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Chapter 1

Introduction

1.1 Basic Definitions and Background

The study of patterns in permutations and words which is generally re-

ferred to as permutation patterns has been an extremely active area of research

in recent years. The study of permutation patterns has it roots in the works

by Rotem, Rogers, and Knuth in the 1970s and early 1980s. The first system-

atic study of permutation patterns was not undertaken until the paper by Simion

and Schmidt which appeared in 1985. The field has experienced explosive growth

since 1992. The notion of patterns in permutations and words has proved to be

a useful language in a variety of seemingly unrelated problems including the the-

ory of Kazhdan-Lusztig polynomials, singularities of Schubert varieties, Chebyshev

polynomials, rook polynomials for Ferrers boards, and various sorting algorithms

including sorting stacks and sortable permutations. There are two recents books

on the subject: Combinatorics of Compositions and Words by Heubach and Man-

sour which studies patterns in words and Patterns in Permutations and Words by

Kitaev which mainly focuses on patterns in permutations.

My work has focused on applications of the so-called reciprocity method of

Jones and Remmel to find generating functions for patterns in words. To motivate

my results, we will start with some basic definitions of patterns in permutations.

Let Sn denote the set of permutations of [n] = {1, . . . , n}. Given any sequence of

distinct integers a1 · · · aj, we let red(a1 · · · aj) denote the permutation of Sj whose

1
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elements have the same relative order as a1 · · · aj. For example, red(5 3 7 2) =

3 2 4 1. We then say that a permutation τ ∈ Sj occurs in a permutation σ =

σ1 . . . σn ∈ Sn if there exists 1 ≤ i1 < · · · < ij ≤ n such that red(σi1 . . . σij) = τ

and there is a τ -match starting at position i if red(σiσi+1 . . . σi+j−1) = τ . We

say σ avoids τ if τ does not occur in σ. We let τ -mch(σ) denote the number

of τ -matches in σ. For example, π = 3142 occurs in σ = 5137642 as is shown

by the bolded subsequences: 5137642, 5137642, 5137642, 5137642, 5137642, or

5137642. Since σ contains no increasing subsequence of length 4, σ avoids 1234.

We let Sn(τ) denote the set of permutations of Sn which avoid τ and

NMn(τ) denote the set of permutations of Sn which have no τ -matches. We

let Sn(τ) = |Sn(τ)| and NMn(τ) = |NMn(τ)|. If α and β are elements of Sj, then

we say that α and β are Wilf-equivalent if Sn(α) = Sn(β) for all n ≥ 1, and we

say that α and β are c-Wilf-equivalent if NMn(α) = NMn(β) for all n. For any

permutation τ , let

Aτ (x, t) = 1 +
∑
n≥1

tn

n!

∑
σ∈Sn

xτ -mch(σ).

Thus, α and β are c-Wilf equivalent if and only if Aα(0, t) = Aβ(0, t). We say that

α is strongly c-Wilf-equivalent to β if Aα(x, t) = Aβ(x, t). There is an outstanding

conjecture of Nakamura [45] that α and β are c-Wilf equivalent if and only if α

and β are strongly c-Wilf equivalent.

One can make similar definitions for words, except that in the case of words,

we have two different ways to match patterns.

Let P = {1, 2, . . .} denote the set of positive integers and for any k ∈ P,

let [k] = {1, . . . , k}. We let P∗ ([k]∗) denote the set of all words over the alphabet

P ([k]). If u = u1 . . . uj ∈ Pj, then we let |u| = j denote the length of u. We let

ε denote the empty word and we say ε has length 0. We let P+ = P∗ − {ε} and

[k]+ = [k]∗ − {ε}.
If u = u1 . . . uj and v = v1 . . . vi are words in P∗, we let uv = u1 . . . ujv1 . . . vi

denote the concatenation of u and v. Suppose that we fix j ≥ 1. Then for any

word w = w1 . . . wn, we say that a word u = u1 . . . uj is a prefix of a word w if

there is a word v such that uv = w, is a suffix of w if there is a word v such that

vu = w, and is a factor of w if there are words f and v such that fuv = w.
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We let red(w) denote the word that results from w by replacing all occur-

rences of the ith smallest letter in w by i. For example, if w = 44537792, then

red(w) = 33425561. Let u = u1 . . . uj ∈ Pj and w = w1 . . . wn ∈ Pn. Then if

red(u) = u, a u-match in w is a factor of v of w such that red(v) = u. An exact

u-match in w is a factor v of w such that v = u. We let umch(w) denote the

number of u-matches in w if red(u) = u and eumch(w) denote the number of exact

u-matches in w. For example, if w = 31442521337792 and u = 213, then w has

three u-matches, namely 314, 425, and 213, but only one exact u-match. Thus

umch(w) = 3 and eumch(w) = 1. For any word w ∈ P∗ and i, j ∈ P, we let ij(w)

denote the number of exact matches of ij in w. If Γ ⊆ P∗ ([k]∗) is a finite family

of words such that red(v) = v for all v ∈ Γ and w ∈ P∗ ([k]∗), then there is a

Γ-match in w if there is a factor u of w such that red(u) ∈ Γ. In such a situation,

we let Γ-mch(w) denote the number of Γ-matches in w. Similarly, if Γ ⊆ P∗ ([k]∗)

is a finite family of words and w ∈ P∗ ([k]∗), then we say that there is an exact

Γ-match in w if there is a factor u of w such that u ∈ Γ. In such a situation, we

let eΓ-mch(w) denote the number of exact Γ-matches in w.

Let zk = z1, . . . , zk, z∞ = z1, z2, . . ., and if w = w1, . . . wn, let zw =

zw1zw2 . . . zwn . Suppose that Γ and ∆ are finite sets of words such that for all

v ∈ Γ ∪∆, red(v) = v, and Ω is a finite set of words. The main goal of this thesis

is to develop methods to compute generating functions of the following form:

F P,Γ
∆ (x, z∞, t) =

∑
w∈P∗,∆-mch(w)=0

xΓ-mch(w)+1zwt|w|, (1.1)

F k,Γ
∆ (x, zk, t) =

∑
w∈[k]∗,∆-mch(w)=0

xΓ-mch(w)+1zwt|w|, (1.2)

EF P,Γ
Ω (x, z∞, t) =

∑
w∈P∗,eΩ−mch(w)=0

xΓ-mch(w)+1zwt|w|, and (1.3)

EF k,Γ
Ω (x, z∞, t) =

∑
w∈[k]∗,eΩ−mch(w)=0

xΓ-mch(w)+1zwt|w|. (1.4)

In this thesis, we will focus on the cases where Γ is one of the sets {12},
{11}, {21}, {11, 21}, or {11, 12}. If w1 . . . wn is a word in P∗, then

1. a {12}-match in w corresponds to a pair of letters wiwi+1 such that wi < wi+1

which is called a rise,
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2. a {11}-match in w corresponds to a pair of letters wiwi+1 such that wi = wi+1

which is called a level,

3. a {21}-match in w corresponds to a pair of letters wiwi+1 such that wi > wi+1

which is called a descent,

4. a {11, 12}-match in w corresponds to a pair of letters wiwi+1 such that wi ≤
wi+1 which is called a weak rise, and

5. a {11, 21}-match in w corresponds to a pair of letters wiwi+1 such that wi ≥
wi+1 which is called a weak descent.

Thus we make the following definitions. Suppose that n ≥ 1 and w = w1 . . . wn ∈
Pn. We let

Des(w) = {i : wi > wi+1} WDes(w) = {i : wi ≥ wi+1}
Rise(w) = {i : wi < wi+1} WRise(w) = {i : wi ≤ wi+1}
des(w) = |Des(w)| wdes(w) = |WDes(w)|
rise(w) = |Rise(w)| wrise(w) = |WRis(w)|
Lev(w) = {i : wi = wi+1} lev(w) = |Lev(w)|.

We shall refer to elements of Des(w), WDes(w), Rise(w), WRise(w), and Lev(w)

as descents, weak descents, rises, weak rises, and levels of w, respectively.

For any word u = u1 . . . uj ∈ [k]j such that red(u) = u, let St(P)(u)

(St([k])(u)) equal the set of 1 < s ≤ j such that there exists a word w =

w1 . . . ws+j−1 in P∗ ([k]∗) such that red(w1 . . . wj) = u and red(ws . . . ws+j−1) = u.

That is, St(P)(u) (St([k])(u)) is the set of positions 1 < s ≤ j such that there is a

word w in P∗ ([k]∗) in which there is a pair of overlapping u-matches such that the

first u-match starts at position 1 and the second u-match starts at position s. We

say that u is P-minimal overlapping ([k]-minimal overlapping) if St(P)(u) = {j}
(St([k])(u) = {j}). Thus u is P-minimal overlapping if any two consecutive u-

matches can share at most one letter which must be the last letter of the first

u-match and the first letter of the second u-match. We say that u has the P-weakly

decreasing (P-weakly increasing, P-level) overlapping property if s ∈ St(P)(u) im-

plies that u1 ≥ us (u1 ≤ us, u1 = us). We say that u has the [k]-weakly decreasing
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([k]-weakly increasing, [k]-level) overlapping property if s ∈ St([k])(u) implies that

u1 ≥ us (u1 ≤ us, u1 = us). If k ≥ 2, then we say that u is [k]-non-overlapping if

St([k])(u) = ∅. For example, suppose that u = 123234. Then

1. w(1) = 123234345 witnesses that 4 ∈ St(P)(u),

2. w(2) = 1232345456 witnesses that 5 ∈ St(P)(u), and

3. w(3) = 12323456567 witnesses that 6 ∈ St(P)(u).

It is easy to see that in each case, w(i) uses the smallest alphabet possible. Clearly

2 and 3 are not in St(P)(u) or St([k])(u) for any [k]. It thus follows that St(P)(u) =

St([k])(u) = {4, 5, 6} for any k ≥ 7. However, St([4])(u) = ∅ so that u is [4]-non-

overlapping, St([5])(u) = {4}, and St([6])(u) = {4, 5}. Note that u has the P-weakly

increasing overlapping property and the [k]-weakly increasing overlapping property

for any k ≥ 5. Next suppose that v = 345123. Then

1. w(4) = 567345123 witnesses that 4 ∈ St(P)(v),

2. w(5) = 4561345123 witnesses that 5 ∈ St(P)(v), and

3. w(6) = 34512345123 witnesses that 6 ∈ St(P)(v).

Again it is easy to see that in each case, w(i) uses the smallest alphabet pos-

sible and 2 and 3 are not in St(P)(u) or St([k])(v) for any [k]. It follows that

St(P)(v) = St([k])(v) = {4, 5, 6} for any k ≥ 7. However, St([5])(u) = {6} so that u

is [5]-minimal overlapping and St([6])(u) = {5, 6}. Note that u has the P-weakly de-

creasing overlapping property and the [k]-weakly decreasing overlapping property

for any k ≥ 5 but that it also has the [5]-weakly increasing overlapping property

and the [5]-level overlapping property.

We can also make similar definitions for exact matchings. That is, for

u = u1 . . . uj ∈ [k]j, let ESt(P)(u) (ESt([k])(u)) equal the set of 1 < s ≤ j such

that there exists a word w = w1 . . . ws+j−1 in P∗ ([k]∗) such that w1 . . . wj = u and

ws . . . ws+j−1 = u. Thus, ESt(P)(u) (ESt([k])(u)) is the set of positions 1 < s ≤ j

such that there is a word w in P∗ ([k]∗) in which there is a pair of overlapping exact

u-matches such that the first exact u-match starts at position 1 and the second



6

exact u-match starts at position s. We say that u is exact P-minimal overlapping

(exact [k]-minimal overlapping if ESt(P)(u) = {j} (ESt([k])(u) = {j}). Thus u is

exact P-minimal overlapping if any two consecutive exact u-matches can share at

most one letter which must be the last letter of the first exact u-match and the first

letter of the second exact u-match. For example u = 131 is a word that has the

exact P-minimal overlapping property. We say that u is exact P-non-overlapping

(exact [k]-non-overlapping if ESt(P)(u) = ∅ (ESt([k])(u) = ∅). For example u = 132

is a word that has the exact P-non-overlapping property.

Let zk = z1, . . . , zk and z∞ = z1, z2, . . .. Then for any u ∈ [k]j, we let

EN (k)
n,u(x, zk) =

∑
w∈[k]n,eumch(w)=0

xdes(w)+1zw,

EN (P)
n,u(x, z∞) =

∑
w∈Pn,eumch(w)=0

xdes(w)+1zw,

LEN (k)
u,n(x, zk) =

∑
w∈[k]n,eumch(w)=0

xlev(w)+1zw, and

LEN (P)
u,n(x, z∞) =

∑
w∈Pn,eumch(w)=0

xlev(w)+1zw.

Similarly for u ∈ [k]j such that red(u) = u, we let

N (k)
n,u(x, zk) =

∑
w∈[k]n,umch(w)=0

xdes(w)+1zw,

N (P)
n,u(x, z∞) =

∑
w∈Pn,umch(w)=0

xdes(w)+1zw,

LN (k)
u,n(x, zk) =

∑
w∈[k]n,umch(w)=0

xlev(w)+1zw and

LN (P)
u,n(x, z∞) =

∑
w∈Pn,umch(w)=0

xlev(w)+1zw.
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The main goal of this thesis is to study the generating functions

EN (k)
u (x, zk, t) = 1 +

∑
n≥1

EN (k)
n,u(x, z)tn,

EN (P)
u (x, z∞, t) = 1 +

∑
n≥1

EN (P)
n,u(x, z)tn,

N (k)
u (x, zk, t) = 1 +

∑
n≥1

N (k)
n,u(x, z)tn, and

N (P)
u (x, z∞, t) = 1 +

∑
n≥1

N (P)
n,u(x, z)tn

in the case where red(u) = u and des(u) ≤ 1 and the generating functions,

LEN (k)
u (x, zk, t) = 1 +

∑
n≥1

LEN (k)
u,n(x, zk)t

n,

LEN (P)
u (x, z∞, t) = 1 +

∑
n≥1

LEN (P)
u,n(x, z∞)tn,

LN (k)
u (x, zk, t) = 1 +

∑
n≥1

LN (k)
u,n(x, zk)t

n, and

LN (P)
u (x, z∞, t) = 1 +

∑
n≥1

LN (P)
u,n(x, z∞)tn

in the case where red(u) = u and lev(u) ≤ 1.

When k and |u| are small, there are well-known recursive methods to com-

pute N
(k)
n,u(x, zk) or EN

(k)
n,u(x, zk). That is, suppose that |u| = r. For any word

v ∈ [k]∗, we let B(k)
v = {w ∈ [k]∗ : v is a prefix of w} and

N (k)
u,v (x, zk, t) = 1 +

∑
n≥1

tn
∑

w∈B(k)
v ∩[k]n,umch(w)=0

xdes(w)+1zw.

For example, if k = 3, u = 123, and v = 12, then the words in B(3)
12 are of the form

12 or 1 concatenated with either a word in B(3)
21 , B(3)

22 , or B(3)
23 . Words of the form

1∗B(3)
23 cannot contribute to N (k)

u,v (x, zk, t) since they all start with a 123-match. It

follows that

N (3)
u,12(x, z3, t) = xz1z2t

2 + z1tN (3)
u,21(x, z3, t) + z1tN (3)

u,22(x, z3, t).
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In this way, we can show that the functions N (3)
u,v (x, z3, t) where |v| = |u|−1 satisfy

simple recursions. Bringing the terms that do not involve the generating functions

to one side, one can rewrite these equations in the form

~v = M



N (3)
u,11(x, z, t)

N (3)
u,12(x, z3, t)

N (3)
u,13(x, z3, t)

N (3)
u,21(x, z3, t)

N (3)
u,22(x, z3, t)

N (3)
u,23(x, z3, t)

N (3)
u,31(x, z3, t)

N (3)
u,32(x, z3, t)

N (3)
u,33(x, z3, t).



.

Then if one can invert the matrix M , one can solve for the generating functions

N (3)
u,ij(x, z3, t) from which one can easily recover the desired generating function

N (3)
u (x, z3, t). More details on the method can be found in [23]. The problem

with this method is that it requires us to invert a k|u|−1 matrix with multivariable

entries which is impractical to compute as k and |u| get large.

The method that we will employ is what Jones and Remmel [24,26–28] call

the reciprocity method. Jones and Remmel developed the reciprocity method to

compute the generating functions of the form

NMτ (t, x, y) = 1 +
∑

σ∈NM(τ)

ydes(σ)+1xLRmin(σ) t
n

n!

where τ ∈ Sj and for σ = σ1 . . . σn ∈ Sn, LRmin(σ) is the number of left-to-right

minima in σ which is the number of 1 ≤ j ≤ n such that σi > σj for all i < j.

For example, if σ = 3425167, σ1 = 3, σ3 = 2 and σ5 = 1 are the set of left-to-

right minima of σ. They were able to compute NMτ (t, x, y) for certain families of

permutations τ in which τ starts with 1 and des(τ) = 1. The basic idea of their

approach is as follows. If τ starts with 1, then the results in [24] allow us to write

NMτ (t, x, y) in the form

NMτ (t, x, y) =

(
1

Uτ (t, y)

)x
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where Uτ (t, y) =
∑
n≥0

Uτ,n(y)
tn

n!
.

Next one writes

Uτ (t, y) =
1

1 +
∑

n≥1 NMτ,n(1, y) t
n

n!

. (1.5)

One can then use the homomorphism method to give a combinatorial interpretation

of the right-hand side of (1.5) which can be used to find simple recursions for the

coefficients Uτ,n(y). This homomorphism method was first introduced by Brenti

[11] and later developed by Remmel and his students which is the subject of the

book “Counting with Symmetric Functions” by Mendes and Remmel [43]. The so-

called homomorphism method derives generating functions for various permutation

statistics by applying a ring homomorphism defined on the ring of symmetric

functions Λ in infinitely many variables x1, x2, . . . to simple symmetric function

identities such as

H(t) = 1/E(−t), (1.6)

where H(t) and E(t) are the generating functions for the homogeneous and ele-

mentary symmetric functions, respectively:

H(t) =
∑
n≥0

hnt
n =

∏
i≥1

1

1− xit
and E(t) =

∑
n≥0

ent
n =

∏
i≥1

(1 + xit). (1.7)

In their case, Jones and Remmel defined a homomorphism θτ on Λ by

setting

θτ (en) =
(−1)n

n!
NMτ,n(1, y).

Then

θτ (E(−t)) =
∑
n≥0

NMτ,n(1, y)
tn

n!
=

1

Uτ (t, y)
.

Hence

Uτ (t, y) =
1

θτ (E(−t))
= θτ (H(t)),

which implies that

n!θτ (hn) = Uτ,n(y). (1.8)

Thus, if we can compute n!θτ (hn) for all n ≥ 1, then we can compute the poly-

nomials Uτ,n(y) and the generating function Uτ (t, y), which in turn allows us to
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compute the generating function NMτ (t, x, y). Jones and Remmel [27, 28] showed

that one can interpret n!θτ (hn) as a certain signed sum of the weights of filled,

labeled brick tabloids when τ starts with 1 and des(τ) = 1. They then defined

a weight-preserving, sign-reversing involution I on the set of such filled, labeled

brick tabloids which allowed them to give a relatively simple combinatorial in-

terpretation for n!θτ (nn). Consequently, they showed how such a combinatorial

interpretation allowed them to prove that for certain families of such permutations

τ , the polynomials Uτ,n(y) satisfy simple recursions.

In [3], Remmel and Bach extended the reciprocity method to study the

polynomials UΓ,n(y) where

UΓ(t, y) = 1 +
∑
n≥1

UΓ,n(y)
tn

n!
=

1

1 +
∑

n≥1 NMΓ,n(1, y) t
n

n!

in the case where Γ is a set of permutations such that for all τ ∈ Γ, τ starts with

1 and des(τ) ≤ 1. Specifically, they studied the case where

Γk1,k2 = {σ ∈ Sp : σ1 = 1, σk1+1 = 2,σ1 < σ2 < · · · < σk1 ,

σk1+1 < σk1+2 < · · · < σp}.

That is, Γk1,k2 consists of all permutations σ of length p where 1 is in position 1, 2 is

in position k1 +1, and σ consists of two increasing sequences, one starting at 1 and

the other starting at 2. In certain cases, they were able to obtain explicit formulas

for the polynomials UΓk1,k2,s
,n(y) for certain values of k1, k2, and s. For instance,

if Γ = {1324, 123}, then they obtained the following result for the polynomials

UΓ,n(y)’s. For all n ≥ 0,

UΓ,2n(y) =
n∑
k=0

(2k + 1)
(

2n
n−k

)
n+ k + 1

(−y)n+k+1 and

UΓ,2n+1(y) =
n∑
k=0

2(k + 1)
(

2n+1
n−k

)
n+ k + 2

(−y)n+k.

Another example in [3] where they could find an explicit formula is the case

Γ2,2,s = {1324, 1342, 123} where they showed that UΓ2,2,s,1(y) = −y, and for n ≥ 2,
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the polynomials UΓ2,2,s,n(y)’s satisfy the recursion

UΓ2,2,s,n(y) = −yUΓ2,2,s,n−1(y)−
s−2∑
k=0

(
(n− k − 1)yUΓ2,2,s,n−k−2(y) + (n− k − 2)y2UΓ2,2,s,n−k−3(y)

)
.

(1.9)

Bach and Remmel further extended the reciprocity method to study the

generating functions NMΓ(t, x, y) where all the permutations Γ start with 1 but

they did not put any conditions on the number of descents in a permutations in Γ.

While the basic concepts of the reciprocity method still hold, the involution defined

by Jones and Remmel no longer works. Thus, they defined a new sign-reversing,

weight-preserving mapping JΓ and, under this new involution, they were able to

compute the recursion for the polynomials UΓ,n(y) for the special cases where τ ∈ Γ

such that des(τ) = j ≥ 1 and the bottom elements of these descents are 2, . . . , j+1

when reading from left to right. In most of the cases here, the analysis of the fixed

points of the involution JΓ can be associated with counting the number of linear

extensions for certain Hasse diagrams.

We apply the reciprocity method of Jones and Remmel for our problem and

assume that we can write the generating function N (P)
u (x, z∞, t) as

N (P)
u (x, z∞, t)) =

1

U
(P)
u (x, z∞, t)

where U (P)
u (x, z∞, t) = 1 +

∑
n≥1

U (P)
u,n(x, z∞)tn.

(1.10)

Thus

U (P)
u (x, z∞, t) =

1

1 +
∑

n≥1N
(P)
u,n(x, z∞)tn

. (1.11)

One can then use the homomorphism method to give a combinatorial interpreta-

tion to the right-hand side of (1.11) which can be used to find a combinatorial

interpretation for U
(P)
u (x, z∞, t). In our case, we define a homomorphism Θu on Λ

by setting

Θu(en) = (−1)nN (P)
u,n(x, z∞)

Then

Θu(E(−t)) =
∑
n≥0

N (P)
u,n(x, z∞)tn =

1

U
(P)
u (x, z∞, t)

.
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Hence

U (P)
u (x, z∞, t) =

1

Θu(E(−t))
= Θu(H(t))

which implies that

Θu(hn) = U (P)
u,n(x, z∞). (1.12)

Thus if we can compute Θu(hn) for all n ≥ 1, then we can compute the poly-

nomials U
(P)
u,n(x, z∞) and the generating function U

(P)
u (x, z∞, t) which in turn al-

lows us to compute the generating function N (P)
u (x, z∞, t). The same method can

be applied to find combinatorial interpretations for U
(k)
u (x, zk, t), EU

(P)
u (x, z∞, t),

EU
(k)
u (x, zk, t), LU

(P)
u (x, z∞, t), LU

(k)
u (x, zk, t), LEU

(P)
u (x, z∞, t), and

LEU
(k)
u (x, zk, t) where

N (k)
u (x, zk, t)) =

1

U
(k)
u (x, zk, t)

,

EN (P)
u (x, z∞, t)) =

1

EU
(P)
u (x, z∞, t)

,

EN (k)
u (x, zk, t)) =

1

EU
(k)
u (x, zk, t)

,

LN (P)
u (x, z∞, t)) =

1

LU
(P)
u (x, z∞, t)

,

LN (k)
u (x, zk, t)) =

1

LU
(k)
u (x, zk, t)

,

LEN (P)
u (x, z∞, t)) =

1

LEU
(P)
u (x, z∞, t)

, and

LEN (k)
u (x, zk, t)) =

1

LEU
(k)
u (x, zk, t)

.

The final steps of the reciprocity method that we employ will be differ-

ent from the ones used by Jones and Remmel [26, 27] for permutations. For the

generating function for permutations that they studied, Jones and Remmel used

the combinatorial interpretation that arose from the analog of Θu(hn) to obtain

simple recursions satisfied by their analog of U
(P)
u,n(x, z∞). In our case, we shall use

the combinatorial interpretation of Θu(hn) that comes out of the homomorphism

method plus a map which we call the “collapse map” to show that we can obtain

a closed expression for the generating functions U
(P)
u (x, z∞, t) or U

([k])
u (x, zk, t) by

an appropriate substitution in certain other generating functions for words.
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The generating functions that we will substitute into will depend on the

relative order of u1 and uj where u = u1 . . . uj. In each case our generating function

will be over the variables xij where i, j ∈ P, the variables zi where i ∈ P, and t

which we denote as (x∞, z∞, t). In the case where u1 > uj, red(u) = u, and

des(u) = 1, our final expression for our desired generating functions U
(P)
u (x, z∞, t)

or U
([k])
u (x, zk, t) will be a substitution into the generating function

DP(x∞, z∞, t) =
∑
w∈P∗

t|w|zw
∏
i<j

x
ji(w)
ji .

In the case where u1 < uj, red(u) = u, des(u) = 1, and u has the P-weakly

increasing overlapping property ([k]-weakly increasing overlapping property), our

final expression for our desired generating function U
(P)
u (x, z∞, t) (U

([k])
u (x, zk, t))

will be a substitution into the generating function

RP(x∞, z∞, t) =
∑

w∈w1≤w2≤···≤wn∈P∗
t|w|zw

∏
i<j

x
ij(w)
ij .

In the case were u1 = uj, red(u) = u, des(u) = 1, and u has the P-level

overlapping property ([k]-level overlapping property), our final expression for our

desired generating function U
(P)
u (x, z∞, t) (U

([k])
u (x, zk, t)) will be a substitution into

the generating function

LP(x∞, z∞, t) =
∑

w=w1≤w2≤···wn∈P∗
t|w|zw

∏
i

x
ii(w)
ii .

If u does not have the P-level overlapping property ([k]-level overlapping property),

it will still be the case that u has the P-weakly decreasing overlapping property ([k]-

weakly decreasing overlapping property). In such a case, our final expression for

our desired generating function U
(P)
u (x, z∞, t) (U

([k])
u (x, z∞, t)) will be a substitution

into the generating function

WDP(x∞, z∞, t) =
∑
w∈P∗

t|w|zw
∏
i≤j

x
ji(w)
ji .

In the case where u1 > uj, red(u) = u, lev(u) = 1, u has the P-weakly

decreasing overlapping property ([k]-weakly decreasing overlapping property), our
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final expression for our desired generating functions LU
(P)
u (x, z∞, t) or

LU
([k])
u (x, zk, t) will be a substitution into the generating function

HP(x∞, z∞, t) =
∑

w∈P∗,lev(w)=0

t|w|zw
∏
i<j

x
ji(w)
ji .

In the case where u1 < uj, red(u) = u, lev(u) = 1, and u has the P-weakly

increasing overlapping property ([k]-weakly increasing overlapping property), our

final expression for our desired generating function LU
(P)
u (x, z∞, t) (LU

([k])
u (x, zk, t))

will be a substitution into the generating function

GP(x∞, z∞, t) =
∑

w∈P∗,lev(w)=0

t|w|zw
∏
i>j

x
ji(w)
ji .

In this case we will also need to consider the following analog to DP(x∞, z∞, t):

EP(x∞, z∞, t) =
∑
w∈P∗

t|w|z̄w
∏
i>j

x
ji(w)
ji .

In the case where u1 = uj, red(u) = u, lev(u) = 1, and u has the P-level

overlapping property ([k]-level overlapping property), our final expression for our

desired generating function LU
(P)
u (x, z∞, t) (LU

([k])
u (x, zk, t)) will be a substitution

into the generating function

WDP(x∞, z∞, t) =
∑
w∈P∗

t|w|zw
∏
i≤j

x
ji(w)
ji .

We will prove the following theorems for the generating functions

DP(x∞, z∞, t), LP(x∞, z∞, t), RP(x∞, z∞, t), WDP(x∞, z∞, t), HP(x∞, z∞, t),

GP(x∞, z∞, t), and EP(x∞, z∞, t). Given a nonempty set S ⊆ P, we let

DXZ(S) =

zj if S = {j}, and

zj1 · · · zjk
∏k−1

i=1 (xji+1ji − 1) if S = {j1 < · · · < jk} where k ≥ 2.

(1.13)

RXZ(S) =


zj

1−zjt if S = {j}, and(∏k
i=1

zji
1−zji t

)∏k−1
i=1 xjiji+1

if S = {j1 < · · · < jk} where k ≥ 2.

(1.14)
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EY Z(S) =

zj if S = {j}, and

zj1 · · · zjk
∏k−1

i=1 (xjiji+1
− 1) if S = {j1 < · · · < jk} where k ≥ 2.

(1.15)

Let WDP∗ (WD[k]∗) denote the set of all weakly decreasing words in P∗

([k]∗). Given a nonempty word v in WDP∗, we let

WDXZ(v) =

zj if v = j, and

zj1 · · · zjk
∏k−1

i=1 (xjiji+1
− 1) if v = j1 ≥ · · · ≥ jk where k ≥ 2.

(1.16)

Theorem 1.

DP(x∞, z∞, t) =
1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXZ(S)
. (1.17)

Theorem 2.

WDP(x∞, z∞, t) =
1

1−
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXZ(v)
. (1.18)

Theorem 3.

RP(x∞, z∞, t) = 1 +
∑
n≥1

tn
∑

S⊆P,|S|=n

RXZ(S). (1.19)

Theorem 4.

LP(x∞, z∞, t) =
∏
i≥1

(
1 +

zit

1− xiizit

)
(1.20)

Theorem 5.

HP(x∞, z∞, t) = DP(x∞,
z∞

1 + z∞t
, t) (1.21)

Theorem 6.

GP(x∞, z∞, t) = EP(x∞,
z∞

1 + z∞t
, t) (1.22)

Theorem 7.

EP(x∞, z∞, t) =
1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nEY Z(S)
. (1.23)
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The main advantage of our approach is that we obtain a uniform way to

find expressions for the generating functions U
(P)
u (x, z∞, t), U

(k)
u (x, zk, t),

EU
(P)
u (x, z∞, t), EU

(k)
u (x, zk, t), LU

(P)
u (x, z∞, t), LU

(k)
u (x, zk, t), LEU

(P)
u (x, z∞, t),

and LEU
(k)
u (x, zk, t) which are independent of the length of u as long as des(u) = 1

or lev(u) = 1 and u satisfies the appropriate overlapping conditions. In fact our

general methods can be applied even in cases where des(u) > 1 or lev(u) > 1.

However in such cases the combinatorial interpretation of Θu(hn) that comes out

the homomorphism method is significantly more complicated so that we will not

pursue such results in this thesis.

The outline of this thesis is as follows. In section 1.2, we give an overview

of symmetric functions. In section 1.3, we outline the reciprocal method and the

collapse map by looking at an example in the case where u = u1 . . . uj, des(u) = 1,

and u1 > uj. In Chapter 2, we will give the proofs of theorems 1, 2, 3, 4, 5, 6, and

7.

In section 3.1, we will prove the results about the involution Iu that we men-

tioned earlier. In section 3.2, we shall show how to use Theorem 1 to find expres-

sions for U
(P)
u (x, z∞, t), U

(k)
u (x, zk, t), EU

(P)
u (x, z∞, t), and EU

(k)
u (x, zk, t) in the case

where u = u1 . . . uj, u1 > uj, and des(u) = 1. In section 3.3, we shall show how to

use Theorem 3 to find expressions for U
(P)
u (x, z∞, t), U

(k)
u (x, zk, t), EU

(P)
u (x, z∞, t),

and EU
(k)
u (x, zk, t) in the case where u = u1 . . . uj, u1 < uj, des(u) = 1, and u has

the P-weakly increasing overlapping property or [k]-weakly increasing overlapping

property. In section 3.4, we shall show how to use Theorems 2 and 4 to find ex-

pressions for U
(P)
u (x, z∞, t), U

(k)
u (x, zk, t), EU

(P)
u (x, z∞, t), and EU

(k)
u (x, zk, t) in the

case where u = u1 . . . uj, u1 = uj, des(u) ≤ 1, and u has the P-level overlapping

property or [k]-level overlapping property.

In section 4.2, we shall show how to use Theorem 5, to find expressions

for LU
(P)
u (x, z∞, t), LU

(k)
u (x, zk, t), LEU

(P)
u (x, z∞, t), and LEU

(k)
u (x, zk, t) in the

case where u = u1 . . . uj, u1 > uj, lev(u) = 1, and u has the P-weakly decreas-

ing overlapping property or [k]-weakly decreasing overlapping property. In sec-

tion 4.3, we shall show how to use Theorems 6 and 7, to find expressions for

LU
(P)
u (x, z∞, t), LU

(k)
u (x, zk, t), LEU

(P)
u (x, z∞, t), and LEU

(k)
u (x, zk, t) in the case
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where u = u1 . . . uj, u1 < uj, lev(u) = 1, and u has the P-weakly increasing over-

lapping property or [k]-weakly increasing overlapping property. In section 4.4, we

shall how to use Theorem 2, to find expressions for LU
(P)
u (x, z∞, t), LU

(k)
u (x, zk, t),

LEU
(P)
u (x, z∞, t), and LEU

(k)
u (x, zk, t) in the case where u = u1 . . . uj, u1 = uj,

lev(u) = 1, and u has the P-level overlapping property or [k]-level overlapping

property.

Finally, in Chapter 5 we will discuss some further extensions of our methods.

For example, we will discuss how we can extend our methods to handle cases where

u has more than one descent, and we will discuss how we can replace the statistics

des(u) or lev(u) which are essentially the patterns 21 and 11, respectively, with

patterns of length k > 2.

1.2 Symmetric Functions

In this section we give the necessary background on symmetric functions

needed for our proofs. We shall consider the ring of symmetric functions, Λ,

over infinitely many variables x1, x2, . . .. The homogeneous symmetric functions,

hn ∈ Λ, and elementary symmetric functions, en ∈ Λ, are defined by the generating

functions

H(t) =
∑
n≥0

hnt
n =

∞∏
i=1

1

1− xit
and E(t) =

∑
n≥0

ent
n =

∞∏
i=1

(1 + xit).

The n-th power symmetric function, pn ∈ Λ, is defined as pn =
∞∑
i=1

xni .

Let λ = (λ1, . . . , λ`) be an integer partition; that is, λ is a finite sequence

of weakly increasing non-negative integers. Let `(λ) denote the number of nonzero

integers in λ. If the sum of these integers is n, we say that λ is a partition of

n and write λ ` n. For any partition λ = (λ1, . . . , λ`), define hλ = hλ1 · · ·hλ` ,
eλ = eλ1 · · · eλ` , and pλ = pλ1 · · · pλ` . The well-known fundamental theorem of

symmetric functions, see [37], says that {eλ : λ ` n} is a basis for Λn, the space of

symmetric functions which are homogeneous of degree n. Equivalently, the funda-

mental theorem of symmetric functions states that {e0, e1, . . .} is an algebraically
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independent set of generators for the ring Λ. It follows that one can completely

specify a ring homomorphism Γ : Λ→ R from Λ into a ring R by giving the values

of Γ(en) for n ≥ 0.

Next we give combinatorial interpretations to the expansion of hµ in terms

of the elementary symmetric functions. Given partitions λ = (λ1, . . . , λ`) ` n and

µ ` n, a λ-brick tabloid of shape µ is a filling of the Ferrers diagram of shape µ

with bricks of size λ1, . . . , λ` such that each brick lies in a single row and no two

bricks overlap. For example, Figure 1.1 shows all the λ-brick tabloids of shape µ

where λ = (1, 1, 2, 2) and µ = (2, 4).

Figure 1.1: The four (1, 1, 2, 2)-brick tabloids of shape (2, 4).

If T is a brick tabloid of shape (n) such that the lengths of the bricks,

reading from left to right, are b1, . . . , b`, then we shall write T = (b1, . . . , b`). For

example, the brick tabloid T = (2, 3, 1, 4, 2) is pictured in Figure 1.2.

Figure 1.2: The brick tabloid T = (2, 3, 1, 4, 2).

Let Bλ,µ denote the set of all λ-brick tabloids of shape µ and let Bλ,µ =

|Bλ,µ|. Eğecioğlu and Remmel proved in [16] that

hµ =
∑
λ`n

(−1)n−`(λ)Bλ,µeλ. (1.24)

1.3 Outline of Reciprocal Method, Collapse

Map, and a few results

In this section, we shall apply the reciprocal method to give combinatorial

interpretations to U
(P)
u (x, z∞, t), U

(k)
u (x, zk, t), EU

(P)
u (x, z∞, t), and EU

(k)
u (x, zk, t).
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Fix a word u such that des(u) ≤ 1. In this introduction, we will only

consider U
(P)
u (x, z∞, t) but the other cases are similar. Recall that

U (P)
u (x, z∞, t) =

1

1 +
∑

n≥1N
(P)
u,n(x, z∞)tn

. (1.25)

Thus if we let Θu(en) = (−1)nN
(P)
u,n(x, z∞) for n ≥ 1 and Θu(e0) = 1, we see that

Θu(H(t)) = 1 +
∑
n≥1

Θu(hn)

= Θu

(
1

E(−t))

)
=

1

1 +
∑

n≥1(−1)nΘu(en)

=
1

1 +
∑

n≥1N
(P)
u,n(x, z∞)tn

= U (P)
u (x, z∞, t).

Thus it follows that Θu(hn) = U
(P)
u,n(x, z∞).

By (1.24), we have that

Θu(hn) =
∑
λ`n

(−1)n−`(λ)Bλ,n Θu(eλ)

=
∑
λ`n

(−1)n−`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

(−1)biN
(P)
u,bi

(x, z∞)

=
∑
λ`n

(−1)`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

N
(P)
u,bi

(x, z∞). (1.26)

Our next goal is to give a combinatorial interpretation to the right-hand side

of (1.26). Fix a partition λ of n and a λ-brick tabloid B = (b1, . . . , b`(λ)). We will in-

terpret
∏`(λ)

i=1 N
(P)
u,bi

(x, z∞) as the number of ways of picking words (w(1), . . . , w(`(λ)))

such that for each i, w(i) ∈ Pbi is a word such that umch(w) = 0 and assigning a

weight to this `(λ)-tuple to be
∏`(λ)

i=1 x
des(w(i))+1zw

(i)
.

We can then use the pair 〈B, (w(1), . . . , w(`(λ)))〉 to construct a filled-labeled-

brick tabloid O〈B,(w(1),...,w(`(λ))〉 as follows. First for each brick bi, we place the word

w(i) in the cells of the brick, reading from left to right. Then we label each cell of bi

that starts a descent of w(i) with a x and we also label the last cell of bi with x. This

accounts for the factor xdes(w(i))+1. Finally, we use the factor (−1)`(λ) to change

the label of the last cell of each brick from x to −x. For example, suppose n = 17,
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u = 312, B = (3, 7, 4, 3) w(1) = 1 1 7, w(2) = 3 6 6 5 2 5 1, w(3) = 3 4 7 6, and

w(4) = 2 5 2. Then we have pictured the filled-labeled brick tabloid O〈B,(w(1),...,w(4))〉

constructed from the pair 〈B, (w(1), . . . , w(4))〉 in Figure 1.3.

1 1 7 63 6 5 2 5 1 3 4 7 6 2 5 2

−x−x−x−x x x x xx

Figure 1.3: The construction of a filled-labeled-brick tabloid.

Clearly, we can recover the pair 〈B, (w(1), . . . , w(`(λ)))〉 and the labels on

the cells from B and the word w which is obtained by reading the elements in

the cells of O〈B,(w(1),...,w(`(λ)))〉 from left to right. Thus we shall specify the filled-

labeled-brick tabloid O〈B,(w(1),...,w(`(λ)))〉 by (B,w). We let O(P)
u,n denote the set of all

filled-labeled-brick tabloids constructed in this way. That is, O(P)
u,n consists of all

pairs O = (B,w) where

1. B = (b1, . . . , b`(λ)) is brick tabloid of shape (n),

2. w = w1 . . . wn ∈ Pn such that there is no u-match of σ which is entirely

contained in a single brick of B, and

3. if there is a cell c such that a brick bi contains both cells c and c + 1 and

wc > wc+1, then cell c is labeled with a x and the last cell of any brick is

labeled with −x.

The sign of O, sgn(O), is (−1)`(λ) and the weight of O, wt(O), is x`(λ)+intdes(σ)zw

where intdes(w) denotes the number of i such that wi > wi+1 and wi and wi+1

lie in the same brick. We shall refer to such i as an internal descent of O. Note

that the labels on O are completely determined by the underlying brick tabloid

B = (b1, . . . , b`(λ)) and the underlying word w. Thus the filled-labeled-brick tabloid

O pictured in Figure 1.3 equals ((3, 7, 4, 3), 1 1 7 3 6 6 5 2 5 1 3 4 7 6 2 5 2).

It follows that

Θu(hn) =
∑

O∈O(P)
u,n

sgn(O)wt(O). (1.27)
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Next we define a weight-preserving, sign-reversing involution Iu on O(P)
u,n.

Given an element O = (B,w) ∈ O(P)
u,n where B = (b1, . . . , bk) and w = w1 . . . wn,

scan the cells of O from left to right looking for the first cell c such that either

(i) c is labeled with a x or

(ii) c is a cell at the end of a brick bi, wc > wc+1, and there is no u-match of w

that lies entirely in the cells of bricks bi and bi+1.

In case (i), if c is a cell in brick bj, then we split bj into two bricks b′j and b′′j

where b′j contains all the cells of bj up to and including cell c and b′′j consists of the

remaining cells of bj and we change the label on cell c from x to −x. In case (ii), we

combine the two bricks bi and bi+1 into a single brick b and change the label on cell

c from −x to x. If neither case (i) nor case (ii) applies, then we define Iu(O) = O.

For example, consider the element O ∈ O(P)
312,17 pictured in Figure 1.3. Note that

even though the number in the last cell of brick 1 is greater than the number in

the first cell of brick 2, we can not combine these two bricks because 7 3 6 would

be a 312-match. Thus the first place that we can apply the involution is on cell 6

which is labeled with an x so that Iu(O) is the object pictured in Figure 1.4.

1 1 7 63 6 5 2 5 1 3 4 7 6 2 5 2

−x−x−x−x x x x−x x

Figure 1.4: Iu(O) for O in Figure 1.3.

We claim that whenever u is a word such that red(u) = u and des(u) ≤ 1,

Iu is an involution, i.e. I2
u is the identity. We will prove this in a later section, but

for now we will accept this is true and examine the fixed points of Iu. So assume

that (B,w) is a fixed point of Iu.

There are two cases to consider.

Case 1. des(u) = 0.
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Suppose that (B,w) is a fixed point where B = (b1, . . . , bk) and w =

w1 . . . wn. We will prove in a later section that (B,w) is a fixed point if and

only if w is a weakly increasing word such that w has no u-match that lies entirely

within one of the bricks of B.

Case 2. des(u) = 1.

We will prove in a later section that O = (B,w) where B = (b1, . . . , bk) and

w = w1 . . . wn is a fixed point if and only if

1. there are no cells labeled with x in O, i.e., the elements of w in each brick of

O are weakly increasing and

2. if bi and bi+1 are two consecutive bricks in O, then either (a) there is a weak

increase between bi and bi+1, i.e., w∑i
j=1 |bj |

≤ w1+
∑i
j=1 |bj |

, or (b) there is

a decrease between bi and bi+1, i.e., w∑i
j=1 |bj |

> w1+
∑i
j=1 |bj |

, but there is a

u-match contained in the elements of the cells of bi and bi+1 which must

necessarily involve w∑i
j=1 |bj |

and w1+
∑i
j=1 |bj |

.

It follows that

Θu(hn) =
∑

O∈O(P)
u,n,Iu(O)=O

sgn(O)wt(O). (1.28)

We conclude the introduction by briefly describing how to compute the

generating function N (P)
u (x, z∞, t) for u = u1 . . . uj such that red(u) = u, des(u) =

1, and u1 > uj.

We start by considering a special class of words u = u1 . . . uj which have the

P-minimal overlapping property ([k]-minimal overlapping property). This means

that any two consecutive u-matches can share at most one letter. For example

u = 2341 has the P-minimal overlapping property while u = 3412 does not have

the P-minimal overlapping property since in the word w = 563412, the u-matches

5634 and 3412 share two letters.

Thus assume that u = u1 . . . uj, red(u) = u, des(u) = 1, u1 > uj, and u

has the P-minimal overlapping property. First we introduce what we shall call the
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collapse map which maps fixed points of Iu to a certain subset of words in P∗. This

is best explained through an example. Suppose that u = 2341 and we want to

compute U
(7)
2341(x, z7, t). By (1.28), we know that

U (7)
u,n(x, z7) =

∑
O∈O(7)

u,n,Iu(O)=O

sgn(O)wt(O). (1.29)

Now suppose that we are given a fixed point (B,w) of Iu where B =

(b1, . . . , bk) and w = w1 . . . wn such as the one pictured in Figure 1.5. We know

that to be a fixed point of Iu, w must be weakly increasing within bricks of B and

that for any i < k, if c is last cell in brick bi and wc > wc+1, then there must be a

u-match in w which is contained in the cells of bi and bi+1. In our particular ex-

ample, since u = 2341 has a single descent, this match must involve the last three

cells of bi and the first cell of bi+1. In Figure 1.5, we have indicated the two such

2341-matches in our example by placing stars below the cells in the 2341-matches.

In this case the collapse map just maps (B,w) to the word v = C(B,w, u) which

is the result of starting with w and removing the letters in all such matches that

do not correspond to the end points of the match. This process is pictured in Fig-

ure 1.5 where again we have starred the elements in C(B,w, u) that remain from

the original 2341-matches in w. What makes the case where u has the minimal

overlapping property easier is that, since any two consecutive u-matches can share

at most letter, there is no possibility that an end point of a u-match in w occurs

in the middle of another u-match in w so that the letters that we remove from w

for any pair of u-matches are disjoint from each other.

7 4 5

−x−x−x−x

2 3 3 4 4 5 6 4 4 4 5

* * * * * *

(B,w) =

*

53 2

* *

*

C(B,w,u) = 3 2 3 3 4 4 2 4 4 4 4 5 5 

* *

Figure 1.5: A fixed point of I2341.

The next question that we want to consider is how can we construct all
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the fixed points of (B,w) of Iu such that C(B,w, v) is equal to a given word

v = v1 . . . vn. First it easy to see that the only descents that appear in a word

C(B,w, u) must come from 2341-matches that straddled two bricks in B. Thus if

vs > vs+1, then vs must have played the role of 2 in the original 2341-match and

vs+1 must have played the role of 1 in the original 2341-match. Such a requirement

rules out certain words from being in the range of the collapse map C. For example,

suppose that the underlying alphabet is [7]. Then if vs = 6 and vs+1 = i where

i < 6, then v could not have come from the collapse of 2341-match because we can

not add two letters which could play the role of 3 and 4 in the 2341-match. If we

consider the first descent 32 in the C(B,w, u) of Figure 1.5, then we see there are

many ways that we could add the two middle letters. That is, the original 2341-

match could have been any 3cd2 where c < d and c, d ∈ {4, 5, 6, 7}. It follows that

the extra weight from these possibilities that is not included in zC(B,w,u)t|C(B,w,u)|

in this case would be −xt2
∑

4≤c<d≤7 zczd. Here the −x comes from the fact that

we know that the original match straddled two bricks and there is a weight of −x
associated with the end point of the first of those two bricks. On the other hand,

if vs ≤ vs+1, then we have only two choices. That is, either cell s was the end of a

brick or cell s was an internal cell of a brick. This implies that each weak rise in v

contributes a factor of (1−x) since if s is at the end of a brick, there is a weight of

−x associated with the last cell of a brick. In this way, we can associate a weight

with each weak rise or descent of v which will allow us to compute∑
(B,w) is a fixed point of Iu

C(B,w,u)=v

sgn(B,w)wt(B,w).

In our case where u = 2341 and k = 7, the weights associated with the

descents are given in table 1.1.

However, if u = 2341 and we want to compute U
(P)
u,n(x, z∞), the weights for

any descent ji would be −xt2
∑

j<c<d zczd which is an infinite sum.

Going back to our example where u = 2341 and k = 7, it follows that for

any v ∈ [7]+, ∑
(B,w) is a fixed point of Iu

C(B,w,u)=v

sgn(B,w)wt(B,w) =
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Table 1.1: The weights wt2341,7(ji)

Descents wt2341,7(ji)

7i (i < 7) 0

6i (i < 6) 0

5i (i < 5) −xz6z7t
2

4i (i < 4) −x(z5z6 + z5z7 + z6z7)t2

3i (i < 3) −x(z4z5 + z4z6 + z4z7 + z5z6 + z5z7 + z6z7)t2

21 −x(z3(z4 + z5 + z6 + z7) + z4(z5 + z6 + z7) + z5(z6 + z7) + z6z7)t2

− xzvt|v|(1− x)wrise(v)
∏

s∈Des(v)

wt2341,7(vsvs+1). (1.30)

Here the initial −x comes from the fact that the last cell of (B,w) always con-

tributes a −x since the last cell is at the end of a brick. It follows that

U
(7)
2341(x, z7, t) = 1 +

∑
n≥1

U
(7)
2341,n(x, z7)tn

= 1 +
∑
v∈[7]+

−x(1− x)wrise(v)zvt|v|
∏

s∈Des(v)

wt2341,7(vsvs+1). (1.31)

Hence we could compute N (7)
2341,n(x, z7, t) =

1

U
(7)
2341,n(x, z7, t)

if we can compute the

right-hand side of (1.31).

What we need to be able to compute the right-hand side of (1.31) is the

generating function over all words v ∈ P∗ where we not only keep track of the

descents of P but also of type of descents of P .

By Theorem 1, we know that

1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXZ(S)
= 1 +

∑
w=w1...wn∈P+

t|w|zw
∏

i∈Des(w)

xwiwi+1
. (1.32)

Hence ∑
w=w1...wn∈P+

t|w|zw
∏

i∈Des(w)

xwiwi+1
=

(
1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXZ(S)

)
− 1

=

∑
n≥1 t

n
∑

S⊆P,|S|=nDXZ(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXZ(S)
. (1.33)
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Next, if we replace t by (1 − x)t and xij by wtu(ij)
y

and perform some algebraic

simplifications we obtain the following theorem:

Theorem 8. Suppose that u = u1 . . . uj ∈ [k]∗, red(u) = u, des(u) = 1, u1 > uj.

Then

N (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

S⊆P,|S|=nDXTZu(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXTZu(S)
(1.34)

where

DXTZu(S) =

zj if S = {j}, and

zj1 · · · zjk
∏k−1

i=1 (wtu(ji+1ji) + x− 1) if S = {j1 < · · · < jk}
(1.35)

where k ≥ 2.

Chapter 1, in part, has been submitted for publication as it may appear in

Generating Functions for Descents over Words which Avoid a Consecutive Pattern,

2017, Remmel, Jeffrey; Sangha, Luvreet, Electronic Journal of Combinatorics,

2017, arXiv:1612.04900. The dissertation author was the secondary author of this

work.

http://arxiv.org/abs/1612.04900


Chapter 2

The proofs of Theorems 1, 2, 3, 4,

5, 6, and 7

In this section, we shall prove Theorems 1, 2, 3, 4, 5, 6, and 7.

We start with the proof of Theorem 1.

Proof of Theorem 1.

Recall that given a set S ⊆ P, we let

DXZ(S) =

zj if S = {j}, and

zj1 · · · zjk
∏k−1

i=1 (xji+1ji − 1) if S = {j1 < · · · < jk} where k ≥ 2.

(2.1)

Define a ring homomorphism Γ : Λ → Q[x, z] by defining Γ(e0) = 1 and,

for n ≥ 1,

Γ(en) = (−1)n−1
∑

S⊆P,|S|=n

DXZ(S). (2.2)

Then we claim that

Γ(hn) =
∑
w∈Pn

zw
∏
i<j

x
ji(w)
ji . (2.3)

27
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That is,

Γ(hn) =
∑
µ`n

(−1)n−`(µ)Bµ,(n)Γ(eµ)

=
∑
µ`n

(−1)n−`(µ)
∑

(b1,...,b`(µ))∈Bµ,(n)

`(µ)∏
j=1

(−1)bj−1
∑

Sj⊆P,|Sj |=bj

DXZ(Sj)

=
∑
µ`n

∑
(b1,...,b`(µ))∈Bµ,(n)

`(µ)∏
j=1

∑
Sj⊆P,|Sj |=bj

DXZ(Sj) (2.4)

Next we want to give a combinatorial interpretation to (2.4). First we pick

a brick tabloid B = (b1, . . . , bk) of length n. Then we interpret∏`(µ)
j=1

∑
Sj⊆P,|Sj |=bj DXZ(Sj) as picking a sequence of subsets of P, (S1, . . . , S`(µ)),

such that Sj has size bj and placing the elements of Sj in the cells of bj in decreasing

order for j = 1, . . . , `(µ). If Sj = {a1 > · · · > abj}, then we interpret the factor

DXZ(Sj) = za1 · · · zabj
∏bj−1

i=1 (xaiai+1
− 1) as the ways of labeling the cells of bj

that contain ai where i < bj with either zaixai,ai+1
or with −zai and labeling the

last of cell bj with zabj . We shall call all such objects created in this way filled

labeled brick tabloids and let Hn denote the set of all filled labeled brick tabloids

that arise in this way. Thus Hn consists of all triples (B,w, L) such that

1. B = (b1, . . . , bk) is a brick tabloid of length n,

2. w = w1 . . . wn is a word in Pn such that w is strictly decreasing in each brick,

and

3. L is a labeling of the cells of B such that L(i) is equal to za if i is the last

cell of some brick bj which contains a and L(i) = −za or L(i) = xabza if i is

not the last cell of a brick, cell i contains a and cell i+ 1 contains b.

We then define the weight of (B,w, L), wt(B,w, L), to be the product of all the

xab and za labels in L and the sign of (B,w, L), sgn(B,w, L), to be the product

of all the −1 factors in the labels in L. This process is illustrated in Figure 2.1 to

construct an element (B,w, L) of H12 such that

wt(B,w, L) = z3
1z

2
2z

2
3z

2
4z5z

2
6x54x41x64x32x63
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and sgn(B,w, L) = −1.

Thus

Γ(hn) =
∑

(B,w,L)∈Hn

sgn(B,w, L)wt(B,w, L). (2.5)
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63
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Figure 2.1: An element (B,w, L) ∈ H12.

Next we define a weight-preserving sign-reversing involution I : Hn → Hn.

To define I(C), we scan the cells of C = (B,w, L) from left to right looking for the

leftmost cell, t, such that either (i) t is labeled with −zwt or (ii) t is at the end of a

brick, bj, there is a brick bj+1 immediately following bj, and wt > wt+1. In case (i),

I(C) = (B,w′, L′) where B′ is the result of replacing the brick b in B containing t

by two bricks b∗ and b∗∗, where b∗ contains all the cells of b weakly to the left of

cell t and b∗∗ contains all the cells of b strictly to the right of t, w′ = w, and L′ is

the labeling that results from L by changing the label of cell t from −zwt to zwt .

In case (ii), I(C) = (B′, w′, L′) where B is the result of replacing the bricks bj and

bj+1 in B by a single brick b, w′ = w, and L′ is the labeling that results from L by

changing the label of cell t from zwt to −zwt . If neither case (i) or case (ii) applies,

then we let I(C) = C. For example, if C is the element of H12 pictured in Figure

2.1, then I(C) is pictured in Figure 2.2.
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Figure 2.2: I(C) for C in Figure 2.1.

It is easy to see that I2(C) = C for all C ∈ Hn and that if I(C) 6= C,

then sgn(C)w(C) = −sgn(I(C))w(I(C)). Hence I is a weight-preserving and
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sign-reversing involution that shows

Γ(hn) =
∑

C∈Hn,I(C)=C

sgn(C)w(C). (2.6)

Thus, we must examine the fixed points, C = (B,w, L), of I. First, there

can be no −za labels in L so that sgn(C) = 1. Moreover, if bj and bj+1 are two

consecutive bricks in B and t is the last cell of bj, then it cannot be the case that

wt > wt+1 since otherwise we could combine bj and bj+1. Thus for each cell t such

that wt > wt+1, it must be the case that cells t and t+ 1 lie in the same brick and,

hence, cell t is labeled with zwtxwtwt+1 .

It follows that sgn(C)w(C) = zw
∏

1≤i<j x
ji(w)
ji . For example, Figure 2.3

shows a fixed point of I in H12.

Vice versa, if w ∈ Pn, then we can create a fixed point, C = (B,w, L), by

having the bricks of B end at cells t such that either wt ≤ wt+1 or t = n, labeling

each cell t such that wt > wt+1 with zwtxwtwt+1 and labeling the remaining cells t

with zwt . Thus we have shown that

Γ(hn) =
∑
w∈Pn

zw
∏
i<j

x
ji(w)
ji .

as desired.
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Figure 2.3: A fixed point of I.

Applying Γ to the identity H(t) = 1
E(−t) , we get∑

n≥0

Γ(hn)tn = 1 +
∑
n≥1

tn
∑
w∈Pn

zw
∏
i<j

x
ji(w)
ji

=
1

1 +
∑

n≥1(−t)nΓ(en)

=
1

1 +
∑

n≥1(−1)ntn(−1)n−1
∑

S⊆P,|S|=nDXZ(S)

=
1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXZ(S)
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which proves (1.17).

Proof of Theorem 2.

One can easily modify the proof of Theorem 1 to prove Theorem 2.

Recall that given a weakly decreasing word w from P∗, we let

WDXZ(w) =

zj if w = j, and

zj1 · · · zjk
∏k−1

i=1 (xjiji+1
− 1) if w = j1 ≥ · · · ≥ jk where k ≥ 2.

(2.7)

Define a ring homomorphism Γw : Λ → Q[x, z] by defining Γ(e0) = 1 and,

for n ≥ 1,

Γw(en) = (−1)n−1
∑

w∈WDP∗,|w|=n

WDXZ(w). (2.8)

Then we claim that

Γw(hn) =
∑
w∈Pn

zw
∏
i≤j

x
ji(w)
ji . (2.9)

That is,

Γw(hn) =
∑
µ`n

(−1)n−`(µ)Bµ,(n)Γw(eµ)

=
∑
µ`n

(−1)n−`(µ)
∑

(b1,...,b`(µ))∈Bµ,(n)

`(µ)∏
j=1

(−1)bj−1
∑

wj⊆WDP∗,|wj |=bj

WDXZ(wj)

=
∑
µ`n

∑
(b1,...,b`(µ))∈Bµ,(n)

`(µ)∏
j=1

∑
wj∈WDP∗,|wj |=bj

WDXZ(wj) (2.10)

Next we want to give a combinatorial interpretation to (2.10). First we pick

a brick tabloid B = (b1, . . . , bk) of length n. Then we interpret∏`(µ)
j=1

∑
wj⊆WDP∗,|wj |=bj WDXZ(wj) as picking a sequence of weakly descreasing

words in

WDP∗, (w1, . . . , w`(µ)), such that wj has length bj and placing the elements of wj

in the cells of bj in j = 1, . . . , `(µ). If wj = a1 ≥ · · · ≥ abj , then we interpret

the factor WDXZ(wj) = za1 · · · zabj
∏bj−1

i=1 (xaiai+1
− 1) as the ways of labeling the
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cells of bj that contain ai where i < bj with either zaixaiai+1
or with −zai and

labeling the last of cell bj with zabj . We shall call all such objects created in this

way filled labeled brick tabloids and let WDHn denote the set of all filled labeled

brick tabloids that arise in this way. Thus WDHn consists of all triples (B,w, L)

such that

1. B = (b1, . . . , bk) is a brick tabloid of length n,

2. w = w1 . . . wn is a word in Pn such that w is weakly decreasing in each brick,

and

3. L is a labeling of the cells of B such that L(i) is equal to za if i is the last

cell of some brick bj which contains a and L(i) = −za or L(i) = xabza if i is

not the last cell of a brick, cell i contains a and cell i+ 1 contains b.

We then define the weight of (B,w, L), wt(B,w, L), to be the product of all the

xab and za labels in L and the sign of (B,w, L), sgn(B,w, L), to be the product

of all the −1 factors in the labels in L. This process is illustrated in Figure 2.4 to

construct an element (B,w, L) of H12 such that

wt(B,w, L) = z1z
3
2z3z

3
4z5z

3
6x54x44x64x32x66

and sgn(B,w, L) = −1.
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Figure 2.4: A element (B,w, L) ∈ WDH12.

At this point, the only difference in the proof is that we are dealing with

filled brick tabloids which have weakly decreasing sequences in the bricks rather

than strictly decreasing sequences in the bricks. This means that we can modify

the involution I of Theorem 1 by splitting bricks at cells labeled with −zi or com-

bining two bricks such that the elements in the two bricks form a weakly decreasing
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sequence. Then essentially the same proof will show that (2.9) holds.

Proof of Theorem 3.

Given any weakly increasing word w = w1 . . . wn, we let S(w) denote the set

of letters that appear inW . For example, if w = 11123555, then S(w) = {1, 2, 3, 5}.
We claim that for any non-empty set S = {j1 < · · · < jk} contained in P,∑

w∈P+,S(w)=S

t|w|zw
∏
i<j

x
ij(w)
ij = t|S|RXZ(S).

That is, if S = {j}, then w must be of the for jk for some k ≥ 0 so that in this

case ∑
w∈P+,S(w)=S

t|w|zw
∏
i<j

x
ij(w)
ij =

zjt

1− zjt
= t|S|

zj
1− zjt

= t|S|RXZ(S).

If S(w) = {j1 < · · · < jk} where k ≥ 2, then w must be of the form w =

ja1
1 j

a2
2 . . . jakk where ai ≥ 1 for i = 1, . . . , k. For any such word, it is easy to see that

∏
i<j

x
ij(w)
ij =

k−1∏
i=1

xjiji+1
.

Hence,

∑
w∈P+,S(w)=S

t|w|zw
∏
i<j

x
ij(w)
ij =

(
k∏
i=1

zjit

1− zjit

)
k−1∏
i=1

xjiji+1

= t|S|

(
k∏
i=1

zji
1− zjit

)
k−1∏
i=1

xjiji+1

= t|S|RXZ(S).

Thus

R(x∞, z∞, t) = 1 +
∑
n≥1

tn
∑

S⊆P,|S|=n

RXZ(S).

Proof of Theorem 4.
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Consider a factor
(

1 + zit
1−xiizit

)
. One can think of the choice of 1 in that

factor as not choosing i to occur in the word where as the factor zit
1−xiizit corresponds

to choosing one of i, ii, iii, iiii, . . . in word. Equation (1.20) easily follows.

Proof of Theorem 5.

We wish to show the following

HP(x, z, t) = DP(x,
z

1 + zt
, t) (2.11)

or equivalently

DP(x, z, t) = HP(x,
z

1− zt
, t) (2.12)

We will show (2.12), and then obtain (2.11) by back substitution. Notice

that the function HP(x, z, t) sums over words with no levels, and it keeps track of

the types of descents that occur. If we substitute z
1−zt for z and use the geometric

series expansion, it will replace each letter zi by the expression zi+z2
i t+z3

i t
2 + . . ..

The first term in this sum, zi, corresponds to replacing zi with zi. The second term

in this sum, z2
i t, corresponds to replacing zi with two zi’s, so we need an extra t

for this extra letter. The third term corresponds to replacing zi with three zi’s,

so we need t2 for the two extra letters. In this way, we have not changed any of

the types of rises or the descents that occur, but this substitution transforms our

function so that we are summing over all words as desired.

To get (2.11) we back substitute. Let

ui =
zi

1− zit
ui − uizit = zi

ui = zi(1 + uit)
ui

1 + uit
= zi

Replacing ui with zi on the left-hand side we get (2.11).
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Proof of Theorem 6.

We wish to show the following

GP(x, z, t) = EP(x,
z

1 + zt
, t) (2.13)

or equivalently

GP(x, z, t) = EP(x,
z

1− zt
, t) (2.14)

We will show (2.14), and then obtain (2.13) by back substitution as we did

in the previous proof. Notice that the function GP(x, z, t) sums over words with

no levels, and it keeps track of the types of rises that occur. If we substitute z
1−zt

for z and use the geometric series expansion, it will replace each letter zi by the

expression zi + z2
i t + z3

i t
2 + . . .. The first term in this sum, zi, corresponds to

replacing zi with zi. The second term in this sum, z2
i t, corresponds to replacing zi

with two zi’s, so we need an extra t for this extra letter. The third term corresponds

to replacing zi with three zi’s, so we need t2 for the two extra letters. In this way,

we have not changed any of the types of rises or the descents that occur, but this

substitution transforms our function so that we are summing over all words as

desired.

To get (2.13) we back substitute as we did above. Let

ui =
zi

1− zit
ui − uizit = zi

ui = zi(1 + uit)
ui

1 + uit
= zi

Replacing ui with zi on the left-hand side we get (2.13).

Proof of Theorem 7.
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The proof of Theorem 7 is analogous to the proof of Theorem 1. We re-

place DXZ(S) with EXZ(S), and the cells in the bricks of our filled labelled

brick tabloids will be strictly increasing instead of strictly decreasing. We can

then modify the involution I of Theorem 1 by splitting at bricks labeled with −zi
or combining two bricks such that the elements in the two bricks form a strictly in-

creasing sequence. From there essentially the same proof completes the argument.

Chapter 2, in particular the proofs of Theorems 1, 2, 3, and 4, has been

submitted for publication as it may appear in Generating Functions for Descents

over Words which Avoid a Consecutive Pattern, 2017, Remmel, Jeffrey; Sangha,

Luvreet, Electronic Journal of Combinatorics, 2017, arXiv:1612.04900. The dis-

sertation author was the secondary author of this work.

http://arxiv.org/abs/1612.04900


Chapter 3

Descents: Results when des(u) = 1

3.1 Introduction

In the introduction, we outlined how whenever u is a word such that

red(u) = u and des(u) ≤ 1, Iu is an involution, i.e. I2
u is the identity. We be-

gin this section by proving this claim and carefully examining the fixed points of

Iu. Then we will show how we can define a similar involution Ju in the case of

exact u-matches and examine its fixed points.

We begin by proving Iu is an involution. First we consider the case where

des(u) = 1. Now suppose that we are in case (i) where we split a brick bj at cell

c which is labeled with a x. In that case, we let a be the number in cell c and

a′ be the number in cell c + 1 which must also be in brick bj. It must be the

case that there is no cell labeled x before cell c since otherwise we would not use

cell c to define the involution. However, we have to consider the possibility that

when we split bj into b′j and b′′j , we might then be able to combine the brick bj−1

with b′j because the number in that last cell of bj−1 is greater than the number in

the first cell of b′j and there is no u-match in the cells of bj−1 and b′j. Since we

always take an action on the left most cell possible when defining Iu(O), we know

that we cannot combine bj−1 and bj so that there must be a u-match in the cells

of bj−1 and bj. Clearly, that u-match must have involved the number a′ and the

number in cell d which is the last cell in brick bj−1. But that is impossible because

then there would be two descents among the numbers between cell d and cell c+ 1

37
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which would violate our assumption that u has only one descent. Thus whenever

we apply case (i) to define Iu(O), the first action that we can take is to combine

bricks b′j and b′′j so that I2
u(O) = O.

If we are in case (ii), then again we can assume that there are no cells

labeled x that occur before cell c. When we combine bricks bi and bi+1, then we

will label cell c with a x. It is clear that combining the cells of bi and bi+1 cannot

help us combine the resulting brick b with an earlier brick since it will be harder

to have no u-matches with the larger brick b. Thus the first place cell c where we

can apply the involution to Iu(O) will again be cell c which is now labeled with a

x so that I2
u(O) = O if we are in case (ii).

The case where des(u) = 0 is even easier. Suppose that a is number in the

the last cell of bj and a′ is the number in the first cell of bj+1 and a > a′. Then

there can be no u-match of w that is contained in the cells of bj and bj+1 because

by our definitions there is no u-match in the cells of bj and there is no u-match in

the cells of bj+1 so that the only possible u-match in the cells of bj and bj+1 would

have to involve a and a′ which is impossible if des(u) = 0. It easily follows that

we will apply the involution to the first possible cell c which is labeled with either

x or −x and what ever action we take at cell c to create Iu(O), we will come back

to cell c to undo that action to define I2(O).

Our definitions ensure that if Iu(O) 6= O, then sgn(O)wt(O) =

−sgn(Iu(O))wt(Iu(O)). Hence, if we let IO(P)
u,n denote the set of all O = (B,w) ∈

O(P)
u,n such that Iu(O) = O, then

Θu(hn) =
∑

O∈O(P)
u,n

sgn(O)wt(O) =
∑

O∈IO(P)
u,n

sgn(O)wt(O). (3.1)

Next we provide a rigorous examination of the fixed points of Iu that we

omitted in the introduction. So assume that (B,w) is a fixed point of Iu. There

are two cases to consider.

Case 1. des(u) = 0.

Suppose that (B,w) ∈ IOu,n where B = (b1, . . . , bk) and w = w1 . . . wn.
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There can be no cell c which is labeled with x in (B,w) since we could use such

a cell to define Iu which would violate our assumption that (B,w) is a fixed point

of Iu. Similarly there can be no cell c which is at the end of a brick bj such that

wc > wc+1 since again we could use such a cell to define Iu(O). This means that

w must be weakly increasing within any brick and if c is a cell at the end of brick

bj which is followed by another brick bj+1, then wc ≤ wc+1. Thus (B,w) is a fixed

point if and only if w is a weakly increasing word such that w has no u-match that

lies entirely within one of the brick of B. If B has k bricks, then then weight of

(B,w) is just (−x)kzw. We letWIOu,n = {(B,w) ∈ IO(P)
u,n : w1 ≤ w2 ≤ · · · ≤ wn}

denote the set of elements of IO(P)
u,n where w is weakly increasing. Then we have

the following lemma. Let Q(x, z∞) be the set of rational functions in the variables

x and z∞ over the rationals Q.

Lemma 1. Suppose that u is a word in P+ such that red(u) = u and des(u) = 0.

Let Θu : Λ → Q(x, z∞) be the ring homomorphism defined by setting Θu(e0) = 1

and Θu(en) = (−1)nN
(P)
u,n(x, z∞) for n ≥ 1. Then

U (P)
u,n(x, z∞) = Θu(hn) =

∑
((b1,...,bk),w)∈WIOu,n

(−x)kzw. (3.2)

Case 2. des(u) = 1.

First it is easy to see that there can be no cells which are labeled with x

so that numbers in each brick of O must be weakly increasing. Second we cannot

combine two consecutive bricks bi and bi+1 in O which means that either there is

an weak increase between the bricks bi and bi+1 or there is a decrease between the

bricks bi and bi+1, but there is a u-match in the cells of the bricks bi and bi+1. Thus

we have proved the following.

Lemma 2. Suppose that u ∈ P+, red(u) = u, and des(u) = 1. Let Θu : Λ →
Q(x, z∞) be the ring homomorphism defined by setting Θu(e0) = 1 and Θu(en) =

(−1)nN
(P)
u,n(x, z∞) for n ≥ 1. Then

U (P)
u,n(x, z∞) = Θu(hn) =

∑
O∈O(P)

u,n,Iu(O)=O

sgn(O)wt(O) (3.3)
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where O(P)
u,n is the set of objects and Iu is the involution defined above. Moreover

O = (B,w), where B = (b1, . . . , bk) and w = w1 . . . wn, is a fixed point of Iu if and

only if it has the following two properties:

1. there are no cells labeled with x in O, i.e., the elements of w in each brick of

O are weakly increasing and

2. if bi and bi+1 are two consecutive bricks in O, then either (a) there is a

weak increase between bi and bi+1, i.e., w∑i
j=1 |bj |

≤ w1+
∑i
j=1 |bj |

, or (b) there

is a decrease between bi and bi+1, i.e., w∑i
j=1 |bj |

> w1+
∑i
j=1 |bj |

, but there is

a u-match contained in the elements of the cells of bi and bi+1 which must

necessarily involve w∑i
j=1 |bj |

and w1+
∑i
j=1 |bj |

.

Clearly, if we restrict to the alphabet [k] instead of P, we will get the same

two lemmas except that the words all have to be in [k]∗ rather than in P∗.
Next we want to consider what happens when we replace u-matches by

exact u-matches. We can follow the same steps to interpret EU
(P)
u (x, z∞, t). That

is,

EU (P)
u (x, z∞, t) =

1

1 +
∑

n≥1EN
(P)
u,n(x, z∞)tn

. (3.4)

Thus if we let Γu(en) = (−1)nEN
(P)
u,n(x, z∞) for n ≥ 1 and Γu(e0) = 1, we see that

Γu(H(t)) = 1 +
∑
n≥1

Γu(hn)

= Γu

(
1

E(−t))

)
=

1

1 +
∑

n≥1(−1)nΓu(en)

=
1

1 +
∑

n≥1EN
(P)
u,n(x, z∞)tn

= EU (P)
u (x, z∞, t).

Thus it follows that Γu(hn) = EU
(P)
u,n(x, z∞).
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By (1.24), we have that

Γu(hn) =
∑
λ`n

(−1)n−`(λ)Bλ,n Γu(eλ)

=
∑
λ`n

(−1)n−`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

(−1)biEN
(P)
u,bi

(x, z∞)

=
∑
λ`n

(−1)`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

EN
(P)
u,bi

(x, z∞) (3.5)

Again we can give a combinatorial interpretation to the right-hand side of

(3.5). Fix a partition λ of n and a λ-brick tabloid B = (b1, . . . , b`(λ)). We will inter-

pret
∏`(λ)

i=1 EN
(P)
u,bi

(x, z∞) as the number of ways of picking words (w(1), . . . , w(`(λ)))

such that for each i, w(i) ∈ Pbi is a word such that eumch(w) = 0 and assigning a

weight to this `(λ)-tuple to be
∏`(λ)

i=1 x
des(w(i))+1zw

(i)
.

Following the same steps that we did to interpret Θu(hn), we let EO(P)
u,n

denote the set of all filled-labeled-brick tabloids constructed in this way. That is,

EO(P)
u,n consists of all pairs O = (B,w) where

1. B = (b1, . . . , b`(λ)) is brick tabloid of shape (n),

2. w = w1 . . . wn ∈ Pn such that there is no exact u-match of σ which is entirely

contained in a single brick of B, and

3. if there is a cell c such that a brick bi contains both cells c and c + 1 and

wc > wc+1, then cell c is labeled with a x and the last cell of any brick is

labeled with −x.

The sign of O, sgn(O), is (−1)`(λ) and the weight of O, wt(O), is x`(λ)+intdes(σ)zw.

Then as before we can conclude

Γu(hn) =
∑

O∈EO(P)
u,n

sgn(O)wt(O). (3.6)

At this point, we can define an involution Ju exactly as we did for Iu except

replace u-match by exact u-matches in the definitions. This will allow us to prove

the following two lemmas.
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Lemma 3. Suppose that u is a word in P+ such that des(u) = 0. Let Γu :

Λ → Q(x) be the ring homomorphism defined by setting Γu(e0) = 1 and Γu(en) =

(−1)nEN
(P)
u,n(x, z∞) for n ≥ 1. Then

EU (P)
u,n(x, z∞) = θu(hn) =

∑
((b1,...,bk),w)∈WIEOu,n

(−x)kzw (3.7)

where WIEOu,n is the set of all (B,w) ∈ EOu,n such that Ju(B,w) = (B,w) and

w is weakly increasing.

Lemma 4. Suppose that u ∈ P+ and des(u) = 1. Let Γu : Λ → Q(y) be the ring

homomorphism defined by setting Γu(e0) = 1 and Γu(en) = (−1)nEN
(P)
u,n(x, z∞) for

n ≥ 1. Then

EU (P)
u,n(x, z∞) = Γu(hn) =

∑
O∈EO(P)

u,n,Ju(O)=O

sgn(O)wt(O) (3.8)

where EO(P)
u,n is the set of objects and Ju is the involution defined above. Moreover

O = (B,w), where B = (b1, . . . , bk) and w = w1 . . . wn, is a fixed point of Ju if and

only if it has the following two properties:

1. there are no cells labeled with x in O, i.e., the elements of w in each brick of

O are weakly increasing and

2. if bi and bi+1 are two consecutive bricks in O, then either (a) there is a weak

increase between bi and bi+1, i.e., w∑i
j=1 |bj |

≤ w1+
∑i
j=1 |bj |

, or (b) there is

a decrease between bi and bi+1, i.e., w∑i
j=1 |bj |

> w1+
∑i
j=1 |bj |

, but there is an

exact u-match contained in the elements of the cells of bi and bi+1 which must

necessarily involve w∑i
j=1 |bj |

and w1+
∑i
j=1 |bj |

.

3.2 The case u = u1 . . . uj, des(u) = 1, and u1 > uj

In this section, we shall consider the problem of computing the generating

functions N (P)
u (x, z∞, t), N (k)

u (x, zk, t), EN (P)
u (x, z∞, t), and EN (k)

u (x, zk, t) for u =

u1 . . . uj such that des(u) = 1, and u1 > uj.
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Now suppose that u = u1 . . . uj, red(u) = u, u1 > uj, and des(u) = 1. Let

1 ≤ s < j be the position such that us > us+1 so that u1 ≤ · · · ≤ us > us+1 ≤
· · · ≤ uj. Then St(P)(u) ⊆ {s+ 1, . . . , j} since if we try to start a match at one of

the positions 2, . . . , s, the descent in the second match would not be in the right

place. It follows that u automatically has the P-weakly decreasing overlapping

property and the [k]-weakly decreasing overlapping property for any k ≥ 2.

We start by considering a special class of words u = u1 . . . uj which have the

P-minimal overlapping property ([k]-minimal overlapping property). This means

that any two consecutive u-matches can share at most one letter. For example

u = 2341 has the P-minimal overlapping property while u = 3412 does not have

the P-minimal overlapping property since in the word w = 563412, the u-matches

5634 and 3412 share two letters.

Thus assume that u = u1 . . . uj, red(u) = u, des(u) = 1, u1 > uj, and u has

the P-minimal overlapping property. First we reintroduce the collapse map that

we mentioned in the introduction which maps fixed points of Iu or Ju to a certain

subset of words in P∗. This is best explained through an example. Suppose that

u = 2341 and we want to compute U
(7)
2341(x, z7, t). By (3.3), we know that

U (7)
u,n(x, z7) =

∑
O∈O(7)

u,n,Iu(O)=O

sgn(O)wt(O). (3.9)

Now suppose that we are given a fixed point (B,w) of Iu where B = (b1, . . . , bk) and

w = w1 . . . wn such as the one pictured in Figure 3.1. We know that to be a fixed

point of Iu, w must be weakly increasing within bricks of B and that for any i < k,

if c is last cell in brick bi and wc > wc+1, then there must be a u-match in w which is

contained in the cells of bi and bi+1. In our particular example, since u = 2341 has

a single descent, this match must involve the last three cells of bi and the first cell

of bi+1. In Figure 3.1, we have indicated the two such 2341-matches in our example

by placing stars below the cells in the 2341-matches. In this case the collapse map

just maps (B,w) to the word v = C(B,w, u) which is the result of starting with

w and removing the letters in all such matches that do not correspond to the end

points of the match. This process is pictured in Figure 3.1 where again we have

starred the elements in C(B,w, u) that remain from the original 2341-matches in
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w. What makes the case where u has the minimal overlapping property easier is

that, since any two consecutive u-matches can share at most letter, there is no

possibility that an end point of u-match in w occurs in the middle of another u-

match in w so that the letters that we remove from w for any pair of u-matches

are disjoint from each other.

7 4 5

−x−x−x−x

2 3 3 4 4 5 6 4 4 4 5

* * * * * *

(B,w) =

*

53 2

* *

*

C(B,w,u) = 3 2 3 3 4 4 2 4 4 4 4 5 5 

* *

Figure 3.1: A fixed point of I2341.

The next question that we want to consider is how can we construct all

the fixed points of (B,w) of Iu such that C(B,w, v) is equal to a given word

v = v1 . . . vn. First it easy to see that the only descents that appear in a word

C(B,w, u) must come from 2341-matches that straddled two bricks in B. Thus if

vs > vs+1, then vs must have played the role of 2 in the original 2341-match and

vs+1 must have played the role of 1 in the original 2341-match. Such a requirement

rules out certain words from being in the range of the collapse map C. For example,

suppose that the underlying alphabet is [7]. Then if vs = 6 and vs+1 = i where

i < 6, then v could not have come from the collapse of 2341-match because we can

not add two letters which could play the role of 3 and 4 in the 2341-match. If we

consider the first descent 32 in the C(B,w, u) of Figure 3.1, then we see there are

many ways that we could add the two middle letters. That is, the original 2341-

match could have been any 3cd2 where c < d and c, d ∈ {4, 5, 6, 7}. It follows that

the extra weight from these possibilities that is not included in zC(B,w,u)t|C(B,w,u)|

in this case would be −xt2
∑

4≤c<d≤7 zczd. Here the −x comes from the fact that

we know that the original match straddled two bricks and there is a weight of −x
associated with the end point of the first of those two bricks. On the other hand,

if vs ≤ vs+1, then we have only two choices. That is, either cell s was the end of a
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Table 3.1: The weights wt2341,7(ji)

Descents wt2341,7(ji)

7i (i < 7) 0

6i (i < 6) 0

5i (i < 5) −xz6z7t
2

4i (i < 4) −x(z5z6 + z5z7 + z6z7)t2

3i (i < 3) −x(z4z5 + z4z6 + z4z7 + z5z6 + z5z7 + z6z7)t2

21 −x(z3(z4 + z5 + z6 + z7) + z4(z5 + z6 + z7) + z5(z6 + z7) + z6z7)t2

brick or cell s was an internal cell of a brick. This implies that each weak rise in v

contributes a factor of (1−x) since if s is at the end of a brick, there is a weight of

−x associated with the last cell of a brick. In this way, we can associate a weight

with each weak rise or descent of v which will allow us to compute∑
(B,w) is a fixed point of Iu

C(B,w,u)=v

sgn(B,w)wt(B,w).

In our case where u = 2341 and k = 7, the weights associated with the

descents are given in the table 3.1.

However, if u = 2341 and we want to compute U
(P)
u,n(x, z∞), the weights for

any descent ji would be −xt2
∑

j<c<d zczd which is an infinite sum.

Going back to our example where u = 2341 and k = 7, it follows that for

any v ∈ [7]+, ∑
(B,w) is a fixed point of Iu

C(B,w,u)=v

sgn(B,w)wt(B,w) =

− xzvt|v|(1− x)wrise(v)
∏

s∈Des(v)

wt2341,7(vsvs+1). (3.10)

Here the initial −x comes from the fact that the last cell of (B,w) always con-

tributes a −x since the last cell is at the end of a brick. It follows that

U
(7)
2341(x, z7, t) = 1 +

∑
n≥1

U
(7)
2341,n(x, z7)tn

= 1 +
∑
v∈[7]+

−x(1− x)wrise(v)zvt|v|
∏

s∈Des(v)

wt2341,7(vsvs+1). (3.11)
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Table 3.2: The weights ewt2341(ji)

Descents weight ewt2341,P(ji)

ji where either j 6= 2 or i 6= 1 0

21 −xz3z4t
2

Hence we could compute N (7)
2341,n(x, z7, t) =

1

U
(7)
2341,n(x, z7, t)

if we can compute the

right-hand side of (3.11).

The case of exact matches is even simpler. In that case, we want to compute∑
(B,w) is a fixed point of Ju

C(B,w,u)=v

sgn(B,w)wt(B,w).

Going back to our example of u = 2341 over the alphabet [7], we see the only

descents that appear in a word v = C(B,w, u) must come from exact 2341-matches

that straddled two bricks in B. Thus if vs > vs+1, then it must be the case that

vs = 2, vs+1 = 1 and we must have eliminated a 3 and 4 from w. Thus if we

want to compute EU
(P)
2341,n(x, z∞) or EU

(k)
2341,n(x, zk) for k ≥ 4, we must compute

the corresponding weights which are listed in table 3.2.

It follows that for any v ∈ P+,∑
(B,w) is a fixed point of J2341

C(B,w,2341)=v

sgn(B,w)wt(B,w) =

− xzvt|v|(1− x)wrise(v)
∏

s∈Des(v)

ewt2341,P(vsvs+1). (3.12)

and

EU
(P)
2341,n(x, z∞, t) = 1 +

∑
n≥1

EU
(P)
2341,n(x, z∞)tn

= 1 +
∑
v∈P+

−xzvt|v|(1− x)wrise(v)
∏

s∈Des(v)

ewt2341,P(vsvs+1).

(3.13)

In our case,
∏

s∈Des(v) ewt2341,P(vsvs+1) = 0 unless the only descents in v are

of the from 21. It follows that the only nonempty words v that can contribute to
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(3.13) are words v of the form w or of the form 1a12b1211a22b221 . . . 1ar2br21w for

some r ≥ 1 where w is a weakly increasing word. Let

W (x, z∞, t) :=
∞∏
i=1

1

(1− (1− x)zit)
.

The generating function of −xzvt|v|(1−x)wrise(v)
∏

s∈Des(v) ewt2341,7(vsvs+1) over all

nonempty weakly increasing words is just

−x
(1− x)

(−1 +W (x, z∞, t)) . (3.14)

The generating function of −xzvt|v|(1−x)wrise(v)
∏

s∈Des(v) ewt2341,7(vsvs+1) over all

words v of the form 1a12b12 is

z2t

(1− (1− x)z1t)(1− (1− x)z2t)
.

The generating function of −xzvt|v|(1−x)wrise(v)
∏

s∈Des(v) ewt2341,7(vsvs+1) over all

words v of the form 1a12b1211a22b221 . . . 1ar2br21w where w is weakly increasing is

−xW (x, z∞, t)

(
z2t

(1− (1− x)z1t)(1− (1− x)z2t)

)r
(−xz1z3z4t

3)r(1− x)r−1.

Here the term (−xz1z3z4t
3)r comes from the weights ewt2341,P(21) that arise from

the descents 21 and (1 − x)r−1 comes from the weights of the rises coming from

the first r− 1 1s which are the second elements of the descents 21. It follows that

the generating function of −xzvt|v|(1− x)wrise(v)
∏

s∈Des(v) ewt2341,7(vsvs+1) over all

v such that v is of the form 1a12b1211a22b221 . . . 1ar2br21w for some r ≥ 1 where w

is a weakly increasing word is equal to

− xW (x, z∞, t)
∑
r≥1

(
−xz1z2z3z4t

4

(1− (1− x)z1t)(1− (1− x)z2t)

)r
(1− x)r−1 =

−xW (x, z∞, t)

(1− x)

(
−1 +

1

1− −xz1z2z3z4t4(1−x)
(1−(1−x)z1t)(1−(1−x)z2t)

)
(3.15)

Putting (3.14) and (3.15) together we see that

EU
(P)
2341,n(x, z∞, t) = 1 +

−x
(1− x)

(−1 +W (x, z∞, t)) +

−xW (x, z∞, t)

(1− x)

(
−1 +

1

1− −xz1z2z3z4t4(1−x)
(1−(1−x)z1t)(1−(1−x)z2t)

)

= 1 +
x

(1− x)
− xW (x, z∞, t)

(1− x)

1

1 + xz1z2z3z4t4(1−x)
(1−(1−x)z1t)(1−(1−x)z2t)

. (3.16)
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Thus

EN (P)
2341(x, z∞, t) =

1

1 + x
(1−x)

− xW (x,z∞,t)
(1−x)

1

1+
xz1z2z3z4t

4(1−x)
(1−(1−x)z1t)(1−(1−x)z2t)

. (3.17)

It should be clear from our arguments that the only role that the 2 and

3 played in the final form EN (P)
2341(x, z∞, t) was to contribute a factor of z3z4t

2 to

the expression xz1z2z3z4t4(1−x)
(1−(1−x)z1t)(1−(1−x)z2t)

on the right hand side of (3.17). Thus our

arguments show that if u = 2α1 where α is non-empty weakly increasing word in

{2, 3, . . .}∗, then we have the following theorem.

Theorem 9. Let u = 2α1 where α is non-empty weakly increasing word in

{2, 3, . . .}∗. Then

EN (P)
2α1(x, z∞, t) =

1

1 + x
(1−x)

− xW (x,z∞,t)
(1−x)

1

1+
xz1z2z

αt2+|α|(1−x)
(1−(1−x)z1t)(1−(1−x)z2t)

. (3.18)

Other examples where the weights wtu,P(ij) are easy to compute are words

of the form u = 2r1 or u = 21r where r ≥ 2. It is easy to see that both 2r1 and

21r have the minimal overlapping property. In this case, the only u-matches are

of the form bra where b > a ≥ 1 if u = 2r1 or bar where b > a ≥ 1 if u = 21r. For

example, suppose that u = 231. Then in Figure 3.2, we have pictured a fixed point

of Iu where we have indicated the two 231-matches in our example by placing stars

below the cells in the 231-matches. In the case the collapse map just maps (B,w)

to the word v = C(B,w, u) which is the result of starting with w and removing the

letters in all such matches that do not correspond to the end points of the match.

This process is pictured in Figure 3.2 where again we have starred the elements in

C(B,w, u) that remain from the original 231-matches in w.

In this case, if we have a descent ji, then wt231,k(ji) = wt2221,P(ji) = −xz2
j t

2

since we will always add back two js for each descent of of the form ji. Thus if

u = 231 it follows that for any v ∈ P+,∑
(B,w) is a fixed point of I2221

C(B,w,2221)=v

sgn(B,w)wt(B,w) = −x(1− x)wrise(v)
∏

s∈Des(v)

−xz2
vst

2.

(3.19)
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4 5

−x−x−x−x

3 3 4 5 4 4 4 5

* * * * * *

(B,w) =

*

3

* *

*

3 5 5 23 1

C(B,w,u) = 3 1 3 3 4 5 2 4 4 4 4 5 5 

* *

Figure 3.2: A fixed point of I2221.

and

U
(P)
2221,n(x, z∞, t) = 1 +

∑
n≥1

U
(P)
2221,n(x, z∞)tn

= 1 +
∑
v∈P+

−x(1− x)wrise(v)
∏

s∈Des(v)

−xz2
vst

2. (3.20)

Hence we could compute N (P)
2221,n(x, z∞, t) =

1

U
(P)
2221,n(x, z∞, t)

if we can compute the

right-hand side of (3.20).

When u does not have the minimal overlapping property, we can obtain

similar results but the collapse maps and the weights wtu(ji) are more complicated.

Again this is best explained through an example. Suppose that u = 3412 and k = 8.

4

-x-x-x-x

5

* * * *

(B,w) =

*

3 7 8 64 2 3

* * *

3 1 2 556 4 54

* * * * *

C(B,w,u) = 3 7 3 4 5 2 4 5 5 5  

**

-x-x

*

Figure 3.3: A fixed point of I3412.

When u does not have the minimal overlapping property, then we can have

a situation such as the one pictured in Figure 3.3. If we look at the descents

between bricks 1 and 2 which correspond to the u-match 7846, we see that we

would like to eliminate the 8 and 4. However, this u-match overlaps the u-match
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associated with the descent between bricks 2 and 3 which is 4623. Thus we would

also like to eliminate the 6 and 2. We will say that two such matches are linked if

one of the end points of first match is one of middle elements of the second match.

Depending on the pattern we could have a series of u-matches in a fixed point of

(B,w) which are linked. The fact that we are assuming that u = u1 . . . uj where

u1 > uj and des(u) = 1 implies that u has the P-weakly decreasing overlapping

property or [k]-weakly decreasing overlapping property. It is then easy to see that

if w = w1 . . . wn is a word such that there is a u-match starting position 1 and a

u-match ending at position n and any two consecutive u-matches in w are linked,

then w1 > wn. In such a situation, the collapse map will eliminate all the symbols

except for the first element of the first match and last element of the last match

in a maximal sequence of linked u-matches which will result in a descent. This is

illustrated in Figure 3.3 where we have two maximal blocks of linked 3412-matches.

Thus in the linked 3412-matches in cells 2 through 7, we keep only the 7 and the

3 and in the linked matches in cells 9 through 14, we keep only the 5 and the 2.

Because we are assuming that u1 > uj, we know that maximal blocks of linked u-

matches must be finite since the end point of such matches must strictly decrease.

When we see a descent ji in a word C(B,w, u), the weight associated with such

a decent is now more complicated. For example, in our case where u = 3412 and

k = 8, a decent of the form 72 can correspond to a single 3412-match which would

have to be of the form 7812, it could correspond to a maximum block with 2 linked

3412-matches in which case it must be of the form 78cd12 where 3 ≤ c < d ≤ 6,

or it could correspond to a maximum block with 3 linked 3412-matches in which

case it must be 78563412. Thus

wt3412(72) = −xz1z8t
2 + x2t4z1z8

( ∑
3≤c<d≤6

zczd

)
− x3t6z1z3z4z5z6z8

On the other hand a descent of the form ji where j − i ≤ 2 can only correspond

to a single 3412-match so that wt3412(ji) = −xt2(
∑

j<s≤8 zs)(
∑

1≤t<i zt).

We give the weights associated with the descents for u = 3412 and k = 8

in the table 3.3.
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Table 3.3: The weights wt3412,8(ji)

Descents wt3412,8(ji)

8i (i < 8) 0

j1 (j > 2) 0

ji (j > i & j − i ≤ 2 −xt2(
∑

j<s≤8 zs)(
∑

1≤t<i zt)

72 −xz1z8t
2 +x2t4z1z8(

∑
3≤c<d≤6 zczd)−x3t6z1z3z4z5z5z6z8

62 −xt2(z7 + z8)z1 + x2t4(z7 + z8)z1(
∑

3≤c<d≤5 zczd)

52 −xt2(z6 + z7 + z8)z1 + x2t4(z6 + z7 + z8)z1z3z4

73 −xt2z8(z1 + z2) + x2t4z8(z1 + z2) +

x2t4z8(z1 + z2)(
∑

4≤c<d≤6 zczd)

63 −xt2(z7 + z8)(z1 + z2) + x2t4(z7 + z8)(z1 + z2)z4z5

74 −xt2z8(z1 + z2 + z3) + x2t4z8(z1 + z2 + z3)z5z6

It follows that for any v ∈ [8]+,∑
(B,w) is a fixed point of I3412

C(B,w,3412)=v

sgn(B,w)wt3412(B,w) =

− xzvt|v|(1− x)wrise(v)
∏

s∈Des(v)

wt3412,8(vsvs+1). (3.21)

and

U
(8)
3412,n(x, z8, t) = 1 +

∑
n≥1

U
(8)
3412,n(x, z8)tn

= 1 +
∑
v∈[8]+

−xzvt|v|(1− x)wrise(v)
∏

s∈Des(v)

wt3412,8(vsvs+1). (3.22)

What we need to be able to compute the right-hand sides of either (3.11),

(3.13), (3.20), or (3.22) is the generating functions over all words v ∈ P∗ where we

not only keep track of the descents of P but also of type of descents of P .

By Theorem 1, we know that

1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXZ(S)
= 1 +

∑
w=w1...wn∈P+

t|w|zw
∏

i∈Des(w)

xwiwi+1
. (3.23)
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Hence

∑
w=w1...wn∈P+

t|w|zw
∏

i∈Des(w)

xwiwi+1
=

(
1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXZ(S)

)
− 1

=

∑
n≥1 t

n
∑

S⊆P,|S|=nDXZ(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXZ(S)
. (3.24)

Next suppose that we replace t by yt and xij by
xij
y

. Under this substitution the

left-hand side in (3.24) becomes

∑
w=w1...wn∈P+

t|w|ywrise(w)+1zw
∏

i∈Des(w)

xwiwi+1
.

Note that for S = {j1 < · · · < jk} where k ≥ 2, our substitution replaces

tkDXZ(S) by

yktkzj1 · · · zjk
k−1∏
i=1

(
xji+1ji

y
− 1

)
= ytkzj1 · · · zjk

k−1∏
i=1

(xji+1ji − y).

Thus if we let

DXY Z(S) =

zj if S = {j}, and

zj1 · · · zjk
∏k−1

i=1 (xji+1ji − y) if S = {j1 < · · · < jk} where k ≥ 2,

(3.25)

then we see that right-hand side of (3.24) becomes

y
∑

n≥1 t
n
∑

S⊆P,|S|=nDXY Z(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nDXY Z(S)
.

It follows that

−x
∑

w=w1...wn∈P+

t|w|ywrise(w)zw
∏

i∈Des(w)

xwiwi+1
=

−x
∑

n≥1 t
n
∑

S⊆P,|S|=nDXY Z(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nDXY Z(S)
.

Thus

1− x
∑

w=w1...wn∈P+

t|w|ywrise(w)zw
∏

i∈Des(w)

xwiwi+1
=
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1− (x+ y)
∑

n≥1 t
n
∑

S⊆P,|S|=nDXY Z(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nDXY Z(S)
. (3.26)

By setting zi = 0 for i > k, we also obtain that

1− x
∑

w=w1...wn∈[k]+

t|w|ywrise(w)zw
∏

i∈Des(w)

xwiwi+1
=

1− (x+ y)
∑k

n=1 t
n
∑

S⊆[k],|S|=nDXY Z(S)

1− y
∑k

n=1 t
n
∑

S⊆[k],|S|=nDXY Z(S)
. (3.27)

Note that if we replace y by (1 − x) and xji by wtu(ji), the left-hand

side of (3.26) becomes U
(P)
u (x, z∞, t) and the left-hand side of (3.27) becomes

U
(k)
u (x, zk, t). Similarly, if we replace y by (1 − x) and xji by ewtu(ji), the left-

hand side of (3.26) becomes EU
(P)
u (x, z∞, t) and the left-hand side of (3.27) becomes

EU
(k)
u (x, zk, t). Then using the fact that N (P)

u (x, z∞, t) = 1/U
(P)
u (x, z∞, t) and that

EN (P)
u (x, z∞, t) = 1/EU

(P)
u (x, z∞, t), we have the following theorem.

Theorem 10. Suppose that u = u1 . . . uj ∈ P∗, red(u) = u, des(u) = 1, u1 > uj.

Then

N (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

S⊆P,|S|=nDXTZu(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nDXTZu(S)
(3.28)

and

EN (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

S⊆P,|S|=nEDXTZu(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nEDXTZu(S)
(3.29)

where

DXTZu(S) =

zj if S = {j}, and

zj1 · · · zjk
∏k−1

i=1 (wtu(ji+1ji) + x− 1) if S = {j1 < · · · < jk}
(3.30)

where k ≥ 2 and

EDXTZu(S) =

zj if S = {j}, and

zj1 · · · zjk
∏k−1

i=1 (ewtu(ji+1ji) + x− 1) if S = {j1 < · · · < jk}
(3.31)

where k ≥ 2.
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If we set zi = 0 for all i > k, then we obtain the following theorem.

Theorem 11. Now suppose that u = u1 . . . uj ∈ [k]∗, red(u) = u, des(u) = 1,

u1 > uj. Then

N (k)
u (x, zk, t) =

1− (1− x)
∑k

n=1 t
n
∑

S⊆[k],|S|=nDXTZu(S)

1−
∑k

n=1 t
n
∑

S⊆[k],|S|=nDXTZu(S)
(3.32)

and

EN (k)
u (x, zk, t) =

1− (1− x)
∑k

n=1 t
n
∑

S⊆[k],|S|=nEDXTZu(S)

1−
∑k

n=1 t
n
∑

S⊆[k],|S|=nEDXTZu(S)
. (3.33)

It follows from Theorem 11 that to compute the generating function

N (k)
u (x, zk, t), we need only compute sums of the form

Pn,u(x, t) =
∑

S⊆[k],|S|=n

DXTZu(S)

for 1 ≤ n ≤ k. As an example, suppose that k = 5 and we want to compute

N (5)
2341(x, z5, t) where we set zi = 1 for all i. Then with this specialization, it is easy

to see that

1. wt2341(21) = −3xt2,

2. wt2341(3i) = −xt2 for all i < 3,

3. wt2341(4i) = 0 for all i < 4, and

4. wt2341(5i) = 0 for all i < 5.

It follows that that

1. DXTZ2341({1, 2})|zi=1 = −3xt2 + x− 1,

2. DXTZ2341({i, 3})|zi=1 = −xt2 + x− 1 for all i < 3,

3. DXTZ2341({i, 4})|zi=1 = x− 1 for all i < 4, and

4. DXTZ2341({i, 5})|zi=1 = x− 1 for all i < 5.

One can then compute that
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1. P1,2341(x, t) = 5,

2. P2,2341(x, t) = −10 + 10x− 5xt2,

3. P3,2341(x, t) = 10− 20x+ 14t2x+ 10x2 − 14t2x2 + 3t4x2,

4. P4,2341(x, t) = −5+15x−13t2x−15x2 +26t2x2−6t4x2 +5x3−13t2x3 +6t4x3,

and

5. P5,2341(x, t) = (−3xt2 + x− 1)(−xt2 + x− 1)(x− 1)2.

Thus ∑
w∈[5]∗,2341-mch(w)=0

xdes(w)+1 =
1− (1− x)(

∑5
n=1 Pn,2341(x, t)tn)

1−
∑5

n=1 Pn,2341(x, t)tn
. (3.34)

We have computed that the initial terms of this series are

1 + 5xt+ 5(3x+ 2x2)t2 + 5(7x+ 16x2 + 2x3)t3 + 5(14x+ 72x2 + 37x3 + x4)t4+

(126x+ 1210x2 + 1492x3 + 246x4 + x5)t5+

(210x+ 3387x2 + 7921x3 + 3522x4 + 210x5)t6+

(330x+ 8344x2 + 32461x3 + 28902x4 + 5471x5 + 120x6)t7 + · · · .

One can obtain several interesting generating functions from N (5)
2341(x, z5, t).

For example setting x = 0 in 1
2
∂2

∂x2N (5)
2341(x, z5, t), one finds that the generating

function for the number of words w in [5]∗ such that des(w) = 1 and 2341-mch(w) =

0 is
t2(10− 20t+ 10t2 + 10t3 − 13t4 + 4t5)

(1− t)10
.

Similarly setting x = 0 in 1
6
∂3

∂x3N (5)
2341(x, z5, t), one finds that the generating function

for the number of words w in [5]∗ such that des(w) = 2 and 2341-mch(w) = 0 is

t3Q(t)

(1− t)15

where

Q(t) = 10 + 35t− 233t2 + 416t3 − 219t4 − 266t5 + 458t6 − 167t7 − 161t8 + 198t9

− 83t10 + 13t11.
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If u = 2s1 where s ≥ 2 and we set zi = 1 for all i, then it is easy to see that

wt2s1(ji) = −xts−1 for all j > i and that DXTZ(S)|zi=1 = (−xts−1 + 1 − x)|S|−1

for all S ⊆ [k] where |S| ≥ 1. It then easily follows from Theorem 11

∑
w∈[k]∗,2s1-mch(w)=0

xdes(w)+1 =
1− (1− x)(

∑k
n=1

(
k
n

)
(−xts−1 + 1− x)n−1tn)

1−
∑k

n=1

(
k
n

)
(−xts−1 + 1− x)n−1tn

.

(3.35)

As an example,∑
w∈[5]∗,231-mch(w)=0

xdes(w)+1 =
1− (1− x)(

∑5
n=1

(
5
n

)
(−xt2 + x− 1)n−1tn)

1−
∑k

n=1

(
5
n

)
(−xt2 + x− 1)n−1tn

. (3.36)

We have computed that the initial terms of this series are

1 + 5xt+ 5(3x+ 2x2)t2 + 5(7x+ 16x2 + 2x3)t3 + 5(14x+ 71x2 + 37x3 + x4)t4+

(126x+ 1166x2 + 1486x3 + 246x4 + x5)t5+

5(42x+ 634x2 + 1553x3 + 704x4 + 42x5)t6+

(330x+ 7554x2 + 30998x3 + 28662x4 + 5471x5 + 120x6)t7 +O[t]8.

3.3 The case u = u1 . . . uj, des(u) = 1, and u1 < uj

In this section, we shall consider the problem of computing the generat-

ing functions N (P)
u (x, z∞, t), N (k)

u (x, zk, t), EN (P)
u (x, z∞, t), and EN (k)

u (x, zk, t) for

u = u1 . . . uj such that des(u) = 1, u1 < uj, and u has the P-weakly increasing

overlapping property ([k]-weakly increasing overlapping property).

Again the simplest case is when u has the P-minimal overlapping property

in which case u automatically has the P-weakly increasing overlapping property.

For example, suppose that u = 12433. Now suppose that we are given a fixed point

(B,w) of Iu, where B = (b1, . . . , bk) and w = w1 . . . wn, such as the one pictured in

Figure 3.4. We know that to be a fixed point of Iu, w must be weakly increasing

within bricks of B and that for any i < k, if c is last cell in brick bi and wc > wc+1,

then there must be a u-match in w which is contained in the cells of bi and bi+1.

In our particular example, since u = 12433 has a single descent, this match must
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involve the last three cells of bi and the first two cells of bi+1. In Figure 3.4, we

have indicated the three such matches in our example by placing stars below the

cells in the 12433-matches. In this case, the collapse map just maps (B,w) to

the word v = C(B,w, u) which is the result of starting with w and removing the

letters in all such matches that do not correspond to the end points of the match.

This process is pictured in Figure 3.4 where again we have starred the elements

in C(B,w, u) that remain from the original 12433-matches in w. In this case, the

resulting word C(B,w, u) must be weakly increasing.

−x−x−x−x

5

* * * * * *

(B,w) =

*

* *

*

1 5 7 6 6 7 8 8 8

* * * * **

* * *

2 3 3 3 3 3 9

C(B,w,u) = 1 3 3 3 3 6 8 8  

Figure 3.4: A fixed point of I12433.

As in the previous section, we want to construct the set of fixed points

of (B,w) of Iu such that C(B,w, v) is equal to a given word v = v1 . . . vn where

v1 ≤ · · · ≤ vn.

If vs < vs+1, then we have three possibilities: (i) vsvs+1 could lie in the same

brick bi of B, (ii) vs could end a brick bi and vs+1 could start the brick bi+1 in B,

or (iii) vsvs+1 arose from a collapse across two bricks bi and bi+1 where there was a

decrease between bricks bi and bi+1 and vs played the role of 1 in the u-match and

vs+1 plays the role of second 3 in the u-match that must cross the bricks bi and bi+1.

For example, suppose that the underlying alphabet is [9]. If vs = 8 and vs+1 = 9,

then v could not have come from the collapse of 12433-match because we can not

add a letter which could play the role of 4 in the 12433-match. Hence, the weight

associated to a rise 89 is just 1−x. If we consider the first rise 13 in the C(B,w, u)

of Figure 3.4, then we see there are many ways that we could add the three letters

middle letters. That is, the original 12433-match could have been any 12c33 where

c ∈ {4, 5, 6, 7, 8, 9}. It follows that the extra weight from these possibilities that is
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not included in zC(B,w,u)t|C(B,w,u)| is −xt3z2z3

∑
4≤c≤9 zc. Here the −x comes from

the fact that we know that the original match straddled two bricks and there is a

weight of −x associated with the end point of the first of those two bricks. Thus

the weight associated with the rise 13 is 1−x−xt3z2z3

∑
4≤c≤9 zc. If we consider the

second rise 36 in the C(B,w, u) of Figure 3.4, then we see there are many ways that

we could add the three letters middle letters. That is, the original 12433-match

could have been any 3cd66 where c ∈ {4, 5} and d ∈ {7, 8, 9}. It follows that the

extra weight from these possibilities that is not included in zC(B,w,u)t|C(B,w,u)| in

this case is −xt3z6(z4 + z5)(z7 + z8 + z9). Thus the weight associated with the rise

36 is 1− x− xt3z6(z4 + z5)(z7 + z8 + z9). Finally, we consider the third rise 68 in

the C(B,w, u) of Figure 3.4, then there is only one way to add the three middle

letters. That is, the original 12433-match must have been 67988. It follows that

the extra weight in this case that is not included in zC(B,w,u)t|C(B,w,u)| would be

−xt3z7z8z9. Thus the weight associated with the final rise 68 is 1− x− xt3z7z8z9.

On the other hand, if vs = vs+1, then we have only two choices. That is, either

cell s was the end of a brick or cell s was an internal cell of a brick. This implies

that each level in v contributes a factor of (1−x) since if s is at the end of a brick,

there is a weight of −x associated with the last cell of a brick. In this way, we can

associate a weight with each level or rise of v which will allows to compute∑
(B,w) is a fixed point of Iu

C(B,w,u)=v

sgn(B,w)wt(B,w).

In our case where u = 12433 and k = 9, the weights associated with the

rises are given in table 3.4.

However, if u = 12433 and we want to compute U
(P)
u,n(x, z∞), the weights for

any rise ij where i + 1 < j would be 1 − x − xt3zj(
∑

i<s<j zs)(
∑

j<d zd) which is

an infinite sum.

Going back to our example where u = 12433 and k = 9, it follows that for

any v ∈ [9]+, ∑
(B,w) is a fixed point of Iu

C(B,w,u)=v

sgn(B,w)wt(B,w) =
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Table 3.4: The weights wt12433,9(ij)

Rises wt12433,9(ij)

i9 (i ≤ 7) or i(i+ 1) 1− x
i8 (i ≤ 6) 1− x− xt3z8z9(

∑
i<j<8 zj)

i7 (i ≤ 5) 1− x− xt3z7(z8 + z9)(
∑

i<j<7 zj)

i6 (i ≤ 4) 1− x− xt3z6(z7 + z8 + z9)(
∑

i<j<6 zj)

i5 (i ≤ 3) 1− x− xt3z5(z6 + z7 + z8 + z9)(
∑

i<j<5 zj)

i4 (i ≤ 2) 1− x− xt3z4(
∑

4<s≤9 zs)(
∑

i<j<4 zj)

13 1− x− xt3z2z3(
∑

3<s≤9 zs)

− xzvt|v|(1− x)lev(v)
∏

s∈Rise(v)

wt12433,9(vsvs+1). (3.37)

As in the previous section, the initial −x comes from the fact that the last cell of

(B,w) always contributes a −x since the last cell is at the end of a brick. But then

we know that

U
(9)
12433(x, z9, t) = 1 +

∑
n≥1

U
(9)
12433,n(x, z9)tn

= 1 +
∑

v∈[9]+,des(v)=0

−x(1− x)lev(v)zvt|v|
∏

s∈Rise(v)

wt12433,9(vsvs+1).

(3.38)

Hence we could compute N (9)
12433(x, z9, t) =

1

U
(9)
12433(x, z9, t)

if we can compute the

right-hand side of (3.38)

As in the previous section, the case of exact matches is much simpler. In

that case, we want to compute∑
(B,w) is a fixed point of Ju

C(B,w,u)=v

sgn(B,w)wt(B,w).

Going back to our example of u = 12433 over the alphabet [9], we see that the

weight associated to a rise vs < vs+1 is 1 − x unless vs = 1, vs+1 = 3. If vs = 1,

vs+1 = 3, then we must have eliminated a 243 from w. Thus if we want to compute
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Table 3.5: The weights ewt12433(ij)

Rise weight ewt12433,P(ij)

ij where either i 6= 1 or j 6= 3 1− x
13 1− x− xz2z3z4t

3

EU
(P)
12433,n(x, z∞) or EU

(k)
12433,n(x, zk) for k ≥ 4, the weights associated to rises are

given in table 3.5. It follows that for any v ∈ [9]+,∑
(B,v) is a fixed point of J12433

C(B,w,12433)=v

sgn(B,w)wt(B,w) =

− xzvt|v|(1− x)lev(v)
∏

s∈Rise(v)

ewt12433,9(vsvs+1) (3.39)

and

EU
(9)
12433(x, z9, t) = 1 +

∑
n≥1

EU
(9)
12433,n(x, z9)tn

= 1 +
∑

v∈[9]+,des(v)=0

−xzvt|v|(1− x)lev(v)
∏

s∈Rise(v)

ewt12433,9(vsvs+1).

(3.40)

When u does not have the minimal overlapping property, we can obtain

similar results if u has the P-weakly increasing overlapping property or the [k]-

weakly increasing overlapping property. For example suppose that u = u1, . . . , uj,

des(u) = 1, u1 < uj, and u has the P-weakly increasing overlapping property. Now

suppose that w = w1 . . . wn is a maximal sequence of linked u-matches. That is,

we assume w starts and ends with a u-match and any two consecutive u-matches

share at least two letters. Then if the u-matches in w start at positions 1 = i1 <

i2 < · · · < ik, then the P-weakly increasing overlapping property in w ensures that

w1 = wi1 ≤ · · · ≤ wik < wn. Thus in a collapse map, if we eliminate w2 . . . wn−1

we will be left with a rise w1wn. This may not happen if u does not have the P-

weakly increasing overlapping property. For example, suppose u = 2413, then the

words w(1) = 472613, w(2) = 472614, and w(3) = 472615 have u-matches starting
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at positions 1 and 3. Thus in such a case, we have no control over the relationship

between first and last letter of a maximal sequence of linked u-matches.

Thus assume that u = u1 . . . uj, des(u) = 1, u1 < uj and u has the P-weakly

increasing overlapping property. Then we shall see that the collapse map still works

but the weight function wtu(ij) is more complicated. As we saw in the previous

section, we must pay attention to overlapping u-matches that share more than one

letter. We will consider the example where u = 11124333 and k = 7. Clearly u has

the weakly increasing overlapping property. In this case, u-matches can overlap in

either one, two, or three letters. As in the previous section, the collapse map will

keep only the first and last letters of a consecutive sequence of u-matches such that

each consecutive pair share at least two letters. For example, at the top of Figure

3.5, we have given an example where two consecutive u-matches share 3 letters

and at the bottom of Figure 3.5, we have given an example where two consecutive

u-matches share 2 letters.

* * *

(B,w) = 3

* * *

1 1 1 3 5 5 5

*
* * * *

6 6 6 6 7

***

−x

* *

* * *

(B,w) =

* * *

1

* *

6 6 6 6 7

**

−x

*

2 2 6

*
* *

6

2 7 3

*

4 6

*

C(B,w,u) = 1 5 6 6 6 6 7  

*

2 4 4 4 754

**

C(B,w,u) = 1 2 6 6 6 7  

−x −x−x

−x −x−x

3

*

Figure 3.5: A fixed point of I11124333.

As before, if we are given a weakly increasing word v = v1 . . . vn ∈ [7]+,

we want to find the sum of the weights of all fixed points (B,w) of Iu such that

C(B,w, u) = v. Now if vs = vs+1, then either vsvs+1 lie in the same brick which

contributes a factor of 1 or vsvs+1 lie in different bricks which contributes a factor

of −x for the brick that ends at vs. Thus we obtain a factor of 1− x for each level
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of v. For the rises of v, we should observe that the start and the end of any two

consecutive u-matches which share more than one letter must differ by at least

4. Similarly, the start and the end of any three consecutive u-matches in which

each two consecutive u-matches share more than one letter must differ by at least

6. Hence, for k = 7, we can not have three consecutive u-matches in which each

two consecutive u-matches share more that one letter because the smallest starting

point is 1 the smallest ending point is 7 which leaves no room for a letter which

is larger than the last three letters in such a sequence. For each pair, vs < vs+1

which occurs in v, we get a factor of 1 − x as we did for levels. However in this

case, we must also consider the possible collapses that could give rise to vsvs+1.

These are as follows.

1. Rises of the form i(i+1) or i7 where 1 ≤ i ≤ 5 can not arise from the collapse

map in our case so that wt11124333,7(vsvs+1) = 1− x in these cases.

2. vsvs+1 = 13. In this case, a u-match that could give rise to 13 under the

collapse map must be of the form 1112a333 where a ∈ {4, 5, 6, 7}. Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
1z2(z4 + z5 + z6 + z7)z2

3 .

3. vsvs+1 = 14. In this case, a u-match that could give rise to 14 under the

collapse map must be of the form 111ab444 where a ∈ {2, 3} and b ∈ {5, 6, 7}.
Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
1(z2 + z3)(z5 + z6 + z7)z2

4 .

4. vsvs+1 = 15. In this case, a single u-match that could give rise to 15 under the

collapse map must be of the form 111ab555 where a ∈ {2, 3, 4} and b ∈ {6, 7}.
There are also two possibilities for linked u-matches that could give rise to

15 under the collapse map, namely, (i) 1112a3334b555 or (ii) 1112a33334b555

where a ∈ {4, 5, 6, 7} and b ∈ {6, 7}. Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
1(z2 + z3 + z4)(z6 + z7)z2

5 −

xt11z2
1z2(z4 + z5 + z6 + z7)z3

3z4(z6 + z7)z2
5 −

xt12z2
1z2(z4 + z5 + z6 + z7)z4

3z4(z6 + z7)z2
5 .



63

5. vsvs+1 = 16. In this case, a single u-match that could give rise to 16 under

the collapse map must be of the form 111a7666 where a ∈ {2, 3, 4, 5}. There

are also four possibilities for linked u-matches that could give rise to 16 under

the collapse map, namely,

(i) 1112a333b7666 a ∈ {4, 5, 6, 7} and b ∈ {4, 5}, (ii) 1112a3333b7666 where

a ∈ {4, 5, 6, 7} and b ∈ {4, 5}, (iii) 111ab44457666 a ∈ {2, 3} and b ∈ {5, 6, 7},
or (iv) 111ab444457666 where a ∈ {2, 3} and b ∈ {5, 6, 7}. Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
1(z2 + z3 + z4 + z5)z7z

2
6 −

xt11z2
1z2(z4 + z5 + z6 + z7)z3

3(z4 + z5)z7z
2
6 −

xt12z2
1z2(z4 + z5 + z6 + z7)z4

3(z4 + z5)z7z
2
6 −

xt11z2
1(z2 + z3)(z5 + z6 + z7)z3

4z5z7z
2
6 −

xt12z2
1(z2 + z3)(z5 + z6 + z7)z4

4z5z7z
2
6 .

6. vsvs+1 = 24. In this case, a u-match that could give rise to 24 under the

collapse map must be of the form 2223a444 where a ∈ {5, 6, 7}. Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
2z3(z5 + z6 + z7)z2

4 .

7. vsvs+1 = 25. In this case, a u-match that could give rise to 25 under the

collapse map must be of the form 222ab555 where a ∈ {3, 4} and b ∈ {6, 7}.
Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
2(z3 + z4)(z6 + z7)z2

5 .

8. vsvs+1 = 26. In this case, a single u-match that could give rise to 26 under

the collapse map must be of the form 222a7666 where a ∈ {3, 4, 5}. There

are also two possibilities for linked u-matches that could give rise to 26 under

the collapse map, namely, (i) 2223a44457666 or (ii) 2223a444457666 where

a ∈ {5, 6, 7}. Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
2(z3 + z4 + z5)z7z

2
6 −

xt11z2
2z3(z5 + z6 + z7)z3

4z5z7z
2
6 −

xt12z2
2z3(z5 + z6 + z7)z4

4z5z7z
2
6 .
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9. vsvs+1 = 35. In this case, a u-match that could give rise to 35 under the

collapse map must be of the form 3334a555 where a ∈ {6, 7}. Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
3z4(z6 + z7)z2

5 .

10. vsvs+1 = 36. In this case, a u-match that could give rise to 36 under the

collapse map must be of the form 333a7666 where a ∈ {4, 5}. Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
3(z4 + z5)z7z

2
6 .

11. vsvs+1 = 46. In this case, a u-match that could give rise to 46 under the

collapse map must be of the form 44457666. Thus

wt11124333,7(vsvs+1) = 1− x− xt6z2
4z5z7z

2
6 .

It follows that for any v ∈ [7]+ such that v is weakly increasing,

∑
(B,w) is a fixed point of I11124333

C(B,w,11124333)=v

sgn(B,w)wt11124333,7(B,w) =

− xzvt|v|(1− x)lev(v)
∏

s∈Rise(v)

wt11124333,7(vsvs+1). (3.41)

and

U
(7)
11124333(x, z7, t) = 1 +

∑
n≥1

U
(7)
11124333,n(x, z7)tn =

1 +
∑

v∈[7]+,des(v)=0

−xzvt|v|(1− x)lev(v)
∏

s∈Rise(v)

wt11124333,7(vsvs+1). (3.42)

What we need to be able to compute the right-hand sides of either (3.38),

(3.40), or (3.42), is the generating function over all weakly increasing words v ∈ P∗

where we not only keep track of the rises of P but also the type of rises.

By Theorem 3, we know that∑
n≥1

tn
∑

S⊆P,|S|=n

RXZ(S) =
∑

w=w1≤···≤wn∈P+

t|w|zw
∏

i∈Rise(w)

xwiwi+1
. (3.43)
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If we first replace t by yt and xij by xij/y in (3.43) and then divide by y, the

right-hand side (3.43) becomes∑
w=w1≤···≤wn∈P+

t|w|zwylev(w)
∏

i∈Rise(w)

xwiwi+1

and the left-hand side becomes∑
n≥1

tn
∑

S⊆P,|S|=n

RXY Z(S)

where

RXY Z(S) =


zj

1−zjyt if S = {j}, and(∏k
i=1

zji
1−zjiyt

)∏k−1
i=1 xjiji+1

if S = {j1 < · · · < jk} where k ≥ 2.

(3.44)

Hence

1− x
∑

w=w1≤···≤wn∈P+

t|w|ylev(w)zw
∏

i∈Rise(w)

xwiwi+1
=

1− x
∑
n≥1

tn
∑

S⊆P,|S|=n

RXY Z(S). (3.45)

If we set zi = 0 for i > k, then we obtain that

1− x
∑

w=w1≤···≤wn∈[k]+

t|w|ylev(w)zw
∏

i∈Rise(w)

xwiwi+1
=

1− x
k∑

n=1

tn
∑

S⊆[k],|S|=n

RXY Z(S). (3.46)

Note that if we replace y by (1 − x) and xij by wtu(ij), the left-hand side of

(3.45) becomes U
(P)
u (x, z∞, t) and the left-hand side of (3.46) becomes U

(k)
u (x, zk, t).

Similarly, if we replace y by (1−x) and xij by ewtu(ij), the left-hand side of (3.45)

becomes EU
(P)
u (x, z∞, t) and the left-hand side of (3.46) becomes EU

(k)
u (x, zk, t).

Then using the fact that N (P)
u (x, z∞, t) = 1/U

(P)
u (x, z∞, t) and that EN (P)

u (x, z∞, t)

= 1/EU
(P)
u (x, z∞, t), we have the following theorem.
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Theorem 12. Suppose that u = u1 . . . uj ∈ P∗, red(u) = u, des(u) = 1, u1 < uj,

and u has the P-weakly increasing overlapping property. Then

N (P)
u (x, z∞, t) =

1

1− x
∑

n≥1 t
n
∑

S⊆P,|S|=nRXTZ(S)
(3.47)

and

EN (P)
u (x, z∞, t) =

1

1− x
∑

n≥1 t
n
∑

S⊆P,|S|=nERXTZ(S)
(3.48)

where

RXTZu(S) =


zj

1−(1−x)zjt
if S = {j}, and(∏k

i=1

zji
1−(1−x)zji t

)∏k−1
i=1 (wtu(jiji+1)) if S = {j1 < · · · < jk}

(3.49)

where k ≥ 2 and

ERXTZu(S) =


zj

1−(1−x)zjt
if S = {j}, and(∏k

i=1

zji
1−(1−x)zji t

)∏k−1
i=1 ewtu(jiji+1) if S = {j1 < · · · < jk}

(3.50)

where k ≥ 2.

If we specialize the variables so that zi = 0 for all i > k, then we have the

following theorem.

Theorem 13. Suppose that u = u1 . . . uj ∈ [k]∗, red(u) = u, des(u) = 1, u1 < uj,

and u has the [k]-weakly increasing overlapping property. Then

N (k)
u (x, zk, t) =

1

1− x
∑k

n=1 t
n
∑

S⊆[k],|S|=nRXTZ(S)
(3.51)

and

EN (k)
u (x, zk, t) =

1

1− x
∑k

n=1 t
n
∑

S⊆[k],|S|=nERXTZ(S)
. (3.52)

It follows from Theorem 13 that to compute the generating function we

need to N (k)
u (x, zk, t), we need only compute sums of the form

Pn,u(x, t) =
∑

S⊆[k],|S|=n

RXTZu(S)
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for 1 ≤ n ≤ k and that to compute the generating function we need to

EN (k)
u (x, zk, t), we need only compute sums of the form

Pn,u(x, t) =
∑

S⊆[k],|S|=n

ERXTZu(S)

for 1 ≤ n ≤ k.

For example, suppose that we want to compute EN (9)
u (x, z9, t) where u =

12433 and we set zi = 1 for i = 1, . . . , 9. For each set singleton S = {j},
ERXTZu(S) = 1

(1−(1−x)t)
. For sets S of cardinality greater than 2, there are

two types of sets S = {j1 < j2 < . . . jn} to consider, namely, those where j1 = 1

and j2 = 3 and those sets where it is not the case that j1 = 1 and j2 = 3. If

S = {j1 < j2 < . . . jn} where it is not the case that j1 = 1 and j2 = 3, then

we know that ERXTZu(S) = (1−x)k−1

(1−(1−x)t)k
. If S is of the form {1, 3} ∪ T where

T ⊆ {4, 5, 6, 7, 8, 9}, then

ERXTZu(S) = (1− x− xt3)(1− x)|T |
1

(1− (1− x)t)|T |+2
.

If follows that

9∑
n=1

tn
∑

S⊆[9],|S|=n

ERXTZ(S) =

p∑
n=1

(
9

k

)
tk(1− x)k−1

(1− (1− x)t)k
−

6∑
j=0

(
6

j

)
tj+2(1− x)j+1

(1− (1− x)t)j+2
+

6∑
j=0

(
6

j

)
tj+2(1− x− xt3)(1− x)j

(1− (1− x)t)j+2

=

p∑
n=1

(
9

k

)
tk(1− x)k−1

(1− (1− x)t)k
−

6∑
j=0

(
6

j

)
tj+2(xt3)(1− x)j

(1− (1− x)t)j+2
.

Thus if we let

A12433,9(x, t) = 1− x

(
p∑

k=1

(
9

k

)
tk(1− x)k−1

(1− (1− x)t)k
−

6∑
j=0

(
6

j

)
tj+2(xt3)(1− x)j

(1− (1− x)t)j+2

)
,
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then

EN (9)
12433(x, z9, t)|zi=1 =

1

A12433,9(x, t)
. (3.53)

We have used (3.53) to compute the first few terms in the series of

EN (9)
12433(x, z∞, t)|zi=1.

EN (9)
12433(x, z9, t)|zi=1 =

1 + 9tx+ t2
(
45x+ 36x2

)
+ t3

(
165x+ 480x2 + 84x3

)
+

t4
(
495x+ 3510x2 + 2430x3 + 126x4

)
+

t5
(
1287x+ 18612x2 + 31212x3 + 7812x4 + 126x5

)
+

t6
(
3003x+ 79925x2 + 262626x3 + 167826x4 + 17976x5 + 84x6

)
+

t7
(
6435x+ 294616x2 + 1683386x3 + 2132496x4 + 634446x5 + 31536x6+

36x7
)

+

t8
(
12870x+ 965709x2 + 8885187x3 + 19458252x4 + 11854197x5+

1826577x6 + 43677x7 + 9x8
)

+

t9
(
24310x+ 2881330x2 + 40454572x3 + 140542120x4 + 149803150x5+

49462810x6 + 4200670x7 + 48610x8 + x9
)

+ · · · .

We end this section with a remark about the case where u = u1 . . . uj,

des(u) = 1, u1 < uj, and u does not have the weakly increasing overlapping

property. There are two problems in this case. First, as we saw earlier, it is

possible that the end points of collapse u-match in a fixed (B,w) point of Iu can

lead to a rise, a level, or a descent in C(B,w, u). This means that the weights

wu,P(ij) or wu,[k](ij) are much more complicated. The second problem is to find

U
(P)
u (x, z∞, t), we would need to substitute in a generating function of the form

1 +
∑
n≥1

tn
∑

w=w1...wn∈Pn

n−1∏
i=1

xwiwi+1
(3.54)

and we do not know of any way to find a compact form for such a generating

function.
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3.4 The case u = u1 . . . uj, des(u) = 1, and u1 = uj

In this section, we shall consider the problem of computing the generating

functions N (P)
u (x, z∞, t), N (k)

u (x, zk, t), EN (P)
u (x, z∞, t), and EN (k)

u (x, zk, t) for u =

u1 . . . uj such that des(u) = 1, u1 = uj, and u has the P-level (or [k]-level) property.

As in the previous sections, we need to compute U
(P)
u (x, z∞, t), U

(k)
u (x, zk, t),

EU
(P)
u (x, z∞, t), and EU

(k)
u (x, zk, t). To compute these generating functions, we use

Theorem 2 or 4 plus the collapse map.

First assume that u = u1 . . . uj, red(u) = u, des(u) = 1, u1 = uj, and u

has the P- minimal overlapping property. We can define the collapse map to fixed

points of Iu or Ju exactly as in the previous sections. For example, suppose that

u = 12311 and we want to compute U
(7)
12311(x, z7, t). By (3.3), we know that

U
(7)
12311,n(x, z7) =

∑
O∈O(k)

12311,n,I12311(O)=O

sgn(O)wt(O). (3.55)

As before, we know that if (B,w) is a fixed point of I12311, then elements in the

bricks are weakly increasing and if there is a decrease between two brick bi and

bi+1, there must be a 12311-match that involves the last 3 cells of bi and the first

three cells of bi+1. We have pictured such a fixed point in Figure 3.6.

7 4 5

−x−x−x−x

3 3 4 4 5 6 4

* * * * * *

(B,w) =

*

53

* *

*

3 4 5 5 6

* *

C(B,w,u) = 3 3 3 4 4 4 4 5 5 5 6 

* *

Figure 3.6: A fixed point of I12311.

The difference between this case and the previous case where u1 > uj is

that a 12311-match of the form ijkii will just be replaced by ii so that only factors

of the form ii could have come from a 12311-match in the collapse of a fixed point

of I12311. The fact that 12311 has the P-minimal overlapping property ensures that

any two such 12311-matches can only intersect at the right-hand endpoint of the
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Table 3.6: The weights wt12311,7(ii)

Levels wt12311,7(ii)

77 1− x
66 1− x
55 1− x− xt3z5z6z7

44 1− x− xt3z4(
∑

4<c<d≤7 zczd)

33 1− x− xt3z3(
∑

3<c<d≤7 zczd)

22 1− x− xt3z2(
∑

2<c<d≤7 zczd)

11 1− x− xt3z1(
∑

1<c<d≤7 zczd)

first match and left-hand endpoint of the second match. It follows that C(B,w, u)

will always be a weakly increasing word. We claim that in this case a factor of

the form ii must have weight 1 − x − xt3zi
∑

i<c<d≤k zczd if we are computing

U
(k)
12311,n(x, zk) and 1 − x − xt3zi

∑
i<c<d zczd if we are computing U

(P)
12311,n(x, z∞).

That is, the 1 corresponds to the case where ii are in the same brick, the −x
corresponds to the case where the first i is in last cell of some brick bj and the

second i is in the first cell of the next brick, and the third term corresponds to

the cases where we have a decrease between two consecutive bricks and we deleted

the second, third, and fourth elements of the 12311-match between the two bricks.

In our example, the weight of the levels for computing U
(7)
12311,n(x, z7) are listed in

table 3.6.

In this case, rises in C(B,w, 12311) of the form ij where i < j correspond

to a factor of 1−x where the 1 comes from the case where ij are in the same brick

and the −x corresponds to the case where i and j are in different bricks.

It follows that for any v ∈ [7]+ which is weakly increasing,∑
(B,w) is a fixed point of I12311

C(B,w,12311)=v

sgn(B,w)wt12311(B,w) =

− xzvt|v|(1− x)rise(v)
∏

s∈Lev(v)

wt12311,7(vsvs+1). (3.56)
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and

U
(7)
12311(x, z7, t) = 1 +

∑
n≥1

U
(7)
12311,n(x, z7)tn

= 1 +
∑

v∈[7]+,des(v)=0

−xzvt|v|(1− x)rise(v)
∏

s∈Lev(v)

wt12311,7(vsvs+1).

(3.57)

Next suppose that u = u1 . . . uj, red(u) = u, des(u) = 1, u1 = uj, and u

has the P-level overlapping property or the [k]-level overlapping property, but u

does not have the P-minimal overlapping property. The fact that u has the P-level

overlapping property ([k]-level overlapping property) ensures that if w = w1 . . . wn

is word which starts and ends with a u-match and any two consecutive u-matches

in w share at least two letters, then it must be the case that w1 = wn. Thus

under the collapse map, any collapse will end up with a level of the form ii. The

main difference in this case is that it is possible to have the weights wtu,k(ii) or

wtu,P(ii) correspond to infinite families of words of different lengths even in the

case where the alphabet is finite. For example, suppose that u = 11211. Then it

is possible that in a fixed point (B,w) of I11211, w has a factor where consecutive

occurrences of the pattern 11211 are linked of the form iiy1iiy2iiy3ii . . . iiynii where

y1, . . . , yn > i like those that occur in the first 14 cells of the fixed point pictured

in Figure 3.7. For each given maximal sequence of this type, the collapse map

would eliminate all the symbols between the first and the last i. In such a case,

the weight corresponding to the symbols that are eliminated for such a string in

the collapse map would be (−x)nz2n
i zy1 · · · zynt3n. It would follow that if we are

working in P∗, then

wt11211,P(ii) = 1− x+
−xz2

i

(∑
s>i zs

)
t3

1 + xz2
i

(∑
s>i zs

)
t3

while if we are working in [k]∗, then for 1 ≤ i < k,

wt11211,k(ii) = 1− x+
−xz2

i

(∑k
s=i+1 zs

)
t3

1 + xz2
i

(∑k
s=i+1 zs

)
t3

and

wt11211,k(kk) = 1− x.
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That is, in each of these expressions the 1 corresponds to the case where both is

are part of the same brick, the −x corresponds to the case where the two is are

the last and first elements of two consecutive bricks, and the series
−xz2

i (
∑
s>i zs)t3

1+xz2
i (

∑
s>i zs)t3

corresponds the fact that we could have eliminated sequences of the form

iy1iiy2iiy3ii . . . iiyni for any n ≥ 1 between the two is.

7

-x-x-x-x

3 5

* * * * * *

(B,w) =

*

3

* *

*

3

*

5 3 3 3 3

* *

443 3 3 4

* * *

4

C(B,w,u) = 3 3 4 4 4 C(B,w,u) = C(B,w,u) = 

-x-x

Figure 3.7: A fixed point of I11211.

Nevertheless, we can still apply the same reasoning as above to prove that

for any v ∈ [7]+ which is weakly increasing,∑
(B,w) is a fixed point of I11211

C(B,w,11211)=v

sgn(B,w)wt11211(B,w) =

− xzvt|v|(1− x)rise(v)
∏

s∈Lev(v)

wt11211,7(vsvs+1). (3.58)

and

U
(7)
11211(x, z7, t) = 1 +

∑
n≥1

U
(7)
11211,n(x, z7)tn

= 1 +
∑

v∈[7]+,des(v)=0

−xzvt|v|(1− x)rise(v)
∏

s∈Lev(v)

wt11211,7(vsvs+1).

(3.59)

We should note that as patterns get more complicated, it becomes increas-

ingly difficult to compute wtu,P(ii) or wtk(ii). For example, suppose u = 35451235.

Then linked patterns can overlap at either 1,2,3,4, or 5 symbols.

It follows from Theorem 4 that∑
v∈P+,des(v)=0

zvt|v|
∏

i∈Lev(v)

xvivi = −1 +
∏
i≥1

(
1 +

zit

1− xiizit

)
. (3.60)
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Replacing t by yt and xij by xii/y, we see that∑
v=v1...vn∈P+

v1≤v2≤···≤vn

zvt|v|yrise(v)+1
∏

i∈Lev(v)

xvivi = −1 +
∏
i≥1

(
1 +

yzit

1− xiizit

)
. (3.61)

Thus

1 +
∑

v=v1...vn∈P+

v1≤v2≤···≤vn

−xzvt|v|yrise(v)
∏

i∈Lev(v)

xvivi = 1 +
−x
y

(
−1 +

∏
i≥1

(
1 +

yzit

1− xiizit

))
.

(3.62)

and

1 +
∑

v=v1...vn∈[k]+

v1≤v2≤···≤vn

−xzvt|v|yrise(v)
∏

i∈Lev(v)

xvivi = 1 +
−x
y

(
−1 +

k∏
i=1

(
1 +

yzit

1− xiizit

))
.

(3.63)

But then it follows that if u = u1 . . . uj, red(u) = u, des(u) = 1, u1 = uj, and u

has the P-level overlapping property, then

U (P)
u (x, z∞, t) = 1 +

∑
v∈P+,des(v)=0

−xzvt|v|(1− x)rise(v)
∏

i∈Lev(v)

wtu,P(vivi)

= 1 +
−x

1− x

(
−1 +

∏
i≥1

(
1 +

((1− x)zit

1− wtu,P(ii)zit

))

and, for all k ≥ 1, if u = u1 . . . uj, red(u) = u, des(u) = 1, u1 = uj, and u has the

[k]-level overlapping property, then

U (k)
u (x, zk, t) = 1 +

∑
v∈[k]+,des(v)=0

−xzvt|v|(1− x)rise(v)
∏

i∈Lev(v)

wtu,k(vivi)

= 1 +
−x

1− x

(
−1 +

k∏
i=1

(
1 +

((1− x)zit

1− wtu,k(ii)zit

))
.

Thus we have the following theorem.

Theorem 14. If u = u1 . . . uj ∈ P∗ is such that red(u) = u, des(u) = 1, u1 = uj,

and u has the P-level overlapping property, then

N (P)
u (x, z∞, t) =

1

1− x
1−x

(
−1 +

∏
i≥1

(
1 + (1−x)zit

1−wtu,P(ii)zit

)) . (3.64)
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If u = u1 . . . uj ∈ [k]∗ is such that red(u) = u, des(u) = 1, u1 = uj, and u has the

[k]-level overlapping property, then

N (k)
u (x, zk, t) =

1

1− x
1−x

(
−1 +

∏k
i=1

(
1 + (1−x)zit

1−wtu,k(ii)zit

)) (3.65)

Note that if u = u1 . . . uj, des(u) = 1, u1 = uj, then u automatically has

the exact P-level overlapping property (exact [k]-level overlapping property).

Theorem 15. If u = u1 . . . uj ∈ P∗ is such that des(u) = 1 and u1 = uj, then

EN (P)
u (x, z∞, t) =

1

1− x
1−x

(
−1 +

∏
i≥1

(
1 + (1−x)zit

1−ewtu,P(ii)zit

)) . (3.66)

and if u = u1 . . . uj ∈ [k]∗ is such that des(u) = 1 and u1 = uj, then

EN (k)
u (x, zk, t) =

1

1− x
1−x

(
−1 +

∏k
i=1

(
1 + (1−x)zit

1−ewtu,k(ii)zit

)) (3.67)

For example, suppose we want to compute N (7)
12311(x, z7, t) where we set

zi = 1 for all i. It follows from (3.65) that

N (7)
12311(x, z7, t) =

1

1− x
(1−x)

(−1 +
∏7

i=1Qi(x, t))
(3.68)

where

1. Q1(x, t) = 1 + (1−x)t
1−(1−x−15xt3)t

,

2. Q2(x, t) = 1 + (1−x)t
1−(1−x−10xt3)t

,

3. Q3(x, t) = 1 + (1−x)t
1−(1−x−6xt3)t

,

4. Q4(x, t) = 1 + (1−x)t
1−(1−x−3xt3)t

,

5. Q5(x, t) = 1 + (1−x)t
1−(1−x−xt3)t

,

6. Q6(x, t) = 1 + (1−x)t
1−(1−x)t

, and

7. Q7(x, t) = 1 + (1−x)t
1−(1−x)t

.
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We have computed that

N (7)
12311(x, z7, t) =

1 + 7xt+ 7(4x+ 3x2)t2 + 7(12x+ 32x2 + 5x3)t3+

7(30x+ 190x2 + 118x3 + 5x3)t4 + 7(66x+ 823x2 + 1236x3 + 268x3 + 3x5)t5+

7(132x+ 2912x2 + 8500x3 + 4770x4 + 422x5 + x6)t6+

(1716x+ 62532x2 + 312558x3 + 349315x4 + 88852x4 + 3424x6 + x7)t7+

7(429x+ 24609x2 + 194029x3 + 374249x4 + 197729x525209x6 + 429x7)t8 + · · · .

Finally we shall consider the case where u = u1 . . . uj, red(u) = u, des(u) =

1, u1 = uj and u does not have the P-level overlapping property ([k]-level overlap-

ping property). Given such a u, let s be the position such that us > us+1. Then

we must have that us+1 ≤ · · · ≤ uj = u1 and St(P)(u) ⊂ {s+ 1, . . . , j} (St([k])(u) ⊂
{s + 1, . . . , j}). This means that u automatically has the P-weakly decreasing

overlapping property ([k]-weakly decreasing overlapping property) and u is not P-

minimal overlapping ([k]-minimal overlapping). Now suppose that w = w1 . . . wn

is a maximal sequence of linked u-matches. That is, we assume w starts and ends

with a u-match and any two consecutive u-matches share at least two letters. Then

if the u-matches in w start at positions 1 = i1 < i2 < · · · < ik, then the P-weakly

decreasing overlapping property ensures that w1 = wi1 ≥ · · · ≥ wik = wn. Thus

in a collapse map, if we eliminate w2 . . . wn−1, then we will be left with a weak

descent w1wn. Thus we must figure out the weights wtu(ji) for j ≥ i.

To illustrate the process, we will consider the example where u = 2312 and

the alphabet is [4]. If w = w1w2w3w4 ∈ [4]∗ and red(w) = 2312, then clearly w

must start with either 2 or 3 since those are the only letters a which have at least

one letter in [4] bigger than a and one letter in [4] which is less than a. It follows

that wt2312,4(44) = wt2312,4(11) = 1 − x. Also wt2312,4(4i) = 0 for i = 1, 2, 3 and

wt2312,4(j1) = 0 for j = 2, 3, 4.

Next consider wt2312,4(22). There are only two possible words in [4]4 that

reduce to u, namely, w = 2312 and v = 2412. Since there is no u-match that can

start with 1, there cannot be a pair of linked u-matches that start with either w

or v. Thus there can be no maximal sequences of linked u-matches that start and



76

Table 3.7: The weights wt2312,4(ji)

Weak Descents wt2312,4(ji)

44 1− x
4i (i < 4) 0

33 1− x− xz4(z1 + z2)t2

32 x2z1z2z3z4t
4

31 0

22 1− x− xz1(z3 + z4)t2

21 0

11 1− x

end with 2. This means that when we collapsed to 22, either we started with 2312

and eliminated 31 or we started with 2412 and we eliminated 41. It follows that

wt2312,4(22) = 1− x− xz1(z3 + z4)t2.

Next consider wt2312,4(33). There are only two possible words in [4]4 that

reduce to u, namely, w = 3413 and v = 3423. Since there is no u-match that can

start with 1, there cannot a be pair of linked u-matches that start with w. There

is a pair of linked u matches that start with v, namely, 342312. However this pair

can not be extended. Thus there can be no maximal sequences of linked u-matches

that start and end with 3. This means that when we collapsed to 33 either we

started with 3413 and eliminated 41 or we started with 3423 and eliminated 42.

It follows that wt2312,4(33) = 1− x− xz4(z1 + z2)t2.

Finally we consider wt2312,4(32). In this case, the only possible way to have

a maximal sequence w of linked u-matches starting with a u-match whose first

letter is 3 and ending with a u-match whose last letter is 2 is w = 342312. Since

in the fixed points of I2312, the sequences in the bricks are weakly increasing, the

only way that 32 occurs in the collapse of fixed point (B,w) of I2312 is if we started

with 342312, which means that a brick ended after 4 and a brick ended after the

second 3, and eliminated 4231. Hence wt2312,4(32) = x2z1z2z3z4t
4.

We list all the weights wt2312,4(ji) in table 3.7.
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It follows that for any v ∈ [4]+,∑
(B,w) is a fixed point of I2312

C(B,w,2312)=v

sgn(B,w)wt(B,w) =

− xzvt|v|(1− x)rise(v)
∏

s∈WDes(v)

wt2312,4(vsvs+1). (3.69)

Here the initial −x comes from the fact that the last cell of (B,w) always con-

tributes a −x since the last cell is at the end of a brick. It follows that

U
(4)
2312(x, z4, t) = 1 +

∑
n≥1

U
(4)
2312,n(x, z4)tn

= 1 +
∑
v∈[4]+

−x(1− x)rise(v)zvt|v|
∏

s∈WDes(v)

wt2312,4(vsvs+1). (3.70)

Hence we could compute N (4)
2312(x, z4, t) =

1

U
(4)
2312(x, z4, t)

if we can compute the

right-hand side of (3.70)

What we need to be able to compute the right-hand side of (3.70) is the

generating function over all words v ∈ P∗ where we not only keep track of the weak

descents of P but also of type of weak descents of P .

By Theorem 2, we know that

1

1−
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXZ(v)
= 1 +

∑
w=w1...wn∈P+

t|w|zw
∏

i∈WDes(w)

xwiwi+1
.

(3.71)

Hence ∑
w=w1...wn∈P+

t|w|zw
∏

i∈WDes(w)

xwiwi+1

=

(
1

1−
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXZ(v)

)
− 1

=

∑
n≥1 t

n
∑

v∈WDP∗,|v|=nWDXZ(v)

1−
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXZ(v)
. (3.72)

Next suppose that we replace t by yt and xij by
xij
y

. Under this substitution the

left-hand side in (3.72) becomes
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∑
w=w1...wn∈P+

t|w|yrise(w)+1zw
∏

i∈WDes(w)

xwiwi+1
.

Note that for v = j1 ≥ · · · ≥ jk where k ≥ 2, our substitution replaces tkWDXZ(v)

by

yktkzj1 · · · zjk
k−1∏
i=1

(
xji+1ji

y
− 1

)
= ytkzj1 · · · zjk

k−1∏
i=1

(xji+1ji − y).

Thus if we let

WDXY Z(v) =

zj if v = j, and

zj1 · · · zjk
∏k−1

i=1 (xji+1ji − y) if v = j1 ≥ · · · ≥ jk where k ≥ 2,

(3.73)

then we see that the right-hand side of (3.72) becomes

y
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXY Z(v)

1− y
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXY Z(v)
.

It follows that

−x
∑

w=w1...wn∈P+

t|w|yrise(w)zw
∏

i∈WDes(w)

xwiwi+1
=

−x
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXY Z(v)

1− y
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXY Z(v)
.

Thus

1− x
∑

w=w1...wn∈P+

t|w|yrise(w)zw
∏

i∈WDes(w)

xwiwi+1
=

1− (x+ y)
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXY Z(v)

1− y
∑

n≥1 t
n
∑

v∈WDP,|v|=nWDXY Z(v)
. (3.74)

By setting zi = 0 for i > k, we also obtain that

1− x
∑

w=w1...wn∈[k]+

t|w|yrise(w)zw
∏

i∈WDes(w)

xwiwi+1
=

1− (x+ y)
∑k

n=1 t
n
∑

v∈WD[k]∗,|v|=nWDXY Z(v)

1− y
∑k

n=1 t
n
∑

v∈WD[k]∗,|v|=nWDXY Z(v)
. (3.75)
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Note that if we replace y by (1−x) and xji by wtu(ji), the left-hand side of

(3.74) becomes U
(P)
u (x, z∞, t) and the left-hand side of (3.75) becomes U

(k)
u (x, zk, t).

Then using the fact that N (P)
u (x, z∞, t) = 1/U

(P)
u (x, z∞, t), we have the following

theorem.

Theorem 16. Suppose that u = u1 . . . uj ∈ P∗, red(u) = u, des(u) = 1, u1 = uj,

and u does not have the P-level overlapping property (so it automatically has the

P-weakly decreasing property). Then

N (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXTZu(v)

1−
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXTZu(v)
(3.76)

where

WDXTZu(v) =

zj if v = j, and

zj1 · · · zjk
∏k−1

i=1 (wtu(ji+1ji) + x− 1) if v = j1 ≥ · · · ≥ jk

(3.77)

where k ≥ 2.

If set zi = 0 for all i > k, then we obtain the following theorem.

Theorem 17. Now suppose that u = u1 . . . uj ∈ [k]∗, red(u) = u, des(u) = 1,

u1 = uj, and u does not have the [k]-level overlapping property (so it automatically

has the [k]-weakly decreasing property). Then

N (k)
u (x, zk, t) =

1− (1− x)
∑k

n=1 t
n
∑

v∈WD[k]∗,|v|=nWDXTZu(v)

1−
∑k

n=1 t
n
∑

v∈WD[k]∗,|v|=nWDXTZu(v)
. (3.78)

The key to be able to compute N (k)
u (x, zk, t) in the case of Theorem 17 is

to be able to compute
∑

n≥1 t
n
∑

v∈WD[k]∗,|v|=nWDXTZu(v). This is often com-

plicated because of the large number of weakly decreasing words in WD[k]∗, but

for certain patterns we can compute it. For example, consider the case where

u = 2312, k = 4, and we set zi = 1 for i = 1, . . . , 4. With this substitution, we list

the weights WDXTX2312(ij) in table 3.8.

Because WDXTZ2312(44) = WDXTZ2312(11) = 0, it follows that the only

words that we have to consider are 1, 4, 41 and words in (ε + 4)({2}+ + {3}+ +
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Table 3.8: The weights WDXTZ2312(ij) in the case zi = 0 for i = 1, . . . , 4

Weak Descents WDXTX2312(ij)

44 0

4i (i < 4) x− 1

33 −2xt2

32 x− 1 + x2t4

31 x− 1

22 −2xt2

21 x− 1

11 0

{3}∗32{2}∗)(ε+ 1). It is easy to see that∑
n≥1

tn
∑

v∈{3}+,|v|=n

WDXTZu(v) =
t

1 + 2xt3
.

That is, the first 3 gives a factor of t and each additional 3 gives a factor of −2xt3.

Similarly, ∑
n≥1

tn
∑

v∈{2}+,|v|=n

WDXTZu(v) =
t

1 + 2xt3
.

When considering words in {3}∗32{2}∗, the 32 gives a factor of (x − 1)t2 + x2t6

and each additional 3 to the left gives a factor of −2xt3 and each additional 2 to

the right gives a factor of −2xt3. Thus∑
n≥1

tn
∑

v∈{3}∗32{2}∗,|v|=n

WDXTZu(v) =
(x− 1)t2 + x2t6

(1 + 2xt3)2
.

Thus∑
n≥1

tn
∑

v∈{3}++{2}++{3}∗32{2}∗,|v|=n

WDXTZu(v) =
2t+ 4xt4 + (x− 1)t2 + x2t6

(1 + 2xt3)2
.

Hence if E = (ε+ 4)({3}+ + {2}+ + {3}∗32{2}∗)(ε+ 1), it follows that∑
n≥1

tn
∑

v∈E,|v|=n

WDXTZ2312(v) =
(1 + (x− 1)t)2(2t+ 4xt4 + (x− 1)t2 + x2t6)

(1 + 2xt3)2
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since adding a 4 to the left of a word w ∈ {3}+ + {2}+ + {3}∗32{2}∗ gives rise to a

factor of (x−1)t and adding a 1 to the right of a word w ∈ {3}++{2}++{3}∗32{2}∗

gives rise to a factor of (x− 1)t. It follows that∑
n≥1

tn
∑

v∈WD[4]∗,|v|=n

WDXTZ2312(v) =

2t+ (x− 1)t +
(1 + (x− 1)t)2(2t+ 4xt4 + (x− 1)t2 + x2t6)

(1 + 2xt3)2
=

P (x, t)

(1 + 2xt3)2
.

where

P (x, t) = 4t+ (−6 + 6x)t2 +
(
4− 8x+ 4x2

)
t3 +

(
−1 + 15x− 3x2 + x3

)
t4 +(

−12x+ 12x2
)
t5 +

(
4x− 7x2 + 4x3

)
t6 +(

6x2 + 2x3
)
t7 +

(
−3x2 + 2x3 + x4

)
t8.

Thus

N (4)
2312(x, 1, 1, 1, 1, t) =

1− (x− 1) P (x,t)
(1+2xt3)2

1− P (x,t)
(1+2xt3)2

. (3.79)

We have used Mathematica to compute the first few terms in this series:

1 + 4xt+ 2
(
5x+ 3x2

)
t2 + 4

(
5x+ 10x2 + x3

)
t3 +(

35x+ 151x2 + 65x3 + x4
)
t4 +

4
(
14x+ 109x2 + 111x3 + 14x4

)
t5 +(

84x+ 1068x2 + 2009x3 + 716x4 + 28x5
)
t6 +

2
(
60x+ 1166x2 + 3561x3 + 2535x4 + 362x5 + 4x6

)
t7 +(

165x+ 4670x2 + 21400x3 + 25650x4 + 8172x5 + 486x6 + x7
)
t8 + · · · .

Chapter 3, in full, has been submitted for publication as it may appear in

Generating Functions for Descents over Words which Avoid a Consecutive Pattern,

2017, Remmel, Jeffrey; Sangha, Luvreet, Electronic Journal of Combinatorics,

2017, arXiv:1612.04900. The dissertation author was the secondary author of this

work.

http://arxiv.org/abs/1612.04900


Chapter 4

Levels: Results when lev(u) = 1

4.1 Introduction

In this Chapter we examine how our results change when we change the

statistic des(u) with lev(u). We will apply the reciprocal method to obtain filled-

labelled-brick tabloids as we did in Chapter 3. However, now we will label levels

within bricks with an x instead of descents. We will define a similar involution

Lu; however, our fixed points will not have any levels within bricks instead of not

having any descents within bricks as in Chapter 3. The collapse map will work as

it did in the earlier sections, but our final results will require substituting into a

different set of auxiliary generating functions.

Let zk = z1, . . . , zk and z∞ = z1, z2, . . .. Then for any u ∈ [k]j, we let

LEN (k)
u,n(x, zk) =

∑
w∈[k]n,eumch(w)=0

xlev(w)+1zw and

LEN (P)
u,n(x, z∞) =

∑
w∈Pn,eumch(w)=0

xlev(w)+1zw.

Similarly for u ∈ [k]j such that red(u) = u, we let

LN (k)
u,n(x, zk) =

∑
w∈[k]n,umch(w)=0

xlev(w)+1zw and

LN (P)
u,n(x, z∞) =

∑
w∈Pn,umch(w)=0

xlev(w)+1zw.

82



83

The main goal of this chapter is to study the generating functions

LEN (k)
u (x, zk, t) = 1 +

∑
n≥1

LEN (k)
u,n(x, zk)t

n and

LEN (P)
u (x, z∞, t) = 1 +

∑
n≥1

LEN (P)
u,n(x, z∞)tn,

in the case where u is a word with lev(u) ≤ 1, and the generating functions

LN (k)
u (x, zk, t) = 1 +

∑
n≥1

LN (k)
u,n(x, zk)t

n and

LN (P)
u (x, z∞, t) = 1 +

∑
n≥1

LN (P)
u,n(x, z∞)tn,

in the case where red(u) = u and lev(u) ≤ 1.

We start by assuming that

LN (P)
u (x, z∞, t) =

1

LU
(P)
u (x, z∞, t)

,

LN k)
u (x, z∞, t) =

1

LU
(k)
u (x, z∞, t)

,

LEN (P)
u (x, z∞, t) =

1

LEU
(P)
u (x, z∞, t)

, and

LN (k)
u (x, z∞, t) =

1

LEU
(k)
u (x, z∞, t)

.

Fix a word u such that lev(u) ≤ 1. Following the ideas of the previous chap-

ter, we shall show how to compute LU
(P)
u (x, z∞, t), LU

(k)
u (x, zk, t), LEU

(P)
u (x, z∞, t),

and LEU
(k)
u (x, zk, t).

We will start out by considering how to compute

LU (P)
u (x, z∞, t) = 1 +

∑
n≥1

LU (P)
u,n(x, z∞)tn.

in the case where u ∈ Pj and red(u) = u. In this case,

LU (P)
u (x, z∞, t) =

1

1 +
∑

n≥1 LN
(P)
u,n(x, z∞)tn

. (4.1)
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Thus if we let Θu(en) = (−1)nLN
(P)
u,n(x, z∞) for n ≥ 1 and Θu(e0) = 1, we see that

Θu(H(t)) = 1 +
∑
n≥1

Θu(hn)

= Θu

(
1

E(−t))

)
=

1

1 +
∑

n≥1(−1)nΘu(en)

=
1

1 +
∑

n≥1 LN
(P)
u,n(x, z∞)tn

= LU (P)
u (x, z∞, t).

Thus it follows that Θu(hn) = LU
(P)
u,n(x, z∞).

By (1.24), we have that

Θu(hn) =
∑
λ`n

(−1)n−`(λ)Bλ,n Θu(eλ)

=
∑
λ`n

(−1)n−`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

(−1)biLN
(P)
u,bi

(x, z∞)

=
∑
λ`n

(−1)`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

LN
(P)
u,bi

(x, z∞) (4.2)

Our next goal is to give a combinatorial interpretation to the right-hand

side of (4.2). Fix a partition λ of n and a λ-brick tabloid B = (b1, . . . , b`(λ)).

We will interpret
∏`(λ)

i=1 LN
(P)
u,bi

(x, z∞) as the number of ways of picking words

(w(1), . . . , w(`(λ))) such that for each i, w(i) ∈ Pbi is a word such that umch(w) = 0

and assigning a weight to this `(λ)-tuple to be
∏`(λ)

i=1 x
lev(w(i))+1z̄w

(i)
.

We can then use the pair 〈B, (w(1), . . . , w(`(λ)))〉 to construct a filled-labeled-

brick tabloid O〈B,(w(1),...,w(`(λ))〉 as follows. First for each brick bi, we place the word

w(i) in the cells of the brick, reading from left to right. Then we label each cell of bi

that starts a level of w(i) with a x and we also label the last cell of bi with x. This

accounts for the factor xlev(w(i))+1. Finally, we use the factor (−1)`(λ) to change the

label of the last cell of each brick from x to −x. For example, suppose n = 17,

u = 3221, B = (3, 7, 4, 3) w(1) = 4 2 2, w(2) = 1 3 2 2 5 7 2, w(3) = 6 6 3 1, and

w(4) = 2 4 7. Then we have pictured the filled-labeled-brick tabloid O〈B,(w(1),...,w(4))〉

constructed from the pair 〈B, (w(1), . . . , w(4))〉 in Figure 4.1.

Clearly, we can recover the pair 〈B, (w(1), . . . , w(`(λ)))〉 and the labels on

the cells from B and the word w which is obtained by reading the elements in
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4 2 2 1 3 2 2 5 7 2 6 6 3 1 2 4 7

x -x x -x x -x -x

Figure 4.1: The construction of a filled-labeled-brick tabloid.

the cells of O〈B,(w(1),...,w(`(λ)))〉 from left to right. Thus we shall specify the filled-

labeled-brick tabloid O〈B,(w(1),...,w(`(λ)))〉 by (B,w). We let O(P)
u,n denote the set of all

filled-labeled-brick tabloids constructed in this way. That is, O(P)
u,n consists of all

pairs O = (B,w) where

1. B = (b1, . . . , b`(λ)) is brick tabloid of shape (n),

2. w = w1 . . . wn ∈ Pn such that there is no u-match of σ which is entirely

contained in a single brick of B, and

3. If there is a cell c such that a brick bi contains both cells c and c + 1 and

wc = wc+1, then cell c is labeled with a x and the last cell of any brick is

labeled with −x.

The sign of O, sgn(O), is (−1)`(λ) and the weight of O, wt(O), is x`(λ)+intlev(σ)z̄w

where intlev(w) denotes the number of i such that wi = wi+1 and wi and wi+1

lie in the same brick. We shall refer to such i as an internal level of O. Note

that the labels on O are completely determined by the underlying brick tabloid

B = (b1, . . . , b`(λ)) and the underlying word w. Thus the filled-labeled-brick tabloid

O pictured in Figure 4.1 equals ((3, 7, 4, 3), 4 2 2 1 3 2 2 5 7 2 6 6 3 1 2 4 7).

It follows that

Θu(hn) =
∑

O∈O(P)
τ,n

sgn(O)wt(O). (4.3)

Next we define a weight-preserving sign-reversing involution Lu on O(P)
u,n.

Given an element O = (B,w) ∈ O(P)
u,n where B = (b1, . . . , bk) and w = w1 . . . wn,

scan the cells of O from left to right looking for the first cell c such that either

(i) c is labeled with a x or
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(ii) c is a cell at the end of a brick bi, wc = wc+1, and there is no u-match of w

that lies entirely in the cells of bricks bi and bi+1.

In case (i), if c is a cell in brick bj, then we split bj into two bricks b′j and b′′j where b′j

contains all the cells of bj up to an including cell c and b′′j consists of the remaining

cells of bj and we change the label on cell c from x to −x. In case (ii), we combine

the two bricks bi and bi+1 into a single brick b and change the label on cell c from

−x to x. For example, consider the element O ∈ O(P)
3221,17 pictured in Figure 4.1.

The first place that we can apply the involution is on cell 2 which is labeled with

an x so that Lu(O) is the object pictured in Figure 4.2. Finally, if neither case (i)

or case (ii) applies, then we define Lu(O) = O.

4 2 2 1 3 2 2 5 7 2 6 6 3 1 2 4 7

x-x -x x -x -x-x

Figure 4.2: Lu(O) for O in Figure 4.1.

We claim that whenever u is a word such that red(u) = u and lev(u) ≤ 1,

Lu is an involution, i.e. L2
u is the identity. First we consider the case where

lev(u) = 1. Now suppose that we are in case (i) where we split a brick bj at cell

c which is labeled with a x. In that case, we let a be the number in cell c and a′

be the number in cell c + 1 which must also be in brick bj. It must be the case

that there is no cell labeled x before cell c since otherwise we would not use cell c

to define the involution. However, we have to consider the possibility that when

we split bj into b′j and b′′j that we might then be able to combine the brick bj−1

with b′j because the number in that last cell of bj−1 is equal to the number in the

first cell of b′j and there is no u-match in the cells of bj−1 and b′j. Since we always

take an action on the left most cell possible when defining Lu(O), we know that

we cannot combine bj−1 and bj so that there must be a u-match in the cells of bj−1

and bj. Clearly, that u-match must have involved the number a′ and the number

in cell d which is the last cell in brick bj−1. But that is impossible because then

there would be two levels among the numbers between cell d and cell c+ 1 which

would violate our assumption that u has only one level. Thus whenever we apply
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case (i) to define Lu(O), the first action that we can take is to combine bricks b′j

and b′′j so that L2
u(O) = O.

If we are in case (ii), then again we can assume that there are no cells

labeled x that occur before cell c. When we combine brick bi and bi+1, then we

will label cell c with a x. It is clear that combining the cells of bi and bi+1 cannot

help us combine the resulting brick b with an earlier brick since it will be harder

to have no u-matches with the larger brick b. Thus the first place cell c where we

can apply the involution will again be cell c which is now labeled with a x so that

L2
u(O) = O if we are in case (ii).

The case where lev(u) = 0 is even easier. Suppose that a is number in the

the last cell of bj and a′ is the number in the first cell of bj+1 and a = a′. Then

there can be no u-match of w that is contained in the cells of bj and bj+1 because

by our definitions there is no u-match in the cells of bj and there is no u-match

in the cells of bj+1 so that the only possible u-match in the cells of bj and bj+1

would have to involve a and a′ if lev(u) = 0. It easily follows that we will apply

the involution to the first possible cell c which is labled with either x or −x and

what ever action we take at cell c to create Lu(O), we will come back to cell c to

undo that action to define L2(O).

It is clear from our definitions that if Lu(O) 6= O, then sgn(O)wt(O) =

−sgn(Lu(O))wt(Lu(O)). Hence, if we let LO(P)
u,n denote the set of all (B,w) ∈ O(P)

u,n

such that Lu(O) = O, then (4.3) implies that

Θu(hn) =
∑

O∈O(P)
u,n

sgn(O)wt(O) =
∑

O∈O(P)
u,n,Lu(O)=O

sgn(O)wt(O). (4.4)

Thus we must examine the fixed points of Lu. So assume that O is a fixed point

of Lu. There are two cases to consider.

Case 1. lev(u) = 0.

First of all, there can be no cells which are labeled with x since we can take

a possible action to define Lu(O) at such a cell. Similarly there can be no cell

c which is at the end of brick bj such that wc = wc+1 since again we can take a
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possible action to define Lu(O) at such a cell. This means that w must have no

levels within any brick and if c is a cell at then end of brick bj which is followed

by another brick bj+1, then wc 6= wc+1. Thus (B,w) is a fixed point if and only if

w is word with no levels and w has no u-match that lies entirely within one of the

brick of B. If B has k bricks, then then weight of (B,w) is just (−x)kz̄w. We let

LIOu,n = {(B,w) ∈ LO(P)
u,n : w1 6= w2 6= · · · 6= wn} denote the set of elements of

LO(P)
u,n where w has no levels. Then we have the following lemma. Let Q(x, z∞)

be the set of rational functions in the variables x and z∞ over the rationals Q.

Lemma 5. Suppose that u is a word in P+ such that red(u) = u and lev(u) = 0.

Let Θu : Λ → Q(x, z∞) be the ring homomorphism defined by setting Θu(e0) = 1

and Θu(en) = (−1)nLN
(P)
u,n(x, z∞) for n ≥ 1. Then

LU (P)
u,n(x, z∞) = Θu(hn) =

∑
((b1,...,bk),w)∈LIOu,n

(−x)kz̄w. (4.5)

Case 2. lev(u) = 1.

First it is easy to see that there can be no cells which are labeled with

x so that there are no levels in each brick of O. Second we cannot combine two

consecutive bricks bi and bi+1 in O which means that either there is no level between

the last cell of bi and the first cell of bi+1 or there is a level between the bricks bi

and bi+1, but there is a u-match in the cells of the bricks bi and bi+1. Thus we have

proved the following.

Lemma 6. Suppose that u ∈ P+, red(u) = u, and lev(u) = 1. Let Θu : Λ →
Q(x, z∞) be the ring homomorphism defined by setting Θu(e0) = 1 and Θu(en) =

(−1)nLN
(P)
u,n(x, z∞) for n ≥ 1. Then

LU (P)
u,n(x, z∞) = Θu(hn) =

∑
O∈O(P)

u,n,Lu(O)=O

sgn(O)wt(O) (4.6)

where O(P)
u,n is the set of objects and Lu is the involution defined above. Moreover

O = (B,w) where B = (b1, . . . , bk) and w = w1 . . . wn is a fixed point of Lu if and

only if it has the following two properties:
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1. there are no cells labeled with x in O, i.e., the elements of w in each brick of

O have no levels and

2. if bi and bi+1 are two consecutive bricks in O, then either (a) there is no

level between bi and bi+1, i.e., w∑i
j=1 |bj |

6= w1+
∑i
j=1 |bj |

, or (b) there is a

level between bi and bi+1, i.e., w∑i
j=1 |bj |

= w1+
∑i
j=1 |bj |

, but there is u-match

contained in the elements of the cells of bi and bi+1 which must necessarily

involve w∑i
j=1 |bj |

and w1+
∑i
j=1 |bj |

.

Clearly, if we restrict to the alphabet [k] instead of P, we will get the same

two lemmas except that the words all have to be in [k]∗ rather than P∗.
Next we want to consider what happens when we replace u-matches by exact

u-matches. We can follow the same steps to interpret LEU
(P)
u (x, z∞, t). That is,

LEU (P)
u (x, z∞, t) =

1

1 +
∑

n≥1 LEN
(P)
u,n(x, z∞)tn

. (4.7)

Thus if we let Γu(en) = (−1)nLEN
(P)
u,n(x, z∞) for n ≥ 1 and Γu(e0) = 1, we see that

Γu(H(t)) = 1 +
∑
n≥1

Γu(hn)

= Γu

(
1

E(−t))

)
=

1

1 +
∑

n≥1(−1)nΓu(en)

=
1

1 +
∑

n≥1 LEN
(P)
u,n(x, z∞)tn

= LEU (P)
u (x, z∞, t).

Thus it follows that Γu(hn) = LEU
(P)
u,n(x, z∞).

By (1.24), we have that

Γu(hn) =
∑
λ`n

(−1)n−`(λ)Bλ,n Γu(eλ)

=
∑
λ`n

(−1)n−`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

(−1)biLEN
(P)
u,bi

(x, z∞)

=
∑
λ`n

(−1)`(λ)
∑

(b1,...,b`(λ))∈Bλ,n

`(λ)∏
i=1

LEN
(P)
u,bi

(x, z∞) (4.8)
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Again we can give a combinatorial interpretation to the right-hand side of

(4.8). Fix a partition λ of n and a λ-brick tabloid B = (b1, . . . , b`(λ)). We will inter-

pret
∏`(λ)

i=1 LEN
(P)
u,bi

(x, z∞) as the number of ways of picking words (w(1), . . . , w(`(λ)))

such that for each i, w(i) ∈ Pbi is a word such that eumch(w) = 0 and assigning a

weight to this `(λ)-tuple to be
∏`(λ)

i=1 x
lev(w(i))+1z̄w

(i)
.

Following the same steps that we did to interpret Θu(hn), we let EO(P)
u,n

denote the set of all filled-labeled-brick tabloids constructed in this way. That is,

EO(P)
u,n consists of all pairs O = (B,w) where

1. B = (b1, . . . , b`(λ)) is brick tabloid of shape (n),

2. w = w1 . . . wn ∈ Pn such that there is no exact u-match of σ which is entirely

contained in a single brick of B, and

3. if there is a cell c such that a brick bi contains both cells c and c + 1 and

wc = wc+1, then cell c is labeled with a x and the last cell of any brick is

labeled with −x.

The sign of O, sgn(O), is (−1)`(λ) and the weight of O, wt(O), is x`(λ)+intlev(σ)z̄w

where intlev(w) denotes the number of i such that wi = wi+1 and wi and wi+1 lie

in the same brick. Then as before we can conclude

Γu(hn) =
∑

O∈EO(P)
u,n

sgn(O)wt(O). (4.9)

At this point, we can define an involution Ku exactly as we did for Lu

except we replace u-match by exact u-matches in the definitions. This will allow

us to prove the following two lemmas.

Lemma 7. Suppose that u is a word in P+ such that lev(u) = 0. Let Γu :

Λ → Q(x) be the ring homomorphism defined by setting Γu(e0) = 1 and Γu(en) =

(−1)nLEN
(P)
u,n(x, z∞) for n ≥ 1. Then

LEU (P)
u,n(x, z∞) = θu(hn) =

∑
((b1,...,bk),w)∈IEOu,n

(−x)kz̄w (4.10)

where IEOu,n is the set of all (B,w) ∈ EOu,n such that Ku(B,w) = (B,w) and w

has no levels.
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Lemma 8. Suppose that u ∈ P+ and lev(u) = 1. Let Γu : Λ → Q(x) be the ring

homomorphism defined by setting Γu(e0) = 1 and Γu(en) = (−1)nLEN
(P)
u,n(x, z∞)

for n ≥ 1. Then

LEU (P)
u,n(x, z∞) = Γu(hn) =

∑
O∈EO(P)

u,n,Ku(O)=O

sgn(O)wt(O) (4.11)

where EO(P)
u,n is the set of objects and Ku is the involution defined above. Moreover

O = (B,w) where B = (b1, . . . , bk) and w = w1 . . . wn is a fixed point of Ku if and

only if it has the following two properties:

1. there are no cells labeled with x in O, i.e., the elements of w in each brick of

O have no levels and

2. if bi and bi+1 are two consecutive bricks in O, then either (a) there is no

level between bi and bi+1, i.e., w∑i
j=1 |bj |

6= w1+
∑i
j=1 |bj |

, or (b) there is a

level between bi and bi+1, i.e., w∑i
j=1 |bj |

= w1+
∑i
j=1 |bj |

, but there is an exact

u-match contained in the elements of the cells of bi and bi+1 which must

necessarily involve w∑i
j=1 |bj |

and w1+
∑i
j=1 |bj |

.

4.2 The case u = u1 . . . uj, lev(u) = 1, and u1 > uj

In this section, we shall consider the problem of computing the generating

functions LN (P)
u (x, z∞, t), LN (k)

u (x, zk, t), LEN (P)
u (x, z∞, t), and LEN (k)

u (x, zk, t)

for u = u1 . . . uj such that lev(u) = 1, u1 > uj, and u has the P-weakly decreasing

property (or [k]-weakly decreasing property).

First assume that u = u1 . . . uj, red(u) = u, lev(u) = 1, u1 > uj, and u has

the P-minimal overlapping property. As before, we define the collapse map which

maps fixed points of Ju or Ku to a certain subset of words in P∗. This is best

explained through an example. Suppose that u = 2231 and we want to compute

LU
(7)
2231(x, z7, t). By (4.6), we know that

LU (k)
u,n(x, zk) =

∑
O∈O(k)

u,n,Lu(O)=O

sgn(O)wt(O). (4.12)
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Now suppose that we are given a fixed point (B,w) of Lu where B = (b1, . . . , bk)

and w = w1 . . . wn such as the one pictured in Figure 4.3. We know that to be a

fixed point of Lu, w must have no levels within bricks of B and that for any i < k,

if c is last cell in brick bi and wc = wc+1, then there must be a u-match in w which

is contained in the cells of bi and bi+1. In our particular example, since u = 2231

has a single level, this match must involve the last cell of bi and the first three cells

of bi+1. In Figure 4.3, we have indicated the two such matches in our example by

placing stars below the cells in the 2231-matches. In this case the collapse map

just maps (B,w) to the word v = C(B,w, u) which is the result of starting with

w and removing the letters in all such matches that do not correspond to the end

points of the match. This process is pictured in Figure 4.3 where again we have

starred the elements in C(B,w, u) that remain from the original 2231-matches in

w. What makes the case where u has the minimal overlapping property easier is

that, since any two consecutive u-matches can share at most letter, there is no

possibility that an end point of a u-match in w occurs in the middle of another

u-match in w so that the letters that we remove from w for any pair of u-matches

are disjoint from each other.

1 5 3 3 4 1 4 6 5 5 7 4 5 2 3 6

-x -x -x -x

* * * * * * * *

\/

|
|
|

(B,w)=

C(B,w,u)=1 5 3 1 4 6 5 4 5 2 3 6
* * * *

Figure 4.3: A fixed point of L2231.

The question that we want to ask ourselves is given a v = v1 . . . vs, how

can we construct all the fixed points of (B,w) of Lu such that C(B,w, v) is equal

to v. First, it is easy to see that v has no levels. If vs < vs+1, then we have two

choices. That is, either cell s was the end of a brick or cell s was an internal cell

of a brick. This implies that each rise in v contributes a factor of (1 − x) since if

s is at the end of a brick, there is a weight of −x associated with the last cell of



93

Table 4.1: The weights wt2231,7(ji)

Descents wt2231,7(ji)

7i (i < 7) 1− x
6i (i < 6) 1− x− xz6z7t

2

5i (i < 5) 1− x− xz5(z6 + z7)t2

4i (i < 4) 1− x− xz4(z5 + z6 + z7)t2

3i (i < 3) 1− x− xz3(z4 + z5 + z6 + z7)t2

21 1− x− xz2(z3 + z4 + z5 + z6 + z7)t2

a brick. If vs > vs+1, then we have three choices. Either cell s was the end of a

brick, cell s was an internal cell of a brick, or this descent came from a 2231-match

that straddled two bricks in B. Thus if vs > vs+1, then vs must have played the

role of 2 in the original 2231-match and vs+1 must have played the role of 1 in the

original 2231-match. If we consider the first descent 31 in the C(B,w, u) of Figure

4.3, then we see there are many ways that we could add the two middle letters.

That is, the original 2231-match could have been any 33c1 where c ∈ {4, 5, 6, 7}.
It follows that the extra weight from these possibilities that is not included in

z̄C(B,w,u)t|C(B,w,u)| in this case would be −xt2
∑

4≤c≤7 z3zc. Here the −x comes from

the fact that we know that the original match straddled two bricks and there is a

weight of −x associated with the end point of the first of those two bricks. In this

way, we can associate a weight with each rise or descent of v which will allow us

to compute ∑
(B,w) is a fixed point of Lu

C(B,w,u)=v

sgn(B,w)wt(B,w).

In our case where u = 2231 and k = 7, the weights associated with the

descents are given in table 4.1.

However, if u = 2231 and we want to compute LU
(P)
u,n(x, z∞), the weights

for any descent ji would be −x
∑

j<c zjzc which is an infinite sum.

Going back to our example where u = 2231 and k = 7, it follows that for
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any v ∈ [7]+ with no levels, ∑
(B,w) is a fixed point of Lu

C(B,w,u)=v

sgn(B,w)wt(B,w) =

− x(1− x)rise(v)zvt
|v|

∏
s∈Des(v)

wt2231,7(vsvs+1). (4.13)

Here the initial −x comes from the fact that the last cell of (B,w) always con-

tributes a −x since the last cell is at the end of a brick. But then we know that

LU
(7)
2231(x, z7, t) = 1 +

∑
n≥1

LU
(7)
2231,n(x, z7)tn

= 1 +
∑
v∈[7]+

lev(v)=0

−x(1− x)rise(v)zvt
|v|

∏
s∈Des(v)

wt2231,7(vsvs+1). (4.14)

Hence we could compute LN (7)
2231,n(x, z7, t) =

1

LU
(7)
2231,n(x, z7, t)

if we can compute

the right-hand side of (4.14).

The case of exact matches is even simpler. In that case, we want to compute∑
(B,w) is a fixed point of Ku

C(B,w,u)=v

sgn(B,w)wt(B,w).

Going back to our example of u = 2231 over the alphabet [7], if vs < vs+1 then

either vs and vs+1 were internal to a brick or vs was at the end of a brick. This

implies each rise in v contributes a factor of 1− x. We see the only descents that

appear in a word v = C(B,w, u) could appear in three ways. If vs > vs+1, then vs

could be internal to a brick, vs could be at the end of a brick, or vs and vs+1 could

have been part of an exact 2231-match that straddled two bricks in B. In the last

scenario, it must be the case that vs = 2, vs+1 = 1 and we must have eliminated a

2 and 3 from w. Thus we want to compute LEU
(P)
2231,n(x, z∞) or LEU

(k)
2231,n(x, zk)

for k ≥ 4, the weights would be the following. It follows that for any v ∈ [7]+ with

no levels, ∑
(B,w) is a fixed point of K2231

C(B,w,2231)=v

sgn(B,w)wt(B,w) =
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Table 4.2: The weights ewt2231(ji)

Descents weight ewt2231,P(ji)

ji where either j 6= 2 or i 6= 1 1− x
21 1− x− xz2z3t

2

− xzv(1− x)rise(v)
∏

s∈Des(v)

ewt2231,7(vsvs+1). (4.15)

and

LEU
(7)
2231,n(x, z7, t) = 1 +

∑
n≥1

LEU
(7)
2231,n(x, z7)tn

= 1 +
∑
v∈[7]+

lev(v)=0

−xzv(1− x)rise(v)
∏

s∈Des(v)

ewt2231,7(vsvs+1). (4.16)

When u does not have the minimal overlapping property but u has the

P-weakly decreasing (or [k]-weakly decreasing property), we can obtain similar

results but the collapse maps and the weight wtu(ji) are more complicated. Again

this is best explained through an example. Suppose that u = 3221 and k = 8.

\/

|
|
|

5

-x -x -x -x

* * * * * * * *

4 6 5 5 3 3 2 7 8 7 7 5 3 1 4

* * * *

-x -x -x

(B,w)=

C(B,w,u) = 4 6 2 7 8 3 1 4
* * * *

Figure 4.4: A fixed point of L3221.

When u does not have the P-minimal overlapping property, then we can

have a situation such as the one pictured in Figure 4.4. If we look at the descents

between bricks 1 and 2 which correspond to the u-match 6553, we see that we

would like to eliminate the 5 and 5. However, this u-match overlaps the u-match

associated with the descent between bricks 2 and 3 which is 5332. Thus we would

also like to eliminate the 3 and 3. We will say that two such matches are linked if
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one of the end points of first match is one of middle elements of the second match.

Depending on the pattern we could have a series of u-matches in a fixed point

of (B,w) which are linked. In such a situation, the collapse map will eliminate

all the symbols except for the first element of the first match and last element of

the last match in a maximal sequence of linked u-matches. This is illustrated in

Figure 4.4 where we have two maximal blocks of linked 3221-matches. Thus in the

linked 3221-matches in cells 2 through 7, we keep only the 6 and the 2 and in the

linked matches in cells 9 through 14, we keep only the 8 and the 3. Because we are

assuming that u1 > uj, we know that maximal blocks of linked u-matches must be

finite since the end point of such matches must strictly decrease. When we see a

descent ji in a word C(B,w, u), the weight associated with such a decent is now

more complicated. For example, in our case where u = 3221 and k = 8, a decent of

the form 73 can correspond to a single 3221-match which would have to be of the

form 7aa3 where 7 > a > 3, it could correspond to a maximum block with 2 linked

3221-matches in which case it must be of the form 7ccdd3 where 3 < d < c < 7,

or it could correspond to a maximum block with 3 linked 3221-matches in which

case it must be 76655443. Thus

wt3221(73) = 1−x−xt2
( ∑

3<a<7

za

)
+x2t4

( ∑
3<d<c<7

(zc)
2(zd)

2

)
−x3t6(z6)2(z5)2(z4)2

On the other hand a descent of the form ji where j − i = 2 can only correspond

to single 3221-match so that wt3221(ji) = 1 − x − xt2(zi+1)2 since i + 1 plays the

role of the 2 in the 3221-match. Finally, a descent of the form ji where j − i = 1

can not correspond to a 3221-match, so cell j is either internal to a brick or at the

end of a brick. Then, wt3221(ji) = 1− x if j − i = 1.

We give the weights associated with the descents for u = 3221 and k = 5

in table 4.3. Notice that the weights quickly grow complicated which is why we

have chosen to list them for k = 5 rather than the example we are considering with

k = 8.

It follows that for any v ∈ [8]+ with no levels,∑
(B,w) is a fixed point of L3221

C(B,w,3221)=v

sgn(B,w)wt3221(B,w) =
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Table 4.3: The weights wt3221,5(ji)

Descents wt3221,5(ji)

ji (j > i) & j − i = 1 1− x
ji (j > i) & j − i = 2 1− x− xt2zi+1

ji (j > i) & j − i = 3 1− x− xt2((zi+1)2 + (zi+2)2) + x2t4(zi+1)2(zi+2)2

ji (j > i) & j − i = 4 1− x− xt2(
∑

i<s<j(zs)
2) + x2t4(

∑
i<a<b<j(za)

2(zb)
2)

− x3t6(
∏

i<s<j(zs)
2)

− xzv(1− x)rise(v)t|v|
∏

s∈Des(v)

wt3221,8(vsvs+1). (4.17)

and

LU
(8)
3221,n(x, z8, t) = 1 +

∑
n≥1

LU
(8)
3221,n(x, z8)tn

= 1 +
∑
v∈[8]+

lev(v)=0

−xzv(1− x)rise(v)t|v|
∏

s∈Des(v)

wt3221,8(vsvs+1). (4.18)

What we need to be able to compute the right-hand sides of either (4.14),

(4.16), or (4.18) is the generating function over all words v ∈ P∗ with no levels

where we not only keep track of the descents of P but also the type of descents of

P . We do this by substituting into an auxiliary generating function. This is the

following:

By Theorem 5, we know that

1 +
∑

w∈P+,lev(w)=0

t|w|z̄w
∏
i<j

x
ji(w)
ji =

1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nAXZ(S)

where

AXZ(S) =


zj

1+zjt
if S = {j}, and

zj1
1+zj1 t

· · · zjk
1+zjk t

∏k−1
i=1 (xji+1ji − 1) if S = {j1 < · · · < jk}

(4.19)

where k ≥ 2.

Hence
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∑
w∈P+,lev(w)=0

t|w|z̄w
∏
i<j

x
ji(w)
ji =

1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nAXZ(S)
− 1

=

∑
n≥1 t

n
∑

S⊆P,|S|=nAXZ(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nAXZ(S)
(4.20)

If we replace t by ty and xji by
xji
y

, the left-hand side of (4.20) becomes

∑
w∈P+,lev(w)=0

t|w|yrise(w)+1z̄w
∏
i<j

x
ji(w)
ji

Note that for S = {j1 < · · · < jk} where k ≥ 2, our substitution replaces

tkAXZ(S) by

yktk
zj1

1 + zj1ty
· · · zjk

1 + zjkty

k−1∏
i=1

(
xji+1ji

y
− 1

)
=

ytk
zj1

1 + zj1ty
· · · zjk

1 + zjkty

k−1∏
i=1

(
xji+1ji − y

)
Thus if we let

BXZ(S) =


zj

1+zjty
if S = {j}, and

zj1
1+zj1 ty

· · · zjk
1+zjk ty

∏k−1
i=1 (xji+1ji − y) if S = {j1 < · · · < jk}

(4.21)

where k ≥ 2, then the right-hand side of (4.20) becomes

y
∑

n≥1 t
n
∑

S⊆P,|S|=nBXZ(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nBXZ(S)
. (4.22)

It follows that

− x
∑

w∈P+,lev(w)=0

t|w|yrise(w)z̄w
∏
i<j

x
ji(w)
ji =

−x
∑

n≥1 t
n
∑

S⊆P,|S|=nBXZ(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nBXZ(S)
.

(4.23)

Thus
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1−x
∑

w∈P+,lev(w)=0

t|w|yrise(w)z̄w
∏
i<j

x
ji(w)
ji =

1− (x+ y)
∑

n≥1 t
n
∑

S⊆P,|S|=nBXZ(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nBXZ(S)
.

(4.24)

By setting zi = 0 for i > k, we also obtain that

1− x
∑

w∈[k]+,lev(w)=0

t|w|yrise(w)z̄w
∏
i<j

x
ji(w)
ji =

1− (x+ y)
∑k

n=1 t
n
∑

S⊆[k],|S|=nBXZ(S)

1− y
∑k

n=1 t
n
∑

S⊆[k],|S|=nBXZ(S)
. (4.25)

Note that if we replace y by (1−x) and xji by wtu(ji), the left-hand side of (4.24)

becomes LU
(P)
u (x, z∞, t) and the left-hand side of (4.25) becomes LU

(k)
u (x, zk, t).

Similarly, if we replace y by (1−x) and xji by ewtu(ji), the left-hand side of (4.24)

becomes LEU
(P)
u (x, z∞, t) and the left-hand side of (4.25) becomes LEU

(k)
u (x, zk, t).

Then using the fact that LN (P)
u (x, z∞, t) = 1/LU

(P)
u (x, z∞, t) and that

LEN (P)
u (x, z∞, t) = 1/LEU

(P)
u (x, z∞, t), we have the following theorem.

Theorem 18. Suppose that u = u1 . . . uj ∈ P∗, red(u) = u, lev(u) = 1, and

u1 > uj. Then

LN (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

S⊆P,|S|=nBRZu(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nBRZu(S)
(4.26)

and

LEN (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

S⊆P,|S|=nEBRZu(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nEBRZu(S)
(4.27)

where

BRZu(S) =



zj
1+zjt(1−x)

if S = {j}, and
zj1

1 + zj1t(1− x)
· · · zjk

1 + zjkt(1− x)
k−1∏
i=1

(wtu(ji+1ji) + x− 1)
if S = {j1 < · · · < jk}

(4.28)
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where k ≥ 2 and

EBRZu(S) =



zj
1+zjt(1−x)

if S = {j}, and
zj1

1 + zj1t(1− x)
· · · zjk

1 + zjkt(1− x)
k−1∏
i=1

(ewtu(ji+1ji) + x− 1)
if S = {j1 < · · · < jk}

(4.29)

where k ≥ 2.

If we specialize the variables so that zi = 0 for all i > k, then we have the

following theorem.

Theorem 19. Suppose that u = u1 . . . uj ∈ [k]∗, red(u) = u, lev(u) = 1, and

u1 > uj. Then

LN (k)
u (x, zk, t) =

1− (1− x)
∑k

n=1 t
n
∑

S⊆[k],|S|=nBRZu(S)

1−
∑k

n=1 t
n
∑

S⊆[k],|S|=nBRZu(S)
(4.30)

and

LEN (k)
u (x, zk, t) =

1− (1− x)
∑

n≥1 t
n
∑

S⊆[k],|S|=nEBRZu(S)

1−
∑

n≥1 t
n
∑

S⊆[k],|S|=nEBRZu(S)
(4.31)

We end this section by computing one example. Suppose that u = 44321

and k = 7 and set zj = 1 for j = 1, . . . , 7. Note that in this case wtu,7(ji) depends

only on j − i. That is, under the collapse map, a descent ji that is the result of

a collapse must have come from a sequence jjabi where j > a > b > i. It is then

easy to see that we obtain table 4.4 for wtu,7(ji) where 7 ≥ j > i ≥ 1. Then we

list the weights wt44321,7(ji) + x− 1 in table 4.5.

To compute LN (7)
44321(x, 1, 1, 1, 1, 1, 1, 1, t), we must compute the polynomi-

als

Pn(x, t) =
∑

S⊆[7],|S|=n

BRZ44321(S)

when zi = 1 for all i. Now if S = {j1 < · · · jn} and ji+1 − ji ≤ 2 for some

1 ≤ i ≤ n−1, then we know that BRZ44321(S) = 0. It is easy to see that if |S| ≥ 4,
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Table 4.4: The weights wtu,7(ji)

wt44321,7(ji) Descent condition

1− x if |j − i| ≤ 2

1− x− xt3 if |j − i| = 3

1− x−
(

3
2

)
xt3 if |j − i| = 4

1− x−
(

4
2

)
xt3 if |j − i| = 5

1− x−
(

5
2

)
xt3 if |j − i| = 6

Table 4.5: The weights wt44321,7(ji) + x− 1

wt44321,7(ji) + x− 1 Descent condition

0 if |j − i| ≤ 2

−xt3 if |j − i| = 3

−3xt3 if |j − i| = 4

−6xt3 if |j − i| = 5

−10xt3 if |j − i| = 6
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there will always be such an i. P4(x, t) = P5(x, t) = P6(x, t) = P7(x, t) = 0. The

only set of size 3 that does not have such an i is S = {1, 4, 7}. For this set

BRZ(S) =
1

(1 + t(1− x))3
(wt44321,7(74) + x− 1)(wt44321,7(41) + x− 1)

=
1x2t6

(1 + t(1− x))3

so that

P3(x, t) =
x2t6

(1 + t(1− x))3
.

The only sets of size 2 that do not have such an i are the sets {1, 4}, {1, 5}, {1, 6},
{1, 7}, {2, 5}, {2, 6}, {2, 7}, {3, 6}, {3, 7}, and {4, 7} so that

P2(x, t) =
−35t3

(1 + t(1− x))2
.

Finally, the contribution from the sets of size 1 gives that

P1(x, t) =
7

1 + t(1− x)
.

. Thus

LN (7)
44321(x, 1, 1, 1, 1, 1, 1, 1, t) =

1− (1− x)
∑3

k=1 t
kPk(x, t)

1−
∑3

k=1 t
kPk(x, t)

.

We used this formula to compute the first terms of the series

LN (7)
44321(x, 1, 1, 1, 1, 1, 1, 1, t):

1 + 7xt+ (42x+ 7x2)t2 + (252x+ 84x2 + 7x3) +

(1512 + 756x2 + 126x+7x4)t4 +

(9072x+ 6013x2 + 1512x3 + 168x4 + 7x5)t5 +

(54432x+ 44940x2 + 15050x3 + 2520x4 + 210x5 + 7x6)t6 +

(326592x+ 322812x2 + 134820x3 + 30135x4 + 3780x5 + 252x6 + 7x7)t7 + · · ·

We note that if one wanted to compute the same generating function using

the matrix inversion method described in the introduction, one would have to

invert a 74 × 74 matrix in the variables x and t which is infeasible to even write

down much less compute.
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4.3 The case u = u1 . . . uj, lev(u) = 1, and u1 < uj

In this section, we shall consider the problem of computing the generating

functions LN (P)
u (x, z∞, t), LN (k)

u (x, zk, t), LEN (P)
u (x, z∞, t), and LEN (k)

u (x, zk, t)

for u = u1 . . . uj such that lev(u) = 1, u1 < uj, and u has the P-weakly increasing

property (or [k]-weakly increasing property).

This case is similar to the case where u = u1 . . . uj, lev(u) = 1, and u1 > uj.

Again the simplest case is when u has the P-minimal overlapping property. For

example, suppose that u = 21334 and we want to compute LU
(8)
21334(x, z8, t). Then

consider the following figure:

\/

|
|
|

(B,w)=

-x -x

* * * * ** * ** *

-x -x -x

5 4 2 5 5 6 1 2 7 6 3 7 7 8 1 3

C(B,w,u) = 5 4 6 1 2 7 6 8 1 3
* * **

Figure 4.5: A fixed point of L21334.

If we are given a fixed point (B,w) of Lu where B = (b1, . . . , bk) and

w = w1 . . . wn such as the one pictured in Figure 4.5. We know that to be a fixed

point of Lu, w must be have no levels within bricks of B and that for any i < k, if

c is last cell in brick bi and wc = wc+1, then there must be a u-match in w which

is contained in the cells of bi and bi+1. In our particular example, since u = 21334

has a single level, this match must involve the last three cells of bi and the first two

cells of bi+1. In Figure 4.5, we have indicated the two such matches in our example

by placing stars below the cells in the 21334-matches. In this case, the collapse

map just maps (B,w) to the word v = C(B,w, u) which is the result of starting

with w and removing the letters in all such matches that do not correspond to the

end points of the match. This process is pictured in Figure 4.5 where again we have

starred the elements in C(B,w, u) that remain from the original 21334-matches in

w. In this case, the resulting word C(B,w, u) must have no levels.
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As in the previous section, we want to construct the set of fixed points of

(B,w) of Lu such that C(B,w, v) is equal to a given word v = v1 . . . vn where

v1 6= · · · 6= vn.

When we see a descent ji in a word C(B,w, u), its associated weight is

1 − x since j may have been internal to a brick or at the end of a brick. If we

see a rise ji in a word C(B,w, u), then there are three possibilities: j may have

been internal to a brick, j may have been at the end of a brick, or there may have

been a 21334-match straddling the bricks with j and i. For example, in our case

where u = 21334 and k = 8 if we see a rise of the form 47, it could correspond to

a 21334-match of the form 4abb7 where 1 ≤ a < 4 and 4 < b < 7. Thus

wt21334(47) = 1− x− xt3(z1 + z2 + z3)(z2
5 + z2

6)

There are some rises that can not have come from 21334-matches. For

example, rises of the form 1a where 1 < a can not have come from a 21334-match

since there is no number that could take the role of the 1 in the 21334-match. Thus

if 1 < a, then wt21334(1a) = 1−x. Also rises of the form ji where i− j = 1 cannot

have come from a 21334-match since there would be no number that could take

the role of the 3 in the 21334-match. Thus if i− j = 1, then wt21334(ji) = 1−x. In

this way, we can associate a weight with each descent or rise of v which will allow

us to compute ∑
(B,w) is a fixed point of Lu

C(B,w,u)=v

sgn(B,w)wt(B,w)

In our case where u = 21334 and k = 8, the weights associated with the

rises are given in table 4.6:

If u = 21334 and we want to compute LU
(P)
u,n(x, z∞), the weights for any

rise ij where i+ 1 < j would be 1− x− xt3(
∑

s<i zs)(
∑

i<d<j z
2
d).

It follows that for any v ∈ [8]+ with no levels,∑
(B,w) is a fixed point of L21334

C(B,w,21334)=v

sgn(B,w)wt21334(B,w) =

− xzv(1− x)des(v)t|v|
∏

s∈Rise(v)

wt21334,8(vsvs+1). (4.32)
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Table 4.6: The weights wt21334,8(ij)

Rises wt21334,8(ij)

68 1− x− xt3(
∑

s<6 zs)(z7)2

5j (j ≥ 7) 1− x− xt3(
∑

s<5 zs)(
∑

5<t<j(zj)
2)

4j (j ≥ 6) 1− x− xt3(
∑

s<4 zs)(
∑

4<t<j(zj)
2)

3j (j ≥ 5) 1− x− xt3(
∑

s<3 zs)(
∑

3<t<j(zj)
2)

2j (j ≥ 4) 1− x− xt3z1(
∑

2<t<j(zj)
2)

1j (j ≥ 3) or j(j + 1) 1− x

As in the previous section, the initial −x comes from the fact that the last cell of

(B,w) always contributes a −x since the last cell is at the end of a brick. But then

we know that

LU
(8)
21334,n(x, z8, t) = 1 +

∑
n≥1

LU
(8)
21334,n(x, z8)tn

= 1 +
∑
v∈[8]+

lev(v)=0

−xzv(1− x)des(v)t|v|
∏

s∈Rise(v)

wt21334,8(vsvs+1).

(4.33)

Hence we could compute LN (8)
21334(x, z8, t) =

1

LU
(8)
21334,n(x, z8, t)

if we can compute

the right-hand side of (4.33)

As in the previous section, the case of exact matches is much simpler. In

that case, we want to compute∑
(B,w) is a fixed point of Ku

C(B,w,u)=v

sgn(B,w)wt(B,w).

Going back to our example of u = 21334 over the alphabet [8], we see that the

weight associated to a descent is 1− x since vs could either be internal to a brick

which contributes a factor of 1 or at the end of a brick which contributes a factor

of −x. The weight associated to a rise vs < vs+1 is 1− x unless vs = 2, vs+1 = 4.

If vs = 2, vs+1 = 4, then there are 3 possibilities: 2 and 4 were internal to a brick,

2 was the last cell of a brick and 4 was the first cell of the next brick, or 2 and
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Table 4.7: The weights ewt12433(ij)

Rise weight ewt21334,P(ij)

ij where either i 6= 2 or j 6= 4 1− x
24 1− x− xz1z

2
3t

3

4 straddled two bricks and there was an exact 21334-match between those two

bricks. In the last case, we must have eliminated a 133 from w. Thus if we want to

compute LEU
(P)
21334,n(x, z∞) or LEU

(k)
21334,n(x, zk) for k ≥ 4, the weights associated

to rises are given in table 4.7. It follows that for any v ∈ [8]+ with no levels,∑
(B,w) is a fixed point of K21334

C(B,w,21334)=v

sgn(B,w)wt(B,w) =

− xzv(1− x)des(v)t|v|
∏

s∈Rise(v)

ewt21334,8(vsvs+1) (4.34)

and

LEU
(8)
21334,n(x, z8, t) = 1 +

∑
n≥1

LEU
(8)
21334,n(x, z8)tn

= 1 +
∑
v∈[8]+

lev(v)=0

−xzv(1− x)des(v)t|v|
∏

s∈Rise(v)

ewt21334,8(vsvs+1).

(4.35)

When u does not have the P-minimal overlapping property but u has the P-

weakly increasing (or [k]-weakly increasing) property, we can obtain similar results

but the collapse maps and the weight function wtu(ij) are more complicated. As

we saw in the previous section, we must pay attention to overlapping u-matches

that share more than one letter.

We will consider the example where u = 123345 and k = 9. In this case, u-

matches can overlap in either one, two, or three letters. As in the previous section,

the collapse map will keep only the first and last letters of a consecutive sequence of

u-matches such that each consecutive pair share at least two letters. For example,

at the top of Figure 4.6, we have given an example where two consecutive u-matches
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share 3 letters and at the bottom of Figure 4.6, we have given an example where

two consecutive u-matches share 2 letters.

\/

|
|
|

\/

|
|
|

* *

(B,w)=

-x

* * * *
** **

*
*

-x -x -x

4 52 1 3 5 6 7 7 8 9 1 4 6 2 9

*

*
*

*

C(B,w,u) = 2 4 1 9 1 4 6 2 9

(B,w)=

-x

* * * *
** * *

*
*

-x -x -x

7 1 2 4 4 5 6 7 7 8 9 3 1 6 2 8

C(B,w,u) = 7 1 9 3 1 6 2 8
* *

Figure 4.6: A fixed point of L123345.

As before, if we are given v = v1 . . . vn ∈ [9]+, we want to find the sum of the

weights of all fixed points (B,w) of Lu where w is has no levels and C(B,w, u) = v.

Now if vs > vs+1, then either vsvs+1 lie in the same brick which contributes a

factor of 1 or vsvs+1 lie in different bricks which contributes a factor of −x for

the brick that ends at vs. Thus we obtain a factor of 1 − x for each descent of

v. For the rises of v, we should observe that the start and the end of any two

consecutive u-matches which share more than one letter must differ by at least 6.

Similarly, the start and the end of any three consecutive u-matches in which each

two consecutive u-matches share more that one letter must differ by at least 8.

Hence, for k = 9, we can have at most three consecutive u-matches in which each

two consecutive u-matches share more than one letter. There is one such word,

namely, 123345567789. For each pair, vs < vs+1 which occurs in v, we get a factor

of 1 − x as we did for descents. However in this case, we must also consider the

possible collapses that could give rise to vsvs+1. These are as follows.

1. Rises of the form i(i+ 1), i(i+ 2), or i(i+ 3) cannot arise from the collapse

map in our case so that wt123345,9(vsvs+1) = 1− x in these cases.
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2. vsvs+1 = 15. In this case, a u-match that could give rise to 15 under the

collapse map must be of the form 123345. Thus

wt123345,9(vsvs+1) = 1− x− xt4z2z
2
3z4.

3. vsvs+1 = 16. In this case, a u-match that could give rise to 16 under the

collapse map must be of the form 1abbc6 where 1 < a < b < c < 6. Thus

wt123345,9(vsvs+1) = 1− x− xt4
∑

1<a<b<c<6

zaz
2
b zc.

4. vsvs+1 = 17. In this case, a single u-match that could give rise to 17 under

the collapse map must be of the form 1abbc7 where 1 < a < b < c < 7. There

is also one possibility for a linked u-match that could give rise to 17 under

the collapse map, namely, 123345567. Thus

wt123345,9(vsvs+1) = 1− x−

(
xt4

∑
1<a<b<c<7

zaz
2
b zc

)
+ xt7z2z

2
3z4z

2
5z6

5. vsvs+1 = 18. In this case, a single u-match that could give rise to 18 under

the collapse map must be of the form 1abbc8 where 1 < a < b < c < 8. A

linked u-match that could give rise to 18 under the collapse map must be of

the form 1abbcdde8 where 1 < a < b < c < d < e < 8. Thus

wt123345,9(vsvs+1) =

1− x−

(
xt4

∑
1<a<b<c<8

zaz
2
b zc

)
+ xt7

∑
1<a<b<c<d<e<8

zaz
2
b zcz

2
dze

6. vsvs+1 = 19. In this case, a single u-match that could give rise to 19 under

the collapse map must be of the form 1abbc9 where a ∈ {5, 6, 7}. Two linked

u-matches that could give rise to 19 under the collapse map must be of the

form 1abbcdde9. Finally, there is exactly one way 3 linked u-matches could

give rise to 19 under the collapse map, namely, 123345567789. Thus

wt123345,9(vsvs+1) = 1− x− xt4
∑

1<a<b<c<9

zaz
2
b zc +

xt7
∑

1<a<b<c<d<e<9

zaz
2
b zcz

2
dze −

xt10z2z
2
3z4z

2
5z6z

2
7z8.
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7. vsvs+1 = 26. In this case, a single u-match that could give rise to 26 under

the collapse map must be of the form 234456. Thus

wt123345,9(vsvs+1) = 1− x− xt4z3z
2
4z5.

8. vsvs+1 = 27. In this case, a single u-match that could give rise to 27 under

the collapse map must be of the form 2abbc7. Thus

wt123345,9(vsvs+1) = 1− x− xt4
∑

2<a<b<c<7

zaz
2
b zc

9. vsvs+1 = 28. In this case, a single u-match that could give rise to 28 under

the collapse map must be of the form 2abbc8. There is exactly one way

two linked u-matches could give rise to 28 under the collapse map, namely,

234456678. Thus

wt123345,9(vsvs+1) = 1− x− xt4
∑

2<a<b<c<8

zaz
2
b zc + xt7z3z

2
4z5z

2
6z7

10. vsvs+1 = 29. In this case, a single u-match that could give rise to 29 under

the collapse map must be of the form 2abbc9. Two linked u-matches that

give rise to 29 under the collapse map must be of the form 2abbcdde9. Thus

wt123345,9(vsvs+1) = 1−x−xt4
∑

2<a<b<c<9

zaz
2
b zc +xt7

∑
2<a<b<c<d<e<9

zaz
2
b zcz

2
dze

11. vsvs+1 = 37. In this case, a single u-match that could give rise to 37 under

the collapse map must be of the form 345567. Thus

wt123345,9(vsvs+1) = 1− x− xt4z4z
2
5z6.

12. vsvs+1 = 38. In this case, a single u-match that could give rise to 38 under

the collapse map must be of the form 3abbc8. Thus

wt123345,9(vsvs+1) = 1− x− xt4
∑

3<a<b<c<8

zaz
2
b zc.
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13. vsvs+1 = 39. In this case, a single u-match that could give rise to 39 under

the collapse map must be of the form 3abbc9. There is exactly one way

two linked u-matches could give rise to 39 under the collapse map, namely,

345567789. Thus

wt123345,9(vsvs+1) = 1− x− xt4
∑

3<a<b<c<9

zaz
2
b zc + xt7z4z

2
5z6z

2
7z8

14. vsvs+1 = 48. In this case, a single u-match that could give rise to 48 under

the collapse map must be of the form 456678. Thus

wt123345,9(vsvs+1) = 1− x− xt4z5z
2
6z7.

15. vsvs+1 = 49. In this case, a single u-match that could give rise to 49 under

the collapse map must be of the form 4abbc9. Thus

wt123345,9(vsvs+1) = 1− x− xt4
∑

4<a<b<c<9

zaz
2
b zc.

16. vsvs+1 = 59. In this case, a single u-match that could give rise to 59 under

the collapse map must be of the form 567789. Thus

wt123345,9(vsvs+1) = 1− x− xt4z6z
2
7z8.

It follows that for any v ∈ [9]+ such that v has no levels,

∑
(B,w) is a fixed point of L123345

C(B,w,123345)=v

sgn(B,w)wt123345,9(B,w) =

− xzv(1− x)des(v)t|v|
∏

s∈Rise(v)

wt123345,9(vsvs+1). (4.36)

and

LU
(9)
123345(x, z9, t) = 1 +

∑
n≥1

LU
(9)
123345,n(x, z9)tn =

1 +
∑

v∈[9]+,lev(v)=0

−xzv(1− x)des(v)t|v|
∏

s∈Rise(v)

wt123345,9(vsvs+1). (4.37)
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What we need to be able to compute the right-hand sides of (4.33), (4.35),

or (4.37) is the generating function over all words v ∈ P∗ with no levels where we

not only keep track of the rises of P but also the type of rises of P . We do this by

substituting into an auxiliary generating function. This is the following:

By Theorem 6, we know that

1 +
∑

w∈P+,lev(w)=0

t|w|z̄w
∏
i>j

x
ji(w)
ji =

1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nAY Z(S)

where

AY Z(S) =


zj

1+zjt
if S = {j}, and

zj1
1+zj1 t

· · · zjk
1+zjk t

∏k−1
i=1 (xjiji+1

− 1) if S = {j1 < · · · < jk}
(4.38)

where k ≥ 2. Hence

∑
w∈P+,lev(w)=0

t|w|z̄w
∏
i>j

x
ji(w)
ji =

1

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nAY Z(S)
− 1

=

∑
n≥1 t

n
∑

S⊆P,|S|=nAY Z(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nAY Z(S)
(4.39)

If we replace t by ty and xji by
xji
y

, the left-hand side of (4.39) becomes

∑
w∈P+,lev(w)=0

t|w|ydes(w)+1z̄w
∏
i>j

x
ji(w)
ji

Note that for S = {j1 < · · · < jk} where k ≥ 2, our substitution replaces

tkAY Z(S) by

yktk
zj1

1 + zj1ty
· · · zjk

1 + zjkty

k−1∏
i=1

(
xjiji+1

y
− 1

)
=

ytk
zj1

1 + zj1ty
· · · zjk

1 + zjkty

k−1∏
i=1

(xjiji+1
− y)

Thus if we let

BY Z(S) =


zj

1+zjty
if S = {j}, and

zj1
1+zj1 ty

· · · zjk
1+zjk ty

∏k−1
i=1 (xjiji+1

− y) if S = {j1 < · · · < jk}
(4.40)
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where k ≥ 2, then the right-hand side of (4.39) becomes

y
∑

n≥1 t
n
∑

S⊆P,|S|=nBY Z(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nBY Z(S)
. (4.41)

It follows that

− x
∑

w∈P+,lev(w)=0

t|w|ydes(w)z̄w
∏
i>j

x
ji(w)
ji =

−x
∑

n≥1 t
n
∑

S⊆P,|S|=nBY Z(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nBY Z(S)
.

(4.42)

Thus

1−x
∑

w∈P+,lev(w)=0

t|w|ydes(w)z̄w
∏
i>j

x
ji(w)
ji =

1− (x+ y)
∑

n≥1 t
n
∑

S⊆P,|S|=nBY Z(S)

1− y
∑

n≥1 t
n
∑

S⊆P,|S|=nBY Z(S)
.

(4.43)

By setting zi = 0 for i > k, we also obtain that

1− x
∑

w∈[k]+,lev(w)=0

t|w|ydes(w)z̄w
∏
i>j

x
ji(w)
ji =

1− (x+ y)
∑k

n=1 t
n
∑

S⊆[k],|S|=nBY Z(S)

1− y
∑k

n=1 t
n
∑

S⊆[k],|S|=nBY Z(S)
. (4.44)

Note that if we replace y by (1−x) and xji by wtu(ji), the left-hand side of (4.43)

becomes LU
(P)
u (x, z∞, t) and the left-hand side of (4.44) becomes LU

(k)
u (x, zk, t).

Similarly, if we replace y by (1−x) and xji by ewtu(ji), the left-hand side of (4.43)

becomes LEU
(P)
u (x, z∞, t) and the left-hand side of (4.44) becomes LEU

(k)
u (x, zk, t).

Then using the fact that LN (P)
u (x, z∞, t) = 1/LU

(P)
u (x, z∞, t) and that

LEN (P)
u (x, z∞, t) = 1/LEU

(P)
u (x, z∞, t), we have the following theorem.

Theorem 20. Suppose that u = u1 . . . uj ∈ P∗, red(u) = u, lev(u) = 1, and

u1 < uj. Then

LN (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

S⊆P,|S|=nBTZu(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nBTZu(S)
(4.45)

and

LEN (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

S⊆P,|S|=nEBTZu(S)

1−
∑

n≥1 t
n
∑

S⊆P,|S|=nEBTZu(S)
(4.46)
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where

BTZu(S) =



zj
1+zjt(1−x)

if S = {j}, and
zj1

1 + zj1t(1− x)
· · · zjk

1 + zjkt(1− x)
k−1∏
i=1

(wtu(jiji+1) + x− 1)
if S = {j1 < · · · < jk}

(4.47)

where k ≥ 2 and

EBTZu(S) =



zj
1+zjt(1−x)

if S = {j}, and
zj1

1 + zj1t(1− x)
· · · zjk

1 + zjkt(1− x)
k−1∏
i=1

(ewtu(jiji+1) + x− 1)
if S = {j1 < · · · < jk}

(4.48)

where k ≥ 2.

If we specialize the variables so that zi = 0 for all i > k, then we have the

following theorem.

Theorem 21. Suppose that u = u1 . . . uj ∈ [k]∗, red(u) = u, lev(u) = 1, and

u1 < uj. Then

LN (k)
u (x, zk, t) =

1− (1− x)
∑k

n=1 t
n
∑

S⊆[k],|S|=nBTZu(S)

1−
∑k

n=1 t
n
∑

S⊆[k],|S|=nBTZu(S)
(4.49)

and

LEN (k)
u (x, zk, t) =

1− (1− x)
∑k

n=1 t
n
∑

S⊆[k],|S|=nEBTZu(S)

1−
∑k

n=1 t
n
∑

S⊆[k],|S|=nEBTZu(S)
(4.50)

4.4 The case u = u1 . . . uj, lev(u) = 1, and u1 = uj

In this section, we shall consider the problem of computing the generating

functions LN (P)
u (x, z∞, t), LN (k)

u (x, zk, t), LEN (P)
u (x, z∞, t), and LEN (k)

u (x, zk, t)

for u = u1 . . . uj such that lev(u) = 1, u1 = uj, and u has the P-level overlapping

property (or [k]-level overlapping property).
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As in the previous sections, we need to compute LU
(P)
u (x, z∞, t),

LU
(k)
u (x, zk, t), LEU

(P)
u (x, z∞, t), and LEU

(k)
u (x, zk, t). To compute these generat-

ing functions, we use Theorem 2 plus the collapse map.

First assume that u = u1 . . . uj, red(u) = u, lev(u) = 1, u1 = uj, and u

has the P-minimal overlapping property. We can define the collapse map to fixed

points of Lu or Ku exactly as in the previous sections. For example, suppose that

u = 244132 and we want to compute LU
(7)
244132(x, z7, t). By (4.6), we know that

LU
(7)
244132,n(x, z7) =

∑
O∈O(k)

244132,n,L244132(O)=O

sgn(O)wt(O). (4.51)

As before, we know that if (B,w) is a fixed point of L244132, then elements in the

bricks have no levels and if there is a level between two bricks bi and bi+1, there

must be a 244132-match that involves the last 2 cells of bi and the first four cells

of bi+1. We have pictured such a fixed point in Figure 4.7.

\/

|
|
|

* *

(B,w)=

-x

* * * * ** ***

-x -x -x

* *

1 3 6 6 1 4 3 7 7 2 5 3 2 5 4 1

*
C(B,w,u) = 1 3 3 3 2 5 4 1

Figure 4.7: A fixed point of L244132.

The difference between this case and the previous case where u1 > uj is that

a 244132-match of the form ijjcli will just be replaced by ii so that the collapse map

will produce words with levels in this case. Moreover, if a word v = C(B,w, u) has

a factor of the form ii it must have come from a 244132-match in the collapse of a

fixed point of L244132. The fact that 244132 has the minimal overlapping property

ensures that any two such 244132-matches can only intersect at the right-hand

endpoint of the first match and left-hand endpoint of the second match. In this

case a factor of the form ii must have weight −xt4
∑

i<l<j≤k zlz
2
j

∑
1≤c<i zc if we

are computing LU
(k)
244132,n(x, zk) and −xt4

∑
i<l<j zlz

2
j

∑
1≤c<i zc if we are computing

LU
(P)
244132,n(x, z∞). That is, the weight corresponds to the case where we have a level
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Table 4.8: The weights wt244132,7(ii)

Levels wt244132,7(ii)

77 0

66 0

55 −xt4z6z
2
7(z1 + z2 + z3 + z4)

44 −xt4(
∑

4<c<d≤7 zcz
2
d)(z1 + z2 + z3)

33 −xt4(
∑

3<c<d≤7 zcz
2
d)(z1 + z2)

22 −xt4(
∑

2<c<d≤7 zcz
2
d)z1

11 0

between two consecutive bricks and we deleted the second, third, fourth, and fifth

elements of the 244132-match between the two bricks. In our example, the weights

of the levels for computing LU
(7)
244132,n(x, z7) are listed in table 4.8.

In this case, factors in C(B,w, 244132) of the form ij where i 6= j correspond

to a factor of 1−x where the 1 comes from the case where ij are in the same brick

and the −x corresponds to the case where i and j are in different bricks.

It follows that for any v ∈ [7]+,∑
(B,w) is a fixed point of L244132

C(B,w,244132)=v

sgn(B,w)wt244132(B,w) =

− xzv(1− x)des(v)+rise(v)t|v|
∏

s∈Lev(v)

wt244132,7(vsvs+1). (4.52)

and

LU
(7)
244132(x, z7, t) = 1 +

∑
n≥1

LU
(7)
244132,n(x, z7)tn

= 1 +
∑

v=v1...vn∈[7]+

−xzv(1− x)des(v)+rise(v)t|v|
∏

s∈Lev(v)

wt244132,7(vsvs+1).

(4.53)

As in the previous section, the case of exact matches is much simpler. In
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Table 4.9: The weights ewt244132(ij)

Factor weight ewt244132,7(ij)

ij where i 6= j 1− x
ii where i 6= 2 0

22 −xz1z3z
2
4t

4

that case, we want to compute∑
(B,w) is a fixed point of Ku

C(B,w,u)=v

sgn(B,w)wt(B,w).

Going back to our example of u = 244132 over the alphabet [7], we see that factors

of the form ij with i 6= j correspond to a factor of 1− x where the 1 comes from

the case where ij are in the same brick and the −x comes from the case where i

and j are in different bricks. The weight associated to a level vs = vs+1 is 0 unless

vs = 2 and vs+1 = 2. If vs = 2, vs+1 = 2, then we must have eliminated a 4413

from w. Thus if we want to compute LEU
(P)
244132,n(x, z∞) or LEU

(k)
244132,n(x, zk) for

k ≥ 4, the weights associated to factors ij are given in table 4.9. It follows that

for any v ∈ [7]+, ∑
(B,w) is a fixed point of K244132

C(B,w,244132)=v

sgn(B,w)wt(B,w) =

− xzv(1− x)des(v)+rise(v)t|v|
∏

s∈Lev(v)

ewt244132,7(vsvs+1) (4.54)

and

LEU
(7)
244132,n(x, z7, t) = 1 +

∑
n≥1

LEU
(7)
244132,n(x, z7)tn

= 1 +
∑
v∈[7]+

−xzv(1− x)des(v)+rise(v)t|v|
∏

s∈Lev(v)

ewt244132,7(vsvs+1).

(4.55)

Next suppose that u = u1 . . . uj, red(u) = u, lev(u) = 1, u1 = uj, and u

has the P-level overlapping property or the [k]-level overlapping property, but u
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does not have the P-minimal overlapping property. The fact that u has the P-level

overlapping property ([k]-level overlapping property) ensures that if w = w1 . . . wn

is word which starts and ends with a u-match and any two consecutive u-matches

in w share at least two letters, then it must case that w1 = wn. Thus under the col-

lapse map, any collapse will end up with a level of the form ii. The main difference

in this case is that it is possible to have the weights wtu,k(ii) or wtu,P(ii) correspond

to infinite families of words of different lengths even in the case where the alpha-

bet is finite. For example, suppose that u = 12133121. Then it is possible that in

a fixed point (B,w) of L12133121, w has a factor where consecutive occurrences of

the pattern 12133121 are linked of the form ijiy1y1ijiy2y2ijiy3iji . . . ijiyniji where

y1, . . . , yn > j > i like those that occur in the first 18 cells of the fixed point pic-

tured in Figure 4.8. For each given maximal sequence of this type, the collapse map

would eliminate all the symbols between the first and the last i. In such a case, the

weight corresponding to the symbols that are eliminated for such a string in the col-

lapse map would be (−x)nz2n
i z

n+1
j z2

y1
· · · z2

ynt
5n+1 = (zjt)(−x)nz2n

i z
n
j z

2
y1
· · · z2

ynt
5n. It

would follow that if we are working in P∗, then

wt12133121,P(ii) =
−xz2

i z
2
j

(∑
s>i z

2
s

)
t6

1 + xz2
i zj
(∑

s>i z
2
s

)
t5

while if we are working in [k]∗, then for 1 ≤ i < k,

wt12133121,P(ii) =
−xz2

i z
2
j

(∑k
s=i+1 z

2
s

)
t6

1 + xz2
i zj

(∑k
s=i+1 z

2
s

)
t5

and

wt112133121,k(kk) = 0.

That is, in each of these expressions, the series
−xz2

i z
2
j (

∑
s>i z

2
s)t6

1+xz2
i zj(

∑
s>i z

2
s)t5

corresponds the

fact that we could have eliminated sequences of the form

ijiy1y1ijiy2y2ijiy3y3iji . . . ijiynyniji for any n ≥ 1 between the two is.

Nevertheless, we can still apply the same reasoning as above to prove that

for any v ∈ [7]+, ∑
(B,w) is a fixed point of L12133121

C(B,w,12133121)=v

sgn(B,w)wt12133121(B,w) =
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\/

|
|
|

(B,w)=

-x -x

* * * * * * * ** *

-x -x

**

* *

1 3 1 4 4 1 3 1 7 7 1 3 1 5 5 1 3 1 2

* * * * * *

C(B,w,u) = 1 1 2

Figure 4.8: A fixed point of L12133121.

− xzv(1− x)des(v)+rise(v)t|v|
∏

s∈Lev(v)

wt12133121,7(vsvs+1). (4.56)

and

LU
(7)
12133121(x, z7, t) = 1 +

∑
n≥1

LU
(7)
12133121,n(x, z7)tn

= 1 +
∑

v=v1...vn∈[7]+

−xzv(1− x)des(v)+rise(v)t|v|
∏

s∈Lev(v)

wt12133121,7(vsvs+1)

= 1 +
∑

v=v1...vn∈[7]+

−xzv(1− x)|v|−lev(v)−1t|v|
∏

s∈Lev(v)

wt12133121,7(vsvs+1).

(4.57)

We should note that as patterns get more complicated, it becomes in-

creasingly difficult to compute wtu,P(ii) or wtk(ii). For example, suppose u =

(121)533(121)5. Then linked patterns can overlap at either 1,3,5,7, or 9 symbols.

What we need to be able to compute the right-hand sides of (4.53), (4.55),

or (4.57) is the generating function over all words v ∈ P∗ where we not only keep

track of the levels of P but also the type of levels of P . We do this by specializing

one of our auxiliary generating functions from Chapter 2 and then substituting

into that resulting generating function. This is the following:

By Theorem 2, we know that

1 +
∑
w∈P+

t|w|z̄w
∏
i≤j

x
ji(w)
ji =

1

1−
∑

n≥1 t
n
∑

v∈WDP∗,|v|=nWDXZ(v)

where

WDXZ(v) =

zj if v = j, and

zj1 · · · zjk
∏k−1

i=1 (xjiji+1
− 1) if v = j1 ≥ · · · ≥ jk where k ≥ 2.

(4.58)
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If we specialize this generating function and let xji = 1 if i < j, then we get

1 +
∑
w∈P+

t|w|z̄w
∏
i≥1

x
ii(w)
ii =

1

1−
∑

n≥1 t
n
∑

v=ii...i,|v|=nADXZ(v)

where

ADXZ(v) =

zi if v = i, and

(zi)
k(xii − 1)k−1 if v = ii . . . i where |v| = k ≥ 2.

(4.59)

Hence

∑
w∈P+

t|w|z̄w
∏
i≥1

x
ii(w)
ii =

1

1−
∑

n≥1 t
n
∑

v=ii...i,|v|=nADXZ(v)
− 1

=

∑
n≥1 t

n
∑

v=ii...i,|v|=nADXZ(v)

1−
∑

n≥1 t
n
∑

v=ii...i,|v|=nADXZ(v)
(4.60)

If we replace t by ty and xii by xii
y

, the left-hand side of (4.60) becomes

∑
w∈P+

t|w|z̄wy|w|−lev(w)
∏
i≥1

x
ii(w)
ii

Note that for v = ii . . . i where |v| = k ≥ 2, our substitution replaces tkADXZ(v)

by

yktk(zi)
k

(
xii
y
− 1

)k−1

= ytk(zi)
k(xii − y)k−1

Thus if we let

BDXZ(v) =

zi if v = i, and

(zi)
k(xii − y)k−1 if v = ii . . . i where |v| = k ≥ 2.

(4.61)

then the right-hand side of (4.60) becomes

y
∑

n≥1 t
n
∑

v=ii...i,|v|=nBDXZ(v)

1− y
∑

n≥1 t
n
∑

v=ii...i,|v|=nBDXZ(v)
. (4.62)

It follows that
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− x
∑
w∈P+

t|w|y|w|−lev(w)−1z̄w
∏
i≥1

x
ii(w)
ii =

−x
∑

n≥1 t
n
∑

v=ii...i,|v|=nBDXZ(v)

1− y
∑

n≥1 t
n
∑

v=ii...i,|v|=nBDXZ(v)
.

(4.63)

Thus

1− x
∑
w∈P+

t|w|y|w|−lev(w)−1z̄w
∏
i≥1

x
ii(w)
ii =

1− (x+ y)
∑

n≥1 t
n
∑

v=ii...i,|v|=nBDXZ(v)

1− y
∑

n≥1 t
n
∑

v=ii...i,|v|=nBDXZ(v)
. (4.64)

By setting zi = 0 for i > k, we also obtain that

1− x
∑
w∈[k]+

t|w|y|w|−lev(w)−1z̄w
k∏
i=1

x
ii(w)
ii =

1− (x+ y)
∑k

n=1 t
n
∑

v=ii...i,|v|=nBDXZ(v)

1− y
∑k

n=1 t
n
∑

v=ii...i,|v|=nBDXZ(v)
. (4.65)

Note that if we replace y by (1− x) and xii by wtu(ii), the left-hand side of (4.64)

becomes LU
(P)
u (x, z∞, t) and the left-hand side of (4.65) becomes LU

(k)
u (x, zk, t).

Similarly, if we replace y by (1−x) and xii by ewtu(ii), the left-hand side of (4.64)

becomes LEU
(P)
u (x, z∞, t) and the left-hand side of (4.65) becomes LEU

(k)
u (x, zk, t).

Then using the fact that LN (P)
u (x, z∞, t) = 1/LU

(P)
u (x, z∞, t) and that

LEN (P)
u (x, z∞, t) = 1/LEU

(P)
u (x, z∞, t), we have the following theorem.

Theorem 22. Suppose that u = u1 . . . uj ∈ P∗, red(u) = u, lev(u) = 1, and

u1 = uj. Then

LN (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

v=ii...i,|v|=nBDTZu(v)

1−
∑

n≥1 t
n
∑

v=ii...i,|v|=nBDTZu(v)
(4.66)

and

LEN (P)
u (x, z∞, t) =

1− (1− x)
∑

n≥1 t
n
∑

v=ii...i,|v|=nEBDTZu(v)

1−
∑

n≥1 t
n
∑

v=ii...i,|v|=nEBDTZu(v)
(4.67)
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where

BDTZu(v) =

zi if v = i, and

(zi)
k(wtu(ii) + x− 1)k−1 if v = ii . . . i where |v| = k ≥ 2.

(4.68)

and

EBDTZu(v) =

zi if v = i, and

(zi)
k(ewtu(ii) + x− 1)k−1 if v = ii . . . i where |v| = k ≥ 2.

(4.69)

If we specialize the variables so that zi = 0 for all i > k, then we have the

following theorem.

Theorem 23. Suppose that u = u1 . . . uj ∈ [k]∗, red(u) = u, lev(u) = 1, and

u1 = uj. Then

LN (P)
u (x, z∞, t) =

1− (1− x)
∑k

n=1 t
n
∑

v=ii...i,|v|=nBDTZu(v)

1−
∑k

n=1 t
n
∑

v=ii...i,|v|=nBDTZu(v)
(4.70)

and

LN (P)
u (x, z∞, t) =

1− (1− x)
∑k

n=1 t
n
∑

v=ii...i,|v|=nEBDTZu(v)

1−
∑k

n=1 t
n
∑

v=ii...i,|v|=nEBDTZu(v)
(4.71)

Chapter 4, in part, is currently being prepared for submission for publication

of the material. Sangha, Luvreet; Remmel, Jeffrey. The dissertation author was

the primary author of this material.



Chapter 5

Possible extensions

The methods that we have used in this paper can be modified to find gen-

erating functions of the form∑
w∈P∗,umch(w)=0

t|w|xwdes(w)+1zw,
∑

w∈[k]∗,umch(w)=0

t|w|xwdes(w)+1zw,

∑
w∈P∗,eumch(w)=0

t|w|xwdes(w)+1zw, and
∑

w∈[k]∗,eumch(w)=0

t|w|xwdes(w)+1zw.

in the case where wdes(u) = 1. The idea is that one can modify the reciprocal

method presented in Section 3 to replace the statistic des(w) + 1 or lev(w) + 1

by wdes(w) + 1. Then one can modify the collapse map appropriately. Finally,

one needs appropriate modifications of Theorems 1, 2, 3, and 4 to produce gen-

erating functions which keep track of labeled rises, levels, or descents that can be

specialized to compute the generating functions of interest.

By the isomorphism which sends a word w = w1 . . . wn to its reverse, wr =

wn . . . w1, one can automatically produce similar generating functions where the

statistics des(w) + 1 and wdes(w) + 1 are replaced by wrise(w) + 1 and rise(w) + 1,

respectively.

One can also easily modify the methods to keep track of restricted sets of

descents. For example, given a word w = w1 . . . wn ∈ P∗, let edes(w) = |{i : wi >

wi+1 and wi is even}|. Then the techniques of this thesis can be easily modified to

122
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find closed expressions for∑
w∈P∗,umch(w)=0

t|w|xedes(w)+1zw,
∑

w∈[k]∗,umch(w)=0

t|w|xedes(w)+1zw,

∑
w∈P∗,eumch(w)=0

t|w|xedes(w)+1zw, and
∑

w∈[k]∗,eumch(w)=0

t|w|xedes(w)+1zw

in the case were edes(u) = 1.

Finally, one can extend the reciprocal methods in this thesis to give a

combinatorial interpretation of U
(P)
u,n(x, z∞, t), U

(k)
u,n(x, zk, t), EU

(P)
u,n(x, z∞, t), and

EU
(k)
u,n(x, zk, t) in the case where des(u) > 1 or of LU

(P)
u,n(x, z∞, t), LU

(k)
u,n(x, zk, t),

LEU
(P)
u,n(x, z∞, t), and LEU

(k)
u,n(x, zk, t) in the case where lev(u) > 1. Basically one

has to modify the involution Iu presented in the introduction appropriately. This

has been done in the case of permutations by Quang Bach and Jeffrey Remmel in

the case of permutations [3,4]. However, in the case where des(u) > 1, for example,

the corresponding set of fixed points are much more complicated. In particular,

in the case where des(u) > 1, it will no longer be the case that in fixed points

of the modified version of Iu that the underlying word will be weakly increasing

in bricks. These more complicated fixed points then require a more complicated

version of the collapse map. Nevertheless, one can still come up with closed for-

mulas for the generating functions U
(P)
u (x, z∞, t), U

(k)
u (x, zk, t), EU

(P)
u (x, z∞, t), and

EU
(k)
u (x, zk, t). This work will appear in a subsequent paper.

Chapter 5, in part, has been submitted for publication as it may appear in

Generating Functions for Descents over Words which Avoid a Consecutive Pattern,

2017, Remmel, Jeffrey; Sangha, Luvreet, Electronic Journal of Combinatorics,

2017, arXiv:1612.04900. The dissertation author was the secondary author of this

work.

http://arxiv.org/abs/1612.04900


Bibliography

[1] R.E.L. Aldred, M.D. Atkinson, and D.J. McCaughan, Avoiding consecutive
patterns in permutations, Adv.in Appl. Math., 45: Issue 3 (2010), 449-461.

[2] T. Amdeberhan, X. Chen, V. Moll, and B. Sagan, Generalized Fibonacci
polynomials and Fibonomial coefficients, Ann. Comb., 18 (2014), 129-138.

[3] Q.T. Bach and J.B. Remmel, Generating functions for descents over permuta-
tions which avoid sets of consecutive patterns, Australas. J. Combin., 64(1)
(2016), 194-231.

[4] Q.T. Bach and J.B. Remmel, Descent c-Wilf Equivalence, to ap-
pear in Discrete Mathematics and Theoretical Computer Science,
http://arxiv.org/abs/1510.04319v1 (2015).

[5] Q.T. Bach, R. Paudyal, and J.B. Remmel, A Fibonacci analogue of Stir-
ling numbers, submitted to the Journal of Combinatorial Theory, Series A,
http://arxiv.org/abs/1510.04310v2 (2015).

[6] A.M. Baxter, Refining enumeration schemes to count according to inversion
number, Pure Math. Appl., 21(2) (2010), 136-160.

[7] D.A. Beck and J.B. Remmel, Permutation enumeration of the symmetric
group and the combinatorics of symmetric functions, J. Combin. Theory Ser.
A, 72 (1995), 1-49.

[8] D. Bevan, Permutations avoiding 1324 and patterns in  Lukasiewicz paths, J.
London Math. Soc., 92(1) (2015), 105-122
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