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Formal synthesis is the process of generating a program satisfying a high-level formal specification.
In recent times, effective formal synthesis methods have been proposed based on the use of inductive
learning. We refer to this class of methods that learn programs from examples as formal inductive
synthesis. In this paper, we present a theoretical framework for formal inductive synthesis. We
discuss how formal inductive synthesis differs from traditional machine learning. We then describe
oracle-guided inductive synthesis (OGIS), a framework that captures a family of synthesizers that
operate by iteratively querying an oracle. An instance of OGIS that has had much practical impact
is counterexample-guided inductive synthesis (CEGIS). We present a theoretical characterization
of CEGIS for learning any program that computes a recursive language. In particular, we analyze
the relative power of CEGIS variants where the types of counterexamples generated by the oracle
varies. We also consider the impact of bounded versus unbounded memory available to the learning
algorithm. In the special case where the universe of candidate programs is finite, we relate the speed
of convergence to the notion of teaching dimension studied in machine learning theory. Altogether,
the results of the paper take a first step towards a theoretical foundation for the emerging field of
formal inductive synthesis.

1 Introduction

The field of formal methods has made enormous strides in recent decades. Formal verification techniques
such as model checking [15, 47, 16] and theorem proving (see, e.g. [45, 36, 22]) are used routinely in
the computer-aided design of integrated circuits and have been widely applied to find bugs in software,
analyze models of embedded systems, and find security vulnerabilities in programs and protocols. At
the heart of many of these advances are computational reasoning engines such as Boolean satisfiability
(SAT) solvers [41], Binary Decision Diagrams (BDDs) [13], and satisfiability modulo theories (SMT)
solvers [8]. Alongside these advances, there has been a growing interest in the synthesis of programs or
systems from formal specifications with correctness guarantees. We refer to this area as formal synthesis.
Starting with the seminal work of Manna and Waldinger on deductive program synthesis [42] and Pnueli
and Rosner on reactive synthesis from temporal logic [46], there have been several advances that have
made formal synthesis practical in specific application domains such as robotics, online education, and
end-user programming.

Algorithmic approaches to formal synthesis range over a wide spectrum, from deductive synthesis
to inductive synthesis. In deductive synthesis (e.g., [42]), a program is synthesized by constructively
proving a theorem, employing logical inference and constraint solving. On the other hand, inductive
synthesis [19, 57, 52] seeks to find a program matching a set of input-output examples. At a high
level, it is thus an instance of learning from examples, also termed as inductive inference or machine
learning [6, 43]. Many current approaches to synthesis blend induction and deduction in the sense that
even as they generalize from examples, deductive procedures are used in the process of generalization
(see [51, 34] for a detailed exposition). Even so, the term “inductive synthesis” is typically used to
refer to all of them. We will refer to these methods as formal inductive synthesis to place an emphasis
on correctness of the synthesized artifact. These synthesizers generalize from examples by searching a
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2 Formal Inductive Synthesis

restricted space of programs. In machine learning, this restricted space is called the concept class, and
each element of that space is often called a candidate concept. The concept class is usually specified
syntactically. It has been recognized that this syntax guidance, also termed as a structure hypothesis, can
be crucial in helping the synthesizer converge quickly to the target concept [55, 51, 1].

The fields of formal inductive synthesis and machine learning have the same high-level goal: to de-
velop algorithmic techniques for synthesizing a concept (function, program, or classifier) from observa-
tions (examples, queries, etc.). However, there are also important differences in the problem formulations
and techniques used in both fields. We identify some of the main differences below:

1. Concept Classes: In traditional machine learning, the classes of concepts to be synthesized tend to
be specialized, such as linear functions or half-spaces [61], convex polytopes [25], neural networks of
specific forms [9], Boolean formulas in fixed, bounded syntactic forms [26], and decision trees [48].
However, in formal synthesis, the target concepts are general programs or automata with constraints
or finite bounds imposed mainly to ensure tractability of synthesis.

2. Learning Algorithms: In traditional machine learning, just as concept classes tend to be specialized,
so also are the learning algorithms for those classes [43]. In contrast, in formal inductive synthesis,
the trend is towards using general-purpose decision procedures such as SAT solvers, SMT solvers, and
model checkers that are not specifically designed for inductive learning.

3. Exact vs. Approximate Learning: In formal inductive synthesis, there is a strong emphasis on exactly
learning the target concept; i.e., the learner seeks to find a concept that is consistent with all positive
examples but not with any negative example. The labels for examples are typically assumed to be
correct. Moreover, the learned concept should satisfy a formal specification. In contrast, the emphasis
in traditional machine learning is on techniques that perform approximate learning, where input data
can be noisy, some amount of misclassification can be tolerated, there is no formal specification, and
the overall goal is to optimize a cost function (e.g., capturing classification error).

4. Emphasis on Oracle-Guidance: In formal inductive synthesis, there is a big emphasis on learning in
the presence of an oracle, which is typically implemented using a general-purpose decision procedure
or sometimes even a human user. Moreover, and importantly, the design of this oracle is part of the
design of the synthesizer. In contrast, in traditional machine learning, the use of oracles is rare, and
instead the learner typically selects examples from a corpus, often drawing examples independently
from an underlying probability distribution. Even when oracles are used, they are assumed to be black
boxes that the learner has no control over. The oracle is part of the problem definition in machine
learning, whereas in formal inductive synthesis, the design of the oracle is part of the solution.

The last item, oracle-guidance, is a particularly important difference, and informs the framework we
proposed in this paper.

In this paper, we take first steps towards a theoretical framework and analysis of formal inductive
synthesis. Most instances of inductive synthesis in the literature rely on an oracle that answers different
types of queries. In order to capture these various synthesis methods in a unifying framework, we for-
malize the notion of oracle-guided inductive synthesis (OGIS). While we defer a detailed treatment of
OGIS to Section 2, we point out three dimensions in which OGIS techniques differ from each other:

1. Characteristics of concept class: The concept class for synthesis may have different characteristics
depending on the application domain. For instance, the class of programs from which the synthesizer
must generate the correct one may be finite, as in the synthesis of bitvector programs [55, 30, 24], or
infinite, as in the synthesis of guards for hybrid automata [31, 33]. In the former case, termination is
easily guaranteed, but it is not obvious for the case of infinite-size concept classes.

2. Query types: Different applications may impose differing constraints on the capabilities of the ora-
cle. In some cases, the oracle may provide only positive examples. When verification engines are
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used as oracles, as is typical in formal synthesis, the oracle may provide both positive examples and
counterexamples which refute candidate programs. More fine-grained properties of queries are also
possible — for instance, an oracle may permit queries that request not just any counterexample, but
one that is “minimum” according to some cost function.

3. Resources available to the learning engine: As noted above, the learning algorithms in formal in-
ductive synthesis tend to be general-purpose decision procedures. Even so, for tractability, certain
constraints may be placed on the resources available to the decision procedure, such as time or mem-
ory available. For example, one may limit the decision procedure to use a finite amount of memory,
such as imposing an upper bound on the number of (learned) clauses for a SAT solver.

We conduct a theoretical study of OGIS by examining the impact of variations along the above three di-
mensions. Our work has a particular focus on counterexample-guided inductive synthesis (CEGIS) [55],
a particularly popular and effective instantiation of the OGIS framework. When the concept class is in-
finite size, termination of CEGIS is not guaranteed. We study the relative strength of different versions
of CEGIS, with regards to their termination guarantees. The versions vary based on the type of coun-
terexamples one can obtain from the oracle. We also analyze the impact of finite versus infinite memory
available to the learning algorithm to store examples and hypothesized programs/concepts. Finally, when
the concept class is finite size, even though termination of CEGIS is guaranteed, the speed of termination
can still be an issue. In this case, we draw a connection between the number of counterexamples needed
by a CEGIS procedure and the notion of teaching dimension [20] previously introduced in the machine
learning literature.

To summarize, we make the following specific contributions in this paper:
1. We define the formal inductive synthesis problem and propose a class of solution techniques termed as

Oracle-Guided Inductive Synthesis (OGIS). We illustrate how OGIS generalizes instances of concept
learning in machine learning/artificial intelligence as well as synthesis techniques developed using
formal methods. We provide examples of synthesis techniques from literature and show how they can
be represented as instantiations of OGIS.

2. We perform a theoretical comparison of different instantiations of the OGIS paradigm in terms of
their synthesis power. The synthesis power of an OGIS technique is defined as the class of con-
cepts/programs (from an infinite concept class) that can be synthesized using that technique. We
establish the following specific novel theoretical results:
• For learning engines that can use unbounded memory, the power of synthesis engines using oracle

that provides arbitrary counterexamples or minimal counterexamples is the same. But this is strictly
more powerful than using oracle which provides counterexamples which are bounded by the size of
the positive examples.

• For learning engines that use bounded memory, the power of synthesis engines using arbitrary coun-
terexamples or minimal counterexamples is still the same. The power of synthesis engines using
counterexamples bounded by positive examples is not comparable to those using arbitrary/minimal
counterexamples. Contrary to intuition, using counterexamples bounded by positive examples al-
lows one to synthesize programs from program classes which cannot be synthesized using arbitrary
or minimal counterexamples.

3. For finite concept classes, we prove the NP hardness of the problem of solving the formal inductive
synthesis problem for finite domains for a large class of OGIS techniques. We also show that the
teaching dimension [20] of the concept class is a lower bound on the number of counterexamples
needed for a CEGIS technique to terminate (on an arbitrary program from that class).

The rest of the paper is organized as follows. We first present the Oracle Guided Inductive Synthesis
(OGIS) paradigm in Section 2. We discuss related work in Section 3. We present the notation and
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definitions used for theoretical analysis in Section 4 followed by the theoretical results and their proofs
in Section 5 and Section 6. We summarize our results and discuss open problems in Section 7. A
preliminary version of this paper appeared in the SYNT 2014 workshop [32].

2 Oracle-Guided Inductive Synthesis: OGIS

We begin by defining some basic terms and notation. Following standard terminology in the machine
learning theory community [4], we define a concept c as a set of examples drawn from a domain of
examples E. In other words, c ⊆ E. An example x ∈ E can be viewed as an input-output behavior of a
program; for example, a (pre, post) state for a terminating program, or an input-output trace for a reactive
program. Thus, in this paper, we ignore syntactic issues in representing concepts and model them in terms
of their semantics, as a set of behaviors. The set of all possible concepts is termed the concept class,
denoted by C . Thus, C ⊆ 2E. The concept class may either be specified in the original synthesis problem
or arise as a result of a structure hypothesis that restricts the space of candidate concepts. Depending on
the application domain, E can be finite or infinite. The concept class C can also be finite or infinite. Note
that it is possible to place (syntactic) restrictions on concepts so that C is finite even when E is infinite.

One key distinguishing characteristic between traditional machine learning and formal inductive syn-
thesis is the presence of an explicit formal specification in the latter. We define a specification Φ as a set
of “correct” concepts, i.e., Φ ⊆ C ⊆ 2E. Any example x ∈ E such that there is a concept c ∈ Φ where
x ∈ c is called a positive example. Likewise, an example x that is not contained in any c ∈Φ is a negative
example. We will write x ` Φ to denote that x is a positive example. An example that is specified to be
either positive or negative is termed a labeled example.

Note that standard practice in formal methods is to define a specification as a set of examples, i.e.,
Φ ⊆ E. This is consistent with most properties that are trace properties, where Φ represents the set
of allowed behaviors — traces, (pre,post) states, etc. — of the program. However, certain practical
properties of systems, e.g., certain security policies, are not trace properties (see, e.g., [17]), and therefore
we use the more general definition of a specification.

We now define what it means for a concept to satisfy Φ. Given a concept c∈C we say that c satisfies
Φ iff c ∈ Φ. If we have a complete specification, it means that Φ is a singleton set comprising only a
single allowed concept. In general, Φ is likely to be a partial specification that allows for multiple correct
concepts.

We now present a first definition of the formal inductive synthesis problem:

Given a concept class C and a domain of examples E, the formal inductive synthesis prob-
lem is to find, using only a subset of examples from E, a target concept c ∈ C that satisfies
a specification Φ⊆ C .

This definition is reasonable in cases where only elements of E can be accessed by the synthesis engine
— the common case in the use of machine learning methods. However, existing formal verification and
synthesis methods can use a somewhat richer set of inputs, including Boolean answers to equivalence
(verification) queries with respect to the specification Φ, as well as verification queries with respect to
other constructed specifications. Moreover, the synthesis engine typically does not directly access or
manipulate the specification Φ. In order to formalize this richer source of inputs as well as the indirect
access to Φ, we introduce the concept of an oracle interface.

Definition 2.1 An oracle interface O is a subset of Q×R where Q is a set of query types, R is a corre-
sponding set of response types, and O defines which pairs of query and response types are semantically
well-formed. �
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A simple instance of an oracle interface is one with a single query type that returns positive examples
from E. In this case, the synthesis problem is to learn a correct program from purely positive examples.
The more common case in machine learning (of classifiers) is to have an oracle that supports two kinds
of queries, one that returns positive examples and another that returns negative examples. As we will see
in Sec. 2.1, there are richer types of queries that are commonly used in formal synthesis. For now, we
will leave Q and R as abstract sets.

Implementations of the oracle interface can be nondeterministic algorithms which exhibit nondeter-
ministic choice in the stream of queries and responses. We define the notion of nondeterministic mapping
to represent such algorithms.

Definition 2.2 A nondeterministic mapping F : I→ O takes as input i ∈ I and produces an output o ∈
O(i)⊆ O where O(i) is the set of all valid outputs corresponding to input i in F.

With this notion of an oracle interface, we now introduce our definition of formal inductive synthesis
(FIS):

Definition 2.3 Consider a concept class C , a domain of examples E, a specification Φ, and an oracle
interface O . The formal inductive synthesis problem is to find a target concept c ∈ C that satisfies Φ,
given only O and C . In other words, E and Φ can be accessed only through O . �

Thus, an instance of FIS is defined in terms of the tuple 〈C ,E,Φ,O〉. We next introduce a family
of solution techniques for the FIS problem. A FIS problem instance defines an oracle interface and
a solution technique for that problem instance can access the domain E and the specification Φ only
through that interface.

2.1 OGIS: A family of synthesizers

Oracle-guided inductive synthesis (OGIS) is an approach to solve the formal inductive synthesis problem
defined above, encompassing a family of synthesis algorithms.

ORACLE

KNOWLEDGE ALGORITHM

Complete or Partial

optimized

Constraint

Distinguishing input
generation

ALGORITHM
LEARNING BIAS

INDUCTIVE LEARNING
ENGINE

Or Concept Class

such as
membership,
subsumption,
witness

such as
positive examples,
counterexamples,
Boolean Yes/No

RESPONSES

QUERIES

LEARNING

Time constraints Cost function to be

Specification;
Human users;

Equivalence checking;

optimization;Memory constraints;Program Template;

Figure 1: Oracle Guided Inductive Synthesis

As illustrated in Figure 1, OGIS comprises two key components: an inductive learning engine (also
sometimes referred to as a “Learner”) and an oracle (also referred to as a “Teacher”). The interaction
between the learner and the oracle is in the form of a dialogue comprising queries and responses. The
oracle is defined by the types of queries that it can answer, and the properties of its responses. Synthesis
is thus an iterative process: at each step, the learner formulates and sends a query to the oracle, and
the oracle sends its response. For formal synthesis, the oracle is also tasked with determining whether
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the learner has found a correct target concept. Thus, the oracle implicitly or explicitly maintains the
specification Φ and can report to the learner when it has terminated with a correct concept.

We first formalize the notions of learner and oracle. Let Q be a set of queries of types Q, and R
be a set of responses of types R. We allow both Q and R to include a special element ⊥ indicating the
absence of a query or response. An element (q,r) ∈Q×R is said to conform to an oracle interface O if
q is of type qt , r is of type rt and (qt ,rt)∈O . A valid dialogue pair for an oracle interface O , denoted d,
is a query-response pair (q,r) such that q ∈Q, r ∈R and (q,r) conforms to O . The set of valid dialogue
pairs for an oracle interface is denoted by D and D∗ denotes the set of valid dialogue sequences — finite
sequences of valid dialogue pairs. If δ ∈D∗ is a valid dialogue sequence, δ [i] denotes a sub-sequence of
δ of length i and δ (i) denotes the i-th dialogue pair in the sequence.

Definition 2.4 An oracle is a nondeterministic mapping O : D∗×Q→R. O is consistent with a given
interface O iff given a valid dialogue sequence δ and a query q of type qt , O(δ ,q) is a response of type
rt where (qt ,rt) ∈ O . A learner is a nondeterministic mapping L : D∗→ Q×C . L is consistent with a
given interface O iff given a valid dialogue sequence δ , L(δ ) = (q,c) where q ∈Q has type qt such that
there exists a response type rt s.t. (qt ,rt) ∈ O . �

We will further assume in this paper that the oracle O is sound, meaning that it gives a correct response to
every query it receives. For example, if asked for a positive example, O will not return a negative example
instead. This notion is left informal for now, since a formalization requires discussion of specific queries
and is orthogonal to the results in our paper.

Given the above definitions, we can now define the OGIS approach formally.

Definition 2.5 Given a FIS 〈C ,E,Φ,O〉, an oracle-guided inductive synthesis (OGIS) procedure (en-
gine) is a tuple 〈O,L〉, comprising an oracle O : D∗×Q→ R and a learner L : D∗→Q×C , where the
oracle and learner are consistent with the given oracle interface O as defined above. �

In other words, an OGIS engine comprises an oracle O that maps a “dialogue history” and a current query
to a response, and a learner L that, given a dialogue history, outputs a hypothesized concept along with a
new query. Upon convergence, the final concept output by L is the output of the OGIS procedure.

We also formalize the definition of when an OGIS engine solves an FIS problem.

Definition 2.6 A dialogue sequence δ ∈D∗ corresponding to OGIS procedure 〈O,L〉 is such that δ (i) is
(q,r) where L(δ [i−1]) = (q,c) for some query q ∈Q and some concept c ∈ C , and O(δ [i−1],q) = r.

The OGIS procedure 〈O,L〉 is said to solve the FIS problem with dialogue sequence δ if there exists
an i such that L(δ [i]) = (q,c), c ∈ C and c satisfies Φ, and for all j > i, L(δ [ j]) = (q′,c), that is, the
OGIS procedure converges to a concept c ∈ C that satisfies Φ.

The OGIS procedure 〈O,L〉 is said to solve the FIS problem if there exists a dialogue sequence δ

with which it solves that problem.
�

The convergence and computational complexity of an OGIS procedure is determined by the nature
of the FIS problem along with three factors: (i) the complexity of each invocation of the learner L; (ii)
the complexity of each invocation of the oracle O, and (iii) the number of iterations (queries, examples)
of the loop before convergence. We term first two factors as learner complexity and oracle complexity,
and the third as sample complexity. Sometimes, in OGIS procedures, oracle complexity is ignored, so
that we simply count calls to the oracle rather than the time spent in each call.

An OGIS procedure is defined by properties of the learner and the oracle. Relevant properties of
the learner include (i) its inductive bias that restricts its search to a particular family of concepts and a
search strategy over this space, and (ii) resource constraints, such as finite or infinite memory. Relevant
properties of the oracle include the types of queries it supports and of the responses it generates. We list
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below the common query and response types. In each case, the query type is given in square brackets
as a template comprising a query name along with the types of the formal arguments to that query, e.g.,
examples x or concepts c. An instance of each of these types, that is, a query, is formed by substituting a
specific arguments (examples, concepts, etc.) for the formal arguments.

1. Membership query: [qmem(x)] The learner selects an example x and asks “Is x positive or negative?”
The oracle responds with a label for x, indicating whether x is a positive or negative example.

2. Positive witness query: [q+wit] The learner asks the oracle “Give me a positive example”. The oracle
responds with an example x `Φ, if one exists, and with ⊥ otherwise.

3. Negative witness query: [q−wit] The learner asks the oracle “Give me a negative example”. The oracle
responds with an example x 6`Φ, if one exists, and with ⊥ otherwise.

4. Counterexample query: [qce(c)] The learner proposes a candidate concept c and asks “Does the oracle
have a counterexample demonstrating that c is incorrect?” (i.e., “proof that c 6∈Φ?”). If the oracle can
find a counterexample x to c 6∈ Φ, the oracle provides the counterexample. Otherwise, if the oracle
cannot find any counterexample, it responds with ⊥. Such a query allows us to accurately model the
working of counterexample-guided synthesis techniques such as [35] where the verification problem
is undecidable but, if a counterexample is reported, it is a true counterexample.

5. Correctness query: [qcorr(c)] The learner proposes a candidate concept c and asks “Is c correct?” (i.e.,
“does it satisfy Φ?”). If so, the oracle responds “YES” (and the synthesis can terminate). If it is not
so, the oracle responds “NO” and provides the counterexample. Here x is an example such that either
x ∈ c but x 6` Φ, or x 6∈ c and there exists some other concept c′ ∈ Φ containing x. This query is a
stronger query than counterexample query as it is guaranteed to provide a counterexample whenever
the proposed c is not correct.
For the special case of trace properties, the correctness query can take on specific forms. One form is
termed the equivalence query, denoted qeq, where the counterexample is in the symmetric difference of
the single correct target concept and c. The other is termed the subsumption query, denoted qsub, where
the counterexample is a negative example present in c, and is used when Φ is a partial specification
admitting several correct concepts. It is important to note that, in the general case, a verification query
does not, by itself, specify any label for a counterexample. One may need an additional membership
query to generate a label for a counterexample.

6. Crafted Correctness (Verification) query: [qccorr(ĉ,Φ̂)] As noted earlier, oracles used in formal in-
ductive synthesis tend to be general-purpose decision procedures. Thus, they can usually answer not
only verification queries with respect to the specification Φ for the overall FIS problem, but also ver-
ification queries for specifications crafted by the learner. We refer to this class of queries as crafted
correctness/verification queries. The learner asks “Does ĉ satisfy Φ̂?” for a crafted specification Φ̂

and a crafted concept ĉ.
As for qcorr one can define as special cases a crafted equivalence query type qce and a crafted sub-
sumption query type qcsub.

7. Distinguishing input query: [qdiff(X,c)] In this query, the learner supplies a finite set of examples X
and a concept c, where X ⊆ c, and asks “Does there exist another concept c′ s.t. c 6= c′ and X ⊆ c′?” If
so, the oracle responds “YES” and provides both c′ and an example x ∈ c	c′. The example x forms a
so-called “distinguishing input” that differentiates the two concepts c and c′. If no such c′ exists, the
oracle responds “NO”.
The distinguishing input query has been found useful in scenarios where it is computationally hard to
check correctness using the specification Φ, such as in malware deobfuscation [30].

The query/response types qmem, q+wit, q−wit, qce, qcorr, qccorr and qdiff listed above are not meant to be
exhaustive. Any subset of such types can form an oracle interface O . We note here that, in the machine
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learning theory community, there have been thorough studies of query-based learning; see Angluin’s
review paper [5] for details. However, in our formalization of OGIS, new query types such as qccorr
and qdiff are possible due to the previously-identified key differences with traditional machine learning
including the general-purpose nature of oracle implementations and the ability to select or even design
the oracle. Moreover, as we will see, our theoretical analysis raises the following questions that are
pertinent in the setting of formal synthesis where the learner and oracle are typically implemented as
general-purpose decision procedures:
• Oracle design: When multiple valid responses can be made to a query, which ones are better, in terms

of convergence to a correct concept (convergence and complexity)?
• Learner design: How do resource constraints on the learner or its choice of search strategy affect

convergence to a correct concept?

2.2 Examples of OGIS

We now take three example synthesis techniques previously presented in literature and illustrate how they
instantiate the OGIS paradigm. These techniques mainly differ in the oracle interface that they employ.

Example 2.1 Query-based learning of automata [3]:
Angluin’s classic work on learning deterministic finite automata (DFAs) from membership and equiva-
lence queries [3] is an instance of OGIS with O = {qmem,qeq}. The learner is a custom-designed algo-
rithm called L∗, whereas the oracle is treated as a black box that answers the membership and equivalence
queries; in particular, no assumptions are made about the form of counterexamples. Several variants of
L∗ have found use in the formal verification literature; see [18] for more information.

Example 2.2 Counterexample-guided inductive synthesis (CEGIS) [55]:
CEGIS was originally proposed as an algorithmic method for program synthesis where the specification
is given as a reference program and the concept class is defined using a partial program, also referred to as
a “sketch” [55]. It has since proved very versatile, also applying to partial specifications (see, e.g., [35])
and other ways of providing syntax guidance; see [1] for a more detailed treatment. In CEGIS, the
learner (synthesizer) interacts with a “verifier’ that can take in a candidate program and a specification,
and try to find a counterexample showing that the candidate program does not satisfy the specification.
In CEGIS, the learner is typically implemented on top of a general-purpose decision procedure such
as a SAT solver, SMT solver, or model checker. The oracle (verifier) is also implemented similarly. In
addition to a counterexample-generating oracle, many instances of CEGIS also randomly sample positive
examples (see Sec. 5.4 of [55] and Fig. 3 of [35]). Moreover, the counterexample-generating oracle is
not required to be a sound verifier that can declare correctness (e.g., see [35]). Thus, we model CEGIS
as an instance of OGIS with O = {q+wit,qce}.

As noted earlier, if the verifier is sound (can prove correctness of candidate concept), then qce can be
substituted by qcorr. Moreover, general-purpose verifiers typically support not only correctness queries
with respect to the original specification, but also crafted correctness queries, as well as membership
queries, which are special cases of the verification problem where the specification is checked on a
single input/output behavior. We term an instantiation of CEGIS with these additional query types as
generalized CEGIS, which has an oracle interface O = {q+wit,qcorr,qccorr,qmem}. We will restrict our
attention in this paper to the standard CEGIS.

Example 2.3 Oracle-guided program synthesis using distinguishing inputs [30]:
Our third example is an approach to program synthesis that uses distinguishing inputs when a complete
specification is either unavailable or it is expensive to verify a candidate program against its specifica-
tion [30]. In this case, distinguishing input queries, combined with witness and membership queries,
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provide a way to quickly generate a corpus of examples that rule out incorrect programs. When there
is only a single program consistent with these examples, only then does a correctness query need to be
made to ascertain its correctness. Thus, the oracle interface O = {q+wit,qdiff,qmem,qcorr} with qcorr being
used sparingly. The learner and the oracle are implemented using SMT solving.

2.3 Counterexample-Guided Inductive Synthesis (CEGIS)

Consider the CEGIS instantiation of the OGIS framework. In this paper, we consider a general setting
where the concept class C is the set of programs corresponding to the set of recursive (decidable) lan-
guages; thus, it is infinite. The domain E of examples is also infinite. We choose such an expressive
concept class and domain because we want to compare how the power of CEGIS varies as we vary the
oracle and learner. More specifically, we vary the nature of responses from the oracle to correctness and
witness queries, and the memory available to the learner.

For the oracle, we consider four different types of counterexamples that the oracle can provide in
response to a correctness query. Recall that in formal synthesis, oracles are general-purpose verifiers
or decision procedures whose internal heuristics may determine the type of counterexample obtained.
Each type describes a different oracle and hence, a different flavor of CEGIS. Our goal is to compare
these synthesis techniques and establish whether one type of counterexample allows the synthesizer to
successfully learn more programs than the other. The four kinds of counterexamples considered in this
paper are as follows:

1. Arbitrary counterexamples: This is the “standard” CEGIS technique (denoted CEGIS) that makes no
assumptions on the form of the counterexample obtained from the oracle. Note however that our focus
is on an infinite concept class, whereas most practical instantiations of CEGIS have focused on finite
concept classes; thus, convergence is no longer guaranteed in our setting. This version of CEGIS
serves as the baseline for comparison against other synthesis techniques.

2. Minimal counterexamples: We require that the verification oracle provide a counterexample from E
which is minimal for a given ordering over E. The size of examples can be used for ordering. The exact
definition of “size” is left abstract and can be defined suitably in different contexts. The intuition is
to use counterexamples of smaller size which eliminates more candidate concepts. Significant effort
has been made on improving validation engines to produce counterexamples which aid debugging by
localizing the error [44, 14]. The use of counterexamples in CEGIS conceptually is an iterative repair
process and hence, it is natural to extend successful error localization and debugging techniques to
inductive synthesis.

3. Constant-bounded counterexamples: Here the “size” of the counterexamples produced by the verifi-
cation oracle is bounded by a constant. This is motivated by the use of bounds in formal verification
such as bounded model checking [10] and bug-finding in concurrent programs [7] using bounds on
context switches.

4. Positive-bounded counterexamples: Here the counterexample produced by the validation engine must
be smaller than a previously seen positive example. This is motivated from the industrial practice
of validation by simulation where the system is often simulated to a finite length to discover bugs.
The length of simulation often depends on the traces which illustrate known positive behaviors. It is
expected that errors will show up if the system is simulated up to the length of the largest positive
trace. Mutation-based software testing and symbolic execution also has a similar flavor, where a
sample correct execution is mutated to find bugs.

In addition to the above variations to the oracle, we also consider two kinds of learners that differ
based on their ability to store examples and counterexamples:
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1. Infinite memory: In the typical setting of CEGIS, the learner is not assumed to have any memory
bound, allowing the learner to store as many examples and counterexamples as needed. Note that, for
an infinite domain, this set of examples can grow unbounded.

2. Finite memory: A more practical setting is one where the learner only has a finite amount of memory,
and therefore can only store a finite representation of examples or hypothesized programs. This notion
of finite memory is similar to that used classically for language learning from examples [62]. We give
the first theoretical results on the power of CEGIS and its variants, for general program synthesis, in
this restricted setting.

We introduce notation to refer to these variants in a more compact manner. The synthesis engine
using arbitrary counterexamples and with infinite memory is denoted as TCEGIS. The variant of the syn-
thesis engine which is restricted to use finite memory is referred to as Tcegis. Similarly, the synthesis
engine using minimal counterexamples and infinite memory is called minimal counterexample guided
inductive synthesis (TMINCEGIS). The variant of this engine using finite memory is referred to as Tmincegis.
The synthesis engine using counterexamples which are smaller than a fixed constant is called a constant
bounded counterexample guided inductive synthesis, and is denoted as TCBCEGIS if the memory is not fi-
nite and Tcbcegis if the memory is finite. The synthesis engine using counterexamples which are smaller
than the largest positive examples is called positive-history bounded counterexample guided inductive
synthesis, and is denoted as TPBCEGIS if the memory is not finite and Tpbcegis if the memory is finite.

For the class of programs corresponding to the set of recursive languages, our focus is on learning
in the limit, that is, whether the synthesis technique converges to the correct program or not (see Defi-
nition 4.14 in Sec. 4 for a formal definition). This question is non-trivial since our concept class is not
finite. In this paper, we do not discuss computational complexity of synthesis, and the impact of different
types of counterexamples on the speed of convergence. Investigating the computational complexity for
concept classes for which synthesis is guaranteed to terminate is left as a topic for future research.

We also present an initial complexity analysis for OGIS in case of finite concept classes. The de-
cidability question for finite class of programs is trivial since convergence is guaranteed as long as the
queries provide new examples or some new information about the target program. But the speed at
which the synthesis approach converges remains relevant even for finite class of programs. We show
that the complexity of these techniques is related to well-studied notions in learning theory such as the
Vapnik-Chervonenkis dimension [12] and the teaching dimension [20].

3 Background and Related Work

In this section, we contrast the contributions of this paper with the most closely related work and also
provide some relevant background.

3.1 Formal Synthesis

The past decade has seen an explosion of work in program synthesis (e.g. [54, 55, 30, 56, 37, 58]. More-
over, there has been a realization that many of the trickiest steps in formal verification involve synthesis
of artifacts such as inductive invariants, ranking functions, assumptions, etc. [51, 23]. Most of these
efforts have focused on solution techniques for specific synthesis problems. There are two main unifying
characteristics across most of these efforts: (i) syntactic restrictions on the space of programs/artifacts to
be synthesized in the form of templates, sketches, component libraries, etc., and (ii) the use of inductive
synthesis from examples. The recent work on syntax-guided synthesis (SyGuS) [1] is an attempt to cap-
ture these disparate efforts in a common theoretical formalism. While SyGuS is about formalizing the
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synthesis problem, the present paper focuses on formalizing common ideas in the solution techniques.
Specifically, we present OGIS as a unifying formalism for different solution techniques, along with a the-
oretical analysis of different variants of CEGIS, the most common instantiation of OGIS. In this sense,
it is complementary to the SyGuS effort.

3.2 Machine Learning Theory

Another related area is the field of machine learning, particularly the theoretical literature. In Section 1,
we outlined some of the key differences between the fields of formal inductive synthesis and that of
machine learning. Here we focus on the sub-field of query-based learning that is the closest to the OGIS
framework. The reader is referred to Angluin’s excellent papers on the topic for more background [4, 5].

A major difference between the query-based learning literature and our work is in the treatment of
oracles, specifically, how much control one has over the oracle that answers queries. In query-based
learning, the oracles are treated as black boxes that answer particular types of queries and only need to
provide one valid response to a query. Moreover, it is typical in the query-based learning literature for
the oracle to be specified a priori as part of the problem formulation. In contrast, in our OGIS frame-
work, designing a synthesis procedure involves also designing or selecting an oracle. The second major
difference is that the query-based learning literature focuses on specific concept classes and proves con-
vergence and complexity results for those classes. In contrast, our work proves results that are generally
applicable to programs corresponding to recursive languages.

3.3 Learning of Formal Languages

The problem of learning a formal language from examples is a classic one. We cover here some relevant
background material.

Gold [19] considered the problem of learning formal languages from examples. Similar techniques
have been studied elsewhere in literature [29, 63, 11, 2]. The examples are provided to learner as an
infinite stream. The learner is assumed to have unbounded memory and can store all the examples.
This model is unrealistic in a practical setting but provides useful theoretical understanding of inductive
learning of formal languages. Gold defined a class of languages to be identifiable in the limit if there is a
learning procedure which identifies the grammar of the target language from the class of languages using
a stream of input strings. The languages learnt using only positive examples were called text learnable
and the languages which require both positive and negative examples were termed informant learnable.
None of the standard classes of formal languages are identifiable in the limit from text, that is, from only
positive examples [19]. This includes regular languages, context-free languages and context-sensitive
languages.

A detailed survey of classical results in learning from positive examples is presented by Lange et
al. [39]. The results summarize learning power with different limitations such as the inputs having certain
noise, that is, a string not in the target language might be provided as a positive example with a small
probability. Learning using positive as well as negative examples has also been well-studied in literature.
A detailed survey is presented in [27] and [38]. Lange and Zilles [40] relate Angluin-style query-based
learning with Gold-style learning. They establish that any query learner using superset queries can be
simulated by a Gold-style learner receiving only positive data. But there are concepts learnable using
subset queries but not Gold-style learnable from positive data only. Learning with equivalence queries
coincides with Gold’s model of limit learning from positive and negative examples, while learning with
membership queries equals finite learning from positive data and negative data. In contrast to this line of
work, we present a general framework OGIS to learn programs or languages and Angluin-style or Gold-
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style approaches can be instantiated in this framework. Our theoretical analysis focusses on varying the
oracle and the nature of counterexample produced by it to examine the impact of using different types of
counterexamples obtainable from verification or testing tools.

3.4 Learning vs. Teaching

We also study the complexity of synthesizing programs from a finite class of programs. This part of
our work is related to previous work on the complexity of teaching in exact learning of concepts by
Goldman and Kearns [20]. Informally, the teaching dimension of a concept class is the minimum number
of instances a teacher must reveal to uniquely identify any target concept from the class. Exact bounds
on teaching dimensions for specific concept classes such as orthogonal rectangles, monotonic decision
trees, monomials, binary relations and total orders have been previously presented in literature [20, 21].
Shinohara et al. [53] also introduced a notion of teachability in which a concept class is teachable by
examples if there exists a polynomial size sample under which all consistent learners will exactly identify
the target concept. Salzberg et al. [50] also consider a model of learning with a helpful teacher. Their
model requires that any teacher using a particular algorithm such as the nearest-neighbor algorithm learns
the target concept. This work assumes that the teacher knows the algorithm used by the learner. We do
not make any assumption on the inductive learning technique used by the OGIS synthesis engine. Our
goal is to obtain bounds on the number of examples that need to be provided by the oracle to synthesize
the correct program by relating our framework to the literature on teaching.

4 Theoretical Analysis of CEGIS: Preliminaries

Our presentation of formal inductive synthesis and OGIS so far has not used a particular representa-
tion of a concept class or specification. In this section, we begin our theoretical formalization of the
counterexample-guided inductive synthesis (CEGIS) technique, for which such a choice is necessary.
We precisely define the formal inductive synthesis problem for concepts that correspond to recursive
languages. We restrict our attention to the case when the specification is partial and is a trace property —
i.e., the specification is defined by a single formal language. This assumption, which is the typical case
in formal verification and synthesis, also simplifies notation and proofs. Most of our results extend to
the case of more general specifications; we will make suitable additional remarks about the general case
where needed. For ease of reference, the major definitions and frequently used notation are summarized
in Table 1.

4.1 Basic Notation

We use N to denote the set of natural numbers. Ni ⊂N denotes a subset of natural numbers Ni = {n|n <
i}. Consider a set S ⊂ N. min(S) denotes the minimal element in S. The union of the sets is denoted by
∪ and the intersection of the sets is denoted by ∩. S1 \S2 denotes set minus operation with the resultant
set containing all elements in S1 and not in S2.

We denote the set N∪{⊥} as N⊥. A sequence σ is a mapping from N to N⊥. We denote a prefix
of length k of a sequence by σ [k]. So, σ [k] of length k is a mapping from Nk to N⊥. σ [0] is an empty
sequence also denoted by σ0 for brevity. The set of natural numbers appearing in the sequence σ [i] is
defined using a function SAMPLE, where SAMPLE(σ [i]) = range(σ [i])−{⊥}. The set of sequences is
denoted by Σ.
Languages and Programs: We also use standard definitions from computability theory which relate
languages and programs [49]. A set L of natural numbers is called a computable or recursive language if
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there is a program, that is, a computable, total function P such that for any natural number n,

P(n) = 1 if n ∈ L and P(n) = 0 if n 6∈ L

We say that P identifies the language L. Let Lmap(P) denote the language L identified by the program
P. The mapping Lmap is not necessarily one-to-one and hence, syntactically different programs might
identify the same language. In formal synthesis, we do not distinguish between syntactically different
programs that satisfy the specification. Additionally, in this paper, we restrict our discussion to recur-
sive languages because it includes many interesting and natural classes of languages that correspond to
programs and functions of various kinds, including regular, context free, context sensitive, and pattern
languages.

Given a sequence of non-empty languages L = L0,L1,L2, . . ., L is said to be an indexed family
of languages if and only if for all languages Li, there exists a recursive function TEMPLATE such that
TEMPLATE( j,n) = P(n) and Lmap(P) = Li for some j. Practical applications of program synthesis often
consider a family of candidate programs which contain syntactically different programs that are seman-
tically equivalent, that is, they have the same set of behaviors. Formally, in practice program synthesis
techniques permit picking j such that TEMPLATE( j,n) = P(n) and Lmap(P) = Li for all j ∈ I j where the
set I j represents the syntactically different but semantically equivalent programs that produce output 1 on
an input if and only if the input natural number belongs to Li. Intuitively, a function TEMPLATE defines
an encoding of the space of candidate programs similar to encodings proposed in the literature such as
those on program sketching [55] and component interconnection encoding [30]. In the case of formal
synthesis where we have a specification Φ, we are only interested in finding a single program satisfying
Φ. In the general case, Φ comprises a set of allowed languages, and the task of synthesis is to find a pro-
gram identifying some element of this set. In the case of partial specifications that are trace properties,
Φ comprises subsets of a single target language Lc. Any program Pc identifying some subset of Lc is a
valid solution, and usually positive examples are used to rule out programs identifying “uninteresting”
subsets of Lc. Thus, going forward, we will define the task of program synthesis as one of identifying
the corresponding correct language Lc.
Ordering of elements in the languages: A language corresponds to a set of program behaviors. We
model this set in an abstract manner, only assuming the presence of a total order over this set, without
prescribing any specific ordering relation. Thus, languages are modeled as sets of natural numbers. While
such an assumption might seem restrictive, we argue that this is not the case in the setting of CEGIS,
where the ordering relation is used specifically to model the oracle’s preference for returning specific
kinds of counterexamples. For example, consider the case where elements of a language are input/output
traces. We can construct a totally ordered set of all possible input/output traces using the length of the
trace as the primary ordering metric and the lexicographic ordering as the secondary ordering metric.
Thus, an oracle producing smallest counterexample would produce an unique trace which is shortest
in length and is lexicographically the smallest. The exact choice of ordering is orthogonal to results
presented in our paper, and using the natural numbers allows us to greatly simplify notation.

4.2 CEGIS Definitions

We now specialize the definitions from Sec. 2 for the case of CEGIS. An indexed family of languages
(also called a language class) L defines the concept class C for synthesis. The domain E for synthesis
is the set of natural numbers N and the examples are i ∈ N. Recall that we restrict our attention to
the special case where the specification Φ is captured by a single target language, i.e., Lc comprising
all permitted program behaviors. Therefore, the formal inductive synthesis (FIS) problem defined in
Section 2 (Definition 2.3) can be restricted for this setting as follows:
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Definition 4.1 Given a language class L , a domain of examples N, the specification Φ defined by a
target language Lc, and an oracle interface O , the problem of formal inductive synthesis of languages
(and the associated programs) is to identify a language in Φ using only the oracle interface O .

Counterexample-guided inductive synthesis (CEGIS) is a solution to the problem of formal inductive
synthesis of languages where the oracle interface O is defined as follows.

Definition 4.2 A counterexample-guided inductive synthesis (CEGIS) oracle interface is O = Q×R
where Q = {q+wit,qce(L)} with L ∈L , R = N⊥, and the specification Φ is defined as subsets of a target
language Lc. The positive witness query q+wit returns a positive example i ∈ Lc, and the counterexample
query qce takes as argument a candidate language L and either returns a counterexample i ∈ L \ Lc
showing that the candidate language L is incorrect or returns ⊥ if it cannot find a counterexample. 1

Symbol Meaning Symbol Meaning
N natural numbers Ni natural numbers less than i

min(S) minimal element in set S S1 \S2 set minus
S1∩S2 set intersection S1∪S2 set union

σ sequence of numbers σ0 empty sequence
σ [i] sequence of length i σ(i) ith element of sequence σ

Li language (a subset of N) Li complement of language
Pi program for Li Lmap(Pi) = Li language corresponding to Pi

SAMPLE(σ) natural numbers in σ Σ set of sequences
L family of languages P family of programs
τ transcript cex counterexample transcript
T synthesis engine learn inductive learning engine

CHECKL verification oracle for L MINCHECKL minimal counterexample oracle
CBCHECKB,L bounded counterexample oracle PBCHECKL positive bounded counterexample oracle

CEGIS
set of language families identified by
inf memory cegis engine cegis

set of language families identified by
finite memory cegis engine

MINCEGIS CEGIS with MINCHECK mincegis cegis with MINCHECK

CBCEGIS
CEGIS with CBCHECK for a given
constant B

cbcegis
cegis with CBCHECK for a given
constant B

PBCEGIS CEGIS with PBCHECK pbcegis cegis with PBCHECK

Table 1: Frequently used notation in the paper

The sequence τ of responses of the positive witness q+wit query is called the transcript, and the se-
quence cex of the responses to the counterexample queries qce is called the counterexample sequence.
The positive witness queries can be answered by the oracle sampling examples from the target language.
Our work uses the standard model for language learning in the limit [19], where the learner has access
to an infinite stream of positive examples from the target language. This is also realistic in practical
CEGIS settings for infinite concept classes (e.g. [35]) where more behaviors can be sampled over time.
We formalize these terms below.

Definition 4.3 A transcript τ for a specification language Lc is a sequence with SAMPLE(τ) = Lc. τ[i]
denotes the prefix of the transcript τ of length i. τ(i) denotes the i-th element of the transcript.

1CEGIS techniques in literature [55, 35] initiate search for correct program using positive examples and use specification to
obtain positive examples corresponding to counterexamples.
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Definition 4.4 A counterexample sequence cex for a specification language Lc from a counterexample
query qce is a sequence with cex(i) = qce(Lcandi), where cex[i] denotes the prefix of the counterexample
sequence cex of length i, cex(i) denotes the i-th element of the counterexample sequence, and Lcandi is
the argument of the i-th invocation of the query qce.

We now define the verification oracle in CEGIS that produces arbitrary counterexamples, as well as
its three other variants which generate particular kinds of counterexamples.

Definition 4.5 A verifier CHECKL for language L is a nondeterministic mapping from L to N⊥ such that
CHECKL(Li) =⊥ if and only if Li ⊆ L, and CHECKL(Li) ∈ Li \L otherwise.

Remark: For more general specifications Φ that are a set of languages, the definition of CHECKL changes
in a natural way: it returns ⊥ if and only if Li ∈ Φ and otherwise returns an example j that is in the
intersection of the symmetric differences of each language L ∈Φ and the candidate language Li.

We define a minimal counterexample generating verifier below. The counterexamples are minimal
with respect to the total ordering on the domain of examples.

Definition 4.6 A verifier MINCHECKL for a language L is a nondeterministic mapping from L to N⊥
such that MINCHECKL(Li) =⊥ if and only if Li ⊆ L, and MINCHECKL(Li) = min(Li \L) otherwise.

Next, we consider another variant of counterexamples, namely (constant) bounded counterexamples.
Bounded model-checking [10] returns a counterexample trace for an incorrect design if it can find a
counterexample of length less than the specified constant bound. It fails to find a counterexample for
an incorrect design if no counterexample exists with length less than the given bound. Verification of
concurrent programs by bounding the number of context switches [7] is another example of the bounded
verification technique. This motivates the definition of a verifier which returns counterexamples bounded
by a constant B.

Definition 4.7 A verifier CBCHECKB,L is a nondeterministic mapping from L to N⊥ such that CBCHECKB,L(Li)=
m where m ∈ Li \L∧m < B for the given bound B, and CBCHECKB,L(Li) =⊥ if such m does not exist.

The last variant of counterexamples is positive bounded counterexamples. The verifier for generating
positive bounded counterexample is also provided with the transcript seen so far by the synthesis engine.
The verifier generates a counterexample smaller than the largest positive example in the transcript. If
there is no counterexample smaller than the largest positive example in the transcript, then the verifier
does not return any counterexample. This is motivated by the practice of mutating correct traces to find
bugs in programs and designs. The counterexamples in these techniques are bounded by the size of
positive examples (traces) seen so far.2

Definition 4.8 A verifier PBCHECKL is a nondeterministic mapping from L ×Σ to N⊥ such that PBCHECKL(Li,τ[n])=
m where m ∈ Li \L∧m < τ( j) for some j ≤ n, and PBCHECKL(Li,τ[n]) =⊥ if such m does not exist.

We now define the oracle for counterexample guided inductive synthesis. We drop the queries in
dialogue since there are only two kind of queries and instead only use the sequence of responses: tran-
script τ and the counterexample sequence cex. The oracle also receives as input the current candidate
language Lcand to be used as the argument of the qcorr query. The overall response of the oracle is a pair
of elements in N⊥.

2Note that we can extend this definition to include counterexamples of size bounded by that of the largest positive example
seen so far plus a constant. The proof arguments given in Sec. 5 continue to work with only minor modifications.
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Definition 4.9 An oracle O for counterexample-guided inductive synthesis (CEGIS oracle) is a nonde-
terministic mapping Σ×Σ×L →N⊥×N⊥ such that O(τ[i−1],cex[i−1],Lcand) = (τ(i),cex(i)) where
τ(i) is the nondeterministic response to positive witness query q+wit and cex(i) is the nondeterministic re-
sponse to counterexample query qce(Lcand). The oracle can use any of the four verifiers presented earlier
to generate the counterexamples. An oracle using CHECKL is called Ocegis, one using MINCHECKL is
called Omincegis, one using PBCHECKL is called Opbcegis and one using CBCHECKB,L is called Ocbcegis.

We make the following reasonable assumption on the oracle. The oracle is assumed to be consistent:
it does not provide the same example both as a positive example (via a positive witness query) and as
a negative example (as a counterexample). Second, the oracle is assumed to be non-redundant: it does
not repeat any positive examples that it may have previously provided to the learner; for a finite target
language, once the oracle exhausts all positive examples, it will return ⊥.

The learner is simplified to be a mapping from the sequence of responses to a candidate program.

Definition 4.10 An infinite memory learner LEARN is a function Σ×Σ→L such that LEARN(τ[n],cex[n])=
L where L includes all positive examples in τ[n] and excludes all examples in cex[n].3 LEARN(σ0,σ0) is
a predefined constant representing an initial guess L0 of the language, which, for example, could be N.

We now define a finite memory learner which cannot take the unbounded sequence of responses as
argument. The finite memory learner instead uses the previous candidate program to summarize the
response sequence. We assume that languages are encoded in terms of a finite representation (index of
the language since the language class is an indexed family of languages and we assume that every index
needs unit memory) such as a program that identifies that language. Such an iterative learner only needs
finite memory.

Definition 4.11 A finite memory learner learn is a recursive function L ×N⊥×N⊥ →L such that
for all n ≥ 0, learn(Ln,τ(n),cex(n)) = Ln+1, where Ln+1 includes all positive examples in τ[n] and
excludes all examples in cex[n]. We define L0 = LEARN(σ0,σ0) to be the initial guess of the language,
which for example, could be N. For ease of presentation, we omit the finite memory available to the
learner in its functional representation above. The learner can store additional finite information.

The synthesis engine using infinite memory can now be defined as follows.

Definition 4.12 An infinite memory CEGIS engine TCEGIS is a pair 〈Ocegis,LEARN〉 comprising a CEGIS
oracle Ocegis and an infinite memory learner LEARN, where, there exists τ and cex such that for all i≥ 0,
Ocegis(τ[i],cex[i],Li) = (τ(i+ 1),cex(i+ 1)) and Li = LEARN(τ[i],cex[i]). Since the oracle Ocegis is
nondeterministic, TCEGIS can have multiple transcripts τ and counterexample sequences cex.

A synthesis engine with finite memory cannot store unbounded infinite transcripts. So, the bounded
memory cegis synthesis engine Tcegis uses a finite memory learner learn.

Definition 4.13 A finite memory cegis engine Tcegis is a tuple 〈Ocegis,learn〉 comprising a CEGIS
oracle Ocegis and a finite memory learner learn where, there exists τ and cex such that for all i ≥
0, Ocegis(τ[i],cex[i],Li+1) = (τ(i+ 1),cex(i+ 1)) and Li = learn(Li,τ(i),cex(i)). Since the oracle
Ocegis is nondeterministic, TCEGIS can have multiple transcripts τ and counterexample sequences cex.

A pair (τ,cex) is a valid transcript and counterexample sequence for Tcegis if the above definitions
hold for that pair. We denote this by (τ,cex) |= Tcegis. Similar to Definition 2.5, the convergence of the
counterexample-guided synthesis engine is defined as follows:

3This holds due to the specialization of Φ to a partial specification, and as a trace property. For general Φ, the learner need
not exclude all counterexamples.
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Definition 4.14 We say that Tcegis : 〈Ocegis,learn〉 identifies L, that is, it converges to L, written
Tcegis→ L if and only if there exists k such that for all n ≥ k, learn(Ln,τ[n],cex[n]) = L for all valid
transcripts τ and counterexample sequences cex of Tcegis.
This notion of convergence is standard in language learning in the limit [19]. For the case of general
specifications Φ, as given in Definition 2.5, the synthesizer must converge to some language in Φ. As
per Definition 4.3, a transcript is an infinite sequence of examples which contains all the elements in the
target language. Definition 4.14 requires the synthesis engine to converge to the correct language after
consuming a finite part of the transcript and counterexample sequence. This notion of convergence is
standard in the literature on language learning in the limit [19] 4.

We extend Definition 4.14 to general specifications Φ as follows: Tcegis identifies a specification
Φ if it identifies some language in Φ. As noted before, this section focuses on the case of a partial
specification that is a trace property. In this case, Φ comprises all subsets of a target language Lc. Since
Definition 4.3 defines a transcript as comprising all positive examples in Lc and Definition 4.14 requires
convergence for all possible transcripts, the two notions of identifying Φ and identifying Lc coincide.
We therefore focus in Sec. 5 purely on language identification with the observation that our results carry
over to the case of “specification identification”.

Definition 4.15 Tcegis = 〈Ocegis,learn〉 identifies a language family L if and only if Tcegis identifies
every language L ∈L .

The above definition extends to families of specifications in an exactly analogous manner. We now
define the set of language families that can be identified by the inductive synthesis engines as cegis

formally below.

Definition 4.16 cegis= {L | ∃learn ∀Ocegis . the engine Tcegis = 〈Ocegis,learn〉 identifies L }.

The convergence of synthesis engine to the correct language, identification condition for a language,
and language family identified by a synthesis engine are defined similarly as listed in Table 2.

Learner / Oracle Ocegis Omincegis Opbcegis

Finite memory learn Tcegis,cegis Tmincegis,mincegis Tpbcegis,pbcegis
Infinite memory LEARN TCEGIS,CEGIS TMINCEGIS,MINCEGIS TPBCEGIS,PBCEGIS

Table 2: Synthesis engines and corresponding sets of language families

The constant bounded counterexample-guided inductive synthesis oracle Ocbcegis uses the verifier
CBCHECKB,L. It takes an additional parameter B which is the constant bound on the maximum size of a
counterexample. If the verifier cannot find a counterexample below this bound, it will respond with ⊥.

Definition 4.17 Given a bound B, Tcbcegis = 〈Ocbcegis,learn〉 where Ocbcegis uses CBCHECKB,L, we
say that Tcbcegis identifies a language family L if and only if Tcbcegis identifies every language L ∈L .

Note that the values of B for which a language family L is identifiable can be different for different
L . The overall class of language families identifiable using Ocbcegis oracles can thus be defined as
follows:

Definition 4.18 cbcegis = {L | ∃B ∃learn . ∀Ocbcegis s.t.Ocbcegis uses CBCHECKB,L . the engine
Tcegis = 〈Ocbcegis,learn〉 identifies L }

4In this framework, a synthesis engine is only required to converge to the correct concept without requiring it to recognize
it has converged and terminate. For a finite concept or language, termination can be trivially guaranteed when the oracle is
assumed to be non-redundant and does not repeat examples.
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5 Theoretical Analysis of CEGIS: Results

In this section, we present the theoretical results when the class of languages (programs) is infinite. We
consider two axes of variation. We first consider the case in which the inductive learning technique has
finite memory in Section 5.1, and then the case in which it has infinite memory in Section 5.2. For both
cases, we consider the four kinds of counterexamples mentioned in Section 1 and Section 4; namely,
arbitrary counterexamples, minimal counterexamples, constant bounded counterexamples and positive
bounded counterexamples.

For simplicity, our proofs focus on the case of partial specifications that are trace properties, the
common case in formal verification and synthesis. Thus, Φ comprises subsets of a target specification
language Lc. However, many of the results given here extend to the case of general specifications. Most
of our theorems show differences between language classes for CEGIS variants — i.e., theorems showing
that there is a specification on which one variant of CEGIS converges while the other does not — and
for these, it suffices to show such a difference for the more restricted class of partial specifications. The
results also extend to the case of equality between language classes (e.g., Theorem 5.1) in certain cases;
we make suitable remarks alongside.

5.1 Finite Memory Inductive Synthesis

We investigate the four language classes cegis,mincegis,cbcegis and pbcegis identified by the
synthesis engines Tcegis, Tmincegis, Tcbcegis and Tpbcegis and establish relations between them. We show
that cbcegis⊂ mincegis= cegis, pbcegis 6⊆ cegis and pbcegis 6⊇ cegis.

5.1.1 Minimal vs. Arbitrary Counterexamples

We begin by showing that replacing a deductive verification engine which returns arbitrary counterex-
amples with a deductive verification engine which returns minimal counterexamples does not change the
power of counterexample-guided inductive synthesis. The result is summarized in Theorem 5.1.

Theorem 5.1 The power of synthesis techniques using arbitrary counterexamples and those using min-
imal counterexamples are equivalent, that is, mincegis= cegis.

Proof MINCHECKL is a special case of CHECKL in that a minimal counterexample reported by MINCHECKL
can be treated as arbitrary counterexample to simulate Tcegis using Tmincegis. Thus, cegis⊆ mincegis.

The more interesting case to prove is mincegis⊆ cegis. For a language L, let mincegis converge
to the correct language L on transcript τ . We show that Tcegis can simulate Tmincegis and also converge
to L on transcript τ . The proof idea is to show that a finite learner can simulate MINCHECKL by making
a finite number of calls to CHECKL. Therefore, the learner sees the same counterexample sequence with
CHECKL as with MINCHECKL and thus converges to the same language in both cases.

Consider an arbitrary step of the dialogue between learner and verifier when a counterexample is
returned. Let the arbitrary counterexample returned by the verifier for a candidate language Li be c, that
is CHECKL(Li) = c. Thus, c is an upper bound on the minimal counterexample returned by MINCHECKL.
The latter can be recovered using the following characterization:

MINCHECKL(Li) = minimum j such that CHECKL({ j}) is not ⊥ for 0≤ j ≤ CHECKL(Li)

The learner can thus perform at most c queries to CHECKL to compute the minimal counterexample that
would be returned by MINCHECKL. In case of totally ordered set (such as N), we could do this more
efficiently using binary search. At each stage of the iteration, the learner needs to store the smallest
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counterexample returned so far. Thus, the work performed by the learner in each iteration to craft queries
to CHECKL can be done with finite memory. MINCHECKL(Li) can be computed using finite memory and
using at most c = CHECKL(Li) calls of CHECKL.

Thus, Tcegis can simulate Tmincegis by finding the minimal counterexample at each step using the
verifier CHECK iteratively as described above. This implies that mincegis= cegis. �

Thus, mincegis successfully converges to the correct language if and only if cegis also successfully
converges to the correct language. So, there is no increase or decrease in power of synthesis by using the
deductive verifier that provides minimal counterexamples.

Remark: The above result (and its analog in Sec. 5.2) also holds in the case of general specifications
when CEGIS is replaced by Generalized CEGIS. In particular, if either crafted correctness (qccorr) or
membership queries (qmem) are introduced, then it is easy to show that cegis can simulate mincegis

by mimicking each step of mincegis by recovering the same counterexample it used with suitable qmem
or qccorr queries. In this case, cegis can converge to every language that mincegis converges to, and
hence identifies the same class of specifications.

5.1.2 Bounded vs. Arbitrary Counterexamples

We next investigate cbcegis and compare its relative synthesis power to cegis. As intuitively ex-
pected, cbcegis is strictly less powerful than cegis as summarized in Theorem 5.2 which formalizes
the intuition.

Theorem 5.2 The power of synthesis techniques using bounded counterexamples is less than those using
counterexamples, that is, cbcegis⊂ cegis.

Proof Since bounded counterexample is also a counterexample, we can easily simulate a bounded veri-
fier CBCHECK using a CHECK by ignoring counterexamples from CHECK if they are larger than a specified
bound B which is a fixed parameter and can be stored in the finite memory of the inductive learner. Thus,
cbcegis⊆ cegis.

We now describe a language class for which the corresponding languages cannot be identified using
bounded counterexamples.
Language Family 1 : Lnotcb = {Li|i > B and Li = {n|n ∈ N∧n > i}} where B is a constant bound.
We provide this by contradiction. Let us assume that there is a Tcbcegis that can identify languages in
Lnotcb. Let the verifier used by Tcbcegis be CBCHECK and B′ be the constant bound on the counterexamples
produced by CBCHECK. Let us consider the languages Lnotcb f ail = {L j|L j ∈Lnotcb ∧ j > B′} ⊆Lnotcb,
the set of counterexamples that can be produced by CBCHECK is the same for these languages (that is,
{n|n ∈ N∧ n ≤ B′}) since the counterexamples produced by CBCHECK cannot be larger than B′. Thus,
a synthesis engine Tcbcegis cannot distinguish between languages in Lnotcb f ail which is a contradiction.
Thus, Tcbcegis cannot identify all languages in Lnotcb. Tcegis can identify all languages in Lnotcb using
a simple learner which proposes Li as the hypothesis language if i is the smallest positive example seen
so far. So, cbcegis⊂ cegis. �

We next analyze pbcegis, and show that it is not equivalent to cegis or contained in it. So, replac-
ing a deductive verification engine which returns arbitrary counterexamples with a verification engine
which returns counterexamples bounded by history of positive examples has impact on the power of
the synthesis technique. But this does not strictly increase the power of synthesis. Instead, the use of
positive history bounded counterexamples allows languages from new classes to be identified but at the
same time, language from some language classes which could be identified by cegis can no longer be
identified using positive bounded counterexamples. The main result regarding the power of synthesis
techniques using positive bounded counterexamples is summarized in Theorem 5.3.
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Theorem 5.3 The power of synthesis techniques using arbitrary counterexamples and those using posi-
tive bounded counterexamples are not equivalent, and none is more powerful than the other. pbcegis 6=
cegis. In fact, pbcegis 6⊆ cegis and cegis 6⊆ pbcegis.

We prove this using the following two lemmas. The first lemma 5.4 shows that there is a family
of languages from which a language can be identified by cegis but, this cannot be done by pbcegis.
The second lemma 5.5 shows that there is another family of languages from which a language can be
identified by pbcegis but not by cegis.

Lemma 5.4 There is a family of languages L such that pbcegis cannot identify every language L in
L but cegis can do so, that is, cegis 6⊆ pbcegis.

Proof Now, consider the language family 2 formed by upper bounding the elements by some fixed
constant. Let the target language L (for which we want to identify Li. In rest of the proof, we also refer
to this family as L for brevity.

Language Family 2 Lnot pb = {Li|i ∈ N} such that Li = {n|n ∈ N∧n≤ i}.

If we obtain a transcript τ[ j] at any point in synthesis using positive bounded counterexamples,
then for any intermediate language L j proposed by Tpbcegis, PBCHECKL would always return ⊥ since all
the counterexamples would be larger than any element in τ[ j]. This is the consequence of the chosen
languages in which all counterexamples to the language are larger than any positive example of the
language. So, Tpbcegis cannot identify the target language L.

But we can easily design a synthesis engine Tcegis using arbitrary counterexamples that can synthe-
size P corresponding to the target language L. The algorithm starts with L0 as its initial guess. If there
is no counterexample, the algorithm next guess is L1. In each iteration j, the algorithm guesses L j+1 as
long as there are no counterexamples. When a counterexample is returned by CHECKL on the guess L j+1,
the algorithm stops and reports the previous guess L j as the correct language.

Since the elements in each language Li is bounded by some fixed constant i, the above synthesis
procedure Tcegis is guaranteed to terminate after i iterations when identifying any language Li ∈ L .
Further, CHECKL did not return any counterexample up to iteration j−1 and so, L j ⊆ Li. And in the next
iteration, a counterexample was generated. So, L j+1 6⊆ Li. Since, the languages in L form a monotonic
chain L0 ⊂ L1 . . .. So, L j = Li. In fact, j = i and in the i-th iteration, the language Li is correctly identified
by Tcegis. Thus, cegis 6⊆ pbcegis. �

This shows that cegis can be used to identify languages when pbcegis will fail. Putting a restriction
on the verifier to only produce counterexamples which are bounded by the positive examples seen so far
does not strictly increase the power of synthesis.

We now show that this restriction enables identification of languages which cannot be identified by
cegis.

In the proof below, we construct a language which is not distinguishable using arbitrary counterex-
amples and instead, it relies on the verifier keeping a record of the largest positive example seen so far
and restricting counterexamples to those below the largest positive example.

Lemma 5.5 There is a family of languages L such that, cegis cannot identify a language L in L but
pbcegis can identify L, that is, pbcegis 6⊆ cegis.

Proof Consider the language
L32 = {3 j.2i| j ∈ {0,1}, i ∈ N}
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where 3 j.2i is a natural number obtained by taking the product of 3 raised to the power of j and 2 raised
to the power of i. L32 is a set of these natural numbers. We now construct a family of languages which
are finite subsets of L32 and have at least one member of the form 3.2i, that is,

L 32 = {L32
i |i ∈ N,L32

i ⊂ L32,L32
i is finite and ∃k s.t. 3.2k ∈ L32

i }

We now consider the language
L2 = {2i|i ∈ N}

Now, let L 2 be the family of languages such that the smallest element member in the language is the
same as the index of the language, that is,

L 2 = {L2
i |i ∈ N,L2

i ⊆ L2,L2
i is infinite and min(L2

i ) = 2i}

Now, we consider the following family of languages below.

Language Family 3
Lpb = L 32∪L 2

We refer to this language as L in rest of the proof for brevity. We show that there is a language L in L
such that the language L cannot be identified by cegis but pbcegis can identify any language in L .

The key intuition is as follows. If the examples seen by synthesis algorithm till some iteration i are
all of the form 2 j, then any synthesis technique cannot differentiate whether the language belongs to
L 32 or L 2. If the language belongs to L 32, the synthesis engine would eventually obtain an example
of the form 3.2 j (since each language in L 32 has at least one element of this kind and these languages
are finite). While the synthesis technique using arbitrary counterexamples cannot recover the previous
examples, the techniques with access to the verifier which produces positive bounded counterexamples
can recover all the previous examples.

We now specify a Tpbcegis which can identify languages in L . The synthesis approach works in two
possible steps.

• Until an example 3.2 j is seen by the synthesis engine, let 2i be the smallest member element seen so
far in the transcript, the learner proposes Li as the language. If the target language L ∈L 2, the learner
would eventually identify the language since the minimal element will show up in the transcript. If the
target language L ∈L 32, then eventually, an example of the form 3.2 j will be seen since L must have
one such member element. And after such an example is seen in the transcript, the synthesis engine
moves to second step.

• After an example of the form 3.2 j is seen, the synthesis engine can now be sure that the language
belongs to L 32 and is finite. Now, the learner can discover all the positive examples seen so far using
the following trick. We first discover the upper bound Bp on positive examples seen so far.

Bp = minimum k such that PBCHECKL({3k},τ[n]) returns ⊥ for k = 2,3, . . .

Recall that 3k,k = 2,3, . . . are not in the target language since they are not in any of the languages in
the L to which the target language belongs. PBCHECKL will return the only element 3k in the proposed
candidate language as a counterexample as long as there is some positive example 2i seen previously
such that 2i ≥ 3k. So, 3Bp is the upper bound on all the positive examples seen so far. The learner
can now construct singleton languages {2 j} for j = 0,1, ...l such that 2l < 3Bp . If a counterexample
is returned by PBCHECKL({2i},τ[n]) then 2i is not in the target language. If no counterexample is
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returned, then 2i is in the target language. This allows the synthesis engine to recover all the positive
examples seen previously in finite steps. As we recover the positive examples, we run a Gold style
algorithm for identifying finite languages [28] to converge to the correct language. Thus, the learner
would identify the correct language using finite memory.

We now prove that cegis does not identify this family of languages. Let us assume that L ∈ cegis.
So, there is a synthesis engine Tcegis which can identify all languages in L . So, Tcegis must converge
to any language L1 ∈L 2 after some finite transcript τs. Let us consider an extension τs2m of τs such
that 2m ∈ L1 and 2m 6∈ SAMPLE(τs). Such an element 2m exists since τs is a finite transcript and L1 is an
infinite language. Since the learner converges to L1 starting from the initial language L0 after consuming
τs, learn(L0,τs2m,cex′) = learn(L0,τs,cex).

Let us consider two transcripts τs2m(3.2p)⊥ω and τs(3.2p)⊥ω where ⊥ω denotes repeating ⊥ in-
finitely in the rest of the transcript. We know that learn(L0,τs2m,cex′) = learn(L0,τs,cex) = L1
and thus, learn(τs2m(3.2p)⊥ω ,cex′) = learn(τs(3.2p)⊥ω ,cex) = learn(L1,(3.2p)⊥ω ,cex′′). So,
the synthesis engine would behave exactly the same for both transcripts, and if it converges to a language
L2 on one transcript, it would converge to the same language on the other transcript. But the two tran-
scripts are clearly from two different languages in L 32. One of the transcripts corresponds to the finite
language SAMPLE(τs)∪{3.2p} and the other corresponds to SAMPLE(τs)∪{2m,3.2p}. This is a contra-
diction and hence, there is no synthesis engine using arbitrary counterexamples Tcegis that can identify
all languages in L .

�

5.1.3 Different Flavors of Bounded Counterexamples

Finally, we compare pbcegis and cbcegis and show that they are not contained in each other.

Theorem 5.6 The power of synthesis techniques using bounded counterexamples is neither less nor
more than the techniques using positive bounded counterexamples, that is, cbcegis 6⊆ pbcegis and
pbcegis 6⊆ cbcegis.

Proof We consider two languages considered in previous proofs and show that the languages corre-
sponding to one of them can only be identified by pbcegis while the languages corresponding to the
other can only be identified by cbcegis.

Consider the language family 1 (Lnotcb) formed by lower bounding the elements by some fixed con-
stant, that is, Lnotcb = {Li|i > B and Li = {n|n ∈ N∧ n > i}} where B is a fixed integer constant. We
have proved in Theorem 5.2 that a synthesis engine Tcbcegis cannot identify all languages in Lnotcb. On
the other hand, any counterexample is smaller than all positive examples in any language in Lnotcb. So, a
verifier producing positive bounded counterexample behaves similar to an arbitrary counterexample ver-
ifier since any positive example is larger than all negative examples. Thus, Tcegis can identify languages
in this language class. So, pbcegis 6⊆ cbcegis.

Now, consider the family of languages consisting of these, that is,
Language Family 4 Lcbnot pb = {Li|i < B} where Li = {n|n ∈ N∧n≤ i}
This is a slight variant of the language class considered in proving Tcegis to be more powerful than
Tpbcegis where we have restricted the class of languages to be a finite set. As stated earlier, PBCHECK
does not produce any counterexample for these languages since all positive examples are smaller than
any counterexample. But CBCHECK can be used to identify languages in this class by selecting the bound
of the counterexamples to be B. Since, the counterexamples are at most of size B for these languages,
a bounded counterexample verifier behaves exactly like an arbitrary counterexample producing verifier.
Thus, cbcegis 6⊆ pbcegis. �
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5.2 Infinite Memory Inductive Synthesis

We now consider the case where the inductive learning engine has infinite unbounded memory. This case
is simpler than the one considered earlier with finite memory bound on the inductive learning engine and
most of the results presented here follow from the results proved for the finite memory case. For brevity
of space, we only give proof sketches highlighting the difference from the finite memory case.

1. The proof of Theorem 5.1 works even when we replace the inductive learning engine using finite
memory with the one using infinite memory. Further, the minimal counterexample can still be used
as an aribitrary counterexample. And so, MINCEGIS= CEGIS.

2. Next, we show that CBCEGIS ⊆ CEGIS. Consider an arbitrary but fixed constant B. For this B,
consider all verifiers CBCHECK that only produce counterexamples bounded by B. We wish to ar-
gue that any infinite memory learner LEARN that can converge to a target language Lc using any
CBCHECK can also do so using CHECK. The basic idea is as follows: since LEARN has infinite
memory, it can make extra queries to CHECK to obtain counterexamples bounded by B and learns
only from those. Suppose at some step it received a counterexample x bigger than B for candidate
language L. Then LEARN constructs a new candidate language L′ that excludes x but otherwise
agrees with L.5 It then queries CHECK with this new candidate L′, and iterates the process until
a counterexample less than B is received (which must happen if such a counterexample exists).
LEARN uses its infinite-size memory to construct candidate languages that keep track of a poten-
tially unbounded number of counterexamples bigger than B. Thus, LEARN uses this procedure to
convert any CHECK into some CBCHECK. Since CBCEGIS comprises all language families learnable
by LEARN given any CBCHECK, these language families are also learnable by LEARN using CHECK.
Therefore, CBCEGIS⊆ CEGIS.

3. We now sketch the proof for PBCEGIS ⊆ CEGIS. The argument is similar to the previous case.
Since the learner has infinite memory, it can store all the positive examples seen so far. Moreover,
similar to the case of CBCEGIS, it can construct a stream of candidate languages to query CHECK

so as to obtain positive history bounded counterexamples, as follows. It queries CHECK to obtain
an arbitrary counterexample. If this is smaller than the largest positive example in stored positive
examples, then the learner uses this example for proposing the next hypothesis language. If this
counterexample is larger that the largest positive example, it constructs a new candidate language
by excluding this counterexample from the previous candidate language, and again queries CHECK
to obtain a new counterexample. This continues until the learner can get a positive history bounded
counterexample or there is no such counterexample. Thus, the learner now uses only positive
history bounded counterexamples, and hence, TCEGIS can identify any language that TPBCEGIS can
identify.

We now present three languages used previously in proofs for inductive learning engines using finite
memory, and show how these languages allow us to distinguish relative power of synthesis engines.

1. Consider the language family 1: Lnotcb = {Li|i > B and Li = {n|n ∈ N∧ n > i}} where B is
a constant bound. The argument in Theorem 5.2 also holds for the infinite memory synthesis
engines, and so, Lnotcb ∈ CBCEGIS∩CEGIS.
Further, a positive history bounded verifier will always return a counterexample if one exists since
all counterexamples are smaller than any positive example in the language. Thus, TPBCEGIS can also
identify languages in Lnotcb. Thus, Lnotcb ∈ CBCEGIS∩PBCEGIS.

5We can do this as we have a finite representation of L (e.g., in the form of its characteristic function) and can modify this
to initially check if the input is x, and if so, to report that this is not in the modified language.
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2. Consider the language family 2: Lnot pb = {Li|i ∈ N} where

Li = {n|n ∈ N∧n≤ i}

As argued in the proof of Theorem 5.3, the verifier producing positive bounded counterexamples
will not report any counterexample for any of the languages in Lnot pb because all counterexamples
are larger than any positive example. So, languages in this family cannot be identified by TPBCEGIS
but these can be identified using TCEGIS. So, Lnot pb ∈ PBCEGIS∩CEGIS.

3. Consider the finite language family 4: Lcbnot pb = {Li|i < B} where

Li = {n|n ∈ N∧n≤ i}

As argued in proof of Theorem 5.6, the verifier PBCHECK does not produce any counterexample for
these languages since all positive examples are smaller than any counterexample. But CBCHECK
can be used to identify languages in this class by selecting the bound to be B. Since, the coun-
terexamples are at most of size B for these languages, a bounded counterexample verifier behaves
exactly like an arbitrary counterexample producing verifier. Thus, Lcbnot pb ∈ PBCEGIS∩CBCEGIS.

We now summarize the results described in this section below. For finite memory learners, cbcegis⊂
mincegis= cegis, pbcegis and cegis are not comparabale, that is, pbcegis 6⊆ cegis and pbcegis 6⊇
cegis. cbcegis and pbcegis are also not comparable. In case of infinite memory learners, CBCEGIS⊂
MINCEGIS= CEGIS, and PBCEGIS⊂ CEGIS= MINCEGIS. CBCEGIS and PBCEGIS are again not compa-
rable. The results are summarized in Figure 2.

mincegis = cegis

Finite Memory Inductive Synthesis Infinite Memory Inductive Synthesis

CEGIS=MINCEGIS

pbcegis

cbcegis
PBCEGIS

CBCEGIS

Lnotpb

Lnotcb

Lcbnotpb

Lpb

Figure 2: Summary of Results on Decidability of Synthesis for Infinite Language Classes

6 Analysis of OGIS for Finite Language Classes

We now discuss the case when the class of candidate programs (languages) has finite cardinality. As in
Sec. 4, rather than referring to programs we will refer to synthesizing the languages identified by those
programs. If the language class is finite then there exists a terminating OGIS procedure, e.g., one that
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simply enumerates languages from this class until one satisfying the specification Φ is obtained. More-
over, any implementation of OGIS which uses an oracle that provides new (positive/negative) examples
in every iteration ruling out at least one candidate language will terminate with the correct language. The
counterexample guided inductive synthesis approach [55] for bitvector sketches and oracle guided induc-
tive synthesis using distinguishing inputs [30] for programs composed of a finite library of components
are examples of OGIS synthesis techniques applied to finite language classes. We analyze the complexity
of synthesis for finite language classes and discuss its relation to the notion of teaching dimension from
the concept learning literature [20]. This connection between synthesis of languages from finite classes
and teaching of concepts was first discussed in [30]. Here we establish that the size of the smallest set of
examples for language (program) synthesis is bounded below by the teaching dimension of the concept
class corresponding to the class of languages.

6.1 NP-hardness

We measure efficiency of an OGIS synthesis engine using the notion of sample complexity mentioned
in Sec. 2 — the number of queries (and responses) needed to correctly identify a language. In order to
analyze sample complexity, we need to fix the nature of queries to the oracle. We focus on queries to
which the oracle provides an example or counterexample in response. We show that finding the minimal
set of examples to be provided by the oracle such that the synthesis engine converges to the correct
language is NP-hard.

Theorem 6.1 Solving the formal inductive synthesis problem 〈C ,E,Φ,O〉 for a finite C and finite E
with the minimum number of queries is NP-hard for any oracle interface O comprising the correctness
query qcorr (and possibly qposwit and qnegwit).

Proof We prove NP-hardness through reduction from the minimum set cover problem. Consider the
minimum set cover problem with k sets S1,S2, . . . ,Sk and a universe comprising m elements x1,x2, . . . ,xm
which needs to be covered using the sets. We reduce it to a formal inductive synthesis problem 〈C ,E,Φ,O〉
where C = {L1,L2, . . . ,Lm,Lm+1} is a set of m+1 languages, E = {e1,e2, . . . ,ek} is the domain compris-
ing k examples over which the languages are defined and Φ = {Lm+1} is the specification. Intuitively, the
m languages L1, . . . ,Lm are associated to the m elements in the set cover problem. The k examples corre-
spond to the k sets. The sets L1,L2, . . . ,Lm+1 are constructed as follows: For all 1≤ i≤ k and 1≤ j ≤m,
example ei belongs to the symmetric difference of L j and Lm+1 if and only if the set Si contains element
x j. We can do this, for instance, by including ei in L j but not in Lm+1.

Consider the operation of an OGIS procedure implementing an O containing qcorr. Every unsuccess-
ful correctness query returns a counterexample which is an element of E in the symmetric difference
of the proposed L j and Lm+1. Let ei1 ,ei2 , . . . ,ein be the smallest set of counterexamples that uniquely
identifies the correct language Lm+1. So, for all 1 ≤ j ≤ m, there exists some il such that either eil ∈ L j
or eil ∈ Lm+1 but not both. And so, for all 1 ≤ j ≤ m, there exists some il such that x j ∈ Sil where
il ∈ {i1, i2, . . . , in}. Moreover, dropping il results in some x j not being covered (the corresponding L j
is not distinguished from Lm+1). Thus, Si1 ,Si2 , . . . ,Sin is a solution to the minimum set cover problem
which is known to be NP-complete. Similarly, it is easy to see that any solution to the minimum set cover
problem also yields a minimum counterexample set.

We can therefore conclude that solving the formal inductive synthesis problem 〈C ,E,Φ,O〉 with the
minimum number of queries is NP-hard.

�

We note that this proof applies to any FIS problem with an oracle interface O containing the cor-
rectness query qcorr. Moreover, this proof can be easily extended to other oracle interfaces as well,
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such as the version of the distinguishing input method that does not use the correctness query, with
O = {q+wit,qdiff,qmem}. In this latter case, the combined use of qdiff and qmem yields the desired mapping.

6.2 Relation to Teaching Dimension

Goldman et al. [20, 21] proposed teaching dimension as a measure to study computational complexity of
learning. They consider a teaching model in which a helpful teacher selects the examples of the concept
and provides it to the learner. Informally, the teaching dimension of a concept class is the minimum
number of examples that a teacher must reveal to uniquely identify any target concept chosen from the
class.

For a domain E and concept class C , a concept c∈C is a set of examples from E. So, C ⊆ 2E. In the
learning model proposed by Goldman et al. [20, 21], the basic goal of the teacher is to help the learner
identify the target concept c∗ ∈ C by providing an example sequence from E. We now formally define
the teaching dimension of a concept class.

Definition 6.1 (adapted from [20]) An example sequence is a sequence of labeled examples from E,
where the labels are given by some underlying specification. For concept class C and target concept
c ∈ C , we say T is a teaching sequence for c (in C ) if T is an example sequence that uniquely identifies
c in C - that is, c is the only concept in C consistent with T . Let T (c) denote the set of all teaching
sequences for c. Teaching dimension T D(C ) of the concept class is defined as follows:

T D(C ) = max
c∈C

( min
τ∈T (c)

|τ|)

Consider an FIS problem where the specification is complete, i.e., Φ = {Lc}. Consider an instance
of OGIS using any combination of witness, equivalence, subsumption, or distinguishing input queries.
Each of these queries, if it does not terminate the OGIS loop, returns a new example for the learner. Thus,
the number of iterations of the OGIS loop, its sample complexity, is the number of examples needed by
the learner to identify a correct language. Suppose the minimum such number of examples, for any
specification (target language Lc ∈ C ), is MOGIS(C ). Then, the following theorem must hold.

Theorem 6.2 MOGIS(C )≥ T D(C )

The theorem can be obtained by a straightforward proof by contradiction: if MOGIS(C )< T D(C ), then
for each target concept to be learned, there is a shorter teaching sequence than T D(C ), viz., the one used
by the OGIS instance for that target, contradicting the definition of teaching dimension.

Now, given that the teaching dimension is a lower bound on the sample complexity of OGIS, it is
natural to ask how large T D(C ) can grow in practice. This is still a largely open question for general
language classes. However, results from machine learning theory can help shed more light on this ques-
tion. One of these results relates the teaching dimension to a second metric for measuring complexity of
learning, namely the Vapnik-Chervonenkis (VC) dimension [60]. We define this below.

Definition 6.2 [60] Let E be the domain of examples and c be a concept from the class C . A finite set
E′ ⊆ E is shattered by C if {c∩E′|c ∈ C } = 2E′ . In other words, E′ ⊆ E is shattered by C if for each
subset E′′ ⊆ E′, there is a concept c ∈ C which contains all of E′′, but none of the instances in E′−E′′.
The Vapnik-Chervonenskis (VC) dimension is defined to be smallest d for which no set of d+1 examples
is shattered by C .

Blumer et al. [12] have shown that the VC dimension of a concept class characterizes the num-
ber of examples required for learning any concept in the class under the distribution-free or probably
approximately correct (PAC) model of Valiant [59]. The differences between teaching dimension and
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Vapnik-Chervonenkis dimension are discussed at length by Goldman and Kearns [20]. The following
theorems from [20] provides lower and upper bound on the teaching dimension of a finite concept class
in terms of the size of the concept class and its VC-dimension.

Theorem 6.3 [20] The teaching dimension T D(C ) of any concept class C satisfies the following upper
and lower bounds:

VC(C )/ log(|C |)≤ T D(C )≤ |C |−1

where VC(C ) is the VC dimension of the concept class C and |C | denotes the number of concepts in the
concept class.

Moreover, Goldman and Kearns [20] exhibit a concept class for which the upper bound is tight. This
indicates that without restrictions on the concept class, one may not be able to prove very strong bounds
on the sample complexity of OGIS.

To summarize, we have shown that solving the formal inductive synthesis problem for finite domains
and finite concept classes with the minimum number of queries is NP-hard. Further, we showed that
the combinatorial measure of teaching dimension captures the smallest number of examples required to
identify the correct language.

7 Conclusion

We presented a theoretical framework and analysis of formal inductive synthesis by formalizing the
notion of oracle-guided inductive synthesis (OGIS). We illustrated how OGIS generalizes instances of
concept learning in machine learning as well as synthesis techniques developed using formal methods.
We focus on counterexample-guided inductive synthesis (CEGIS) which is an OGIS implementations
that uses the verification engine as the oracle. We presented different variations of cegis motivated by
practice, and showed that their synthesis power can be different, especially when the learning engine
can only store a bounded number of examples. There are several directions for future work. We discuss
some open problems below that would further improve the theoretical understanding of formal inductive
synthesis.
• Teaching dimension of concept classes such as decision trees and axis parallel rectangles have been

well-studied in literature. But teaching dimension of formal concept classes such as programs in
the while [64] language with only linear arithmetic over integers is not known. Finding teaching
dimensions for these classes would help in establishing bounds on the number of examples needed for
synthesizing programs from these classes.
• We investigated the difference in synthesis power when the learning engine has finite memory vs when

the learning engine has infinite memory. Another important question to consider is how the power of
the synthesis engine changes when we restrict the time complexity of learning engine such as the
learning engines which take time polynomial in the number of examples.
• We have not analyzed the impact of different learning strategies that may traverse the space of possible

programs (languages) in various ways. This is also an interesting avenue for future work.
In summary, our paper is a first step towards a theory of formal inductive synthesis, and much remains

to be done to improve our understanding of this emerging area with several practical applications.
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