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ON BARYON SPECTRAL FUNCTIOH SUM RULES

H. Genz

lavrence Radiation Laboratory
University of California
Berkeley, California

July 2, 1969

ABSTRACT

Necessary and sufficient’ conditions for baryon spectral-function
sum rules are obtained under the assumptions that (1) the equal-time

commutator of the axial charges Q5?(xo) (a = 1,2,3) and the nucleon
2 . terms)

ol

field ¥(y) - is given by [Q5 (yo),‘¥(y)] = - rAw(y)VSTa + (AL =
and that (2) the axial current Aua(x) is conserved. For each of these

sun rules (enumerated by n = 1,2,3...) the equivalence to

o
2n -1

P (i) |Ggg) v W) | )5

+Jd[70 7o

is actually shown under the weaker conditions, assurption (1) and,

instead of (2),

-

; J =2 3 | f— ' a 21‘1‘2"3
3 . \j‘ 5 o a \ aof « \
} | ( (;ﬁo/ L d7x 9"A (Yo:ggz (g;o) 7)), v(2) )=0 .
s : . . s ‘y =2
Q o] .

=0
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Further equivalences are given. The sum rules connect the

%, J = %+) and (I =,%, J = %‘) baryon spectrum and include (for

(1 =
n=1) a sum rule, obtained independently by J. Rothleitner and (in the
one-perticle approximation) by M. Sugawara. Ih our derivation we make no
assumptions on higheenergy behevior and we use an identity of the
Jacobi type. |

Assuming the first two.sum rules to be valid, the model then predicts
a’ P (m s> 1470 MeV) resonance [whlch may be identified as the observed

P11(1‘5Oi] from the existence of the four nucleon resonances

Pll(9l+0), Pll( 1Luo;, 511(1550) and sll(l'no)




|
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The spectral=-function sum rules, derived by Weinbergl for the
chiral SU(2) ® SU(2) currents have been extended by several au’t:hors2_LL
énd various proofs have been given.l~6‘ Among these, Glashow, Schnitzer,

>

and Weinberg” have described a derivation of the first Weinberg sum rule
using the ~Jacobi identify,and Jackiw5 has used the Jacobi identity in

- order to derive a céndition for the sécond Weinbefg sum rule. The main
difference between Weinbérg'sl oiiginal proof of the second sum rule.and the
oné given by Jackiw lies in the replacement of‘the assumption on
high-energy behavior, made in Ref. 1, by the assumption that a certain
vacuum.expéctatidn value of a tripiecommutator vanishes. |

Among the extenSiqns of the Weinberg sum rgles, Je Rothleitr_lerh

7

has derived a sum rule for baryon spectral functions, assuming that

. . b4 -igx + ipy a - o
Lin 1im dxdye A T{(_qu-Bu,) A (#), ﬂr(y),\lf(é)}>o—0
p > > 0
and that

-1, W(x)ySfaa(ﬁ - X) + (AT = g - terms}.':

2200, W)
- XO-; yo

(2)
In the above, we have denoted (for a = 1,2,3) the axial vector current
by Aua(x) and the nucleon field by ¥(y). The sum rule derived in

Ref. 4 from Egs. (1) and (2) reads



-2- , UCRL-19243

Si - dmg m <F+2(m2) - F_g(.m2)> =0 :  ' (3)
where we have defined

2 A m2 € .' ‘Wr(P) F+9(m2)>  fore=1
(en)? {of¥(o) o L) = : - 2 .
1 750,®) F %n )

(1)

m2 %

Here, S/ ) denotes a state with the same baryon number, spin,‘

isospin,anﬁ strangeness»as the nucleon; o stan&s for additiondl quantum

numbers. We have also

L (n) =ZF£<m2>2. R )

o

F

If we saturate the sum rule (3) by one-particle intermediate statés,.it

Zei Feie(miz) mE0. (‘6-5'

i

“-reads

This is the sum rule derived by M. Sugawarae as a consequence of his
self-consistency conditions. The proof of tﬁese conditions8 uses, in

addition to Eq. (7) below, assumptions on analyticity and high-energy

_behavior. | |
B
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The purﬁose of the present note is two=fold. First,in analogy
to the derivations of the Weinberg sum rules using the Jacobi identity,B’)

we will derive the fbllowing statement by means of an algebraic identity.

Statement 1. Let?? 1t

[Q;(yvo), Tv<y>] = - 7, () 7513 3 s (D)

_ and

| <[ a%x 3t B(x), w(y)] W] ) -0, (8)

\'N .

where Ag(y) denotes possible AI = 5 terms..

|
Then we have %
i

2;A11a75 e m (F+?(m2)- F_2(m?£)6(

3
]

+1 O

o 1
)Az ( Q5a(yo)’[w(Y)"%{(ZE, y . |
' |
(9) '

In the above statement, Qsa(xo)' is defined by

3

: a - . . a, - L
& (xo)_ =[dx A (x) . - (10)

. Note that Eqs. (8) and (9) have anticommutators for fermion
'operators._ The statement shows that given Egs. (7) and (8), which we

discuss below,  at most the non-Schwinger part of the
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ahticommutator [@(y), ﬁ(zﬁ surviveéyin Eq. (9). The vanishing of this
expressién itself is then e;pivalent to the suﬁ rule Eq. (3).

As to the validity of the assumptions made, Eq. (7) is a
consequence of the more restrictive assumption Eq. (2), allowing for -
additional arbitrary Schwinger térmé.k Modelsv iﬁ-which Eqg. (7) holds -

have been investigated by several authors,,l"s’lo’l2 - 16

and in héither
case a contrédiction with Eq. (7) was fouﬁd; On thevcontrary, assuming
Eq. (7) without Ag(y) ierms, M. Sugawara16 has reached reasonable
agreement witﬁ experiment in a number of cases. Rothleitner
obtained agreemeht'ﬁith experiment,.togal7 : ‘

 The main advantage of Eq. (7) as compared to Eq. (2) is that
Eq. (7) is more likely to hold for fermioﬁ operators introduced into a
field thebry of‘cu‘J:'ren'bs_.l8 As wasg. shown in Ref;‘l5, for Ag(Y) =v0,
Schwinger terms are then present in the eqpal—£ime cbmmutator of
the time components of the currents with v(y):l9 As to the second -

assumption, Eq. (8) is [and so are the later Egs. (13)] an obvious

consequence of B“Aua(x) = O . If PCAC holds for massive pions and

the so-defined pion field and V¥(y) are canonical fields, Eq. (8) follows

from the canonical rulelg’go

X =
o 7o

[B“Auf"(x)., iﬁy(y)] =0 . (11)

However, Eq. (11) does not prove the assumption in Eq. (13) of statement

2 below [as does the assumption BuAua(x) =_o].

g e e
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Assumlng the local cormutator Eq. (2), it was shown in Ref. k4

. : that Egs. (l) and ()) are equivalent and thus

« Q5a<xo>,'[if(y>,$<z>]' ) -0, (12)

+ X =y =2

if and only if Eq. (1) holds, under the above assumptions.
The other purpose of the present note is to give conditions"for.

additional sum rules. We will prove:

Statement 2. ILet Eq. (7) be valid and. ‘l"et‘ll_for n>1

on- 2

0 =. ( ('a )J[ a2y é“A 3 ) ( )2n-2_ V(y) WKZS ), .
L 33;0 : " S" ,> S+

(13)

Thén'WE:have

&7x,); [(5%0)

2n-1

o] -

o}

w(y),-‘\F(Z)] R

-+

il

1yr, [ <F+2(m2)- - _F_2(m2)> <§y = - m2> 5(y - 2)

_ n-1 - ‘ g '

= i7" | r S. o= ° 2 ?'l‘v (y = 2) |

rn ) o () (T s
. : =O i _‘ :

(14)
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In the above statement we have defined S, by

- 2, 2 - '
5, = [am ”( (%) - 7 %) ). (1)
Note again the anti-commutators in Egs. (13) and (14). ,COnditions‘under

© which Eq. (13) is valid. have been 1nvest1gated above. In Eq. (14%), -

the hlghest-order Schw1nger term is of order 2(n - l) 'That this_.term ,.

vanishes is equivalent to the sum rule Eq.A(B),.

The rule (for O Xw S n-1),

w2t 08

is valid if and onLy if tﬁe Schwiﬁger;terﬁ of o;&ér' 2(n - 1 - v)  is
absent ih Eq. (14). Note that each 82 - i isfprésent in all’ﬁhe'ex_
pressions (lh)a for which n > v+l. In Eq. (lh) 82.+l multiplies the.non-
Schwingeﬁthrm. These remarks establlsh a set of conditlons for each sum

rule, as well as identities between Schwinger terms in Eq. (lh) These

can be read off ea51ly,

For all integers v > 0O, Eq. (16), would imply | ‘

m F+2(m2) -F_e(;ne)> -o. | (17)

That is, up to massless fermions, the--%+ and %;' spectral functions are
identical. Asltheregare no J=I= % parity}dbublets, _W(y) would not

allow any particle’ 1nterpretatlon. Unless this is the case, the
’ k-1

anticommutators {(5§ ). v(y), ﬁ(z)] "+ are not c numbers for



\

)

'in addition, Eq. (16)

-'7_ : UCRL—_i_92h5

all integers‘ k Z'l [and:Schwinger- .terms are present in some of tﬁev
Egs.. (111,)]. ' |

- Finally,‘from Ref. 4 énd'the‘high—gnergy eXpansibé%glbof the spectral
representation for (T(WW))O ; 'oﬁé'defives'fhat; if Eq. (2) holds

isueqﬁivalent to a vanishing of the expression;’in
v=1 ' SR

‘Eq. (1),like (p°) . © in the limit p° - .

In order to pfove'the above statements, it would be sufficient to

prove the second one (Statement 1 is Statement 2 for n=1). However,

we would rather prove statement 1 and generalize_the'proof. We start with the

following algebraic identity of the Jacobi type:

[a,é}, é N + [b,é],+ ,al- [%,a] » b, = Q. . (18)

| Then Eqg.: (7) éllows us to writet><0
S T (s o
[_Q;(XO), W( ?’) = - '7513 _rA\lr( y)+7-5A2(y) - [a%x gx—o Aoa(-X), '\K y)
- '2 :
== 757" ) w7 A%y) - [@0x 3 B, W)

(19)

We have used the Jacobi identity for Q;”( x) [H,_q}(y)] ~ and have added

. v k, & . . : 5 : - F
-l fe’x 3 A (%), ¥(y)| = 0 to the first lime in Eq. (19). Then

one derives
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®) O

. aen-l‘._"a. a~'az'n-.e‘_ .
S () | g [ G2 ) v

~[ﬁ5x§§7Aéa(x),(53——) -\I!(y)] o < !

| . o. .. o) N e, : |
‘. a3 201 oy

= cie = - rA75Ta (550‘) xv(.y.)..+ | (53 )

O

2n-1 : -g

2n-2

| a j | .‘:3 o ‘ a . éh_a_j .
: . a v : .
Co= (5?0':) [ﬁx auAu (Xo),' (g&o_) ' ﬂ((Y)] .
o e - - o o

- (20)
First we prove statement 1. We write the 'iden_{;ity Eq. (18) with o

a = Q;(xc')),. b= ¥(y),and <= ¥(z) . Thus, from Egs. (7 and (19) we ‘getr

_ [PA 7513_\1',( Y-)"_V( Z>}+ + fA [:W(Z?75Ta; if(y)} .

| e a1 rz2 -
+ [Q5a(xo); [W(}Y); W( Z)] ] = [Az‘( z), Y y)j| o | |
K e R N - 0]
| 2%y, W) | - [.d3x' B“Aua(x), \V(y)] s w(z)| -
. + o ) : . +

If we take vacuum expectation vdlue, the right-hand side vanishes due to o

W,

‘our assumptions, and we are left with o R
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: LT o _ ._ ' ‘ _a.v
--rA{st.([u;(y), w(z)] doa e <[¢(y), w(z)] o a7 }

é . — ' -
= {8y, [wy), w(z)]+ py s o
, 0“0 o
| (22)
EMgmthSwdﬁimm%mWﬁm,v |
([\v('y), x?(z)] ). |
o e (23)

g ifdmz 7 2?) (1 5-?;“ 7, +m) +F PP ( 1'5-5%7“ ) Aly-2m%)

we see that, due to the presence of 75 in Eq. (22), no term proportional
to 7, contributes upon substituting Eq. (23) into Eq. (22). Finally,
‘performing the time differentation under the integral we get Eq. (9) in
the equal time limit.
- To prove statement 2, we write Eg. (18) for
2ne-1 , ;
a = Qsa(x ), b= (gé ) VW(y), ¢ = ¥(z). Performing precisely the same
. © yQ'
manipulations as above but this time using Eq. (20) instead of (15) we have
ol s 2n-1 _ f , y 2n-1 _ . a
rA{y5¢< &) W), 7 o+ () W@ | s
: ) _ + yo=z

+|ly =z
: o Yo %

a,_ y (-t ‘— -
- - (] oy, [<5§0> RCURIC) BN MRS
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Note that due to Eq. (13) there is no contribution from the sum in :
Eq. (20). We again insert the spectral representation and observe that
terms porportional to 7, drop. Then, using
on-2.

(2) aly-=m)  =-(g - sg-p o

Q (o]

o

| ()

we reaéh»Eq. (lﬁ),*thé desired'rgsﬁlt. | o
A A% to the consequencesvof Eq. (16), reétricﬁions follow.frbmfthé

posiiivity | | |

r,A(a0) > 0. (@

'Evidently, any of the Egs. (16) -~ -if saturated by one-particle-

‘ intermediate states-- can hold only if barybns of opposite paritie% exist.

For. 8, = 0, this has been noted in'Refé..é-and 8.

To derive a fdrthervconsequencéQ let us enumerate by

N,y oee) Nu the four nucleon'resonances*Pll(940), gu§1466), J§l548);

1}
and suﬁl709) and let.ué denote T 2'(-m'e) by F 2. We assune
o i S , ei-*7i 4 1T -
Fl? # 0 , and we normaslize to - Fl? = 1 . The assumptions of

statement 2_fof n.= 2, together with assuming
a soe - . .
( Q5 (XO):[‘J’(Y): W(Z) ) =0,
: +| Ix=y =2_ v
) o "o O
(e7)
‘give us the sum rules. -

S =8, =0 - (28)

v
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If saturated by one-parﬁicle intermediate stétes, EQS. (28) allow us

9 10 predict the existence of at least one further nuéleon resonance , N from

5)
Nl’fm" Nh' Concefning its mass and parity,‘there are two poSsibilifies.
Either we haV¢ m5<mé and e5=~l‘or"m2<"m5 and e5=+1; As the existence

of " an undiscovered resonance with a mass smaller than m,  Ts very unlikely,

2
the actual prediction is

m5?>m2,e5=+1 . ‘ | (29)

This agrees with the existence of the Pll(l750).

In order to derive the conclusion, we write Eq. (28) as

- 'zrej: 2
m o+ m2F2 = m3F3 + mhFh - 'ei m, Pi

1 272 373
i=1
" Thus we have:
2 2 2 2 2

ml(m2 - m ) m5(m2 - m3v) F3
i ’
W B o | o R S
' T 2 2 2 j : , 2 2 2

+ mh(m2 - mu.) Fu - Si mi(m2 - mi‘) Fi s
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with R being the total number of nucleon reSonancés; The left-haﬁd
gide is positive and the first two terms 6n the right-hahd side are not
positive, Therefore, at least one term in the sum is negative. Giving

the number 5 to it, we have -

e.\m - <Oa - . ) : 2
slmy” = mg™) <0. - (3)
This is the desired result.
The content of the paper is summarized in statements one and two

and in the prediction, Eq. (29). -

—— __‘___5._‘..__._4—‘ - .
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