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Depths of Equivalent Dipole Polarizability Resolution
for Some Transmitter Receiver Configurations

J Torquil Smith, H Frank Morrison, Alex Becker
Earth Sciences Division

Lawrence Berkeley National Laboratory
Berkeley, California 94720

ABSTRACT

Equivalent dipole polarizability matrices and equivalent dipole location are a convenient way to
summarize magnetic induction data arising from currents induced in isolated conductive objects. The
uncertainties in polarizability estimates and in equivalent dipole location provide a quantitative measure
of the performance of different configurations of transmitters and receivers. Uncertainties in equivalent
dipole polarizability matrices and equivalent dipole position are estimated using a linearized inversion.
For a number of systems of rectangular loop transmitters and dipole receivers sited on a horizontal
grid, equivalent dipole depth is determined to 10% approximately 20% deeper, than the polarizability
matrix elements can be determined to the same precision. Systems that have a lower product of rms
polarizability uncertainty and square root of their number of transmitter-receiver pairs are considered
more effective for their number of transmitter-receiver pairs. Among the systems studied, a system
with three orthogonal transmitter loops and a three component receiver is the most effective, for objects
shallower than 0.6 times the instrument siting grid spacing, yielding an rms polarizability uncertainty
0.04 times that of a single transmitter single receiver system. At intermediate depths, a system with
two vertical component receivers on the diagonal of a horizontal transmitter loop is most effective for
its number of transmitter-receiver pairs, yielding an rms polarizability uncertainty 0.07 times that of a
single receiver system. At depths greater than 2.5 times the siting grid spacing a 3 orthogonal loop
transmitter with a single vertical component receiver is about the most effective for its number of
transmitter-receiver pairs, yielding an rms polarizability uncertainty 0.08 times that of a single
transmitter system.

INTRODUCTION

Equivalent dipoles have long been used for approximating potential fields in geophysics as well
other fields. Recently, they have been used to model secondary magnetic fields arising from currents
induced in isolated conductive, and possibly magnetic bodies, for discrimination between unexploded
ordnance (UXO) and other materials, for example, by Khadr et al. (1998), Bell et al. (2001), Pasion
and Oldenburg (2001), or Baum (1999). In these recent examples, the induced dipoles are modelled as
linearly proportional to the inducing magnetic fields at the body centers, related to each other by
equivalent dipole polarizability matrices.

Equivalent dipole polarizability matrices and dipole locations are a convenient way to summerize
active source induced current magnetic field measurements in an interpretable form. The matrices’
principal moments give information on the rotational symmetry of a conductive object, their principal
directions yield the object’s orientation, and the dipole location ro estimates the object’s center posi-

tion. Estimation of the polarizability matrix and equivalent dipole position is a non-linear inverse
problem. Here uncertainty estimates from a linearized inversion are used to compute the depths to
which the polarizability matrices and dipole locations can be estimated for steel spheres of varying ra-
dius, for several transmitter-receiver configurations.



- 2 -

EQUIVALENT DIPOLE POLARIZABILITY MATRICES

Equivalent dipole polarizability matrices M model observed secondary magnetic fields B(s )(r,t ),
in terms of the magnetic fields of unit dipoles in the x̂, ŷ, and ẑ directions, Bx

(d )(r), By
(d )(r), Bz

(d )(r),

centered at some location ro , and the primary (inducing) magnetic field strength B(o ) . g (t ), at ro , for

a given time variation g (t ) of primary magnetic field:

B(s )(r,t ) = 
Bx

(d )(r), By
(d )(r), Bz

(d )(r) 
 M(t ) B(o ) . (1)

The polarizability matrix is symmetric and is independent of transmitter and receiver geometry and ob-
ject location. Its principal values are properties of the object, independent its orientation.

When the equivalent dipole position ro is known, secondary magnetic field values depend linearly

on the unknown polarizability matrix M, and may be estimated by minimizing the misfit to secondary
magnetic field observations (data) for primary fields with at least three linearly independent orientations
B(o ) at the equivalent dipole location. When the equivalent dipole position is unknown, the same pro-
cedure may be used at a series of canditate equivalent dipole positions, calculating the minimum data
misfit attainable for each canditate position, and some search strategy used to find the position with
lowest attainable data misfit.

Once the lowest attainable data misfit has been found, uncertainties in the resultant polarizability
matrix and equivalent dipole location may be estimated from the partial derivatives of the observed
data with respect to the model parameters. Uncertainty estimates are based on a perturbation analysis
and are strictly accurate in the limit of small observation errors.

METHOD

An iterative linearized inversion was used to estimate equivalent dipole polarizabilities from syn-
thetic three component magnetic field data for a vertical magnetic dipole source at 13 sites placed sym-
metrically on a rectangular grid above steel spheres of varying radius, modelled with a conductivity of
σ= 107 Ω−1m −1 and relative permeability µr = 180, at 610 µs after transmitter current turnoff. In each

case, variation between estimated principal moments is less than 3%, and less than 1% for spheres
smaller than 25 cm radius, in agreement with the spheres’ isotropy. All subsequent computations are
based on these estimated moments, with the three estimated principal moments replaced by their aver-
age, which is indicated on the y-axis of Figure (1).

Computing principal moments and directions requires knowing all elements of M. A simple
measure of how well a data set resolves M is the total squared uncertainty ε ;

ε2 ≡
i =1
Σ
3

j =1
Σ
3

var (mi j ) , (2)

where var (mi j ) is the estimated squared uncertainty of the i j ’th element of M obtained from the diago-

nal of the covariance matrix of the elements of M.

In general, polarizability variance estimates var (mi j ) depend on the specific values (realization) of

noise in a data set, through partial derivatives of the data with respect to model parameters. In inver-
sion of field data, the partial derivatives are evaluated at the minimum of misfit to the data. With a
different set of errors in the data, slightly different partial derivatives would be evaluated at the posi-
tion of the minimum misfit to the new data. In evaluating system performance, one can eliminate the
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dependence of variance estimates on any particular noise realization, by evaluating partial derivatives at
the true parameter values. All quantities plotted in the current paper are based variance estimates of
this type.

For a given transmitter-receiver configuration, the polarizability variance and uncertainties are in-
dependent of the scale of the polarizability matrix, so, for a given instrumental configuration one need
only calculate polarizability moment uncertainties once for any particular ratios of principal polarizabil-
ities, orientation of principal directions, and object position. For spheres, one need only calculate mo-
ment uncertainties once for a given location of sphere relative to the instrument configuration. Similar-
ly, uncertainty estimates for equivalent dipole location scale inversely with the object’s polarizability
matrix.

For each of a number of transmitter-receiver configurations, the total uncertainty ε was computed
as a function of sphere depth, for spheres directly below the center of a 9x9 grid of system placements
with 0.4 m spacing in x and y . One meter square transmitter loops were used with a moment of 180
Amp-m2, and a receiver noise level of 1.97 nT/s in vertical field measurements, simulating an observed
noise level, and 5.91 nT/s in horizontal field components (when present) simulating the larger noise
levels observed in horizontal components.

RESULTS

Uncertainties in the diagonal elements of the polarizability matrix are plotted as a function of
depth below transmitter and receiver in Figure (1), together with the total uncertainty ε, for isotropic
equivalent dipole polarizabilities (spheres) below the grid of system placements for a horizontal loop
transmitter/concentric vertical magnetic dipole receiver system. Being based on a linearized inversion
for M and ro , these uncertainty estimates scale linearly with receiver noise level. The total moment

uncertainty ε reaches a minimum near a depth of 0.14 meters. For shallower spheres, the uncertainties
in mxx , myy , and off diagonals mxy , myz , mxz (not shown) increase greatly approaching the plane of the

transmitter and receiver, as all the transmitter placements illuminate the sphere with nearly vertical pri-
mary fields, yielding less information on these moments, and correspondingly large variances in them.
Comparing the plotted values with the 610 µs polarizabilities of steel spheres of various radii, which
are indicated on the left, the total uncertainty at shallow depths is considerably smaller than all indicat-
ed sphere polarizabilities. Since spheres have three equal principal moments, one can easily convert
the total uncertainty ε to relative uncertainty, by dividing by √ 3 times the indicated polarizabilities.
For a 6 cm radius steel sphere at 610 µs the relative uncertainty reaches 0.1 (10%) at 1.47 m depth.
The corresponding relative uncertainties in horizontal and vertical polarizabilities are 0.061, 0.061, and
0.147 respectively.

Relative uncertainties in vertical location and horizontal location are plotted as a function of
depth below transmitter and receiver in Figure (2), for an isotropic polarizability corresponding to a 6
cm radius steel sphere at 610 µs, for the same transmitter-receiver system as in Figure (1), on the same
grid of system placements. These uncertainties can be scaled to correspond to other radius spheres by
dividing by the ratio of polarizabilities of the spheres. Both horizontal and vertical uncertainties have
been normalized by the depth to the equivalent dipoles. Because of symmetry of the transmitter and
receiver, and of the sampling grid, uncertainties in x and y are identical. The relative uncertainty in
depth reaches a 0.1 (10%) level by 1.83 m depth.

Because of the great range in the size of uncertainties in both equivalent dipole polarizability and
location, it can be difficult to see differences in uncertainties when comparing plots for different
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transmitter-receiver systems. For comparison purposes, it is convenient to plot the depth to some level
of relative uncertainty for isotropic polarizabilities corresponding to spheres of varying radius. The
depths to 5, 10, and 20% uncertainty in polarizability d 5%

(p ) , d 10%
(p ) , and d 20%

(p ) , were found for isotropic

polarizabilities corresponding to spheres with radii between 1 cm and 1 m, and are plotted in Figure
(3), as a function of sphere radius. The depths to 5, 10, and 20% uncertainty in estimated sphere
depth, d 5%

(z ) , d 10%
(z ) , and d 20%

(z ) , are plotted in Figure (4). Object position can be estimated more precise-

ly than the full polarizability matrix, as object position may be determined when an object is illuminat-
ed by only a single orientation of primary field, whereas estimating the full polarizability matrix re-
quires illuminating the object with primary fields Bo in at least three directions, each with a significant

component in the direction orthogonal to the other two. Object depth can be resolved within 10% to
greater depths than polarizability in all cases plotted. Most cases presented here are for spherical ob-
jects. For comparison d 10%

(p ) and d 10%
(z ) are plotted in Figure (5) for the same transmitter-receiver pair,

for the case of objects with the same vertical dipole polarizabilities d mzz ⁄ dt at 610 µs as spheres of

the same radius, and all other polarizabilities null, corresponding to thin horizontal non-magnetic discs.
The general trends are the same as for the sphere. Polarizability can be resolved to 10% slightly
deeper than for the sphere for all but the smallest moment plotted. Object depth can be resolved ap-
proximately 1.2 times deeper than for the sphere.

Effects of adding a second coaxial vertical receiver 0.4 m above the first are shown in Figure (6),
where d 10%

(p ) and where d 10%
(z ) are plotted for the two receiver system (dotted) together with their values

for the previously plotted single receiver system (solid). In addition to resolving polarizabilities and
location to greater depth as shown here, the added receiver makes locating the object position an easier
problem as it eliminates a secondary minimum in data misfit near the true object position (not shown).

Figure (7) plots d 10%
(p ) and d 10%

(z ) (both dotted) for a similar system with the two vertical com-

ponent receivers in the plane of the transmitter loop, offset ±0.2 m in x and y along a diagonal from
the loop center. This system shows greatest improvement in sensitivity over the single receiver system
for objects close to the transmitter-receiver plane, greatly increasing the depths to which the smallest
spheres can be resolved.

Results for a horizontal loop transmitter three component concentric receiver are shown in Figure
(8) (dotted lines). For comparison, a system with a 1 m2 horizontal loop and two orthogonal 1 m2

vertical loop transmitters with lower edges at the level of the horizontal loop is shown in Figure (9)
(dotted lines). The results for the 3 transmitter 1 receiver system are substantially better than for the 1
transmitter 3 receiver system, in part, because of the greater noise level in horizontal component re-
ceivers.

As a final example, adding 2 orthogonal horizontal component receivers to the 3 transmitter sys-
tem to make a 3 transmitter 3 receiver system yields results shown in Figure (10). The added horizon-
tal components substantially increase the depth of resolution of the 1 cm radius sphere, but little affect
results for 3 cm radius and larger spheres.

When averaging n measurements of a single kind of data, uncertainty in the average decreases as
1/√ n , so one expects a decrease on the order of (nr nt )−1⁄2 for a system with nt transmitters and nr re-

ceivers. To compensate for this, total moment uncertainty ε multipled by (nr nt )
1⁄2 is plotted in Figure

(11) as a function of sphere depth. The differences between curves mean that adding transmitters or
receivers can reduce the uncertainty in the polarizabilty matrix by substantially more than is to be ex-
pected solely from an increase in the number of data.
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For spheres above 0.26 m depth, the system with most receiver-transmitter pairs close to the ob-
ject (three orthogonal loop transmitters and a 3 component receiver), gives the lowest ε . (nr nt )

1⁄2 pro-

duct, achieving a moment uncertainty 22.8 times smaller than the single transmitter single receiver sys-
tem for spheres at 0.1 m depth. Between 0.26 to 1.0 m, as sphere depths become commensurate with
the sampling grid spacing (0.4 m), the system with two vertical component receivers along the diagonal
of the transmitter loop (of Figure 7) gives the lowest ε . (nr nt )

1⁄2 product. At 0.5 m depth near where

their ratio of uncertainties is greatest, the two vertical component receiver uncertainty is a factor of
13.6 times smaller than the single transmitter single receiver system uncertainty. Below 1.0 m the 3
orthogonal transmitter loop vertical component receiver (of Figure 9) gives the lowest ε . (nr nt )

1⁄2 pro-

duct; at 2.0 m depth, this system reduces the uncertainty by a factor of 11.8 compared to the single
transmitter single receiver system. With the last system, adding additional vertical component receivers
within the horizontal transmitter loop can result in ε . (nr nt )

1⁄2 curves that are lower than the single re-

ceiver system curve at some depths, but in all cases that we have examined, the improvements in ε .

(nr nt )
1⁄2 between 1 m and 5 m are fairly marginal.

CONCLUSION

The polarizability matrix M and equivalent dipole polarizability location are best determined for
objects at depths on the order of the system placement grid spacing or less. Determining all elements
of the polarizabilty matrix M, to be able to compute its principal components, is a more demanding
task than determining equivalent dipole polarizability location. Adding additional sources or receivers
can improve the resolving power of a single transmitter single receiver system, by factors substantially
better than the simple reduction by (nr nt )−1⁄2 due to the increased number of data. For objects shal-

lower than the sampling grid spacing, adding additional receivers and transmitter polarizations both can
substantially improve the precision of polarizability matrix and dipole location estimates. For objects a
few times deeper than the sampling grid spacing, a 3 orthogonal-transmitter loop, single vertical com-
ponent receiver system is about the most effective for its number of receiver-transmitter pairs.
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Figure (1). Total polarizability uncertainty ε (solid), as a function 

of sphere center depth below siting grid center, for a 1 m2 square 

loop transmitter with a concentric vertical dipole receiver sited on 

a 9x9 grid with 0.4 m spacings.  Uncertainty in vertical moment 

dmzz /dt  (dashed), and in horizontal moments  dmxx /dt  and 

dmyy /dt  (dotted).  Polarizabilities of steel spheres of various 

radii are indicted on left axis. 
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for a 0.641 Amp-m2/s/µT isotropic polarizability as a function 
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