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Over the last century, leaps in technology for imaging, sampling, detection, high-
throughput sequencing, and -omics analyses have revolutionized microbial ecology to
enable rapid acquisition of extensive datasets for microbial communities across the
ever-increasing temporal and spatial scales. The present challenge is capitalizing on
our enhanced abilities of observation and integrating diverse data types from different
scales, resolutions, and disciplines to reach a causal and mechanistic understanding of
how microbial communities transform and respond to perturbations in the environment.
This type of causal and mechanistic understanding will make predictions of microbial
community behavior more robust and actionable in addressing microbially mediated
global problems. To discern drivers of microbial community assembly and function,
we recognize the need for a conceptual, quantitative framework that connects
measurements of genomic potential, the environment, and ecological and physical
forces to rates of microbial growth at specific locations. We describe the Framework for
Integrated, Conceptual, and Systematic Microbial Ecology (FICSME), an experimental
design framework for conducting process-focused microbial ecology studies that
incorporates biological, chemical, and physical drivers of a microbial system into a
conceptual model. Through iterative cycles that advance our understanding of the
coupling across scales and processes, we can reliably predict how perturbations to
microbial systems impact ecosystem-scale processes or vice versa. We describe an
approach and potential applications for using the FICSME to elucidate the mechanisms
of globally important ecological and physical processes, toward attaining the goal of
predicting the structure and function of microbial communities in chemically complex
natural environments.

Keywords: reactive transport modeling, metabolic model, species interaction network, systems biology,
subsurface microbial ecology
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INTRODUCTION

Microbial communities serve critical roles in all ecosystems and
have a profound impact on human health, environmental health,
and industrial capabilities. As such, it is desirable to have robust,
actionable directions for intervention of microbial community
function. However, the multiscale, stochastic, spatio-temporal,
and diverse nature of microbial processes makes it difficult to
achieve predictive understanding of microbial systems, despite
the large body of microbial ecology research. This disconnect
between basic and translational science in microbial ecology
stems largely from the intractability of most microbes and
microbial communities—in situ in their natural habitat and in
the laboratory, due to challenges with cultivation and genetic
manipulation. As a result, most of our understanding of microbial
ecology is patchwork, synthesized from model microbes that
often do not represent the full set of capabilities of the
microbial communities associated with real-world phenomena.
Many hurdles preventing the direct investigation of microbial
communities have recently been overcome with the integration of
technologies that combine in situ monitoring, high-throughput
culturing, genetic manipulation, multi-omics profiling, predictive
computational modeling, and microbiome engineering to test
hypotheses in a natural context. Microbial ecology is ready to
shift to making basic and translational science a continuum,
instead of two disconnected silos. To bridge basic science and
actionable results, microbial ecologists are calling for a movement
toward testable models, integration of experiment and theory,
and focused hypothesis-driven studies (Zhou, 2009; Widder et al.,
2016; Prosser, 2020; Prosser and Martiny, 2020).

The rigor of modeling frameworks allows us to formally
define what observations are necessary to support conclusions
and to make and understand the quality of our predictions,
thus directing experimental design, efficient data collection,
and paths for intervention. Models tie the components of a
system (e.g., genes, species, communities, and chemicals) with
relationships that can represent the system state (Stokes and
Arkin, 2007). Thus, modeling forces investigators to evaluate
what measurements need to be taken of the system and what
the assumed relationships are between the system components
(Lopatkin and Collins, 2020). Models are a simplification of
reality that ideally enable scientists to predict how perturbations
will influence a system and expose errors in proposed theories
(Nordstrom and Kirk Nordstrom, 2012; Wagner, 2015).

Modeling is not new to microbial ecology (Box 1), but
models are often confined to one scale or experimental system,
such as in situ field studies, mesocosms, or focused isolate
studies. Microbial ecology models that bridge scales from
genes to ecosystems are rare due to the diverse expertise
and data collection required (Scheibe et al., 2009; Zhuang
et al., 2011; Guo et al., 2018, 2020; Gao et al., 2020;
Ning et al., 2020) but are needed to help bridge basic
and translational science for microbial ecology. Predictive
understanding of how microbial communities respond to their
environment requires mechanistic knowledge of relationships
and interactions between genes, organisms, environmental
chemistry, and physical processes of the system. Modeling
efforts in microbial ecology are currently lacking a standardized

BOX 1 | Commonly used models in microbial ecology.

Models are used to quantitatively describe variables of interest and for the
presented framework are used to provide insight and structure to address
unanswered microbial ecology questions (Box 2). Below are commonly used
deterministic modeling approaches that have been incorporated into the
proposed framework.

• Genome-scale metabolic models aim to reconstruct an organism’s
metabolic networks based on gene content. Metabolic models predict
the physiological response of organisms to fluctuations over a range of
environmental conditions based on genetic potential and the flow of
metabolites through metabolic networks. A prerequisite for these
models is to have the genome sequences for the organisms of interest,
and limitations of these models include gathering enough data for
proper parameterization (including flux constraints and
thermodynamics), gene function prediction, and ability to
validate the models.

• Species interaction models are used to infer networks of interactions
between microorganisms and represent processes occurring at the
community scale. A common example of such a model is the
generalized Lotka–Volterra (gLV) models, which incorporate species
interactions into dynamic models and can be used to evaluate species
interactions. Limitations of species interaction models are that it is
challenging to acquire meaningful and representative species
interaction data, especially from natural environments, and that it is
difficult to validate relationships inferred via multiple regression. There is
a need for additional targeted multivariate approaches that are focused
on identifying significant interactions and directionality from
complex relationships.

• Reactive transport models (RTMs) span larger ecosystem-scale
processes and are used to predict the distribution of specific
compounds over time and space with the overall goal of providing a
conceptual framework to understand the factors that control biotic and
abiotic transformations of chemical constituents over space and time.
RTMs are partial differential equation models wherein the variables of
the model—chemical or species abundances—are functions of time
and space, and changes in these are driven by transport and chemical
processes. This allows models of dispersal, attachment, and feedback
on spatial aspects of environment to be incorporated. Similar to other
modeling approaches, the level of detail incorporated into RTM has the
potential to drastically influence the outcome of the model. Initially,
RTM did not include microbes; however, more recently RTM have
evolved to incorporate microbially mediated processes as rate
expressions dependent on the concentration of substrates (expressed
as first-order kinetics) and electron acceptors (expressed through
additional Michaelis–Menten terms) (Meile and Scheibe, 2019; Zelaya
et al., 2019, references within). RTMs that use rate expressions to
represent microbial processes do not necessarily identify individual
microbes responsible for specific chemical transformations.

iterative approach that can accommodate research progress
in both field and detailed laboratory investigations. Iterative
approaches between experiment and modeling across scales are
more standardized in reactive transport modeling (Maher and
Mayer, 2019; Meile and Scheibe, 2019) and systems biology
of the cell (Arkin and Schaffer, 2011; Lopatkin and Collins,
2020). Such standardized iterative reaction or process modeling
is also common in chemistry and structural biology, among
other fields. Methodologies include molecular dynamics, Monte
Carlo simulations, and density functional theory (van Mourik
et al., 2014). Molecular dynamics, in particular, could inform
modeling standards in microbial ecology for modeling kinetics,
thermodynamics, and Brownian motion of thousands of different
molecules simultaneously while accounting for environmental
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BOX 2 | Questions that support the need for predictive biology and modeling
approaches.

Microbial Ecology Questions

• What are the key processes (abiotic or biotic) driving a particular
phenomenon and which organisms are responsible for driving this
process?

• How constrained are the organisms responsible for specific
processes? Which species are active at the study site and what are the
physicochemical conditions? What chemical and physical elements are
present, and which abiotic process are active?

• Is there evidence of adaptation and persistence of microbial
communities at the site? Is there a persistent core community present
at the location, and is it seasonable or trending over time? What are the
relative strengths of drift and selection?

• What are the element fluxes per unit area per time due to microbial
activity or abiotic reactions over the next N years?

• How can we intervene in a system without affecting ecosystem function
(e.g., reduce gases, improve plant productivity, and bioremediation)?

• Are mechanisms governing chemical, biological, and physical
phenotypes comparable at sites that are geochemically similar but are
geographically distinct?

Mechanistic Modeling Questions

• What is the minimum amount of data and replicates that needs to be
measured to achieve the necessary statistical predictive power to
answer the question under study? Are the required number of samples
feasible taking into account cost, access, and processing?

• How are measurements transformed into actual predictions? And what
measurements and modeling capabilities are required to make these
predictions?

Example Systems for Application of FICSME

Microbial communities have a profound impact on human health, crop health,
and industrial productivity; and, as such, a predictive knowledge of their
response to perturbations is vital medically and economically. Situations where
a predictive understanding of microbial community function is needed include
but are not limited to:

• the gut microbiome and its impacts on human health and disease;
• the fermentation yields of industrial microbes for yogurt, cheese, bread,

beer, biofuels, bioplastics, and more;
• the productivity of waste degradation and wastewater treatment

facilities;
• improvement of microbes applied in bioremediation; and
• the microbial processes driving biogeochemical cycles and thereby

climate change.

conditions like pH, temperature, and concentration. Molecular
dynamics samples reaction landscapes and identifies causal
factors that drive reactions to different endpoints (Venable et al.,
2019). While molecular dynamics simulations are beyond the
scope of microbial ecology, such modeling techniques from
other fields can offer insights on how to effectively improve
standards. Working in an iterative continuum will ultimately
push microbial ecology forward with the ability to conduct
robust, predictive studies.

To aid efforts that are building predictive understanding from
genes to ecosystems, we have developed a conceptual modeling
framework that models the composition, function, and ecological
processes of microbial communities and environmental
components at different scales (e.g., genes, individuals,
populations, communities, and ecosystems) combined into

an encompassing continuum between field and laboratory
studies. This framework incorporates the foundational work that
others have done to model microbial ecology processes (Box 1)
and will help microbial ecologists (1) develop hypotheses,
(2) determine measurements needed for focused sampling,
laboratory efforts, and reduced analytical burdens, (3) discern
processes to capture in their study, (4) incorporate results from
other studies, and (5) plan long-term projects for developing
technologies and gaining a holistic and predictive understanding
of their system. Using a framework for experimental planning
helps bridge theory and data for predictive and mechanistic
understanding of biological processes (Lopatkin and Collins,
2020), which has come to the forefront as the field moves away
from survey studies (Arkin and Schaffer, 2011; Widder et al.,
2016; Prosser and Martiny, 2020). Combined utilization of this
framework will overcome current barriers in microbial ecology,
allowing for discovery and refinements phases to be iterated
leading to a more process-focused predictive outcome.

A CONCEPTUAL FRAMEWORK FOR
PREDICTIVE MICROBIAL ECOLOGY
STUDY DESIGN

To provide a framework for conducting process-focused
microbial ecology studies, we have incorporated biological,
chemical, and physical processes of a microbial system into
a conceptual model that tracks the abundance of a microbial
strain over time at a given location based on intrinsic growth,
metabolic capabilities, chemicals, and other microorganisms at
the site (Figure 1 and Supplementary Table 1). Microbial
ecosystem components and processes are given as mathematical
representations that can be parameterized through measurement
and experimentation that are based on common microbial
ecology models (Box 1). Supplementary Table 1 gives detail on
the terms and mathematical symbols used. We recognize that
this model contains terms and equations that are for niche-
based deterministic processes (e.g., species traits and species
interactions) and not stochastic processes (Zhou et al., 2013,
2014; Zhou and Ning, 2017), but this framework provides a
starting point. The framework for Integrated, Conceptual, and
Systematic Microbial Ecology (FICSME) as portrayed in Figure 1
represents processes deterministically and with continuous
variables, whereas certain processes may be better and necessarily
represented stochastically and discretely. We encourage adding
in the processes relevant for the hypotheses under study. This
flexibility allows the user to adapt the framework based on
the ecosystem components and processes under study and is
a key feature of this framework. With this framework, we are
not suggesting that there is one universal way to ask microbial
ecology questions; we are proposing a focus on incorporating
ecological processes to help the field move beyond correlative
studies to those that lead to mechanistic understanding of systems
(Prosser, 2020; Prosser and Martiny, 2020). This focus helps
scientists confront what is necessary in both measurement type
and experimental design to observe and parameterize models
incorporating such processes. Using this framework forces the
researcher to develop a model of their system or choose the

Frontiers in Microbiology | www.frontiersin.org 3 March 2021 | Volume 12 | Article 642422

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-642422 March 22, 2021 Time: 13:43 # 4

Lui et al. Integrated Conceptual Microbial Ecology Framework

FIGURE 1 | Graphical representation of the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME). (A) Pictorial representation of the
framework. (B) Conceptual modeling framework. Equations representing potential terms and relationships. (C) Scales where the different terms are measured. This
framework aims to model the fitness of an organism in a specific environment and spans from the molecular and gene scale to the pore-scale and meso-scale (also
referred to as the REV or Darcy scale) and can also be upscaled to the field scale but does not model processes at that scale. The change in abundance of the strain
ni at location π is represented by reactive transport model terms (mass accumulation rate, dispersive/diffusion transport, and advective transport) at the meso-scale
(term n1 in B), which takes into account porosity (ϕ), abiotic transport (υ), and hydrodynamic dispersion (Dh) over time and space. Dispersal is accounted for in terms
n1 and n2, but the forces such as water flow rate and rain that might affect dispersal are not explicitly represented here. Physical transport also affects the
abundance of strain ni based on its attachment and detachment from different compartments (e.g., liquid vs. surface), where the transport rate between
compartments is τ (term n2). The transfer to and from location π is represented by an equation similar to a linear compartmental model. The intrinsic growth of the
strain based on its metabolic capabilities under the chemical and physical conditions at the location (term n3). We do not provide a specific equation for growth
because here we represent it by the output of a metabolic model (term g1). We use a metabolic model rather than a population growth model (e.g., Monod, Logistic,
etc.) because we are representing growth as determined by the chemical and physical conditions (that change over time) and gene content. Biotic factors that affect
the abundance of strain ni are direct biotic interactions (term n4), and mutation to and from the strain, where µij is the mutation rate from microbes ni and nj (term n5).
We represent biotic interactions with term aij , which is the coefficient representing the strength and sign (positive or negative) of the interaction between microbes ni

and nj . Note that we require this to be a direct, physical interaction rather than a general catchall coefficient that can incorporate indirect (chemical) interactions, such
as secretion of antibiotics or other secondary metabolites. These types of indirect interactions are captured in the chemical and metabolic terms. For both, the

(Continued)
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FIGURE 1 | Continued
growth rate of the strain depends on the chemical and physical variables at the location (term c1), which are in turn affected by physical transport between
compartments (term c2), biotic transformation of chemicals by microbes (term c3), and abiotic interactions (term c4). The change in abundance of the abundance of
chemical and physical variables is also represented by reaction transport terms. For chemical Ci , the transport coefficient is γ. Biotic transformation of chemicals is
represented by the rate laws for various transformations (υ i ) depending on the microbe that is transforming it. Abiotic reactions of chemicals are represented by a
matrix of stoichiometric coefficients for each reaction (σ) and can be thought of as interactions between chemicals, such as oxidation. The intrinsic growth of the
strain is represented by a net growth term (term n3). The notation is inspired by constraint-based metabolic models that use flux balance analysis, but it represents
anything that affects the growth of strain ni . Here, the constraints (κ) bound the rates vi of the chemical transformations (term g2). The rate vi depends on the enzyme
turnover rate, which is determined by the activity of relevant enzymes under Michaelis–Menten enzyme kinetics (term r2), activating and inhibiting environmental
parameters (terms r3 and r4), and thermodynamic constraints. Physiological heterogeneity is missing from the growth term (term n3) but could be added into this
framework.

components and processes governing interactions between the
selected components.

One goal of this framework is to help researchers span
appropriate spatio-temporal scales to construct predictive
models and experiments from the gene to the ecosystem
level. Key to predicting behavior and controlling microbial
communities is linking system components and processes (e.g.,
species interactions, selection, dispersal, metabolic activity, and
physiological state) across relevant scales. Equations inspired
by relevant types of models are included in the framework at
these different scales (Figures 1B,C), such as metabolic models
at the molecular and cellular scales, species interactions at the
community/pore scale, and reactive transport models at the
ecosystem scale (Succurro and Ebenhöh, 2018). Some parts
of the framework require fieldwork, such as measuring the
chemical and physical variables, while other parts require lab
work, such as analysis of gene content and protein function for
metabolic modeling. While focused research efforts are necessary
to parameterize parts of the framework, we posit that it is essential
to keep the whole in mind to help build a holistic view of
the system under study and ultimately improve the predictive
findings of individual studies.

APPROACH TO APPLYING THE
FRAMEWORK FOR INTEGRATED,
CONCEPTUAL, AND SYSTEMATIC
MICROBIAL ECOLOGY

To achieve predictive understanding of microbial communities in
relation to ecological processes from genes to the ecosystem level,
the FICSME can guide experimental design for a single study
or long-term study of a site or system by exposing knowledge
gaps and indicating causal factors. The FICSME congregates
several simultaneous continuums within the experimental cycle
of prediction and testing: experiments and processes can occur in
the field or in the laboratory, from the nanometer to kilometer
scale, and have dynamics from milliseconds to decades. The
FICSME provides a framework to determine (1) important
variables and processes of interest driving the chains of causation
in target phenotype presentation, (2) what can be measured
directly versus what can be inferred using current technology
and existing data, and (3) how to collect and integrate data
that account for different data types, sampling resolution
in time and space, replicate structure, and model training,
testing, and validation.

Since the FICSME is first proposed in this perspective,
there are no existing examples that apply this conceptual
framework, but we provide case studies that have
incorporated aspects of the present framework (Box 3).
Herein, we abstractly describe an iterative approach to
apply the FICSME (Figure 2B) and then become more
concrete by providing a proposed subsurface microbial
ecology approach example of nitrous oxide off-gassing
(Figure 2A, Supplementary Tutorial, Supplementary
Figure 1, and Supplementary Tables 2, 3). Concurrently,
we illustrate microbial ecology-specific issues addressed by
the FICSME. We emphasize that the FICSME is designed to
be generalizable for microbial ecology in any environment,
spanning marine sediments to the human gut microbiome to
industrial fermentations.

Define the Microbial Ecology and
Research Question
A central challenge in microbial ecology is that some aspects
of rigorous, quantitative experimental design and methodology
are simply inaccessible such as true replication, absolute
abundance, perturbation of measurements on the system,
and true time or space series. Using the FICSME in the
experimental design helps conceptualize and parameterize
complex open environmental systems. Initiating experimental
design with the FICSME follows the same approach as the
scientific method but applies the framework in each step
(Figure 2B). First, define the overarching question of interest
including the problem and solution (Step 1). Next, a testable
hypothesis is established that connects the problem to achieve
the outcome. Ideally answering the hypothesis will provide
a mechanistic link between observed phenotype, genotype,
and environmental factors (see Box 2 for examples). The
researcher will then select FICSME terms to be populated
and the level of resolution necessary to answer the research
question (Step 2). Existing data are populated into these selected
FICSME terms, and knowledge gaps are identified. The entire
FICSME is not meant to be fully parameterized in a single
study but can be through multiple studies. The FICSME can
be modified to represent the processes and components of
interest as necessary.

Generate Data Using the Appropriate
Experimental System(s)
For generating data, we have categorized experiments into three
groups based on the scale and location of the analysis spanning
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BOX 3 | Example case studies.

Determining Field-Relevant Factors Influencing Competition Between Rhodoferax and Geobacter (Single Study)

An example of a successful study bridging scales from genes to the ecosystem level was conducted by Zhuang et al. (2011) who investigated the conditions
favoring the presence of either Rhodoferax or Geobacter, the dominant species at the Rifle, CO contaminated subsurface research site. Geobacter can reduce U(VI)
to an insoluble form while Rhodoferax cannot; thus, the abundance of these two species can impact the bioremediation capabilities of uranium at the site (Step 1).
The authors investigated how acetate and ammonium could impact competition between Rhodoferax and Geobacter. In this study, field measurements of nutrient
flux and other relevant parameters were estimated based on results from previous studies at the site. These estimates were used as input into flux balance analysis
(FBA) models of the two species (Step 2). Additionally, the authors developed a modeling framework to integrate genome-scale metabolic models into a community
metabolic model (Step 3). Simulation results suggested that depending on the acetate and ammonium concentrations, Geobacter could outcompete Rhodoferax by
resource competition (Step 4), which was determined by simulating acetate injections (Step 5). Zhuang et al. (2011) suggested that to improve mechanistic
understanding of the microbial and chemical dynamics at the site, the impact of other species interactions on in situ bioremediation could be investigated, as well as
incorporating of reactive transport models with the FBA models to help study the effect of ecosystem-level events (Scheibe et al., 2009)
(potential iteration of FICSME).

Large Team Investigation of an Anthropogenically Contaminated Terrestrial Subsurface Site (Multiple Integrated Studies)

The U.S. Department of Energy Science Focus Area ENIGMA seeks to understand the biogeochemical processes in the Oak Ridge Reservation (ORR), a Manhattan
project uranium enrichment site. ORR is a superfund site due to leaching of hazardous waste from unlined retention ponds (Kornegay et al., 1994; Brooks, 2001;
Revil et al., 2013; Thorgersen et al., 2019). We hypothesize that dissimilatory nitrate reduction (DNR) is the primary process toward remediating the ORR site and
immobilizing toxic metals, namely, uranium. Specifically, we are interested in discovering the constraints on DNR in the subsurface of ORR with mechanistic
understanding of the ecological phenomena and system components affecting this process from the gene level to the ecosystem level (Step 1).
To link processes and factors from the gene scale to the ecosystem scale, ENIGMA has multiple studies at the field scale (Step 2a), mesocosm scale (Step 2b), and
molecular/species level (Step 2c). To facilitate these studies, ENIGMA has major research thrusts aimed at field surveys (Smith et al., 2015; Paradis et al., 2018;
Zelaya et al., 2019; Moon et al., 2020); laboratory and bioreactor studies of isolates (Vaccaro et al., 2016; Price et al., 2018; Carlson et al., 2019; Thorgersen et al.,
2019); syncoms, enrichments, and improved isolation methods (Wu et al., 2018, 2019); genetic tool development (Liu et al., 2018; Price et al., 2018; Mutalik et al.,
2019); and bioinformatics analyses and tools (Price and Arkin, 2019; Lui et al., 2020; Price et al., 2020).

At the field scale, ENIGMA has conducted surveys (Step 2a.1) to characterize the biotic and abiotic components of the subsurface using 16S amplicon and
shotgun metagenomics sequencing to characterize the microbial communities (Smith et al., 2015; Zelaya et al., 2019; Tian et al., 2020) and biogeochemical
measurements for the abiotic factors (Smith et al., 2015; Ge et al., 2020; Moon et al., 2020; Wu et al., 2020). Hydrology and topology studies of ORR indicate that
there are significant groundwater flow rates influenced by frequent rain events (Watson et al., 2005), and preliminary tracer measurements with push–pull tests
determined dispersal rates of chemicals like nitrate and their transfer between compartments (Paradis et al., 2018) (Step 2a.2). Sampling of sediment and
groundwater from pristine and contaminated areas (Zhang et al., 2017) across time scales (Zelaya et al., 2019) confirmed geochemistry influencing highly variable
communities (Smith et al., 2015; Hemme et al., 2016; Thompson et al., 2017a; He et al., 2018; Carlson et al., 2019; Thorgersen et al., 2019; Tian et al., 2019) (Step
2a.3). These field studies provide an overview of the chemical and microbial landscape at ORR, which suggests that dispersal is a highly impactful ecological
process on the microbial communities, and indicate directions for focused studies at the mesocosm and isolate levels.

At the mesocosm level, ENIGMA has conducted enrichment, bioreactor, and synthetic community studies (Step 2b). Bioreactor studies found transfer rates
between sediment particle attachment or groundwater planktonic compartments (Justice et al., 2017; King et al., 2017; Christensen et al., 2018; Smith et al., 2018;
Wilpiszeski et al., 2020) (Step 2b.2). Enrichment studies have determined that different carbon sources determine the active DNR pathway and select for specific
species (Carlson et al., 2020) (Step 2b.3).

ENIGMA has isolated thousands of bacterial and archaeal strains from the ORR site and is exploring the impact of biogeochemistry at field-relevant levels on the
survival and function of these isolates (Wu et al., 2018; Carlson et al., 2019; Thorgersen et al., 2019; Wu et al., 2019) (Step 2c.1). At the isolate and molecular levels,
we have found that major selective pressures also include concentration, heavy metals, nitrate, and low pH, which alter DNR microbial growth (Carlson et al., 2019;
Thorgersen et al., 2019). Iron- and aluminum-induced molybdenum removal can inhibit nitrate reduction in the acidic conditions at ORR (Ge et al., 2019) (Step 2c.3).
Respiration by-product exometabolites (Kosina et al., 2016, 2018) from sulfate-reducing bacteria stimulated DNR to ammonia, while inhibiting other DNR enzymes
(Otwell et al., 2021). With the use of isolates under nitrate-reducing conditions, high-throughput gene fitness assays (Vaccaro et al., 2016), global stable isotope
metabolomics profiling (Kurczy et al., 2016), and assessing substrate and cofactor requirements of key DNR enzymes (Vuono et al., 2019; Carlson et al., 2020)
indicated highly selective controls on DNR pathway usage. Bioavailable molybdenum above a certain concentration is essential to support DNR (Thorgersen et al.,
2015; Ge et al., 2019) and regulated through controls on molybdate transporters (Rajeev et al., 2019). Thus, to stimulate DNR activity as a way of returning the site
to pristine conditions, the method should be chosen based on the knowledge of the differential responses of DNR pathways enzymes, cofactors, and coenzymes to
changing environmental conditions.

Our studies of the environment, microbes, transport, and DNR activity have been synthesized into initial testing of predictions about microbial community
responses to perturbations in the ORR subsurface (Step 3) (Zhang et al., 2015a,b; Paradis et al., 2016). Based on the knowledge gathered from Steps 1–3 in the
ORR subsurface and other DNR communities in uranium-contaminated sites, high nitrate and uranium concentrations co-occur with low pH areas, which causes
depletion of bioavailable molybdenum, an essential nitrate reductase cofactor (Thorgersen et al., 2015). In the most contaminated wells, low pH, high uranium,
manganese, aluminum, cadmium, cobalt, and nickel are selective pressures that exclude select for resistant microorganisms such as Rhodanobacter (Carlson et al.,
2019). Consequently, most DNR microbes are excluded or inhibited, except those that tolerate low pH and high concentrations of metals. In addition to donor or
acceptor limitations on DNR activity rates, we assert that low pH, by controlling abiotic and biotic interactions, is the dominant constraint on DNR in the subsurface.
We predict that amendments to raise the pH and add carbon sources to electron donor limited regions of the site will result in an increase of DNR activity with a
corresponding decrease in nitrate contamination and eventual decreased uranium mobility following dynamic succession to more reducing metabolisms (Step 4). To
test this prediction, we are conducting a Design of Experiments process integrating cross-discipline and scale, field, and laboratory studies (Step 5). As part of the
iteration process (Step 5), we are applying the FICSME to help with coordinating experiments for time series, more precise geochemical measurements and
monitoring, new methods for tracking microbial strains through sequencing, standardization of methodology, in situ and ex situ activity measurements (more precise),
ability to count microbes within compartments and maintain sediment and community structure, and development of new bioreactor studies.
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FIGURE 2 | Example of using iterative operations of the Framework for Integrated, Conceptual, and Systematic Microbial Ecology (FICSME) to study nitrous oxide
off-gassing. (A) Example experimental cycle and (B) overall FICSME process diagram. (A) We exemplify the process of applying FICSME with an open question in
microbial ecology about determining the biogeochemical controls on nitrous oxide off-gassing from nitrate-contaminated sediments. The figure depicts one
experimental cycle consisting of a research question or problem, hypothesis, series of five experiments across three scales, integration of data into the model,
evaluation of results, opportunity to iterate, or move to outcome. For further details, please see the Tutorial in the Supplementary Material, which includes
Supplementary Figure 1 and Supplementary Tables 2, 3. (B) Applying the FICSME follows the same guiding principles as the scientific method but incorporates
consideration of the FICSME terms at every step. First, the researcher determines what problem they want to study and poses a research question. Then, the
researcher will state a specific testable hypothesis, as the FICSME can be used iteratively to address multiple hypotheses and processes that may constitute a larger
overarching research question (Step 1). Second, the researcher selects the FICSME terms that are needed to test their hypothesis; this may include removing
irrelevant terms from the FICSME or adding terms from other models as appropriate. Then the researcher performs a literature review and checks databases for
existing results and data that may satisfy a selected term. The researcher should then populate the FICSME selected terms with these data and identify the
knowledge gaps. Next, the researcher will design experiments to fill the identified knowledge gaps and populate the corresponding terms in the FICSME. Each
experiment follows the general flow of stating an experimental hypothesis, testing, predicting, and evaluating the result (Step 2). The experiment can be conducted at
field scale or in situ (Step 2a); at the mesocosm level, which can occur in the field or in the laboratory (Step 2b); or at the isolated molecules level in the laboratory
(Step 2c). The FICSME workflow can start at any of these levels and can iterate from one level to any other level (horizontal double arrows). Within each level of
experimentation, there are three categories of experiments that can be performed, again in any order, and all might not be required to obtain resolution sufficient for
the research question. The three categories are (1) survey or identification and quantification (Steps 2a.1, 2b.1, and 2c.1), (2) dynamics and kinetics (Steps 2a.2,
2b.2, and 2c.2), and (3) interactions and connections (Steps 2a.3, 2b.3, and 2c.3) and are defined for each level of analysis in the figure. Third, the data are collected
and the results of individual experiments are evaluated, the data are integrated across scales and techniques, and the total findings are populated into the FICSME
(Step 3). Fourth, the collective understanding is used to pose a mechanism giving rise to the target phenotype (Step 4). The mechanism should be tested by
performing an experiment from Step 2. This will likely require several iterative cycles to refine the model and prediction. Once the mechanism accurately predicts the
system well enough, then the researcher can stop; or fifth, use the quantitative results from the FICSME workflow to intervene in the system to induce the outcome
that solves the initial problem identified at the beginning (Step 5).

field, laboratory, macroscale, and molecular approaches. At each
of these scales, it is necessary to (1) define the environment or
compartment(s) under study, (2) take relevant measurements
over time to understand fluctuations or kinetics, and (3)
determine connections and interactions between system parts.
A researcher may enter the experimental cycle at any stage
of the continuum. Lack of ability to populate terms indicates
areas for technology development in new types of measurements
and computational methods, especially at the systems level
(Otwell et al., 2018).

Although we emphasize developing experiments with
mechanisms in mind, survey studies and statistical modeling
can be extremely useful in the discovery phase of a project to
help provide focus. Surveys can provide information about
the field-relevant ranges of geochemical data, species profiles,
and gene expression information. Surveys are also useful if it

is difficult to isolate microbial species of interest or to recreate
the system conditions in the laboratory (e.g., soil structure or
kilometer-scale gradients). Properly designed survey studies
that keep downstream statistical analyses in mind can point to
the important elements of a system, whether it be biological,
chemical, or geophysical, for mechanistic studies.

In situ Experiments (Step 2a)
Often, a starting point in the continuum will be to conduct
discovery-based in situ studies. Primary motivations for
conducting these studies include when general distinguishing
information on the study system is needed; often, this consists
of observational surveys. Additionally, in situ studies are the
primary way for studying microbial dark matter microorganisms
that have yet to be cultivated in the laboratory. These studies
do not need to be a starting point in using the FICSME and
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can be used to validate and test hypotheses generated from
laboratory studies.

Typically, in situ experiments are conducted at the field or
ecosystem level. Field- or ecosystem-level experiments act on
the largest scale but with the lowest resolution to populate
FICSME terms for biotic abundance, transport, transfer and
growth (n1, n2, and n3), and the comparable abiotic terms
for chemical composition, concentration, and transfer (c1 and
c2). The environmental snapshots of natural phenomena detail
the necessary context of the overall phenotype that other
levels of experiments must be able to predict in order to
achieve real-world outcomes. After terms are selected, Step
2a.1 entails defining the environment by investigating field
site geologic zone composition and boundary conditions.
This includes determining the compartments, the components
(abiotic members) and constituents (biotic members) of each
compartment, the respective concentrations or abundances of
components, and the functional potential of the location.
The study of Smith et al. (2015) is an example of a recent
biogeochemical survey of a shallow subsurface groundwater
environment, and studies continue to improve and become more
comprehensive and mechanistic (Palumbo et al., 2004; Fields
et al., 2006; Smith et al., 2015).

For Step 2a.2, determining fluctuations of intensity and
periodicity involves using the same approach as Step 2a.1, but in
time-series studies to gather information on how the composition
and abundance of microbial communities and chemicals change
over time (both short and long term) (Hwang et al., 2009; Hug
et al., 2015). Finally, for Step 2a.3, deciphering connections
answers how, where, and the rate chemicals and microorganisms
are being transferred and transported between compartments
and around the location as a whole, encompassing terms like
residence time, drift, and dispersion as exemplified in push–pull
tests of a uranium-contaminated karst site (Paradis et al., 2018).

There are numerous challenges and barriers associated with
in situ studies (Griebler and Lueders, 2009; Rocha et al., 2016;
Smith et al., 2018; Zelaya et al., 2019). These include the
difficulty to sample at sufficient spatio-temporal resolution and
the fact that when working in the natural environment external
variables/forces cannot be controlled or separated out, which
often results in confounding variables. Once hypotheses have
been generated or when a greater degree of control is needed
to get at more focused process-driven outcomes moving to a
different experimental system, i.e., mesocosm- or isolate-level
studies are appropriate.

Mesocosm Experimental Systems (Step 2b)
While field scale measurements provide insights as to which
biotic and abiotic components are most critical to observed
function, mesocosms are useful where the distinguishing features
of two environment types are specific functional taxonomic
groups and particular environmental variations. Mesocosm
experiments are then designed for the desired measurements
that cannot be taken in situ. While the desire is to always
match reality and perform experiments with the system in
its native state, not all laboratory consortia experiments are
precisely motivated by the field but instead test for activities

and interactions that could potentially occur. In order to refine
observations and hypotheses to generate a more focused and
process-driven outcome, mesocosms are a natural step to gain
more precise control over an environment; increase observability,
direct comparisons, and measurement accessibility; and allow
replicate structures that would be impossible in the field.

Mesocosm-scale experiments employ a similar approach to
Step 2a but occur in controlled lab or field settings mimicking
field conditions where two or more microorganisms, in
synthetic or enrichment communities, are grown in mesocosms,
microcosms, or various bioreactors. These laboratory systems
scale (genome, proteome, and metabolome) reductionist
methods reveal the impacts of perturbations on a particular
phenotype and serve to populate FICSME biotic terms around
attachment and detachment (n2), strain metabolism (g1 and
n3), direct microbial interactions (n4) and mutation rates
(n5), and abiotic terms for transfer (c2), biotransformations
of chemicals (c3), and abiotic chemical reactions (c4). These
experiments reveal mechanisms of microbial community
assembly, stability, and resilience.

Experiments at the mesocosm scale require first defining
the biotic and abiotic members of compartments (Step 2b.1)
such as in a stratified sediment column where geochemistry
and microbial community composition can be measured across
sections (Engelbrektson et al., 2014, 2018; Handley et al., 2015)
or between bulk soil and the rhizosphere (Starr et al., 2019;
Blazewicz et al., 2020; Nuccio et al., 2020). These measurements
in time series with replicates or repeated samplings following
induced perturbations determine the dynamics of the system by
documenting changes in concentrations and abundance, but also
understanding transfer or exchange between two compartments
(Step 2b.2) (Hu et al., 2005; Sher et al., 2020). Once these data
have been gathered, deciphering interactions answers how the
biotic or abiotic reactions of microbes and chemicals, directly
or indirectly, alter the activity or phenotype of the system
(Step 2b.3) [see programs like Web of Microbes for indirect
exometabolite interactions that link mutualists through (Kosina
et al., 2018) nutrient competition; EcoFab for rhizosphere direct
and indirect interactions toward quorum sensing, predation, or
niche exclusion] (Zhalnina et al., 2018; Zengler et al., 2019).
Subsequent microbial enrichment cultivation studies can be
used to further infer interactions between chemical components
and microbial members of low-complexity enrichment cultures
(Wawrik et al., 2005; Goldfarb et al., 2011; Carlson et al., 2015b,
2020; Datta et al., 2016; Flynn et al., 2017; Justice et al., 2017;
Goldford et al., 2018; Rivett and Bell, 2018; Wu et al., 2018).

Although less complex than in situ studies, mesocosm
experimental systems have challenges in achieving a high-enough
level of mimicry of the native environment (Otwell et al., 2018).
This includes obtaining appropriate isolates, identifying the
right community members to represent the process of interest,
and finding the right growth conditions to as accurately as
possible simulate environmental conditions (e.g., soil structure
or holistic ecosystem components like microeukaryotes, fungi,
or viruses) (Rosenberg et al., 2009; Henkes et al., 2018).
Likewise, determining the microorganisms responsible within a
community for producing a certain metabolite or facilitating a
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certain interaction behavior is also challenging without highly
targeted methods like stable isotope probing (Blazewicz et al.,
2020; Nuccio et al., 2020). Therefore, moving to smaller scales and
higher levels of resolution to interrogate the genes responsible
for interactions or processes at the isolate scale can provide the
needed understanding not obtainable at the mesocosm level.

Isolated Microorganisms or Molecular Experimental
Systems (Step 2c)
Experiments on single isolated microorganisms or specific
molecules provide the most control and the highest resolution
to populate FICSME matrix terms that deal with abiotic
and biotic reaction rate constants (r1–r5, g2, and c4) and
amount and activity of individual catalysts such as molecules,
enzymes, isolates, or model microorganisms. The subject of these
experiments is often the critical organisms and environmental
parameters determined from survey, in situ, or mesocosm
experiments. These types of experiments include physiological
or bioinformatics-based characterization of isolates, linking
genes to function or specific molecules, and characterization
of produced metabolites or proteins. Advances in laboratory
automation facilitate controlled experimental studies to measure
how complex multi-dimensional gradients impact microbial
interactions and complex microbiomes (Carlson et al., 2017,
2019, 2020).

Experiments at this scale first require defining the microbe
or molecule for Step 2c.1 (Cheng et al., 2013; Liu et al., 2018;
Price et al., 2018; Xue et al., 2020). Determining kinetics of these
components encompasses measurements of rates of change in
genomic sequences, enzyme activities, and the chemical reactions
occurring in the environment (Step 2c.2). As strains evolve,
the genotype of the system is altered. In response to changes
in genotype or environmental conditions, high-resolution time-
series experiments pinpoint molecular changes to individual
genes, proteins, and metabolites as in adaptive laboratory
evolution studies (Stoeva et al., 2020; Wu et al., 2020). Likewise,
enzyme activity assays parameterize the kinetic constraints of
microbial respirations that drive field phenotype presentation as
in many studies on respiratory enzymes (Martens-Habbena et al.,
2009; Stahl and de la Torre, 2012; Youngblut et al., 2016; Mehta-
Kolte et al., 2019; Straka et al., 2019). The system phenotype
is also controlled by abiotic reactions, which are determined
by measuring their kinetic rate constants as in studies on the
reactivity between nitrogen and sulfur species and iron minerals
(Hansen et al., 1996; Carlson et al., 2012; Flynn et al., 2014; Grabb
et al., 2017). To decipher causation for Step 2c.3, molecular
reductionist methods answer how a particular molecule or
microorganism is acting to alter phenotype at high resolution
(Carlson et al., 2015a; Thorgersen et al., 2015; Vaccaro et al., 2016;
Price et al., 2018; Ge et al., 2020). For example, pooled mutant
fitness assays can be used to help determine gene functions of an
organism (Price et al., 2018).

Although experiments focused on isolates or specific
molecules provide the most control, there are still many
challenges for execution and field relevance (Palková, 2004; de
Boer, 2017; Zhalnina et al., 2018; Barreto et al., 2020; Cornforth
et al., 2020). As previously mentioned, it may be difficult to isolate

some species because they require syntrophic partners or because
growth conditions are unknown (Stewart, 2012). Some organisms
are also not amenable to current genetic manipulation methods.
Despite major recent advances, bioinformatics challenges
still include genome assembly and gene function annotation.
Technology and methods development are also needed for
characterizing and studying unknown organic matter and
metabolites. Findings at the isolates and molecules scale can turn
into hypotheses to be tested at the other scales to demonstrate if
the phenomena happen under more realistic conditions.

Data Integration and Iteration for
Integrated, Conceptual, and Systematic
Microbial Ecology
The typical iteration of models and experiments applies here
(create a model, test with experimental data, and refine model
based on results), but the FICSME encourages iterations that
include gathering data from different scales to improve accuracy
of prediction. This may mean coordinated work across multiple
studies and expertise across disciplines (Box 3). Iteration may
also mean studying other processes within the same scale that
affects the focus of your study. Having an iterative cycle across
scales encourages having initial studies to help define boundaries
of the study system and determine variable importance—this
helps with reducing the number of variables to test.

For Step 3 of the FICSME, single studies integrate the
multi-scale data into the framework to either predict outcomes
(e.g., microbiome composition predicted from geochemistry)
or answer their hypotheses to gain mechanistic insights. This
permits the quantitative assessment of the accuracy of the model
prediction or the resolution of the outcome. Ideally, model
predictions at one scale dovetail with other scales and predictions
can be tested based on multi-scale knowledge. Based on the
results of prediction testing, for Step 4, the researcher will
formulate a new mechanistic model describing the occurrence
and variation of the target phenotype or process. If the model
was experimentally and quantitatively validated, the researcher
moves on to Step 5, if appropriate. If the new model was not
accurate enough, the researcher iterates on this experimental
cycle to gain sufficient data on parameters (Steps 2–3) until
a sufficient resolution of understanding is ascertained. Once
experiments have validated the model, for Step 5, the researcher
can perturb the system through amendments or the necessary
means determined in Steps 1–4, thereby changing the phenotype
to provide a solution to the target problem.

Proposed Use of Framework for
Integrated, Conceptual, and Systematic
Microbial Ecology to Quantitatively and
Mechanistically Predict Flux of N2O
Off-Gassing
Microbial interaction-driven processes underscore global
challenges in health and the environment. We describe a
proposed approach using the FICSME to gain predictive
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understanding of nitrous oxide off-gassing from nitrate-
contaminated soils and sediments, a major contributor to
climate change (Figure 2A). Existing models may accurately
simulate total flux during model calibration [i.e., the Landscape
DeNitrification DeComposition (DNDC) model, which predicts
N2O emissions from agricultural management variables (Molina-
Herrera et al., 2016)] but do not include microbial processes
and may not perform well in model prediction. What is missing
is knowledge of phenomenon-specific microbial community
activities characterized in situ and across scales. Using the
FICSME, researchers can add organismal and molecular
resolution mechanisms to these models; doing so pinpoints
actionable interventions addressing this global problem.
A workflow is described herein and depicted in Figure 2, while
a detailed tutorial including Supplementary Figure 1 and
Supplementary Tables 2, 3.

Nitrous oxide (N2O) off-gassing from nitrate-contaminated
soils and sediments is a microbially mediated process that
contributes a harmful greenhouse gas to the problem of climate
change (Step 1: state the problem). This leads to the overarching
research question of “What are the microbial and geochemical
controls on nitrous oxide off-gassing from the heavily nitrate
contaminated subsurface at the Oak Ridge Reservation?,” which
we describe in Box 3 (Step 1: state the question). While N2O
is produced by microbial metabolisms collectively carrying out
complete denitrification, the amount produced and released is
controlled by the geochemistry of the site. Through association
of geochemical and microbial respiration activity measurements
at the same depth from previous field observations, we can
hypothesize that specific microbes are engaged in metabolic
cross-feeding and process partitioning to drive different modes
of nitrate respiration, depending on environmental context (Step
2: generate testable hypothesis).

Since both abiotic and biotic factors appear to govern the
amount and rate of N2O off-gassing, their respective FICSME
terms must be considered to understand and accurately predict
the response to a perturbation in the system (Step 2: select
the terms). For this research question and hypothesis, we
will focus on FICSME terms for membership, abundance,
concentration, growth, interactions, and enzyme activity, but
not transport or dispersal in this iteration (although they
might be determined to be important later). Then, we consider
existing knowledge about the processes contributing to N2O
off-gassing from nitrate-contaminated environments to populate
terms and identify knowledge gaps. This yields specific sub-
hypotheses about the concurrent contributions of abiotic and
biotic factors such as (1) carbon source and electron donor
preferences and availability stimulating different microbes and
metabolisms; (2) low pH inhibiting NosZ enzyme, which converts
N2O to nitrogen gas on the denitrification pathway; (3) the
availability of molybdenum, an essential cofactor for nitrate
reductase enzyme activity to convert nitrate to nitrite; (4) the
concentration and oxidation states of iron and manganese
driving chemodenitrification; and (5) the production of sulfide
gas via sulfate-reducing organisms with the ability to shift nitrate
respiration mode from denitrification to dissimilatory nitrate
reduction to ammonia (DNRA).

The FICSME can be used to iteratively incorporate all
hypotheses and concomitant processes and factors. For this
example of a proposed plan, one hypothesis would be tested at
a time by changing the factors or perturbations tested at each
stage of the proposed experimental cycle and then iterating as
necessary. Experiment 1 follows Steps 2a.1 and 2a.2 seeking
to populate terms n1 and c1 by sampling the subsurface
and groundwater to monitor the changes in composition
of the microbial community, concentrations of geochemical
parameters, and amount of N2O off-gassing before and after a
rainfall event, which alters the geochemistry, nutrient availability,
and community membership. With the responsive microbes and
geochemistries identified, they are selected for enrichment and
factor testing in Experiment 2. Experiment 2 follows Steps 2b.1
and 2b.2 seeking to populate terms n3, c3, and c4 by growing
the enriched field communities in replicate bioreactors that
attempt to mimic the geochemistry and sediment structure from
the corresponding depth in the subsurface. Perturbations are
applied to the bioreactors that attempt to simulate environmental
processes of interest like rainfall events. The changes to the
community and chemistry are monitored with higher-resolution
techniques, true and more replicates, and finer time-series
samplings that assess the response of individual organisms,
genes, proteins, and metabolites. The key responsive microbes
and chemicals are then isolated. Experiment 3 follows Steps
2c.1–3 seeking to populate terms r1–r4 by studying in depth
isolated microorganisms, enzymes, metabolites, or abiotic factors.
This can include in-depth characterization of regulation, toxicity
mechanisms, nitrogen metabolism, gene function, and enzyme
activity, all assayed in a variety of field-mimicking conditions and
over time that establish the boundaries of the behavior of each
molecule and microbe. The amassed knowledge from molecular
reductionist studies will lead to proposing a mechanism that
describes the chain of causality between the flux in biotic
and abiotic factors during a rainfall event that leads to the
observable phenotype in changes in the amount of N2O off-
gassing. Experiment 4 follows Step 2b.3 seeking to populate
terms n1, g1, and c1 at the mesocosm level by populating
the same bioreactor system in Experiment 2 with a synthetic
community of the isolates from Experiment 3 that collectively
will simulate the environment and phenotype by carrying out
complete denitrification. A perturbation is induced quantitatively
to test the mechanism proposed at the conclusion of Experiment
3 and measured over time. If the synthetic community validates
the mechanism at this mesocosm level, then the prediction is
tested back in the field. Experiment 5 follows Steps 2a.2 and
2a.3 seeking to populate terms n1, g1, and c1 by introducing a
perturbation into the field-testing site and monitoring the results
of the prediction based on the determined mechanism.

After the experimental cycle is completed, the data are
integrated, and the results of the prediction testing are assessed
for accuracy to a resolution matching the needs of the research
question defined in Step 1. If the prediction based on the
determined mechanism is accurate enough, then the researcher
can move to implementing the prescribed intervention to
produce the desired outcome or system phenotype. For this
example, the ultimate outcome would be to add an amendment
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of a microbe or a chemical that would regulate nitrous oxide off-
gassing at the desired rate and amount. If, however, the prediction
is not accurate or other processes need to be included, then the
researcher iterates on the process by going back to any of the
previous steps or proposing new experiments as necessary within
the confines of the FICSME.

DISCUSSION: FUTURE CHALLENGES
FOR MICROBIAL ECOLOGY

To overcome critical limitations in the transition of microbial
ecology to a quantitative and predictive discipline, there is
a need for integrating results across scales and the many
concomitant processes in an ecosystem and formal Design
of Experiments calculations, a statistics-based method for
determining causal relationships between factors and outcomes
and guiding appropriate sample selection, to balance sufficiently
powered surveys to guide mechanistic experiments. Integration
across scales and the inclusion of the microbial component have
yielded the benefits of precise knowledge on the behavior of
a microorganism or enzyme under a certain set of conditions
(Gao et al., 2020). This type of model-informed sampling will
ultimately strengthen our ability to understand the effect of
biological and chemical processes within an environment such
that we can intervene and achieve a precise desired outcome for
microbial systems.

Depending on the research question, different mathematical
models and different parts of the FICSME will be relevant and
whether single or multiple studies are needed. We encourage
users to add relevant models or phenomena. For example,
physiological heterogeneity of cells is not represented. In regard
to experimental planning, a single “campaign” might start by
planning out the series of different sorts of models that will allow
building a more mechanistic one; e.g., a control-treatment model
that identifies taxa most separated by environmental variables
might allow to focus attention on measurement of the variation
of these in more mechanistic experiments.

Parameterizing the FICSME from multiple studies in
different systems and from different groups quickly runs into
challenges related to metrology, metadata collection, and data
standardization (Navas-Molina et al., 2017). Data from different
studies may not be compatible because of the methods used,
so documentation of metadata (e.g., sample type) and other
methods (e.g., DNA extraction can influence which species are
sequenced) are becoming especially important. Efforts such as
the Earth microbiome project (Gilbert et al., 2014; Thompson
et al., 2017b), DOE Systems Biology KnowledgeBase (Arkin
et al., 2018), and the National Microbiome Data Collaborative
(Wood-Charlson et al., 2020) are attempting to do so. Data
quality standards and efforts such as the FAIR data principles
(Findability, Accessibility, Interoperability, Reusability) are
also critical so that as we build models we propagate error
appropriately (Wilkinson et al., 2016). Increasing the molecular
information through large-scale programs can help provide
databases and distribute effort to collect hard-to-obtain data. For
models to be generalizable and benefit from other studies, data

need to be FAIR, computational tools to be open and accessible,
and analyses to be reusable and reproducible. Initiatives like
KBase are building platforms for data, analytical tools and
models together in one place, all adhering to FAIR principles
(Arkin et al., 2018). Continued discussion and thought are
needed for how to make data interoperable and how data
from different analytical pipelines and different measurement
modalities (e.g., amplicon and metagenomic inferred taxonomic
abundance) can be combined together. Using systems like
KBase, subsurface insights, ESS-DIVE, Web of Microbes
(Kosina et al., 2018), METLIN MS2 (Xue et al., 2020), and
NSF/USGS NEON can help.

Our work in developing the FICSME to achieve mechanistic
understanding has pointed to these challenges and needs:

(1) Expertise to conduct multiple complex measurement
modalities and develop models across field and
laboratory scales.

(2) Gathering the correct data categories for model
parameterization.

(3) Data analysis may be computationally intensive.
(4) Limited ability to gather enough replicates for statistics or

impossibility of measuring all variables.
(5) Incompatible data types, or lack of mathematical method

for combining results of different types, especially with
different resolutions and dynamics.

(6) Inter-lab inconsistencies in procedures or need for
standardized methods, data collection, ontologies, and
standard operating procedures across labs.

We suggest the following to overcome these challenges in
pursuit of quantitative, mechanistic, predictive microbial ecology:

(1) Multidisciplinary team science approach that
spans the expertise needed to integrate data and
methodologies across scales.

(2) Use of formal Design of Experiments to help bridge scales,
design experiments that point to mechanism for observed
ecological phenomena, and coordinate across multiple
studies. This should be linked with rigorous reporting and
annotation of protocols for measurement and data analysis
using standardized ontologies.

(3) Use of machine learning methods such as neural networks
to help find patterns in data to direct focused experiments,
based on identifying the most important variables with
predictive power.

(4) Iterative experimental design from field to lab, survey to
mechanism, prediction/hypothesis to testing in situ.

(5) Improved data sharing and recording of metadata
programs and efforts, including tracking the provenance of
samples and data.
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