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ABSTRACT
The structural characterization of proteins with a disorder requires a computational approach backed by experiments to model their diverse
and dynamic structural ensembles. The selection of conformational ensembles consistent with solution experiments of disordered proteins
highly depends on the initial pool of conformers, with currently available tools limited by conformational sampling. We have developed a
Generative Recurrent Neural Network (GRNN) that uses supervised learning to bias the probability distributions of torsions to take advan-
tage of experimental data types such as nuclear magnetic resonance J-couplings, nuclear Overhauser effects, and paramagnetic resonance
enhancements. We show that updating the generative model parameters according to the reward feedback on the basis of the agreement
between experimental data and probabilistic selection of torsions from learned distributions provides an alternative to existing approaches
that simply reweight conformers of a static structural pool for disordered proteins. Instead, the biased GRNN, DynamICE, learns to physically
change the conformations of the underlying pool of the disordered protein to those that better agree with experiments.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0141474

I. INTRODUCTION
Many proteins adopt a well-defined three-dimensional struc-

ture to carry out their function. Despite the widely accepted pro-
tein structure–function paradigm, it is increasingly appreciated
that all proteomes also encode intrinsically disordered proteins
and regions (IDPs/IDRs), which do not adopt a well-defined 3D
structure but instead form fluctuating and heterogeneous struc-
tural ensembles.1–4 The structural disorder of IDPs/IDRs is central
to their functional roles but is also implicated in diseases, includ-
ing autism spectrum disorder, cancer, and many others.5–7 More
recently, IDPs have been found to be over-represented in biomolec-
ular condensates8,9 and have been suggested to promote phase sep-
aration due to their structural plasticity, low-complexity sequence

domains, and multivalency.10–12 Hence, the structural characteriza-
tion of IDPs/IDRs constitutes a new frontier in structural biology in
order to understand their biological function, requiring a computa-
tional approach backed by experiments to model their diverse and
dynamic structural ensembles.

The conformational heterogeneity of IDPs can be ascertained
using various types of biophysical experiments, including Nuclear
Magnetic Resonance (NMR), small angle x-ray scattering (SAXS),
single molecule fluorescence resonance energy transfer (smFRET),
and any other available solution experimental measurements.4,13

However, because solution experiments only measure ensemble
and/or time averages given the dynamic nature of disordered pro-
tein states, computational methods must be used to complete the
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atomic scale structural ensemble. Hence, a number of computational
approaches have been developed for generating and evaluating dis-
ordered structural ensembles that are consistent with the collective
experimental restraints.

The creation of large structural pools of unfolded or IDP
conformations can be derived from a variety of sources, such as
molecular dynamics (MD) simulations using a force field,14–16 or
structural builders, such as TraDES,17 Flexible-Meccano,18 FastFlop-
pyTail,19 and IDPConformerGenerator.20 To optimize agreement
with experiments, most methods have typically focused on either
biasing molecular simulations using experimental data, as in the
case of the ensemble-biased metadynamics method,21 or selecting
a collection of structures from a pre-generated pool of candidate
conformers that best fit the available experimental data, such as
ENSEMBLE,22–25 Mollack,26–28 the energy-minima mapping and
weighting method,29,30 and ASTEROIDS.18,31–34

In recent years, Bayesian models have emerged as an ideal
framework to account for the multiple and different sources of
uncertainties in the IDP problem, most typically experimental and
back-calculation model errors, as originally proposed by Stultz and
co-workers.26–28 These robust statistical approaches provide a confi-
dence level in the calculated structural ensemble models given their

undetermined nature and variable quality of the restraining exper-
imental solution data.26–28,35–43 Among some of the most visible
developments are maximum parsimony inspired methods exem-
plified by the Bayesian weighing (BW) method26 and maximum
entropy inspired techniques represented by the Bayesian ensem-
ble refinement method,35 metainference,37,42 Bayesian/maximum
entropy (BME),43,44 and the Bayesian inference of ensembles
(BioEn) method.39,41 The Head-Gordon lab developed the Extended
Experimental Inferential Structure Determination (X-EISD) method
that treats experimental and model errors as Gaussian random
variables and can use their joint probabilities in a Monte Carlo
sampling or maximization procedure for refining the computational
ensembles given experimental data.36,40

However, in order for these Bayesian approaches to be suc-
cessful, the underlying structural pool must cover a representative
conformational space such that the most important conformers
can be weighted more heavily than more irrelevant conformations
for the optimization to be effective. However, the “putative” dis-
ordered ensemble may not contain a relevant pool of structures.
For example, some structural builder approaches17–19 can gener-
ate structures that are unphysical, with large steric clashes and a
lack of Boltzmann weighting. While MD-generated ensembles do

FIG. 1. Schematic of the design of the DynamICE GRNN and its interplay with a supervised learning strategy using a Bayesian reward function to evolve new conformer
generation to create new IDP ensembles given the data. Top: The generated conformer pools are evaluated by their agreement with the experimental data to formulate
a feedback to the GRNN to generate new conformers with better agreement with the data through gradient updates. Bottom: The GRNN generates new torsion angles,
which are sequentially translated to Cartesian coordinates to generate new conformers. Each of the residue-level recurrent units (sky blue) takes as input a residue triplet,
torsion angles of the previous residue, and the previous hidden state to compute an internal state of a target central residue. The hidden states are vectors that pass
information between sequential recurrent units. The internal states inside the recurrent unit are defined by (a) a multi-layer long short-term memory (LSTM) neural network;
(b) a dictionary-like embedding layer that encodes each unique amino acid type triplet with a vector; (c) the two-way en(de)coder between a torsion angle and a Gaussian
smeared probability vector; and (d) a recurrent unit that handles torsion angle generation within a next residue build step. These components are described in detail in the
section titled Method.
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contain energetically weighted states, they can have structural biases
toward overly compact states using many popular force fields and,
thus, may be poor descriptions for disordered protein states.45 While
new IDP-specific force fields have been introduced,46,47 in some
cases, they no longer describe folded states48 and/or tend to become
too unstructured and featureless to be consistent with the solu-
tion data49 and, therefore, can result in underlying biases in the
resulting ensemble. Although there are force fields that can better
describe both IDPs and folded proteins,48 MD approaches can also
be expensive, requiring sampling on timescales of tens to hundreds
of microseconds.

The recent advent of machine learning models, most notably
AlphaFold250 and RoseTTAFold,51 has made stunning break-
throughs in producing target structures of monomeric folded
proteins of quality similar to experimental structures.52–58 Other
examples are deep convolutional neural networks that predict
structures as distance maps54–57 and natural language processing
that encodes protein sequences using recurrent neural networks
(RNNs).58,59 To create a diverse and representative protein struc-
tural space, the machine learning field has also seen an emergence
of generative neural networks,60 predominantly employing varia-
tional autoencoders (VAEs) and generative adversarial networks
(GANs) to learn from native protein databases to propose struc-
tural variants of folded states61,62 or to learn from MD to provide
a less computationally expensive alternative for conformational
sampling.63,64

Advances in structure prediction and generation for folded
proteins foreshadow an exciting frontier in applying machine learn-
ing methods to the integrative modeling of IDP ensembles.65,66

Recently, Gupta et al. used a VAE to compress MD generated
conformers for the disordered αβ40 and ChiZ proteins to a low-
dimensional latent space, which were sampled to reconstruct con-
formers and subsequently validated in a subsequent and indepen-
dent step against NMR chemical shifts (CS) and SAXS data.67 Janson
et al. also proposed a GAN model called idpGAN that learns from
coarse-grained simulations to generate disordered proteins68 but
is only assessed with experimental data at a later stage. Even the
highly successful AlphaFold2 for folded proteins predicts regions of
disorder with low confidence.69

Here, we introduce a machine learning approach that learns the
probability of the next residue torsions Xi+1 = [ϕi+1,ψi+1,ωi+1, χi+1]

from the previous residue in the sequence Xi using a generative
recurrent neural network (GRNN) model to build new confor-
mational states of a disordered protein ensemble. This work is
distinguished further by a supervised learning step that biases the
probability distributions of torsions of the GRNN to take advan-
tage of experimental data types such as three-bond J-couplings
(JCs), nuclear Overhauser effects (NOEs), and paramagnetic reso-
nance enhancements (PREs) from NMR spectroscopy. The result-
ing biased-GRNN machine learning model (Fig. 1), which we call
DynamICE (dynamic IDP creator with experimental restraints),
learns to structurally change the conformations of the underlying
pool to those that better agree with solution experiments, using
the X-EISD Bayesian model and enforcing realistic energetic states
through a Lennard-Jones potential. We show that updating the
DynamICE model parameters according to the reward feedback on
the basis of the agreement between structures and data provides a
conceptual advance over existing approaches that simply reweight

static structural pools for disordered proteins.35,40,43 The significance
of the DynamICE approach is that we evolve the underlying struc-
tural ensemble to agree with the experimental data as opposed to
iterative guesswork about relevant sub-populations and subsequent
reweighting of arbitrary conformations.

We apply our DynamICE machine learning (ML) approach to
four protein cases: the unfolded state of the human salivary histatin 5
(Hst5), amyloid-β 1-40 (Aβ40), the Drosophila DrkN-terminal SH3
domain (uDrkN-SH3), and the α-synuclein (α-Syn) IDP to demon-
strate its ability to evolve new conformers driven by better agreement
with solution experimental data.

● Hst5 possesses antimicrobial activity in oral fluid; while
the Hst5 molecules remain unstructured in aqueous solu-
tions, they prefer to adopt α-helical conformations in
DMSO solvent that mimics the polar aprotic membrane
environment.70

● Aβ40 is one of the important hallmarks of Alzheimer’s
disease characterized by insoluble fibrils and plaques in
the extracellular space within the brain.71 However, the
monomeric form of Aβ40 has been classified as an IDP,14–16

and understanding its disordered conformational ensembles
is relevant to preventing the selected unfolded sub-states
from associating with and folding into toxic oligomers or
ordered fibril states that can have a great therapeutic value.72

● DrkN-SH3, which exists in ∼1:1 equilibrium between folded
and unfolded states under non-denaturing conditions, is a
popular test case with abundant experimental data made
available for ensemble reweighting used for disordered
proteins.23 The structural features of the unfolded state,
uDrkN-SH3, can help explain the lack of stability of the
folded beta-structured domain and are highly valuable
for understanding folding thermodynamic equilibrium in
general.

● Finally, α-Syn is an IDP that shows transient sampling of
extended and helical conformations in the aqueous phase as
opposed to the highly ordered helical state in the membrane.
Because the disordered state is the precursor to the toxic
fibers found in Parkinson’s disease, knowing more about this
state will be beneficial for potential therapeutic targeting.73

These examples are both biologically and structurally diverse, with
important basic research and translational therapeutic implications.

II. METHOD
In this section, we describe the design of the GRNN and super-

vised machine learning algorithms. Some more technical details
of protein representation, conformer generation, and DynamICE
training are further described in Appendices A and B.

A. Generative recurrent neural network architecture
RNNs are designed to handle sequential information by deter-

mining the current outputs from past information along with the
current inputs. Previous work by AlQuraishi58 has developed an
end-to-end differentiable model that encodes protein sequences in
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the torsional space using RNN to predict novel folds given the pri-
mary sequences and mutation information. Similarly, in this work,
we use an advanced multi-layer long short-term memory (LSTM)
network74 to iteratively predict the distribution of an accessible angle
range of the torsion angles in the current residue given those of
the last residue and its associated hidden state to generate protein
conformers. LSTMs can preserve long-term memory while ignor-
ing certain short-term inputs through a dedicated mechanism.74 The
basic LSTM cell contains two internal states, the hidden state ht and
the cell state ct , and can be described through the following set of
equations:

it = σ(W ixt +U iht−1), (1)

f t = σ(W f xt +U f ht−1), (2)

ot = σ(Woxt +Uoht−1), (3)

c̃t = tanh (Wcxt +Ucht−1), (4)

ct = it ⊙ c̃t + f t ⊙ ct−1, (5)

ht = ot ⊙ tanh ct , (6)

where [W i, W f , Wo, Wc, U i, U f , Uo, and Uc
] are the trainable para-

meters of the model; xt is the input to the cell at the current
time-step, c̃t contains the information to be added to the cell state;
and it , ft , and ot represent the update gate, forget gate, and output
gate, respectively, which are numbers between (0 and 1) that control
how much information should be updated, discarded, or retrieved
from the cell state. σ denotes the sigmoid function, and⊙ represents
element-wise multiplication.

The recurrent units inherently formulate a conditional prob-
ability between individual torsion angles at the local level that is
chained to create a global representation of the entire chain. The
eight torsion angle vectors representing the backbone and sidechain
torsion angles in a residue are concatenated with a 64 length embed-
ding layer that encodes the amino acid type of a triplet of the
previous, current, and subsequent residues. We use alanine as ter-
minal padding for the last amino acid type triplet. Together, they are
transformed through a two-layer, fully connected multi-layer per-
ceptron (MLP) with a Rectified Linear unit (ReLU) activation for
each layer. Torsions of residues with less than five sidechain angles
are padded with zero.

The GRNN architecture has two recurrent units, one for recur-
sion between residues and another inside each residue-level recur-
sion for iteratively processing torsion angles within a residue. This
design allows the model to capture correlations of torsion angles
between residues as well as correlations between torsion angles
within a residue. In the residue-level recurrent unit, the multi-layer
perceptron (MLP) outputs are passed to a RNN cell connected to
two linear layers corresponding to the ω and ϕ torsion angles. The
torsion-level recurrent unit enclosed iterates through the rest of the
torsion angles (ψ, χ1, χ2, . . .) using the generated ϕ angle. Along
with the torsion angle vectors and the MLP outputs, a one-hot
encoding of torsion angle types is passed to a RNN cell connected
to a linear layer. Each linear layer uses a softmax activation to
transform the output into a vector that represents the probability

distribution of a torsion angle. The residue-level RNN cell con-
tains two stacked LSTMs with a hidden size of 200 and dropouts
of 0.1, while the torsion-level RNN cell uses one LSTM with the
same hidden size and dropout configurations. The GRNN is imple-
mented using PyTorch. We illustrate the design of the recurrent
units in the supplementary material (Fig. 1) and describe the details
of the pre-training procedure of the generative model and conformer
generation in Appendices A and B.

B. GRNN combined with supervised learning
After the pre-training step, we bias the GRNN toward gener-

ating new underlying conformers such that the resulting ensembles
better agree with the measured experimental data. The generation of
a conformer is formulated as a Markovian decision process (MDP),
where the torsional probability distributions in the GRNN naturally
define the transitional probabilities between intermediate states.
At each torsional generation step, the GRNN implements a map-
ping from the current state, namely the previously built conformer
sequence, to probabilities of selecting possible actions that determine
the next set of internal coordinates to build. As a consequence of
sampling from the internal coordinate distribution to then gener-
ate 3D conformers, the GRNN model receives a reward measuring
the agreement between the back-calculation and the experimental
data, which provides feedback to the model on how the internal
coordinate distributions themselves should change.

This can be considered a reinforcement learning (RL) type
of problem and solution. However, unlike a common RL model
where the gradient of the rewards is assumed to be unknown, in
our GRNN, the gradient of the rewards is readily defined as there
are analytical functions that interconvert between the internal coor-
dinates and 3D conformers and between 3D conformers and their
experimental observables. However, what is unknown is how the
underlying ϕ,ψ,ω distribution changes given the reward. This is
such as the RL problem in which the policy gradient is not defined
but must be learned as a set of actions that change the underlying
distribution, i.e., the gradient is not being formulated conformer
by conformer to improve the X-EISD score but instead by how the
ϕ,ψ,ω distribution changes to improve the entire ensemble. In par-
ticular, an optimal strategy of actions that maximizes the expected
return, which can be approximated as the sum of rewards rΘ with
network parameter Θ through sampling the state-action space sT ,

J(Θ) = EsT∼p(sT)[rΘ(sT)] (7)

≈ −∑
sT

γ(sT)(V(sT ,Θ) − V̂ (sT))
2, (8)

is analogous to minimizing the loss between the back-calculation
V(sT ,Θ) of an ensemble of sampled structures (trajectories of tor-
sion angles) and the target experimental observables V̂ with a
parameter γ that weighs the loss of different states.75

To embrace the uncertainties σexp associated with these exper-
imental data, we also devise a “flat-bottom” loss by only performing
gradient updates on the terms of which the back-calculations are
outside of the experimental uncertainty ranges,

J(Θ) = − ∑
V(sT ,Θ)∉[V̂−σexp ,V̂+σexp]

γ(sT)(V(sT ,Θ) − V̂ (sT))
2. (9)
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Even so, it is probably more accepted to define our model as a GRNN
that uses the reward function to bias the probability distributions
of the torsions through agreement with experimental data using
supervised learning.

We train models that are biased with J-couplings (JCs), nuclear
Overhauser effects (NOEs), and paramagnetic relaxation enhance-
ments (PREs). J-couplings (JCs) are defined by the backbone
ϕ torsion angle HN −N − Cα −Hα, and the ensemble average is
back-calculated using the Karplus equation76 as

V(ϕ) = ⟨A cos (ϕ − ϕ0)
2
+ B cos (ϕ − ϕ0) + C⟩, (10)

where ϕ0 is a reference state offset of 60○ and A, B, and C are back-
calculation parameters sampled as random Gaussian variables40

with mean and standard deviation values provided in the work of
Vuister et al.77 NOEs and PREs back-calculations are modeled as the
ensemble averaged distance D of N structures using the ENSEMBLE
approach,23–25

D = (∑
N
i=1 di

−6

N
)

−1/6
. (11)

For joint optimization with multiple data types, the total reward
function sums up the reward for each data type according to Eq. (9)
with a weight hyperparameter. We describe the details of the GRNN
training procedure in Appendices A and B.

To keep the gradient information of the back-calculations
generated from the sampled torsion angles, we utilize Gumbel-
Softmax78 as a differentiable reparameterization trick that allows
sampling from a categorical distribution of i classes during the
forward pass of a neural network. The sample vector yi from the
generated torsion distribution with probabilities pi is expressed as

yi =
exp ((log (pi) + gi)/λ)
∑i exp ((log (pi) + gi)/λ)

, (12)

where gi denotes noise generated from a Gumbel distribution and
the softmax function is taken over the reparameterized distribution
with a temperature hyperparameter λ. We use an annealing sched-
ule that starts from 1 and gradually decreases the temperature by
an order of 0.98 for each training iteration. This annealing process
balances between model accuracy and variance associated with tem-
perature: the models are trained robustly with low variance at high
temperatures initially, and as the model parameters began to con-
verge, the temperature lowering ensures accuracy without causing
significant instability.78 This recast of a stochastic generation pro-
cess allows the model to trace the rewards based on distance type
restraints to specific torsion angles through an internal to Cartesian
coordinates conversion (see Appendices A and B), thereby overcom-
ing the difficulties of a generative model defined in a torsional space
being less sensitive to tertiary contact restraints, such as NOEs and
PREs, as compared to local and angular restraints, such as backbone
J-couplings.

The best model is selected based on the X-EISD score of
the generated structures during the validation steps. The use of a
Bayesian model for validation furnishes the GRNN model with a
better probabilistic interpretation of disordered protein ensembles
by modulating different sources of uncertainties in the experimental

data types. We briefly summarize the details of the X-EISD calcu-
lation and reweighting approach in Appendices A and B and refer
readers to Refs. 36 and 40.

C. Timings for the unbiased and biased
GRNN algorithms

The computational cost of both algorithms scales approxi-
mately linearly with system size. On a single GTX 1070 Ti graph-
ics processing unit (GPU), the small protein Hst5 required 0.2
min/iteration for the unbiased GRNN and 0.74 min/iteration for
the biased GRNN for 6000 samples using a 100 sample batch size.
For the largest protein evaluated here, α-Syn, the unbiased GRNN
required 0.83 and 3.9 min/iteration for the biased GRNN step for
4000 samples using 100 sample batch sizes. It usually takes between
100 and 200 iterations to converge the unbiased and biased GRNNs.

III. RESULTS
All initial conformer pools for Hst5, Aβ40, uDrkN-SH3, and

α-Syn are generated using IDPConformerGenerator.20 IDPCon-
formerGenerator is a flexible software platform that can be used
to create conformers based on torsion angles from any secondary
structure combination. In this work, we use it to randomly sample
only loop and extended state torsion angles to make a conformer
pool lacking helix for uDrkN-SH3, since the uDrkN-SH3 protein
is known to have local regions of helical structure, in order to
generate a clear test case with a starting pool that is missing rele-
vant conformers. For Hst5 and Aβ40, we also start with conformer
pools containing only loop and extended state structures. Corre-
spondingly, for α-Syn, we randomly sample only loop and helical
state torsion angles to make a conformer pool without extended
conformations, although the α-Syn protein is largely known to be
featureless in regard to secondary structure signatures. All of these
are intended to be challenging cases, i.e., the underlying confor-
mational pools are poor “start states” for a reweighting algorithm.
However, as a control, we also start with randomly sampled tor-
sion angles comprising loop and extended states for α-Syn, which
should favor the reweighting algorithm, i.e., a starting pool in which
relevant conformations are (fortuitously) present, to see how the
DynamICE compares for this special case.

We begin with the GRNN that learns the torsional statistics of
the backbone and side chains of the given protein sequence from the
respective starting conformational pools from the IDPConformer-
Generator. We perform this “pre-training” step for three reasons:
(1) to demonstrate that our unbiased GRNN can make reasonable
IDP structural ensembles, as almost all ML models for IDP ensemble
generation in the literature are generative only. (2) IDPConformer-
Generator is a discrete ensemble, but the underlying generative
model is defined as a continuous distribution. (3) Finally, and most
importantly, it defines the initial condition that the underlying struc-
tural distribution shifts away from to conform to the data. This last
condition is important as we use pre-training to get the physical ini-
tial conditions of the backbone but especially the sidechains, because
there is no energy function during biased GRNN optimization and
the experimental data are sparse.

Figure 2 compares the Ramachandran plot for the back-
bone and sidechain torsions from the unbiased GRNN model and
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FIG. 2. Properties of ensembles for the α-Syn IDP from the original pool comprised of loops and helices and from the unbiased GRNN. (a) Ramachandran plots displaying
the backbone torsion angle distributions and (b) histograms displaying the χ1 − χ2 distributions from 100 structures of the training data (top) and unbiased GRNN (bottom).
The density values are scaled by 1 × 10−4. (c) Secondary structure propensities per residue among 50 independently drawn ensembles of 100 structures. The error bars
are shown as ±1 standard deviation. The corresponding plots for the other proteins are shown in the supplementary material, Figs. 2 and 3.

the original training conformer pools and their agreement with
the percentage of secondary (local) structure per residue of all
the major secondary structure categories for the α-Syn IDP; the
supplementary material, Figs. 2 and 3, provides the same results for
the loop/extended states used for the uDrkN-SH3, α-Syn, Hst5, and
Aβ40 proteins. Table I provides quantitative metrics to evaluate the
underlying structural differences of the original pool and unbiased
GRNN ensembles in terms of global shape characteristics, such as
the radius of gyration Rg , end-to-end distance Ree, and asphericity
δ∗, which measures the anisotropy of the ensemble. Table I in the
supplementary material also demonstrates that the unbiased GRNN
models and their respective original conformer pools also yield sim-
ilar root mean squared error (RMSD) of the back calculated NOE,
with respect to various experimental data types, providing additional
evidence that the unbiased GRNNs are robust for all four proteins.

After the pre-training step, we bias the GRNN toward gener-
ating new underlying conformers such that the resulting ensembles
better agree with the measured experimental data through an addi-
tional biasing step. For uDrkN-SH3, Aβ40, and both aqueous and
DMSO solvent Hst5, we perform a GRNN optimization with JCs and
NOEs to create biased ensembles. We chose these two data types as
our previous study with X-EISD has shown that dual reweighting

optimization of local data, such as JCs, and long-ranged restraints,
such as NOEs, can yield ensembles that simultaneously improve
other data types.40 For α-Syn, we train DynamICE by jointly opti-
mizing JCs and PREs. Given the longer-ranged contacts for PREs
compared to NOEs, the biased GRNN must concertedly drive a
greater number of torsional changes to meet each distance restraint.
Furthermore, the reported experimental error estimates tend to be
uncertain, implying that the distances measured are less precise due
to the dynamics of the probe,23,79 contamination of the diamagnetic
protein,80 and perturbations to the IDP structural ensemble due to
the probe label.81,82 PREs are a more difficult class of experimen-
tal data as they tend to be biased toward longer-ranged contacts
between different parts of the sequence compared to NOEs, which
require the model to cooperatively change the torsion angles of a
large number of residues to meet a contact restraint. To best demon-
strate the ability of DynamICE, despite the torsional representation
limitation, we optimize both a subset of PRE data that only contains
contacts equal to or less than ten residues apart as well as the full set
of PRE data.

Figure 3 and the supplementary material, Fig. 4, demonstrate
that DynamICE applied to Hst5 shows strong agreement with JCs
measured in both aqueous and organic phases. While the RMSD
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TABLE I. Evaluation of the unbiased GRNN model, the standard reweighted ensemble optimization, and the DynamICE model for disordered states and variable solvent
conditions for Hst5, Aβ40, uDrkN-SH3, and α-Syn.a The experimental data RMSDs include J-couplings (JCs), nuclear Overhauser effects (NOEs), paramagnetic relaxation
enhancement (PREs), single molecule FRET (smFRET), chemical shifts (CS), and small angle x-ray scattering (SAXS).b Global metrics of the ensembles include adius of
gyration Rg, end-to-end distance Ree, and ensemble asphericity δ∗.b All values are reported in terms of mean and standard deviation (in parentheses) over 50 ensembles of
100 structures each. The chemical shift RMSDs by atom types are shown in the supplementary material, Table IV. The uDrkN-SH3 MD ensemble uses trajectories randomly
sampled from the 30 μs simulation using the a99SB-disp force field.48 Here, we report models trained using the “flat-bottom” loss function Eq. (9), which better interprets the
experimental errors and uncertainties, and the models trained using the simple squared loss Eq. (8) are given in the supplementary material, Table II.

Experimental data type RMSD

JC (Hz) NOE (Å) PRE (Å) smFRET ⟨E⟩ CS (ppm) SAXS (Intensity) Rg (Å) Ree (Å) δ∗

Hst5 ensembles UNOPTIMIZED (loop/extended) and OPTIMIZED with JCs and NOEs taken in the aqueous phase

Unbiased GRNN 0.662 0.359 0.138 0.001 13.59 32.22 0.410
(0.043) (0.005) (0.004) (0.001) (1.79) (10.49) (0.169)

Reweight 0.582 0.371 0.141 0.001 13.26 31.40 0.402
(0.019) (0.006) (0.004) (0.001) (2.00) (10.58) (0.178)

DynamICE 0.317 0.363 0.150 0.001 14.14 34.62 0.422
(0.029) (0.025) (0.004) (0.001) (2.05) (10.61) (0.180)

Hst5 ensembles UNOPTIMIZED (loop/extended) and OPTIMIZED with JCs and NOEs taken in DMSO organic solvent

Unbiased GRNN 1.274 2.933 0.171 13.59 32.22 0.410
(0.046) (0.234) (0.004) (1.79) (10.49) (0.169)

Reweight 1.308 2.158 0.164 13.17 31.42 0.397
(0.033) (0.176) (0.004) (1.95) (10.30) (0.177)

DynamICE 0.532 1.173 0.161 11.67 27.33 0.349
(0.037) (0.146) (0.004) (1.36) (8.50) (0.165)

Aβ40 ensembles UNOPTIMIZED (loop/extended) and OPTIMIZED with JCs and NOEs

Unbiased GRNN 0.797 1.361 0.146 0.734 18.64 44.85 0.448
(0.030) (0.115) (0.034) (0.025) (3.40) (16.38) (0.192)

Reweight 0.716 1.142 0.156 0.795 18.58 44.68 0.455
(0.017) (0.094) (0.037) (0.026) (3.59) (16.41) (0.193)

DynamICE 0.471 1.308 0.105 0.822 17.65 41.62 0.417
(0.034) (0.127) (0.034) (0.028) (3.07) (15.42) (0.193)

uDrkN-SH3 ensembles UNOPTIMIZED (loop/extended) and OPTIMIZED with JCs and NOEs

Unbiased GRNN 1.440 6.343 7.711 0.228 0.495 0.007 23.16 55.51 0.431
(0.028) (0.429) (1.193) (0.032) (0.007) (0.001) (4.81) (21.21) (0.202)

MD 0.730 4.764 5.104 0.074 0.400 0.003 19.69 45.56 0.369
(0.033) (0.254) (0.650) (0.034) (0.011) (0.001) (3.89) (18.07) (0.174)

Reweight 1.398 5.208 7.213 0.208 0.493 0.007 22.35 52.95 0.421
(0.017) (0.365) (1.381) (0.027) (0.009) (0.001) (4.33) (19.26) (0.192)

DynamICE 0.693 5.242 6.346 0.119 0.478 0.004 20.28 48.58 0.401
(0.033) (0.410) (1.073) (0.035) (0.010) (0.001) (3.68) (17.52) (0.193)

α-Syn ensembles UNOPTIMIZED (helix/loop) and OPTIMIZED with JCs and PREs (all data)

Unbiased GRNN 0.622 9.923 0.103 0.612 0.017 33.99 78.66 0.426
(0.032) (0.351) (0.004) (0.019) (0.002) (7.61) (33.80) (0.196)

Reweight 0.528 6.372 0.112 0.638 0.014 35.09 83.48 0.444
(0.048) (0.158) (0.004) (0.026) (0.001) (7.30) (32.45) (0.201)

DynamICE 0.524 8.992 0.145 0.566 0.025 43.81 104.25 0.454
(0.017) (0.355) (0.005) (0.002) (0.002) (9.44) (39.38) (0.198)
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TABLE I. (Continued.)

Experimental data type RMSD

JC (Hz) NOE (Å) PRE (Å) smFRET ⟨E⟩ CS (ppm) SAXS (Intensity) Rg (Å) Ree (Å) δ∗

α-Syn ensembles UNOPTIMIZED (loop/extended) and OPTIMIZED with JCs and PREs (all data)

Unbiased GRNN 0.704 10.088 0.108 0.558 0.013 37.18 84.73 0.443
(0.022) (0.395) (0.005) (0.003) (0.001) (7.90) (34.32) (0.187)

Reweight 0.622 6.200 0.119 0.550 0.014 38.49 87.89 0.432
(0.015) (0.175) (0.005) (0.004) (0.001) (8.63) (35.17) (0.202)

DynamICE 0.655 9.365 0.133 0.588 0.026 41.77 94.80 0.416
(0.009) (0.309) (0.010) (0.003) (0.002) (9.91) (40.57) (0.192)

aThe experimental (expt.) and back-calculation (bc) errors for CS [σexp = 0.03–0.3 ppm; σbc = 0.3–0.5 ppm (hydrogen), 1.2–1.4 ppm (carbon)]; JCs (σexp = 0.5 Hz, σA
bc = 0.14 Hz,

σB
bc = 0.03 Hz, σC

bc = 0.08 Hz); NOEs (σexp = 5.0 Å; σbc = 0.0001 Å); PREs (σexp = 5.0 Å; σbc = 0.0001 Å); smFRET ⟨E⟩ (σexp = 0.02; σbc = 0.0074); and SAXS (σexp = 0.0008–0.002;
σbc = 0.006).
bδ∗ measures the anisotropy of the structures, ranging from 0 (sphere) to 1 (rod).

with respect to the NOE data taken in the aqueous phase is
marginally better compared to the reweighting optimized ensem-
bles, this is not unexpected as the NOEs measured in the aqueous
phase are predominantly sequential contacts (i, i + 1) between the
alpha carbon and amide hydrogen (Table I and the supplementary
material, Fig. 4). This provides limited additional information
besides an indication of the unfolded nature of histatins in the aque-
ous phase, which is already provided by the JC data. Remarkably,
for the Hst5 ensembles in DMSO, the DynamICE model shows
significantly improved NOE agreement due to its ability to cre-
ate new helical conformations, which are lacking in the original
and unoptimized GRNN pool and consequently in the reweight-
ing optimization (Table I and Fig. 3). When trained with the mean
squared error (MSE) loss function [Eq. (8)] that ignores experimen-
tal and back-calculation NOE uncertainties, the model can better
drive toward longer helical conformations (Table II and Fig. 6 in
the supplementary material). It has been argued that since the anti-
fungal activities of histatins may be a result of their interaction with
cell membranes, the structure–function relationship of histatins is
highly relevant to the conformations they adopt in a membrane
environment.70 The ability of DynamICE to contrast the structural
ensembles by solvent conditions is an example of how DynamICE
can provide functional insight into the experimental data.

DynamICE improves the RMSD of JCs for Aβ40 by changing
the underlying torsions to shift toward a more compact conformer
ensemble than the original unbiased Aβ40 ensemble (Fig. 4). While
the Aβ40 reweighting optimization shows a more visible improve-
ment in NOEs than the DynamICE model, the RMSD improvement
is minor and does not necessarily differentiate the two ensembles
given the generous back-calculation uncertainties of NOE distances.
The DynamICE algorithm promotes a helix sub-population near
residue 23 and a turn around residues 13–16 [Figs. 4(d) and 4(h)]
as noted in previous studies,15,83,84 leading to a more spherical
and compact conformer ensemble as measured by ⟨Rg⟩, ⟨Ree⟩, and
⟨δ∗⟩ in Table I. This qualitative change in compaction predicted
by DynamICE is independently validated by the smFRET data,
although it was not directly optimized.

Table I and Fig. 5 show that the optimization using Dynam-
ICE reduces the RMSD of NOE data with respect to the unoptimized
ensembles for uDrkN-SH3 and yields similar RMSDs for the NOEs
compared to reweighting. However, DynamICE shows a significant
RMSD improvement for JCs by changing the conformers of the
underlying ensemble. As a result of these new members, an inde-
pendent validation shows that global configurational metrics, such
as PREs, smFRET, and SAXS, are also improved, although these
additional experimental data types were not optimized directly.
Figure 5 illustrates that these improvements in the optimized and
validated metrics for uDrkN-SH3 arise because the backbone torsion
angles shift toward the helical region after DynamICE optimization
[Fig. 5(a)], leading to a substantial increase in the percentage of heli-
cal content from nearly zero to around 10%–30% at residues 10–20
and 30–45, as shown in Fig. 5(d), and are supported by JCs and
the NOE data, which include a number of i to i + 3 or i + 4 con-
tacts around residues 15–20 and 30–40. By contrast, the reweighting
optimization barely changes the torsion angle profiles from the
unbiased pools [Figs. 5(b) and 5(c)], nor is there a shift in the sec-
ondary structure assignments [Figs. 5(e) and 5(f)] due to a lack of
relevant conformers in the initial pool to further refine ensembles
using the JCs and NOEs data. While reweighting optimization yields
ensembles that slightly shift toward more compact and globular-like
conformers as measured by ⟨Rg⟩, ⟨Ree⟩, and ⟨δ∗⟩, the DynamICE
model exhibits a more pronounced shift in Rg [Fig. 5(g)] and Ree dis-
tributions (Table I) to even more compact disordered states. These
new sub-populations of helical structures [Fig. 5(h)] and more com-
pact conformers generated by DynamICE, which are not available in
the original pool used in the reweighting scheme, are responsible for
better agreement with the overall SAXS intensity profile [Fig. 5(i)].
Thus, by generating physically different conformers, DynamICE
directly overcomes the deficiencies of the static initial ensemble. We
also performed an additional analysis to use the X-EISD score for
the reported MD ensemble result for udrk-SH3 by Robustelli et al.48

and compared it to DynamICE (Table I). We can see that both
ensembles are within the generated blue RMSD uncertainties for
J-couplings, NOEs, and PREs, but more importantly, the qualitative
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FIG. 3. Properties of Hst5 in DMSO from the unbiased ensemble and generated by the DynamICE model compared with reweighting optimization using JCs and NOEs.
Ramachandran plots displaying the backbone torsion angle distributions from the (a) biased GRNN, (b) unbiased GRNN, and (c) reweighting optimization. The density
values are scaled by 1 × 10−4. Secondary structure propensities per residue of the (d) biased GRNN, (e) unbiased GRNN, and (f) reweighting optimization. (g) Comparison
of the radius of gyration distributions before and after optimization with reweighting and DynamICE. (h) Example ensembles of conformers from the Hst5 original pool and
the DynamICE model (helices in green and loops in yellow). Statistical errors from 50 independently drawn ensembles of 100 structures. The error bars are shown as
±1 standard deviation. While Table I reports the results for the biased GRNN model trained with the “flat-bottom” loss Eq. (9), we note that the results are even better for
Hst5 in DMSO when trained with the simple squared loss function Eq. (8), as reported in the supplementary material, Table II.

trends are the same in the prediction of much more compact
ensembles.

We note that the favored helical regions created by DynamICE
are comprised of more 3–10 helices as opposed to α-helices deter-
mined in the optimized ensembles of uDrkN-SH3 using ENSEM-
BLE in previous studies.24,40 While the total amount of helix is
comparable between the original ENSEMBLE implementation and

DynamICE [the supplementary material, Fig. 7(a)], there are several
aspects worth noting. First, the ENSEMBLE method used all the
available data (chemical shifts, smFRET, SAXS, hydrodynamic
radius, etc.) and assumed that no errors existed in the experiment
or back-calculation, and the underlying original ensemble was dom-
inated by α-helices as opposed to 3–10 helices. We note that if we
use Eq. (9), which assumes no experimental or back-calculation
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FIG. 4. Properties of the Aβ40 unbiased ensemble and generated by the DynamICE model compared with reweighting optimization using JCs and NOEs. Ramachandran
plots displaying the backbone torsion angle distributions from the (a) DynamICE, (b) unbiased GRNN, and (c) reweighting optimization. The density values are scaled by
1 × 10−4. Secondary structure propensities per residue of the (d) DynamICE, (e) unbiased GRNN, and (f) reweighting optimization. (g) Comparison of the radius of gyration
distributions before and after optimization with reweighting and DynamICE. (h) Examples of conformers from the Hst5 original pool and the DynamICE model (helices in
green; loops in yellow; and residues 13–16 highlighted in magenta). Statistical errors from 50 independently drawn ensembles of 100 structures. The error bars are shown
as ±1 standard deviation.

uncertainties, we find better agreement with ENSEMBLE in the posi-
tion of the helical regions [the supplementary material, Fig. 7(b)].
However, because the experimental J-coupling data cannot differen-
tiate between the two sub-classes of helices and the i, i + 3, and i, i + 4
NOEs can support both the 3–10 and αhelices, DynamICE deter-
mines more 3–10 helices (Fig. 5). This offers an interesting question
as to whether the DynamICE ensemble is a physical outcome, i.e.,
IDPs may form incipient alpha-helices by first forming 3–10 helices,

or whether another data type, such as chemical shifts, could drive
toward one of the helical subclasses.

The DynamICE results for the α-Syn IDP starting from an
unbiased pool containing loops and helices are shown in Fig. 6 and
Table I. As in the case for uDrkN-SH3, both the reweighting and
DynamICE models achieve improvements in JCs and PRE data types
compared with the unbiased GRNN for α-Syn (Table I). Given the
uncertainties in PRE distances of 5Å the reweighting and DynamICE
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FIG. 5. Properties of the uDrkN-SH3 domain unbiased ensemble and generated by the DynamICE model compared with reweighting optimization using JCs and NOEs.
Ramachandran plots displaying the backbone torsion angle distributions from the (a) DynamICE, (b) unbiased GRNN, and (c) reweighting optimization. The density values
are scaled by 1 × 10−4. Secondary structure propensities per residue of the (d) DynamICE, (e) unbiased GRNN model, and (f) reweighting optimization. (g) Comparison
of the radius of gyration distributions before and after optimization with reweighting and DynamICE. (h) Examples of conformers from the uDrkN-SH3 original pool and the
DynamICE model (helices in green and loops in yellow). Conformers generated with the DynamICE model also exhibit short cooperative secondary structures, such as
β-turns. (i) SAXS intensity curves for DynamICE and reweighting optimized ensembles compared with the experimental data. Statistical errors from 50 independently drawn
ensembles of 100 structures. The error bars are shown as ±1 standard deviation.

RMSDs are not distinguishable. However, unlike the case of uDrkN-
SH3, in which DynamICE drove to more compact ensembles, the
combination of J-coupling and PRE data drives the backbone tor-
sion angles toward the polyproline-II region (ϕ = −90○ to −25○ and
ψ = 120○–150○) after DynamICE optimization [Fig. 6(a)] compared
to the unbiased and reweighted ensembles [Figs. 6(b) and 6(c)].
In particular, we see that the DynamICE optimization has largely

eliminated helical torsions when compared to the unbiased and
reweighted ensembles [Figs. 6(d)–6(f)], as these conformational
states are not unambiguously supported by the JC and PRE exper-
imental data. Since the DynamICE model introduces more extended
conformations [Fig. 6(h)], it noticeably shifts the Rg [Fig. 6(g)] and
Ree (Table I) distributions in comparison with the unoptimized and
reweighted ensembles and exhibits good agreement with the SAXS
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FIG. 6. Properties of the α-Syn unbiased ensemble of helices/loops and ensembles optimized by the DynamICE model compared with reweighting optimization using JCs
and PREs (all data). Ramachandran plots displaying the backbone torsion angle distributions from the (a) DynamICE, (b) unbiased GRNN, and (c) reweighting optimization.
The density values are scaled by 1 × 10−4. Secondary structure propensities per residue of the (d) DynamICE, (e) unbiased GRNN, and (f) reweighting optimization.
(g) Comparison of the radius of gyration distributions before and after optimization with reweighting optimization and DynamICE. (h) Examples of conformers from the α-Syn
original pool and the DynamICE model (helices in green and loops in yellow). (i) SAXS intensity curves for DynamICE and reweighting optimized ensembles compared
with the experimental data. SAXS intensity is scaled by 0.001. Statistical errors from 50 independently drawn ensembles of 100 structures. The error bars are shown as
±1 standard deviation.

data [Fig. 6(i)]. Since no qualitative differences are found when
starting from the loop/extended vs helix/loop pools, we believe that
the limited experimental data of JCs and NOEs as formulated can’t
distinguish between the two qualitatively different ensembles opti-
mized by the DynamICE and reweighting approaches, and both are
reasonably validated by the other data types. In fact, Table III and
Fig. 5 in the supplementary material, show that if we restrict the
PREs to be short-ranged in sequence separation (labels less than

ten amino acids apart), the support for more extended states is still
strong, although long-ranged PRE data are missing.

IV. DISCUSSION
Presently, most methods for creating disordered ensembles

that are consistent with available experimental solution data are
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separated into two steps. The first is to create a static pool of
conformations, and the second is to improve upon that pool by
reweighting different sub-populations of conformations to improve
a score that reflects better experimental agreement.35,36,39,43,44 If
the underlying static pool is insufficient, i.e., if relevant conforma-
tions are absent, there is little that can be solved with reweighting
approaches. Instead, the first step needs to be revisited to create
new structural pools in the hope that the new underlying basis set
of conformations can be made more consistent with experimental
observables. Alternatively, methods have been developed that gen-
erate new conformations by using unbiased48 or biased molecular
dynamics simulations with experimental data,37,38 with the benefit
that such ensembles model physical interactions among side chains
and can create transient local structure details, such as the formation
and packing of hydrophobic cores and local folding of transiently
structured domains with recognizable secondary structure motifs,
but can be computationally costly.

This work offers a conceptual alternative to such existing
approaches through a machine learning method that simultane-
ously physically changes the conformations of the underlying pool
to evolve new structural ensembles that agree with experimental
solution data at minimal computational cost and with no inherent
biases. In particular, DynamICE biases the probability of the residue
torsions of a chain molecule, generating new sub-populations of
disordered states using a reward mechanism that simultaneously
improves agreement with experimental data based on X-EISD
scores. Currently, DynamICE biases the probability distributions
of torsions to take advantage of experimental data types, such as
J-couplings, NOEs, and PREs, but extensions to other data types,
such as smFRET, chemical shifts, and SAXS, are certainly possi-
ble and are under way in our development of this nascent method.
Given the computational timings reported in the section titled
Method, the DynamICE training costs are negligible compared to
molecular dynamics methods and do not simply yield evolving
conformer snapshots but instead are an optimized ensemble gen-
erator. Even so, if a given MD force field is suitable for this class
of protein, we could use it as a structural prior or even use it to
replace IDPConformerGenerator, which we will explore in future
work.

As a proof-of-concept of the DynamICE method, we applied
this approach by biasing toward experimental 3JCs and NOEs for the
unfolded state of the DrkN SH3 domain, human salivary histatin 5 in
aqueous and DMSO solutions, and Aβ40 peptide, and 3JCs and PREs
for the α-synuclein IDP. We showed that the DynamICE approach
generates ensembles of vastly different underlying structural char-
acteristics from their starting pools, to better conform to their
individual experimental data restraints. However, driving a model
that uses an internal coordinate representation of protein conform-
ers to meet distance restraints, such as NOEs and PREs, is not yet
fully optimal. To utilize more effectively the distance/contact-based
data in the reward function, we could consider more hidden states in
the LSTM that replace the prediction of individual residue torsions
with the prediction of larger structural fragments to maintain sec-
ondary structure motifs. It is also a limitation of the torsion-based
(local) protein representation, and in the future, we could explore
the use of a message passing neural network (MPNN), which can
represent the 3D coordinates of the protein conformers directly to
better handle distance restraints.

Posing IDP conformer generation as a problem evaluated by
rewards introduces several benefits over the recent generative mod-
els that simply learn to represent a conformational landscape or
reweighing methods that require that all relevant conformations
be present. As such, the DynamICE method provides a natural
framework to combine the scoring and conformer generation steps
simultaneously with the experimental data, as opposed to requiring a
separation of the scoring and conformer search of a starting/training
conformer pool, and still considers the various errors and uncertain-
ties of a Bayesian model. We believe that the DynamICE approach is
a paradigm shift in how to address the overall conformational search
problem for disordered states of proteins by allowing the underlying
structural pools to evolve toward experimental data under a Bayesian
model that reflects statistical uncertainties. In summary, by show-
ing the ability of DynamICE to differentiate among disordered and
ordered states across variable solvent conditions for the four pro-
teins used here, our approach will allow for greater functional insight
to better support the structure–function relationship.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional training results.
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APPENDIX A: DYNAMICE MODEL AND ALGORITHM
1. Protein conformer representation

Assuming ideal bond lengths and bond angles, a protein con-
former can be represented by a sequence of the backbone and
sidechain torsion angles for each residue j (ωj, ϕj, ψj, χj1, χj2, . . ., χj5).
By parameterizing protein structures in the torsional space, the gen-
erative model covers conformations in a reduced dimension while
preserving local chemical connectivity. The torsional space is dis-
cretized into 2○ bins over the range of [−180, 180] such that each
torsion angle is represented by a vector of size 180 with elements
corresponding to the relative probability of finding the angle at each
angle bin. The relative probability of each bin is calculated by a
Gaussian distribution with a 1○ standard deviation σ to allow for
flexibility,

Pϕ(i) =
1

σ
√

2π
exp(−

(2i − 180 − ϕ)2

2σ2 ), (A1)

where i is the bin index in the range of (1, 2, . . . 180) and periodic
boundaries are enforced.

2. Conformation generation
To initiate the generation of a new protein conformer, a set of

torsion angles of the first residue along with its protein sequence
is provided to the GRNN model. The model repeatedly takes the
torsion angles of the current residue to generate the probability
distributions from which the torsion angles of the next residue
are sampled until it reaches the last residue. The torsion angles
are translated to Cartesian coordinates to generate a conformer.
A Lennard-Jones potential is computed using Amber14SB para-
meters85 with a user-definable threshold to reject severe clashes at
each residue iteration during the conformer building process. The
building and validation of conformers are supported by a conformer
generator module adapted from IDPConformerGenerator.20

3. Training procedure for the generative model
Separate models are trained for the disordered states of Hst5,

Aβ40, uDrkN-SH3 domain, and α-Syn. The Hst5 and Aβ40 pools
both contain 8000 conformers and are split into 6000 for train-
ing, 1000 for validation, and 1000 for testing. The uDrkN-SH3
pool contains 7373 conformers and is split into 6000 for training,
600 for validation, and 737 for testing. The α-Syn pool contains
4903 conformers, in total, and is split into 4000 for training, 400 for
validation, and 503 for testing. We use categorical cross-entropy loss,

LΘ = −
1
N

N

∑
i=1
∑

ti

p̂(ti∣t1, t2, . . . , ti−1) log pΘ(ti∣t1, t2, . . . , ti−1), (A2)

where N represents the number of angle bins, p̂(ti∣t1, t2, . . . , ti−1)

represents the actual probability of a specific torsion at the tith
step, and pΘ(ti∣t1, t2, . . . , ti−1) is the probability predicted by the

neural network with parameters Θ. The model is trained using the
Adam optimizer86 in batches of size 100. To achieve convergence, we
employed an initial learning rate of 0.0005 and reduced the learn-
ing rate by a factor of 0.8 when the loss function plateaued. The
generative models are trained for 300 epochs.

4. DynamICE supervised learning procedure
Torsion angles unrelated to the experimental observables being

optimized, if unrestrained, can lead to a noisy action space dur-
ing training. Thus, only the strongly relevant model parameters are
updated. This includes parameters of the torsion en(de)coder and
LSTM in the residue-level recurrent unit. We restrain parameters in
the torsion recurrent unit to preserve the side chain torsion corre-
lation learned from the pre-training stage, allowing the side chain
torsion distribution to shift as the backbone torsion angle changes
during the training stage.

We tested JC:NOE (PRE) reward weight hyperparameters
of 1:1, 1:2, and 1:4. For the Aβ40 and uDrk-SH3 DynamICE
models, a JC:NOE reward weight of 1:4 yields the best result;
for the Hst5 and α-Syn DynamICE models, we report the result
using a JC:NOE (PRE) weight of 1:2. Experimental data points are
weighed equally in the loss function, except for the supplementary
material, Fig. 7 model, where the short-ranged NOEs (within
five residues) are dynamically weighed higher during training
(γepoch<=100

i,i+<=5 : γepoch<=100
rest = 2 : 1; γepoch=100−200

i,i+<=5 : γepoch=100−200
rest = 4 : 1).

In each epoch, 50 molecules are sampled, and model weights are
updated by taking gradient steps on the loss function using the
Adam optimizer with a learning rate cap of 0.0005.

5. Internal–Cartesian conversion
For evaluations on the distance-based experimental data types,

the conformers, which are represented by torsion angle trajectories
in the generative model, need to be reconstructed in terms of Carte-
sian coordinates. We use the SidechainNet package59 for internal
to Cartesian conversion following the natural extension reference
frame (NeRF) algorithm.87

APPENDIX B: X-EISD MODEL
1. Bayesian framework

The X-EISD method applies a maximum likelihood estimator
to formulate a log-likelihood as the degree to which a simulated
ensemble is in agreement with a set of experimental data, given
both the experimental and back-calculation uncertainties modeled
as optimized Gaussian random variables under a Bayesian frame-
work. X-EISD can be applied to generate an aggregated score of
multiple data types, as shown in Eq. (B1),

log p(X, ξ∣D, I) = log p(X∣I) +
M

∑
j=1

log [p(d j ∣X, ξ j , I)p(ξ j ∣I)] + C,

(B1)
where X is a set of conformers, ξ denotes the various uncertainties,
D is the experimental data, and I is any other prior information. We
refer readers to Refs. 36 and 40 for more detailed descriptions of the
approach.
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2. Ensemble reweighting and characterization
For reweighting optimizations of all the protein cases, we use

X-EISD as a probabilistic score in a simple direct maximization, per-
forming 10 000 attempts to exchange one conformer with another
for an ensemble with 100 starting structures and accepting the
exchange if the new ensemble receives a higher X-EISD score than
the previous one,

acc(i→ j) = X − EISD(i) > X − EISD( j). (B2)

Reweighting optimizations with each set of data type conditions
(JCs and NOEs/PREs) are repeated 100 times. In addition to the data
types included during the RL-like training, we validate the gener-
ated ensembles with chemical shifts (CS), smFRET ⟨E⟩, and SAXS.
We use UCBShift88 for chemical shift calculations and CRYSOL
software program89 for SAXS intensities, and the efficiencies of the
energy transfer are treated using in-house scripts as reported previ-
ously.40 The preparations of experimental data and back-calculation
uncertainties for the reported data types are also described previ-
ously.40 The experimental J-couplings, NOEs, and chemical shifts
for histatin 5 are reported in Raj et al.,70 and we use the experimental
SAXS data in an aqueous solution from Sagar et al.90 The experimen-
tal data for Aβ40 used are reported by Ball et al. and Meng et al.15,91

The various experimental data types for the DrkN SH3 unfolded
domain are from the previous work of the Forman-Kay and Gradi-
naru group,92,93 and those for α-Synuclein are reported in Ferrie and
Petersson19 Ensemble global metrics, including radius of gyration
Rg , end-to-end distance Ree, and asphericity δ∗ [which measures the
anisotropy of the structural ranging from 0 (sphere) to 1 (rod)], are
calculated using the MDTraj package.94
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