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Abstract 

A parallel algorithm to compute the singular value de
composition (SVD) of block circulant matrices on the 
Cray-2 is described. For a block circulant form de
scribed by M blocks with m x n elements in each block, 
the computation time using an SVD algorithm for gen
eral matrices has a lower bound !l(M3min(m, n)mn). 
Using a combination of fast Fourier transform (FFT) 
and SVD steps, the computation time for block cir
culant singular value decomposition (BCSVD) has a 
lower bound !l(Mmin(m, n)mn); a relative savings 
of - M 2 . Memory usage bounds are reduced from 
8(M2 mn) to 8(Mmn); a relative savings of- M. 
For M = m = n = 64, this decreases the computa-
tion time from approximately 12 hours to 30 seconds 
and memory usage is reduced from 768 megabytes to 12 
megabytes. The BCSVD algorithm partitions well into 
n macrotasks with a granularity of e( mM log M) for 
the FFT portion of the algorithm. The SVD portion 
of the algorithm partitions into M macrotasks with a 
granularity of O(min(m, n)mn). Again, for the case 
where M = m = n = 64, the FFT granularity is 29ms 
and the SVD granularity is 428ms. A speedup of 3.06 
was achieved by using a prescheduled partitioning of 
tasks. The process creation overhead was 2.63ms. Us
ing a more elaborate self-scheduling method with four 
synchronizing server processes, a speedup of 3.25 was 
observed with four processors available. The server 
synchronization overhead was 0.32ms. Relative mem
ory overhead in both cases was about 4% for data space 
and 40% for code space. 

1 Introduction 

Singular value decomposition is a powerful technique 
used in image processing for singular value spectral 
analysis[1][2] of imaging systems and the solution of 
linear systems of equations using pseudo-inverses[31[4l. 
However, the computational complexity makes its use 
impractical for many problems where the linear dimen
sion of the matrix is large. 

A special class of matrices have the block circu
lant structure shown in equation 1. There are M x M 
blocks each of dimension m x n. This form of matrix 
arises quite frequently when a function is invariant un
der rotation. As an example for the rest of the paper, 
the case where M = m = n = 64 shall be used. 

Ao A1 A2 . AM-2 AM-1 
AM-1 Ao A1 AM-3 AM-2 
AM-2 AM-1 Ao AM-4 AM-3 

A= 

A2 A3 ~ Ao A1 
A1 A2 A3 AM-1 Ao 

(1) 

A e( mnM log M) 1 fast Fourier transform 
(FFT) technique[6][7) and a !l(Mmin(m, n)mn) singu
lar value decomposition (SVD) algorithm are used to 

1Let n,no eN and ( e R,£ > o. Also, J,g: N- R. Then, 
define[S] 

1. Upper bound 

O(J(n)) =: {g(n) : g(n) $ £j(n) V n >no} 

2. Lower bound 

O(J(n)):: {g(n) : g(n) ~ £/(n) V ~ > no} 

3. ·combined bound 

9(J(n)) :: O(J(n)) n O(J(n)) 

4. Asymptotic 

. /(n) 
f(n) -g(n) ~ lim -( ) = 1 

n-oo g n 



compute the factorization[8] 

A (FM ® Im)t D (FM ®In) 

= (FM ® Im)t UvSvVJ (FM ®In) 

= USvvt 
=· ·usvt 

(2) 

(3) 

(4) 
(5) 

where F M is a normalized M x M discrete Fourier op
erator matrix, Im is an m x m identity matrix, and 
In is an n x n identity matrix. U and V are unitary 
matrices whose columns are respectively the left and 
right singular vectors of A. S is a generalized diagonal 
matrix containing the singular values of A. The opera.. 
tor t is conjugate transpose and ® is the outer product 
operation. 

2 Implementation 

Each of the mn discrete Fourier transforms of equa.. 
tion 2 can be computed independently; i.e., each sum 
does not need the result or input of another sum. 
However, the 6( M log M) grain size of this task is 
extremely small. For the example, it takes about 
0.45ms[9][1C)]. This is comparable to the 0.31ms neces
sary to synchronize with a server process and is much 
smaller than the 2.63ms necessary to create a new pro
cess. It is thus advantageous to increase the grain size 
of FFT tasks by computing m FFTs per task. The 
resulting granularity of 6(mM logM) is about 29ms. 

The SVD of the blocks of D also do not have in
put/output dependencies with other blocks and can be 
computed without explicit synchronization. The task 
granularity of this process is O(min(m, n)mn) which is 
428ms for the example problem. 

2.1 Prescheduling 

A prescheduled algorithm was implemented by creat
ing one process for each of the n FIT tasks and another 
process for each of the M SVD tasks. The parent task 
starts k processes with either an FFT or an SVD task. 
As one of the k processes terminates another one is 
created so k processes are always available for execu
tion. This method is very easy to implement because 
all synchronization is implicit in the fork and join like 
paradigm[ 11 l. 

2.2 Self-scheduling 

To overcome the process creation overhead, a self
scheduling algorithm was constructed[12J. This 
method is more complex than the prescheduled algo
rithm but has a smaller time overhead. It requires ex
plicit synchronization between server processes and a 
task manager. k server processes are created and each 

2 

waits for a start signal after initial setup of local state 
information. After receiving the start signal from the 
task manager, a server checks what part of the matrix 
it is to work on next. When finished the server sends 
a ready signal to the hibernating manager. The man
ager then reassigns each of the server processes until 
the task queue is empty. 

3 Results 

Figure 1 shows the computation time for different sizes 
of input matrices. The speedup of the algorithm, 
shown in figure 2, increases as the size of M, m, and n 
are increased. The prescheduled algorithm is faster for 
very small matrix sizes because the self-scheduled algo
rithm server processes have a larger startup overhead 
than a process started by the prescheduled algorithm. 
The self-scheduled algorithm is faster for medium sized 
problems that have small grain sizes but the presched
uled algorithm again approaches the speedup of self
scheduling as the problem size increases. 

25 

20 

s 

Execution time versus Matrix size 
Sequential algorithm • 

Prescheduling algorithm + 
Self-scheduling algorithm x 

20 40 60 

Matrix size, M=m=n 

80 

Figure 1: Computation time versus problem size with 
four tasks and four processors available to service tasks. 
Each point represents the average of eight trials. 

The efficiency, shown in figure 3, does not ap
proach unity as quickly as expected. This might be at
tributed to the timesharing scheduling algorithm used 
by the CTSS operating system and not to synchroniza.. 
tion overhead because the overhead, shown in table 1, 
is less than 1.0% forM, m, and n larger than 64[13][14]. 

( ·. 

( 
\·· 



\ 
•d 

!i' 
13 
8. 

ct:) 

4 

3 

2 

Multitasking speedup versus Matrix size 
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Figure 2: Speedup versus problem size with four tasks 
and.four processors available to service tasks. 

It was not possible to verify this conjecture by using 
the machine without other users present. 

The process creation time was found to be 
2.63ms. Task synchronization in the self-scheduling 
algorithm was 0.3lms. A typical.procedure call was 
measured to take 4.7J.'S. Self-scheduling has Jess time 
overhead than prescheduling but is still 66 times more 
expensive than a procedure invocation. 

Data memory usage and overhead is shown in 
table 2. Very little memory is necessary for the syn
chronization of tasks. Each of the processes needs some 
local working storage for computing FFTs and SVDs. 
Code memory usage and overhead is shown in table 3. 
The code space sharing was small due to a problem in 
the Fortran compiler that made code replication nec
essary. 

Dynamic memory allocation costs are basically 
independent of the block size being allocated for small 
blocks. The cost depends almost entirely on the num
ber of blocks being allocated. Each block takes ap
proximately 0.68ms to allocate. The server processes 
of the self-scheduling algorithm avoid this overhead by 
reusing their local storage during each activation. The 
prescheduling algorithm originally allocated local stor
age blocks within each child process. This was deemed 
to be unsatisfactory and another parameter with work
ing storage was passed to each child to avoid the over-
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Figure 3: Efficiency versus problem size with four tasks 
and four processors available to service tasks. 

head of dynamic memory allocation. 

4 Discussion 

The BCSVD algorithm provides orders of magnitude 
speedup by utilizing the circulant structure of matrices. 
A further speedup was obtained using macrotasking. 
This does not reduce central processing unit charges 
because time on all processors is billed to the job[l4]_ 
However, a substantial savings in memory charges is 
achieved because the program memory residency time 
is reduced by the multiprocessor speedup[l5][16J. For 
typical problems M, m, and n are approximately 256. 
This requires approximately 800 megabytes of memory 
which can be quite costly to use. 

Self-scheduling is useful when the task gran
ularity is small. As the task granularity in
creases, prescheduling overhead becomes less impor
tant. Prescheduling is much easier to implement and 
debug. There are no explicit synchronizations to con
sider since the operating system handles the process 
allocation and scheduling. The parent only has to wait 
for the operating system to signal that the child has 
finished. Self-scheduling needs explicit synchronization 
with the server tasks and is therefore more difficult to 
implement and debug with the tools available. 

The Fortran compiler used does not allocate lo-



M=m=n prescheduled self-scheduled 
overhead ( ms) '?'o overhead overhead ( ms) 'Yo overhead 

4 25.7 29.9 
8 46.8 42.77 32.3 5.09 

16 80.2 10.89 37.3 1.29 
32 155.7 2.66 47.2 0.32 -64 306.8 0.61 67.1 0.07 

Table 1: Synchronization overhead versus problem size. 

M-m-n sequential prescheduled self-scheduled 
usage (KB) usage (KB) '?'o overhead usage (KB) '?'o overhead 

8 112 409 265.2 475 324.1 
16 240 533 130.4 604 151.7 
32 1648 1946 18.1 1948 18.2 
64 12400 12698 2.4 12888 3.9 

Table 2: Data memory usage and overhead versus problem size with four tasks. 

cal variables on the stack properly. It puts some local 
variables into static storage. Thus, code sharing is not 
possible for Fortran subroutines .. Each process must 
have a separate copy of the code and local data space. 
This was done by creating copies of the subroutines 
and giving each copy a unique name space by append
ing the process number to the name of the subroutine 
and all of its descendants. 

5 Conclusions 

The orthogonality properties of multidimensional fast 
Fourier transforms (FFT) allows the FFT portion 
of the block circulant singular value decomposition 
(BCSVD) algorithm to partition into n macrotasks. 
Each singular value decomposition (SVD) of the blocks 
of the reduced matrix can be computed independently 
using M macrotasks. For an M = m = n = 64 exam
ple, a speedup of 3.06 was achieved for prescheduling 
and for self-scheduling a speedup of 3.25 was observed 
using four processors on the Cray-2. Relative time 
overhead was 0.5% for the prescheduled algorithm and 
0.07% for the self-scheduled algorithm. Relative mem
ory overhead was 4% for both cases. The prescheduled 
algorithm is satisfactory for most problems because M, 
m, and n are large; thus, the task granularity will be . 
large when compared to the synchronization overhead. 

Multitasking the block circulant singular value 
decomposition algorithm decreases overall computa
tion costs by reducing f.he time large sections of mem
ory are in use. Little or no gain comes from reduced 
central processing unit charges since processing time 
on all processors is charged to a job. 
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