
Lawrence Berkeley National Laboratory
Recent Work

Title
Macrotasking the Singular Value Decomposition of Block Circulant Matrices on the Cray-2

Permalink
https://escholarship.org/uc/item/7dg0k01k

Author
Baker, J.R.

Publication Date
1989-09-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7dg0k01k
https://escholarship.org
http://www.cdlib.org/

'l

0

LBL-27821

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

To be.J::>resented at the Supercomputing "89" Conference,
Reno, NV, No~ember 13-17, 1989 -

Macrotasking the Singular Value Decomposition
of Block Circulant Matrices on thecCray-2

J.R. Baker

September 1989

·Donner Laboratory
gG

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

\. -- -- --
!' r, -h n o r
I l l 0
1: n D

.b ,;.~~
·~ tD tD -u
\' "'lll -<
• ~ lll. ')
j l -- -- --, ...
jt tv
l, a.
\! 10 .. .
l: (JJ
.i 0
ll· r
t r tv r

crn 1
• o ·ru

.l)j lJ ..J
i-< Ill
-< ru • ru ,_.. .

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

Macrotasking the Singular Value Decomposition of Block
Circulant Matrices on the Cray-2

Jolm R. Baker
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
and

Research Medicine and Radiation Biophysics Division
Lawrence Berkeley Laboratory

Abstract

A parallel algorithm to compute the singular value de­
composition (SVD) of block circulant matrices on the
Cray-2 is described. For a block circulant form de­
scribed by M blocks with m x n elements in each block,
the computation time using an SVD algorithm for gen­
eral matrices has a lower bound !l(M3min(m, n)mn).
Using a combination of fast Fourier transform (FFT)
and SVD steps, the computation time for block cir­
culant singular value decomposition (BCSVD) has a
lower bound !l(Mmin(m, n)mn); a relative savings
of - M 2 . Memory usage bounds are reduced from
8(M2 mn) to 8(Mmn); a relative savings of- M.
For M = m = n = 64, this decreases the computa-­
tion time from approximately 12 hours to 30 seconds
and memory usage is reduced from 768 megabytes to 12
megabytes. The BCSVD algorithm partitions well into
n macrotasks with a granularity of e(mM log M) for
the FFT portion of the algorithm. The SVD portion
of the algorithm partitions into M macrotasks with a
granularity of O(min(m, n)mn). Again, for the case
where M = m = n = 64, the FFT granularity is 29ms
and the SVD granularity is 428ms. A speedup of 3.06
was achieved by using a prescheduled partitioning of
tasks. The process creation overhead was 2.63ms. Us­
ing a more elaborate self-scheduling method with four
synchronizing server processes, a speedup of 3.25 was
observed with four processors available. The server
synchronization overhead was 0.32ms. Relative mem­
ory overhead in both cases was about 4% for data space
and 40% for code space.

1 Introduction

Singular value decomposition is a powerful technique
used in image processing for singular value spectral
analysis[1][2] of imaging systems and the solution of
linear systems of equations using pseudo-inverses[31[4l.
However, the computational complexity makes its use
impractical for many problems where the linear dimen­
sion of the matrix is large.

A special class of matrices have the block circu­
lant structure shown in equation 1. There are M x M
blocks each of dimension m x n. This form of matrix
arises quite frequently when a function is invariant un­
der rotation. As an example for the rest of the paper,
the case where M = m = n = 64 shall be used.

Ao A1 A2 . AM-2 AM-1
AM-1 Ao A1 AM-3 AM-2
AM-2 AM-1 Ao AM-4 AM-3

A=

A2 A3 ~ Ao A1
A1 A2 A3 AM-1 Ao

(1)

A e(mnM log M) 1 fast Fourier transform
(FFT) technique[6][7) and a !l(Mmin(m, n)mn) singu­
lar value decomposition (SVD) algorithm are used to

1Let n,no eN and (e R,£ > o. Also, J,g: N- R. Then,
define[S]

1. Upper bound

O(J(n)) =: {g(n) : g(n) $ £j(n) V n >no}

2. Lower bound

O(J(n)):: {g(n) : g(n) ~ £/(n) V ~ > no}

3. ·combined bound

9(J(n)) :: O(J(n)) n O(J(n))

4. Asymptotic

. /(n)
f(n) -g(n) ~ lim -() = 1

n-oo g n

compute the factorization[8]

A (FM ® Im)t D (FM ®In)

= (FM ® Im)t UvSvVJ (FM ®In)

= USvvt
=· ·usvt

(2)

(3)

(4)
(5)

where F M is a normalized M x M discrete Fourier op­
erator matrix, Im is an m x m identity matrix, and
In is an n x n identity matrix. U and V are unitary
matrices whose columns are respectively the left and
right singular vectors of A. S is a generalized diagonal
matrix containing the singular values of A. The opera..
tor t is conjugate transpose and ® is the outer product
operation.

2 Implementation

Each of the mn discrete Fourier transforms of equa..
tion 2 can be computed independently; i.e., each sum
does not need the result or input of another sum.
However, the 6(M log M) grain size of this task is
extremely small. For the example, it takes about
0.45ms[9][1C)]. This is comparable to the 0.31ms neces­
sary to synchronize with a server process and is much
smaller than the 2.63ms necessary to create a new pro­
cess. It is thus advantageous to increase the grain size
of FFT tasks by computing m FFTs per task. The
resulting granularity of 6(mM logM) is about 29ms.

The SVD of the blocks of D also do not have in­
put/output dependencies with other blocks and can be
computed without explicit synchronization. The task
granularity of this process is O(min(m, n)mn) which is
428ms for the example problem.

2.1 Prescheduling

A prescheduled algorithm was implemented by creat­
ing one process for each of the n FIT tasks and another
process for each of the M SVD tasks. The parent task
starts k processes with either an FFT or an SVD task.
As one of the k processes terminates another one is
created so k processes are always available for execu­
tion. This method is very easy to implement because
all synchronization is implicit in the fork and join like
paradigm[11 l.

2.2 Self-scheduling

To overcome the process creation overhead, a self­
scheduling algorithm was constructed[12J. This
method is more complex than the prescheduled algo­
rithm but has a smaller time overhead. It requires ex­
plicit synchronization between server processes and a
task manager. k server processes are created and each

2

waits for a start signal after initial setup of local state
information. After receiving the start signal from the
task manager, a server checks what part of the matrix
it is to work on next. When finished the server sends
a ready signal to the hibernating manager. The man­
ager then reassigns each of the server processes until
the task queue is empty.

3 Results

Figure 1 shows the computation time for different sizes
of input matrices. The speedup of the algorithm,
shown in figure 2, increases as the size of M, m, and n
are increased. The prescheduled algorithm is faster for
very small matrix sizes because the self-scheduled algo­
rithm server processes have a larger startup overhead
than a process started by the prescheduled algorithm.
The self-scheduled algorithm is faster for medium sized
problems that have small grain sizes but the presched­
uled algorithm again approaches the speedup of self­
scheduling as the problem size increases.

25

20

s

Execution time versus Matrix size
Sequential algorithm •

Prescheduling algorithm +
Self-scheduling algorithm x

20 40 60

Matrix size, M=m=n

80

Figure 1: Computation time versus problem size with
four tasks and four processors available to service tasks.
Each point represents the average of eight trials.

The efficiency, shown in figure 3, does not ap­
proach unity as quickly as expected. This might be at­
tributed to the timesharing scheduling algorithm used
by the CTSS operating system and not to synchroniza..
tion overhead because the overhead, shown in table 1,
is less than 1.0% forM, m, and n larger than 64[13][14].

(·.

(
\··

\
•d

!i'
13
8.

ct:)

4

3

2

Multitasking speedup versus Matrix size
Prescheduling algorithm+

Self-scheduling algorithm x

F
i ,.

)f.

;c
I :+­

)(... I :

I ', ,'.:/

I)(,/

~.:.:.:~.:::.-::.-t<·······+·~······-.1
I

I

,i

/f
:f- I'

/ I
/ I

i X

*' :' I
+K

0~-------+--------+--------r------~
0 20 40 60 80

Matrix size, M=m=n

Figure 2: Speedup versus problem size with four tasks
and.four processors available to service tasks.

It was not possible to verify this conjecture by using
the machine without other users present.

The process creation time was found to be
2.63ms. Task synchronization in the self-scheduling
algorithm was 0.3lms. A typical.procedure call was
measured to take 4.7J.'S. Self-scheduling has Jess time
overhead than prescheduling but is still 66 times more
expensive than a procedure invocation.

Data memory usage and overhead is shown in
table 2. Very little memory is necessary for the syn­
chronization of tasks. Each of the processes needs some
local working storage for computing FFTs and SVDs.
Code memory usage and overhead is shown in table 3.
The code space sharing was small due to a problem in
the Fortran compiler that made code replication nec­
essary.

Dynamic memory allocation costs are basically
independent of the block size being allocated for small
blocks. The cost depends almost entirely on the num­
ber of blocks being allocated. Each block takes ap­
proximately 0.68ms to allocate. The server processes
of the self-scheduling algorithm avoid this overhead by
reusing their local storage during each activation. The
prescheduling algorithm originally allocated local stor­
age blocks within each child process. This was deemed
to be unsatisfactory and another parameter with work­
ing storage was passed to each child to avoid the over-

3

0.8

0.6

0.4

0.2

Multitasking efficiency versus Matrix size
Prescheduling algorithm +

Self-scheduling algorithm x

;c
'+ X.. /.'

I ', ,'.:/

I)(//

,' +·········o~-'

~.:.:.:~ .. ::.-:: . .f_....··
i

l
F

i
l

;:f.
_..i

,.f
.f"f<

....... ,'
i X

//
+K

0~------~--------~--------+-------~
0 20 40 60 80

Matrix size, M=m=n

Figure 3: Efficiency versus problem size with four tasks
and four processors available to service tasks.

head of dynamic memory allocation.

4 Discussion

The BCSVD algorithm provides orders of magnitude
speedup by utilizing the circulant structure of matrices.
A further speedup was obtained using macrotasking.
This does not reduce central processing unit charges
because time on all processors is billed to the job[l4]_
However, a substantial savings in memory charges is
achieved because the program memory residency time
is reduced by the multiprocessor speedup[l5][16J. For
typical problems M, m, and n are approximately 256.
This requires approximately 800 megabytes of memory
which can be quite costly to use.

Self-scheduling is useful when the task gran­
ularity is small. As the task granularity in­
creases, prescheduling overhead becomes less impor­
tant. Prescheduling is much easier to implement and
debug. There are no explicit synchronizations to con­
sider since the operating system handles the process
allocation and scheduling. The parent only has to wait
for the operating system to signal that the child has
finished. Self-scheduling needs explicit synchronization
with the server tasks and is therefore more difficult to
implement and debug with the tools available.

The Fortran compiler used does not allocate lo-

M=m=n prescheduled self-scheduled
overhead (ms) '?'o overhead overhead (ms) 'Yo overhead

4 25.7 29.9
8 46.8 42.77 32.3 5.09

16 80.2 10.89 37.3 1.29
32 155.7 2.66 47.2 0.32 -64 306.8 0.61 67.1 0.07

Table 1: Synchronization overhead versus problem size.

M-m-n sequential prescheduled self-scheduled
usage (KB) usage (KB) '?'o overhead usage (KB) '?'o overhead

8 112 409 265.2 475 324.1
16 240 533 130.4 604 151.7
32 1648 1946 18.1 1948 18.2
64 12400 12698 2.4 12888 3.9

Table 2: Data memory usage and overhead versus problem size with four tasks.

cal variables on the stack properly. It puts some local
variables into static storage. Thus, code sharing is not
possible for Fortran subroutines .. Each process must
have a separate copy of the code and local data space.
This was done by creating copies of the subroutines
and giving each copy a unique name space by append­
ing the process number to the name of the subroutine
and all of its descendants.

5 Conclusions

The orthogonality properties of multidimensional fast
Fourier transforms (FFT) allows the FFT portion
of the block circulant singular value decomposition
(BCSVD) algorithm to partition into n macrotasks.
Each singular value decomposition (SVD) of the blocks
of the reduced matrix can be computed independently
using M macrotasks. For an M = m = n = 64 exam­
ple, a speedup of 3.06 was achieved for prescheduling
and for self-scheduling a speedup of 3.25 was observed
using four processors on the Cray-2. Relative time
overhead was 0.5% for the prescheduled algorithm and
0.07% for the self-scheduled algorithm. Relative mem­
ory overhead was 4% for both cases. The prescheduled
algorithm is satisfactory for most problems because M,
m, and n are large; thus, the task granularity will be .
large when compared to the synchronization overhead.

Multitasking the block circulant singular value
decomposition algorithm decreases overall computa­
tion costs by reducing f.he time large sections of mem­
ory are in use. Little or no gain comes from reduced
central processing unit charges since processing time
on all processors is charged to a job.

4

6 Acknowledgements

The author would like to thank TF Budinger, RH
Huesman, MR Kessler, R Marr, MS Roos, EM
Salmeron, and STS Wong for helpful discussions and
the consulting staff at NMFECC for answering many
programming questions. This work was supported
by the Office of Energy Research, Office of Health
and Environmental Research, of the U.S. Department
of Energy under contract No DE-AC03-76SF00098,
by the National Institute of Health, National Heart,
Lung, and Blood Institute under grants No HL07367
and HL25840, National Institute of Aging under
grant AG05890, National Cancer Institute under grant
CA38086, by Cray Research Inc., and by IBM Inc.

7 References

(1] Golub GH and CF Van Loan. Matrix Computa­
tions. Volume 3 of Johns Hopkins Series in 'the
Mathematical Sciences, Johns Hopkins University
Press, Baltimore, MD, 1983.

(2] llice JR. Numerical Methods, Software, and Anal­
ysis. McGraw-Hill, New York, NY, 1983.

(3] Andrews HC and BC Hunt. Digital Image
Restoration. Prentice-Hall, Englewood Cliffs, NJ,
1977.

(4] Strang G. Linear Algebra and Its Applications.
Academic Press, Orlando, FL, 1980.

(5] Knuth DE. The Art of Computer Programming.
Volume 1, Addison Wesley, Reading, MA, second
edition, 1981.

J

k sequential prescheduled self-scheduled
usage (KB) usage (KB) %overhead usage (KB) 'fo overhead

1 404 450 11.4 447 10.6
2 404 489 21.0 492 21.8
3 404 530 31.1 537 32.9
4 404 570 41.1 582 44.1

Table 3: Code memory usage and overhead versus number of active tasks.

[6) Brigham EO. The Fast Fourier Transform.
Prentice-Hall, Englewood Cliffs, NJ, 1974.

[7) Bracewell RN. Fourier techniques in two dimen­
sions. In Price JR, editor, Fourier Techniques and
Applications, pages 45-71, Plenum Press, New
York, 1985.

[8] Baker JR, RH Huesman, and TF Budinger. Sin­
gular Value Decomposition of Block Circulant Ma­
trices. Technical Report LBL-27697, LBL, 1989.

[9] Buneman 0. Vector FFT for the Cray-2. NM­
FECC Buffer, 10{11):10-11, 1986.

[10) Despain AM. Very fast Fourier transform al­
gorithms for hardware implementation. IEEE
Transactions on Computers, C-28{5):333-341,
1979. .

[11) Mundie DA and DA Fisher. Parallel processing in
Ada. Computer, 19{8):20-25, 1986.

[12] Quinn MJ. Designing Efficient Algorithms for
Parallel Computers. McGraw-Hill, New York,
NY, 1987.

[13) Mirin A. Parallelization of a 3-D MHD code, part
1: Methodology and results. NMFECC Buffer,
11{7):14-16, 1987.

[14) Mirin A. Parallelization of a 3-D MHD code, part
II: Analysis of multiprocessing efficiency on the
Cray-2. NMFECC Buffer, 11{8):11-13, 1987.

[15) Patton PC. Multiprocessors: Architectures and
applications. Computer, 18{6):29-40, 1985.

[16) Gelernter D. Domesticating parallelism. Com­
puter, 19{8):12-16, 1986.

5

.:... :!

' '

1.Q; ~~~

.;, ...
.,~

LAWRENCE BERKELEY~LABORATORY
TECHNICAL INFORMATION DEPARTMENT

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

·~ -..z_«<-;~~

·-- ''?'\···

