7) and (1.17),

v

A] = Y2Y3()\1)V—1
The axial force required to produce an extension A, is again given by Py = o4, = J 74,

From the above, it follows that:

£

1—v

Py = Y2Y3[ 2]%01)“1[0\1)2-1] (1.21)
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{¢) Co-Rotational Rate of Kirchhoff Stress

Following an analysis similar to (b) above, it may be shown that for constitutive equation

(8.7):
w1
g = [—-E—-—-—i] [All I lﬂ)\] (122)
1—»
2v~1
g3y = [ EV2][A1] v Ink, (1.23)
1—v

The axial force P, required to produce an extension A; is in this case:

E -1
Pl = Y2Y3 —— [h[] ln)xl (124)

1—v?

(ii) FINITE SIMPLE SHEAR

See Section 8.3 for the problem description. The spatial velocity field is defined by (8.18):

Vy = ZCYXZ, Vy= V3= 0 (125)
where « is a parameter. From (1.25) it follows that:
dp = dy = «a (1.26)
wp = Twy = a 1.27)
all other components of d and @ are zero.
From (1.25), xy= X;+2atX,, x;= X, and x3= X3 Thus, J=det(F) =1 and the
motion is isochoric. In this case, constitutive equations (8.5) and (8.6) are equivalent. The

constitutive equations to be integrated are thus (8.5) and (8.7) and are considered in turn.

(a) Truesdell Rate of Cauchy Stress

From Definition 2.14(c):

o
o =0c—-1lo—oc1T+or(d (1.28)

Using (1.26), (1.27), (8.4) and (1.28) in (8.5) results in:

d'” == 2&0’12
d‘zz == 200'12 “29)

6'12 = 2p.a+a((r”+022)
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Integration of (I.29) subject to the initial conditions o,(0) = & 5,(0) = o (,(0) = 0 yields:

wsinh Qat)
w [1—cosh(2at)] (1.30)
oy = ulcoshQat) —1]

3
I

3
I

(b) Co-Rotational Rate of Kirchhoff Stress

From Definition 2.15:
v
T =T—wT+T® 13n

Using (1.26), (1.27), (8.4) and (1.31) in (8.7) results in:

7"1] = 2&712
T = —lary (1.32)

Ty, = 2ua + alry—r11)

Integration of (I.32) subject to the initial conditions ;;(0) = 7,,(0) = 7,,(0) = 0 yields:

wsin(at)
w [1—cos(at)] (1.33)
7y = wplcosQat) —1]

T2

T

Since / = 1, 7 = o. Referring to Fig. 7, X; =0, X; = 1 — x; = 2act.

(iii) FINITE SIMPLE EXTENSION AND ROTATION

See Section 8.4 for the problem description. The problem is solved in two parts: first a
solution to the simple extension problem relative to a coordinate system rotating rigidly with
the block is obtained and then the results are transformed to components referred to the fixed

spatial coordinate system.

Simple Extension Problem

The spatial velocity field:

vy = axy, Vy = vy = 0 (134)

defines a state of homogeneous simple extension. From (I.34):

dy = a (1.35)
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all other components of d and @ are zero. The constitutive equation to be integrated is (8.7).

Using (1.35) and (8.4) in (8.7) results in:

o= alh +2u
7*22 = @A (136)
-7'-'33 = @A

X
Defining A = —)—(—L as the axial stretch ratio, the integration of (I.36) subject to the initial condi-
1

tions F]](O) = 722(0) = ’_7:33(0) = (), yields:

—1711 = (A +2u)1n)\1 = ‘z‘l'“f‘l‘}('jl‘("‘_l'—ili;)—lﬂkl (137)

Ev

m InAq (1.3%)

:1:22 == ?33 == }\lnxl ==
where In X = at has been used and which results from the integration of (1.34a).

Assuming (1.37) and (1.38) to be referred to a coordinate system which has rotated
counter-clockwise through an angle 9 from the fixed spatial coordinate system, they may be

transformed to components referred to the fixed spatial coordinate system by the operation:

Ty _
T2

cos29 sin*0 1| _EQ-v)
sin20 cos28| | v ' Trw) =2, ™M (1.39)
1—v






