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ABSTRACT

We introduce a dual memory architecture that, by way of
computing conditioned-conditioned stimulus (CS-CS)
associations and conditioned-unconditioned stimulus (CS-US)
associations, is capable of computational cognitive mapping.

The network is able to describe complex classical
conditioning paradigms in which cognitive mapping is
presumably involved such as blocking, overshadowing, sensory
preconditioning, second-order conditioning, compound
conditioning, serial compound conditioning, and sensory
preconditioning. By assuming that limbic-cortical regions of
the brain are involved in CS-CS associations, the network is
able to describe several cognitive impairments that have been
reported after limbic-cortical lesions.

INTRODUCTION

Two major approaches characterize the study of the
neurobiological basis of memory. One approach considers that
memory is a unitary process that involves the whole brain.
Another approach regards memory as a multiple process that
involves different areas of the brain, each area being
involved in a different type of memory (Kesner, 1984). For
example, Squire (1982) suggested that hippocampal and
amygdalar regions of the brain are participated in the
acquisition of new information about the world (declarative
memory) but not in the acquisition of new perceptual-motor
skills (procedural memory). In the same vein, other authors
proposed that the limbic-cortical regions of the brain would
be involved in processes such as off-line associations
(Hirsh, 1974), stimulus configuration (Mishkin and Petri,
1984), vertical associative memory (Wickelgren, 1979), or
representational memory (Thomas and Spafford, 1984).
Striatal and cerebellar regions of the brain would be
involved in processes such as on-line associations (Hirsh,
1974), habit formation (Mishkin and Petri, 1984), horizontal
associative memory (Wickelgren, 1979), or dispositional
memory (Thomas and Spafford, 1984).

In line with the approach that regards memory as a
multiple process, we have introduced a dual memory
architecture that, by way of computing conditioned-
conditioned stimulus (CS-CS) associations and conditioned-
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unconditioned stimulus (CS-US) associations, allows to build
computational cognitive maps (Schmajuk, 1986a; Schmajuk,
1986b; Schmajuk and Moore, 1986). In the context of the
multiple memory process approach, CS-CS associations might be
regarded as components of off-line associations, declarative
memory, stimulus configuration, vertical associative memory,
or representational memory. CS-US associations might be
regarded as components of on-line associations, procedural
memory, habit formation, horizontal associative memory, or
dispositional memory. Limbic-cortical areas would be
involved in CS-CS associations, whereas striatal and
cerebellar regions would be involved in CS-US associations.
The present paper presents a second-order associative
network, designated the SEAS network (as a mnemonic for
SEcond-order ASsociative), and illustrates its behavior in
complex classical conditioning paradigms. The SEAS network
is able to describe conditioning paradigms such as
conditioned inhibition,blocking, overshadowing, sensory
preconditioning, second-order conditioning, compound
conditioning, serial compound conditioning, and sensory
preconditioning. The network is also able to describe some

very well known effects of limbic-cortical and striatal-
cerebellar lesions.

THE SEAS NETWORK

First-order associations. Consider the case of one CS,
CSi, that predicts event k. Net associative value, Vik,
represents the first-order prediction of event k by CSi.
When the CSi is accompanied or followed by event k, the
assoclative value between CSi and event k, Vik , increases by

AVik = 8 Bir i ( Tk - Bk ), [ 1]

where Si is the salience of CSi, Bir is Bir = Bir (0 <8ir < 1)
when I' k > Bk, and Bir = 8ir’ (0 < B8ir’ ¢ Bir) when I' k < Bk
is the trace of CSi, ' k the intensity of event k, and Bk the
aggregate prediction of event k.

y Ti

Second-order associations and cognitive mapping.
Consider now the case of two CSs, CSi and CSr, that predict
event k. It is assumed that CSi predicts k directly by Vik
and indirectly by predicting CSr, by Vir. In turn CSt

predicts k by Vrk. The second-order net prediction of event
k by CSi , is expressed as the product Vir Vrk . The product
Vir Vrk can express - quantitatively -four logical

inferences. For example, if CSi predicts the absence of CSr
(negative Vir ), and CSr predicts the presence of event k

(positive Vrk), CSi will predict the absence of event k
(negative Vir Vrk)

Bik , the first- and second-order prediction of event k
by CSi , is

Bik = ( Vik + 3r wir Vir Vrk) =i . {2 ]
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Vik is the net associative value of CSi with event k. The
sum over the index r involves all CSs with index r = k. Vir
is the net associative value of CSi with all CSs with index

r = k. Vir is the net associative value of all CS with event
k. Ti is the trace of CSi . The mathematical expression for
Ti is given below. Coefficient wir serves to adjust the
relative weights of first- and second- order predictions in
paradigms such as conditioned inhibition. In order to avoid
redundant CSi -US and CSi -CSi - US associations, wir = 0 when i
= r, and wit > 0 when i # r. Bk , the aggregate prediction
of event k made upon all CSs (including the context) with T >
0 at a given moment, is

Bk = Zi Bik . { 3]

Variable Bk participates in the rules governing the
computation of Vik . In addition, BUS determines the
topography of the NM response, as described below.

The integration of different predictions, Vir Vrk, into
a larger and new prediction, Bik, is similar to the process
Tolman (1932) called inference. For Tolman, expectancies can
be combined in order to form new expectancies and organized
in a "cognitive map”. Up to the present, models for
classical conditioning did not have any mechanism to account
for "inference" processes. The introduction of second-order
associations allows to build "computational cognitive maps"”
in which CS-CS predictions can be combined among them, and
with CS-US associations. By the introduction of second-order
associations the SEAS model is capable of describing sensory
preconditioning and secondary reinforcement.

Figure 1 shows how SEAS explains sensory
preconditioning. Sensory preconditioning is predicted by
allowing CSB to be associated to CSA in a first phase,
denoted by the solid circle VBA, and CSA to be associated to
the US in a second phase, denoted by the solid circle VaUS,
When CSB is presented alone in a test trial, it activates the
A representation through node VBA, and this A representation

activates the node VAUS, generating a conditioned response
(CR).

Trace function. It is assumed that a CSi generates a
trace, ti , that increases over time to a maximum, stays at
this level for a period of time independent of the CS
duration, and then gradually decays back to zero. Formally,
trace t is defined for t <= 200 msec by

T(t) = CSmax ( 1 - e -( k1 t ) ), [ 4]

where CSmax is the maximum intensity of the CS and kl is a
constant, 0 < kl < 1. Parameter kl is selected so that the
ISI for optimal conditioning is 200 msec.

T(t) remains equal to CSmax as long as the CS does
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Figure 1. SEAS neural network. CSA and CSp : conditioned
stimuli . CX: Context. US: unconditioned stimulus. CR:
condioned response. VAB: CSA-CSB associative value. VaUS:
CSA-US associative value. For explanation see text.

not decay. If the CS = 0 and t > 200 msec, T (t) decays by
T(t) = CSmax ( e -( k1 t ) ), [ 5 ]

If CSi is not present 200 msec after its onset, the trace
decays to zero.

Performance Rules. The SEAS network incorporates
performance rules that permit realistic descriptions of
rabbit’s classically conditioned nictitating membrane (NM)
responses in real time (Gormezano, Kehoe, and Marshall,
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1983). Performance rules relate variable BUS to the
topography of NM responses.
Time of CR onset is the earliest time t such that

2ter=ti 2y ByjUS(t’) >= L1 , [ 6 ]

where ti denotes the time step at which CSi onset occurs.
The sum over the index j involves BjUS of all CSs with T >
0 , excluding the context. Sum over index t involves all
time steps for which t;j > 0 , starting at the time step when
the amplitude of the NM response as defined by Equation 7
equals zero. L1 is a threshold greater than zero. Equation
6 implies that as BjUS increases over trials, CR onset moves
progressively to an asymptote determined by L1.

During the CS period, for time steps t > ti, the
amplitude of the NM response, NMR(t), is changed by

AHNMR (t) = k2 ( BUS(t) - NMR(t)), (7]

where k2 is a constant ( 0 < k2 < 1).

During the US period, while BUS(t) > TUS(t), is given by
Equation 7. However, when BUS(t) < TUS(t), NMR (t) increases
by

A NMR (t) = k2 ( TUS(t) - NMR(t)), [ 8]

When BUS (t) and T'US(t) equal zero, NMR(t) decays to
baseline by

A NMR (t) = - k2 NMR(t). [ 9]

Effects of cerebellar lesions. A description of the
effect of cerebellar lesions (CL) in agreement with Lincoln,
McCormick, and Thompson's (1982) results, is obtained by
assuming that lesions of this limbic structure impair CS-US
associations but not the computation of CS-CS associations.
Mathematically, after CL it is ViUs = 0.

Effects of hippocampal lesions. A description of the
effect of hippocampal lesions (HL) in agreement with
experimental data (see Schmajuk, 1984, for a review) is
obtained by assuming that lesions of this limbic structure
impair CS-CS associations but not the computation of CS-US

associations. Mathematically, after HL it is Vir = 0.
Impairments in CS-CS associations imply impairment in
cognitive mapping. Since Vir = 0, Bik is given by
Bik = Vik i, [ 10 ]

Because Bik for HL animals computed with Equation 10 is
larger than Bik for normal animals given by Equation 2, use
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Figure 2. Sensory preconditioning. [1] : CS(1). [2]

CS(2). [X] : Context. Left Panels: NM response topography
in 1- and 2- trials, after 10 CS(1)-CS(2) nonreinforced
trials and 10 CS(1)reinforced trials. Upper-Right Panels:
CS-US associative values, V(CS,US), at the end of each trial,
as a function of trials. Lower-Right Panels: CS1-CS
associative values, V(C31,CS), at the end of each trial, as a
function of trials.

of Equation 10 implies impairments in several classical
conditioning paradigms, including blocking and sensory
preconditioning.

COMPUTER SIMULATIONS
In the simulations, continuous time was converted to
discrete time steps or bins of 10 msec in duration. Each
trial consisted of 60 bins. Otherwise specified, the
simulations assumed 200 msec CSs, the last 50 msec of which
overlaps the US.
Initial values of Vs were zero for all i’s. Parameters

values for variations of associative values were ' S1 = 1, S2
=1, Sx = .1 . 8ir = 0.3 and 8ir’ = 0.03 for r = US . Bir =
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0.015 and 8ir’ = 0.0015 for r = US . For computations of Bik
wik = 2 when i # r; and wik = 0 when i = r. For
computations of the NM CR : L1 = 2. For computation of the

trace: k1l = 0.1 , and for the NM response topography :@: k2 =
0.6

Simulation results.

Sensory preconditioning. Figure 2 shows simulations of
a sensory preconditioning paradigm. In the first phase, 10
nonreinforced trials with a compound CS(1 and 2). During the
second phase, one of the nonreinforced CSs (1) was reinforced
for 10 trials. A test trial assessed the CR to CS(2) never
paired with the US. Simulations showed that context
associability decreases during preconditioning. In the
nonreinforced test trial CS(2) acquired inhibitory
associative value because it was presented in a context with
excitatory associative value. CS(2) generated a CR.
Simulation results are in agreement with data reported by
Port and Patterson (1984) for normal animals. After HL, CS-
CS associations are absent and therefore sensory
preconditioning is also absent, a result in agreement with
Port and Patterson (1984), who found that fibrial
(hippocampal output) lesions in rabbits impaires sensory
preconditioning.

Serial Compound Conditioning. Figure 3 shows
simulations of a serial compound conditioning paradigm, in
which two conditioned stimuli (CS1 and CS2) are followed by
the US. The temporal primacy of CS1 over CS2 determines CS1
to become more strongly associated with the US than CS2, in
spite of the contiguity of CS2 and the US. As shown in
Figure 3, CS1 generates a CR larger than that generated by
Cs2.

Our results are in agreement with Wickens, et al
(1973), who found that, after a CS1-CS2 serial compound had
been paired with a US, associations acquired by CS1 and CS2
were functions of the CS1-CS2 interval. With a long CS1-CS2
interval, each CS-US association was inversely proportional
the respective CS-US interval, and therefore, the CR
generated by CS2 was larger than the CR elicited by CS1.
With an intermediate CS1-CS2 interval, as in the case of our
simulation, the CR elicited by CS1 was larger than that
elicited by CS2. Finally, with a short CS1-CS2 interval, the
CR generated by CS2 was larger than that produced by CS1.
According to the SEAS model, associations acquired by CS1 and
CS2 are functions of the CS1-CS2 interval, because the CS1-
CS2 interval establishes the degree of association between
CS1 and CS2 (Vi2 by Equation 1), and this degree of
association between CS1 and CS2 controls the associative
value of CS1 and CS2 with the US (BUS by Equation 2).

650



VOGS, U$) =1 X X (S10 528

SERIAL COMPOUND

| 2 L CONDITIONING

Figure 3. Serial compound conditioning. [1] : CS(1). [2]
CS(2). [X] : Context. Left Panels: NM response topography
in 1- and 2- trials, after 10 CS(1)-CS(2) nonreinforced
trials and 10 CS(1)reinforced trials. Upper-Right Panels:
CS-US associative values, V(CS,US), at the end of each trial,
as a function of trials. Lower-Right Panels: CS1-CS
associative values, V(CS1,CS), at the end of each trial, as a
function of trials.

The SEAS network predicts that serial compound
conditioning is impaired after HL, each CS being able to
acquire associations inversely proportional to their
contiguity with the US. This predictions awaits experimental
testing.
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Blocking. Figure 4 shows simulations of a blocking paradigm.
Experimentals received 10 trials with CS (1) (blocker) paired
with the US followed by 10 trials with CS (1) and CS(2)
(blocked CS) paired with the US. The network showed
simulated blocking in the normal case (N) because the
designated blocked CS(2) does not generate a CR. After HL
the network predicts that the blocked CS (2) will show a
larger CR than it does in the normal case. The results agree
with blocking data in the normal rabbit NM response
preparation as reported by Marchant and Moore (1973), and in
the HL rabbit as reported by Solomon (1977).

DISCUSSION

The present paper introduce SEAS, a dual memory
architecture that is capable of generating computational
cognitive maps. When applied to classical conditioning, the
network describes several complex classical conditioning
paradigms in real time.

The SEAS network is able to describe paradigms, such as
serial compound conditioning, that had been succesfully
explained by attentional theories of conditioning (see Kehoe,
1983). This fact points out to a degree of equivalence
between attentional approaches and higher-order associative
approaches such as that presented here. This equivalence
between attentional and higher-order associative approaches
might be based on the fact that both are dual memory systems
that rely on the existence of a second memory for storing
information not inmediately connected to
open responses, such as CS-US associations.

In addition to the description of normal behavior, the
SEAS network can describe some of the effects of cerebellar
and hippocampal lesions on the classically conditioned NM
response in the rabbit.

This study was supported in part by NSF Grant IST8417756.
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