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Abstract

This dissertation focuses on nonlinear dynamical systems with net responses. In particular, we

discover a steady field induced within liquids by a sinusoidal potential, referred to as Asymmetric

Rectified Electric Field (AREF). AREF helps explain several long-standing discrepancies regarding

the behavior of particles and electrically induced fluid flows in response to oscillatory potentials,

broadly impacts the interpretation of the experiments, and offers new avenues for research in elec-

trokinetics.1–5 Additionally, we demonstrate that non-antiperiodic, zero-time-average, excitation of

a spatially symmetric system can yield net responses. We consider an object atop a flat surface

that undergoes a dual-mode horizontal vibration. Our calculations, and subsequent experimental

observations, show that the object experiences a net drift if the applied frequencies are the ratio

of odd and even numbers (e.g., 1 Hz and 2 Hz). As a corollary, our theory suggests that swapping

the powered (non-antiperiodic potential) and the grounded parallel electrodes of an electrochem-

ical cell alters the system behavior, a prediction verified by our experimental observations on the

AREF-induced electrophoresis.6,7
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Chapter 1

Introduction & Outline

1.1 ASYMMETRIC RECTIFIED ELECTRIC FIELD

Many systems of practical and scientific importance involve application of an oscillatory electric

potential to a liquid, including electrohydrodynamic (EHD) manipulation of colloids and bioparti-

cles,8–14 induced-charge electrokinetics (ICEK),15–19 and ac electroosmosis (ACEO),20–23 to name

a few. In continuum theory, analysis of such systems is based on the Poisson–Nernst–Planck (PNP)

equations, also referred to as the standard electrokinetic model.24 The Poisson equation relates the

free charge density to the Laplacian of the electric potential via Gauss’s law, and the transport

of dissolved ions is governed by the electromigrative and diffusive fluxes. The PNP equations are

nonlinear, extremely stiff, and coupled, and are characterized with an immense disparity of time

and length scales for practical electrokinetic systems. As a result, researchers have often resorted

to simplifying assumptions that significantly reduce the problem, but rarely pertains to actual sys-

tems.25–31 The frequently invoked assumptions include the low applied potentials (less than the

thermal potential), which allows linearization of the problem and various first-order perturbation

solutions, and/or ions of equal mobilities. In practice, however, electrokinetic systems operate at

„ 100 thermal potentials, and most ion pairs have a considerable mobility mismatch (e.g., hy-

droxide ion is four times faster than the sodium ion). More importantly, the reduced models fail

to even qualitatively predict the experimental observations in a variety of electrokinetic systems.

Despite a tremendous body of experimental and theoretical studies, the underlying reasons of the

discrepancies remained obscure.32,33

The qualitative discrepancies between the experiments and theory (e.g., the direction of induced

flows) indicate that there might be an unknown phenomenon contributing to the problem. Addi-

tionally, the discrepancies tend to intensify with the potential amplitude (increased nonlinearity),

and also in liquids with a significant ionic mobility mismatch. Perhaps, an accurate solution to

the PNP equations, with no simplifying assumptions, could potentially resolve the discrepancies.

The first, and major, portion of this dissertation revolves around this problem. We considered the

simplest possible configuration of a liquid confined between two parallel, planar, blocking electrodes

that are powered by a sinusoidal electric potential. We, for the first time, numerically solved the

1



corresponding full nonlinear PNP equations, using operator splitting and mesh refinement. Our

results indicate that the induced electric field within the liquid is multimodal and spatially nonuni-

form, with a zero-frequency component (a nonzero-time-average), given that the dissolved ions

have an ionic mobility mismatch. In other words, we discover that a perfectly sinusoidal electric

potential induces a steady field within the liquid.

The heretofore unsuspected nonuniform steady field, which we refer to as Asymmetric Recti-

fied Electric Field (AREF), helps explain several long-standing discrepancies in electrokinetics.

Namely, AREF provides qualitative explanations for the electrolyte and frequency dependence of

the aggregation/separation of charged colloids near electrodes, fluid flow reversals in ac electroos-

mosis pumps, and levitation of charged colloids against gravity. Note that AREF is necessarily a

nonlinear effect and a direct result of the ionic mobility mismatch. Consequently, the prior reduced

problems were oblivious to its existence.

The discovery of the AREF and its broad implications are provided in Chapter 2 and Ap-

pendix A. Chapter 3 focuses on a detailed parametric study and scaling analysis of the AREF

between parallel electrodes. In Chapter 4 and Appendix B, we demonstrate how AREF-induced

electroosmotic flows dominate the classical ICEK flows around charged objects, offering a qualita-

tive explanation for the observed fluid flow reversals in ICEK, and more complicated systems such

as ACEO pumps. In Chapter 5 and Appendix C, we develop a second-order perturbation solution

to the PNP equations that predicts the existence of AREF and further corroborates our numerical

results.

1.2 RATCHET DYNAMICS

The second part of the dissertation focuses on ratchet dynamics, with an important corollary

implication to the AREF. The idea goes back to the classical Feynman–Smoluchowski ratchet and

its modern implementations; periodic excitation of a system with a broken spatial-symmetry (a

biased system) yields a net solution, despite the absence of any net driving force (zero-time-average

excitation, e.g., a sinusoidal wave). We show that application of a multimodal excitation, with a

certain broken time-symmetry, to an unbiased (spatially symmetrical) nonlinear system yields a

ratchet as well.

In particular, we consider an object atop a flat surface that undergoes a two-mode (frequencies

f and αf) lateral vibration. Intuitively, the object is expected to either stick to, or slip on,

the surface and move in a periodic fashion, but remain stationary on average. We demonstrate,

theoretically and experimentally, that this intuition is true only if the excitation is antiperiodic,

i.e., second half-period of the excitation is the negative of its first half. For a two-mode excitation,

antiperiodicity requires α (i.e., ratio of the two modes) to be in the form {odd integer}/{odd

integer} (e.g., 1, 3, 5{3, . . . ). Counterintuitively, the object starts moving to left or right otherwise

(e.g., α “ 2, 4, 3{2, . . . ), resembling a ratchet. A very intriguing implication of our theory is in

electrokinetics, where it suggests that swapping the powered and the grounded parallel electrodes of

2



an electrochemical cell alters the system behavior. More importantly, our experimental observations

on the AREF-induced electrophoresis of charged colloids under oscillatory potentials corroborate

this finding.

In Chapter 6, we introduce the existence of ratchets in a variety of unbiased nonlinear systems,

including problems involving solid-solid friction, non-Newtonian fluids, nonlinear drags, and nonlin-

ear springs. Lastly we report the surprising implication of our theory in electrokinetics: the induced

AREF by non-antiperiodic potentials is dissymmetric in space, indicating that the system behavior

is sensitive to which electrode is powered and which is grounded. Chapter 7 and D elaborate on

the latter, and provide new evidence using perturbation solutions and symmetry arguments.

Finally, in Chapter 8 we summarize the main findings, and conclude with a brief discussion on the

potential avenues for future work in further understanding the AREF and the ratchet dynamics,

and their significant implications.

3



Chapter 2

Oscillating Electric Fields in Liquids

Create a Long-Range Steady Field

Overview∗

We demonstrate that application of an oscillatory electric field to a liquid yields
a long-range steady field, provided the ions present have unequal mobilities. The
main physics are illustrated by a two-ion harmonic oscillator, yielding an asym-
metric rectified field whose time average scales as the square of the applied field
strength. Computations of the fully nonlinear electrokinetic model corroborate
the two-ion model and further demonstrate that steady fields extend over large
distances between two electrodes. Experimental measurements of the levitation
height of micron-scale colloids versus applied frequency accord with the numeri-
cal predictions. The heretofore unsuspected existence of a long-range steady field
helps explain several longstanding questions regarding the behavior of particles
and electrically-induced fluid flows in response to oscillatory potentials.

∗This chapter was previously published by Hashemi Amrei et al. and is reproduced here with
minor modifications. See: S. M. H. Hashemi Amrei, S. C. Bukosky, S. P. Rader, W. D.
Ristenpart, and G. H. Miller, Oscillating electric fields in liquids create a long-range steady
field, Phys. Rev. Lett. 121 (2018) 185504.1

4



2.1 INTRODUCTION

Many systems of practical and scientific importance involve application of an oscillatory electric po-

tential to a liquid, including dielectric and impedance spectroscopy,25,34,35 cyclic voltammetry,36,37

electro-acoustics,38,39 dielectrophoresis,40,41 induced charge electrokinetics,18,19,32,33 and electrohy-

drodynamic manipulation of colloids.8,9,42,10,12 In contrast to perfect dielectrics, the presence of

mobile ions in the liquid phase complicates interpretation of the electric field. The “standard elec-

trokinetic model” is a continuum level model widely used to predict the behavior of charged ions

in solution.43,26 It couples Gauss’s law for the electric potential with the Nernst–Planck conserva-

tion equations for each ionic species, yielding a system of nonlinear coupled differential equations.

For most systems of interest, the model is characterized by extremely sharp gradients in the non-

electroneutral ionic charge layer near any solid/liquid interfaces.24 Accordingly, most theoretical

and numerical analyses of the standard electrokinetic model have focused on asymptotic solutions

in the limit of small applied potentials,25–28 which for sinusoidal applied potentials invariably yield

a sinusoidal electric field inside the liquid, albeit with phase lag and amplitude that depend on

the system properties. Importantly, these linearized asymptotic solutions differ qualitatively from

recent numerical computations of the fully nonlinear electrokinetic model by Olesen et al., who

found that the electric field assumes a much more complicated shape at sufficiently high applied

oscillatory potentials.29 This finding, which was further corroborated analytically by Stout and

Khair30 and Schnitzer and Yariv,31 is significant because analyses of the behavior of individual

colloids or other objects in liquids typically begin with the assumption that the electric field is

perfectly sinusoidal, and it is unclear what the influence of a non-sinusoidal field will be. Further

complicating matters, the prior nonlinear analyses29–31 restricted attention to situations where the

ionic mobilities of the positive and negative ions were equal, which simplifies the analysis but rarely

pertains to actual liquids.

2.2 TOY MODEL

To consider the effect of non-equal ionic mobilities, we first introduce a two-ion model that illustrates

how an ionic mobility mismatch can yield a steady field nearby (Fig. 2.1). Consider two isolated

ions, one positive and one negative with charge numbers q` and q´, respectively, each oscillating

in response to a 1-dimensional far-field sinusoidal electric field of magnitude E0 cos pωtq. The

ions are treated as non-interacting points (consistent with the continuum approximation) but with

mobilities that differ based on their drag coefficients in liquid with viscosity µ. Neglecting inertia

and balancing the drag force with the electrostatic driving force yields

6πµai
dzi
dt
´ qieE0 cos pωtq “ 0, (2.1)

5



δ = 1 δ > 1 δ < 1

zi

εz=zf

〈εz〉 = 0 〈εz〉 < 0 〈εz〉 > 0

t

+

−

Figure 2.1: Two-ion harmonic oscillator model. (Top) Harmonic trajectories of two ions moving in response
to a far-field sinusoidal electric field, for different ionic mobility ratios. (Bottom) Corresponding perturbation
to the electric field evaluated at z “ zf .

where zi denotes the instantaneous location of ion i with size ai. Solving for the position yields

zi “
qieE0

ωp6πµaiq
sin pωtq. (2.2)

The obtained harmonic oscillators of the ions ziptq are shown schematically in Fig. 2.1 for

different conditions, where δ “ a`{a´ is taken as a measure for the ionic mobility mismatch. For

δ “ 1, ions oscillate with the same amplitude and the center of charge remains stationary. However,

when δ ‰ 1, the fast moving ion exhibits a higher amplitude compared to the slow moving one,

causing the center of charge itself to oscillate.

We now ask what happens at a point z “ zf far from the ions due to their harmonic oscillation.

Expansion of Coulomb’s law in a Taylor series for zi{zf Ñ 0, followed by substitution of the

harmonic solutions from Eq. 2.2 and rearrangement, yields the perturbed electric field

εpzf , tq “
α

z2
f

r2Êp1` δq sin pωtq ` 3Ê 2p1´ δ2q sin2 pωtq ` 4Ê 3p1` δ3q sin3 pωtq ` . . . s, (2.3)

where Ê “ eE0{p6πµa`ωzf q and α “ e{p4πε8ε0q. (See Sec. A.1 for detail.) The observed electric

field versus time is thus multimodal with frequency peaks at odd integer multiples of the imposed

frequency for ions with δ “ 1, but with frequency peaks at both odd and even integer multiples of

the imposed frequency for δ ‰ 1. This mobility dependence has an important consequence for the

time average of the perturbation field near the oscillating ions. Integrating Eq. 2.3 yields the time

average, to leading order,

xεpzf qy “
ω

2π

ż 2π{ω

0
εpzf , tqdt“

3αÊ 2p1´ δ2q

2z2
f

. (2.4)

Provided δ ‰ 1, there is a non-zero time-average electric field due to the uneven oscillation of

the ions. This phenomenon, which we denote as an “asymmetric rectified electric field” (AREF),

6



is depicted graphically along the bottom of Fig. 2.1. The perturbation to the net electric field at

a location zf is dominated by the faster moving ion, since it will be in closer proximity than the

slower moving ion. This imbalance yields a net electric field that to leading order scales as the

square of the applied field strength.

2.3 ELECTROKINETIC MODEL

The preceding toy model is suggestive, but it omits ion-ion interactions and the influence of thermal

energy (i.e., diffusive motion). To capture these effects, one must invoke the standard electrokinetic

model. For simplicity, here we focus on the 1-dimensional electric field between parallel electrodes

separated by a distance H. The liquid contains two ionic species, each with concentration ni

and diffusivity Di “ kBT {p6πµaiq, which defines the ionic mobility mismatch δ “ D´{D`. The

standard electrokinetic model couples Gauss’s law,

ε8ε0
B2φ

Bz2 “ ´

2
ÿ

i“1

eqini, (2.5)

with Nernst–Planck continuity equations for each ionic species,

Bni
Bt
“ Di

B2ni

Bz2 ` eqi
Di

kBT

B

Bz

´

ni
Bφ

Bz

¯

. (2.6)

The first and second terms on the right-hand side of Eq. 2.6 describe the ion diffusive motion

and the electromigration in response to the local electric field, respectively. To complete the

problem statement, we impose an oscillatory electric potential of amplitude φ0 and frequency

f “ ω{p2πq on the lower electrode at z “ 0, while keeping the upper electrode grounded. We

further impose no flux of ions through each electrode, i.e., the electrodes are “blocking” and do

not permit any electrochemical reactions. This assumption might not pertain for sufficiently large

applied potentials; here we focus on the limiting case of negligible electrochemistry.

We emphasize that Eq. 2.5 and Eq. 2.6 are the classical starting point for analysis of the

electrical behavior of fluids with ionic charge. In contrast to prior work, however, here we make

no assumptions about the magnitude of the applied sinusoidal potential, nor about the values of

the ionic mobilities. The system of equations was solved via finite difference methods with mesh

refinement to capture the extremely thin Debye layers („ 10 nm) near the boundaries (See Sec. A.2

for details.).

2.4 RESULTS, DISCUSSION, AND IMPLICATIONS

Examining first the case of equal ionic mobilities (δ “ 1), the electric field varies sinusoidally

versus time for sufficiently low applied potentials (black curve, Fig. 2.2(a) (φ0e{pkBT q “ 1)), with

magnitude and phase lag as predicted by the linearized analytical solution (Fig. A.2). As the voltage
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Figure 2.2: Effects of applied voltage and ionic mobility mismatch on the electric field between parallel
electrodes. (a, b) Harmonic solutions of the normalized electric field Ezκ

´1{φ0 at z “ 1 µm (z{H “ 0.04)
for different applied voltages: (a) δ “ 1, (b) δ “ 4. (c) Dimensionless time average electric field Ẽz “
Ezeκ

´1{pkBT q versus z for different δ values. (d) Dimensionless time average electric field versus δ value
at different locations. Parameters: φ0 “ 5kBT {e (c, d), f “ 50 Hz, H “ 25 µm, min rD`, D´s “ 1 ˆ 10´9

m2{s, c8 “ 1 mM.

increases, the contributions of the nonlinear terms yield increasingly large multi-modal peaks, a

behavior that linearized models fail to predict. Qualitatively similar multi-modal peaks were found

previously,29–31 but here our numerics show that the multimodal peaks occur precisely at odd

integer multiples of the imposed frequency, consistent with the two-ion model (cf. Eq. 2.3 and

Fig. A.3). Note that the observed left-right asymmetry of the harmonic solution is a direct result

of this multi-modal behavior. In the case of non-equal mobilities (Fig. 2.2(b)), for sufficiently low

applied potential, the electric field is again a simple sinusoid versus time, and multi-modal peaks

grow in magnitude as the applied potential increases. Unlike the case of equal mobilities, however,

for δ “ 4 the shape of the electric field versus time is substantially shifted, with multi-modal peaks

occurring at both odd and even integer multiples of the imposed frequency.

Numerical integration of the electric field to obtain the time-average (cf. Eq. 2.4) confirms that

AREFs occur over large length scales across the entire domain (Fig. 2.2(c)). For δ “ 1, the time

average is identically zero everywhere (solid red curve, Fig. 2.2(c)). In contrast, for δ “ 2 (dotted

blue line, Fig. 2.2(c)), the time average electric field steeply rises from negative values near z{H “ 0,
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Figure 2.3: Effects of voltage and frequency on the AREF. Distribution of the dimensionless time average
electric field for different voltages (a) and frequencies (b). Parameters: φ0 “ 5kBT {e (b), f “ 100 Hz (a),
H “ 25 µm (a) and 50 µm (b), δ “ 4, D` “ 1ˆ 10´9 m2{s (a) and 1.3ˆ 10´9 m2{s (b), c8 “ 1 mM.

passes through zero and reaches a maximum near z{H “ 0.2, before decaying to identically zero at

z{H “ 0.5. The negative mirror image of this functionality occurs for z{H ą 0.5, i.e., the AREF

is antisymmetric with respect to position around z{H “ 0.5. For the case of δ “ 1{2 (dashed black

line, Fig. 2.2(c)), the AREF has the same magnitude but opposite sign everywhere as for the case

of δ “ 2. The long-range steady field results from the uneven oscillation of the cations and anions,

resulting in an augmentation or depletion of charge across the domain, provided δ ‰ 1 (Fig. A.7 and

Fig. A.8). Numerical calculations over a wide range of values of δ confirm that the antisymmetric

shape of the AREF is robust, and further demonstrate that the magnitude of the AREF increases

with the difference between δ and unity (Fig. 2.2(d)). We emphasize that the symmetry in the

system is broken by the ionic mobility mismatch, not the relative orientation of the electrodes; the

magnitude and sign of the AREF are independent of which electrode is powered or grounded. In

other words, near each electrode the AREF is directed toward the electrode for δ ą 1, but away

from the electrode for δ ă 1.

A perhaps surprising aspect of the results shown in Fig. 2.2(c) and (d) is that the AREF

occurs over such long length scales, well outside of the Debye layers (located here approximately

at z{H ă 0.0004 and z{H ą 0.9996 for Debye length of 10 nm). Systematic calculations of the
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AREF over a range of applied field strengths and frequencies confirm that this long-range behavior

occurs over a wide range of parameter space (Fig. 2.3). As the applied sinusoidal potential increases

(Fig. 2.3(a)), the shape of the AREF versus position is conserved (i.e., the curves collapse), but its

magnitude increases as the 1.9 power of the local peak-to-peak electric field, defined here as Epppzq “

max pEzpz, tqq´min pEzpz, tqq. This behavior is consistent with the quadratic dependence predicted

by the two-ion model (cf. Eq. 2.4); the slight discrepancy is presumably due to the more complicated

shape of the actual local electric field (cf. Fig. 2.2(b)) compared to the simple sinusoid considered in

the two-ion model. In contrast, the effect of frequency is more complicated (Fig. 2.3(b)). At very low

imposed frequencies, the AREF is small in magnitude but peaks at locations relatively far from the

electrodes. As the frequency increases, the peak magnitude increases sharply, scaling as ω1.4, while

the peak location shifts closer to the electrode, scaling as ω´0.5. Similarly, Fig. A.6(a) shows that

the position of the peak AREF outside the Debye layer scales as the square root of the diffusivity.

Taken together, these observations indicate that the characteristic length for AREFs outside the

Debye layer scales as L{H „
a

D{pωH2q. As the frequency increases, and this characteristic length

scale decreases, there are an increasing number of positions where the AREF reverses direction. At

low frequencies, the AREF only changes direction once before the midplane (cf. Fig. 2.2(c)), but

at higher frequencies it changes direction multiple times (cf. green curve in Fig. 2.3(b) (f “ 500

Hz)).

The existence of a long-range steady field has significant implications for the behavior of colloids

and electrically-driven flows at the microscale. Even for a relatively small applied potential of 0.5 V,

applied at 100 Hz in water with δ “ 4, the AREF-induced electrophoretic force on a 1–µm particle

at z “ 1 µm is a factor of 103 to 105 larger than the Brownian, gravitational, and dielectrophoretic

forces acting on it (Table A.1). A key experimental prediction, then, is that a particle placed

between parallel electrodes will levitate upward against gravity provided the ions present have a

sufficiently large ionic mobility mismatch.

Indeed, recent work44,45 has established that oscillatory fields do cause micron scale colloids in

millimolar NaOH (δ “ 3.96) to levitate many particle heights upward against gravity, while the

same particles in millimolar KCl (δ “ 1.04) do not. The mechanism for this levitation has been

obscure, with the exact frequency and voltage dependence unclear. The behavior is consistent with

our AREF hypothesis: the long range steady field causes the particles to move upward until the

AREF magnitude diminishes sufficiently for the electrophoretic force to balance with gravity. The

complicated spatial dependence of the AREF also explains why some particles were observed to

move upward against gravity, while others moved downward.44,45 Note in Fig. 2.3(a) that the AREF

is negative for z{H ă 0.1, but positive for 0.1 ă z{H ă 0.35; the direction of motion depends on the

initial particle position (Fig. A.9). Our additional experiments reveal that the observed levitation

height scales with frequency precisely as h 9 ω´0.5 (Fig. 2.4(b)), in accord with the frequency

dependence predicted numerically (cf. top inset of Fig. 2.3(b)). Simultaneously, the magnitude of

the applied voltage had little impact on the levitation height (Fig. 2.4(c)), again in accord with the

numerical predictions (cf. Fig. 2.3(a)). These observations provide strong experimental evidence
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Figure 2.4: Experimental evidence for AREF: colloids levitating against gravity in response to an oscillatory
field. (a, b) Stable levitation height of 2–µm diameter polystyrene particles in 1 mM NaOH solution subject
to a 4 V applied potential (peak-to-peak) versus frequency. (c) Stable levitation height versus magnitude of
the applied potential, using the same system as in (a, b).

for the existence of AREFs in response to oscillatory potentials. (See Sec. A.6 and Bukosky et al.3

for details of the particle height bifurcation analysis and experiments.)

A previously unrecognized driving force of this magnitude will necessitate reconsideration of

prior experimental studies involving oscillatory fields; here we note two other systems of interest

where AREFs help resolve outstanding questions. First, there has been long-standing controversy

regarding the aggregation of micron-scale particles near electrodes in response to oscillatory fields.

Early workers8,9,42 established that colloids aggregated laterally near the electrode, in the direction

perpendicular to the applied field, and attributed the aggregation due to electrohydrodynamic

(EHD) flows generated on the electrode surface near each particle (Fig. 2.5(a)); nearby particles were

mutually entrained in the flows, resulting in aggregation. Other workers noted, however, that the

particle behavior depended sensitively on the type of electrolyte in the liquid.46–50 Despite a great

deal of experimental and theoretical investigation, there is still no consensus as to the mechanism

underlying the electrolyte type dependence.50 The existence of AREFs provides a new explanation:

the flow field around each particle will be the superposition of the EHD flow generated on the

electrode,51 and an electroosmotic flow due to the steady AREF field generated on the particle

surface. If the ionic mobility mismatch is sufficiently large, then the AREF-induced electroosmotic

flow dominates and the resulting flow pattern will favor separation of nearby particles (Fig. 2.5(b),

and Table A.1).

Second, there are several unresolved aspects of “induced charge electrokinetics” (ICEK), a type

of electrically-driven fluid flow first elucidated in 2004 by Bazant and Squires18,19 that triggered

much research aimed at using applied electric fields to manipulate flow and objects in lab-on-

a-chip devices.32,33 The archetypal example of ICEK is the quadrupolar flow induced around a

metallic cylinder in response to the applied field (Fig. 2.5(c)). Scaling up this phenomenon for use

as electrokinetic pumps in microfluidic devices, however, revealed experimental observations that
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Figure 2.5: Impact of AREFs on electrically-induced fluid flows around (a, b) a charged non-conducting
sphere near an electrode and (c, d) around an isolated metallic cylinder. (See Sec. A.4 for streamline
calculations.)

ICEK theory fails to address.23,32,33 Specifically, a reversal in fluid flow direction occurs at high

frequencies; the standard ICEK theory predicts no such frequency effect. Similarly, the effect of

ionic strength is unclear: fluid flows effectively cease at ionic strengths above 10 millimolar, again

at odds with the theory. The existence of AREFs provides potential insight for both dilemmas.

Taking the archetypal case of fluid flow around a conducting cylinder, the actual flow field will

be the superposition of the ICEK flow and electroosmotic slip along the cylinder surface due to

the AREF (Fig. 2.5(d)). Depending on the frequency and position of the cylinder, the AREF

electroosmotic velocity can dominate the flow pattern. Moreover, the AREF-induced slip velocity

scales as c´1
8 (cf. Fig. A.6(b)). Therefore, any experiments aimed at elucidating the ionic strength

dependence of ICEK would need to take into account the confounding effect of AREF-induced

flows.

More research is needed; the analysis presented here should serve as a starting point for con-

sideration of the influence of AREFs in these and more complicated systems.
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Chapter 3

Asymmetric Rectified Electric Fields

between Parallel Electrodes:

Numerical and Scaling Analyses

Overview∗

Recent computational and experimental work has established the existence of
Asymmetric Rectified Electric Fields (AREFs), a type of steady electric field
that occurs in liquids in response to an applied oscillatory potential, provided the
ions present have different mobilities [Hashemi Amrei et al., Phys. Rev. Lett.
121, 185504, 2018]. Here we use scaling analyses and numerical calculations
to elaborate the nature of one-dimensional AREFs between parallel electrodes.
The AREF magnitude is shown to increase quadratically with applied potential
at low potentials, increase nonlinearly at intermediate potentials, then increase
with a constant rate slower than quadratically at sufficiently high potentials, with
no impact at any potential on the spatial structure of the AREF. In contrast,
the AREF peak location increases linearly with a frequency-dependent diffusive
length scale for all conditions tested, with corresponding decreases in both the
magnitude and number of sign changes in the directionality of AREF. Further-
more, both the magnitude and spatial structure of the AREF depend sensitively
on the ionic mobilities, valencies, and concentrations, with a potential-dependent
peak AREF magnitude occurring at an ionic mobility ratio of D´{D` Æ 5. The
results are summarized with approximate scaling expressions that will facilitate
interpretation of the steady component for oscillatory fields in liquid systems.

∗This chapter was previously published by Hashemi Amrei et al. and is reproduced here with
minor modifications. See: S. M. H. Hashemi Amrei, G. H. Miller, and W. D. Ristenpart
Asymmetric rectified electric fields between parallel electrodes: numerical and scaling analyses,
Phys. Rev. E 99 (2019) 062603.2
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3.1 INTRODUCTION

The application of an oscillatory electric potential to a liquid is an integral aspect of a wide range

of phenomena, including AC electroosmosis (ACEO) pumps,20–23 induced charge electrokinet-

ics (ICEK),15,52,53,18,19,54,32,33,55 electrohydrodynamic (EHD) manipulation of colloids8–12,56 and

bioparticles,57,13,14,58 dielectric and impedance spectroscopy,25,35,34,59 cyclic voltammetry,36,37,60

electro-acoustics,38,61,39 dielectrophoresis,62,40,41,63,64 and electroosmotic electrolyte transport

through charged nanopores/nanotubes.65,66 In all of these systems, interpretation of the experi-

mental observations depends on information regarding the dynamic response of the liquid to the

applied potential. In particular, a key question is the nature inside the liquid of the electric field

itself, which is not directly measurable and thus must be calculated theoretically. Traditionally,

the “standard electrokinetic model,” which couples the Poisson equation with Nernst–Planck ion

transport equations, has served as the starting point for analysis of liquids with dissociated ions.24

Because the governing equations are coupled and highly nonlinear, and because under typical

conditions large disparities in length and time scales render the equations extremely stiff, most

analyses of the electric field have focused on asymptotically small applied potentials26–28,25,67 or

on higher applied potentials but for ions with equal mobilities.29,31,30

Despite being widely used, however, these linearized and equal-mobility models have yielded

predictions at odds with experimental observations in a variety of systems. For example, researchers

investigating ACEO pumps have long been stymied by the observed reversal of fluid flow direction

upon varying the applied frequency.23,32,33 Likewise, in work examining the EHD aggregation of

colloids near electrodes, the effect of electrolyte type on the aggregation behavior has remained

mysterious despite numerous theoretical and experimental studies.46–50 Recent experimental studies

revealed that colloidal particles can levitate several particle diameters upward against gravity in

response to an oscillatory field, provided they were suspended in certain electrolytes (e.g., NaOH

and KOH),44,45 a result also inexplicable in terms of the traditional solutions to the standard

electrokinetic model.

Recent work by Hashemi Amrei et al.1 generated a new possible explanation for the above

unresolved questions. Specifically, they showed that application of a perfectly sinusoidal potential to

a liquid counterintuitively yields a long-range steady electric field. This steady field results from the

asymmetry in motion of the positive and negative ions as they move back and forth in the oscillatory

field, a phenomenon explicable even in the limit of just two isolated ions (Fig. 3.1). Denoted as

an Asymmetric Rectified Electric Field (AREF), the magnitude of the steady field depends on the

ratio δ “ D´{D` of the relative diffusivities of the ions. We emphasize that AREF is necessarily

a nonlinear effect; any sort of linearization results in a zero time average solution. Numerical

solutions to the full nonlinear electrokinetic model further corroborated the existence of AREF.1

The numerical results show that AREFs persist over large length scales between parallel electrodes,

with a characteristic diffusive length scale given by `D „
a

D{f , where D is a characteristic

diffusivity and f is the applied frequency (Fig. 3.2). These predictions were shown to be consistent

with the levitation behavior of colloids to extreme distances away from the electrode; the long
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Figure 3.1: Illustration of two-ion model: harmonic oscillations (yiptq) of two oppositely charged isolated
ions in response to a sinusoidal electric field for different δ “ D´{D` values. The generated electric field
at an arbitrary location y “ yf due to these harmonic oscillations is asymmetrical and has a nonzero time
average for δ ‰ 1. The dotted black curves denote the oscillations of the center of charge.

range steady field lifts particles electrophoretically upward until the AREF diminishes sufficiently

to balance gravity.1,3 As discussed by Hashemi Amrei et al., the existence of AREFs also potentially

explains the unresolved frequency and electrolyte dependencies observed in ACEO pumps and EHD

aggregation of particles near electrodes.1

Several fundamental questions about AREFs, however, to date remain unanswered. Notably,

the scaling of the AREF with the magnitude of the applied potential was only elucidated for small

potentials, and it is unclear how AREFs scale with larger applied potentials. It is also unclear how

the spatial structure of the AREF varies with frequency (and the corresponding diffusive length

scale `D), an important question since the earlier results indicated that even the sign of the AREF

(i.e., the direction of the steady field) changes repeatedly as a function of frequency. Likewise,

although a non-unity diffusivity ratio pδ ‰ 1q is clearly necessary for an AREF to occur, it is

unclear how the magnitude and the spatial structure (shape) of the AREF scale with δ or with the

valencies of the ions themselves.

In this work, we address the above questions by elaborating the nature of one-dimensional

AREFs between parallel electrodes. We perform a systematic dimensional analysis and extensive

numerical calculations over a large parameter space, focusing on the limit of negligible electrochem-

ical and thermal effects. The analysis yields several key results:

Potential The AREF magnitude increases quadratically with applied potential at low potentials,

increases nonlinearly at intermediate potentials, and increases slower than quadratically at

sufficiently high potentials. The applied potential does not affect the AREF shape.

Frequency The AREF peak location far from the electrode is linearly proportional to `D “
a

D{f

for all conditions tested, but the magnitude decreases with a power-law exponent ranging

between `´1
D and `´3

D depending on the applied potential. As `D decreases (f increases), a

series of pitchfork bifurcations occur for the number of zeros in the AREF (i.e., the number

of sign changes increases.)

Ionic strength The AREF magnitude peaks at ion concentrations (c8) similar to those of deion-

ized water, varying as c´1
8 and c

´1{4
8 at low and high applied voltages, respectively.

Ionic mobilities The AREF magnitude increases with δ to a peak value near δ Æ 5, then decays
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κ−1

κ−1 ∼ 1–100 nm

`D

`D ∼ 1–10 µm

H ∼ 50–1000 µm

y = 0, φ = φ0 sin (ωt), Ji = 0

y = H, φ = 0, Ji = 0

Figure 3.2: Schematic diagram of two parallel electrodes and not to scale comparison of different length
scales. AREF varies over a diffusive length scale of `D “

a

D{f which is several order of magnitudes higher
than the characteristic length scale of the Debye layer (κ´1).

asymptotically back toward zero. The ion valencies dramatically alter the magnitude and

sign of the AREF.

Each of the above points is elucidated in detail below. We begin with a formal dimensional

analysis, and we demonstrate that under typical circumstances the system behavior is governed

by four key dimensionless groups. We then present systematic numerical calculations versus those

four parameters to corroborate the above list of key results. Because the numerical calculations are

non-trivial, we finish by summarizing the results in terms of approximate scaling expressions that

should assist researchers in interpretation of AREF effects in oscillatory fields.

3.2 THEORY AND NUMERICAL METHODS

3.2.1 Standard electrokinetic model

Our starting point is the standard electrokinetic model,43,26,1 which is a continuum-level model that

couples the electric field to the flux of dissociated ions. We restrict attention to fully dissociated

binary electrolytes between parallel electrodes located at y “ 0 and y “ H (cf. Fig. 3.2). The

electric potential is governed by the Poisson equation

´ ε
B2φ

By2 “ ρ “ epz`n` ` z´n´q, (3.1)

relating the free charge density to the gradient of the electric field. The transport of ions in space

is governed by the Nernst–Planck equations for each ion,

Bni
Bt
“ Di

B2ni

By2 ` ezi
Di

kBT

B

By

´

ni
Bφ

By

¯

. (3.2)
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Here the symbols stand for applied potential, φ0; free charge density, ρ; elementary charge, e; charge

number, zi; permittivity, ε; electric potential, φ; number concentration of ion, ni; diffusivity, Di;

Boltzmann constant, kB; and absolute temperature, T .

The first and second terms on the right hand side of the Nernst–Planck equation (Eq. 3.2)

are the diffusive and electromigrative contributions of the ion transport, respectively. It is the

electromigration term that accounts for the transport of ions in direct response to the electric field

and is responsible for the nonlinearity of the governing equations. We assume that the liquid is

quiescent with no convection due to instabilities or flows generated around suspended objects.

To close the problem, we first subject the potential distribution to the following initial and

boundary conditions:

φp0, yq “ 0, (3.3)

φpt, 0q “ φ0 sinpωtq, φpt,Hq “ 0. (3.4)

At time equal to zero (t “ 0) a sinusoidal electric potential of amplitude φ0 and angular frequency

ω “ 2πf is applied on the lower electrode at y “ 0, while the upper electrode at y “ H is kept

grounded (Fig. 3.2).

The ions are initially evenly distributed between the two electrodes with number concentrations

of n8i ,

nip0, yq “ n8i . (3.5)

The initial ion concentrations are related to the bulk concentration of the electrolyte (n8) through

their respective charge numbers:

n8` “ ´z´n
8, n8´ “ z`n

8, (3.6)

which satisfy the electroneutrality condition, z`n
8
` ` z´n

8
´ “ 0.

Finally, we assume that the electrodes are fully ‘blocking,’ such that the flux Ji of both ions

through the electrodes is zero,

Ji “ ´Di

´

Bni
By

`
ezini
kBT

Bφ

By

¯

y“0,H
“ 0. (3.7)

This assumption might not be justified at high applied voltages and sufficiently low frequencies.

Similarly, we neglect any complications due to the formation of a compact Stern layer at the

electrodes. This is while some results indicate that a significant potential drop might occur across

the Stern layer.29,68 We focus here on the limiting case of negligible Stern layer effects and negligible

electrochemistry to provide a reference point for future work examining those more complicated

physics.
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Table 3.1: Quantities and dimensions in MLTQ system. M: mass, L: length, T: time, Q: charge. Notation
.
“ indicates dimensional equality.

quantity definition dimension

z` charge number of ` ion dimensionless

z´ charge number of ´ ion dimensionless

ε permittivity F{m
.
“ M´1L´3T2Q2

kBT thermal energy N.m
.
“ ML2T´2

e elementary charge C
.
“ Q

H electrode spacing m
.
“ L

f applied frequency 1{s
.
“ T´1

D` diffusivity of ` ion m2{s
.
“ L2T´1

D´ diffusivity of ´ ion m2{s
.
“ L2T´1

φ0 applied electric potential V
.
“ ML2T´2Q´1

n8 bulk concentration of electrolyte 1{m3 .
“ L´3

φ electric potential V
.
“ ML2T´2Q´1

n` concentration of ` ion 1{m3 .
“ L´3

n´ concentration of ´ ion 1{m3 .
“ L´3

y location m
.
“ L

t time s
.
“ T

3.2.2 Dimensionless form

The important parameters and variables in our model and their corresponding dimensions are

listed in Table 3.1. There are a total of r “ 16 quantities and k “ 4 independent dimensions, so by

Buckingham’s pi theorem there are r´ k “ 12 dimensionless groups. We choose H, f , kBT , and e

as the repeating quantities to define the dimensionless groups.

We use the gap size H and the inverse frequency 1{f to scale the independent spatial and

temporal variables respectively as

ỹ “ y{H, t̃ “ ft “ ωt{p2πq. (3.8)
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The thermal potential φT “ kBT {e is used to nondimensionalize the applied potential φ0,

Φ0 “
φ0e

kBT
, (3.9)

while the applied potential scales the dependent potential φpt, yq as

φ̃ “ φ{φ0. (3.10)

Note that unlike the traditional linearized case for which φT is an appropriate characteristic po-

tential, for this nonlinear problem φ can be as high as „ 100φT . Hence, the applied potential φ0

offers a better normalization of the potential distribution. In addition, the ion concentrations are

scaled as

ñ` “ n`{n0, ñ´ “ n´{n0, (3.11)

where n0 is given by

n0 “ z2
`n

8
` ` z

2
´n

8
´ . (3.12)

Our numerical results (cf. subsection 3.3.3) suggest the characteristic diffusivity of the problem to

be

D̂ “
a

D`D´, (3.13)

which is used to define the dimensionless diffusive length scale

LD “ `D{H “

b

D̂{f

H
. (3.14)

The ionic mobility mismatch is denoted by the dimensionless parameter

δ “ D´{D`. (3.15)

Table 3.2: Dimensionless groups (parameters (Π1–Π7) plus dependent and independent variables (Π8–
Π12)). n0 “ z2`n

8
` ` z

2
´n

8
´ “ n8pz2´z` ´ z

2
`z´q, κ

´1 “
a

εkBT {pn0e2q, D̂ “
a

D`D´.

Π1 Φ0 “ φ0e{pkBT q Π2 LD “ `D{H “

b

D̂{f{H

Π3 δ “ D´{D` Π4 κH

Π5 z` Π6 z´

Π7 N8 “ n0H
3 Π8 φ̃ “ φ{φ0

Π9 ñ` “ n`{n0 Π10 ñ´ “ n´{n0

Π11 t̃ “ ft Π12 ỹ “ y{H
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Finally, the ionic strength appears in two dimensionless groups, a dimensionless Debye length scale,

κH “

d

n0e2

εkBT
H, (3.16)

and an overall dimensionless number concentration,

N8 “ n0H
3. (3.17)

The dimensionless groups and variables are summarized in Table 3.2. If we narrow our focus to

cases of aqueous electrolytes at ambient temperature (i.e., if we omit situations where thermal

effects are important), then the dimensionless groups κH and n0H
3 become dependent since the

only varying quantities in both groups are n0 and H. Therefore, only one of them (κH) is taken

here as a controlling dimensionless group. In other words, the six dimensionless parameters Φ0,

LD, δ, κH, and charge numbers z` and z´ completely govern the system behavior.

Using the above definitions, the dimensionless governing equations are written as

´
Φ0

pκHq2
B2φ̃

Bỹ2 “ z`ñ` ` z´ñ´, (3.18)

Bñ`

Bt̃
“

L2
D?
δ

”

B2ñ`

Bỹ2 ` z`Φ0
B

Bỹ

´

ñ`
Bφ̃

Bỹ

¯ı

, (3.19)

Bñ´

Bt̃
“
?
δL2

D

”

B2ñ´

Bỹ2 ` z´Φ0
B

Bỹ

´

ñ´
Bφ̃

Bỹ

¯ı

, (3.20)

subject to the following dimensionless initial conditions,

ñip0, ỹq “ n8i {n0, (3.21a)

φ̃p0, ỹq “ 0, (3.21b)

and dimensionless boundary conditions,

´

Bñi
Bỹ

` ziΦ0ñi
Bφ̃

Bỹ

¯

ỹ“0,1
“ 0, (3.22a)

φ̃pt̃, 0q “ sinp2πt̃q, φ̃pt̃, 1q “ 0. (3.22b)

In Eq. 3.21a, the dimensionless initial ion concentrations can be written in terms of charge

numbers (z` and z´):
n8`
n0

“
´z´

z2
´z` ´ z

2
`z´

,
n8´
n0

“
z`

z2
´z` ´ z

2
`z´

. (3.23)

Finally, using the above scalings, all forms of the electric field E “ ´Bφ{By, including the
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instantaneous and time average, become nondimensionalized by the nominal electric field φ0{H,

Ẽ “ EH{φ0. (3.24)

The time average electric field is obtained by time integration over one AC cycle of the harmonic

solution as

xẼy “

ż 1

0
Ẽdt̃. (3.25)

Likewise, the dimensionless free charge density becomes

ρ̃ “ ρ{n0 “ pz`n` ` z´n´q{n0, (3.26)

with its time average denoted by xρ̃y.

3.2.3 Numerical solution

Following the procedure outlined by Hashemi Amrei et al.,1 the system of nonlinear partial dif-

ferential equations (Eq. 3.18–Eq. 3.22) was numerically solved using multigrid finite difference

methods69,70 and mesh refinement.71 Cell-centered finite difference methods were employed to dis-

cretize the governing equations and boundary conditions. A typical minimum cell size used for

the simulations is of order κ´1{128 which, for κ´1 « 13 nm, is equivalent to « 0.1 nm. Such a

small size step (compared to electrodes spacing which can be several hundred microns) restricts

the time marching of the simulation. In the presence of convective terms (with a velocity of u), the

Courant–Friedrichs–Lewy (CFL) number condition limits the maximum allowable time step of the

numerical solution: |u|∆t{h ď 1, with ∆t and h as the temporal and spatial steps. In dimensional

context, the electromigration term of the species continuity equation (Eq. 3.2) can be written as
B
By puniq with u “ eziDi

kBT
Bφ
By (rus “ m{s), resembling a convective transport of ions. Therefore, we

require ∣∣∣eziDi

kBT

Bφ

By

∣∣∣∆t{h ď 1. (3.27)

It is not practical to cover the entire domain with a uniform cell size that is small enough to

resolve the Debye layer (e.g., covering 100 µm with h « 0.1 nm requires 1 million cells). Therefore,

we used mesh refinement near the electrode surfaces.71

Operator splitting is employed. For each time step, the Poisson equation (Eq. 3.18) is solved

for Φ0 (step i), which is subsequently used to find the ion concentrations from the Nernst-Plank

equations (Eq. 3.19 and Eq. 3.20) (step ii). Our Poisson solver is based on the algorithm of Martin

and Cartwright.71 With some changes, a similar algorithm is devised to solve the species continuity

equation. The main difference of the algorithm is the inclusion of the nonlinear electromigration

term. To ensure solution stability, the CFL number is calculated prior to step ii. While the

condition is not met, we set ∆t “ ∆t{2 to find a ∆t “ p∆tqc that satisfies the condition. Then step

ii breaks down into ∆t{p∆tqc substeps.
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Besides the above-mentioned challenges, achieving a harmonic solution by solving the dynamical

equations is computationally intensive.29 The simulation time tf should be long enough for the ions

to transfer back and forth between the electrodes in order to reach the harmonic solution. The

ions transfer with diffusive and electromigrative mechanisms with corresponding time scales of

τDi “ H2{Di and τ ei “ τDi {p|zi|φ0e{pkBT qq. Therefore, to ensure the harmonic conditions we

require tf " maxrτDi , τ
e
i s. The time scale of the applied potential is also τAC “ 1{f which is, for

the range of parameters used in this study, far less than τDi and τ ei . Therefore, the number of AC

cycles should be nAC " maxrτDi , τ
e
i s{τ

AC .

We performed several consistency checks. In this regard, an important issue to consider was

the crowding effect.72 The finite size of ions enforces a cutoff number concentration of nmax “ 1{l3,

where l is a characteristic length of the dissolved ions (nmax « 60 M for l “ 0.3 nm). We never

observed concentrations higher than the maximum packing value. As another consistency check,

the instantaneous electric field at the electrode surface was compared to the typical Debye layer

field strength κH. Similarly, the maximum instantaneous induced zeta potential ζ on the electrode

surface was of the same order of magnitude as the applied potential (i.e., ζ „ φ0). In other words, all

of the potentials, field strengths, and ion concentrations are physical. Please see the supplemental

material in Hashemi Amrei et al.1 for further details.

3.3 NUMERICAL RESULTS

In this section, we systematically investigate the effect of the different system properties on the

AREF. The results are provided at ambient temperature for 1-1 aqueous electrolytes, unless oth-

erwise stated (cf. subsection 3.3.6). We first analyze univalent electrolytes (z` “ |z´| “ 1),

so that the contributing dimensionless parameters are Φ0 (dimensionless applied potential), LD
(dimensionless diffusive length scale), δ (ionic mobility mismatch), and κH (dimensionless Debye

parameter). Then we discuss the complications that charge numbers (z`, z´) and their potential

asymmetry bear to the analysis.

3.3.1 Representative field and charge distributions

Fig. 3.3 shows representative time variations of the instantaneous electric field Ẽ and free charge

density ρ̃ for two different values of LD and different Φ0 values. At low applied potentials, the

system behaves linearly and a single-mode sinusoidal solution is obtained (Φ0 “ 1, dotted red

curves), consistent with linearized asymptotic analyses.25,67 As the applied potential increases,

the nonlinear contribution gradually dominates, yielding multimodal solutions. This behavior is

in marked contrast to that of linearized solutions, where regardless of the applied potential the

solution is invariably a sinusoid. A comparison between the cases of different LD values reveals an

increase in the amplitude of the harmonic solutions for smaller dimensionless diffusive length scales.

For instance, increasing the applied frequency, which results in lower values of LD, increases the

AREF amplitude. The shape of the harmonics is also affected by LD, i.e., the curves for different
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Figure 3.3: Representative time variations of the electric field (Ẽ) (a, b) and free charge density (ρ̃) (c, d)
at ỹ “ 0.04 for different values of Φ0 and LD. For all plots, δ “ 3, κH “ 2600.

LD values do not collapse.

In this example the ionic mobility mismatch is held constant at δ “ 3; hence the time av-

erages are nonzero and a net steady field (xẼy, AREF hereafter) exists within the liquid,1 as

shown in Fig. 3.4(a). The corresponding time average of the free charge density (xρ̃y) is provided

in Fig. 3.4(b). Interestingly, the spatial distributions of AREF and xρ̃y are, respectively, anti-

symmetrical and symmetrical with respect to the midplane as a consequence of the mathematical

structure of the governing equations. We emphasize that swapping the grounded and powered elec-

trodes does not change the sign or magnitude of xẼy or xρ̃y; the symmetry of the system is broken

by the ionic mobility mismatch, not the relative orientation of the electrodes. The magnitudes of

both the time averages of electric field and free charge density increase with the applied potential.

Note that wherever the gradient of AREF is zero, there is likewise a zero time average free charge

density, consistent with Gauss’s law (Eq. 3.1). In addition, the general shape of the AREF distribu-

tion is the same for different applied voltages. In other words, the curves for different Φ0 values in

Fig. 3.4(a) collapse under appropriate scaling, although as discussed below, the appropriate scaling

is non-obvious.

Magnification of the AREF and xρ̃y distributions near the electrode, on the Debye length scale,

are shown in Fig. 3.4(c) and (d), respectively. The electric field starts from a nonzero value

23



Figure 3.4: Representative spatial distribution of AREF (xẼy) and time average free charge density (xρ̃y)
at micron scale (a, b) and close to the electrode surface (c, d) for different values of Φ0. For all plots,
LD “ 0.17, δ “ 3, κH “ 2600.

(indiscernible at this scale) at the electrode (ỹ “ 0), then rises to an absolute maximum before

decaying to the solution at the micron scale shown in Fig. 3.4(a). The free charge density has an

absolute nonzero value near the electrode (negative in this representative example), consistent with

the nonzero gradient of the AREF at ỹ “ 0 based on Gauss’s law. The mismatch in ionic mobilities

yields a net accumulation of ions near the electrodes which subsequently results in AREF.

We focus throughout this section on the AREF behavior at the micron scale, far outside of the

Debye layer immediately next to the electrode, since it is in this regime where a steady field will

most readily induce experimentally observable behavior with micron scale or larger objects.

3.3.2 Effect of applied potential (Φ0)

To further analyze the effect of applied potential, consider an illustrative example of an AREF

distribution depicted in Fig. 3.5(a). We denote the first peak of AREF outside the Debye layer

as xẼypeak, and ỹpeak is the corresponding dimensionless location of the peak. As discussed in

Fig. 3.4(a), the general shape of the AREF distribution is insensitive to the applied voltage; as a

result, the peak location of AREF remains the same at different Φ0 values. The peak magnitude
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Figure 3.5: (a) Illustrative example of AREF distribution with its peak magnitude (xẼypeak) and the
corresponding peak location (ỹpeak) for δ ą 1. (b) AREF peak magnitude versus Φ0 for different values of
LD. (c) Effect of Φ0 on the power-law exponent a (LD “ 0.24) . For all plots, δ “ 3, κH “ 2600.

however is significantly affected by Φ0. Fig. 3.5(b) shows xẼypeak versus Φ0 for different values of

LD. Regardless of LD, at low voltages (Φ0 ă 1), xẼypeak increases as the first power of Φ0. Recall

that the electric field is scaled by φ0{H; hence, the dimensional AREF accordingly varies as φ2
0. At

higher Φ0 values, the behavior becomes more intricate. The power-law exponent a (local slope of

the curves) initially increases due to the contribution of nonlinear terms. However, upon further

increasing Φ0, a starts dropping to reach a final constant, the value of which depends on the other

dimensionless parameters. A representative example of this behavior is demonstrated in Fig. 3.5(c)

for LD “ 0.24. By increasing Φ0, the power-law exponent a dramatically ascends from 1 and then

drops to a constant value below 1. Qualitatively similar results were obtained for different δ and

κH values, but the exact dependence of the power a on the applied voltage and other controlling

parameters is unclear. Overall, we could not find a universal scaling argument at intermediate/high

applied voltages (cf. Sec. 3.4).

Although the exact mathematical scaling is complicated, the overall physical picture is clear:

higher applied oscillatory potentials invariably yield a higher steady field in the bulk. Any phys-

ical phenomena directly proportional to the magnitude of the AREF, such as instantaneous elec-

trophoretic velocities, will likewise increase with the applied potential, following dependencies simi-

lar to those plotted in Fig. 3.5(b). Importantly, however, increases in the applied potential have no

effect on the spatial structure of the steady AREF. This aspect has a key physical implication: any

experimental observables that depend on the zeros in the AREF, such as the equilibrium heights of

particles moving electrophoretically in response to the AREF, will be independent of the applied

potential. Indeed, such behavior is observed experimentally with colloids balancing between gravity

and electrophoresis.3

3.3.3 Effect of diffusive length scale (LD)

The second key dimensionless parameter is LD, the frequency-dependent diffusive length scale.

Fig. 3.6(a) shows the effect of the dimensionless diffusive length scale LD on the spatial distribution

of AREF. In contrast to Φ0, which had no impact on the spatial structure of the AREF, LD has a
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Figure 3.6: Effect of LD on AREF behavior. (a) Spatial distribution of AREF for different LD values
(Φ0 “ 10). (b) Peak location of AREF (ỹpeak) versus LD. (c) Peak magnitude of AREF (xẼypeak) versus
LD. (d) Effect of Φ0 on the power-law exponent b. For all plots, δ “ 3, κH “ 2600.

tremendous impact on the shape of the AREF. By increasing the LD value, the AREF shifts away

from the electrode surface and its peak value decreases (Fig. 3.6(a)). At higher LD values the ions

move longer distances during each AC cycle; therefore, the nonlinear effects extend farther away

from the electrode surface, with the AREF peak location shifting toward the midplane. Quantitative

analysis of the peak location ỹpeak reveals that it is linearly proportional to LD (Fig. 3.6(b)). The

AREF peaks at the same location for different voltages, consistent with the results presented

in Fig. 3.4(a), where the general shape of AREF is conserved regardless of the applied potential.

Further increasing the dimensionless diffusive length scale beyond the case of LD “ 0.37 (Fig. 3.6(a),

dotted red curve) eventually results in a curve with no peak outside the Debye layer. To be more

precise, for a peak to exist, we require LD ă 1{2 Ñ `D ă H{2, i.e., the diffusive length scale should

not be larger than half of the domain size. Otherwise, the antisymmetric nature of AREF rules

out the existence of a peak.

The peak magnitude of AREF is also plotted versus LD in Fig. 3.6(c). The general trend is

descending. This observation can be understood considering a case where the ions move much faster

than the AC time scale (i.e., LD " 1). Under such conditions, on changing the applied potential

with the time scale 1{f , ions have enough time to spatially transfer and screen out any changes
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in the potential distribution. It is feasible to argue that for AREF to occur, the ions should only

partially screen the applied potential. In other words, the ions should fall behind the AC potential

in oscillation. Therefore at very high LD values AREF is expected to eventually descend to zero.

The power-law exponent b of this descending trend, however, is a function of the applied voltage

(Fig. 3.6(d)). The power-law exponent of the AREF magnitude on LD is ´3 in the linear regime

of low applied voltages and approaches to ´1 at high voltages. Qualitatively similar results are

obtained for different δ and κH values. Despite the uncertainty in underlying impact of the applied

voltage, asymptotic scaling arguments are straightforward:

xẼypeak9LbD, (3.28)

where b “ ´3 and ´1 for Φ0 „ 1 and Φ0 " 1, respectively. It appears that by increasing the

applied voltage, AREF becomes less sensitive to LD value, or in dimensional context, to the applied

frequency and ion diffusivities. The underlying reasons for the precise scaling exponents, however,

remain obscure.

3.3.4 Effect of ionic mobility mismatch (δ)

The ionic mobility mismatch (δ “ D´{D`) is perhaps the most intriguing parameter of the AREF

effect. The AREF is plotted versus position for different δ values in Fig. 3.7(a). The effect of δ

is non-monotonic: by increasing the ionic mobility mismatch from δ “ 1, the peak magnitude of

AREF increases initially and then starts decaying. Hashemi Amrei et al.1 showed that for δ ă 1, the

AREF distribution would be the exact mirror of the displayed curves with respect to the zero line,

i.e., it is antisymmetric. While δ has a considerable impact on the oscillatory behavior of AREF

and its shape, it does not alter the peak location. A quantitative analysis of the peak magnitude

for different conditions in which we change the LD and κH values reveals that the non-monotonic

trend is robust (Fig. 3.7(b)).

The observed decay of the peak value can be explained via an asymptotic analysis of the

problem. In the limit of δ Ñ 8 or δ Ñ 0, one of the ions is extremely fast compared to the other

nearly unmoving one. Under such conditions, the two-ion model (Fig. 3.1) predicts a zero time

average electric field. In other words, the harmonic oscillations of the two ions are prerequisites of

AREF effect: a single oscillating ion would not induce AREF as the time average of its sinusoidal

oscillation is invariably zero.

The exact δ value at which xẼypeak reaches its maximum (δmax) is however less straightforward.

Based on the results shown in Fig. 3.7(b), δmax is unresponsive to LD and κH values; the curves

collapse under normalization. However, δmax significantly depends on the applied potential. As

depicted in Fig. 3.7(c), by increasing the applied potential, the summit of the curve shifts toward

δ “ 1. This shift is quantitatively demonstrated in Fig. 3.7(d) for a range of Φ0 “ 0.1 to Φ0 “ 100.

As shown in this figure, δmax indefinitely decays from « 5.25 toward δ “ 1 by increasing the applied

voltage.
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Figure 3.7: Effect of δ on AREF behavior. (a) Spatial distribution of AREF for different δ values (Φ0 “ 10,
LD “ 0.2, κH “ 2600). (b) Peak magnitude of AREF (xẼypeak) versus δ for different conditions; markers:
red circles, Φ0 “ 10, LD “ 0.2, κH “ 2600; blue squares, Φ0 “ 10, LD “ 0.14, κH “ 2600; green triangles,
Φ0 “ 10, LD “ 0.2, κH “ 822; dashed black curves are empirical fits; cf. Sec. 3.4. (c) Normalized peak
magnitude of AREF (xẼypeak{max pxẼypeakq) versus δ for different Φ0 values (LD “ 0.2, κH “ 2600). (d)
δmax versus Φ0 (LD “ 0.2, κH “ 2600); dashed black curve is an empirical fit; cf. Sec. 3.4.

Physically, one way to understand this impact of the applied potential on the peak ionic mobility

mismatch is as a measure of how far the ions displace during each cycle. At higher applied potentials,

the ions are able to move further away from each other, and accordingly a higher fraction of the

faster moving ions are able to ‘escape’ from the bulk into the double layers adjacent to each

electrode. Since the existence of AREF depends on the mismatch between the two species of ions,

the decrease in concentration of the speedier ions correspondingly decreases the magnitude of the

AREF. At higher applied potentials, only smaller values of delta allow for the two ionic species to

coexist at comparably high concentrations without one species escaping from the bulk, and δmax

decreases accordingly.

3.3.5 Effect of dimensionless Debye parameter (κH)

The dimensionless Debye parameter, which can be thought of as a measure of the ionic strength, also

strongly affects the AREF behavior. As demonstrated in Fig. 3.8(a), upon changing the κH value,

the general shape and peak location of the AREF distribution is conserved (similar to the effect of
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Figure 3.8: Effect of κH on AREF behavior. (a) Spatial distribution of AREF for different κH values
(Φ0 “ 10, LD “ 0.24, δ “ 3). (b) Peak location of AREF (ỹpeak) versus κH for two different values of LD
(Φ0 “ 10, δ “ 3). (c) Peak magnitude of AREF (xẼypeak) versus κH for four different electrolytes of δ “ 3
(LD “ 0.24), NaCl (δ “ 1.52, LD “ 0.23), KOH (δ “ 2.7, LD “ 0.32), and NaOH (δ “ 3.95, LD “ 0.29)
(Φ0 “ 10). (d) Effect of Φ0 on the power-law exponent c (LD “ 0.24, δ “ 3).

Φ0). Recall that our focus is on the micron scale behavior of AREF; changing the κH value can

alter the shape of AREF near the electrodes and within the Debye layer (not shown here). A more

accurate analysis of the peak location however shows that the peak location depends only weakly

on κH (Fig. 3.8(b)). A transition in the AREF behavior occurs at 10 À κH À 100 that abruptly

changes the peak location. As an illustrative example, consider the case of LD “ 0.24 in Fig. 3.8(b).

For κH Á 100, AREF peaks at ỹpeak « 0.2 (compare to curves in Fig. 3.8(a)). By decreasing the κH

value, the peak location experiences a significant jump to « 0.34 for κH À 10. Still, for practical

conditions of electrokinetic systems where H „ 100 µm and c8 ą 10´5 M, κH " 100 for aqueous

electrolytes and the peak location remains unresponsive to changes in κH. So, in experiments such

as particle height bifurcation,44,45,3 where the location of the peak is far more important than its

magnitude (as long as it is large enough to result in electrophoretic levitation of colloidal particles),

the results are not affected by κH.

Note that the transition in ỹpeak occurs near κH “ 1 to 10, i.e., in a range where the Debye

layer is comparable in size to the electrodes spacing itself. Physically this suggests that the AREF

spatial structure has two regimes: one in which the diffusive length scale interacts with the nature
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Debye length scale, and one in which they act more independently. Since κH " 1 for many aqueous

systems, it is the latter regime that is more relevant experimentally.

Fig. 3.8(a) shows that how lower values of κH result in higher AREF magnitudes. This behavior

is demonstratd in Fig. 3.8(c) for a wide range of κH values and four different electrolytes of δ “ 3

(D` “ 1 ˆ 10´9 m2{s), NaCl, KOH, and NaOH. The results for all four electrolytes show that

for practical electrolyte concentrations and electrode spacings, the AREF magnitude is inversely

proportional to κH. The power-law exponent c however is a function of applied voltage (Fig. 3.8(c)).

At low Φ0 values, c “ ´2 and approaches to ´0.5 at higher applied voltages, which translates to c´1
8

and c
´1{4
8 dependencies of the peak AREF magnitude on the electrolyte concentration, respectively.

By decreasing κH to values where the Debye length is comparable to electrodes spacing, the peak

magnitude starts dropping. This drop can be explained through the ionic strength; low κH can

be a result of low electrolyte concentration and in asymptotically diluted solutions, the system is

depleted of dissolved ions which drive the AREF effect.

3.3.6 Effect of ionic valences (z˘)

The preceding sections focused on 1-1 electrolytes where z` “ |z´| “ 1. We can introduce more

asymmetry to the system by considering nonidentical valences (charge numbers) for the ions. Sim-

ilar to the definition of δ “ D´{D`, we define Z “| z´{z` | as the valence mismatch of the ions.

Fig. 3.9(a) and (b) present the AREF distribution for different combinations of z` and z´ values

and two different δ values. For δ “ 3 (Fig. 3.9(a)), decreasing the Z value from 2 to 1{3 (dotted

red curve to solid black curve) the peak magnitude of AREF decreases. This descending impact

of the Z value on the AREF peak magnitude is more significant when δ is smaller (Fig. 3.9(b)),

where changing the Z can even change the AREF direction. The results shown in Fig. 3.9(a) and

(b) suggest that δ and Z affect AREF in the same qualitative way. In both cases of δ “ 3 and

δ “ 1.5, decreasing the Z appears to reduce the impact of ionic mobility mismatch. However, if Z

is small enough compared to 1{δ (equivalently, if Z is large enough compared to 1{δ when δ ă 1),

it can even qualitatively deform the AREF distribution (Fig. 3.9(b)). This behavior is analyzed

more systematically in Fig. 3.9(c), which demonstrates the normalized magnitude and sign of the

AREF peak for various combinations of z`, z´ and a constant ionic mobility mismatch of δ “ 1.5.

Note how changing the Z from 2 (z`, z´ “ 1,´2) to 1/2 (z`, z´ “ 2,´1) changes the AREF

direction. Also note that for the case of z`, z´ “ 3,´2 which yields δZ “ 1, the AREF peak

magnitude is very close to zero. Another interesting observation is that increasing the valences at a

constant Z (possible only for z-z electrolytes, assuming a maximum valence number of 3), appears

to significantly increase the AREF peak magnitude (e.g., compare the cases of z`, z´ “ 1,´1 and

z`, z´ “ 3,´3.).

A rough approximation is that the product δZ determines the AREF direction. In the two ion

model (Fig. 3.1), this idea can be incorporated easily by redefining the ionic mobility mismatch

as δ “| D´z´{pD`z`q |. With the standard electrokinetic model however, the problem is more

delicate. Although the electromigration term of the Nernst–Planck equation includes the product
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Figure 3.9: Effect of the ion valences (z` and z´) on the AREF behavior. (a, b) Spatial distribution
of AREF for different z`, z´ combinations and two values of δ. (c) Normalized peak magnitude of AREF
(xẼy

z`,z´

peak {xẼy
1,´1
peak) for different z`, z´ combinations and δ “ 1.5. Parameters: Φ0 “ 10, LD “ 0.17,

κH “ 2600 for z` “ |z´| “ 1 (H “ 25 µm, 1 mM electrolyte).

Dizi, the diffusivity and charge number appear separately in the diffusive contribution of the

Nernst–Planck equation and free charge density term of the Poisson equation, respectively. In

other words, the problem cannot be formulated by δZ as the sole term responsible for asymmetry.

3.4 SCALING EXPRESSIONS

The preceding numerical results indicate that both the spatial structure and the magnitude of

AREFs depend in a complicated fashion on the system parameters. In this section, we further

elaborate the spatial structure, with an emphasis on identifying scaling expressions for where the

AREF peaks in magnitude and how often it changes direction with respect to position. Furthermore,

we present scaling expressions for the magnitude of the AREF in various asymptotic limits. For

simplicity, the analyses are performed for 1-1 electrolytes.

3.4.1 AREF length scale and structure

The dimensionless analysis indicates that LD is the only dimensionless parameter that affects

the first peak location of AREF. This result is corroborated by a comparison of the numerically

observed peak locations of AREF, ỹpeak plotted simply against the dimensionless diffusive length

scale (Fig. 3.10). As shown in this figure, the diffusive length scale nicely predicts the peak location

of AREF over a wide parameter space (more than 5000 numerical results). In other words, the

peak location scales as

ỹpeak “ KLD, (3.29)

where the fitting prefactor K « 0.83 is obtained by linear regression. This result is significant since

it provides an accurate and straightforward prediction for the AREF peak location for any condition

(at least, over the wide range of values tested here). This finding also justifies D̂ “
?
D`D´ as the

correct characteristic diffusivity governing the AREF behavior.
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Figure 3.10: Numerically observed peak location of AREF (ỹpeak) versus the predictions of the empirical

formula KLD “ K
a

D̄{f{H for conditions that LD ă 1{3. The correction coefficient is K « 0.83. Range of
dimensional parameters (« 5000 data points): 0.1 ď φ0 ď 100 kBT {e, 1 ď f ď 30000 Hz, 2 ď H ď 100 µm,
0.01 ď δ ď 100, 5ˆ 10´10 ď D` ď 5ˆ 10´9 m2{s, 10´5 ď c8 ď 2ˆ 10´2 M.

Another important point to consider is the spatially oscillatory behavior of AREF (Fig. 3.11),

which is controlled by the dimensionless parameters LD and δ; as demonstrated in subsection 3.3.2

and subsection 3.3.5, Φ0 and κH do not affect the spatial structure of the AREF. For large values

of LD, AREF passes zero only once with no peak outside the Debye layer (Fig. 3.11(a), LD “ 0.74).

Upon decreasing LD (or equivalently, increasing the frequency), first a peak appears with AREF

passing zero three times (Fig. 3.11(b), LD “ 0.24). Further decreasing the LD value results in

5 and then 7 zeros (Fig. 3.11(c) and (d)). In other words, when LD decreases, there is more

space for AREF to oscillate and change sign. Note that AREF is always zero at the midplane. The

oscillatory behavior of the AREF can be further analyzed by the bifurcation diagram demonstrated

in Fig. 3.12(a). Consistent with the results provided in Fig. 3.11, at high LD values, there is only

one zero which occurs at the midplane. As LD decreases, pitchfork bifurcations73 occur at the

midplane. After each bifurcation, two more zeros are added to the system while the slope of the

AREF at the midplane switches.

Despite the fact that LD determines the peak location of AREF, it is not the only dimensionless

parameter controlling the number of zeros. Fig. 3.7(a) shows that, for constant LD, the first AREF

peak is independent of the precise δ value. However, the δ value can shift and deform the smaller

peaks of the distribution and consequently the overall number of zeros (cf. the cases of δ “ 1.5 and
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Figure 3.11: Oscillatory behavior of AREF for different values of LD. Filled black and empty red circles
are the points that AREF passes zero with positive and negative slopes, respectively. Parameters: Φ0 “ 10,
δ “ 3, κH “ 2600.

Figure 3.12: Bifurcation diagrams of AREF for LD (a) and δ (b) as varying parameters. Filled black
and empty red circles are the points that AREF passes zero with positive and negative slopes, respectively.
Parameters: Φ0 “ 10, LD “ 0.2 (b), δ “ 3 (a), κH “ 2600.

10 in Fig. 3.7(a)). This behavior is plotted quantitatively in the bifurcation diagram in Fig. 3.12(b),

showing the number of zeros for different δ values. For δ values close to 1, the AREF passes zero

three times; by increasing/decreasing the δ value from 1 pitchfork bifurcations happen at the
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midplane.

3.4.2 AREF magnitude scaling

Based on the results presented in Sec. 3.3, xẼypeak9Φa
0, xẼypeak9LbD, and xẼypeak9pκHq

c. Here

the power a increases non-monotonically from 1 in the linear regime (Φ0 „ 1) to a maximum in

the nonlinear regime, before decaying to a small constant value at very high applied voltages (cf.

Fig. 3.5(c)). The powers b and c are -3 and -2 for Φ0 „ 1 and approach to -1 and -0.5 for Φ0 " 1,

respectively.

The effect of δ is more complicated. The non-monotonic behavior demonstrated in Fig. 3.7(b)

may be approximated by the empirical fits

xẼypeak “ c1α exp p´c2|α|q, (3.30)

where

α “
?
δ ´ 1{

?
δ “ pD´ ´D`q{D̂. (3.31)

Knowing δmax, one can easily find the coefficient c2 by differentiation of the fitting curve formula

as c2 “ 1{αmax, where

αmax “
a

δmax ´ 1{
a

δmax. (3.32)

Finally we get

xẼypeak9α exp p´|α|{αmaxq, (3.33)

where αmax is a function of the applied voltage (Fig. 3.7(d)). Unlike b and c, δmax does not appear

to approach a certain value at high voltages. Hence, to provide scaling expressions at high voltages,

we use an empirical formula to fit the δmax vs Φ0 data. The fitting curve in Fig. 3.7(d) is a sigmoid

function

δmax “ k1 ´ k2
ek3Φ0

1` ek3Φ0
. (3.34)

We can find the coefficients k1 and k2 enforcing the conditions δmax Ñ 5.25 as Φ0 Ñ 0 and

δmax Ñ δ8 as Φ0 Ñ 8. The final value of δmax “ δ8 is unclear, due to the lack of numerical

results at extremely high voltages. However, we can make a reasonable assumption: note that δmax

indefinitely gets closer to 1 by increasing the Φ0; considering this descending trend, along with the

fact that it is already below 2 for Φ0 “ 100, we hypothesize that δmax eventually approaches 1.

Using these conditions, we find the coefficients k1 “ 9.5 and k2 “ 8.5. The last coefficient k3 is

found by fitting as k3 « 0.03. Of course a better fitting formula could be employed but at the

expense of simplicity.

A possible scaling of the AREF peak magnitude can then be obtained by multiplication of all

scaling arguments as

xẼypeak9Φa
0LbDpκHqcγ, (3.35)

where γ “ α exp p´|α|{αmaxq with αmax “
?
δmax ´ 1{

?
δmax and δmax given by the empirical
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formula in Eq. 3.34.

Although the complicated impact of Φ0 obscures any generalized scaling analysis, asymptotic ex-

pressions can be obtained. We consider two different regimes of applied voltages as low-intermediate

(0 ă Φ0 ď 20) and intermediate-high (20 ď Φ0 ď 100). The underlying reason of this division is

the variations of b, c, and δmax with Φ0. The applied voltage of Φ0 “ 20 is approximately at the

middle of transition from low to high applied voltages regimes (cf. Fig. 3.6(d), Fig. 3.7(d), and

Fig. 3.8(d)). Besides, the summit of power a in Fig. 3.5(c), occurs around Φ0 « 20, regardless of

the system properties.

Substituting a “ 1, b “ ´3, c “ ´2 gives the simplified scaling argument at low-intermediate

Figure 3.13: Numerically observed peak magnitude of AREF (xẼypeak) versus the predictions of the

empirical formula xẼypeak « Φa0LbDγpκHqc for conditions that LD ă 1{3. (a) Low to moderate voltages
(0 ă Φ0 ď 20): fitting is performed using low voltage data (Φ0 ă 5, K « 0.19). (b) Moderate to high voltages
(20 ď Φ0 ď 100): fitting is performed using all data points (K « 2ˆ10´4). Range of dimensional parameters
(« 5000 data points): 0.1 ď φ0 ď 100 kBT {e, 1 ď f ď 30000 Hz, 2 ď H ď 100 µm, 0.01 ď δ ď 100,
5ˆ 10´10 ď D` ď 5ˆ 10´9 m2{s, 10´5 ď c8 ď 2ˆ 10´2 M.
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applied voltages:

Φ0 ď 20: xẼypeak « K
Φ0γ

L3
DpκHq

2
, (3.36)

where the coefficient K is obtained by fitting as K « 0.19. Fig. 3.13(a) shows a comparison between

the numerically observed peak magnitude of AREF and predictions of Eq. 3.36. Note that Eq. 3.36

captures the AREF peak magnitude extremely well for Φ0 ă 5 (blue points in Fig. 3.13(a)). For

intermediate voltages, it is only the power a that is increasing from 1, while the data points are still

nicely linear. Recall that the power a increases monotonically from 1 at low-intermediate values of

Φ0 (cf. Fig. 3.5(c)).

Similarly, we can insert b “ ´1, c “ ´0.5 to find the scaling expression at intermediate-high

applied voltages. Since this range of applied voltage (0.5 ď φ0 ď 2.5 volts, or peak-to-peak applied

voltages of 1–5 volts) is frequently used in electrokinetic experiments we prefer to fit the data

using all results. So instead of substituting an a value below 1 (cf. Fig. 3.5(c) at very high Φ0

values), we heuristically find a value that collapse all data points. Our analysis shows that an

average of summit and final a values (a « 2) is a good choice. Hence, the scaling expression at

intermediate-high applied voltages can be written as

Φ0 ě 20: xẼypeak « K
Φ2

0γ

LD
?
κH

, (3.37)

with K « 2.1 ˆ 10´4 obtained from linear regression. The corresponding comparison provided in

Fig. 3.13(b) shows that the prediction of Eq. 3.37 is in the right neighborhood, (R-square « 0.9),

differing by at most a factor of 2 over the entire range of parameters tested. This scaling estimate

should help in interpretation of experimental results involving AREFs.

3.5 CONCLUSIONS

In summary, we have comprehensively investigated the AREF phenomenon reported recently by

Hashemi Amrei et al.1 The effects of various parameters including the applied voltage and frequency,

ionic mobility mismatch, mobilities of the dissolved ions, ionic strength, electrodes spacing, and

valences of the ions on the spatial structure and magnitude of the AREF were analyzed in detail.

Dimensionless analysis of the problem shows that the diffusive length scale `D, with
?
D`D´

as the characteristic diffusivity, can accurately predict the peak location of the AREF in a wide

spectrum of system properties. The AREF magnitude, in contrast, is found to be more complicated,

mainly due to the confounding nonlinear impacts of the applied voltage. Regardless of the system

properties, at low applied voltages (Φ0 „ 1), the peak magnitude of AREF varies as Φ0. No

universal correlation is found for Φ0 ą 1, except that the power-law exponent a (xẼypeak9Φa
0)

increases nonlinearly from 1 by increasing the applied voltage and then drops to a small constant

value at sufficiently high applied voltages (Φ0 " 1). This peculiar influence of Φ0 complicates

the analyses of the other dimensionless parameters. Our observations indicate that the AREF
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peak magnitude decreases by increasing the LD, with a rate that depends on the applied voltage.

The power-law exponent b (xẼypeak9Φa
0) is ´3 at low applied voltages and approaches to ´1 as Φ0

increases. In other words, the AREF magnitude becomes less sensitive to the LD at higher voltages.

The ionic mobility mismatch has a non-monotonic impact on the AREF magnitude. By increasing

the deviation form δ “ 1, xẼypeak ascends to a maximum at δmax and then starts dropping. Here,

δmax depends on Φ0: δmax « 5.25 at low Φ0 values and gets indefinitely closer to 1 by increasing

the applied voltage. Finally, we find that for most electrokinetic systems xẼypeak9pκHq
c, where

c “ ´2 and ´0.5 at low and high applied voltages, respectively. Therefore the AREF is less

sensitive to κH at higher Φ0 values. Using the obtained results from the dimensionless analysis, we

provide simplified scaling arguments that can be use of researchers in interpretation and control of

experiments.

While the above-mentioned results were obtained for univalent electrolytes, we also demon-

strated that introducing asymmetry through nonidentical ion valences is as important as the ionic

mobility mismatch. Furthermore, the results presented here are limited to situations where electro-

chemical and convective contributions to the flux are negligible, and there is no formation of Stern

layers at the electrodes. These more complicated effects are deferred to future studies.
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Chapter 4

Asymmetric Rectified Electric Fields

Generate Flows that Can Dominate

Induced-Charge Electrokinetics

Overview∗

We derive a generalized induced-charge electrokinetic (ICEK) velocity around a
conducting object placed in an arbitrary multimodal electric field. The general-
ized model allows consideration of asymmetric rectified electric fields (AREFs),
which have recently been established to occur in liquids where the ions present
have unequal mobilities. Including the AREF yields fluid velocities in which
both the direction and the magnitude depend sensitively on the applied poten-
tial, frequency, ionic type and strength, and even the exact placement of the
object between parallel electrodes. The results provide a new explanation for the
long-standing question of flow reversals observed in ICEK systems.

∗This chapter was previously published by Hashemi Amrei et al. and is reproduced here with
minor modifications. See: S. M. H. Hashemi Amrei, G. H. Miller, and W. D. Ristenpart
Asymmetric rectified electric fields generate flows that can dominate induced-charge electroki-
netics, Phys. Rev. Fluids 5 (2020) 013702.4
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4.1 INTRODUCTION

Nonlinear electroosmotic flows around colloidal particles, also known as electrokinetic phenomena of

the 2nd kind, were first formulated theoretically by Dukhin and co-workers in the 1980s.15–17 They

demonstrated that application of an external electric field induces a charge cloud near the surface

of a polarizable object; the field then creates a body force on the charge cloud, creating an elec-

troosmotic fluid flow. In contrast to standard electroosmosis, the fluid velocity scales as the square

of the electric field, so that flow results from both steady and oscillatory applied fields. One early

application of nonlinear electroosmotic flows was liquid pumping via asymmetric electrodes subject

to AC electric potentials, also known as AC electroosmosis (ACEO).20–23 More recently, Bazant

and Squires18,19 unified nonlinear electrokinetic phenomena around polarizable objects (particles,

electrodes, etc.) under the name induced-charge electrokinetics (ICEK).32,33,74,75 The general theo-

retical approach has been to solve either the Laplace equation or the standard electrokinetic model

(Poisson–Nernst–Planck) to predict the electric field distribution and polarization of the charge

layer around the objects, and then determine the induced flow. The archetypal example of ICEK

theory is the quadrupolar fluid flow around a conducting sphere or cylinder in response to steady

or time varying electric fields,18,19 a system which has been experimentally observed in a number

of studies using metallic spheres76,77 and wires.78–80

Despite extensive research, however, there are several unresolved discrepancies between theo-

retical predictions and experimental observations.32,33 In particular, extant theories fail to predict

the observed reversal in the direction of fluid flow in ACEO pumps at sufficiently high frequen-

cies.23,81–84 Similarly, experimental work revealed that the flow direction in ACEO pumps also de-

pends on the identity of the electrolyte present; for example, at particular voltages and frequencies,

simply swapping KCl with KOH caused the flow to reverse direction. Because neither the frequency

nor electrolyte dependence are explicable in terms of the standard ICEK theory, much work fo-

cused on whether the continuum approximation incorrectly neglected ion-ion interactions and steric

effects, thus yielding unrealistically high ion concentrations near the electrodes.85,86,83,72,29 By in-

troducing the effective ion size as a fitting parameter, Bazant and co-workers qualitatively predicted

a fluid flow reversal in AC electroosmosis pumps upon changing the applied frequency. However,

an unrealistically large ion size (several nanometers) was found to be necessary, casting doubt on

this approach.

Notably, all theoretical studies on ICEK to date have assumed that the dissolved ions have

equal mobilities, an assumption that considerably simplifies the modeling but rarely pertains to

real electrolytes. Recent work by Hashemi Amrei et al.1,2 has demonstrated that application

of a perfectly sinusoidal oscillating potential generates a highly multimodal, long-range electric

field between parallel electrodes. Furthermore, if the ions present have unequal mobilities, the

multimodal field has a non-zero time average, i.e., the sinusoidal applied potential generates a

steady field component. This phenomenon, referred to as Asymmetric Rectified Electric Field

(AREF), acts like a DC field and induces electrophoretic motion consistent with experimental

observations of particle levitation against gravity.3 These findings suggest that AREFs will also
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generate a net fluid flow around a charged object placed in the field via electroosmosis, and thus

affect ICEK flows. It remains unclear, however, under what conditions AREFs play a significant

role in ICEK flows, and whether they are associated with the flow reversals observed experimentally.

In this work, we analyze theoretically the impact of AREFs on ICEK flows. Because extant

theories only consider unimodal electric fields, we begin by deriving a generalized ICEK model valid

for arbitrary, multi-modal electric fields. We then insert numerical solutions to the fully nonlinear

standard electrokinetic model to assess the impact of AREFs on the ICEK flow. Focusing on the

flow around a conductive cylinder, we demonstrate that under many conditions the higher order

modes and the zeroth mode (the AREF) dominate the overall flow velocity around the cylinder. In

particular, the calculations predict significant flow reversals with respect to frequency, electrolyte

type, and even the exact placement of the cylinder between conducting electrodes. Our results point

toward a resolution of the long-standing discrepancies between ICEK theory and experiments.

4.2 GENERALIZED ICEK FOR ARBITRARY ELECTRIC

FIELD

The central idea of ICEK is that the electric field induces a charge cloud (or an equivalent zeta

potential) immediately adjacent to a conductive surface. The tangential component of the same

electric field then acts on the induced charge cloud, creating an electroosmotic fluid flow with a

slip velocity given by Smoluchowski’s formula. Bazant and Squires18,19 showed that for a steady

electric field of magnitude E, i.e., Eptq “ E, the angular slip velocity around a conductive cylinder

of radius a is

usθ “ 2
εaE2

µ
sin p2θq ` 2

εζ0E

µ
sin pθq (4.1)

where θ is the polar angle (cf. Fig. 1), ε and µ are the permittivity and viscosity of the electrolyte,

respectively, and ζ0 is the intrinsic zeta potential of the cylinder surface. The first term on the right

hand side is the quadrupolar flow due to the action of the tangential component of the electric field

on the surface of the cylinder (Eθ|r“a) on the induced zeta potential, while the second term is the

dipolar flow due to the same field acting on the intrinsic zeta potential. Depending on the relative

strength of these two terms, various net flows of different shapes that are more or less quadrupolar

occur for a steady applied electric field.

In contrast, for a sinusoidal electric field of amplitude E and angular frequency ω0, i.e., Eptq “

E cos pω0tq, the time average of the slip velocity is18,19

xusθy “
εaE2

µ

sin p2θq

ω2
0τ

2
c ` 1

. (4.2)

Here τc “ κ´1a{D̂ is the charging time scale of the ionic cloud around the cylinder, where κ´1

is the Debye length scale and D̂ is a characteristic diffusivity of the dissolved ions. Importantly,

the electroosmotic flow due to the action of the sinusoidally varying electric field on the constant
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Figure 4.1: Schematic diagram of the problem. Left: a conducting cylinder of radius a is immersed in
an electrolyte between two parallel electrodes at height h. An oscillatory electric potential is applied on
one electrode while the other is grounded. Right: problem in cylindrical coordinates with scalar velocity
components in r and θ directions.

intrinsic zeta potential has zero time average, and hence the dipolar component is identically zero

for a unimodal applied field. Note also that the velocity is expected to decay monotonically as

frequency increases or the electrolyte diffusivity decreases, i.e., no reversals in the flow direction

are predicted to occur as frequency changes or for different electrolytes.

We now ask, what happens if the applied field is multimodal? We follow the same basic

framework proposed by Bazant and Squires,18,19 but we generalize it to find the slip velocity when

Eptq is an arbitrary function of time. Assuming a thin double layer limit (κa " 1), the solution to

the Laplace equation for the electric potential around the cylinder is

ψ “ ´Eptqr cos pθq

ˆ

1` g
a2

r2

˙

, (4.3)

where g is the induced dipole strength, and pr, θq are the cylindrical coordinates (cf. Fig. 4.1). The

induced surface charge on the cylinder, q, obeys charge conservation such that conduction of ions

from the bulk in the radial direction are balanced by charge accumulation, such that

Bq

Bt
“ σEr|r“a “ σEptq cos pθqp1´ gq. (4.4)

Here σ is the effective electrolyte conductivity and Er “ ´
Bψ
Br is the radial component of the electric

field. Simultaneously, the induced zeta potential is

ζ “ ´ψ|r“a “ Eptqa cos pθqp1` gq, (4.5)

where we assumed that electric potential of the perfectly conducting cylinder remains zero at all

times. The induced zeta potential is then related to the surface charge with q “ εκζ. Note that

this equality is justified only at low voltages and is used for simplicity; use of more sophisticated

models is straightforward but complicates interpretation. Substituting this equality into Eq. 4.5
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and differentiation with respect to time yields

Bq

Bt
“ εκa cos pθq

„

dEptq

dt
p1` gq ` Eptq

dg

dt



. (4.6)

Combining Eq. 4.4 and Eq. 4.6 yields an ordinary differential equation for g that can be solved for

an arbitrary electric field Eptq (See Sec. B.2 for details),

g “ 2

ş

et̂Ept̂qdt̂

et̂Ept̂q
´ 1, (4.7)

where t̂ “ t{τc is a dimensionless time, normalized on the charging time scale τc “ κ´1a{D̂ “

εκa{σ,67,24 and the term
ş

et̂Ept̂qdt̂ is an indefinite integral. Substituting the obtained induced

dipole g into Eq. 4.3 yields the potential distribution, which is subsequently used to find the

induced zeta potential and tangential component of the electric field (Eθ “ ´
1
r
Bψ
Bθ ) on the cylinder

surface. Finally, Smoluchowski’s formula for electroosmosis gives the induced slip velocity for an

arbitrary field,

usθ “ ´
εpζ ` ζ0qEθ|r“a

µ
“

2εa

µ

„

ş

et̂Ept̂qdt̂

et̂

2

sin p2θq `
2εζ0

µ

„

ş

et̂Ept̂qdt̂

et̂



sin pθq. (4.8)

If the product et̂Ept̂q is simply integrable, then analytical simplifications are straightforward. For

a steady (time invariant) applied field, Eq. 4.1 is immediately recovered. Likewise, for a unimodal

oscillating field Eptq “ E cos pω0tq, the instantaneous slip velocity is

usθ “
2εaE2

µ

”ω0τc sin pω0tq ` cosω0t

1` ω2
0τ

2
c

ı2
sin p2θq `

2εζ0E

µ

”ω0τc sin pω0tq ` cosω0t

1` ω2
0τ

2
c

ı

sin pθq, (4.9)

which upon time averaging reduces to the classic ICEK flow velocity for oscillatory fields (cf.

Eq. 4.2),

xusθy “
ω0

2π

ż 2π
ω0

0
usθdt “

εaE2

µ

sin p2θq

ω2
0τ

2
c ` 1

. (4.10)

4.3 SOLUTION TO THE ELECTROKINETIC MODEL

With a generalized ICEK model for arbitrary electric fields in hand, we now ask what happens for

the multimodal fields that occur in electrolytes at sufficiently high applied voltages. The details

of these fields have been elaborated elsewhere;1,2 here we provide a brief summary. We focus on

1-1 binary electrolytes between parallel electrodes separated by a distance H (cf. Fig. 4.1), and

we assume that the presence of the cylinder and any resulting flows do not appreciably alter the

electric field between parallel electrodes. In other words, we assume that both a{H ! 1 and a{h ! 1

so that we can use the electric field solution Ept, zq in the absence of the cylinder, and we then take

Ept, hq (the electric field at the cylinder height, z “ h) as the field to implement the generalized

ICEK velocity. We emphasize that this approach is approximate since it neglects the impact of the
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cylinder itself on the applied electric field, but our goal is to examine the limiting case of ‘small’

cylinders to shed light on the influence of AREFs on the ICEK flow and to serve as a limiting case

for more detailed future calculations.

To obtain the multimodal electric field (in the absence of the cylinder), the Poisson equation

relates the free charge density to the electric field gradient,

´ ε
B2φ

Bz2 “ epn` ´ n´q, (4.11)

while the transport of ions is governed by Nernst–Planck equations,

Bn˘
Bt

“ D˘
B2n˘

Bz2 ˘ e
D˘
kBT

B

Bz

´

n˘
Bφ

Bz

¯

. (4.12)

Here the symbols stand for permittivity of the electrolyte, ε; electric potential, φ; elementary charge,

e; number concentration of ion, n˘; diffusivity, D˘; Boltzmann constant, kB; absolute temperature,

T ; location with respect to the lower electrode, z; and time, t. The terms on the right-hand-side of

the Nernst–Planck equation represent diffusive (thermal) motion and electromigration of the ions;

the nonlinearity of the problem stems from the latter term. To close the problem we apply the

initial conditions

n˘p0, zq “ n8˘ , (4.13a)

φp0, zq “ 0, (4.13b)

and specified potential and no-flux boundary conditions,

´D˘

´

Bn˘
Bz
˘
en˘
kBT

Bφ

Bz

¯

z“0,H
“ 0, (4.14a)

φpt, 0q “ φ0 sinpω0tq, φpt,Hq “ 0. (4.14b)

Note that we assume blocking electrodes where no electrochemistry occurs, such that the flux of

ions through the electrodes is identically zero (Eq. 4.14a). In addition, we neglect the formation of

a compact Stern layer at the electrodes. A sinusoidal electric potential of amplitude φ0 and angular

frequency ω0 “ 2πf0 is applied on the lower electrode at z “ 0 while the upper electrode at z “ H

is kept grounded (Eq. 4.14b and Fig. 4.1). Here we use the approach outlined by Hashemi Amrei et

al.2 to non-dimensionlize the system of equations. The electrode spacing H and inverse frequency

1{f0 are taken as the characteristic length and time scales, while φ0{H is used to normalize the

electric field:

z̃ “
z

H
, t̃ “ f0t, Ẽ “

EH

φ0
. (4.15)

Moreover, for binary 1-1 electrolytes, there are four dimensionless parameters that uniquely describe
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the system:

Φ0 “
φ0e

kBT
, δ “

D´
D`

, κH “

d

n0e2

εkBT
H, LD “

b

D̂{f0

H
. (4.16)

Here n0 “ 2n8, where n8 is the bulk electrolyte concentration, and we have defined D̂ “
?
D`D´

as the characteristic diffusivity.2 Alternatively, we could use the ambipolar diffusivity;87 however,

Hashemi Amrei et al.2 showed that choosing D̂ “
?
D`D´ yields accurate predictions of the

AREF length scale and its spatial structure, which are key elements of the present study (cf.

subsection 4.3.2).

4.3.1 Linear solution

A linearized approximate solution to the problem was derived by Hollingsworth and Saville for low

applied voltages and equal ionic mobilities (i.e., Φ0 ! 1 and δ “ 1).25 The linearized solution is

necessarily unimodal, albeit with phase lag and amplitude that depend on the system properties

and location:

Ẽ“ Im

„

α cosh pαỹq csch pαq`iαν2 coth pαq

1`iαν2 coth pαq
ei2πt̃



, (4.17)

where ỹ ” 2z̃ ´ 1 and the coefficients are

α2 ”
1

4

„

pκHq2 ` i
2π

L2
D



, ν2 ”
2π

pκHq2L2
D

. (4.18)

Note that only two dimensionless groups, κH and LD, contribute to the approximate linear electric

field solution because low applied potential and equal mobilities are assumed. In these limits, then,

Eq. 4.17 can be written in the form

Ẽpt̃q “ Ẽ1 cos p2πt̃` γ1q, (4.19)

where the amplitude Ẽ1 and phase lag γ1 are functions of both position and the system properties

(i.e., κH and LD). The subscript 1 denotes the frequency mode of the solution; for this unimodal

field, there is only one mode corresponding to the applied frequency f0.

4.3.2 Nonlinear solution

As reported by Hashemi Amrei et al.,1,2 numerical calculations show that the full nonlinear elec-

trokinetic model yields an electric field with much more complicated spatial and temporal structures

than the linearized result. See Hashemi Amrei et al.1,2 for details on the numerical methodology

and solutions; here we focus on the results and how they pertain to ICEK. Fig. 4.2(a) shows repre-

sentative examples of the numerically calculated instantaneous electric field versus time at z̃ “ 0.04

for low and high dimensionless applied voltages and for electrolytes of equal and non-equal ionic

mobilities. At the low voltage Φ0 “ 1 and for δ “ 1 (Fig. 4.2(a), dotted red curve, Φ0 “ 1), the

electric field solution is a simple unimodal sinusoid consistent with the linearized prediction; indeed,
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Figure 4.2: Representative examples of the one-dimensional AREF. (a) Effect of the applied voltage on
time variations of the harmonic electric field (Ẽ) at z̃ “ 0.04 for δ “ 1 (dashed) and δ “ 3 (solid), at applied
potentials of Φ0 “ 1 (red) and Φ0 “ 15 (blue). (b) Spatial distribution of the time average electric field
(Ẽ0 “ xẼy, AREF) for δ “ 1 (dashed) and δ “ 3 (solid). Note that for δ ‰ 1, at locations very close to
the electrodes (z̃ Ñ 0 or 1), the AREF reaches a maximum magnitude before sharply decaying toward zero
(not discernible here; cf. Hashemi Amrei et al.1,2). (c) & (d) FFT analysis of the harmonic electric field for
δ “ 1 (c) and δ “ 3 (d). Parameters: Φ0 “ 15 (b, c, d), LD “ 0.2, κH “ 2600.

the linearized result in Eq. 4.17 is not distinguishable from the nonlinear result at this scale. At

a higher applied voltages, the contribution from the nonlinear electromigrative terms yield multi-

modal peaks (Fig. 4.2(a), dotted blue curve, Φ0 “ 15). Qualitatively similar results are obtained

for δ ‰ 1; the electric field is close to a sinusoid at low voltages and develops nonlinear behavior

upon increasing voltage (Fig. 4.2(a), solid red (Φ0 “ 1) and blue (Φ0 “ 15) curves, respectively).

The time average of the electric field (E0 “ xEy), however, shows a significant difference between

the cases of δ “ 1 and δ “ 3 (Fig. 4.2(b)). For δ “ 1 the electric field time average is identically zero

everywhere. In contrast, there is a significant nonzero time average electric field (i.e., a DC field)

generated for δ ‰ 1. The first peak location of this AREF outside the Debye layer closely follows

a diffusive length scale, z̃peak « 0.83LD (cf. Fig. 10 of Hashemi Amrei et al.2). Also note that

the peak occurs far away from the electrode (« 5 µm in Fig. 4.2(b)); this behavior, along with the

spatially non-uniform AREF, stem from a non-zero time average free charge density far outside the

Debye layer. While the magnitude of AREF appears small when compared to the magnitude of the
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harmonic electric field, the AREF-induced electrophoretic force was shown to be several order of

magnitudes larger than gravitational and colloidal forces.1 Although indiscernible from Fig. 4.2(b),

as z Ñ 0 or 1, within a few Debye lengths from the electrodes, AREF reaches to a peak and then

drops toward zero (cf. Hashemi Amrei et al.1,2).

An FFT analysis of the electric field modes shows that for δ “ 1 (Fig. 4.2(c)) the field has

frequency components at odd integer multiples of the applied frequency. In other words, the mul-

timodal electric field can be modeled by a sum of sinusoids with frequencies of f0, 3f0, 5f0, . . . and

amplitudes that depend on system properties and location. For δ ‰ 1 (Fig. 4.2(d)), in contrast, the

electric field has frequency components at all integer multiples of the applied frequency, including

zero (i.e., a steady field). In this case the electric field includes a sum of sinusoids with frequencies

of f0, 2f0, 3f0, . . . plus a steady contribution. Note that the effect of δ on these frequency modes is

consistent with a simpler toy model of just two ionic oscillators.1.

Based on these numerical results, the instantaneous nonlinear electric field at any location can

be expressed as

Ẽpt̃q “ Ẽ0 `

8
ÿ

j“1

Ẽj cos p2πjt̃` γjq, (4.20)

where Ẽj and γj are the z-dependent amplitude and phase lag of the frequency component jf0,

respectively. Note that there are two key differences compared to the linearized result (Eq. 4.19).

First, the full nonlinear expression has a steady component, Ẽ0, whereas the linearized solution

does not. Second, the nonlinear expression has an infinite series of all the multiple modes of the

imposed frequency, whereas the linear solution is unimodal. In the limit where δ Ñ 1, the steady

component Ẽ0 and the even modes Ẽ2j “ 0 for any integer j all vanish. The higher order odd

modes, however, are retained even when δ Ñ 1.

4.4 ICEK FLOW WITH AREF

The sinusoidal nature of the linearized solution (Eq. 4.19) indicates that the induced fluid flow

pattern is quadrupolar and symmetrical. Substitution of Eq. 4.19 into Eq. 4.8 and subsequent time

averaging gives the linear ICEK slip velocity as

xũsθy “
xuθy

εaφ2
0{pµH

2q
“ Ẽ2

1

sin p2θq

ω2
0τ

2
c ` 1

. (4.21)

Inserting the nonlinear electric field solution from Eq. 4.20 into Eq. 4.8 and time averaging gives

the nonlinear ICEK slip velocity:

xũsθy “
8
ÿ

j“1

„

Ẽ2
j

sin p2θq

j2ω2
0τ

2
c ` 1



` 2Ẽ2
0 sin p2θq ` 2ζ̃0Ẽ0 sin pθq, (4.22)

where ζ̃0 “
ζ0H
aφ0

. Note that Eq. 4.22 has three contributions: (i) an ICEK quadrupolar flow due to

the first and all higher order modes of the nonlinear field, (ii) an ICEK quadrupolar flow due to
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Figure 4.3: Effects of (a) mobility mismatch, (b) frequency-dependent diffusive length scale, and (c) cylinder
position on the induced fluid flow pattern around the cylinder, as calculated using Eq. (21) and the nonlinear
solution to the standard electrokinetic model [cf. Eq (19)]. Parameters: Φ0 “ 10, δ “ 3 (b, c), LD “ 0.2 (a,
c), κH “ 2600, ζ̃0 “ ´10, h̃ “ 0.22 (a, b).

the steady AREF, and (iii) an electroosmotic dipolar flow due to the action of the steady AREF

on the intrinsic charge on the cylinder. For δ “ 1 (Ẽ0 “ 0), as voltage goes to zero Ẽj‰1 Ñ 0,

and the nonlinear and linear slip velocities asymptotically converge. Unlike the linear slip velocity

which predicts an invariably quadrupolar and symmetrical fluid flow, the nonlinear one is in general

asymmetrical due to the dipolar electroosmotic term stemming from the steady field component. In

other words, any mismatch in the mobilities of the dissolved ions breaks the symmetry and induces

net fluid flow around a charged cylinder under AC polarization.

As discussed in detail by Hashemi Amrei et al.2, Ẽ0 and Ẽj are complicated functions of the

four dimensionless parameters Φ0, LD, δ, and κH. Eq. 4.22 introduces two more dimensionless

groups, ζ̃0 and ω0τc, that also affect the flow behavior. Under typical experimental conditions,

however, ω0τc ! 1 and its impact is negligible; we do not consider it further here. A parameter that

is important, however, is the location of the cylinder between the two electrodes (i.e., h), which is

included in the dimensionless group h̃ “ h{H. In other words, the flow structure and magnitude is

governed by the six dimensionless parameters Φ0, LD, δ, κH, ζ̃0, and h̃.

Using the slip velocity given by Eq. 4.22 for nonlinear ICEK, the radial velocity, angular velocity,
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and corresponding stream function around the charged cylinder are, respectively

ũr “
´ 1

r̃2
´ 1

¯

ζ̃0Ẽ0 cos pθq ` 2
´1´ r̃2

r̃3

¯

Ẽ2
0 cos p2θq `

8
ÿ

j“1

´1´ r̃2

r̃3

¯ Ẽ2
j

pω2
0τ

2
c ` 1q

cos p2θq, (4.23a)

ũθ “
´ 1

r̃2
` 1

¯

ζ̃0Ẽ0 sin pθq `
2

r̃3
Ẽ2

0 sin p2θq `
8
ÿ

j“1

1

r̃3

Ẽ2
j

pω2
0τ

2
c ` 1q

sin p2θq, (4.23b)

Ψ̃ “

´1

r̃
´ r̃

¯

ζ̃0Ẽ0 sin pθq `
´ 1

r̃2
´ 1

¯

Ẽ2
0 sin p2θq `

8
ÿ

j“1

´ 1

r̃2
´ 1

¯ Ẽ2
j

2pω2
0τ

2
c ` 1q

sin p2θq. (4.23c)

Here Ψ̃ “ ΨµH2{pεa2φ2
0q is the dimensionless stream function and r̃ “ r{a. (Please refer to Sec. B.1

for details.) For linear ICEK, note that the velocity and stream function are simply expressed by

the first series terms on the right hand side of Eq. 4.23 (i.e., Ẽj “ 0 for j ‰ 1).

The streamlines for the linearized solution are invariably quadrupolar, i.e., the shape of the flow

never changes in the linearized field limit (although the flow velocity varies). In contrast, the flow

structure for the full nonlinear solution is highly sensitive to the system parameters. Representative

streamlines for the induced fluid flows from the nonlinear solution are provided in Fig. 4.3. Focusing

first on the mobility mismatch (Fig. 4.3(a)), the fluid flow pattern for an electrolyte with δ “ 1 is

perfectly quadrupolar. In contrast, electrolytes with an ionic mobility mismatch (δ ‰ 1) generate a

net fluid flow as a result of the dipolar contribution of the slip velocity (i.e., standard electroosmosis

due to the AREF). Note that the direction of the fluid flow depends sensitively on the magnitude

of δ; in other words, swapping out an electrolyte with δ ă 1 (e.g., HCl) with an electrolyte that

has δ ą 1 (e.g., NaOH) and holding all other parameters constant will result in a reversal in the

direction of flow.

A similar flow reversal also occurs for different magnitudes of the frequency-dependent diffusive

length scale, LD (Fig. 4.3(b)). For sufficiently large values of LD, i.e., sufficiently low frequencies,

the fluid flow is dominated by the dipolar steady AREF-driven electroosmosis. For LD “ 0.55 and

h̃ “ 0.2 the flow is directed downward (in the negative z-direction). This particular directionality

stems from the direction of the steady field component at this specific frequency and location. As

discussed by Hashemi Amrei et al.,2 the direction of the steady field at a given location depends

sensitively on the applied frequency; note in Fig. 4.2(b) that the direction of the field is negative

for 0 ă z̃ ă 0.1, positive for 0.1 ă z̃ ă 0.5, and antisymmetric for z̃ ą 0.5. The precise positions

where the field direction changes depend on frequency, with more zeros in the field strength (i.e.,

reversals in the field direction) as frequency increases (LD decreases). The corresponding flow thus

changes dramatically, with the direction of the steady dipolar flow switching as LD decreases to

0.33 (Fig. 4.3(b)). Further decreases in LD (increases in frequency) further diminish the dipolar

contribution, and the fluid flow pattern becomes increasingly quadrupolar because Ẽ0 at this par-

ticular location tends to decrease as LD decreases. The effect of cylinder location, with all other

parameters fixed, is shown in Fig. 4.3(c). At the midplane (i.e., h̃ “ 0.5) where AREF necessarily

48



Figure 4.4: Influence of the six dimensionless parameters that govern ũsθ, evaluated at r “ 2a and θ “ π{6.
In all figures, dashed black lines represent the velocity calculated using the linearized electric field, while
solid colored lines represent the velocity calculated using the full nonlinear solution for various parametric
values. Parameters: Φ0 “ 10 (d, e, f), δ “ 3 (c, d), LD “ 0.2 (a, b, e, f), κH “ 2600 (a, b, c, e, f), ζ̃0 “ ´10
(a, b, c, d, f), h̃ “ 0.22 (a, b, c, d, e). The inset of (d) shows a magnification of the nonlinear solution for
LD “ 0.17.

vanishes due to symmetry, the fluid flow is entirely quadrupolar. Away from the midplane (any

location h̃ ‰ 0.5), there can be a net dipolar flow induced with direction dependent on the sign of

AREF.

We emphasize that the exact conditions upon which the flow reversal occurs is a sensitive

function of all six dimensionless parameters governing the system behavior and the location of the

cylinder, due to the complicated spatial structure of AREF.2 Linearized theories with slip velocity

given by Eq. 4.21 will not capture these flow reversals, which are a direct result of ionic mobility

mismatch and the consquent AREF. In other words, solutions to the full nonlinear problem with

δ ‰ 1 will yield flow reversals, whereas more sophisticated solutions to the electrokinetic model at

high voltages,29,31,30 but with the assumption of equal ionic mobilities, will not.

To further quantify the induced flow behavior, the effects of the dimensionless parameters on

the scalar component of the fluid velocity in θ direction (ũθ) at a fixed location of r “ 2a and

θ “ π{6 are shown in Fig. 4.4. We stress that these results are not general; the curves and

critical values of flow reversal are crucially dependent on the system properties and complicated

spatial structure of the AREF. Fig. 4.4(a) shows the effect of mobility mismatch (δ) on ũθ at three
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different applied potentials. Changes in δ have no impact on the linear solution, but δ dramatically

affects the predictions of the nonlinear solution. As expected, at a low voltage of Φ0 “ 1, the

linear and nonlinear solutions converge at δ “ 1. At higher voltages however, even when the

steady AREF component is zero for δ “ 1, there is a considerable difference between the linear

and nonlinear predicted velocities, stemming from the contribution of the higher order frequency

modes. Furthermore, changing the mobility mismatch alters the fluid flow both qualitatively and

quantitatively. For instance, at Φ0 “ 10, the fluid velocity varies from ũθ « 4.5ˆ 10´4 at δ “ 1.04

(e.g., KCl) to « ´2ˆ 10´4 at δ “ 3.95 (e.g., NaOH).

An important point to consider is that the effect of δ is non-monotonic.2 The AREF is always

identically zero at δ “ 1, and vanishes as δ Ñ 8. Where the peak AREF magnitude occurs as a

function of δ, however, depends on the applied voltage. At low voltages, the peak occurs near δ « 5

(or δ « 1{5). Thus in the representative examples shown in Fig. 4.4(a), the absolute magnitude of

the velocity tends to peak near δ « 5 and δ « 1{5; for the range of Φ0 shown here, these are the

specific values of δ where the field strength is greatest. As the applied voltage increases, however,

the AREF peaks in magnitude at values of δ closer to 1. In other words, at higher voltages, AREF

in electrolytes with δ close to 1 (e.g., KCl with δ « 1.04) might be stronger than that in electrolytes

with a significant ionic mobility mismatch (e.g., NaOH with δ « 3.95). Indeed, many of the peculiar

experimental observations such as fluid flow reversal upon changing the frequency and voltage were

reported for KCl electrolyte at relatively large voltages.23,88,82,32

The effect of the applied potential Φ0 is shown in Fig. 4.4(b) for different values of δ. Again,

the linearized dimensionless solution is insensitive to changes in Φ0; dimensionally, the flow is

predicted to increase as φ2
0 (cf. Eq. 4.21). At low applied voltages and regardless of δ, the nonlinear

solution approaches the linear solution (dashed black curve). As Φ0 increases, however, the velocity

increases rapidly, i.e., the velocity increases faster than quadratically. For δ “ 1{2, the increase is

even steeper. Interestingly, for δ “ 2, increasing the applied voltage sufficiently will alter the fluid

flow direction. In contrast, for cases of δ “ 1 and δ “ 1{2 it is only the magnitude of ũθ that is

affected by Φ0 and no change in direction is observed.

Fig. 4.4(c) illustrates the effect of LD on the fluid velocity. The linear solution predicts an

exponential decay in ũθ with no direction change. In contrast, the nonlinear solution predicts

multiple direction changes upon varying LD. Recalling that the dimensionless parameter LD has

an inverse frequency dependence (Eq. 4.16), increasing LD can be seen as deceasing the applied

frequency f0. Therefore, the results indicate how solutions to the full nonlinear electrokinetic model

are capable of capturing the fluid flow reversal by changing the applied frequency.

The effect of κH on the induced fluid velocity is depicted in Fig. 4.4(d) for two different values

of LD. The results are presented only for high κH values, where the assumption of ω0τc ! 1

holds. Note that for the most part the linear and nonlinear solutions predict the fluid flow in

opposite directions, which is a consequence of δ ‰ 1 (cf. Fig. 4.4(a)). The magnitudes of both

the linear and nonlinear solutions drop by increasing κH, which corresponds to increasing the

ionic concentration. At higher concentrations, the Debye layer shrinks and it becomes less effective
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in micron scale electrokinetic phenomena. Likewise, some experimental studies have reported a

strong concentration dependence of the fluid velocity magnitude in ACEO micropumps that tends

to strongly suppress the flows.23,82 Hence, any future interpretation of the concentration effect in

ACEO pumps and similar systems should take into account the potentially confounding impact

of AREFs. Also, a peculiar direction change in the nonlinear solution happens for the case of

LD “ 0.17 at κH « 500. This result is qualitatively similar to a flow reversal with electrolyte

concentration that was reported in a different geometry of ACEO experiments.82

Fig. 4.4(e), demonstrates the effect of dimensionless zeta potential ζ̃0 on the fluid velocity. The

linear solution prediction has no electroosmotic contribution, making it insensitive to ζ̃0. Regarding

the nonlinear solution, for δ “ 1, AREF is zero and again the cylinder charge has no impact on the

fluid velocity. When δ ‰ 1 however, the fluid velocity linearly depends on the zeta potential, but

with direction that depends on the sign of the AREF.

Finally, the location of the cylinder h̃ has a significant impact on the fluid velocity distribution.

As shown in Fig. 4.4(f), the linear solution has no dependency on h̃, at least when, like in all

practical examples, the cylinder is placed far outside the Debye layer (κHh̃ " 1 and κHp1´ h̃q " 1

for h̃ ă 1{2 and h̃ ą 1{2, respectively). For the nonlinear solution and for δ “ 1, again the cylinder

location does not affect the model predictions. This location independence is due to the fact that

AREF, which is responsible for the spatial non-uniformity of the electric field, is zero when δ “ 1.

Therefore, we conclude that for electrolytes with δ “ 1, regardless of the cylinder location, the

fluid flow pattern would be quadrupolar. When δ ‰ 1, interesting behavior is observed (Fig. 4.4(f),

δ “ 1{2 and 2). Changing the location dramatically alters both the magnitude and direction of

the fluid velocity. Moreover, the cases of δ “ 1{2 and 2 predict the same fluid velocity at the

midplane. Knowing that AREF is always zero at the midplane, the fluid flow pattern would again

be quadrupolar there, regardless of the precise value of δ.

4.5 CONCLUSIONS

A key implication of the results presented here is that they point toward a resolution of long-

standing shortfalls of the ICEK theory, in particular the reversals in fluid flow direction upon

changes in the applied frequency and electrolyte type in AC electroosmosis pumps. To our knowl-

edge, the model presented here is the first to predict a flow reversal in an ICEK system that retains

the continuum approximation, i.e., without invoking finite ion size or crowding effects. The model

predicts that the flow structure will depend sensitively on several dimensionless parameters, in-

cluding ionic mobility mismatch (δ “ D´{D`), diffusive length scale (LD, defined based on the

applied frequency), and even the location of cylinder between the electrodes, all of which complicate

experimental interpretation. To date, all reported experiments on ICEK around charged cylinders

or spheres have placed the object exactly at the midplane between the two electrodes, or used an

electrolyte solution with δ « 1 (e.g., KCl). In both of these cases, the results provided here predict

a quadrupolar fluid flow pattern, in qualitative agreement to the experiments. We are unaware of
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published experimental results where the object is placed at a location other than the midplane in

an electrolyte with δ ‰ 1.

A key limitation of our model is that it pertains only in the limits a{h ! 1 and a{H ! 1, so

that the presence of the cylinder has negligible impact on the electric field distribution obtained

from the one-dimensional solution. An improved model would take into account the effect of the

cylinder presence on the electric field itself, and how that alters the consequent flow. Such a full

two-dimensional numerical simulation for the electrokinetic equations will remove the necessity of

the above assumptions and will provide a better understanding of the phenomena. Likewise, ACEO

pumps intrinsically involve two-dimensional electrode arrays, so the influence of AREFs in these

systems will also require more sophisticated numerical techniques. Furthermore, we focused here on

the consequence of asymmetries in the ionic mobility and cylinder position, but the symmetry of the

system can be broken in other ways, including in the shape and/or surface chemistry of the object

or the applied electric field gradient, all of which have been shown to generate net fluid flows and

electrophoretic motion of conducting particles.18,89,54,90 Finally, we focused here on dilute solutions,

but transport in more concentrated solutions will require consideration of Stefan–Maxwell coupled

ionic fluxes.87,91 The influence of AREFs on ICEK flows in two dimensional systems with these

more complicated broken symmetries is deferred to future studies.
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Chapter 5

A Perturbation Solution to the Full

Poisson–Nernst–Planck Equations

Yields an Asymmetric Rectified

Electric Field

Overview∗

We derive a perturbation solution to the one-dimensional Poisson–Nernst–Planck
(PNP) equations between parallel electrodes under oscillatory polarization for
arbitrary ionic mobilities and valences. Treating the applied potential as the
perturbation parameter, we show that the second-order solution yields a nonzero
time-average electric field at large distances from the electrodes, corroborating
the recent discovery of Asymmetric Rectified Electric Fields (AREFs) via numer-
ical solution to the full nonlinear PNP equations [Hashemi Amrei et al. Phys.
Rev. Lett., 2018, 121, 185504]. Importantly, the first-order solution is ana-
lytic, while the second-order AREF is semi-analytic and obtained by numerically
solving a single linear ordinary differential equation, obviating the need for full
numerical solutions to the PNP equations. We demonstrate that at sufficiently
high frequencies and electrode spacings the semi-analytical AREF accurately
captures both the complicated shape and the magnitude of the AREF, even at
large applied potentials.

∗This chapter was previously published by Hashemi Amrei et al. and is reproduced here with
minor modifications. See: S. M. H. Hashemi Amrei, G. H. Miller, Kyle J. M. Bishop, and
W. D. Ristenpart A perturbation solution to the full Poisson–Nernst–Planck equations yields
an asymmetric rectified electric field, Soft Matter 16 (2020) 7052–7062.5
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5.1 INTRODUCTION

The dynamic response of a fluid to an applied oscillatory electric potential is of fundamental im-

portance in many electrokinetic systems, including induced-charge electrokinetics (ICEK),15–19 ac

electroosmosis,20–23 electrohydrodynamic manipulation of colloids,8–12,56 electroconvection,92 and

ionic winds in atmospheric plasmas.93,94 In continuum theory, analysis of such systems is based

on the Poisson–Nernst–Planck (PNP) equations, also referred to as the standard electrokinetic

model.24 The Poisson equation relates the free charge density to the Laplacian of the electric po-

tential via Gauss’s law, and the transport of dissolved ions is governed by the electromigrative and

diffusive fluxes.

The PNP equations are nonlinear and coupled; as a result, researchers have often invoked sim-

plifying assumptions to solve them. The most common of these assumptions is that the applied

potential (φ0) is less than the thermal potential, i.e., φ0 ! kBT {e where kB, T , and e are the Boltz-

mann constant, absolute temperature, and elementary charge, respectively. This assumption allows

linearization of the problem via a perturbation expansion, written in terms of Φ0 “ φ0e{pkBT q ! 1.

In most cases, the solution is assumed to include an equilibrium contribution (unperturbed) plus a

perturbation linear in the applied potential (i.e., first-order expansion, OpΦ0q). White and cowork-

ers26,95,28 and Hinch et al.27 were among the first to follow this procedure in their analysis of

dilute colloidal suspensions, obtaining information about the dipole coefficient and electrophoretic

mobility of spherical colloids subject to an oscillating electric field.

Researchers have also focused on finding the dynamic response of quiescent electrolytes (no

colloids) between parallel electrodes. Hollingsworth and Saville25 used a first-order perturbation

expansion to derive an analytical approximate solution to the electric potential. Note that for a

sinusoidal applied potential, a first-order perturbation expansion invariably yields a single-mode

sinusoidal solution, albeit with a phase lag and amplitude that depend on location and system

properties. It was later shown, however, that the nonlinear terms in the PNP equations yield

multimodal solutions for Φ0 ą 1.29,31,30 Olesen et al.29 numerically solved the PNP equations to

show the significance of nonlinear terms at high potentials. This multimodal behavior, which was

later corroborated by analytical solutions at asymptotically high31 and moderate potentials,30 casts

doubt on the common interpretation of electrokinetic systems based on linearized theories.

Even more counterintuitively, recent work has revealed that electrolytes with non-equal mobili-

ties generate multimodal electric fields with a long-range, nonzero time-average.1,2 In other words,

an oscillatory electric potential can induce a steady electric field within the liquid. Referred to as an

Asymmetric Rectified Electric Field (AREF), the steady field in essence results from the mismatch

in the ionic mobilities; the uneven magnitudes of the oscillatory motion of the ions give rise to a

net free charge density, in turn creating a steady field component. The spatial distribution and

magnitude of the AREF depends sensitively on the applied frequency and magnitude of the ionic

mobility mismatch. Notably, the induced AREF persists several microns away from the electrodes,

with a characteristic diffusive length scale `D „ 1–10 µm. This long-range behavior of AREF is

at odds with the common assumption that most of the important electrokinetic phenomena are
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Figure 5.1: Two-ion model illustrating AREF. Top row: oscillation of a pair of ions (x˘ vs time) with
diffusivities D˘ in response to an electric field Eptq “ E0 cospωtq for D` ą D´, D` “ D´, and D` ă D´.
The dotted curves show the oscillation of the center of charge. Bottom row: induced electric field (∆E) at
an arbitrary point xf ą| x˘ | due to the ion oscillations vs. time. The horizontal dashed lines show the
time-average electric field x∆Ey.

governed solely by the Debye length scale (κ´1 „ 1–100 nm). Importantly, the calculated AREF is

consistent with observations of colloidal levitation against gravity,3 and is potentially responsible

for the otherwise unexplained observations of flow reversal in ICEK systems.4

Hashemi Amrei et al. demonstrated that even a toy model of two ions undergoing asymmetric

harmonic oscillation could yield an AREF.1 Consider two ions, one positive and one negative,

oscillating (as x˘ptq) in response to an external sinusoidal electric field as illustrated in Fig. 5.1.

When the two ions have equal diffusivities (D` “ D´), they oscillate with the same amplitude

in response to the external electric field. However, when there is a mismatch between the ion

diffusivities, the fast moving ion undergoes an oscillation with a higher amplitude compared to the

slow moving one. Then one can use Coulomb’s law to evaluate an induced electric field (∆E) due

to the ion oscillations at an arbitrary point xf ą| x˘ |. It turns out that when D` “ D´, the

induced electric field is symmetrical in time with a zero time-average. However, for D` ‰ D´, a

non-zero time-average electric field is induced. One can illustrate that this non-zero steady field

component varies to leading order as the square of the applied field, i.e., ∆E9E2
0 (cf. Hashemi

Amrei et al.1).

The two-ion model serves as a toy model only to provide some intuition about the importance

of ionic mobility mismatch. As such, it lacks some fundamental aspects of an electrokinetic system

such as the ion-ion interactions and the influence of thermal energy. To capture these effects, one

must invoke the PNP equations. Consequently, all quantitative predictions to date have depended

on complicated and time-consuming numerical solutions to the PNP equations. Progress assessing

the impact of AREFs on other systems has been hindered by the lack of analytical insight. Note that
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AREF is necessarily a nonlinear effect; therefore, first-order perturbation schemes cannot capture

AREF, even when considering the asymmetry of electrolytes.26,95,28,27 Additionally, Hashemi Amrei

et al. demonstrated that AREF is identically zero for symmetric electrolytes;1,2 as a result, prior

studies considering the nonlinear effects at high potentials but neglecting the asymmetry of ions

could not predict the AREFs either.29,31,30 In short, only solutions to the full nonlinear PNP

equations for asymmetric electrolytes predict AREF.

In this work, we provide a new, simpler, solution to the PNP equations for a 1-dimensional

system with arbitrary ionic mobilities and valences. We use a perturbation approach for small

applied oscillatory potentials to find an exact analytical solution accurate to first-order. The

first-order solution provides insight on how mobility mismatches alter the charge and potential

distributions versus time and position. Furthermore, we derive a governing ordinary differential

equation (ODE) for the time-average second-order solution, i.e., the AREF. We demonstrate that in

the limit of small applied potentials this analytical AREF asymptotically converges in both spatial

dependence and magnitude to numerical solutions of the full PNP equations. This approach yields

the first independent theoretical corroboration of the existence of AREFs, and furthermore provides

researchers with a rapid means of calculating the AREF without requiring a numerical solution to

the full PNP system of equations.

The paper is organized as follows. We start by reviewing the PNP equations in Sec. 5.2. A

detailed derivation of the approximate perturbation solution is provided in Sec. 5.3. The results

for the first and second order solutions are presented and discussed in Sec. 5.4. We finish with

some concluding remarks on the key results and implications for the electrokinetics community in

Sec. 5.5.

5.2 THEORY

5.2.1 Poisson–Nernst–Planck equations

We consider a binary electrolyte confined by two parallel electrodes separated by distance 2` as

depicted in Fig. 5.2. The Laplacian of the electric potential φpx, tq is related to the free charge

density ρpx, tq by the Poisson equation

´ ε
B2φ

Bx2 “ ρ “ epz`n` ` z´n´q. (5.1)

Here subscripts ˘ stand for positive and negative ions and the symbols denote liquid permittivity,

ε; elementary charge, e; charge numbers, z˘; and ion concentrations, n˘. The transport of ions is

governed by the Nernst–Planck equation

Bn˘
Bt

`
Bj˘
Bx

“ 0, (5.2)

56



where the ion flux j˘px, tq accounts for transport due both to diffusion and electromigration in the

electric field:

j˘px, tq “ ´D˘
Bn˘
Bx

´
z˘eD˘
kBT

n˘
Bφ

Bx
, (5.3)

where D˘ and kBT are the ion diffusivities and thermal energy, respectively.

Initially, no electric potential is applied and the electrolyte is spatially homogeneous,

n˘px, 0q “ n8˘ “ ¯z¯n
8, (5.4)

where n8 is the bulk number concentration of the electrolyte. An oscillatory potential of amplitude

φ0 and angular frequency ω is applied across the electrodes such that

φp˘`, tq “ ¯φ0 sinpωtq. (5.5)

Note that field-induced ion motion depends only on the potential gradient (not the potential itself).

We can therefore measure the potential from any time-dependent reference we choose without

altering the system dynamics. For example, we can add φ0 sinpωtq to the applied potential at ˘`

in Eq. 5.5 to describe the common experimental scenario of a grounded electrode at one boundary

(namely, x “ `q. However, this antisymmetric boundary condition, along with placing the origin at

the midplane and electrodes at x “ ˘` (cf. Fig. 5.2), significantly simplifies the analytical analysis.

To close the problem, we assume no ion flux at the electrodes (i.e., no electrochemistry),

j˘p˘`, tq “ 0. (5.6)

We acknowledge the fact that the assumption of negligible electrochemistry is justified only at

low applied potentials. Additionally, we neglect the possible creation of a compact Stern layer at

the electrodes which is known to cause a considerable potential drop between the electrode and

electrolyte.29 Also note that we focus on dilute electrolytes where the system dynamics is governed

solely by the transport of the dissolved ions. For concentrated solutions, Stefan-Maxwell equations

are required to account for the transport of all components including the solvent.91,87

5.2.2 Dimensionless form

The diffusivities D` and D´ can be expressed by two parameters characterizing the diffusivity

magnitude D and the diffusivity difference β as

D “
2D`D´
D` `D´

and β “
D` ´D´
D` `D´

, (5.7)

where ´1 ď β ď 1. Similarly, the charge numbers z` and z´ can be expressed by a magnitude

parameter z and a difference parameter γ:

z “ 1
2pz` ´ z´q and γ “

z` ` z´
z` ´ z´

, (5.8)
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Figure 5.2: Schematic diagram of the problem and not-to-scale comparison of different characteristic
length scales, i.e., Debye length (κ´1), diffusive length scale (`D), and electrode spacing (`). A single-mode
oscillatory electric potential of ¯φ0 sin pωtq is applied on the parallel electrodes at x “ ˘`.

where ´1 ď γ ď 1. Note that the charge numbers z˘ are signed quantities and γ “ 0 for equal-

valence (z` “ ´z´ “ z) electrolytes. The two difference parameters β and γ will play a central

role in characterizing asymmetries in the binary electrolyte.

We nondimensionalize the governing equations using the following characteristic scales. Lengths

are scaled by the Debye length

κ´1 “

c

εkBT

2e2z2n0
, (5.9)

where the concentration n0 is defined as

n0 “
1

2z2
pz2
`n

8
` ` z

2
´n

8
´ q “

1

2z2
pz`z

2
´ ´ z

2
`z´qn

8. (5.10)

All concentrations are scaled by n0. The electric potential is scaled by kBT {pzeq, and time is scaled

by 1{pκ2Dq. Using these scalings, the dimensionless variables are obtained as

x̃ “ κx, t̃ “ tκ2D, ñ˘ “
n˘
n0
, φ̃ “

φze

kBT
. (5.11)

There are also five dimensionless parameters β, γ, κ`, Φ0 “ φ0ze{pkBT q, and Ω “ ω{pκ2Dq that

uniquely describe the system.

Using the above dimensionless groups, the dimensionless governing equations become

Bñ˘

Bt̃
“

1

1¯ β

«

B2ñ˘

Bx̃2 ˘ p1˘ γq
B

Bx̃

˜

ñ˘
Bφ̃

Bx̃

¸ff

, (5.12)

´
B2φ̃

Bx̃2 “ ρ̃ “ 1
2p1` γqñ` ´

1
2p1´ γqñ´ . (5.13)

The dimensionless initial and boundary conditions are

ñ˘px̃, 0q “
1

1˘ γ
, (5.14)
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φ̃p˘κ`, t̃q “ ¯Φ0 sinpΩt̃q, (5.15)

j̃˘p˘κ`, t̃q “ 0. (5.16)

Here the dimensionless ion flux is

j̃˘ “
j˘

κDn0
“ ´

1

1¯ β

«

Bñ˘
Bx̃

˘ p1˘ γq

˜

ñ˘
Bφ̃

Bx̃

¸ff

. (5.17)

5.3 APPROXIMATE SOLUTION

As discussed before, the system of equations given by Eq. 5.12–Eq. 5.16 is coupled and nonlinear

with significant disparity of length and time scales. In particular, accounting for ionic mobility and

valence mismatches complicates the numerical solution to the problem.1,2 Alternatively, using a

perturbation expansion, we can derive an approximate analytical solution that captures the system

behavior, especially for asymmetric cases (i.e., β ‰ 0 and/or γ ‰ 0).

5.3.1 Perturbation expansion in Φ0

In the limit of small potentials (Φ0 ! 1), the solution can be approximated by the power series

ñ˘px̃, t̃q “ ñ
p0q
˘ px̃, t̃q ` Φ0ñ

p1q
˘ px̃, t̃q ` Φ2

0ñ
p2q
˘ px̃, t̃q ` . . . (5.18)

φ̃px̃, t̃q “ φ̃p0qpx̃, t̃q ` Φ0φ̃
p1qpx̃, t̃q ` Φ2

0φ̃
p2qpx̃, t̃q ` . . . (5.19)

We substitute these expansions into the governing equations and initial/boundary conditions, and

collect like powers of Φ0. Below, we solve for the zeroth-order solution, the first-order solution, and

the time-average second-order electric field.

Zeroth-order

One can show that the zeroth-order solution is simply

ñ
p0q
˘ px̃, t̃q “

1

1˘ γ
, (5.20)

φ̃p0qpx̃, t̃q “ 0. (5.21)

Here, we have neglected the intrinsic zeta potential of the electrodes for simplicity. Therefore,

the zeroth-order solution is specified by the initial conditions of the problem. However, inclusion

of a zeta potential is straightforward; the zeroth-order solution can be replaced by an analytical

solution to the equilibrium problem with constant potential boundary condition. Nonetheless, we

should emphasize that this assumption affects only the solution at the Debye scale (close to the

electrodes), while we are particularly interested in the behavior of the system at the micron scale

(several Debye lengths to microns away from the electrodes).
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First-order

Using the zeroth-order solution, the first-order system of equations can be expressed as

Bñ
p1q
˘

Bt̃
`
Bj̃
p1q
˘

Bx̃
“ 0, (5.22)

´
B2φ̃p1q

Bx̃2 “ 1
2p1` γqñ

p1q
` ´ 1

2p1´ γqñ
p1q
´ , (5.23)

subject to the following boundary conditions:

φ̃p1qp˘κ`, t̃q “ ¯ sin pΩt̃q, (5.24a)

j̃
p1q
˘ p˘κ`, t̃q “ 0. (5.24b)

Here, the first-order ion flux j̃
p1q
˘ px̃, t̃q is

j̃
p1q
˘ px̃, t̃q “ ´

1

1¯ β

«

Bñ
p1q
˘

Bx̃
˘
Bφ̃p1q

Bx̃

ff

. (5.25)

We consider solutions of the form

ñ
p1q
˘ px̃, t̃q “ Im

”

n̂
p1q
˘ px̃qe

iΩt̃
ı

, φ̃p1qpx̃, t̃q “ Im
”

φ̂p1qpx̃qeiΩt̃
ı

. (5.26)

The complex amplitudes n̂
p1q
˘ px̃q and φ̂p1qpx̃q are governed by

iΩn̂
p1q
˘ “

1

1¯ β

«

B2n̂
p1q
˘

Bx̃2 ˘
B2φ̂p1q

Bx̃2

ff

, (5.27)

´
B2φ̂p1q

Bx̃2 “ 1
2p1` γqn̂

p1q
` ´ 1

2p1´ γqn̂
p1q
´ . (5.28)

The corresponding boundary conditions are

φ̂p1qp˘κ`q “ ¯1, (5.29a)

´
1

1¯ β

«

Bn̂
p1q
˘

Bx̃
˘
Bφ̂p1q

Bx̃

ff

˘κ`

“ 0. (5.29b)

Note that this problem has odd symmetry about x̃ “ 0 (n̂
p1q
˘ p0q “ φ̂p1qp0q “ 0). Substituting

Eq. 5.28 for the potential into Eq. 5.27 for the ion concentrations, we obtain an eigenvalue problem

from which one can derive the following solution for n̂
p1q
˘ px̃q

n̂
p1q
` px̃q “ A p´γ ` sq sinhpλ´x̃q `Bp1´ γq sinhpλ`x̃q, (5.30)

n̂
p1q
´ px̃q “ Ap1` γq sinhpλ´x̃q ´B p´γ ` sq sinhpλ`x̃q, (5.31)
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with

s “ 2iβΩ`
?

∆, (5.32a)

∆ “ 1´ 4βΩpiγ ` βΩq. (5.32b)

The eigenvalues λ˘ are

λ˘ “
1
?

2

´

1` 2iΩ˘
?

∆
¯1{2

. (5.33)

Substituting the solutions from Eq. 5.30 and Eq. 5.31 for the ion concentrations into Eq. 5.28 and

subsequent integration yields

φ̂p1qpx̃q “ Cx´Ap1` γq ps´ 1q
sinhpλ´x̃q

2λ2
´

´Bp1´ γq ps` 1q
sinhpλ`x̃q

2λ2
`

. (5.34)

The constants A, B, and C are determined by the boundary conditions at x̃ “ κ`:

A “
s´ 1

λ´κ` coshpλ´κ`qΓ
, B “

s` 1

λ`κ` coshpλ`κ`qΓ
, (5.35)

C “
1

κ`

ˆ

´ 1`Ap1` γqps´ 1q
sinhpλ´κ`q

2λ2
´

`Bp1´ γqps` 1q
sinhpλ`κ`q

2λ2
`

˙

. (5.36)

Here the parameter Γ is

Γ “ s2 ´ 2γs` 1´
1

2κ`

„

pγ ` 1qps´ 1q2pλ´κ`´ tanhpλ´κ`qq

λ3
´

´
pγ ´ 1qps` 1q2pλ`κ`´ tanhpλ`κ`qq

λ3
`



. (5.37)

Finally, having the zeroth and first order perturbation terms, the overall first-order solution

(denoted by superscript r1s) becomes:

ñ
r1s
˘ px̃, t̃q “ ñ

p0q
˘ px̃, t̃q ` Φ0ñ

p1q
˘ px̃, t̃q, (5.38)

φ̃r1spx̃, t̃q “ φ̃p0qpx̃, t̃q ` Φ0φ̃
p1qpx̃, t̃q. (5.39)

One can show that for the special case of symmetric electrolytes (i.e., β “ γ “ 0), this first-order

solution becomes identical to the solution provided by Hollinsworth and Saville.25

Note that many electrolytes have z` “ |z´| for which γ “ 0 (e.g., NaCl, NaOH, KCl, KOH,

etc.). For such electrolytes, ∆ “ 1´ 4β2Ω2 (cf. Eq. 5.32b). Then an interesting case occurs when

β2Ω2 “ 1
4 , yielding ∆ “ 0 and hence, λ` “ λ´. In this case a separate solution is necessary; please

see Sec. C.1 for details. Our independent numerical calculations (not shown) and our separate

analytical solution (Sec. C.1) indicate that the solution behavior does not qualitatively change

when γ “ 0 and β2Ω2 “ 1
4 , i.e., there is no special physical significance to this combination of

parameter values.
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Second-order

The second-order governing equations for ñ
p2q
˘ and φ̃p2q are

Bñ
p2q
˘

Bt̃
`
Bj̃
p2q
˘

Bx̃
“ 0, (5.40)

´
B2φ̃p2q

Bx̃2 “ 1
2p1` γqñ

p2q
` ´ 1

2p1´ γqñ
p2q
´ , (5.41)

where

j̃
p2q
˘ px̃, t̃q “ ´

1

1¯ β

«

Bñ
p2q
˘

Bx̃
˘
Bφ̃p2q

Bx̃
˘ p1˘ γqñ

p1q
˘

Bφ̃p1q

Bx̃

ff

. (5.42)

The boundary conditions are

φ̃p2qp˘κ`, t̃q “ 0, (5.43a)

j̃
p2q
˘ p˘κ`, t̃q “ 0. (5.43b)

One can show that the time-average of Eq. 5.40 over a period of the applied potential (i.e., t̃ “ 0

to 2π{Ω) yields:

Bxj̃
p2q
˘ y

Bx̃
“ 0,Ñ xj̃

p2q
˘ y “ constant (5.44)

with

xj̃
p2q
˘ y “ ´

1

1¯ β

«

Bxñ
p2q
˘ y

Bx̃
˘
Bxφ̃p2qy

Bx̃
¯ 1

4p1˘ γq
´

n̂
p1q
˘ Ēp1q ` n̄

p1q
˘ Êp1q

¯

ff

. (5.45)

Here xXy is the time-average of X, Êp1q “ ´Bφ̂p1q{Bx̃, and overbars denote complex conjugates,

e.g., Ēp1q “ conjpÊp1qq. All electric fields (E “ ´Bφ{Bx) are scaled by kBTκ{pzeq.

Note that Eq. 5.44 combined with the time-average of the ion flux boundary condition (i.e.,

xj̃
p2q
˘ y˘κ` “ 0) imply that xj̃

p2q
˘ y “ 0 everywhere. Therefore using Eq. 5.45 one can write

Bxñ
p2q
˘ y

Bx̃
“ ˘xẼp2qy ˘ 1

4p1˘ γq
´

n̂
p1q
˘ Ēp1q ` n̄

p1q
˘ Êp1q

¯

. (5.46)

On the other hand, the time-average of Eq. 5.41 becomes

´
B2xφ̃p2qy

Bx̃2 “ 1
2p1` γqxñ

p2q
` y ´

1
2p1´ γqxñ

p2q
´ y, (5.47)

which can be differentiated with respect to x̃ as

B2xẼp2qy

Bx̃2 “ 1
2p1` γq

Bxñ
p2q
` y

Bx̃
´ 1

2p1´ γq
Bxñ

p2q
´ y

Bx̃
. (5.48)

Then substituting Bxñ2
˘y{Bx̃ from Eq. 5.46 yields the following ODE for the time-average electric
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Figure 5.3: Comparison of the first-order approximate and full numerical solutions to the PNP equations.
(a, b, c) Time variations of the normalized ion concentrations (a, b) and potential (c) for the approximate
solution and numerical solution at different potentials (Φ0 “ 20, 10, 5, 1), evaluated at a fixed location of
κy “ 1 (i.e., one Debye layer away from the left electrode). (d) Normalized norm of the difference between
approximate and numerical solutions vs potential. Parameters: β “ ´1{3, γ “ ´1{3, κ` “ 100, Ω “ 0.01.

field:
B2xẼp2qy

Bx̃2 ´ xẼp2qy “ f, (5.49)

where

f “ 1
8

„

´

p1` γq2n̂
p1q
` ` p1´ γq2n̂

p1q
´

¯

Ēp1q `
´

p1` γq2n̄
p1q
` ` p1´ γq2n̄

p1q
´

¯

Êp1q


. (5.50)

At the boundaries x̃ “ ˘κ`, we assume xẼp2qy˘κ` “ 0 to close the problem. Note that this

assumption is consistent with all of our numerical solutions for single-mode sinusoidal applied

potentials.

The right hand side f in Eq. 5.49 is known from the first-order solution. However we could not

find an explicit expression for this complicated function in terms of the dimensionless parameters

and variables. Therefore, we numerically solve this ODE to find a semi-analytical approximation to

AREF. (Please refer to Sec. C.2 and Sec. C.3 for details of the corresponding numerical solution.)
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5.4 RESULTS AND DISCUSSION

In the following subsections, we present and discuss the results of first-order and second-order solu-

tions, focusing mainly on the impacts of β and γ. We also compare these low-potential approximate

solutions with the numerical solution to the full nonlinear PNP equations. For visual purposes, we

change the origin of the spatial domain from midplane to the left electrode, i.e., y “ x ` ` with

y P r0, 2`s.

5.4.1 First-order solution

Fig. 5.3 compares the first-order (Eq. 5.38 and Eq. 5.39) and numerical solutions to the ion concen-

trations and electric potential at different voltages. (Detail of the numerical solution algorithm are

provided elsewhere.1) The values are normalized by Φ0 to render the analytical solution indepen-

dent of the applied potential. Time variations of excess positive and negative ion concentrations

and electric potential are depicted in Fig. 5.3(a)–(c) at a certain location of κy “ 1 (i.e., at the edge

of the Debye layer). The highly multimodal numerical solutions approach the analytical solution

by decreasing the applied potential to Φ0 „ 1. As expected, the first-order analytical solution is

sinusoidal, oscillating at the same frequency as the applied potential (i.e., Ω), with its amplitude

and phase lag depending on location and other dimensionless groups. Fig. 5.3(d) quantitatively

compares the numerical and analytical solutions in the time and space domains. The integral norm

of the difference, defined as

∥∥∥X̃r1s ´ X̃N
∥∥∥ “ 1

p2κ`qp2π
Ω q

ż 2π
Ω

0

ż 2κ`

0

∣∣∣X̃r1s ´ X̃N
∣∣∣
ỹ,t̃
dỹdt̃, (5.51)

is plotted against Φ0, where the superscripts r1s and N denote the first-order and numerical solu-

tions, respectively, and X “ n˘, φ. Note that the observed convergence rate is OpΦ0q as expected

for this first-order approximation.

The effect of β on the first-order solution is demonstrated in Fig. 5.4 for γ “ 0. The excess

ion concentrations, free charge density, and electric potential are shown vs position at a certain

time of Ωt̃ “ π{2 (i.e., when the applied potential reaches to its peak magnitude). For symmetric

electrolytes (β “ 0, thick black curves) the ion concentrations reach to the bulk values after a few

Debye layers. However, for β ‰ 0, where there is a mismatch between the mobilities of ions, a

non-monotonic behavior is observed. The ion concentrations oscillate spatially with an amplitude

decaying to zero at the midplane (Fig. 5.4(a) and (b)). (Please see the supplementary animated

movie for the time variations of the spatial distributions.:) Far away from the electrode (insets

in Fig. 5.4(a) and (b)), the negative and positive ions appear to have the same distribution and

dependency on the β value. But an analysis of the free charge density distribution (ρr1s) reveals a

systematic difference (Fig. 5.4(c)). For a symmetric electrolyte the free charge density approaches

to zero after a few Debye layers. For β ‰ 0 however, ρr1s spatially oscillates to become identically

zero at the midplane. Note that the free charge density is three orders of magnitude smaller
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Figure 5.4: Effect of β on the first-order solution. Spatial variations of the normalized positive and negative
ion concentrations (a, b), free charge density (c), and potential (d) for different β, evaluated at a fixed time
of Ωt̃ “ π{2. The black curves in all figures correspond to β “ 0. Note that the insets in (a) and (b) look
very similar but are quantitatively distinct. Parameters: γ “ 0, κ` “ 100, Ω “ 0.01.

than the nominal ion concentrations. However it was shown that, despite its small magnitude,

it yields electrophoretic forces (AREF-induced) that are several orders of magnitude higher than

gravitational and colloidal forces in electrokinetic systems.1 Finally, Fig. 5.4(d) shows the impact

of β on the electric potential distribution. Regardless of β, a considerable portion of the potential

drop occurs within a few Debye layers from the electrodes. The screening strength of the Debye

layer seems to increase for β ‰ 0, further dropping the potential toward zero in the bulk.

Fig. 5.5(a) shows the impact of γ on the free charge density distribution for β “ 0 and ´1{2.

We consider the most common values of γ “ ´1{3, 0, 1{3 which correspond to 1–2, 1–1, and 2–1

electrolytes, respectively. Interestingly, when β “ 0, γ has no effect on the spatial distribution of

free charge density. Similar to the results illustrated in Fig. 5.4(c), ρr1s approaches to zero within a

few Debye layers away from the electrodes. When β ‰ 0, the valence mismatch becomes important.

For this representative example shown in Fig. 5.5(a), γ can even qualitatively change the spatial

oscillation of the distribution, e.g., dashed red curve (γ “ ´1{3) changes sign (charge reversal) near

the midplane which does not happen for the other two γ cases. Note that depending on the applied
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Figure 5.5: Effects of γ and β on the first-order solution. (a) Spatial variations of the normalized free
charge density for different γ and two different β values of 0 and ´1{2, evaluated at a fixed time of Ωt̃ “ π{2.
The arrow points to the tiny charge reversal that occurs for β “ ´1{2, γ “ ´1{3 near the midplane. (b)
Normalized Free charge density vs β for different γ values, evaluated at fixed time and location of Ωt̃ “ π{2
and κy “ 50. Parameters: κ` “ 100, Ω “ 0.01.

frequency and the electrolyte type, multiple charge reversals can occur. The results presented here

serve as a representative example. (Please see Hashemi Amrei et al.2 for a detailed analysis of

charge reversals.) Additionally, γ “ 0 seems to provide the maximum nonzero free charge density

in the bulk. A notable observation in Fig. 5.4(c) and (d) is that | β | (not β) governs the system

behavior. For example, cases of β “ ´1{3 (D´ “ 2D`) and β “ 1{3 (D` “ 2D´) yield the same

results. As shown in Fig. 5.5(b), this behavior breaks when γ ‰ 0. At fixed location of κy “ 50

and time of Ωt̃ “ π{2, the free charge density is plotted vs β for different γ values. We notice that

for γ “ 0, it is the absolute value of β that determines the system behavior, consistent with the

results in Fig. 5.4(c). But when γ ‰ 0, the corresponding curves of positive and negative γ are

mirrored about β “ 0, and the system is governed by the product βγ. Moreover, for β “ 0, the free

charge density at the micron scale is zero for all γ values, in accordance to the spatial distributions

in Fig. 5.5(a).

5.4.2 Second-order solution

The semi-analytical AREF from Eq. 5.49 is compared to that obtained from numerical solution

to the PNP equations in Fig. 5.6 at different applied potentials. Hereafter, we refer to these two

AREFs as semi-analytical (xẼysA) and numerical (xẼyN), respectively. The AREF is normalized

by Φ2
0 to make the semi-analytical AREF independent of the applied potential. (Note that xẼysA “

Φ2
0xẼ

p2qy.) Fig. 5.6(a) shows the comparison for Ω “ 0.001. We realize that as Φ0 gets smaller,

the numerical AREF approaches to the semi-analytical one. More importantly at the micron

scale, which is of interest to most researchers, the semi-analytical solution accurately captures the

complicated spatial structure of AREF. As a matter of fact, the curves of different Φ0 collapse

under appropriate normalization. This behavior is robust, even at higher frequencies (Fig. 5.6(b))
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Figure 5.6: Comparison of the second-order approximate (semi-analytical) and numerically calculated
AREF (i.e., time-average electric field, xẼy). Spatial variations of the normalized AREF for approximate
solution and numerical solution at different potentials (Φ0 “ 10, 7, 5, 1) and for Ω “ 0.001 (a) and Ω “ 0.01
(b). Parameters: β “ ´1{3, γ “ ´1{3, κ` “ 100.

Figure 5.7: Effect of β on the second-order approximate (semi-analytical) AREF (i.e., time-average electric
field, xẼy) for γ “ 0 (a, b) and γ “ ´1{3 (c, d). The black curves in all figures correspond to β “ 0.
Parameters: κ` “ 100, Ω “ 0.01.

67



where AREF has multiple sign changes. In other words, the semi-analytical solution correctly

predicts the AREF sign and zeros. Therefore, instead of the complicated numerical solution to

the PNP equations, researchers can safely use this approximation to find the direction of AREF-

induced electrophoretic force. (We will discuss these issues in more detail; cf. Fig. 5.9 and the

corresponding discussion.)

We have analyzed the impact of β on the semi-analytical AREF in Fig. 5.7 when γ “ 0 and

´1{3. For γ “ 0, Fig. 5.7(a) and (b) show a non-monotonic β dependence of the AREF peak

magnitude. By increasing the | β | from 0 (identically zero AREF) to 1, AREF peak magnitude

at the micron scale first ascends to a maximum and then drops. Notably, when | β |Ñ 1 the

spatial structure is significantly affected and the peak disappears (curves a and f in Fig. 5.7(a)

and (b), respectively). Similar observations were reported for the numerical AREF calculation.2

The problem gets more intricate for a nonzero γ. A representative case of γ “ ´1{3 is depicted

in Fig. 5.7(c) and (d). When β ă 0, changing the γ from 0 to ´1{3 slightly affects the AREF

distribution, decreasing its magnitude (cf. curves in Fig. 5.7(a) and (c)). However, when β ą 0,

a qualitative difference is observed between cases of γ “ 0 and ´1{3 (e.g., compare j curves in

Fig. 5.7(b) and (d)). As pointed out by Hashemi Amrei et al.,2 when the faster ion has a smaller

valence (and vice versa), there will be a competition between ionic mobility and valence mismatches

to determine the sign of AREF. In the context of this study, the competition exists when βγ ă 0.

When βγ ą 0, the both sources of asymmetry work in accord to determine the AREF sign. Another

notable observation is that when β “ 0, regardless of γ, AREF is identically zero at the micron

scale.

It would be helpful to compare the AREF for actual electrolytes of different pβ, γq combinations

(Fig. 5.8). The diffusivity of an ion can be expressed in terms of its drag coefficient (λi) as26,27,25

Di “
kBT

λi
, λi “

NAe
2 | zi |

Λ8i
, (5.52)

where Λ8i is the limiting conductance of the ion and NA is the Avogadro’s number. Limiting

conductance data of different ions can be found in physical chemistry textbooks.96 NaOH has the

highest negative β value (D´ ą D`) among the selected electrolytes and provides the maximum

positive peak. As β gets closer to zero, the AREF peaks at lower magnitudes; e.g., compare NaCl

with β “ ´0.21 to NaOH with β “ ´0.6. As expected, electrolytes with positive β (HCl, β “ 0.64)

have negative peaks. An interesting case would be KCl with a nearly zero ionic mobility mismatch

(β “ ´0.02) for which the AREF is nearly zero. However, recall that the β effect on AREF

peak magnitude is non-monotonic (Fig. 5.7), a behavior that was explained at length by Hashemi

Amrei et al.2 Using a different set of dimensionless parameters (e.g., δ “ D´{D` instead of β as

a measure for ionic mobility mismatch), they showed that δmax for which AREF has its maximum

peak depends on Φ0. By increasing Φ0, δmax gets indefinitely closer to 1 (equivalently, βmax gets

closer to 0). Therefore, at high applied potentials, KCl may have a higher peak than NaOH. It is

worth mentioning that for the dimensionless parameters used in the present study, the βmax is not
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Figure 5.8: Spatial variations of the second-order approximate (semi-analytical) AREF (i.e., time-average
electric field, xẼy) for different electrolytes. Dimensional parameters: ` “ 25 µm, ε “ 78, T “ 298.15 K,
n8 “ 6.022ˆ 1021 m´3 (10´5 M), f “ 100 kHz.

governed solely by Φ0. Finally, electrolytes with valence mismatch (γ ‰ 0) show intriguing behavior

(CaCl2 and H2SO4). As discussed in discussion of Fig. 5.7, a balance between asymmetries due to

β and γ determines the AREF distribution.

Finally, we comprehensively analyze the collapse of numerical AREF curves for different po-

tentials in Fig. 5.9. Fig. 5.9(a) shows the numerical AREF distribution for different voltages

normalized by their corresponding peak values (dashed curves of different color intensities), along

with the semi-analytical AREF plotted as solid. Each color corresponds to a different dimensionless

frequency (Ω). We notice that by increasing the Ω, a better collapse is obtained. Additionally, the

ratio of numerical to semi-analytical AREF peak is plotted versus Φ0 in Fig. 5.9(b) for different Ω.

Interestingly, as Ω increases, the ratio decays to nearly 1, even at very high voltages. We perform

a similar analysis by changing the κ`. We find that collapse of data improves by increasing the

κ` value (Fig. 5.9(c)). Moreover, semi-analytical solution appears to accurately predict the AREF

peak magnitude at high κ` (Fig. 5.9(d)). Therefore, we conclude that at high Ω and κ` values,

semi-analytical solution accurately captures 1) the spatial structure of AREF (better collapse), and

2) the AREF magnitude.

It appears that regardless of the system properties, there is a ‘threshold’ Φ0 above which the

numerical AREF curves do not collapse, and this threshold tends to increase with Ω or κ`. At

low applied potentials and fixed other system properties, all AREF distributions collapse onto the

semi-analytical solution; but as Φ0 passes the threshold potential, the shape of AREF at the micron

69



Figure 5.9: Collapse of AREF (i.e., time-average electric field, xẼy) spatial distribution at different voltages.
Dashed (with different color intensities) and solid curves in (a, c) show the numerical AREF at different
potentials and semi-analytical AREF, respectively. (a, b) Collapse of AREF curves for different Ω values and
κ` “ 400. (c, d) Collapse of AREF curves for different κ` values and Ω “ 5ˆ 10´3. Parameters: β “ ´1{3,
γ “ 0.

scale starts deviating from the semi-analytical solution. For sufficiently large Ω or κ` values, this

threshold potential is simply beyond the considered Φ0 range. However, the underlying physics

behind the collapse of the AREF distributions and its sensitivity to Ω and κ` remain unclear.

Parameters Ω and κ` can be combined into one dimensionless parameter as

LD “
`D
`
“

d

1

Ωpκ`q2
“

a

D{ω

`
. (5.53)

Hashemi Amrei et al.2 showed that this dimensionless diffusive length scale governs the location of

peak AREF for a wide range of parameter space. Note that small LD corresponds to large Ω and

κ`. Hence, the semi-analytical solution can be used to predict the both shape and magnitude of

AREF when LD ! 1. This is extremely important since for most practical cases in electrokinetics

LD is indeed very small.
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5.5 CONCLUSIONS

Following the discovery of AREF by Hashemi Amrei et al.,1 we have demonstrated by a new ap-

proach that a steady electric field may be induced by an applied oscillatory potential. We have

developed an analytical approximate solution to the PNP equations at low applied potentials.

Specifically, we focused on the impacts of ionic mobility and valence mismatches to find approxi-

mations to the one-dimensional AREF between parallel electrodes.1 In this regard, we have shown

that the second-order perturbation solution corroborates the existence of AREF. Interestingly, at

sufficiently small LD “
a

D{ω{` (dimensionless diffusive length scale), this simple approximate

solution accurately predicts both the complicated spatial structure and the magnitude of AREF,

even at extremely high potentials. We emphasize that for most electrokinetic systems LD ! 1.

Hence, researchers can safely use this approximate solution to calculate AREF. It is significant,

considering the extremely complicated alternative of finding AREF via numerical solution to the

full nonlinear PNP equations.
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Chapter 6

Non-Antiperiodic Force Excitations in

Isotropic Media Yield Net Motion of

Macroscopic Objects

Overview

It is well known that application of an oscillatory driving force to objects placed
in an anisotropic medium gives rise to the so-called “ratchet” effect, where the
spatial asymmetry in the resistance to motion yields net drift in one direction.97

Less well known is that application of an oscillatory excitation with zero-time
average but temporal asymmetry can also yield net drift, even in isotropic me-
dia.98,99 To date, this type of ‘externally induced’ ratchet has been considered in
the context of point particles,99–101 as well as optical102–105 and quantum106,107

lattice systems. Here, we use both theory and experiment to extend the concept
of externally induced ratchets to macroscopic objects. Two exemplary systems
are considered: solid centimeter-scale objects placed on a uniform flat surface
made to vibrate laterally, and charged colloidal particles in water placed between
parallel electrodes with an applied oscillatory electric potential. In both cases,
net motion is observed if the driving force has dual frequency modes that are the
ratio of odd and even numbers (e.g., 3 Hz and 2 Hz). Furthermore, the direction
of motion in each case is reversed by flipping the sign of the applied waveform,
for example by swapping which electrode is powered and grounded. We provide
generalized theoretical arguments indicating that non-antiperiodic force excita-
tions will yield net motion in isotropic media, provided there is a non-linear
component in the equation of motion, and we show how similar ratchet-like re-
sponses occur in other systems involving nonlinearities like non-Newtonian fluids
and non-Hookean springs.
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Figure 6.1: Experimental evidence for ratchets in the solid-solid friction problem. a, top:
Schematic diagram of the system; an object is placed in a test tube that is glued to the diaphragm of a speaker.
A dual-mode sound wave is fed to the speaker, which in turn excites the tube as fptq “ `

2 rsinpωtq` sinpαωtqs
(ω{2π “ 50 Hz for the present results). Please see Methods for details. a, bottom: Time lapses of the object
dynamics for α “ 1, 2, and 3{2. b: Object location versus time for different α values. Typical uncertainty
(standard deviation of at least three trial replicates) was „ 1 mm.

6.1 SOLID-SOLID FRICTION

We designed a simple experiment to demonstrate the existence of a ratchet-like behavior in a solid-

solid friction problem (Fig. 6.1a). An object is placed in a test tube attached perpendicularly to

a TV speaker. A dual-mode digital sound wave is fed to the speaker, ensuing a periodic back and

forth movement of the diaphragm, which, in turn, induces a dual-mode lateral vibration of the

test tube, fptq “ `
2 rsinpωtq ` sinpαωtqs (with α as a rational number). Note that the tube remains

stationary on average, i.e., the excitation f has a zero time-average, xfy “ 0. (Please see Methods

for details.) Intuitively, the object is expected to either stick to, or slip on, the surface and move in

a periodic fashion, but remain stationary on average. We demonstrate, however, that this intuition

is not necessarily true. As shown in Fig. 6.1a (time lapses), for α “ 1, the object does not move

on average, and xvy “ 0 (the object velocity), while it experiences a net drift for α “ 2 and 3
2 .

We further monitored the object’s behavior for several different α values (Fig. 6.1b). It appears

that depending on α, the system may indeed act as a ratchet. Note that here, unlike the classical

Feynman–Smoluchowski ratchet, the system domain has no asymmetry. Instead, the phenomenon

stems from a certain time-symmetry break in the excitation. We provide an explanation for this

observation.

The dimensionless equation of motion can be expressed as (cf. Fig. 6.2a)

9v “

$

&

%

:f if v “ 9f and | :f |ă λs,

´λksgnpv ´ 9fq otherwise,
(6.1)
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Figure 6.2: Dynamic response of an object placed atop a solid surface (solid-solid friction)
to a dual-mode displacement excitation of the surface fptq “ 1

2 rsinptq ` sinpαtqs (dimensionless
form). a: schematic diagram of the problem. b, c: representative solutions to the harmonic object and

surface velocities (v and 9f , respectively) versus time, for different α values. d: object location, x, versus
time for different α values. The case αrp denotes the response due to the reverse polarization excitation
fptq “ ´1

2 rsinptq ` sinpαtqs. e: absolute value of the harmonic time-average object velocity, | xvy |, versus α.
Here, time is scaled by the inverse angular frequency 1{ω, and the dimensionless period is 2τ “ 2π{gcdp1, αq,
where gcdp1, αq denotes the greatest common divisor of 1 and α. The solution is considered ‘harmonic’ if it is
invariant between different periodic intervals (i.e., we let tÑ8). Dimensionless parameters: λs “ 0.5, λk “
0.25.

Here, length and time dimensions are scaled by ` (vibration amplitude) and 1{ω (inverse base

angular frequency), λs “ µsg{`ω
2 and λk “ µkg{`ω

2 are the dimensionless static and kinetic friction

coefficients, and fptq “ 1
2 rsinptq` sinpαtqs is the dimensionless dual-mode vibration. Therefore, the

system behavior is governed by three dimensionless parameters α, λs, and λk. We focus on α.

Representative numerical solutions to the object velocity are depicted in Fig. 6.2b,c. For α “ 1

and 2, the object slips back and forth, and changes direction whenever v “ 9f (Fig. 6.2b). However,

Fig. 6.2c shows an example where a significant stick-slip transition occurs, which tremendously

complicates the analysis. Nonetheless, these representative numerical results indicate the existence

of ratchets (i.e., xvy ‰ 0) for specific α values (cf. α “ 2 and 5
4 in Fig. 6.2b,c). Below, we use a

symmetry argument to explicate the observed phenomenon.

The system is spatially symmetric, and if v is a unique solution to the problem, then ´v

would be the unique solution to the problem with the reverse polarization excitation ´f , i.e.,

f Ñ ´f ñ v Ñ ´v; that is, the functional vptq “ ψpf, tq is odd in f . Now consider antiperiodic

excitations, for which fpt ` τq “ ´fptq; in other words, for a given periodic interval t P r0, 2τ s, f

in the second half of the period (t P rτ, 2τ s) is the negative of f in the first half (t P r0, τ s). We

prove that for antiperiodic excitations, the time-average of the harmonic solution, xvy, is zero: one

can write

vpt` τq “ ψpf, t` τq “ ψp´f, tq “ ´vptq ñ vpt` τq “ ´vptq. (6.2)

Then, taking the time-average of the latter equality, and noting that a time lag should not alter
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the time-average solution (i.e., xvpt ` τqy “ xvptqy), we get: xvptqy “ ´xvptqy ñ xvptqy “ 0. The

counterintuitive observation is that if f is non-antiperiodic, xvy might be nonzero and the object

drifts. As a matter of fact, the drift happens for most non-antiperiodic excitations. With the

dual-mode excitation, f is antiperiodic if α, in its most simplified form, can be expressed as {odd

integer}/{odd integer} (e.g., α “ 1, Fig. 6.2b). For antiperiodicity, we need sinpt` τq ` sinpαpt`

τqq “ ´rsinptq ` sinpαtqs, which implies that τ “ p2j ` 1qπ and ατ “ p2k ` 1qπ (the phase lags

must be odd multiples of π), and consequently, α “ p2k` 1q{p2j` 1q. For α “{even integer}/{odd

integer} or {odd integer}/{even integer}, f is non-antiperiodic (e.g, α “ 2, 5
4 , Fig. 6.2b,c).

Let us now discuss the numerical results in more detail. Fig. 6.2d shows the time evolution

of the object location, x, for different α values. When α “ 1 and 5
3 , the object’s time-average

location remains constant through time. Note that we are interested in the harmonic behavior,

and hence, disregard the transient drift of the object in the first few cycles. With non-antiperiodic

excitations, the object moves, on average, to the left and right for α “ 2, 5
4 (xvy “ dxxy{dt ă 0) and

4
3 ,

3
2 (xvy ą 0), respectively. Furthermore, consistent with the odd property of the model problem,

α “ 2rp yields an object velocity equal to that of α “ 2, but in the opposite direction (red curves

in Fig. 6.2d). Here, αrp denotes the reverse polarization excitation f “ ´1
2 rsinptq ` sinpαtqs (i.e.,

with the negative sign).

For all the models considered here, α “ 2 provides the most significant ratchet effect (e.g., here,

the drifting velocity is the highest for α “ 2). A natural question is that what happens if α is

very close to 2, but it is in the form {odd integer}/{odd integer}, and so, is expected to provide

a zero time-average? A representative result is provided in Fig. 6.2d for α “ 49
25 « 2. The object

goes through a considerable oscillation but remains in the same location on average. Note that the

period of the solution for α “ 49
25 is 25 times longer than that for α “ 2. The object moves, for half

of its period, as if α “ 2 (the descending region of the curve), and reverses direction for the rest of

the period, and moves as if α “ 2rp (the ascending region). In other words, the descent and ascent

of the α “ 49{25 curve resemble the cases of α “ 2 and 2rp, respectively.

Fig. 6.2e shows the absolute time-average velocity of the object, | xvy |, for about 400 different α

values between 0 and 4. We notice that | xvy |“ 0 („numerical noise) for all α “{odd integer}/{odd

integer} (i.e., antiperiodic). However, when the excitation is non-antiperiodic (filled and empty

circles in Fig. 6.2b), | xvy | can be either zero or nonzero. It appears that for antiperiodic excitations,

the zero-frequency components of the solution cancel each other out, yielding an overall zero time-

average. But, they do not necessarily cancel out when the excitation is non-antiperiodic. However,

a seemingly simple question is left unanswered: what determines the direction of the movement, i.e.,

xvy ą 0 versus xvy ă 0? Our theory explains why the time-average solution is zero for antiperiodic

excitations. But it does not provide sufficient insights on what governs the observed net movement

for non-antiperiodic excitations. A proper answer would rely on an analytical analysis of the

corresponding differential equations.
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30µm

x
−` `0

x
−` `0

Figure 6.3: Ratchets in the induced steady electric field between two parallel electrodes, placed
at ˘`, and under a dual-mode potential excitation φptq “ 1

2φ0psinpωtq ` sinpαωtqq. a (Numerical

solution): spatial distribution of the dimensionless time-average electric field, xẼy “ 2`xEy{φ0, at the
micron scale, for α “ 1, 2, and 2rp. The case αrp denotes the response due to the reverse polarization
excitation (the powered and grounded electrodes are swapped). Parameters: φ0 “ 10φT , ω{2π “ 50 Hz,
2` “ 30 µm, 1 mM NaOH solution. b, c (Experimental evidence): electrophoresis of charged colloidal
particles due to asymmetric rectified electric field (AREF). b: cluster of the colloids at t “ 0 (no field) and
t “ 2 min (equilibrium conditions) for α “ 1, 2, and 2rp. The black arrows show the drift direction of the
colloids. c: the corresponding histograms of the percent particle count after t “ 2 min. Parameters: φ0 “ 4
V, ω{2π “ 2 Hz, 2` “ 270 µm, 0.01 mM NaOH solution, 2–µm sulfonated polystyrene particles.

6.2 ELECTROKINETICS

An interesting implication of our theory is in nonlinear electrokinetics. Recent numerical, the-

oretical, and experimental study established that a single-mode sinusoidal potential induces a

nonzero time-average electric field within the liquid, referred to as asymmetric rectified elec-

tric field (AREF).1,2,5 Now we ask what happens if we apply a dual-mode potential φptq “
1
2φ0psinpωtq ` sinpαωtqq to the system?

Consider a 1-1 binary electrolyte confined between two planar, parallel, electrodes at x“˘`.

A dual-mode potential φptq (or ´φptq for the reverse polarization) is applied on the electrode at

x “ ´`, and the electrode at x “ ` is grounded. Fig. 6.3a represents the numerically computed

AREF, xEy. The case of α “ 1 illustrates the standard AREF (i.e., single-mode potential), which

is antisymmetric in space, and is identically zero at the midplane. Such a spatial structure indicates

that swapping the powered and the grounded electrodes, which is equivalent to applying the reverse

polarization potential ´φptq, does not alter the system behavior. In fact, the induced AREFs due

to φptq and ´φptq would be superimposed. When α “ 2, a dissymmetric AREF is induced. Here,

swapping the powered and grounded electrodes does alter the system; notably, the direction of

AREF at the midplane changes (α “ 2 and 2rp in Fig. 6.3a). The existence of AREF ratchets is

verified by our experimental observations. As demonstrated in Fig. 6.3b, when α “ 2, swapping

the powered and grounded electrodes reverses the AREF-induced drift direction of the charged

colloids. Please see Methods for details of the electrokinetic experiments.
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displacement f(t) force F0f(t) displacement f(t)

Figure 6.4: Existence of ratchet-like behavior in various nonlinear dynamical systems. Each
triplet figure panel corresponds to one problem. a, b, c: schematic diagrams of various nonlinear dynamical
systems under a dual-mode excitation fptq “ 1

2 rsinptq`sinpαtqs, with their dimensionless governing equations.
a: an object subject to the drag of a non-Newtonian liquid film on an excited surface. b: an object subject
to a force excitation and a nonlinear drag. c: a pair of asymmetric objects connected by a nonlinear spring,
and subject to the drag of a Newtonian liquid film on an excited surface. d, e, f : numerically evaluated
harmonic solutions (v versus t) of the corresponding systems for different α. g, h: time evolution of the
object location (x versus t) for different α. i: time-average dimensionless distance between the two masses
for different α. Dimensionless parameters: a, d, g: λ “ 0.5, n “ 1.5; b, e, h: F0 “ 1, γ “ 1; c, f, i:
λ` “ 10, λ´ “ 0.1, γ “ 0.1, ε “ 0.1.

6.3 OTHER EXAMPLES

The described concept can be extended to a wide range of physical systems (Fig. 6.4). We could

replace the solid-solid friction with the drag of a non-Newtonian fluid film (Fig. 6.4a). Another

example would be an object subject to a dual-mode periodic force excitation and a nonlinear drag

Gpvq (Fig. 6.4b). Note that we are interested in nonlinear drag terms that do not favor a direction

over another; in other words, G is an odd function of v. We used a variety of odd nonlinear drags

such as Gpvq “ v3, sgnpvq, |v |v, sinh pvq, . . . and observed the same qualitative behavior. A slightly

more complex system is demonstrated in Fig. 6.4c; a pair of asymmetric masses are connected by

a nonlinear spring, and placed atop an excited surface wetted with a Newtonian fluid film (linear

shear). Similar to the system in Fig. 6.4b, we could use various odd nonlinear spring forces. The

considered spring force model imposes two ‘solid walls’ at ∆x “ 1 and ∆x “ ´1. Physically, the
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model ensures that the spring does not elongate to more than double of its resting value, and it

does not compress to negative values. We note that when α “ 1, time-average of ∆x “ x` ´ x´

is zero. This indicates that the average distance between the two masses remains equal to the

resting value. However, x∆xy ‰ 0 for α “ 2, 3
2 ; for the given example, the masses stay farther

apart than their resting condition (x∆xy ą 0). Future works include an in-depth analysis of the

aforementioned problems.

We emphasize that our theory is not limited to the dual-mode excitations. Any zero-time-

average, non-antiperiodic, excitation (e.g., triangle waves, pulses, etc.) can induce a ratchet-like

behavior in the systems analyzed here. Our study extends the current theory of ratchet dynamics

to a variety of nonlinear problems, and offers a readily accessible method of investigating ratchets

in macroscopic systems. Future work includes further elucidation of the underlying physics and its

broad implications.

6.4 METHODS

Numerical solutions. The following loop solves the solid-solid friction problem (Fig. 6.2). Ini-

tially, the object is resting on the surface, i.e., v “ 9f . Then,

i) v “ 9f as long as | :f | ă λs.

ii) Once | :f | ą λs, slipping starts: 9v “ ´λksgnpv ´ 9fq, until v “ 9f again.

iii) Go to step ii.

The time t is updated in each step as well. Whenever t increases by 2τ is considered a cycle of

the solution. We repeat the cycles until a harmonic solution is achieved. Let vkptq with t P r2pk ´

1qτ, 2kτ s denote the solution in the kth cycle. The solution is considered harmonic if ‖vk´vk´1‖ ă ε,

where ε is a tolerance. We also check |xvky ´ xvk´1y| ă ε.

The toy problems in Fig. 6.4 are solved by the Runge–Kutta 4th order method. The same

criteria is used for the harmonic solution check. Details of the numerical solution to the non-

linear electrokinetic problem (Fig. 6.3a), and the corresponding consistency checks are provided

elsewhere.1,2

Solid-solid friction experiments. An object (a wire splice connector) is placed in a glass

test tube of length 15 cm and outer diameter 18 mm (IWAKI TE-32 PYREX), that is glued to

the diaphragm of a used television speaker (R “ 8 Ω). A dual-mode sound wave, created by

MATLAB, enters a generic class D amplifier. The amplified current is then fed to the speaker

as an excitation. The sound actuator behaves linearly, i.e., its movement is linearly proportional

to the passing current. Harmonic oscillations of the diaphragm translate to a one-dimensional

displacement excitation of the tube. Note that the tube geometry restricts the object to move in

one dimension. A digital camera is used to record the object dynamics at 60 frames per second.

Note that the passing current, and consequently, the displacement amplitude, are kept sufficiently
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low to ensure a linear behavior of the sound actuator. As a result, the movement of the tube itself

is not easily discernible.

Electrokinetic experiments. The experimental setup consists of a microchannel constructed

using two flat sheets of polydimethylsiloxane (PDMS), that were separated by two 16 µm thick 304

stainless steel plates spaced 270 µm apart. (In Fig. 6.3b, the electrodes (stainless steel plates) are

270 µm apart, the depth of the cell is 16 µm (through the page), and the point of view is through

the PDMS sheet.) The channel had a total length of 15 mm. Two polyethylene tubes of 0.58 mm

inner diameter were inserted into the top PDMS layer to introduce and remove the fluid. Copper

tape was used to connect the stainless-steel sheets to the powered and grounded wires. The device

was then sealed using epoxy around the edges and fixed in place over a glass substrate using clamps.

A 0.01 mM NaOH solution (conductivity, σ “ 2 µS{cm) was prepared using DI water (18.2

MΩ.cm), and 2–µm diameter fluorescent sulfonated polystyrene particles were added at a volume

fraction of 1ˆ10´4 to the solution. The colloidal suspension was washed three times by centrifuga-

tion and resuspension, and then injected into the microchannel using a syringe pump (PHD 2000,

Harvard apparatus). Once the flow inside the microchannel was stable and the particle density

appeared uniform, a function generator (Agilent 33220A) was used to apply a sum modulated

field of 4 Vpp (Volts peak-to-peak) at 2 Hz and 4 Vpp at 4 Hz. A digital camera mounted on an

optical microscope (Leica DM2500 M) was used to record the particle behavior at 15 frames per

second. After two minutes, the field was removed and the channel was then flushed for a minute.

The powered electrode was changed by physically exchanging the wire leads on the device, upon

which the same field was then applied. For the unimodal case (α “ 1), an 8 Vpp at 2 Hz field was

applied using the same procedure. Furthermore, when α “ 1, swapping the powered and grounded

electrodes had no significant impact on the system behavior.
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Chapter 7

Multimodal Asymmetric Rectified

Electric Fields and Long-Range

Symmetry Breaking in Electric Field

Orientation

Overview

We report the existence of a spatially dissymmetric steady field within liquids
between parallel electrodes powered by two-mode oscillatory electric potentials
(frequencies f and αf). Our results indicate that for specific values of α (i.e.,
ratio of the two frequencies), the induced steady field is dissymmetric, with a
nonzero value at the midplane. An intriguing implication is then that swapping
the powered and grounded electrodes alters the system behavior, an observation
at odds with the classical understanding of the electrokinetics. We further gen-
eralize our theory by demonstrating that the dissymmetric field occurs for all
classes of zero-time-average (no dc bias) periodic potentials (e.g., triangular and
rectangular pulses). The discovery of such steady field can tremendously change
the interpretation, design, and applications of the electrokinetic systems.
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7.1 INTRODUCTION

Application of ac electric potentials to liquids is a ubiquitous element of electrokinetic systems,

including induced-charge-electrokinetics (ICEK),18,19 ac electroosmosis (ACEO),20–23 and electro-

hydrodynamic (EHD) manipulation of colloids.8,10–12 Over the last few decades, a great body of

research has focused on evaluating the dynamic response of liquids to ac polarization, in order

to find the induced electric field and ion concentrations within the liquid.67,32,75 However ion-

containing liquids respond to ac polarizations in intricate ways, especially when the dissolved ions

have unequal mobilities. Recently, Hashemi Amrei et al. established the existence of an induced,

long-range, steady field in liquids, referred to as asymmetric rectified electric field (AREF).1,2,5 A

perfectly sinusoidal potential induces an electric field with a nonzero time-average, a zero-frequency

component, as a direct result of the nonlinear effects and ionic mobility mismatch. AREF was

shown to provide qualitative explanations for several long-standing questions in electrokinetics and

significantly change the interpretation of experimental observations.1,3,4

For a sinusoidal applied potential of amplitude φ0 and angular frequency ω, the one-dimensional

AREF between parallel electrodes is antisymmetric with respect to the midplane.1 Depending on

the applied frequency, electrolyte type, and electrode spacing, AREF may change sign several times

within the liquid.2 However, it remains identically zero at the midplane and at the electrodes. Note

that the antisymmetric shape indicates that the AREF does not change upon swapping the powered

and the grounded electrodes, or introducing any time/phase lag to the applied potential.

We demonstrate here that the aforementioned characteristics of AREF are not necessarily hold

for other classes of zero-time-average (no dc bias) periodic potentials. Specifically we focus on

two-mode potentials, and show that for certain conditions, the induced AREF is dissymmetric (as

different from antisymmetric).

7.2 ELECTROKINETIC MODEL

Consider a dilute binary 1–1 electrolyte confined by two parallel, planar, electrodes spaced by a

gap 2`. The starting point in theory is the Poisson–Nernst–Planck (PNP) model. The Poisson

equation relates the free charge density to the electric field gradient,

´ ε
B2φ

Bx2 “ ρ “ epn` ´ n´q, (7.1)

while the transport of ions is governed by the Nernst–Planck equations,

Bn˘
Bt

“ D˘
B2n˘

Bx2 ˘
D˘
φT

B

Bx

´

n˘
Bφ

Bx

¯

. (7.2)

Here the symbols denote permittivity of the electrolyte, ε; electric potential, φ; free charge number

density, ρ; charge of a proton, e; thermal potential, φT ; ion number concentration, n˘; diffusivity,

D˘; location with respect to the midplane, x; and time, t.
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Figure 7.1: Representative numerical solutions to the AREF xẼy “ xEy{pκφT q (a) and time-average
free charge density xρ̃y “ xρy{n8 (b) for two-mode applied potentials (φpt,´`q “ φ0 rsinpωtq ` sinpαωtqs,
φp`, tq “ 0) at the micron scale. Parameters: φ0 “ 10φT , f “ ω{p2πq “ 50 Hz, 2` “ 20 µm, D` “ 10´9

m2{s, D´{D` “ 2, c8 “ 1 mM.

Initially, the ions are uniformly distributed n˘px, 0q “ n8 (the bulk electrolyte concentration),

and the electric potential is zero everywhere φpx, 0q “ 0. Note that for simplicity, we neglect the

intrinsic zeta potential of the electrodes. At x “ ˘` (i.e., the electrodes), we set the flux of ions

equal to zero (i.e., no electrochemistry). And, a two-mode potential ψptq “ φ0 rsinpωtq ` sinpαωtqs

is applied on the electrodes as

φp´`, tq “ ψptq, φp`, tq “ 0. (7.3)

7.3 RESULTS, DISCUSSION, AND IMPLICATIONS

The system of equations is solved numerically following the algorithm reported by Hashemi Amrei

et al.1 We focus primarily on the time-average of the harmonic solutions defined by

xχy “
1

2τ

ż t`2τ

t
χdt, 2τ “

2π

ω gcdp1, αq
, (7.4)

where 2τ is the period of the applied potential/harmonic solution, and gcdp1, αq is the greatest

common divisor of 1 and α. Representative solutions to the AREF (time-average electric field) are

provided in Fig. 7.1(a) at the micron scale (i.e., several microns away from the electrodes). The

electric field is scaled by κφT . When α “ 1, the applied potential is a single-mode sinusoid which

yields the antisymmetric AREF (Fig. 7.1(a), red curve). The case of α “ 2 reveals a surprising

phenomena: the shape of the AREF becomes dissymmetric with a nonzero value even at the

midplane (Fig. 7.1(a), blue curve). Further complicating matters, for α “ 3, the AREF is again

perfectly antisymmetric (Fig. 7.1(a), black curve). Therefore, it appears that depending on α, the

induced AREF can be either antisymmetric with a zero value at the midplane or dissymmetric.
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Figure 7.2: Representative numerical solutions to the AREF xẼy “ xEy{pκφT q (a, b) and time-average
free charge density xρ̃y “ xρy{n8 (c, d) for two-mode applied potentials (φpt,´`q “ φ0 rsinpωtq ` sinpαωtqs,
φp`, tq “ 0) at the Debye scale. For visualization purposes, the xρ̃y data for α “ 2 in (c, d) are divided by
100. The spatial variable y denotes the distance from the corresponding electrode. Parameters: φ0 “ 10φT ,
f “ ω{p2πq “ 50 Hz, 2` “ 20 µm, D` “ 10´9 m2{s, D´{D` “ 2, c8 “ 1 mM.

The corresponding spatial distributions of the time-average free charge density xρy are illustrated

in Fig. 7.1(b) for different α values. Consistent with the AREF distributions in Fig. 7.1(a), the xρy

is spatially even for α “ 1 and 3, but deviates and takes a dissymmetric shape for α “ 2.

The behavior becomes more complicated at the Debye scale (i.e., up to a few Debye lengths

away from the electrodes). Fig. 7.2(a) and (b) show the AREF within 4 Debye lengths away from

the electrodes for α “ 1 and 2. When α “ 1 (i.e., a single-mode sinusoidal potential), AREF is zero

at the electrodes, which is a direct result of the antisymmetric shape of the AREF and the total

charge neutrality. The former can be clarified by a parity analysis of the second-order perturbation

solution to the problem (cf. Sec. D.1). The total charge neutrality on the other hand enforces the

AREF at one electrode to be equal to that on the other electrode (i.e., xEy´` “ xEy` “ K). But,

for AREF to be antisymmetric K has to be zero.

When α “ 2, an astonishingly large AREF is induced on the electrodes (« 4 orders of magnitude

larger than the AREF at the micron scale). We note however that the total charge neutrality is

still hold. The mere observation of a nonzero AREF at the electrodes for α “ 2 is consistent
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Figure 7.3: Flipping the sign of the applied potential at x “ ´` for α “ 1 (a) and 2 (b). Parameters:
φ0 “ 10φT , f “ ω{p2πq “ 50 Hz, 2` “ 20 µm, D` “ 10´9 m2{s, D´{D` “ 2, c8 “ 1 mM.

with the dissymmetric shape of AREF at the micron scale: the integral of AREF over the entire

domain has to be zero, i.e.,
ş`
´`xEydx “ xφy´` ´ xφy` “ 0. In other words, the nonzero AREF at

the electrodes and the dissymmetric shape of the AREF at the micron scale are interrelated. A

qualitatively consistent behavior is observed for the distribution of ρ (Fig. 7.2(c) and (d)). The

induced xρy on the two electrodes are the same for α “ 1. However, when α “ 2, there is a sign

flip in the time-average free charge densities induced at the two electrodes (xρy´` “ ´xρy`).

We now ask what happens if we flip the sign of the applied potential (´ψptq instead of ψptq). For

α “ 1 (antisymmetric AREF), the curves of the induced AREF by ψptq and ´ψptq potentials are

superimposed (Fig. 7.3(a)). However, flipping the sign of the potential when α “ 2 (dissymmetric

AREF) yields a mirrored version of the AREF with respect to the midplane (Fig. 7.3(b)). It is

worth mentioning that the sum of the solid red (ψptq) and dashed blue (´ψptq) curves in Fig. 7.3(b)

is antisymmetric and zero at the midplane. In other words, the dissymmetric components of the

AREFs due to ψptq and ´ψptq potentials cancel each other.

We provide an explanation for this numerical observation using symmetry arguments. Note

that the field-induced ion motion depends only on the potential gradient (not the potential itself).

Therefore, one can show that flipping the sign of a periodic, time-varying, potential ψptq at x “ ´`

is equivalent to swapping the powered and grounded electrodes (by adding the potential ψptq to the

both electrodes). In other words, tφp´`, tq “ ´ψptq, φp`, tq “ 0u ” tφp´`, tq “ 0, φp`, tq “ ψptqu.

Now, a simple change of variable x Ñ ´x clarifies that if the potential ψptq yields the electric

field Epx, tq, the potential ´ψptq would yield the mirrored version, ´Ep´x, tq. Of course, the same

statement stands for the time-average electric field, AREF (cf. Fig. 7.3).

Focusing on the midplane (x “ 0), one can write that the functional Ep0, tq “ εptq “ fpψ, tq is

odd in ψ. In other words, if εptq is the induced electric field at the midplane due to the potential

ψptq, ´εptq would be that due to the potential ´ψptq. Now consider antiperiodic potentials, i.e.,
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Figure 7.4: Examples of antiperiodic (a) and non-antiperiodic (b) two-mode applied potentials
φ0 rsinpωtq ` sinpαωtqs.

ψpt` τq “ ´ψptq. We prove that xεy (i.e., AREF at the midplane) has to be zero for antiperiodic

potentials:

εpt` τq “ fpψ, t` τq “ fp´ψ, tq “ ´εptq ñ εpt` τq “ ´εptq.

Then, taking the time-average of the latter equality yields xεy “ ´xεy, indicating xεy “ 0. It is

worth mentioning that the above argument is general and holds for any antiperiodic potential ψptq.

It appears that for such potentials the zero-frequency components of the induced electric field cancel

each other at the midplane, yielding an antisymmetric AREF. However, they do not necessarily

cancel out when the excitation is non-antiperiodic. It is important to note that an antisymmetric

AREF would be superimposed to its mirrored version (cf. Fig. 7.3(a)), and hence, is insensitive to

swapping the powered and the grounded electrodes. But, if the induced AREF is dissymmetric,

swapping the electrodes alters the system behavior; notably, it changes the AREF direction (cf.

Fig. 7.3(b)).

Fig. 7.4 illustrates several examples of the antiperiodic and non-antiperiodic two-mode poten-

tials. One can show that ψptq is antiperiodic if α, in its simplified fractional form, can be expressed

as {odd integer}/{odd integer} (e.g., α “ 1, 5
3 , 3, 5, . . . ). Otherwise, the two-mode potential is

non-antiperiodic (e.g., α “ 2, 4
3 ,

3
2 , 4, . . . ). (Please see Sec. D.2 for proof.) Our numerical results for

a wide range of α values corroborate our theory. For all antiperiodic potentials tested, the AREF

is zero at the midplane, and is antisymmetric in space (e.g., α “ 1 and 3 in Fig. 7.1(a)). Further-

more, a dissymmetric AREF with a nonzero value at the midplane is induced for non-antiperiodic

potentials (e.g., α “ 2 in Fig. 7.1(a)). It should be noted though that the degree by which the

AREF becomes dissymmetric is a complicated function of α. However, regardless of the system

parameters, α “ 2 appears to induce the most significant dissymmetric behavior.

A mathematical analysis of the high-order perturbation solutions to the PNP equations suggests

that the dissymmetric AREF is a consequence of the odd-order (3, 5, . . . ) contributions. Indeed, the

second-order solution derived by Hashemi Amrei et al.5 predicts that, regardless of α, the induced
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Figure 7.5: Effects of the two-mode potential amplitude (a) and frequency (b) on the dissymmetric AREF.
For visualization purposes the data in (a) are scaled by Φ3

0 with Φ0 “ φ0{φT . Parameters: φ0 “ 10φT (b),
f “ ω{p2πq “ 50 Hz (a), α “ 2, 2` “ 20 µm, D` “ 10´9 m2{s, D´{D` “ 2, c8 “ 1 mM.

AREF under two-mode polarization is simply the superposition of the AREF due to each mode

(ω and αω) and is, therefore, antisymmetric. The third-order solution however, provides some

insights, indicating a dissymmetric AREF for α “ 2. However, the third-order solution is zero for

all other α values, including the ones for which we expect a dissymmetric behavior. We argue that

the numerically obtained dissymmetric AREF for other α values is a contribution of yet higher

odd-order solutions (e.g., 5, 7, . . . ). (Please see Sec. D.1 for details.)

The effect of the two-mode potential amplitude, φ0, on the induced AREF is evaluated in

Fig. 7.5(a) for α “ 2. As a high-order nonlinear phenomena, the dissymmetry rapidly grows with

the amplitude. At sufficiently low amplitudes, the dissymmetry disappears and the AREF is almost

antisymmetric (cf. Fig. 7.5(a), red curve). The effect of the applied frequency f “ ω{p2πq is more

complicated. Similar to the antisymmetric AREF, increasing the frequency amplifies the AREF

peak magnitude at the micron scale and shifts the peak location toward the electrodes.1,2 Further-

more, we note that the dissymmetry significantly intensifies with frequency. More importantly, the

sign of AREF at the midplane is changed upon changing the frequency. It might be due to the

established finding that the spatial oscillation of AREF (its shape) is very sensitive to frequency.1,2

Following Hashemi Amrei et al.,1 we have performed several consistency checks on the numerical

results, such as the feasibility of the calculated instantaneous ion concentrations, electric field, and

induced zeta potential at the electrode surface. Furthermore, the numerical solution converges and

the total mass is conserved. We have inspected the total charge neutrality by
ş`
´` B

2xφy{Bx2dx “ 0

and, alternatively, by xEy´` “ xEy`. The condition
ş`
´`xEy “ 0 is also checked to ensure that

the numerical solution satisfies the boundary conditions. A concern in dynamic solution of the

PNP equations under oscillatory polarization is that if the quasi-steady state conditions (harmonic

solution) is achieved. We have accurately examined the present numerical results regarding the

harmonic behavior.

We emphasize that our theory is not limited to any specific potential wave form. Any zero-time-
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Figure 7.6: Dissymmetric AREF due to a zero-time-average triangular pulse potential applied at x “ ´`.
(a) Positive (at t “ t1) and negative (at t “ t2) triangular pulses of width 1

2τ and amplitude φ0. (b) The
corresponding induced AREF for different values of pt2 ´ t1q{τ . Parameters: φ0 “ 20φT , 1{p2τq “ 50 Hz,
2` “ 20 µm, D` “ 10´9 m2{s, D´{D` “ 2, c8 “ 1 mM.

average (unbiased), antiperiodic, potential yields an antisymmetric AREF, while non-antiperiodic

potentials can induce a dissymmetric AREF. An important implication is then that for a given

applied potential ψptq in the first half of the period t P r0, τ s, there is a unique antiperiodic potential

that occurs by setting ψpt` τq “ ´ψptq. But an infinite number of non-antiperiodic potentials can

be constructed. We demonstrate this argument for a triangular pulse of period 2τ , illustrated in

Fig. 7.6. Two pulses of amplitude φ0 and width 1
2τ are applied at t1 “

1
4τ and 3

4τ ď t2 ď
7
4τ . We

keep t1 fixed and vary t2 to cover all possible cases. The induced AREFs are shown in Fig. 7.6(b)

for different t2´ t1 values. The AREF is antisymmetric only if t2´ t1 “ τ for which the potential in

the second half period becomes the negative of that in the first half (Fig. 7.6(b), black curve). All

other constructions yield a dissymmetric AREF. It is interesting to note that the cases t2´ t1 “
1
2τ

(consecutive pulses in the first half) and t2´t1 “
3
2τ (maximally apart pulses) provide the maximum

dissymmetry and are mirrored. A simple time shift tÑ 3
2τ shows that the condition of maximally

apart pulses is actually the negative version of the back-to-back pulses, and therefore yields the

mirrored version of the AREF (cf. Fig. 7.3(b)).

The dissymmetric AREF can tremendously change the design of electrokinetic systems and their

applications. It was recently shown at length that the AREF-induced electrophoretic forces are

several orders of magnitude larger that gravitational and colloidal forces.1,3,4 Researchers can there-

fore use the dissymmetric AREF to design electrochemical cells that selectively (to some extent)

separate charged colloidal particles or bioparticles near the powered or the grounded electrodes.

Moreover, the sole physical implications of the dissymmetric AREF opens a new chapter for the

researchers in the electrokinetic community. More research is needed; the present study should

serve as a strong indication of the existence of the previously unknown dissymmetric AREF.
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Chapter 8

Concluding Remarks and Future

Work

8.1 MAIN FINDINGS

(i) Asymmetric Rectified Electric Field (AREF)

We discovered a previously unknown phenomena in nonlinear electrokinetics. A sinusoidal

electric potential induces a steady field within liquids, which we refer to as asymmetric rectified

electric field (AREF). The discovery of AREF broadly impacts the future of electrokinetics,

and offers explanations for several unresolved mysteries regarding the behavior of charged

objects and electrically-induced fluid flows in response to ac potentials.

(ii) Ratchets in Unbiased Nonlinear Systems

We demonstrated the existence of externally induced ratchets in a variety of spatially sym-

metric macroscopic systems. Our study generalizes the current understanding of the ratchets

to different fields of physics, and provides a readily accessible approach of investigating the

ratchet dynamics.

8.2 FUTURE WORK SUGGESTIONS

8.2.1 Numerical & perturbation solutions to the 2-D PNP equations

As mentioned, the 1-dimensional AREF provides qualitative explanations for several open questions

in ACEO and EHD. A possible future project is to develop a 2-dimensional numerical solution to the

PNP model, coupled with the momentum equations, to ‘quantitatively’ investigate these problems.

The algorithm will be based on operator splitting, mesh refinement, and multigrid.1 The main

challenges are the computation time, contribution of the fluid flows, and the inevitable presence of

irregular boundary conditions. The C++ Chombo parallel computing library (Software for Adap-

tive Solutions of Partial Differential Equations)108,109 allows a relatively straightforward treatment
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of the irregular boundary conditions. An alternative approach would be to use full approximation

scheme to directly solve the nonlinear system of equations (instead of operator splitting and multi-

grid). If successful, it tremendously enhances the computation time. A quantitative comparison

of the numerical results and the extensively available experimental data will be a significant con-

tribution to the electrokinetics. Of particular importance is to examine if the obtained solutions

accurately predict the effects of the applied frequency and the electrolyte type.

Another idea is to develop a second-order perturbation solution that reasonably approximates

the 2-dimensional ACEO and EHD systems in some range of the parameter space. With ACEO,

one can imagine a 2-dimensional system with regular boundary conditions, which should be solvable

analytically via a perturbation expansion. To avoid the irregular boundaries in EHD, bispherical

coordinates will be used.

8.2.2 Fast electrophoretic translation of charged colloids via AREF

Electrophoresis refers to the translation of charged particles in response to electric fields, with

extensive applications in separation and analysis of macromolecules and colloids. Consider a ran-

domly located cluster of charged colloids immersed in an electrolyte, and confined between parallel

horizontal electrodes. Researchers often need to move the colloids to a certain location for further

analysis, e.g., in EHD, the colloids should be placed near the lower electrode. Traditionally, re-

searchers wait („hours) for the colloids to sediment by gravity. Another idea would be to use a dc

field to electrophoretically move the colloids. But charged colloids tend to adhere to the oppositely

charged electrode under dc polarization. AREF can be used instead. Unlike normal dc fields,

AREF changes direction spatially, and either repels the charged colloids from the electrodes or

traps them in a fixed point. (Fixed points are the stable heights, created by a balance between the

AREF-induced electrophoretic and the gravitational forces.) For a given set of colloids in an elec-

trolyte, the number of fixed points depends on the frequency of the applied potential. Therefore,

one can conceive an approach of moving the fixed points up and and down in space by changing

the frequency. Considering the available analytical approximation to the 1-dimensional AREF,5 I

believe that the idea is promising and worth pursuing. Once developed mathematically, the method

can be tested by experimental collaborates.

8.2.3 Physics behind the non-antiperiodic excitations & implications

The discussion in Chapter 6 and Chapter 7 lefts a seemingly simple question unanswered: what

determines the direction of the movement? Our theory explains why the time-average solution is

zero for antiperiodic excitations. But it does not provide sufficient insights on what governs the

observed net responses for the non-antiperiodic excitations. A proper answer would rely on an

analytical analysis of the corresponding differential equations. Additionally, it would be interesting

to further generalize this theory to other physical systems, and investigate the potentially valuable

implications.
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Appendix A

Miscellaneous Supplemental Material

This appendix serves as a supplemental material for Chapter 2.

A.1 TWO-ION MODEL

For a 1-1 electrolyte, the perturbation to the electric field at z “ zf (restricting attention to

positions such that zf ą| zi |; i “ `{´) is, by Coulomb’s law,

εpzf , tq “
α

zf 2

„

1

p1´ z`{zf q2
´

1

p1´ z´{zf q2



. (A.1)

One can then write the Taylor series expansion of εpzf , tq, with `i ” zi{zf , as

εpzf , tq “
α

zf 2

„

2`` ` 3`2` ` ¨ ¨ ¨ ´ 2`´ ´ 3`2´ ´ . . .



. (A.2)

The far-field solution when zf Ñ8 (i.e., `i Ñ 0) is therefore

εpzf , tq “
2α

zf 2
p`` ´ `´q. (A.3)

For δ “ 1, where ``ptq “ ´`´ptq “ `{2, this reduces to

εpzf , tq “
2α`

zf 2
, (A.4)

which is equivalent to the well-known electric field generated by a dipole. Regardless of the value

of δ, note that the far-field solution has zero time average.

To highlight the effect of non-equal mobilities at intermediate distances, we rearrange Eq. A.2

to obtain

εpzf , tq “
α

zf 2

„

2p`` ´ `´q ` 3p`2` ´ `
2
´q ` 4p`3` ´ `

3
´q ` . . .



. (A.5)
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Substituting the harmonic oscillators (Eq. 2.2) into Eq. A.5 yields

εpzf , tq “
α

zf 2

„

2
`

ˆ̀̀ ´ ˆ̀́
˘

sinpωtq ` 3
`

ˆ̀2
` ´

ˆ̀2
´

˘

sin2pωtq ` 4
`

ˆ̀3
` ´

ˆ̀3
´

˘

sin3pωtq ` . . .



, (A.6)

where ˆ̀
i “ zi,max{zf and zi,max denotes the maximum amplitude of the harmonic oscillation. For

equal mobilities (i.e., ˆ̀̀ “ ´ ˆ̀́ “ ˆ̀{2) this simplifies to

εpzf , tq “
α

zf 2

„

2ˆ̀sinpωtq ` ˆ̀3 sin3pωtq ` . . .



, (A.7)

which can be rewritten as

εpzf , tq “
α

zf 2

„

2ˆ̀sinpωtq `
ˆ̀3

4
p3 sinpωtq ´ sinp3ωtqq ` . . .



. (A.8)

Therefore, for δ “ 1, the solution has frequency components at odd multiples of the applied

frequency. When δ ‰ 1 (i.e., ˆ̀̀ ‰ ´ ˆ̀́ ), none of the terms cancel and both even and odd multiples

of the frequency remain:

εpzf , tq “
α

zf 2

„

2
`

ˆ̀̀ ´ ˆ̀́
˘

sinpωtq `
3

2

`

ˆ̀2
` ´

ˆ̀2
´

˘

p1´ cosp2ωtqq

`
`

ˆ̀3
` ´

ˆ̀3
´

˘

p3 sinpωtq ´ sinp3ωtqq ` . . .



. (A.9)

As it can be observed, Eq. A.9 includes frequency components of the form kω for any nonnegative

integer k. Moreover, the time average of Eq. A.9 is

xεpzf , tqy “
3α

2zf
2

`

ˆ̀2
` ´

ˆ̀2
´

˘

9E2
0

` 1

a2
`

´
1

a2
´

˘

. (A.10)

which is the leading term of the AREF (Eq. 2.4).

A.2 NUMERICAL SOLUTION

In this section, we first concisely describe the model and solution algorithm. Then, the solution is

validated via comparison to an available approximate solution to the problem for low voltages and

equal ionic mobilities.

A.2.1 Governing equations

The model includes Poisson and species continuity equations:

ρpfq “
ÿ

i“1

eqini “ ´ε8ε0
B2φ

Bz2 , (A.11)
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Bni
Bt
“ Di

B2ni

Bz2 ` eqi
Di

kBT

B

Bz

´

ni
Bφ

Bz

¯

, (A.12)

subject to the following initial and boundary conditions:

nip0, zq “ n8i , (A.13a)

´Di

´

Bni
Bz

`
eqini
kBT

Bφ

Bz

¯

z“0,H
“ 0, (A.13b)

φp0, zq “ 0, (A.13c)

φpt, 0q “ φ0 sinpωtq, φpt,Hq “ 0. (A.13d)

The symbols stand for applied voltage, φ0; applied angular velocity, ω; electrode spacing, H;free

charge density, ρpfq; elementary charge, e; charge number, qi; dielectric constant of the medium,

ε8; permittivity of free space, ε0; electric potential, φ; number concentration of ion, ni; diffusivity,

Di; Boltzmann constant, kB; absolute temperature, T ; and bulk concentration of ion, n8i .

One can rearrange Eq. A.12 as

Bni
Bt
“ ´

B

Bz
pJD ` Jeq, (A.14)

where JD and Je are the diffusive and electromigrative fluxes:

JD “ ´Di
Bni
Bz

, (A.15a)

Je “ ´Di
eqini
kBT

Bφ

Bz
. (A.15b)

Note that the electromigrative flux is the source of nonlinearity in both the governing equations

and boundary conditions.

A.2.2 Discretization

Cell-centered finite difference methods are employed to discretize the governing equations and

boundary conditions. A typical minimum cell size used for the simulations is of order κ´1{128

(with κ as the Debye parameter) which, for κ´1 « 13 nm, is equivalent to « 0.1 nm (compared to

electrode spacing which can be several hundred microns). Such a small size step restricts the time

marching of the simulation. In the presence of convective terms (with a velocity of u), the Courant-

Friedrichs-Lewy (CFL) number condition limits the maximum allowable time step of the numerical

solution: |u|∆t{h ď 1 with ∆t and h as the temporal and spatial steps. The electromigration

term of the species continuity equation can be written as B
Bz puniq with u “ eqiDi

kBT
Bφ
Bz (rus “ m{s),

resembling a convective transport of ions. Therefore, we need to have∣∣∣eqiDi

kBT

Bφ

Bz

∣∣∣∆t{h ď 1. (A.16)
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Figure A.1: Mesh refinement levels (computational levels) near an electrode surface: Base level covers
the entire domain (not shown) while mesh refinement levels are added to resolve the Debye layer. Detailed
explanation of the adaptive mesh refinement is provided by Martin and Cartwright.71

It is not practical to cover the entire domain with a uniform cell size that is small enough

to resolve the Debye layer (e.g., covering 100 µm with h « 0.1 nm requires 1 million cells). To

obviate the need of millions cells, we use mesh refinement near electrode surfaces. Consider a grid

structure shown in Fig. A.1. There are K levels of resolution with k “ 1 and k “ K denoting

the finest and base levels, respectively. Hereafter, for any variable/parameter x, kx is the value of

that variable/parameter on level k. The refinement ratio is 2, so that k`1h “ 2ˆ kh. The physical

variables and source terms are defined only on cells that are not overlain by the upper finer levels.71

To put it another way, on any level k the physical domain is specified by kΩ ´ Rpk´1Ωq where R

is the restriction operator. However, the corrections and residuals are defined on the entire of each

level.71,69,70 On each level, the spatial discretization is as follows:

kz1 “
kh{2, (A.17a)

kzj “
kzj´1 `

kh. (A.17b)

Similarly, the discretized time domain can be expressed as

t1 “ 0, (A.18a)

tp “ tp´1 `∆t. (A.18b)

In the above equations, j and p are the indices of the discretized spatial and temporal domains,

respectively.

A.2.3 Operator splitting

We use operator splitting to solve the problem. For each time step, the procedure is:

(i) Solve for rφspj from Eq. A.11:

´ ε8ε0

”

B2φ

Bz2

ıp

j
“ e rq1n1 ` q2n2s

p
j , (A.19a)

rφs1j “ 0, (A.19b)

rφspz“0 “ φ0 sinpωtpq, rφspz“H “ 0. (A.19c)
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(ii) Solve for rnis
p`1
j from Eq. A.14:

”

Bni
Bt

ıp`1

j
“
B

Bz

”

Di
Bni
Bz

` uni

ıp`1

j
, (A.20a)

rnis
1
j “ n8i , (A.20b)

”

Di
Bni
Bz

` uni

ıp`1

z“0,H
“ 0, (A.20c)

where u is given from step (i).

Our Poisson solver is based on the algorithm of Martin and Cartwright.71 With some changes,

a similar algorithm is devised to solve the species continuity equation. The main difference of the

algorithm is the inclusion of the nonlinear electromigration term. Neither stability nor the rate of

convergence was improved by upwinding, so we use central differences. To ensure solution stability,

the CFL number is calculated prior to step (ii). While the condition is not met, we set ∆t “ ∆t{2

to find a ∆t “ p∆tqc that satisfies the condition. Then step (ii) breaks down into ∆t{p∆tqc substeps

to reach the time tp`1.

A.2.4 Harmonic solution

Besides the above-mentioned challenges, achieving a harmonic solution by solving dynamical equa-

tions is recognized as a computational challenge.29 The simulation time tf should be long enough

for the ions to transfer between the electrodes back and forth in order to reach equilibrium. The

ions transfer with diffusive and electromigrative mechanisms with the corresponding time scales of

τDi “ H2{Di and τ ei “ τDi {p|qi|φ0e{pkBT qq. Therefore, in order to ensure the equilibrium conditions

we need to have tf " maxrτDi , τ
e
i s. The time scale of the applied potential is also τAC “ 1{f which

is, for the range of parameters used in this study, far less than τDi and τ ei . Therefore, the number

of AC cycles should be nAC " maxrτDi , τ
e
i s{τ

AC . For example, consider a case of NaOH electrolyte

with D` “ 1.3 ˆ 10´9 m2{s and D´ “ 5.3 ˆ 10´9 m2{s, electrode spacing of H “ 50 µm, and

applied potential of φ0 “ 5kBT {e and f “ 100 Hz, the times scales are τD` “ 1.87 s, τD´ “ 0.48 s,

τ e` “ 0.37 s, τ e´ “ 0.09 s, and τAC “ 0.01 s. Here we need " maxrτDi , τ
e
i s{τ

AC « 187 AC cycles to

achieve the harmonic solution. The relative difference between two consecutive cycles is:

‖φc ´ φc´1‖
‖φc‖ , (A.21)

where superscript c denotes the cycle number and the norms are defined as

‖φc‖ “ 1

H

ż H

0
| xφyc | dz, (A.22a)

‖φc ´ φc´1‖ “ 1

H

ż H

0
| xφyc ´ xφyc´1 | dz. (A.22b)
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We terminate the calculations when the relative difference drops below 10´6. It is heuristically

found that nAC „ maxrτDi , τ
e
i s{τ

AC suffices to reach this tolerance and the equilibrium condition.

A.2.5 Validation

To validate the numerical solution let us consider an available analytical solution to the linearized

problem for low voltages and equal mobilities derived by Hollingsworth and Saville.25 For equal

mobilities, the numerical solution is expected to converge to the analytical solution at low voltages.

We define an integral norm as

‖φN ´ φA‖“
1

τH

ż τ

0

ż H

0
|φN pt, zq ´ φApt, zq|dzdt, (A.23)

where the symbols stand for numerical solution, φN ; analytical solution, φA; period of AC field, τ ;

and electrode spacing, H. Fig. A.2(a) shows the norm for different applied voltages. The numerical

solution to the nonlinear problem approaches the approximate analytical solution in the asymptotic

region of low voltages and equal mobilities.
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Figure A.2: Validation of the numerical solution: (a) ‖φN´φA‖ versus the applied potential. (b) Calculated
phase angles of the numerical and analytical solutions at z “ 1 µm versus the applied potential. Parameters:
f “ 5000 Hz (a) and 50 Hz (b), H “ 14κ´1 (a) and 25 µm (b), D` “ D´ “ 1.3ˆ10´9 m2{s (a) and 1ˆ10´9

m2{s, c8 “ 1 mM.
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Ã

f/f0

(a)
δ = 1

10−8

10−7

10−6

10−5

10−4

0 1 2 3 4 5 6 7 8 9 10

Ã
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Figure A.3: FFT analysis of the harmonic electric field solutions for δ “ 1 (a) and δ “ 4 (b): numerical
solution to the problem suggest the same frequency components as that of the two-ion model. Dimensionless
amplitude of the frequency components (Ã “ Aeκ´1{pkBT q) is sketched versus normalized frequency (f{f0
with f0 as the applied frequency). Parameters: φ0 “ 5kBT {e, f “ 50 Hz, H “ 25 µm, D` “ 1ˆ 10´9 m2{s,
c8 “ 1 mM.

The phase angle between the applied potential and responsive potential within the liquid is

an important information obtainable from the both numerical and analytical solutions for δ “

1.47–49 Therefore, another validation of the numerical solution is performed by comparing of these

calculations (Fig. A.2(b)). As it can be seen, the numerically predicted phase angle approaches

that of the linearized model for low applied potentials. In those simulations presented here, the

phase lag of the leading Fourier component is small (θ ă 10˝).

A.2.6 FFT analysis

Here, FFT analysis of the problem is provided in Fig. A.3. In agreement with the two-ion model,

numerically obtained solutions to the full non-linear model indicate odd and integer multiples of

the applied frequency for δ “ 1 and δ “ 4, respectively.
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Figure A.4: Numerical results in micron (a) and Debye (b, c) scales. (a) Time average electric field in
micron scale. (b) Time average electric field near the lower electrode in Debye scale. (c) Time variations of
the electric field on the lower electrode surface. Parameters: φ0 “ 5kBT {e (a, b), f “ 50 Hz (a, b) and 100
Hz (c), H “ 25 µm, δ “ 4 (c), min rD`, D´s “ 1ˆ 10´9 m2{s, c8 “ 1 mM.
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A.2.7 Behavior of AREF near the electrode

Fig. A.4(a) shows the time average electric field for different δ values at the micron scale (similar

to Fig. 2.2(c)). The magnification near the electrode, on the Debye length scale, is shown in

Fig. A.4(b). The electric field xẼzy starts from a nonzero value (indiscernible at this scale) at the

electrode (z “ 0) for δ ‰ 1, then rises to an absolute maximum before decaying to the solution at

the micron scale shown in Fig. A.4(a).

Fig. A.4(c) shows the instantaneous electric field a the electrode surface, Ez“0, for different

applied potentials. As a consistency check, the electric field values are compared to the typical

Debye layer field strength κφ0. The numerically obtained electric field at all times is of the same

order of magnitude as κφ0. Similarly, the maximum instantaneous induced potential on the elec-

trode surface is of the same order of magnitude as φ0 (ζ “ σ{pκε8ε0q “ Ez“0{κ „ φ0). In other

words, all of the potentials, field strengths, and ion concentrations are physical, at least over the

parameter range investigated here.

Table A.1: AREF-induced electrophoresis, dielectrophoresis, and electroosmosis versus other forces for
micron scale colloids and electrically-driven flows. Dimensionless ratios calculated using characteristic para-
metric values: particle radius a “ 0.5 µm; zeta potential of particle ζ “ 100 mV; electrode spacing H “ 25
µm; applied voltage 20kBT {e; applied frequency 100 Hz; δ “ 4; D` “ 1ˆ 10´9 m2{s; ionic strength c8 “ 1
mM; κ “ 1.04 ˆ 108 m´1; dipole coefficient C0 “ 0.1; and density difference ∆ρ “ 50 kg{m3. Calculations
are done at z “ 1 µm which gives | xẼzy |“ 1.7ˆ 10´4 (“ 315 V{m) and Ẽpp “ 0.0095 (“ 1.8ˆ 104 V{m).
(Please see the inset of Fig. 2.3(a).)

AREF electrophoresis
gravitational

ε8ε0κζxEzy
∆ρga « 105

AREF electrophoresis
Brownian

ε8ε0a3κζxEzy
kBT

« 103

AREF dielectrophoresis
gravitational

ε8ε0C0∇pxE2
zyq

∆ρg « 10

AREF dielectrophoresis
Brownian

ε8ε0C0a4∇pxE2
zyq

kBT
« 10´1

AREF electroosmosis
EHD

κζxEzy
C0E2

pp
« 103

AREF electroosmosis
ICEK

ζxEzy
aE2

pp
« 1

A.3 AREF-INDUCED FORCES

Table A.1 compares the scale of AREF-induced electrophoresis (FEP ) and dielectrophoresis (FDEP )

to typical forces in colloidal systems such as gravitational (FG) and Brownian (FB) forces given by

FEP „ ε8ε0ζκxEzya
2, (A.24a)

FDEP „ ε8ε0C0a
3∇pxE2

z yq, (A.24b)

FG „ ∆ρga3, (A.24c)
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FB „ kBT {a. (A.24d)

Moreover, an AREF-induced electroosmotic velocity (uAREF ) is compared to electrohydrody-

namic (uEHD) and induced charge electroosmosis (uICEK) velocity scales:

uAREF „ ε8ε0ζxEzy{µ, (A.25a)

uEHD „ ε8ε0C0E
2
pp{pµκq, (A.25b)

uICEK „ ε8ε0E
2
ppa{µ. (A.25c)

The electrophoretic and dielectrophoretic forces depend on the location and these comparisons

are specific to z “ 1 µm. They can exponentially increase near the electrodes, making the force

ratios much higher than reported in Table A.1.

A.4 STREAMLINES

The streamlines presented in Fig. 2.5 were obtained following the procedures presented by Risten-

part et al.,51 Squires and Bazant,19 and Solomentsev et al.110 for EHD, ICEK, and AREF-induced

electroosmotic flows respectively.

In this regard, EHD flow field was analytically solved in bispherical coordinates system. The

parameters used in the calculations were as follows: applied field Epp “ 2400 V{m; frequency

f “ 100 Hz; Debye parameter κ “ 108 1{m; viscosity µ “ 10´3 Pa ¨ s; dielectric constant of

the medium ε8 “ 78; temperature T “ 298 K; dipole coefficient C0 “ 0.06; electrode spacing

H “ 250 µm; particle radius a “ 0.5 µm; zeta potential of the particle ζ “ 50 mV; and particle’s

height (distance between the electrode and particle surface) h “ 0.1a. With the AREF-induced

electroosmotic flow, a dimensionless time average electric field of xẼzy “ 1.12 ˆ 10´5 was used to

calculate the slip velocity on the particle surface via the Helmholtz-Smoluchowski equation (similar

to Solomentsev et al.110 where the applied DC field was responsible for the electroosmotic slip

velocity). (Please see subsection A.4.1 for details.) Then linear superposition of the obtained EHD

and AREF-induced electroosmotic flows resulted in the overall flow field provided in Fig. 2.5(b).

The flow field in Fig. 2.5(c) was calculated using the analytical solution to the standard problem

of ICEK around a metal cylinder with a given quadrupolar slip velocity.19 Likewise, an analytical

solution was derived for the case of the AREF-induced electroosmotic flow around the cylinder.

Again, summation of these two solutions yields the overall streamlines demonstrated in Fig. 2.5(d).

(Please refer to Sec. B.1 for details.) The parameters were identical to those used in Fig. 2.5(a) and

(b), except that applied field Epp “ 5369 V{m and cylinder radius a “ 0.5 µm (yields uAREF “

0.1uICEK).

99



π
2

π
2

π
3

π
3

z

rr

η=∞
η=ηs=const

ψ=π

ψ=0

η=0

2π
3

2π
3 c

h

a

Bispherical Coordinates (η, ψ, φ)
0≤η<∞, 0≤ψ≤π, 0≤φ≤2π

Electrode

Figure A.5: Definition sketch for the bispherical coordinate system: a spherical colloid at height h above
a planar electrode. Curves of constant ψ and η are governed by r2 ` z2 ´ 2cr cotpψq “ c2 and r2 ` pz ´
c cothpηqq2 “ c2{ sinh2

pηq, respectively.

A.4.1 AREF-induced electroosmosis in bispherical coordinates

Fig. A.5 illustrates a colloid of radius a, resting at height h above a planar electrode in bispherical

coordinates.111 The problem is invariant in the φ direction (not shown in the schematic), and

r “
a

x2 ` y2 denote the redial distance from the sphere’s center. Curves of constant ψ start

from a focal point inside the sphere, at z “ c “
a

hph` 2aq, where η “ 8, and end on the

electrode surface, at r “ c sinpψq{p1´ cospψqq, where η “ 0. Curves of constant η are circles, with

η “ ηs “ sinh´1pc{aq denoting the colloid’s surface. The angle ψ direction is clockwise, with ψ “ 0

and π referencing regions above and below the sphere, respectively. The bispherical coordinates

can be expressed in terms of the Cartesian coordinates as

x “
c sinpψq cospφq

coshpηq ´ cospψq
, (A.26a)

y “
c sinpψq sinpφq

coshpηq ´ cospψq
, (A.26b)

z “
c sinhpηq

coshpηq ´ cospψq
. (A.26c)

Using the expressions for x and y one can write:

r “
a

x2 ` y2 “
c sinpψq

coshpηq ´ cospψq
. (A.26d)

The general solution (in terms of the stream function Ψpη, ψq) to the Stokes’ problem in bi-
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spherical coordinates is112

Ψ “ pcoshpηq ´ cospψqq´
3
2

8
ÿ

n“1

WnpηqG
´

1
2

n`1pcospψqq, (A.27)

where

Wnpηq “ an coshrpn´ 1
2qηs ` bn sinhrpn´ 1

2qηs ` cn coshrpn` 3
2qηs ` dn sinhrpn` 3

2qηs, (A.28)

and G
´

1
2

n`1pcospψqq is the Gegenbauer polynomial of order n` 1 and degree ´1{2, given by

G
´

1
2

n`1pcospψqq “
Pn´1pcospψqq ´ Pn`1pcospψqq

2n` 1
, (A.29)

with Pmpcospψqq as the Legendre polynomial of order m, in terms of cospψq. The scalar velocity

components are related to the stream function by

uη “
pcoshpηq ´ cospψqq2

c2 sinpψq

BΨ

Bψ
, (A.30a)

uψ “ ´
pcoshpηq ´ cospψqq2

c2 sinpψq

BΨ

Bη
. (A.30b)

We let Ψ “ 0 at η “ 0 (electrode surface) and η “ ηs (colloid surface) which yield

an “ ´cn, (A.31)

an coshrpn´ 1
2qηss ` bn sinhrpn´ 1

2qηss ` cn coshrpn` 3
2qηss ` dn sinhrpn` 3

2qηss “ 0. (A.32)

Using uψ “ 0 Ñ BΨ{Bη “ 0 at the electrode surface (η “ 0), we find

dn “ ´
n´ 1

2

n` 3
2

bn. (A.33)

Additionally, inserting Eq. A.31 and Eq. A.33 into Eq. A.32 yields

bn “ Γnan, (A.34)

where,

Γn “ ´
coshrpn´ 1

2qηss ´ coshrpn` 3
2qηss

sinhrpn´ 1
2qηss ´

n´
1
2

n`
3
2

sinhrpn` 3
2qηss

. (A.35)

Therefore, we have all of the coefficients in terms of an, i.e.,

bn “ Γnan, cn “ ´an, dn “ ´
n´ 1

2

n` 3
2

Γnan. (A.36)
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At the colloid surface (η “ ηs), the slip velocity is given by

utpθq “ 2U sin pθq, (A.37)

where, θ is the polar coordinate angle, and sin θ “ rpηs, ψq{a. (rpηs, ψq denotes the r on the colloid

surface.) In terms of the bispherical coordinates, we can write

utpψq “ 2U
c
a sinpψq

coshpηsq ´ cospψq
“ 2U

sinhpηsq sinpψq

coshpηsq ´ cospψq
. (A.38)

the magnitude of the slip velocity, U , is given by the Helmholtz-Smoluchowski formula:

U “
ε8ε0ζxEy

µ
, (A.39)

where xEy is evaluated at z “ h` a (height of the particle’s center).

Using the stream function formulation, we have

utpψq “ ´
pcoshpηsq ´ cospψqq2

c2 sinpψq

BΨpηsq

Bη
“ 2U

sinhpηsq sinpψq

coshpηsq ´ cospψq
, (A.40)

which leads to
8
ÿ

n“1

dWnpηsq

dη
G
´

1
2

n`1pcospψqq “ ´2c2U
sinhpηsq sin2pψq

pcoshpηsq ´ cospψqq
3
2

, (A.41)

with

dWnpηsq

dη
“ anΩn, (A.42)

Ωn “pn´
1
2q sinhrpn´ 1

2qηss ` Γnpn´
1
2q coshrpn´ 1

2qηss

´pn` 3
2q sinhrpn` 3

2qηss ´
n´ 1

2

n` 3
2

Γnpn`
3
2q coshrpn` 3

2qηss. (A.43)

Letting ζ “ cospψq and α “ ´2c2U sinhpηsq, Eq. A.41 becomes

8
ÿ

n“1

anΩnG
´

1
2

n`1pζq “ α
1´ ζ2

pcoshpηsq ´ ζq
3
2

. (A.44)

Multiply both sides by Pmpζq and integrate from ´1 to 1. On the left hand side, we use the

orthogonality properties of the Legendre polynomials, i.e.,

ż 1

´1
PmpζqPnpζqdζ “

2

2n` 1
δmn, (A.45)

102



which yields

ż 1

´1

8
ÿ

n“1

anΩnG
´

1
2

n`1pζqPmpζqdζ “

# 2am`1Ωm`1

p2m`1qp2m`3q ´
2am´1Ωm´1

p2m´1qp2m`1q if m ě 1;

2am`1Ωm`1

p2m`1qp2m`3q if m “ 0, 1.

(A.46)

The right hand side of Eq. A.44 multiplied by Pmpζq yields

αp1´ ζ2qPmpζq

pcoshpηsq ´ ζq
3
2

“
α

pcoshpηsq ´ ζq
3
2

„

´
mpm´ 1q

p2m` 1qp2m´ 1q
Pm´2pζq

ˆ

1´
pm` 1q2

p2m` 1qp2m` 3q
´

m2

p2m` 1qp2m´ 1q

˙

Pmpζq ´
pm` 1qpm` 2q

p2m` 1qp2m` 3q
Pm`2pζq



(A.47)

where we used the Bonnet’s recursion formula

ζPmpζq “
pm` 1qPm`1pζq `mPm´1pζq

2m` 1
. (A.48)

Integrating Eq. A.47 from ζ “ ´1 to 1 gives

ż 1

´1

αp1´ ζ2qPmpζq

pcoshpηsq ´ ζq
3
2

dζ “
2
?

2α

sinhpηsq
ˆ

«

ˆ

1´
pm` 1q2

p2m` 1qp2m` 3q
´

m2

p2m´ 1qp2m` 1q

˙

expp´pm` 1
2qηsq

´
mpm´ 1q

p2m´ 1qp2m` 1q
expp´pm´ 3

2qηsq ´
pm` 1qpm` 2q

p2m` 1qp2m` 3q
expp´pm` 5

2qηsq

ff

. (A.49)

Finally, equating Eq. A.46 and Eq. A.49, we find am, and subsequently, bm, cm, and dm using

Eq. A.36.

A.5 SUPPLEMENTAL RESULTS

Effects of c8 and D on the AREF are provided in Fig. A.6. Fig. A.6(a) demonstrates the effect

of diffusivity on the results. Keeping δ “ 2, diffusivities of the cation and anion are changed si-

multaneously. Our calculations show that the peak position (i.e., zmax) outside the Debye layer

increases as the square root of the diffusivity. The bulk ionic concentration strongly affects the

magnitude of dimensionless AREF field (Fig. A.6(b)), decreasing as c´1.5
8 , presumably because in-

creased ionic concentrations help “screen” the electric field. Recall that Ẽ “ Eeκ´1{pkBT q with

κ´1 “
a

ε8ε0kBT {pe2n8q; this means that the dimensional AREF field is actually decreasing as

c´1
8 . The shape of the AREF versus position, however, is conserved across the range of concentra-

tions tested here.

Time variations of the cation and anion concentrations are demonstrated in Fig. A.7. In the
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Figure A.6: Effects of diffusivity and ionic strength on the AREF. Distribution of the dimensionless time
average electric field for different diffusivities (a) and ionic strengths (b). Parameters: φ0 “ 5kBT {e, f “ 50
Hz, H “ 25 µm (the inset of (b) is at z{H “ 0.04 (z “ 1 µm)), δ “ 2 (a) and 4 (b), D` “ 1 ˆ 10´9 m2{s
(b), c8 “ 1 mM (a).

double layer (z “ κ´1), the positive and negative ions move back and forth approximately sym-

metrically, with a barely perceptible impact of the ionic mobility mismatch. Outside of the double

layer, though, the behavior is more complex (Fig. A.7(b)). The distributions of positive and neg-

ative ions become increasingly synchronized further away from the electrode. Even at z “ 10κ´1,

which is still close to the electrode surface, the time variations of the two ions is approximately

synchronized. The presence of a faster moving ion (δ “ 4) gives rise to a large asymmetry in the

oscillations, compared to the case for equal mobilities (δ “ 1) which is closer to a perfect sinusoid.

The small (barely perceptible) mismatches in positive and negative ion concentrations shown

in Fig. A.7 give rise to a net free charge density (ρ̃pfq “ pn` ´ n´q{n8) and corresponding electric

field. Except for δ “ 1, the difference between the concentrations of cation and anion persists

several microns away from the electrode (Fig. A.8(a)). The applied voltage alters the magnitude

of the free charge but does not alter the shape of the distribution (Fig. A.8(b)), consistent with

Fig. 2.3(a). In contrast, the applied frequency simultaneously changes the magnitude of ρ̃pfq and

its peak position (Fig. A.8(c), compare to Fig. 2.3(b)). Finally, increasing the ionic strength

diminishes the magnitude of the free charge density while the shape is conserved (Fig. A.8(d), and
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Figure A.7: Time variations of dimensionless cation and anion concentrations (ñi “ ni{n8) at z “ κ´1

(a) and 10κ´1 (b). Parameters: φ0 “ 5kBT {e, f “ 50 Hz, H “ 25 µm, D` “ 1ˆ 10´9 m2{s, c8 “ 1 mM.
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Figure A.8: Effects of ionic mobility mismatch (a), applied potential (b), applied frequency (c) and ionic
strength (d) on the distribution of the dimensionless time average free charge density. Parameters: φ0 “
5kBT {e (a, c, d), f “ 50 Hz (a, d) and 100 Hz (b), H “ 25 µm (a, b, d) and 50 µm (c), δ “ 4 (b, c, d),
D` “ 1ˆ 10´9 m2{s (a, b, d) and 1.3ˆ 10´9 m2{s (c), c8 “ 1 mM (a, b, c).

cf. Fig. A.6(b)).

The maximum instantaneous ion concentration we observe at the highest applied field strength

is pn`` n´q{n8 « 4000, which corresponds to a concentration of 4 mol{L. This value is one order

of magnitude smaller than the maximum ion packing concentration described by Bazant et al.32
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A.6 PARTICLE HEIGHT BIFURCATION

A.6.1 Hypothesis

Here we propose a hypothesis to explain the particle height bifurcation via fixed point analysis.

Consider a charged colloidal particle near the electrode surface. Depending on the sign of the

particle’s charge and time average electric field, there would be an upward or downward force

exerted on the particle. For example, a negatively charged particle in an electrolyte with δ ą 1

(e.g., polystyrene particle in NaOH electrolyte) would feel a force pushing it either toward or away

from the electrode surface, depending on the particle location. The AREF-induced electrophoretic

force can be used to find the equilibrium heights at which the charged colloidal particles can reside

with zero net force. Taking into account the electrophoretic and gravitational forces, the net force

becomes:

xFzy “ 4πa2ε8ε0ζκxEzy ´
´4

3
πa3

¯

∆ρg. (A.50)

An example of the force distribution is depicted in Fig. A.9. Intersections of the net force field

and equilibrium line (i.e., net force of zero) indicate the fixed points of the problem. The stability

of the fixed points alternates, so that the middle point is unstable with two neighboring stable

points. Particles randomly distributed prior to application of the field will move electrophoretically

in different directions depending on their initial position.
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Figure A.9: Distribution of the time average force (electrophoretic and gravitational) acting on a colloidal
particle. Parameters: φ0 “ 5kBT {e, f “ 500 Hz, H “ 50 µm, δ “ 4, D` “ 1.3 ˆ 10´9 m2{s, c8 “ 1 mM,
a “ 0.5 µm, ζ “ ´100 mV, ∆ρ “ 50 kg{m3.

A.6.2 Materials and methods

The experimental setup consisted of two parallel plate indium tin oxide electrodes (ITO, 5–15 Ω

sheet resistance) separated by a 1 mm thick nonconductive poly(dimethylsiloxane) spacer. The
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electrodes were washed and ultrasonicated for 10 minutes before experiments in RBS 35 detergent,

acetone, and deionized (DI) water. 1 mM NaOH solutions were prepared (conductivity, σ “ 250

µS{cm) using DI water (18.2 MΩ ¨ cm) and 2–µm diameter fluorescent sulfonated polystyrene (PS)

particles were added at a volume fraction of 3ˆ 10´4 to the solution. The colloidal suspension was

then washed three times by centrifugation and resuspension. The electrophoretic mobility mea-

sured via dynamic light scattering was ´8.7 µm ¨ cm{ps ¨Vq (Malvern Zetasizer) with an ostensible

zeta potential of ´110 mV, approximated using the Helmholtz-Smoluchowski relation for small

mobilities. Laser scanning confocal microscopy (Zeiss LSM 700) was used to measure the height of

the colloids above the electrode as a function of applied voltage and frequency.

Initially, a small amount of the particle suspension was allowed to dry overnight causing particles

to irreversibly adhere to the surface of the bottom electrode. Fresh particle suspension was then

added to the fluid well to begin an experiment, and particles were allowed to settle by gravity

for „ 2 hours to the bottom electrode. The small fraction of remaining stuck particles were easily

identified due to their lack of Brownian motion. Thus, the average center of the non-Brownian stuck

particles could be used as a reference for the zero plane of the electrode. After the fresh particles

were settled, a function generator was used to apply an oscillatory electric field. The fluorescent

intensities of the Brownian and stuck reference particles were measured systematically as a function

of vertical position (a standard z-stack), where the peak in the intensity curve from the z-stack

corresponded to the average center height of the plane of particles. The absolute height of the

Brownian particles could then be determined from the difference in height from the stuck reference

plane. We note that the height measured in this manner represents the “average” height of the

particles, averaged over many particles that fluctuate in position due to thermal motion. Finally,

the electric field was removed, and the particles were allowed to disperse via Brownian motion for

10–15 min before repeating. All tests were performed in a randomized order to minimize possible

systematic effects.
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Appendix B

Generalized ICEK

This appendix serves as a supplemental material for Chapter 4.

B.1 VELOCITY PROFILES & STREAMLINES

Given the time average slip velocity in θ direction around the surface of a cylinder (xusθy), the

time average fluid flow profile (urpr, θq and uθpr, θq) is derived. We consider two different cases of

standard electroosmosis (EOS) and induced-charge electrokinetics (ICEK).

Standard Electroosmosis (EOS)

For a cylinder of radius a and intrinsic surface zeta potential of ζ0 subject to a far-field Eptq “ E,

the slip velocity due to standard electroosmosis is given by

xusθy “ ´
εζ0Eθ|r“a

µ
“ 2

εζ0E

µ
sin pθq “ 2U sin pθq. (B.1)

We use stream function to solve this axisymmetric flow problem113. For a steady, creeping flow,

the stream function equation is

„

1

r

B

Br

´

r
B

Br

¯

`
1

r2

B2

Bθ2

2

Ψ “ 0, ur “
1

r

BΨ

Bθ
, uθ “ ´

BΨ

Br
, (B.2)

subject to the following boundary conditions at r “ a:

urpa, θq “ 0, uθpa, θq “ xu
s
θy. (B.3)

In addition, as r Ñ8 the velocities must remain finite.

We now guess a solution of the form

Ψ “ fprq sin θ. (B.4)
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On substitution into Eq. B.2 we get

r4f4 ` 2r3f3 ´ 3r2f2 ` 3rf 1 ´ 3f “ 0. (B.5)

Inserting f “ crn, we find the roots as n “ ´1, 3 and a double root for n “ 1. The latter yields

r ln prq as another linearly independent solution. Therefore, the general solution to the stream

function equation (Eq. B.2) becomes

Ψ “

´c1

r
` c2r ` c3r ln prq ` c4r

3
¯

sin pθq, (B.6)

which subsequently yields the velocity distributions as

ur “
´ c1

r2
` c2 ` c3 ln prq ` c4r

2
¯

cos pθq, uθ “
´ c1

r2
´ c2 ´ c3pln prq ` 1q ´ 3c4r

2
¯

sin pθq. (B.7)

For velocities to remain finite far from the cylinder, c3 and c4 must be zero. Finally, applying the

boundary conditions at r “ a from Eq. B.3, we find the velocity distributions and stream function

as

ur “
´ 1

r̃2
´ 1

¯

U cos pθq, (B.8a)

uθ “
´ 1

r̃2
` 1

¯

U sin pθq, (B.8b)

Ψ “

´1

r̃
´ r̃

¯

aU sin pθq. (B.8c)

where r̃ “ r{a.

Induced-Charge Electrokinetics (ICEK)

The slip velocity for ICEK is given by

xusθy “ 2
εaE2

µ
sin 2θ, (B.9)

for a steady field Eptq “ E, and

xusθy “
εaE2

µpω2
0τ

2
c ` 1q

sin 2θ, (B.10)

for an oscillatory electric field Eptq “ E cos pω0t` γq. For generality, we write

xusθy “ 2U sin 2θ, (B.11)

where the U expression depends on the electric field type.
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This time we guess Ψ “ fprq sin p2θq and insert into Eq. B.2 to get

r4f4 ` 2r3f3 ´ 9r2f2 ` 9rf 1 “ 0. (B.12)

Substituting f “ crn, the roots are obtained as n “ ´2, 0, 2, 4; therefore the general solution is

Ψ “

´ c1

r2
` c2 ` c3r

2 ` c4r
4
¯

sin p2θq. (B.13)

The scalar velocity components are therefore

ur “ 2
´ c1

r3
`
c2

r
` c3r ` c4r

3
¯

cos p2θq, uθ “
´2c1

r3
´ 2c3r ´ 4c4r

3
¯

sin p2θq. (B.14)

Again, the condition of finite velocities as r Ñ 8, eliminates c3 and c4 terms. Applying the

boundary conditions at r “ a (Eq. B.3), the final forms of the velocity and stream function profiles

are obtained as

ur “ 2
´1´ r̃2

r̃3

¯

U cos p2θq, (B.15a)

uθ “
2

r̃3
U sin p2θq, (B.15b)

Ψ “

´ 1

r̃2
´ 1

¯

aU sin p2θq. (B.15c)

Superposition

Now consider an electric field of the form

Eptq “ E0 `

8
ÿ

j“1

Ej cos pjω0t` γjq. (B.16)

By superposition one can find the distributions of scalar velocity components and stream function

as given in Eq. 4.23.

B.2 GENERALIZED INDUCED DIPOLE STRENGTH

Here we provide the details of derivation of the induced dipole strength for an arbitrary electric

field Eptq. Equating Eq. 4.4 and Eq. 4.6 yields

Eptqp1´ gq “ τc

„

dEptq

dt
p1` gq ` Eptq

dg

dt



, (B.17)
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where τc “ εκa{σ. This is rewritten as

dpEpt̂qg ` Ept̂qq

dt̂
` Ept̂qg ´ Ept̂q “ 0, (B.18)

with t̂ ” t{τc “ tσ{pεκaq. Substituting v ” Ept̂qg ` Ept̂q yields

dv

dt̂
` v “ 2Ept̂q. (B.19)

Multiplying by the integrating factor et̂ and integration with respect to t̂ yields

v “ Ept̂qg ` Ept̂q “ 2

ş

et̂Ept̂qdt̂

et̂
` ce´t̂. (B.20)

The constant of integration c is zero for any periodic electric field Eptq. Solving for g yields the

induced dipole strength in terms of an indefinite integral, i.e., Eq. 4.7.
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Appendix C

Perturbation Solution

This appendix serves as a supplemental material for Chapter 5.

C.1 FIRST-ORDER SOLUTION (γ “ 0, β2Ω2 “ 1
4)

As discussed, characteristic equation of the first-order eigenvalue problem has repeated roots for

γ “ 0 and βΩ “ 1
4 . For this special case, the general solution to the first-order problem becomes:

n̂
p1q
` px̃q “ A sinhpλx̃q ´

iS

4λ
pA`Bqx̃ coshpλx̃q, (C.1)

n̂
p1q
´ px̃q “ iSB sinhpλx̃q ´

1

4λ
pA`Bqx̃ coshpλx̃q, (C.2)

φ̂p1qpx̃q “ Cx` piSB ´Aq
sinhpλx̃q

2λ2
` pA`BqpiS ´ 1q

λx̃ coshpλx̃q ´ 2 sinhpλx̃q

8λ4
. (C.3)

with

λ “
1
?

2
p1` 2iΩq1{2 , (C.4a)

S “ sgnpβq. (C.4b)

The constants A, B, and C are determined as

A “
4iλ2

Γ

”

``

4λ2 ´ 1
˘

S ` i
˘

coshpλκ`q ´ pS ´ iqλκ` sinhpλκ`q
ı

, (C.5)

B “
4iλ2

Γ

”

`

S `
`

4λ2 ´ 1
˘

i
˘

coshpλκ`q ` pS ´ iqλκ` sinhpλκ`q
ı

, (C.6)

C “ ´
8iSλ

`

2λ4 ´ 2λ2 ` 1
˘

cosh2pλκ`q

Γ
. (C.7)

The parameter Γ is

Γ “ 2iSλκ`
”

4pλ4 ´ λ2 ` 1q ` 2
`

2λ4 ´ 2λ2 ` 1
˘

coshp2λκ`q `
`

4λ2 ´ 3
˘ sinhp2λκ`q

λκ`

ı

. (C.8)
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C.2 NUMERICAL SOLUTION TO Eq. 5.49

Here we explain a numerical algorithm for solving the Eq. 5.49. For most practical cases, the

electrode spacing is several thousands of the Debye length. Under such conditions, using uniform

grids for discretization is inefficient. Covering the entire domain with a uniform grid, fine enough

to capture the sharp gradients within the Debye layer („ κ´1{100), would require a total of several

hundred thousands grids. Instead we use a stretched grid. Consider a one-dimensional domain

of x̃ P r´κ`, κ`s discretized nonuniformly as x̃i for i “ 1, . . . , 2N ` 1 (face centered grid, i.e.,

x1 “ ´κ`, x2N`1 “ κ`) and hi “ x̃i`1 ´ x̃i. We set h1 “ h2N „ 0.01 (corresponding to having 100

grid points within the Debye layer), and gradually increase the grid size as xi Ñ 0. Using Newton’s

tableau for 3 arbitrary points at locations x̃i´1, x̃i, x̃i`1 and corresponding values of, respectively,

xẼp2qyi´1, xẼ
p2qyi, xẼ

p2qyi`1, one can find the Laplacian stencil as

B2xẼp2qyi

Bx̃2 “
2xẼp2qyi´1

hi´1phi ` hi´1q
´

2

hihi´1
xẼp2qyi `

2xẼp2qyi`1

hiphi ` hi´1q
. (C.9)

Using the obtained Laplacian stencil, the discretized form of Eq. 5.49 becomes:

aixẼ
p2qyi´1 ` bixẼ

p2qyi ` cixẼ
p2qyi`1 “ fi, (C.10)

where

ai “
2

hi´1phi ` hi´1q
, (C.11a)

bi “ ´

ˆ

2

hihi´1
` 1

˙

, (C.11b)

ci “
2

hiphi ` hi´1q
. (C.11c)

In matrix form, the system of algebraic equations can be expressed as

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

b2 c2

a3 b3 c3

. . .

a2N´1 b2N´1 c2N´1

a2N b2N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

xẼp2qy2

xẼp2qy3

...

xẼp2qy2N´1

xẼp2qy2N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

f2

f3

...

f2N´1

f2N

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

, (C.12)

which can be solved by standard iterative schemes or simply inverting the coefficient matrix.
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C.3 PYTHON SOLVER OF Eq. 5.49

The following python code numerically solves the AREF equation (Eq. 5.49) using the algorithm

described above. Run the program by python3 AREF CALC.py.

Filename: AREF CALC.py

1 """

2 ********************************************************************************* +

3 *********************************** AREF_CALC *********************************** +

4 ************************** S.M.H. Hashemi Amrei (Aref) ************************** +

5 ********************************************************************************* +

6 This program evaluates AREF via a second -order perturbation solution to the PNP eqns.

7 AREF: asymmetric rectified electric field

8

9 References to cite:

10 1) A perturbation solution to the full PNP eqns yields an asymmetric rectified electric field

11 S. M. H. Hashemi Amrei , Gregory H. Miller , Kyle J. M. Bishop , & William D. Ristenpart

12 Soft Matter , DOI: 10.1039/ D0SM00417K (2020)

13

14 2) Oscillating Electric Fields in Liquids Create a Long -Range Steady Field

15 S. M. H. Hashemi Amrei , S. C. Bukosky , S. P. Rader , W. D. Ristenpart , & G. H. Miller

16 Physical Review Letters 121 , 185504 (2018)

17

18 The eqn numbers throughout this code refer to the corresponding equations in ref. 1.

19 ___________________________________________________________________________________

20 Correspondence should be addressed to:

21 i) Gregory H. Miller ( grgmiller@ucdavis .edu)

22 ii) William D. Ristenpart ( wdristenpart@ucdavis .edu)

23 Department of Chemical Engineering

24 University of California Davis , Davis , California , US

25 """

26

27 from AREF_SOURCE import *

28

29 print(’Program started ... ’)

30

31 # saving the input values for beta , gamma , Omega , and kl from the file Inputs.txt in a list

32 [dl_parameters , [ind , pm]] = user_input ()

33 # grid and spacing generator

34 [x, h, im] = domain(dl_parameters[3][0], is_uniform , h_minimum , ref)

35 # preallocation of the legend list (plotting)

36 legendLabel = legend(ind , pm , dl_parameters)

37 # preallocation of the AREF peak magnitude vector (plotting)

38 y_max_vec = np.zeros(pm, dtype=float)

39 # calculating the AREF length scale (plotting)

40 len_d = l_aref(dl_parameters[3], dl_parameters[2], pm)

41 # evalauting the AREF for different set of dimensionless parameters (a total of pm sets) and plotting the results

42 for i in range(pm):

43 # extracting the dimensionless parameters from the list

44 [beta , gamma , Omega , kl] = [dl_parameters[0][i], dl_parameters[1][i], dl_parameters[2][i], dl_parameters[3][i]]

45 # semi - analytical second -order approximation to AREF

46 AREF_A = semi_analytical_aref(beta , gamma , Omega , kl , x, h, im)

47 # finding the peak AREF magnitude to be used for the ylim (plotting)

48 y_max_vec[i] = y_max_finder(x, kl, AREF_A , len_d , l_d_critical)

49 # plotting the AREF distribution

50 plt.plot(x, AREF_A , label=legendLabel[i])

51 # writing the results (x, AREF) into a 2-column .txt file

52 write_to_file(AREF_A , x, [beta , gamma , Omega , kl], param_string_latex)

53

54 # plot appearance (plotting)

55 print(’Program finished.’)

56 plot_app(dl_parameters[3][0], param_string_latex , ind , np.max(y_max_vec), pm)

Filename: AREF SOURCE.py

1 from math import *

2 from cmath import sqrt , tanh , exp

3 import matplotlib.pyplot as plt

4 import numpy as np

5 from pylatexenc.latex2text import LatexNodes2Text

6 from fractions import Fraction
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7

8

9 # ************************************************************* #

10 # ************************ USER INPUTS ************************ #

11 # ************************************************************* #

12

13 # saving the input values for beta , gamma , Omega , and kl from the file Inputs.txt in a list

14 # dl_parameters : dimensionless parameters list [beta , gamma , Omega , kl]

15 # ind: index of the varying parameter (0: beta , 1: gamma , 2: Omega)

16 # pm: total number of values of the varying parameter (beta , gamma , or Omega)

17 def user_input ():

18 pm = 1

19 ind = 0

20

21 n_dlp = 4 # total number of dimensionless parameters (4: beta , gamma , Omega , kl)

22 dl_parameters = [[0.0]]*n_dlp # initial allocation of the dimensionless parameters list

23

24 # reading the file into read_list

25 file_id = open("Inputs.txt", "r")

26 read_list = file_id.readlines ()

27 skip_ln = read_list.index(’Parameters :\n’)

28

29 # storing the read_list information into the dl_parameters list

30 # errors will be displayed in case of invalid inputs

31 str_exist = [’param_beta ’, ’param_gamma ’, ’param_Omega ’, ’param_kl ’]

32 exist_check = [False , False , False , False]

33 num_var_param = 0

34 for n in range(n_dlp):

35 for elem in read_list[skip_ln:]:

36 if str_exist[n] in elem:

37 exist_check[n] = True

38 if ’(’ in elem:

39 if n == 3:

40 print(’INVALID INPUT FOR ’ + str_exist[n] +

41 ’. Single value is accepted! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

42 exit()

43 try:

44 ind_l = elem.index(’(’)

45 ind_h = elem.index(’)’)

46 if len(elem[ind_l+1:ind_h-1].split(’,’)) != 3:

47 print(’INVALID INPUT FOR ’ + str_exist[n] +

48 ’! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

49 exit()

50

51 syn = ’np.linspace ’ + elem[ind_l:]

52 dl_parameters[n] = eval(syn)

53 num_var_param += 1

54 ind = n

55 pm = len(dl_parameters[n])

56 except (TypeError , ValueError , SyntaxError):

57 print(’INVALID INPUT FOR ’ + str_exist[n] +

58 ’! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

59 exit()

60 elif ’[’ in elem:

61 if n == 3:

62 print(’INVALID INPUT FOR ’ + str_exist[n] +

63 ’. Single value is accepted! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

64 exit()

65 try:

66 ind_l = elem.index(’[’)

67 syn = elem[ind_l:]

68 dl_parameters[n] = eval(syn)

69 num_var_param += 1

70 ind = n

71 pm = len(dl_parameters[n])

72 except (TypeError , ValueError , SyntaxError):

73 print(’INVALID INPUT FOR ’ + str_exist[n] +

74 ’! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

75 exit()

76 else:

77 if ’,’ in elem:

78 print(’INVALID INPUT FOR ’ + str_exist[n] +

79 ’! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

80 exit()

81 try:

82 dl_parameters[n] = [eval(elem[elem.index(’=’)+1:])]
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83 except (TypeError , ValueError , SyntaxError):

84 print(’INVALID INPUT FOR ’ + str_exist[n] +

85 ’! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

86 exit()

87

88 for i in range(n_dlp):

89 if not exist_check[i]:

90 print(’INVALID INPUT! Parameter name(s) is wrong’ +

91 ’! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

92 exit()

93

94 if num_var_param > 1:

95 print(’INVALID INPUT! There are more than one varying parameter ’ +

96 ’! Follow the instructions in Inputs.txt.\ nProgram Stopped.’)

97 exit()

98

99 # updating the pm value

100 for i in range(len(dl_parameters)):

101 if i != ind:

102 dl_parameters[i] *= pm

103

104 err_text = r’INVALID INPUT! You need $\mid\beta\mid\le 1$ (beta),’\

105 r’$\gamma \:\in\:[-1/5 -1/3 -1/2 0 1/2 1/3 1/5]$ (gamma),’ \

106 r’$\Omega >0$ (Omega), $\Phi_0 >0$ (Phi0), $\kappa\ell >0$ (L).\\ Program Stopped.’

107 bool_beta = 1 >= max(dl_parameters[0][:]) and -1 <= min(dl_parameters[0][:])

108 bool_gamma = True

109 for i in range(pm):

110 if dl_parameters[1][i] not in [-1/5, -1/3, -1/2, 0, 1/2, 1/3, 1/5]:

111 bool_gamma = False

112 bool_omega = 0 < min(dl_parameters[2][:])

113 bool_kl = 0 < min(dl_parameters[3][:])

114

115 if bool_beta is False or bool_gamma is False or bool_omega is False or bool_kl is False:

116 print(LatexNodes2Text ().latex_to_text(err_text))

117 exit()

118

119 file_id.close ()

120 return [dl_parameters , [ind , pm]]

121

122

123 # ************************************************************** #

124 # **************** DISCRETIZATION OF THE DOMAIN **************** #

125 # ************************************************************** #

126

127 # x: vector of the grid points (face -centered) from -kl to kl

128 # h: vector of the grid spacings (i.e., h[i] = x[i+1] - x[i])

129 # im: total number of grids

130 # param_kl: electrode spacing

131 # uniform/ is_uniform : boolian , default value = False

132 # h_min/h_minimum : minimum grid spacing , default value = 0.01

133 # r/ref: powerlaw growth rate of the grid spacing , default value = 1.01

134 # discretization parameters

135 is_uniform = False

136 h_minimum = 0.01

137 ref = 1.01

138

139

140 # stretched grid constructor

141 def stretched_grid(param_kl , h_min , r):

142 n = int(floor(log(1-(1-r)*(param_kl/h_min))/log(r))+1)

143 h = np.array([0]*2*n, dtype=float)

144 h[0] = h_min

145 for i in range(1, n):

146 h[i] = r*h[i-1]

147 if np.sum(h[0:n]) > param_kl:

148 h[n-1] = param_kl - np.sum(h[0:n-1])

149

150 h[n:2*n] = np.flip(h[0:n])

151 im = 2*n+1

152 x = np.array([0.0]*im, dtype=float)

153 x[0] = -param_kl

154 for i in range(1, 2*n+1):

155 x[i] = x[i-1] + h[i-1]

156 return [x, h, im]

157

158
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159 # grid and spacing generator

160 def domain(param_kl , uniform , h_min , r):

161 if uniform is True:

162 # unform grid spacing of size h_min

163 deb_im = 2**(-floor(log(h_min , 2)))

164 im = int(floor(2*param_kl*deb_im)+1)

165 h = [2*param_kl/(im-1)]*(im-1)

166 x = np.array([-param_kl+i*h[0] for i in range(im)], dtype=float)

167 else:

168 [x, h, im] = stretched_grid(param_kl , h_min , r)

169

170 return [x, h, im]

171

172

173 # ************************************************************** #

174 # ************* NUMERICAL SOLUTION TO THE AREF EQN ************* #

175 # ************************** (eqn 49) ************************** #

176 # ************************************************************** #

177

178

179 # semi - analytical second -order approximation to AREF

180 # eqn numbers refer to the corresponding equations in ref. 1.

181 def semi_analytical_aref(param_beta , param_gamma , param_Omega , param_kl , x, h, im):

182 # rhs of the AREF eqn

183 rhs = np.array([0] * im, dtype=complex)

184 sc_checker = 4*(param_beta*param_Omega) ** 2

185 if param_gamma == 0 and sc_checker == 1: # Special case (Appendix A)

186 sgn = np.sign(param_beta) # S (eqn A4b)

187 lambda12 = sqrt((1+2j*param_Omega)/2) # \lambda (eqn A4a)

188 cap_gamma = 2*sgn*param_kl*(4*(lambda12 **4-lambda12 **2+1)*exp(-2*lambda12*param_kl) +

189 (2*lambda12 ** 4-2*lambda12 ** 2+1)*(1+exp(-4*lambda12*param_kl)) +

190 (4*lambda12 ** 2-3)*(1-exp(-4*lambda12*param_kl))/(2*lambda12*param_kl))

191 for i in range(im):

192 # A\sinh (\ lambda\tilde{x})

193 a_sinh = lambda12/cap_gamma*(((4*lambda12 ** 2-1)*sgn+1j)*(1+exp(-2*lambda12*param_kl)) -

194 (sgn-1j)*lambda12*param_kl*(1-exp(-2*lambda12*param_kl)))*(

195 exp(lambda12*(x[i]-param_kl))-exp(-lambda12*(x[i]+param_kl)))

196 # B\sinh (\ lambda\tilde{x})

197 b_sinh = lambda12/cap_gamma*(((4*lambda12 ** 2-1)*1j+sgn)*(1+exp(-2*lambda12*param_kl)) +

198 (sgn-1j)*lambda12*param_kl*(1-exp(-2*lambda12*param_kl)))*(

199 exp(lambda12*(x[i]-param_kl))-exp(-lambda12*(x[i]+param_kl)))

200 # (A+B)\cosh (\ lambda\tilde{x})

201 apb_cosh = 4*lambda12 **3*(sgn+1j)/cap_gamma*(1+exp(-2*lambda12*param_kl))*(

202 exp(lambda12*(x[i]-param_kl))+exp(-lambda12*(x[i]+param_kl)))

203 # (A+B)\sinh (\ lambda\tilde{x})

204 apb_sinh = 4*lambda12 **3*(sgn+1j)/cap_gamma*(1+exp(-2*lambda12*param_kl))*(

205 exp(lambda12*(x[i]-param_kl))-exp(-lambda12*(x[i]+param_kl)))

206 # (A-iSB)\cosh (\ lambda\tilde{x})

207 amisb_cosh = lambda12/cap_gamma*((2*sgn*(4*lambda12 **2-1)+1j*(1-sgn **2))*(1+exp(-2*lambda12*param_kl)) +

208 (1j*(1-sgn ** 2)-2*sgn)*lambda12*param_kl*(1-exp(-2*lambda12*param_kl)))*(

209 exp(lambda12*(x[i]-param_kl))+exp(-lambda12*(x[i]+param_kl)))

210 # C

211 c = -2*sgn/cap_gamma*(2*lambda12 **4-2*lambda12 **2+1)*(1+exp(-2*lambda12*param_kl))** 2

212

213 # \hat{n}_+^{(1)}: eqn A1

214 n1_hat = a_sinh-1j*sgn/(4*lambda12)*x[i]*apb_cosh

215 # \hat{n}_-^{(1)}: eqn A2

216 n2_hat = 1j*sgn*b_sinh-1/(4*lambda12)*x[i]*apb_cosh

217 # \hat{E}^{(1)}: -derivative of eqn A3 (the electric potential \hat{\phi}^{(1)})

218 e_hat = -(c-amisb_cosh/(2*lambda12)-(1j*sgn-1)/(8*lambda12 **3)*apb_cosh +

219 (1j*sgn-1)/(8*lambda12 **2)*x[i]*apb_sinh)

220 # complex conjugates : \bar{X}=\ mathrm{conj}{\hat{X}}

221 n1_bar = np.conj(n1_hat)

222 n2_bar = np.conj(n2_hat)

223 e_bar = np.conj(e_hat)

224 # rhs of the AREF eqn: eqn 50

225 rhs[i] = 1/8*(( n1_hat+n2_hat)*e_bar+(n1_bar+n2_bar)*e_hat)

226 else:

227 cap_delta = 1-4*param_beta*param_Omega*(1j*param_gamma+param_beta*param_Omega) # \Delta (eqn 32b)

228 lambda1 = sqrt((1+2j*param_Omega+sqrt(cap_delta))/2) # \lambda_+ (eqn 33)

229 lambda2 = sqrt((1+2j*param_Omega-sqrt(cap_delta))/2) # \lambda_ - (eqn 33)

230 s = 2j*param_beta*param_Omega+sqrt(cap_delta) # s (eqn 32a)

231 # Gamma: eqn 37

232 cap_gamma = s**2-2*param_gamma*s+1-1/(2*param_kl)*(

233 (param_gamma+1)*(s-1) **2*(lambda2*param_kl-tanh(lambda2*param_kl))/(lambda2 **3) -

234 (param_gamma-1)*(s+1) **2*(lambda1*param_kl-tanh(lambda1*param_kl))/(lambda1 **3))
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235 for i in range(im):

236 c1 = (exp(lambda1*(x[i]-param_kl))-exp(-lambda1*(x[i]+param_kl)))/(1+exp(-2*lambda1*param_kl))

237 c2 = (exp(lambda2*(x[i]-param_kl))-exp(-lambda2*(x[i]+param_kl)))/(1+exp(-2*lambda2*param_kl))

238 # \hat{n}_+^{(1)}: eqn 30

239 n1_hat = 1/cap_gamma*((s-param_gamma)*(s-1)/(lambda2*param_kl)*c2

240 + (1-param_gamma)*(s+1)/(lambda1*param_kl)*c1)

241 # \hat{n}_-^{(1)}: eqn 31

242 n2_hat = 1/cap_gamma*((1+param_gamma)*(s-1)/(lambda2*param_kl)*c2

243 - (s-param_gamma)*(s+1)/(lambda1*param_kl)*c1)

244

245 c1p = (exp(lambda1*(x[i]-param_kl))+exp(-lambda1*(x[i]+param_kl)))/(1+exp(-2*lambda1*param_kl))

246 c2p = (exp(lambda2*(x[i]-param_kl))+exp(-lambda2*(x[i]+param_kl)))/(1+exp(-2*lambda2*param_kl))

247 # \hat{E}^{(1)}: -derivative of eqn 34 (the electric potential \hat{\phi}^{(1)})

248 e_hat = 1/param_kl+1/(2*param_kl*cap_gamma)*(

249 (1+param_gamma)*(s-1) ** 2/(lambda2 **2)*(c2p-tanh(lambda2*param_kl)/(lambda2*param_kl)) +

250 (1-param_gamma)*(s+1) ** 2/(lambda1 **2)*(c1p-tanh(lambda1*param_kl)/(lambda1*param_kl)))

251 # complex conjugates : \bar{X}=\ mathrm{conj}{\hat{X}}

252 n1_bar = np.conj(n1_hat)

253 n2_bar = np.conj(n2_hat)

254 e_bar = np.conj(e_hat)

255

256 # rhs of the AREF eqn: eqn 50

257 rhs[i] = 1/8*(((1+param_gamma) ** 2*n1_hat + (1-param_gamma)**2*n2_hat)*e_bar + (

258 (1+param_gamma)** 2*n1_bar + (1-param_gamma) **2*n2_bar)*e_hat)

259 # constructing the linear system of algebraic equations (cf. Appendix B of ref. 1, eqn B4)

260 # a: coefficient matrix

261 # b: right hand side column vector

262 a = np.zeros ((im, im), dtype=float)

263 b = np.transpose(rhs)

264

265 for i in range(1, im-1):

266 a[i, i-1] = 2/(h[i-1])/(h[i] + h[i-1]) # eqn B3a

267 a[i, i] = -(1+2*(1/h[i]+1/h[i-1])/(h[i]+h[i-1])) # eqn B3b

268 a[i, i+1] = 2/(h[i])/(h[i]+h[i-1]) # eqn B3c

269

270 # computing AREF

271 aref_a = np.array([0] * im , dtype=complex)

272 aref_a[1:im-1] = np.linalg.solve(a[1:im-1, 1:im-1], b[1:im-1])

273

274 return np.real(aref_a)

275

276

277 # *************************************************************** #

278 # *********************** WRITE INTO FILE *********************** #

279 # *************************************************************** #

280 param_string_latex = [r’$\beta$’, r’$\gamma$ ’, r’$\Omega$ ’, r’$\kappa\ell$’, r’$\Phi_0$ ’]
281

282

283 # converting numbers into strings

284 def convert_to_string(val):

285 if int(val) == val:

286 string = str(int(val))

287 else:

288 order = log(abs(val), 10)

289 if order > 0:

290 string = str(round(val , 4))

291 else:

292 string = str(round(val , int(abs(floor(order))) + 3))

293

294 return string

295

296

297 # writing the results (x, AREF) into a 2-column .txt file

298 def write_to_file(aref_a , x, dl_params , param_string):

299 data = np.column_stack ((x, aref_a))

300 filename = ’results_beta=’ + convert_to_string(dl_params[0]) + ’_gamma=’ + convert_to_string(dl_params[1]) \

301 + ’_Omega=’ + convert_to_string(dl_params[2]) + ’_kl=’ + convert_to_string(dl_params[3]) + ’.txt’

302 file_id = open(filename , "w", encoding="utf -8")

303 message = r’AREF_CALC results: $\kappa x$ (1st column) vs $\langle\tilde{E}\rangle /\ Phi_0^2$ (2nd column)’

304 file_id.write(LatexNodes2Text ().latex_to_text(message))

305 file_id.write(’\n’ + ’=’*50 + ’\n’)

306 for i in range(len(dl_params)):

307 param_message = param_string[i] + r’ $=$ ’ + convert_to_string(dl_params[i])

308 file_id.write(LatexNodes2Text ().latex_to_text(param_message))

309 file_id.write(’\n’)

310
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311 file_id.write(’=’*50 + ’\n’)

312 np.savetxt(file_id , data , fmt=[’%+10.16f’, ’%10.16f’])

313 file_id.close ()

314

315 return 0

316

317

318 # ************************************************************** #

319 # ************************** PLOTTING ************************** #

320 # ************************************************************** #

321

322 # plot options

323 app_params = {’figure.dpi’: 100 ,

324 ’font.size’: 12 ,

325 ’mathtext.fontset ’: ’stix’,

326 ’font.family ’: ’STIXGeneral ’,

327 ’lines.linewidth ’: 2,

328 ’xtick.direction ’: ’in’,

329 ’ytick.direction ’: ’in’,

330 ’xtick.top’: True ,

331 ’ytick.right’: True ,

332 ’figure.figsize ’: [7, 5]}

333 plt.rcParams.update(app_params)

334 plt.subplots_adjust(left=0.15 , bottom=0.1, right=0.8, top=0.9)

335 l_d_critical = 0.32

336

337

338 # constructing the plot ’s legend

339 def legend(ind , pm, dl_parameters):

340 dl = dl_parameters[ind]

341 legend_label = [’ ’]*pm

342 for i in range(pm):

343 legend_label[i] = convert_to_string(dl[i])

344

345 return legend_label

346

347

348 # plot appearance

349 def plot_app(param_kl , param_string , ind , y_max , pm):

350 if y_max == 0.0:

351 scale = 10 ** (-16)

352 else:

353 scale = 10 ** (round(log(y_max , 10)))

354

355 plt.xlabel(r’$\kappa x$’)
356 power = int(log(1/scale , 10))

357 if power == 1:

358 plt.ylabel(r’$\langle\tilde{E}\rangle /\ Phi_0^2 \times 10$’)
359 elif power == 0:

360 plt.ylabel(r’$\langle\tilde{E}\rangle /\ Phi_0^2$’)
361 else:

362 plt.ylabel(r’$\langle\tilde{E}\rangle /\ Phi_0^2 \times 10^{’ + str(power) + ’}$’)
363

364 plt.xlim(-param_kl , param_kl)

365

366 rat = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

367 y_lim = rat[rat.index(int(floor(y_max/scale)))]+1

368 plt.ylim(-y_lim*scale , y_lim*scale)

369 yticks = [-y_lim*scale , -y_lim*scale/2, 0, y_lim*scale/2, y_lim*scale]

370 yticklabels = [’ ’]*5

371 for i in range(5):

372 yticklabels[i] = ’$’ + str(round(yticks[i]/scale , 1)) + ’$’
373

374 plt.yticks ((-y_lim*scale , -y_lim*scale/2, 0, y_lim*scale/2, y_lim*scale),

375 (yticklabels[0], yticklabels[1], yticklabels[2], yticklabels[3], yticklabels[4]))

376 if pm > 1:

377 plt.legend(title=param_string[ind], fancybox=False , edgecolor=’w’, bbox_to_anchor=(1.01, 1), loc=’upper left’)

378

379 plt.show()

380

381

382 # calculating the AREF length scale (eqn 53)

383 def l_aref(kl_vec , omega_vec , pm):

384 l_d_vec = [0.0]*pm

385 for i in range(pm):

386 l_d_vec[i] = (1/(omega_vec[i]*kl_vec[i]** 2))** (1/2)
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387

388 return np.min(l_d_vec)

389

390

391 # finding the peak AREF magnitude to be used for the ylim

392 def y_max_finder(x, param_kl , aref_a , l_d , l_d_c):

393 if l_d > l_d_c:

394 y_max = np.max(abs(aref_a))

395 else:

396 ind_micronscale = np.min(np.nonzero(x + param_kl > 2))

397 ind_midplane = int((len(x)-1)/2)

398 y_max_p = np.max(aref_a[ind_micronscale:ind_midplane])

399 y_max_m = np.min(aref_a[ind_micronscale:ind_midplane])

400 if y_max_p > abs(y_max_m):

401 y_max = y_max_p

402 else:

403 y_max = -y_max_m

404

405 return y_max

Filename: Inputs.txt

1 Enter the values for dimensionless parameters here.

2 Please follow the instructions below:

3

4 * For single value parameters write the value only.

5 e.g., beta = 1/2

6 * To have multiple values for a parameter use brackets [], with "," separating the values

7 e.g., beta = [-1, 0, 1/2, 4/5]

8 * To have a certain number of values for a parameter within a range use (min value , max value , number of values)

9 e.g., beta = (-1, 1, 11)

10

11 Remarks:

12 . You need |beta|<=1, gamma in {-1/5 -1/3 -1/2 0 1/2 1/3 1/5}, Omega >0, Phi0 >0, L>0.

13 . DO NOT change the name of parameters.

14 . Only one of the 3 dimensionless parameters beta , gamma , & Omega can have multiple values

15 . Values can be expressed as integer , float , or fraction

16 . Use EXACTLY the provided instructions to avoid errors in reading.

17

18

19 Parameters:

20

21 param_beta = (-1,1,5)

22 param_gamma = 0

23 param_Omega = 0.1

24 param_kl = 10
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Appendix D

Two-Mode Potentials & Symmetry

Arguments

This appendix serves as a supplemental material for Chapter 7.

D.1 PERTURBATION SOLUTION (TWO-MODE)

D.1.1 Second-order perturbation solution (single-mode)

We briefly review the second-order solution to the PNP equations derived by Hashemi Amrei et

al.5 for a single-mode sinusoidal potential. The dimensionless governing equations are expressed as

´
B2φ̃

Bx̃2 “
1
2 ñ` ´

1
2 ñ´, (D.1)

Bñ˘

Bt̃
“ ´

j̃˘
Bx̃
, (D.2)

where the dimensionless ion flux is

j̃˘ “ ´
1

1¯ β

«

Bñ˘
Bx̃

˘

˜

ñ˘
Bφ̃

Bx̃

¸ff

. (D.3)

The dimensionless initial and boundary conditions are

ñ˘px̃, 0q “ 1, (D.4)

φ̃p˘κ`, t̃q “ ¯Φ0 sinpΩt̃q, (D.5)

j̃˘p˘κ`, t̃q “ 0. (D.6)

Here, the dimensionless variables and parameters are defined as

ñ˘“
n˘
n8

, φ̃“
φe

kBT
, x̃“κx, t̃“ tκ2D, (D.7)
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Φ0“
φ0e

kBT
, Ω“

ω

κ2D
, κ`, β“

D`´D´
D``D´

, (D.8)

where

D “
2D`D´
D` `D´

, κ´1 “

c

εkBT

2e2n8
. (D.9)

In the limit of small potentials (Φ0 ! 1), the solution can be approximated by the power series

ñ˘px̃, t̃q“ ñ
p0q
˘ `Φ0ñ

p1q
˘ `Φ2

0ñ
p2q
˘ `Φ3

0ñ
p3q
˘ `. . . (D.10)

φ̃px̃, t̃q“ φ̃p0q`Φ0φ̃
p1q`Φ2

0φ̃
p2q`Φ3

0φ̃
p3q`. . . (D.11)

Zeroth and first order solutions

The zeroth-order solution is simply ñ
p0q
˘ “ 1, φ̃p0q “ 0, and the first-order solution is given by

ñ
p1q
˘ px̃, t̃q“ Im

”

n̂
p1q
˘ eiΩt̃

ı

, (D.12)

φ̃p1qpx̃, t̃q“ Im
”

φ̂p1qeiΩt̃
ı

, (D.13)

where n̂
p1q
˘ and φ̂p1q are odd (with respect to x) complex functions given by Eq. 5.30–Eq. 5.37 in

Hashemi Amrei et al.5

Second-order solution

The second-order governing equations for ñ
p2q
˘ and φ̃p2q are5

Bñ
p2q
˘

Bt̃
`
Bj̃
p2q
˘

Bx̃
“ 0, (D.14)

B2φ̃p2q

Bx̃2 ` 1
2 ñ
p2q
` ´ 1

2 ñ
p2q
´ “ 0. (D.15)

Here the ion flux is given by

j̃
p2q
˘ px̃, t̃q “ ´

1

1¯ β

«

Bñ
p2q
˘

Bx̃
˘
Bφ̃p2q

Bx̃
`s

p2q
˘

ff

, (D.16)

with

s
p2q
˘ “ ˘ñ

p1q
˘

Bφ̃p1q

Bx̃
“ ¯ñ

p1q
˘ Ẽp1q. (D.17)

The boundary conditions are

φ̃p2qp˘κ`, t̃q “ 0, j̃
p2q
˘ p˘κ`, t̃q “ 0. (D.18)

Hashemi Amrei et al. focused only on the second-order time-average electric field which was

shown to accurately predict AREF via a simple linear ordinary differential equation (ODE), the
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AREF equation5

B2xẼp2qy

Bx̃2 ´ xẼp2qy “ f p2q, (D.19)

with

f p2q “ 1
2xs

p2q
´ y ´

1
2xs

p2q
` y. (D.20)

An important point is that Hashemi Amrei et al.5 assumed xẼp2qy “ 0 at the boundaries

x̃ “ ˘κ`, which was consistent with all of the numerical results for single-mode sinusoidal applied

potentials. Here we justify this assumption. One can easily show that the RHS f p2q is an odd func-

tion. Recall that ñ
p1q
˘ and φ̃p1q are odd which makes Ẽp1q “ ´Bφ̃p1q{Bx̃ an even function. Hence, f p2q

which includes ¯ñ
p1q
˘ Ẽp1q is odd, and yields an odd second-order solution xẼp2qy (antisymmetric).

Additionally, total charge neutrality requires xẼp2qyκ` “ xẼ
p2qy´κ` “ K. But for xẼp2qy to be odd

K has to be 0 which justifies the assumption. An alternative would be to solve for the potential

via the following rank-deficient problem:

´
B3xφ̃p2qy

Bx̃3 `
xBφ̃p2qy

Bx̃
“ f p2q, (D.21)

subject to xφ̃p2qy “ 0 at x̃ “ ˘κ`. Solving the problem using singular–value–decomposition (SVD)

along with the total charge neutrality condition,

ż κ`

´κ`

B2xφ̃p2qy

Bx̃2 dx̃ “ 0, (D.22)

yields the same results as that of setting xẼp2qy “ 0 at x̃ “ ˘κ`.

D.1.2 Second-order perturbation solution (two-mode)

In this section we follow the same procedure to derive the perturbation solution for the two-mode

potential φ̃p˘κ`, t̃q “ ¯Φ0

“

sinpΩt̃q ` sinpαΩt̃q
‰

.

Zeroth and first order solutions

For the two-mode system, the zeroth-order solution remains unchanged. The first-order solution is

obtained by superposition of the first-order solutions due to Ω and αΩ modes:

ñ
p1q
˘ px̃, t̃q“ Im

”

n̂
p1q
˘ pΩqeiΩt̃`n̂

p1q
˘ pαΩqeiαΩt̃

ı

, (D.23)

φ̃p1qpx̃, t̃q“ Im
”

φ̂p1qpΩqeiΩt̃`φ̂p1qpαΩqeiαΩt̃
ı

. (D.24)

Second-order solution

One can show that f p2q for the two-mode case is the superposition of the RHS due to Ω and

αΩ. Hence, following Hashemi Amrei et al.,5 we can solve the problem for the modes Ω and
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αΩ separately without any extra complications. More importantly, it shows that the second-

order solution does not provide any information regarding the possible dissymmetric behavior of

AREF. As mentioned, the RHS of the second-order AREF equation is odd and yields antisymmetric

contributions (cf. Fig. D.1(a)).

Consequently, we suspect that the dissymmetric AREF is a third-order phenomena. To inves-

tigate this hypothesis we need to first fully solve the second-order system to find the temporal and

spatial distributions of the ion concentrations and the potential/electric field. The first and second

order solutions will provide the RHS of the third-order AREF equation.

We use Fourier series to solve the problem. Consider solutions of the form:

ñ
p2q
˘ “

8
ÿ

k“´8

c˘k e
ikΩc t̃, (D.25)

φ̃p2q “
8
ÿ

k“´8

cφke
ikΩc t̃. (D.26)

Here Ωc “ Ω gcdp1, αq is the common angular frequency of the applied potential, i.e., 2π{Ωc is

the period of the two-mode applied potential/harmonic solution. Inserting Eq. D.25 and Eq. D.26

into the second-order governing equations and boundary conditions yields the following differential

equations for the coefficients of the Fourier series.

(i) k “ 0

B2c˘0
Bx̃2 ˘

B2cφ0
Bx̃2 “ ´

B

Bs
p2q
˘

Bx̃

F

, (D.27a)

B2cφ0
Bx̃2 `

1
2c
`
0 ´

1
2c
´
0 “ 0, (D.27b)

Bc˘0
Bx̃

˘
Bcφ0
Bx̃

“ ´xs
p2q
˘ y at x̃ “ ˘κ`, (D.27c)

cφ0 p˘κ`q “ 0. (D.27d)

Eq. D.27a and Eq. D.27c can be combined to yield

Bc˘0
Bx̃

˘
Bcφ0
Bx̃

` xs
p2q
˘ y “ 0.

Now, taking the derivative of Eq. D.27b with respect to x̃, and subsequent substitution of

Bc˘0 {Bx̃ from the above equation results in

B3cφ0
Bx̃3 ´

Bcφ0
Bx̃

“ 1
2xs

p2q
` y ´

1
2xs

p2q
´ y. (D.28)
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Figure D.1: RHSs of the second (a) and third (b) order AREF equations for α “ 1 and 2. Parameters:
Ω “ 0.1, β “ ´1{3, κ` “ 5.

Note that we could write this equation in terms of cE0 “ ´Bc
φ
0{Bx̃ to get:

B2cE0
Bx̃2 ´ c

E
0 “

1
2xs

p2q
´ y ´

1
2xs

p2q
` y,

which is equivalent to the linear ODE used by Hashemi Amrei et al.5 to find AREF (Eq. D.19).

(ii) k “ ´8, . . . ,8

B2c˘k
Bx̃2 ˘

B2cφk
Bx̃2 ´ikΩcp1¯βqc

˘
k “´

B

Bs
p2q
˘

Bx̃
e´ikΩc t̃

F

, (D.29a)

B2cφk
Bx̃2 `

1
2c
`
k ´

1
2c
´
k “ 0, (D.29b)

Bc˘0
Bx̃

˘
Bcφ0
Bx̃

“ ´

A

s
p2q
˘ e´ikΩc t̃

E

at x̃ “ ˘κ`, (D.29c)

cφkp˘κ`q “ 0. (D.29d)

We solve the above equations numerically to find c˘k and cφk (k “ ´8, . . . ,8). Of course

we do not need to solve for k Ñ ˘8 and we truncate the series at a much smaller k value

(i.e., k “ ´K, . . . ,K). Considering the source terms (Eq. D.17) as a multiplication of first-order

solutions, the maximum possible frequency component can be obtained. For example, for a single-

mode applied potential of angular frequency Ω, the first-order terms (i.e., ñ
p1q
˘ , Ẽp1q) oscillate with

Ω and hence, the highest possible angular frequency of the source terms becomes 2Ω “ 2Ωc and

K “ 2. Similarly, for a two-mode system (Ω & αΩ), the highest angular frequency component,

given α ě 1, is 2αΩ “ 2αΩc{ gcdp1, αq Ñ K “ 2α{ gcdp1, αq. Note that when α “ 1, K “ 2 is

recovered.
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Third-order perturbation

The third-order system of equations is identical to that of the second order, except the source terms

which are

s
p3q
˘ “ ˘

˜

ñ
p1q
˘

Bφ̃p2q

Bx̃
`ñ

p2q
˘

Bφ̃p1q

Bx̃

¸

. (D.30)

The third-order AREF equation is given by

B2xẼp3qy

Bx̃2 ´ xẼp3qy “ f p3q, (D.31)

where

f p3q “ 1
2xs

p3q
´ y ´

1
2xs

p3q
` y. (D.32)

An analyze of the RHS f p3q provides some insight regarding the dissymmetric AREF. We note

that the second-order solutions φ̃p2q and ñ2
˘ are even functions. Therefore, f p3q is an even function

in space which, in turn, indicates that Ẽp3q is even. Hence, when f p3q ‰ 0, the third-order electric

field adds a dissymmetric contribution to the overall AREF. Fig. D.1(b) shows the calculated f p3q

for α “ 1 and 2. We note that the f p3q ‰ 0 when α “ 2, corroborating the observed dissymmetric

behavior. However, f p3q “ 0 for all other α values, including the ones that are expected (based on

the numerical results) to result in dissymmetry. We argue that higher odd-order solutions (5, 7, . . . )

are responsible for the observed dissymmetry for other α values such as 3
2 ,

4
3 , 4, . . .

Generalization

The kth order solution (k ě 2) contributes to the overall AREF via the ODE

B2xẼpkqy

Bx̃2 ´ xẼpkqy “ f pkq. (D.33)

It can be shown that the source terms are odd functions with respect to the midplane for even k

values, yielding an antisymmetric contribution to the solution. The source terms for odd orders

are even functions in space, resulting an even contribution to the electric field. Therefore, if spkq is

nonzero for k “ 3, 5, . . . , the perturbation solution suggests a dissymmetric shape for the AREF.

D.2 ANTIPERIODIC & NON-ANTIPERIODIC TWO-MODE

POTENTIALS

We find the specific α values for which the ψptq “ sinpωtq`sinpαωtq is antiperiodic/non-antiperiodic.

We start by evaluating

ψpt` τq“sinpωtq cos pωτq`cospωtq sin pωτq`sinpαωtq cos pαωτq`cospαωtq sin pαωτq.
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Since τ “ π{pω gcdp1, αqq, we have ωτ “ nπ and αωτ “ αnπ for an integer n ě 1, and the

expression simplifies to

sin pωpt`τqq`sin pαωpt`τqq“sinpωtq cospnπq`sinpαωtq cospαnπq.

Now if, in its simplified rational form, α “ p2k`1q{p2j`1q, then one can conclude that n “ 2j`1

(αn is integer) and we get:

ψpt` τq“sinpωtq cospp2j`1qπq`sinpαωtq cospp2k`1qπq“´ sinpωtq´sinpαωtq “ ´ψptq,

and therefore, ψptq is antiperiodic. In a nutshell, if α can be simplified as a rational number in the

form {odd integer}/{odd integer}, the two-mode potential is antiperiodic; otherwise, the potential

is non-antiperiodic.

An alternative approach would be to find a time lag 2sτ for which

sinpωpt`2sτqq`sinpαωpt`2sτqq“´sinpωtq´sinpαωtq.

Note that 2sτω “ p2j ` 1qπ Ñ s “ p2j ` 1qπ{p2ωτq introduces a phase lag of π to the first term.

Then the phase lag of the second term becomes 2sταω “ p2j ` 1qαπ which is an odd multiple of π

for α “ p2k ` 1q{p2j ` 1q.
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