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Abstract 
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Inclusion of the anharmonicity of molecular normal mode vibrations 

[i.e., the third and fourth (and higher) derivatives of a molecular 

Born-Oppenheimer potential energy surface) is necessary in order to 

theoretically reproduce experimental fundamental vibrational frequencies 

of a molecule. Although ab initio determinations of harmonic 

vibrational frequencies may give errors of only a few percent by the 

inclusion of electron correlation within a large basis set for small 

molecules, in general, molecular fundamental vibrational frequencies are 

more often available from high resolution vibration-rotation spectra •. 

Recently developed analytic third derivatives methods for self­

consistent-field (SCF) wavefunctions have made it possible to examine 

with previously unavailable accuracy and ~omputational.efficiency the 

anharmonic force fields of small molecules. In particular, cubic force 

constants, and quartic force constants by finite differences of cubic 

force constants, allow theoretical determination of a number of 

anharmonic molecular properties, including vibration-rotation 

interaction constants, vibrational anharmonic constants, fundamental 
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vibrational frequencies, quartic and sextic centrifugal distortion 

constants,and rotational constants which include zero-point vibrational 

and centrifugal distortion corrections, and vibrational and rotational 

1-type doubling constants and rotational l-type doubling constants. 

Application is made here to a variety of asymmetric and symmetric 

top and linear polyatomic molecules in order to predict their anharmonic 

properties. Quadratic, cubic, and quartic force constants are evaluated 

for the molecules H20, H2S, H2CO, HCO(2A,), CH2(3B1 ), CH2(IA1 ), 

1 + CH2( B1), C2H4 , HCN, CO2 , N20, COS, C2H2 , H3• NH3 , and several 

isotopomers. For most molecules the anharmonic molecular constants 

which are available from experiments are well reproduced theoretically 

using DZP or better basis sets, at which level the calculated constants 

seem to have converged with respect to basis set expansion as well, 

although execptions have been noted. Particularly good agreement is 

found for fundamental vibrational frequencies obtained from CISD 

harmonic frequencies and SCF anharmonic corrections within the same 

basis set. 
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I. Introduction 

It is well known1- 6 that at the ab initio self-consistent-field 

(SCF) level of theory, theoretically determined harmonic vibrational 

frequencies overestimate experimental fundamental vibrational 

frequencies by about 8-12% for ordinary (valence bonded) molecules. 

This deviation is attributed in most cases to (1) basis set 

incompleteness, (2) electron correlation effects, and (3) anharmonicity. 

The recent theoretical development of analytical derivative 

methods 7- 9 makes it possible to examine these errors in more detail. A 

near Hartree-Fock limit calculation of harmonic vibrational frequencies 

for H20 by Amos 10 shows that there still exists about 7% deviation from 

the experimental harmonic frequencies. Therefore, the errors attributed 

to basis set incompleteness are, in fact, to a large degree intrinsic to 

SCF wavefunctions, at least for the wide variety of molecules which have 

been thoroughly studied. 

A systematic study of configuration interaction wavefunctions 

including all single and double excitations (CISD) for the closed-shell 

2 molecules HeN, H2CO, H20 and CH4 was carried out seven years ago. The 

best agreement between theoretical and experimental harmonic vibrational 

frequencies is found by using CISD calculations in conjunction with a 

double-zeta (DZ) basis set. The average error of 2.0% is very 

satisfactory. One must realize, however, that this good agreement of 

vibrational frequencies is obtained at the sacrifice of the geometrical 

parameters. In general, both the bond lengths and bond angles of a 



z 

molecule are predicted to be a few percent too large at the DZ-CISD 

level of theory compared to experimental values; this exaggeration of 

geometrical parameters compensates for the steepness of curvature of the 

potential energy function to give apparent better agreement of the 

harmonic vibrational frequencies. With double-zeta plus polarization 

(DZP) basis sets, CISD calculations produce much better agreement of the 

geometrical parameters, but, however, overestimate the harmonic 

vibrational frequencies by somewhat more, with an average error of 3.5%. 

These observations suggest the necessity of calculations which 

include a larger part of the electron correlation. In this regard a 

study of CI harmonic vibrational frequencies including single, double, 

triple, and quadruple excitations (CISDTQ) for several small molecules 

[HF, N2 , CO, H20, NH3 , CHZ(lA 1) and CH2 (3B 1)] is under way in our 

laboratory.12 It has been found so far that 1) the geometries of these 

molecules agree well with experimental results at the DZP-CISD and TZP­

CISD levels of theory, but surprisingly, not as well when higher 

excitations are included; 2) harmonic vibrational frequencies at the 

DZP-CISDTQ and TZP-CISDTQ levels of theory are predicted to be 1-2% 

lower than the corresponding frequencies based on SCF wavefunctions but 

still 4-8% higher than experimental values 2 ; and 3) double polarization 

functions, even at the CISDTQ level of theory, are necessary to 

reproduce experimental dipole moments correctly. 

Other workers have recently reported studies of harmonic 

vibrational frequencies which include correlation through the use of 

second-order Moller-Plesset (many-body) perturbation theory 

[M(B)P(T)2]. Analytic second derivatives for MP2 wavefunctions have 
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recently been reported. 13- 14 Applications have been given to several 

11 1 1 · H F k 1· . b· 15 f h· h . t sma mo ecu es uS1ng near- artree- oc 1m1t aS1S sets or w 1C 1 

is found that theo~etical harmonic vibrational frequencies are within a 

mean error of 1.5% of the corresponding experimental vibrational 

frequency. A comparison of vibrational frequencies for several medium-

sized molecules 16 using both MP2 and CISD analytic second 

derivatives l7 ,18 has shown that these methods are quite similar in their 

abilities to predict both molecular structure and harmonic vibrational 

frequencies within a few percent of experimental values. 

Other recent work in this laboratory19 has involved determination 

of harmonic vibrational frequencies from finite differences of analytic 

gradients20 of coupled cluster wavefunctions including all single and 

double excitations (CCSD)21; preliminary results indicate that CCSD 

wavefunctions give qualitatively similar results as CISDTQ wavefunctions 

with, for example, a DZP quality basis set. Thus several methods of 

including the effects of electron correlation have shown that some 

improvement may be gained in agreement with experimental vibrational 

frequencies by inclusion of a substantial fraction of tIle electronic 

correlation energy in the molecular wavefunction. 2 ,12,15,16,19 

The importance of studying anharmonicity in the vibrational-

rotational states of polyatomic molecules has become more and more 

. d b d ill 1 f .. 22 d eV1 ent y avances n mo ecu ar aser spectroscopy 0 pos1t1ve an 

negative23 molecular ions and clusters24 and by progress in theoretical
J 

and experimental studies of the fine structure of the vibrational-

rotational,spectra of molecules during the last three decades. A number 

of ab initio studies of anharmonicity have been reported in the 
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literature. Z5- 37 Most of these papers treat only vibrational 

anharmonicity, in particular cubic and quartic internal force constants 

in addition to quadratic force constants. These anharmonic force 

constants are usually obtained by a least squares fit to a polynomial 

expansion of the energy and/or lower energy derivatives with respect to 

. I d' 11 ~nterna coor ~nates. Using recently developed analytic third 

derivatives of the SCF energy38-40, anharmonic vibrational constants and 

vibration-rotation interaction constants have been reported for the H20 

and NH3 molecules by Gaw and Handy.36,37 The analytic third derivative 

method has been extended recently to general open-shell SCF 

wavefunctions 40 with applications to the vibration-rotation interaction 

constants (as well as the cubic force constants) of CH2 (3BI ), CH2 

(IB I ), CH2 (lA l ), H2CO (3A,,), H2CO (IA"), and HZCO (3A,), as well as to 

both closed- and open-shell two-configuration41 ,42 (TC)SCF and pair­

excited multi-configuration (PE-MC)SCF wavefunctions. 43 

This thesis represents a systematic study of vibrational anharmonic 

constants and various vibration-rotation interaction constants for a 

series of experimentally well-characterized asymmetric and symmetric top 

and linear polyatomic molecules. This work is the most thorough and 

systematic evaluation of the performance of analytic third derivatives 

of SCF wavefunctions for predicting anharmonic properties of small 

lilolecules now available. The results presented herein reconfirm the 

trends indicated by previous workers,36-40 namely that the SCF. cubic 

force field, as well as the quartic force field obtained from finite 

differences of the cubic force constants, shows surprisingly little 

variation with basis set; for most anharmonic molecular constants and 

" IJI 

'" '; 

1,,( 
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properties, the values predicted via analytic SCF higher (i.e., third 

and fourth) derivatives seem to have converged with repect to basis set 

variation at the DZP (or better) basis level for most molecules. These 

results also show that the order of the vibrational anharmonic constants 

and various vibration-rotation interaction constants is of the order of 

10-2 of the corresponding harmonic vibrational frequency or equilibrium 

rotational constant, respectively, as is anticipated by the perturbation 

theory treatment, and that the anharmonic constants are, in fact, also 

well reproduced by SCF wavefunctions with DZP or better basis sets. 

Particularly good agreement with experimental values of the various 

anharmonic constants is indicated when a CISD harmonic force field, 

i.e., vibrational and rotational constants, is coupled with and, 

therefore, corrected by the corresponding SCF cubic and/or quartic force 

constants computed with the same basis set. 

Some limit~tions are also indicated by the results which are 

presented. First, one must exercise caution occasionally in the choice 

of a basis, depite the previously mentioned overall trend of small 

variation with basis. Second, for some molecules, caution is necessary 

in the analysis and interpretation of results as, for example, in the 

case of an asymmetric top which accidentally approximates a symmetric 

top, a quasi-linear molecule, a molecule exhibiting a strong Coriolis or 

vibrational anharmonic resonance (vide infra), etc. For these cases, 

the perturbation theory of non-interacting, well-separated rotational 

and vibrational energy levels on which these particular calculations are 

based breaks down. 

The next section will serve as a review of the necessary theory and 
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formulas which have been derived from perturbation theory for the 

calculation of anharmonic quantities in asymmetric and symmetric top and 

linear polyatomic molecules. The third section will briefly describe 

the procedures taken in this study, including the molecules chosen of 

each rotational type, descriptions of the basis sets employed, and a few 

comments regarding the methods used in practice for determining the 

quadratic, cubic, and quartic force fields of the molecules which have 

been examined. Finally, the data are presented, followed by appropriate' 

discussions, including comparisons with the available experimental data. 
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II. The Evaluation of Various Vibration-Rotation Constants44- 50 

A. Energy expressions49 

The vibration-rotation term values of a polyatomic molecule may be 

expressed empirically as the sum of a vibrational term which is 

independent of the rotational quantum numbers and a rotational term 

which is largely independent of the vibrational quantum numbers, that 

. 49 
~s, 

T(v,J) G(v) + F (J) 
v 

(1) 

The rotational term values Fv(J) are interpreted as the eigenvalues of 

an effective rotational Hamiltonian which is slightly different for each 

vibrational state. For a molecule of the asymmetric top rotational 

type, the form of this Hamiltonian is51 - 53 

H /hc 
rot 

+ L ~a.a.a. 
a. 

+ 

+ 

where the summations of a. and B go over the principal molecular 

(2) 

rotational axes a, b, and c; J a , Jb' and J c are then components of the 
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total angular momentum in units of ~; Av. Bv. and Cv are the effective 

rotational constants; the (T~aaB)v are the quartic centrifugal 

distortion constants as defined by Kivelson and Wilson54 and the 

are effective sextic centrifugal distortion constants52 in em-I. 

The rotational terms Fv(J) of a symmetric top molecule may be 

fitted to a formula of the form49 

F (J) 
v 

2 
B [J(J + 1) - K ] + A v v 

- (D) [J (J + 1) 12 
J v 

+ L (ntJ)v J(J + 1) ktt + 
t 

(3) 

The first three terms are quadratic in the angular momenta, i.e. in J, 

the total rotational angular momentum; in k, the component of J along 

the principal molecular axis (with K = Ikl); and in ~t the vibrational 

angular momentum. Thus, the coefficients Av, Bv, and (Ast)v may be 

thought of as effective rotational constants. The terms in the second 

and third lines of eq. (3) are quartic in the angular momenta, and the 

coefficients may be thought of as effective quartic centrifugal 

distortion constants. The terms which are sextic in the angular momenta 

are given by Aliev and Watson in eq. (35) of their paper55 in an 

alternative form of the rotation-vibration Hamiltonian, namely, in terms 

of a cylindrical tensor representation of the components of the total 

angular momentum, J± = J x ± iJy ; nonetheless, the coefficients of their 

eq. (35) are the effective sextic centrifugal distortions of a symmetric 



top molecule. The first term of eq. (2) is more accurately written as 

B (J2 + 
v x 

J2 ) (4) 
y 

9 

for a rigid r~tor prolate symmetric top (A > B = C). For an oblate top 

(A = B > C), one should replace A by C in (4). One should also recall 

that, for a rigid rotor symmetric top for which the Hamiltonian (2) is 

truncated after the first term, namely (4), the first two terms of eq. 

(3) give exact eigenso1utions for the rotational energy levels and that 

this is simplified from the case of the asymmetric top for which not 

even approximate solutions for the rotational term values exist in terms 

of the rotational angular momentum quantum numbers. 

A linear po1yatomic molecule is only one special case of a 

symmetric top molecule, for which A = 0 and B = C (note that the 

rotational constants A is the smallest valued rotational constant in 

this case). Most of the perturbation formulas which have been derived, 

therefore, for linear moo1ecules may be obtained from the corresponding 

more general relations for a symmetric top molecule by imposing the 

restrictions implied by symmetry and by the subsequent redefining of the 

rotational constants. The rotational term values Fv(J) of a linear 

polyatomic molecule are then given in the forrn50 

F (J) 
v 

222 
Bv [J(J + 1) - t ] - DJ[J(J + 1) - t ] 

(5) 
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where R. is the total vibrational angular momentum (R. = L 9't ), Bv is the 
t 

effective rotational constant, DJ is the effective quartic centrifugal 

distortion constant, and HJ is the effective sextic centrifugal 

distortion constant. 

The vibrational term values G(v) of an asymmetric molecule are 

given by49 

G(v) W fv r + l/Z ) '1 ( V + l/Z) ( v + liz) 
"rs r s 

+ • • • 
r 

(6) 

where ~ is the rth harmonic vibrational frequency and Xrs are the 

vibrational anharmonic constants. 

The vibrational term formula for a symmetric top molecule is49 

G(v) = \' fJ.l (v + liz d ) + 
L r s r x , (v + liz d ) ( v , + 1/2 d ,) rr r r r r 
r 

(7) 

where subscripts rand r' denote either non-degenerate or degenerate 

normal modes and t and t' indicate degenerate normal modes only. In eq. 

(7) wr and wr ' are harmonic frequencies, Xrr' and gtt' are the 

vibrational anharmonic constants, and dr is the d~generacy of the rth 

normal mode. 

The vibrational term values G(v) of a linear po1yatomic molecule 

are expressed as 

k' 
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G(v) = I w (v + 1/2 d ) + I Xrs (v + 1/2 d ) (v + 112 d ) r r r r r s s 
r r ) s 

+ I x t t, +... 
t>t' Q,t tt' t t 

(8) 

where all of the notation is as in eq. (7) for symmetric tops, except 

that Xn n labels the vibrational anharmonic constants involving only 
"'t"'t' 

components of degenerate normal modes. 

In order to follow the conventional treatment by Nielsen45- 48 and 

h · . i 36-40 th d . ill d· . t e preV10US commun1cat ons , e 1mens on ess norma coor 1nate 1S 

defined as 

(9) 

where 

~/z / VI = 21TCW / Yl 
r r 

(0) 

The vibrational energy is then expanded in terms of these dimensionless 

normal coordinates, qr' as 

V/hc 2 
W q + 

r r 

+ • • • 

where ~rst and ~rstu are the cubic and quartic anharmonic force 

(11 ) 



constants, respectively. It should be noticed that the multiple 

summations in eq. (11) are unrestricted and that the ~'s differ from 

Nielsen's original anharmonic k's by multiplicative factors. 49 ,56 

B. Vibration-rotation interaction constants49 ,50,57 

For an asymmetric top the vibrational dependence of the effective 

rotational constant along the molecular b axis is given by49 

12 

B 
v 

B 
e 

(12) 
r 

where Be is the equilibrium rotational constant, and the sum runs over 

all the normal modes. Of course, similar expressions hold for the 

vibrational dependence of Av and Cv involving rotation about the 

molecular a and c axes, repspectively. In general the ~ are expected 

to have a magnitude of the order of 10-2 of the corresponding rotational 

constants. 58- 61 

The vibrational dependences of the effective rotational constants 

for a prolate symmetric top oolecule are given by49 

and 

B 
v 

A 
v 

B 
e 

A 
e 

L a.B ( v + 1/2 d ) + • • • 
r r r 

(13) 
r 

a.
A 

(v + liz d ) + • • • 
r r r 

(14) 
r 
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where Be and Ae are the two distinct equilibrium rotational constants of 

a prolate symmetric top molecule; ~ and ~ are the vibration-rotation 

interaction constants; and, as before, dr is the degeneracy of the rth 

normal mode and the summation runs over all the normal modes. For an 

oblate top, A in eq. (14) should be replaced by C. 

The vibrational dependence of the single degenerate effective 

rotational constant for a linear polyatomic molecule is given by50 

B = B 
v e 

L Cl (v + 1/2 d ) + • • • 
r r r 

r 
(15) 

where Be is the equilibrium value of the rotational constant, the Clr are 

vibration-rotation interaction constants, and, again, the summation runs 

over all the normal modes. 

Perturbation theory provides the formula for a~ for asymmetric tops 

2B2 
3[a(b0 12 3w

2 2 
B [ (b)]2 

+ w 
L r L r s - a 

4Ic-
+ i';r s 2 r w 2 

r t. s:1:r , w - (,) ..., 
r s 

c 1/2 (bb) 
0) 

L <f>rrs ( 
r 

) l (16 ) + 1T (-) a 3/2 h s 
s w 

s 

In this perturbation formula, as well as in many others to come (vide 

infra), the rotational constants A, B, and C are the experimentally 

derived values which, of course, contain all of the effects due to zero-

point vibrations, centrifugal distortion, etc. At a theoretically 

determined equilibrium geometry, ~, the rotational constants which are 

obtained are the equlibrium rotational constants Ae' Be' and Ce of the 
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non-vibrating molecule at its equilibrium geometry, ~ [i.e., the first 

B term of eq. (12)]. Thus, in the calculation of ar from eq. (16), for 

example, the leading factor in the calculations is, in fact, 2B~/Wr. 

The reader should bear this in mind throughout the remainder of the 

presentation of the equations as well as the discussions, since this 

subtle difference will provide some of the explanation for the small 

discrepancies between experimental and ab initio rotational constants 

and related values of vibration-rotation interaction constants. 

The equilibrium rotational constants are defined by 

2hcI 
a 

(17) 

and the inertial derivatives 
( a8) 

a present in eq •. (16) are defined as 
r 

( as) 
a 

r 

where Ia = Iaa and laS are the equilibrium moments and products of 

inertia. 
( a) 

The Coriolis zeta constant s s' which·couples normal r, 

(18) 

coordinates Qr and Qs through rotation about the a axis, is defined by 

( a) 
z:: = 
r,s 

(19) 

where L is a matrix which transforms the normal coordinates to mass-

weighted Cartesian coordinates. In eqs. (17)-(19), a, 8, and yare 

cyclic permutations of x, y, and z, and for a = z, x, y (i.e., a I r 

representation)Sl,62, the rotational constants B~Z), B~X), and B~Y) are 
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those normally associated with the principal rotational axes a, b, and 

c, respectively, and are those traditionally labeled A, B, and C. 

Perturbation calculations give the following formulas for the 

49 vibration-rotation interaction constants for a symmetric top (s = non-

degenerate mode, t = degenerate mode): 

2A2 3[a(zz)]2 3w2 + 2 
A e s l: [ (z)J2 s ws ' 

CL = + Z;s s s 2 2 
W 41A s'*s 

, 
W - W 

S S s' 

Tr (:=.J1z (zz) !J.l 

+ l: rJ>sss' 
s 

(20) h as' 3/2 s' IllS' 

2A2 3[a~xz)]2 
3w

2 + 2 
A e a + I [ (z) ]2 t wt ' 

CL = Z;t t' t 2 2 
wt 41B t' *t a b wt - w t' 

+ Tr (5:J/2 I <Pst t 
(zz) 

l.1.l
t (21 ) a 3/2 h s 

s a a w s 

2 3[a(xx)]2 + [a(xy)]2 
B 2B e s s 

- CL s 
41B w 

s 

3w
2 + 2 

{[Z;(y) ]2+ [ (x) ] 2 
IU 

+ I s t 
s,t Z;s t 2 2 

t a ' a w - wt s 

(5:.F2 (xx) ~lJ 

+ l: 1>sss' 
s (22 ) Tr as' 3/2 h s' ws ' 

2B2 
3[a(xz)]2 3 [a (xx)] 2 

B t t e a a 
CL + 

t 
81 41 w 

t A B 
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2 2 

f[s(Y) ]2 [ (x) ] 2} 
3w

t + IJ) 

+ 1/2 2 + 
s 

l S t Ss t 2 2 
s ' a ' a W - W 

t s 

3w~ + 2 

I ([ r;(Y) ,]2 [r(x) ]2 CUt' 
+ + 

t' *t t t ~t t' 2 2 a, a a, a w
t - wt ' 

1T (E..)1/2 
wt I 1>s t t 

(xx) 
] (23) + a 3/2 . h s s a a W 

s 

These formulas are written in a form that applies to all symmetric top 

molecules provided that the orientation of the doubly degenerate 

coordinates has been chosen to make 

all t and t,.49 

(xz) 
a 

tb 
o and r(Z) 

't t' 
a' a 

= o for 

Perturbation theory gives the formulas for the vibration-rotation 

interaction constants ~ of a linear molecule as50 

2H2 3a 
2 

3w 
2 2 

2 + (J) 
e s I s t -a 4I + Sst 2 2 s (11 
s e t '11 (Jl 

s t 

1T(E..)1/2 
(.1l 

+ \' 
'Pss s' ( s ) ] L. a 

s' 3/2 h s' (11 , 
s 

(24) 

2B2 3 2 + (11 
2 

e [ 112 I 2 
w

t s -a = Sst t 2 2 
(11 S W - (tl 

t t s 

+ 1T(£}/2 I 
cjlstt ( 

Ul
t ) a 
3/2 h s 

s (11 

(25) 

S 

where the subscript sand s' denote non-degenerate modes and t indicates 

a degenerate mode. One should again note the use of Ae and Be' the 

equilibrium values of the rotational constants, in eqs. (20)-(25). At 

.. -

!~ 
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the theoretically determined equilibrium geometry, the equilibrium 

rotational constants are determined and used in the perturbation 

formulas above. It is most convenient, then, to deal with the various 

vibration-rotation interactions (vide infra) as corrections to this 

equilibrium rotational constant [as, for example, in eqs. (13)-(15)]. 

The parameters as are the normal coordinate derivatives of the 

equilibrium moment of inertia of a linear molecule, in analogy with eq. 

(18) for asymmetric and symmetric top molecules. For a linear molecule 

Iaa = Iae = lee' and, therefore, the superscripts are suppressed; the 

inertial derivatives are only evaluated for non-degenerate normal modes. 

The Coriolis zeta constants ~st' which couple normal coordinates Qs 

and Qt through rotation about the x and y axes, have the following 

relationship for linear molecules: 

~t ~t (26) 
a 

It is useful to note that for a linear molecule the nonvanishing 

57 cubic force constants involving degenerate coordinates tare 

$st t $ 
a a stbtb 

$st t' $st t' 
a a b b 

C. Coriolis resonance46 ,47,50,63 

(27) 

(28) 
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When two vibrational states of an asymmetric top molecule are 

accidentally degenerate, i.e., W ~ W , the second term in eq. (16) due r s 

to Coriolis interactions is no longer valid since the treatment of such 

terms by perturbation theory is no longer adequate. This situation is 

known as Coriolis resonance, and in such a case the second term for 

resonating states in eq. (16) should be replaced47 according to 

2 
- W 

s 
W (w + 1.0 ) 

S r s 

(29 ) 

One should notice that the Coriolis resonance can be observed between 

modes only when the corresponding s value does not vanish from symmetry 

conditions. This replacing of terms, or, rather, removal of offending 

terms, is not a solution to the problem of accidental near-d~generacy. 

A proper treatment would involve diagonalization of the 2x2 Hamiltonian 

matrix which couples the normal modes involved to give the exact 

vibrational energy eigenvalues. 

For an accidental degeneracy of two different normal modes rand r' 

in a symmetric top molecule (wr ~ wr" where r an~ r' are either non-

degenerate or degenerate normal modes and r = r'), then the term (OF 

terms) in eqs. (20)-(23) which contain wr - wr' in their denominators 

are no longer valid for the description of the so-called Coriolis 

contribution to the vibration-rotation interaction constants. In this 

case, the modes rand r' are said to have a Coriolis resonance, and the 

offending terms are replaced accordingly. Thus, for the Coriolis 

interaction of two non-degenerate normal moqes sand Sl caused by 
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rotation about the z axis, the second term of eq. (20) must be replaced 

in the case of resonance according to 

2 2 
w - w 
s s' 

+ 

2 (tu - w ,) 
s s 

(30) 
w,(w + w ,) s s s 

For two different degenerate normal modes coupled by a Coriolis 

interaction by rotation about the z axis, the second term of eq. (21) is 

replaced in the case of a resonance bySO 

+ 

2 (w
t 

- 0J
t
,) 

_I; [(z) ]2 _____ _ 
2 St t' 

a' b I.) ,«(I) + w,) 
t t t 

(31 ) 

For the Coriolis interaction between a non-degenerate normal mode sand 

a degenerate normal mode t induced by rotation about the x or yaxis, 

the second term of eq. (22) is replaced in the case of resonance bySO 

2 + w
2 

{[" (y) ] 2 [ (x) ]2} 
31u s t 

+ s,t Ss t 2 2 
a ' a III - W 

s t 

{[ (y) ]2 [sex) ]2} 
(w - w )2 

+ s t (32) + 
s,t s,t 

III (w + w ) a a t s t 

and the third term in eq. (23) is replacedSO by 

3w
2 2 

([~(y) ]2 + [sex) ]2} 
+ w 

t s 
s,t s,t 2 2 

a a wt - w s 

_1/2U~(Y) ]2 [ r:~ x ~ ] 2} 
(w - w )2 

t s (33) + + s,t 
Ws «(tlt + w ) a ' a s 

Lastly, for the Coriolis interaction between two different degenerate 
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normal modes t and t' via rotation about the x or y axis, the fourth 

term of eq. (23) is replaced in the case of a Coriolis resonance by 

3 2 2 
([ t(y) . ]2 [I:;~ x) t' ] 2} 

w
t + wt ' 

+ t t' 2 2 
a' a a' a 1.0.) - W t t' 

2 

_1/2 ([. ]2 + 2 
(1.0.) - W ,) 

t t 
(34) -+- [ l:t t']} t t' a' a a' a wt ' (wt + lJ)t') 

If the vibrational frequencies of two distinct normal modes sand t 

of a linear polyatomic molecule are accidentally degenerate (IJl
S 

'" lilt), 

then the second terms of eqs. (24) and (25) are no longer valid for 

describing the Coriolis contribution to vibration-rotation 

interaction. That is, the perturbation theory treatment of two such 

accidentally interacting states is no longer adequate. In this 

situation, the normal modes sand t are said to have a Coriolis 

resonance, and the offending terms are replaced47 according to 

2 
2 

3(j) + 
S 

z: st 2 
W -s 

in eq. (24) and 

3w2 + 
z:2 t 
st 2 

w -
t 

(Jl 
t 
2 

W 
t 

2 w 
s 
2 

w 
s 

-+-

- 1/2 [,2 
st 

_ 1/2 1:;2 
st 

(w -
s 

W (II) 
t R 

+ w ) 
t 

(w - w )2 
t s 

w (lJl + IJl ) 
s t s 

(35 ) 

(36) 

in eq. (25). Of course, a Coriolis resonance will only be observed 

between normal modes sand t if the corresponding value of the Coriolis 

constant l:st is non-vanishing from symmetry considerations. Note that in 

.\oc 
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linear molecules s is always a non-degenerate normal mode and t is 

always a degenerate normal mode. 

D. Centrifugal distortion constants49- 51 ,55 

64 The centrifugal distortion tensor of Wilson and Howard is a term 

in the transformed Hamiltonian of the form 

and is expressed as 

~4 
2hcI I gI I.r a , Y u 

(37) 

L (38) 
k 

One should note that the quartic centrifugal distortion constants of eq. 

(38) depend only upon the quadratic (harmonic) part of the vibrational 

potential [see eqs. (10) and (11)]58 and are expected to be of the order 

of 10-4 of the corresponding rotational constants. 49 ,61 Kivelson and 

Wilson54 and Watson6S ,66 have shown that the only terms in the summation 

(37) which influence the rotational Hamiltonian to first order can be 

written in the form of the quartic centrifugal distortion constants 

T' in eq. (2), where aa(10 

T' = T + 2 T (1-0) 
aaBB aa~e aBaR aR 

(39) 

In eqs. (37)-(39) the formulas are written in a form such that T and T' 

-1 have units of em 
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Following Aliev and Watson,50,51,55 the rotational derivatives are 

defined as 

(40) 

W 51 h h f d· CaR h· 1 atson as proposed t e use 0 the 1mensionless parameter k W 1Cl 

is related to B~B by55,67 

(41) 

in order to simplify the form of many relations involving vibration­

rotation interaction. 51 Eq. (38) may then be rewritten in the following 

alternative forms using these newly defined parameters: 

, 
aRy<5 

, = 
aPyc 

2 

2 

1. 
k 

Y 
k 

BaR 
k 

rl y0. 
k 

~ 

as C
yn 

UlkC k k 

( 42) 

(43 ) 

The rotational constants are then expressed with quartic centrifugal 

distortion corrections as 

A' (44) 

B' B + l/4 (3, - 2, b b - 2 'b b ) caca a a c c 
(45 ) 

C' c + 1/4 (3, - 2, - 2, ) 
abab bcbc caca 

(46) 
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and the asymmetry parameter cr is defined as 

cr = 2A' - B' - C' 
B' - C' 

(47) 

One should note that the convention used here is that in which the 

rotational constants corrected for quartic centrifugal distortion are 

labeled by primes (i.e., A', B', C') and that this is the opposite of 

the labeling used by Kivelson and Wilson54• The formulas given in eqs. 

(44)-(46) are general for the correction due to centrifugal distortion 

for any rotational constant; that is, one may equally well obtain A~ 

from Ae, ~ from Av, etc. (and similarly for B and C) from these 

equations. In particular, the values of A6, B6, and C6 (and the 

corresponding value for cr), that is, equilibrium rotational constants 

(vide supra) which are corrected for both zero-point vibration-rotation 

interaction (eq. (12), v=O) and quartic centrifugal distortion (eqs. 

(44)-(46)] are reported in the results and accompanying discussion which 

follow below; this is the result which is suggested by Kivelson and 

Wilson's treatment. 54 

The quartic centrifugal·distortion constants appearing in the 

Kivelson-Wilson formalism54 for an asymmetric top molecule are 

DK D - 1/4 (T - (T + 2 T ) - (T + 2 T )] (49) 
J aaaa aabb abab ccaa caca 



1 
32 

R6 
1 = 64 

oJ 

D = - D - D - 1/4 T JK J K aaaa 

= 

[Tbbbb - T 
cccc 

+ 2(Tccaa + 2Tcaca)] 

[T
bbbb 

+ - 2( Tbbcc + 2 Tbcbc ) ] T cccc 

1 (T
bbbb 

- ) - T 
16 cccc 

In these formulas, TaaR8 and TaBa6 appear only in the form of 

T + aaRB 2T g 00-0 a) a ap ap as already described in eq. (39). 
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(50 ) 

(51) 

(52) 

(53) 

Watson65 •66 has shown that"only five linear combinations of the 

six T' constants can be determined from spectra. In his reduced form 

the five independent centrifugal distortion constants are related to the 

quantities defined above by 

/:"J = D J - 2R6 (54) 

(55) 

(56) 

(57) 

.It' 
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4(2A - B - C) 
B - C (58 ) 

In eq. (58) the rotational constants which are employed in the present 

implementation are the effective (i.e., zero-point corrected) constants 

which have also been corrected for quartic centrifugal distortion, 

namely AO' BO' and CO' as is implied by Kivelson and Wilson54 and as has 

been discussed previously (vide supra). 

Using the centrifugal distortion tensor of eqs. (42)-(43), the 

quartic centrifugal distortion constants for a symmetric molecule are 

given by 

_1_ (3T + 3T + 2T + 4T ) 
32 xxxx yyyy xxyy xyxy 

, (59) 

D - 1/4 ( T - T - T - 2T - 2 T ) 
J zzzz zzxx yyzz xzxz yzyz 

, (60) 

and 

- D - D - 1/4 T 
J K zzzz 

(61) 

For a linear molecule, the inertial derivatives as defined by eq. 

(18) and following eq. (25) are used to redefine the rotational 

derivatives of eq. (35) for a linear molecule following Aliev and 

Watson51 ,55 by 

B 
s 

)'13 

3/2 3/1. 1/2 2h c IJJ 
s 

a 
s 

(-...,,~) 
r2 

e 

• (62) 



The quartic centrifugal distortion constant DJ is then expressed in 

terms of Bs and IUS as 

w 
s 

and the sextic centrifugal distortion constant HJ is given by 

B 
e 

s 
3 

w 
s 

~ I ~ , .. 
ss's" ss s 

B B ,B .. s s s 
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(63) 

(64) 

In eqs. (63) and (64), the summations are only over totally symmetric 

normal modes. 

In order to calculate the sextic centrifugal distortion constants 

of asymmetric and symmetric top molecules, additional parameters must be 

introduced. The parameters b:8Y of Aliev and Watson50 ,S5 are defined as 

follows: 

baaa I -2 -2 1/2· aa ,.( a) 
(65) = (w£ + 2w

k 
) w~ B 9, 

B 
k 9, a "11" k 

baaS L -2 + 2~2) 112 [Baa B s( 8)+ 2B aSB r (a) 1 (66) 
k 9, 

(w~ £ ~ P. 9"k 1 a .,~, k 

~. 
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+ BXY B r,(z) 1 
t Z 9., k - (67) 

37 in which, in eqs. (65) and (66), a and B range over x, y, and z , and, 

in eq. (66), a ~ -B. WatsonS1 has also defined a dimensionless higher­

order Coriolis tensor c;SY related to b~SY according to 

aBy 
~ = (68 ) 

The components of ckBA are given explicitly by l-latson in eq. (124) of 

his review articleS1 in terms of the harmonic vibrational frequencies 

(~), rotational constants (B~a)], Coriolis coupling coefficients 

[r,~~f]' and the coupling parameters ckS [eq. (41-)]; recall that a and B 

range over the principal rotational axes a, b, c. 

The empirical expressions for the sextic centrifugal distortion 

constants of an asymmetric top molecule areSS 

(69) 

(70) 

10 10 
HKJ = <T>240 + --::3- ~420 - 30~204 - -"""3- HJK (71 ) 



H 
K 

7 7 
~060 - -3- ~420 + 28.fl204 + -3- HJK 

hJ = ~402 + ~006 

2 
- 4(B - C) sIll 

4>042 + 4; 11024 + (9 + 

+ 4[D -
K 

+ (6 + 

20 
3 

10i 2 
3 ) (B - C) sIll 

The constants defined by eqs. (69)-(75) are the seven determinable 

28 

(72 ) 

(73) 

(74) 

(75) 

combinations of the ten sextic centrifugal distortion 

constants. 52 ,55,58,66 To determine these constants, the equilibrium 

values of the rotational constants are used in eqs. (70), (74), and 

(75), and the parameter 0 of eqs. (70), (74), and (75) is as defined by 

eq. (47) and is used as is discussed above. 

The formulas for the ~'s as they appear in the orthorhombic 
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Hamiltonian (2) are presented in Table IV of Aliev and Watson's paper55 

and in Table 7 of Watson's paper. 51 The formulas given above are those 

obtained by Aliev and Watson55 from the cylindrical tensor 

representation of the rotation-vibration Hamiltonian; their paper 

defines these parameters ~22,2m,2n in terms of the roaBA of the 

orthorhombic Hamiltonian (2) (see Table VII of ref. 55). The formulas 

above are derived from the particular treatment in which the parameter 

sIll of the first rotational contact transformation has been left free 

[SIll = -4R6/(B - C)].66 

The sextic distortion constants for the particular case of a 

symmetric top molecule with C3v symmetry are obtained similarly55 by 

H
J 

= liz (<f> + <f> ) xxx yyy 

2<f> 
zxx 

!J.3 = II J (<f> - <f> ) 
<. xxx yyy 

(76) 

(77) 

(78) 

(79 ) 

(80) 

where, for a symmetric top molecule, the formulas for the 41's are also 

presented in Table IV of Aliev and Watson's paper55 and in Table 7 of 

Watson's paper. 51 

At this point it would be appropriate to correct the rotational 



30 

constants further to account for the effects of sextic centrifugal 

distortion. -However, no formulas which define this correction (by, for 

example,the addition of terms to eqs. (44)-(46) which would involve the 

~aRA coefficients) in terms of the available (i.e., previously 

determined) molecular constants have been given or are presently 

available. 

E. Vibrational anharmonic constants45- 50 

The vibrational anharmonic constants appearing in the vibrational 

term formula (3) may be determined using the results of perturbation 

theory. For an asymmetric top molecule the general formulas are49 

for the diagonal terms and 

Xrs 1/4 <l>rrss 

- 1J2 I 
t 

2 
cf>rst 

{A[III(a) J2 + B[r,(b)J 2 
+ 

r,s r,s 

for the off-diagonal terms, where 

- 1/4 2-
t 

2 
It) (w 

t t 

2 2 8w - 3w 
r s 

2 2 
w (4w - III ) 

S r s 

iflrrt 9tss 
w 

t 

2 2 
- w - w ) r s 
6 rs t 

+ C[r.;(c)J 2} 
It} w r s (-- + --) 

r,s w w s r 

(81) 

(82) 

~ 
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!::. (w + w + w ) (w + w - w ) 
rst r s t r s t 

All of the summations in eqs. (81) and (82) are unrestricted. 

49 For a symmetric top molecule the general formulas are 

~t = 

1 1 2: 
16 9ssss - 16 

s' 
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16 ~tttt -

1 
16 
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1 
16 

1 
48 
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t' 
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'tt t' 
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c!>tttt - 16 

L 2 

2 
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2 81JI 
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4>t t t ' 16 2 2 t' w ,(4w - u) ) 

t t t' 

+ A[r;(z) ]2 
ta' tb 

for the diagonal terms and 
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s 

w s 
2 

- 'n s 
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(83 ) 

(84) 

(85 ) 

(86) 
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1/2 L 2 WsWt wt I 

L 
2 I))SWt I wt " 

gtt ' 1>stt l 

~stt' 1>tt 't" ~tt 't" s t" 

- 2B [ /;~ y) t I ] 
2 

+ A [(z) ]2 + 2A 
(z) (z) 

( 90) /;t t I 
r, /;t I t I 

a' a a' b ta,tb a' b 

for the off-diagonal terms. All of the summations in eqs. (84)-(90) are 

unrestricted, however, as previously, the index s runs only over non-

degenerate normal modes and the index t runs only over degenerate normal 

modes. 

50 For a linear polyatomic molecule the general formulas are 

1 1 
~s = 16:l>ssss - 16 
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16 4>tttt 
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for the diagonal terms and 
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(91) 

(92) 

(93) 

(94) 
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(95) 

1 
w s 

(96) 

(97) 

for the off-diagonal terms. The denominator Arr'r" in eqs. (87), (90), 

and (94)-(90) is that defined in general by eq. (83). 

F. Anharmonic resonance46 ,47 

If either of the relationships (98) or (99) is satisfied 

accidentally for an asymmetric top molecule, 

2w = w and ~ ~ 0 r s 'frrs 
(98) 

,. 

.. 
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w + w r s and <I> t rs 
~ 0 (99) 

the quantities Xrr and Xrs described in the preceding section may become 

indefinitely large and, thus, the method described above, which is based 

on perturbation theory, will fail. This phenomenon is known as 

vibrational anharmonic resonance47 , and the case given in eq. (98) is 

generally referred to as Fermi-Dennison68 ,69 resonance. 

The component of the diagonal terms [eq. (81)] which contains <I>~r§s 

a coefficient may be factored as46 ,47 

2 2 
2 

8w - 3w 
r s 

<Prrs ------::2--...,,2-
w (4w w ) 

1 1 4 
--=2---- + -- ] • w - w w 

r s s s r s 

(loa) 

When the anharmonic resonance 2(J)r '" Ws occurs, the resonating terms are 

replaced47 according to 

8w2 - 3w2 
2 r s 

<Prrs ----~2----~2--
w (41ll III ) 

+ 1/2 1>2 
rrs 

~_1~ __ +_4_ 
2w + III W 

• (l01) 
r s s 

S r s 

Similarly the component of the off-diagonal terms [eq. (82)] which 

2 
has ~rst as a coefficient may be factored into 

22' 2 
w (w - w - III ) 

t t r s 

1 1 1 
IjJ + W + III 

------------- + -------------
W + I,ll - (j) I,ll - III + III 

r s t r s t r s t 
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1 002 ) 

Thus, if Illr + IJJ
S 

'" wt ' the resonating terms should be replaced47 

according to 

2 2 wZ) 
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W (w - W 
1 2 1 t t r s 

4>rst t,. + /4 4>rst W + IJJ + IJJ 
rst r s t 

+ 1 1 (103) 
W - W + W IJJ - IJl - W 

r s t r s t 

The components of the diagonal vibrational anharmonic terms for a 

symmetric top molecule [eqs. (84)-(86)] and for a linear molecule [eqs. 

(91)-(93)] which have 4>;rr,as a coefficient may be factored just as eq. 

(100) for asymmetric top molecules into 
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(104) 

where rand r', denoting _either non-degenerate or degenerate normal 

modes, replace rand s in eq. (100); 

1 cp2 
rrr' 2 41JJ -
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(105 ) 
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If an anharmonic resonance (2~ ~ wr ') occurs, the resonating terms 

should be replaced according to 
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in eqs. (84)-(86), (91), and (92); 

2 
c!>rrr' 2 

4w 
r 

IJl
r

, 

in eqs. (86) and (93); and 

8w2 _ w2 
2 r r' 
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w ,(4w - w ,) 
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in eq. (86). 
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2w r + 

, (108) 

_1/ 2 (1 4 21>ttt' ----- + ---) (l09) 
2w + w , 

r r 

Similarly, the components of the off-diagonal terms [eqs. (87)-(90) 

and (94)-(97») which have CP;r'r" as a coefficient may be factored into 
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respectively. One should recall that ~r'r" in eqs. (03), (12), and 

(113) has been defined previously by eq. (83). 

G. Fundamental vibrational frequencies 44 

The fundamental vibrational frequencies vr of an asymmetric top 

molecule are obtained from harmonic frequencies wr and anharmonic 

constants Xrs defined in the preceding sections by 

v 
r W + 2X r rs 

(114 ) 

l~e fundamental frequencies are those which correspond most closely with 

those obtained from high-resolution (infra-red, Raman, microwave,etc.) 

vibration-rotation spectra. 

The fundamental frequencies of a symmetric top molecule are 

obtained Similarly from the harmonic frequencies and the anharmo~ic 

vibrational constants using a more general formula of the form of eq. 

(114) which takes explicit account of the degeneracies within normal 

modes which exist in symmetric top molecules as follows: 

v 
r 

W 
r 

+ x 
rr 

( 1 + d ) + 1/2 \' X 'd r I. rr' r' 
r' :tor 

, (115) 
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where dr is the degeneracy of normal mode rand grr is zero for non-

degenerate modes. 

The fundamental frequencies of a linear molecule are obtained from 

the harmonic frequencies and the anharmonic constants in exactly the 

same way as for the more general symmetric top, with the exception of 

the anharmonic vibrational constants involving only degenerate modes, 

which are labelled as X as indicated previously, so that 
trtr 

v 
r w + Y (1 + d ) + 1/2 \' X I d I + X,n, n 

r '~r r rf*r rr r Yr~r 
, (16) 

where X is also zero for non-degenerate modes. 
t r 9'r 

H. . 50 61 70-72 Vibrational !-type doubl1ng constants. ' , 

Vibrational !',-doubling is an effective interaction between two 

otherwise degenerate vibrational wavefunctions differing only in the ~-

quantum numbers such that ~9.t = +1, A~t' = - 1. The expression for the 

vibrational ~-doubling constant in a symmetric top molecule is obtained 

as 

2 2 2 
2 
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(117) 

where ~tt' is already defined in eq. (83). 

The vibrational energy levels of a linear poly atomic molecule may 

also be perturbed by vibrational t-type doubling if two or more doubly 

degenerate vibrational modes are excited. The expression for the 

vibrational t-doubling constant for a linear molecule is given by 

r 
tt' - L 

s 

222 
2 

W (w - W w
t
,) 

sst 
~stt'-------------------------

2fl stt' 

+ 1/4 (~t t t' t' -
a a a a 

~t t t' t' ) 
a a b b 

where !\tt' is as defined by eq. (83). 

I. Rotational t-type doubling constants. 49 ,50,61,73,74 

(118 ) 

For any symmetric-top molecule the k=t= ± 1 levels in a degenerate 

vibrational state are split by a second-order vibration-rotation 

interaction into a doublet which is referred to as the rotational !-type 

doubling. Perturbation calculations have been described by both 

Grenier-Besson74 and Oka. 61 Their results give the following formula 

for the t-type doubling constant qt for C3v molecules: 

3[a(xz)]2 
t 
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.j) a (yy) 
't t t' t' 

} (119 ) 
a a a a 

This equation may be applied to a molecule belonging to any symmetric-

top point goup of which C3v is a subgroup. Molecules with fourfold axes 

require a different formula. 

It should be realized that rotational 2-type doubling constants 

must be expected to show both a dependence on the vibrational quantum 

numbers vr and the rotational quantum numbers J and K of the form 

+ 
d 

L (v) (v +....E. 
qt r 2 

) + • • • (120) 
r 

In the present study only the leading term q~e) is considered, 

although there have occasionally been observations of the vibrational 

and rotational dependences. In fact, eq. (119) only applies strictly to 

q (e) 
t • 

The rotational '-type doubling constant qt associated with a 

degenerate normal illode vibration wt of a linear molecule has also been 

observed to have v, J, and K dependence, but in the present study only 

the contributions due to the centrifugal distortion are considered using 

73 the formulation by Watson 

The q~e) values are given by 

+ (121) 
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.. and the formulas for qF) and q~K) are presented in Table V of Watson's 

paper. 73 

It 



III. Test Molecules and Basis Sets 

In order to study the anharmonic properties of asymmetric top 

molecules, we have chosen the molecules H20, H2S, H2ca, HCa, CH2(3 B1 ), 

CH2(lA1), CH2(lB 1), C2H4' and their isotopic variants. For most of 

44 

these molecules, the anharmonic rotational and vibrational behaviour has 

been well-described experimentally (vide infra). In order to determine 

the effects on the calculated anharmonicity of a change in basis set, we 

have chosen four basis sets, of double-zeta (DZ), triple-zeta (TZ), 

double-zeta plus polarization (DZP), and triple-zeta plus polarization 

(TZP) quality. The DZ basis is derived from the primitive gaussian set 

of Huzinaga75 which is contracted to form a (9s5p/4s2p) set of functions 

for carbon, nitrogen, and oxygen, an (11s7p/6s4p) set on sulfur, and a 

(4s/2s) set on hydrogen, as suggested by Dunning. 76 ,77 The TZ basis 

consists of the same primitive functions 75 which are more loosely 

contracted to give a (9s5p/5s3p) basis for carbon and oxygen, an 

(11s7p/7s5p) basis for sulfur and a (4s/3s) basis for hydrogen. For the 

DZP and TZP bases, a single set of polarization functions, consisting of 

six cartesian d-type gaussian functions for each heavy atom, with 

° . 8 5, ad ( S ) = O. 7 5,- 0 r a 

set of p-type functions for hydrogen, ~(H) = 0.75, was added to the DZ 

and TZ bases, respectively. 

The geometries of all of the test molecules were completely 

optimized with each of the four basis sets at both the SCF and CISD 

1 1 f h ° lido h d 1,5 ° 0 0 ° h eve s ~ t eory uS1ng ana yt c gra 1ent met 0 s , 1n conJunct10n W1t 

a Newton-Raphson optimization scheme, such that residual gradients were 
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less than 10-7 hartree/bohr (or radian). Harmonic vibrational 

frequencies were determined analytically for SCF wavefunctions78- 80 and 

by finite differences of analytic gradients for CISD wavefunctions. 81 

Cubic force constants were determined analytically38-40 and quartic 

force constants by finite differences of third derivatives for SCF 

wavefunctions. The rotational and vibrational anharmonic constants were 

then evaluated using the various formulas presented in the previous 

section. 

As test molecules of symmetric-top type, Hj, Dj, NH3 , and ND3 were 

chosen. The equlibrium geometries and harmonic vibrational frequencies 

of the parent molecules were determined as above in conjunction with the 

analytic SCF first and second and CISD first derivative methods, within 

each of the four basis sets already designated. 

The linear polyatomic molecules chosen for inclusion in the 

systematic study of anharmonicity are HCN, DCN, C02' N20, COS, and 

C2H2. In this case, the primitive functions as they are published by 

Huzinaga75 were employed, since the more commonly used tabulation of 

Dunning and Hay77 contains a minor typographical error; namely, the 

second most diffuse s exponent of sulfur should be 0.426475 • Otherwise, 

the basis sets and optimization methods were unchanged for this set of 

molecules as well. 

Finite difference calculations were performed to obtain SCF fourth 

and CISD second derivatives. Calcula~ions of SCF third and CISD first 

derivatives were performed after taking both positive and negative 

displacements of the individual atomic Cartesian coordinates; the 

displacements used were 0.0001 bohr for the determination of SCF fourth 



derivatives and 0.001 bohr for CISD second derivatives. These small 

displacements were chosen to insure that the potential energy surface 

near the theoretical equilibrium geometry was being properly 

described. Descriptions of properties of potential energy surfaces 

which depend on the magnitude of the coordinate displacement have been 

noted previously when rather large displacements were used. 11 

46 
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IV. Results and Discussion 

A.H2082-84 

The vibrational and rotational spectra of the H20 molecule have 

been for many years among the most frequently and intensely studied 

molecular spectra, both experimentally and theoretically. Thus, it is 

not surprising that the full quartic force field of the H20 molecule has 

been known quite accurately for some time experimentally and that 

numerous workers have attempted to reproduce this quartic force field 

theoretically. One should note, however, that until very recently85,86 

molecular spectroscopists were unable to determine the full 

quartic force field of molecules larger than triatomics and that the 

number of such triatomics was itself relatively small. The recent 

development of third derivative methods for SCF potential energy 

surfaces has made it possible to examine theoretically the anharmonic 

properties of small molecules with greater accuracy and more efficiently 

than was previously possible by using, for example, surface fitting 

procedures or other similar methods. Thus, not surprisingly,· the H20 

molecule was among the first examined by Caw ~al.36,37,39 using 

analytic SCf third derivative techniques. The vibration-rotation 

interaction constants determined from the analytic SCF cubic force field 

which were reported were, indeed, in excellent agreement with the 

experimentally determined values, somewhat more accurate than previous 

theoretical estimates, and at a cost considerably less than for a 
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surface fitting procedure, for example. The vibration-rotation 

constants ~ are presented in Table 1, along with the energy, 

geometrical parameters, dipole moment, and rotational constants for the 

H20 molecule. One should notice that the vibration-rotation constants 

in Table 1 agree exactly with those presented by Gaw39 and are in 

excellent agreement with the best available experimentally derived 

values of these molecular constants. 

The harmonic and fundamental vibrational frequencies and 

vibrational anharmonic constants of H20 are presented in Table 2. The 

harmonic frequencies are seen to converge smoothly toward the 

experimental values, so that there remains only about 50 cm- 1 difference 

at the largest basis set correlated level of theory (TZP CISD). The DZP 

CISD and TZP CISD levels of theory are expected, based on past 

experience, to give between them the best overall agreement in both 

geometry and vibrational frequencies for small molecules. The 

fundamental frequencies appear to be in slightly poorer agreement, up to 

approximately 75 cm- 1 higher than the experimental fundamental 

frequencies. The numbers given in parentheses in Table 2 are the CISD 

harmonic frequencies which have been adjusted according to the SCF 

quartic force field with the same basis. The quantities labeled ~r are 

the differences vr - 'ur between the 'fundamental and harmonic vibrational 

frequencies. For the CISO values of ~r' the SCF values have been 

transcribed and placed in parentheses for clarity. It appears then that 

the SCF quartic force field underestimates the anharmonicity measured 

experimentally by a few percent. The bend and asymmetric stretch normal 

mode differences are underestimated by only 3-4%, but the symmetric 
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stretch anharmonicity is lower by almost 10% compared to experiment. 

The quartic and sextic centrifugal distortion constants of H20 are 

given in Table 3. It is impossible to state what level of certainty may 

A be associated with these constants. Experimental values of these 

constants have not been located. Thu~, although both the harmonic force 

field on which the quartic constants are based and the cubic force field 

for the sextic constants have been seen to be rather reliable for 

determination of harmonic frequencies and vibration-rotation constants, 

for example, one must use caution since the theoretical prediction of 

these constants from ab initio molecular wavefunctions is presently 

unprecedented. The leading quartic terms, AK and 6JK , appear to be much 

too large, since, in principal, these distortion constants should be of 

the order of 10-4 of h ·lib i . 1 t e equ1 r urn rotat10na constants. The origin 

of the order of magnitude discrepancy for·these constants is presently 

unclear. 

The vibration-rotation interaction constants for D20 are given in 

Table 4. Similar good to fair agreement is seen for these constants as 

for the corresponding constants for H20. The rotational constants in 

Table 4 are similarly well-behaved and convergent with repect to basis 

set expansion, as has been seen previously for H20. 

The vibrational frequencies and anharmonic constants of D20 are 

presented in Table 5. The excellent convergence toward the experimental 

harmonic frequencies is again noted for this isotopomer. The only 

notable features are that the CISD harmonic frequencies consistently 

underestimate the values of the harmonic frequencies and that the 

fundamental frequencies are in slightly better agreement with experiment 
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than was noted for H20. 

Methylene, CH2' has become a paradigm for computational quantum 

chemistry,92 by serving as a principal indicator of the cooperative role 

that computation can play with experiments. The controversies regarding 

the bent structure of methylene and the singlet-triplet (S-T) energy gap 

between the ground state (381 ) and the first excited singlet state 

(I A1 ), have now been clearly resolved with the aid of theory.93 

However, as with many other small molecules, there still exists some 

discrepancy regarding the exact bond lengths and vibrational frequencies 

of CHZ' indicating that the anharmonic nature of the potential energy 

surface must playa key role, as is known to be the case for many small 

molecules. In particular, CH2 is known to be a quasi-linear molecule,93 

that is, the bending mode involves large amplitude displacements from 

the molecular equilibriura structure (giving rise to the term "quasi­

linear") so that the molecular normal mode vibrations are not well 

described within the harmonic approximation. 

The theoretically determined geometrical parameters of CH2 at the 

various levels of theory and of basis set are given in Table 6, along 

with the vibration-rotation interaction constants and rotational 

constants. As has been noted for many molecules, the geometry is 

somewhat underestimated at the DZ and TZ SCF levels of calculation. 

However, in contrast to the expected improvement upon going to a 

polarized basis, neither the DZP nor TZP SCF results appear to approach 

the experimental structural values; most surprising is that, for the HeH-

.. 
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bond angle, the OZ CISO value, which for most molecules would be 

severely overestimated, is in the best agreement with the experiment. 

Even the inclusion of correlation with the largest basis set used here 

(TZP CISO) leads to underestimation of both the bond length and angle, 

by 0.004 A and 1.2°, respectively. This somewhat unusual behaviour 

involving the geometry of this molecule hints at what has been indicated 

above, that is, that anharmonicity is important for the description of 

the potential energy surface on which CH2 resides. 

The rotation-vibration interaction constants ~ of CH2 have been 

previously reported; the values reported in Table 6 agree exactly with 

those of Gaw, ~ al. 40 These values support the contention of CH2 being 

a quasi-linear molecule, specifically that there exists a strong 

coupling between the v2 bending mode and rotation about the molecular a 

axis (the symmetry z axis). The values obtained for a1 are 

unrealistically large, and are, therefore, not reported in Table 6. 

Based on perturbation theory, the a constants should be of the order of 

10-2 of the corresponding rotational constant; otherwise, one must 

conclude that the vibrational normal mode is not, in fact, merely a 

perturbation of the rotational motion, as is the case here. It is seen 

also that the interaction between v3' the asymmetric CH stretch., and 

A· 
rotation about the a axis is also quite large; although the values of a3 

are, in fact, approximately 28% of Ae , it is nonetheless seen that the 

total effect due to zero-point vibration is only about 2%, or, of the 

expected order of magnitude. It is for this reason that a~ is reported 

in Table 6. The vibration-rotation interaction between the other 

vibration-rotation pairs is seen to be at least a factor of 10 smaller 
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than those through which v2 and v3 interact with molecular a axis 

rotation. Because the experimental values of the geometry and the 

rotational constants are interdependent, some small differences in the 

geometry determined theoretically, as noted above, would be expected to 

lead to small differences in calculated (equilibrium) rotational 

constants; the extremely large difference between the reported and 

calculated values in Table 6 is certainly related to the magnitude of 

the vibration-rotation interactions. If, for example, the experimental 

determination did not take into account a large vibration-rotation 

interaction, the (indirectly) measured Ae could be erroneous; on the 

other hand, if, in fact, the reported experimental value includes 

vibration-rotation interaction, the large discrepancy indicates the 

magnitude of such an interaction, i.e., -50% of the theoretical Ae , and 

confirms the previous contention that this interaction is indeed not a 

simple perturbation. The remaining rotational constants are seen to 

agree acceptably well, i.e., within 2% when using the highest level of 

calculation available in this work. 

The harmonic and fundamental vibrational frequencies and the 

vibrational anharmonic constants of CH2 are given in Table 7. It is 

seen that, at the SCF. level of theory, there remains somewhat ~ore than 

10% difference between the theoretical harmonic and experimental 

fundamental frequencies (somewhat more still for the bending mode v2). 

The large discrepancy still remaining at the CISD level is again unusual 

for a small molecule. The theoretical fundamental frequencies are 

predicted to lie closer to the experimental frequencies, as they must, 

but, however, there is still a much larger difference between the 
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experimental and theoretical frequencies than one would expect. The 

frequency differences ~~ show that the anharmonicity in 3Bl CH2 is quite 

considerably underestimated by the SCF quartic force field described 

here. Evidently, there are large contributions to the vibrational 

potential due to higher-order force constamts. 

The quartic and sextic centrifugal distortion constants of 

methylene are given in Table 8. As with H20, the leading quartic terms 

are much larger than would be expected from the perturbation theory 

treatment which defines these constants. The quartic distortion term ~K 

is not reported in Table 8 because its magnitude is nearly that of a 

rotational constant based on the perturbation formulas. In addition, 

the leading sextic term, HK, is approximately an order of magnitude 

larger than would have been anticipated from expected order of magnitude 

considerations. Again, there is no indication of the origin of the 

evident breakdown of the perturbation theory for the description of the 

centrifugal distortions of this molecule. For a quasi-linear molecule 

such as CH 2 , the molecular distortions caused by the large amplitude 

bending mode coupled to molecular rotations could contribute 

significantly to higher-order (i.e., quartic, sextic, etc.) 

distortions. Without the benefit of experimental insight, little else 

may be said. 

The rotational constants and vibration-rotation constants of CD2 

are given in Table 9. As for the protiated isotopomer, the strong 

vibration-rotation interaction between molecular a axis rotation and 

vibrational normal mode v2 precludes accurate prediction of rotational 

constant A. Thus, this constant is predicted significantly lower 
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theoretically than the experimental data indicate. 

The harmonic and fundamental vibrational frequencies and 

vibrational anharmonic constants of CD2 are reported in Table 10. The 

lack of available experimental data precludes much comment on the data 

there. The fundamental frequency v2 is seen to be predicted quite a bit 

too large compared to experiment. Evidently, as with CH2, the 

anharmonicity of vibration is significantly underestimated and higher­

order force constants are important. 

Other theoretical methods which are not based on perturbation 

theory have been developed for tr~ating molecules like 3B1 CH2 which 

have large amplitude stretching or bending motions or other large 

deviations from the rigid rotor and/or harmonic oscillator 

approximations of molecular spectroscopy. One of the most successful 

methods is based on the semi-rigid bender or non-rigid bender 

Hamiltonians94 which have been developed and applied to a number of non­

rigid (e.g., quasi-linear) molecules, including CH2 • 95 

C. CH2 (1 A1 )89,96 

In contrast to triplet methylene, singlet methylene is much more 

strongly bent at its equilibrium geometry, and, therefore, provides much 

better agreement between theoretical and experimental descriptions of 

the potential energy surface of the molecule near its minimum energy 

conformation. As a consequence of the smaller bond angle, singlet 

methylene does not have the same large amplitude bending motion which 

caused a poor description of vibrational anharmonicity and vibration­

rotation interaction in triplet methylene. The geometry, vibration-
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rotation interaction constants, and rotational constants of 1A1 CH2 are 

presented in Table 11. 3 A comparison with the corresponding data for B1 

CH2 in Table 6 shows that the bond lengths of the singlet are somewhat 

longer, by 0.025 A at the TZP SCF level of theory and by 0.033 A at the 

TZP CISD level of theory. More striking, however, is the difference in 

bond angles between the two electronic states of this molecule; the bond 

angle for singlet methylene is predicted theoretically to be 25-31 0 less 

than for the triplet. Another way to view this effect is to realize 

that the singlet bond angle is slightly smaller than that expected for 

an sp3 hybridized atom, whereas the triplet has an angle which is much 

larger than even that expected for an sp2 hybridized center. Tois 

decrease in bending angle is seen to result in a much larger dipole 

moment, as might be expected from the localization of the non-bonding 

electron pair into a single molecular orbital, as opposed to the 

separation into different carbon 2p-like orbitals in the triplet. 

Another consequence of the increased bending of the molecule away from 

linearity is that correspondingly more vibrational quanta are required 

to reach a linear nuclear configuration; thus, the bending potential of 

singlet methylene is deeper than that for triplet methylene. This 

further leads to an expectation that the vibration-rotation interaction 

in the singlet molecule will be somewhat less than in the triplet, 

particularly the interaction with rotation about the molecular a axis. 

This is, in fact, what is observed in the data of Table 11, in which all 

of tile vibration-rotation interaction constants appear to be well-

behaved, that is, of the proper order of magnitude relative to the 

equilibrium values of the rotational constants. Even the largest 



interaction constants, those involving, not surprisingly, the bend v2 

and rotation about the molecular a axis, are less than 10 % of the 

affected rotational constant, A, and the overall zero-point correction 

is approximately 1%. 
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The frequencies and anharmonic constants associated with the normal 

mode vibrations of CH2 (1Al) are presented in Table 12. The agreement 

between theoretical and experimental fundamental frequencies is seen to 

be excellent. The more strongly bent singlet methylene is not only free 

from large vibration-rotation perturbations, but, evidently, also from 

large vibrational anharmonic coupling between normal modes. The 

anharmonicity as determined theoretically, although predicted to be of 

about the same magnitude for singlet as for triplet methylene, seems to 

reproduce the experimental anharmonicity much better in the case of 

singlet methylene. 

The quartic and sextic distortion constants of lAl CH2 are given in 

Table 13. Once more, in the absence of experimental verification or 

contradiction, little can be added to the simple present::ltion of the 

theoretical data. The leading quartic term ~K is once again larger than 

one might expect, and there is no indication in the geometry, rotational 

constants, etc. that might suggest an explanation for the persistent 

(evident) breakdown of the pertutbation theory for this term. 

The vibration-rotation interaction constants and rotational 

constants of CD 2 are given in Table 14. The rotational constants an 

interaction terms are well-behaved theoretically and converge with both 

basis expansion and inclusion of correlation. These data for this 

experimentally easily accesible small molecule should encourage further 

.. 

.. 
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spectroscopic investigation of the vibration-rotation spectra in order 

to help to confirm (or refute) the reliability of ab initio cubic (and 

quartic) force fields. 

The harmonic and fundamental frequencies of singlet CD2 are given 

in Table 15 along with the vibratiqnal anharmonic constants and are 

presented with only one comment. Singlet methylene has proven 

theoretically to provide data related to its ab initio cubic and quartic 

force fields which is both well-converged theoretically and in excellent 

agreement with the available experimental data. One would hope for more 

experimental data to test the conclusions made as well as to shed light 

on the ambiguous portions of the anharmonic force field, for example, 

the centrifugal distortion constants. 

1 The open-shell singlet electronic state ( B1) of methylene (CH2) is 

structurally similar to the ground (triplet) state. That is, the CH 

bond lengths are shorter and the HCH bond angle quite a bit larger than 

those of the lower singlet (lA1) state. In this respect, it also has 

many of the same difficulties associated, from a theoretical point of 

view, with a quasi-linear molecule. The geometrical parameters, 

vibration-rotation interaction constants, and rotational constants for 

CH 2 (101) are given in Table 16. As can be seen there, the interbond 

angle is, in fact, approximately 100 larger than even for the triplet 

state discussed above. One might expect, then, an even greater coupling 

between vibration and rotation, particularly rotation about the 

molecular a axis causing significant centrifugal distortion of (or being 
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significantly affected by) the Vz HCR bending mode. This is strikingly 

evident in that the interaction constants a involving all three normal 

mode vibrations and the rotational constant A are quite large; in fact, 

each has been judged meaningless in the context of a perturbation theory 

approach to vibration-rotation interaction and are, hence, not presented 

in Table 16. The values of at are given at the DZP and TZP SCF levels 

of theory, since these values seem to be much more reasonable (3-4% of 

Ae at the same level of theory), and, in fact show little variation upon 

going to the larger of the two bases. The interaction constants 

involving the other rotational constants Band C are, however, well 

behaved, indicating that these (much smaller) rotational constants have 

less interaction with the normal mode vibrations, including the highly 

anharmonic quasi-linear mode vZ. 

Table 17 contains the harmonic and fundamental vibrational 

frequencies of CHZ (l B1 ), as well as the vibrational anharmonic 

constants. Although this particular electronic state of this molecule 

is somewhat more poorly characterized than the two previously discussed 

lower lying states, one has a sense from Table 17 that many of the 

difficulties seen for the vibrational frequencies of the triplet may 

occur here as well and, most likely for similar reasons. The normal 

mode frequencies change by only about 100 cm- 1 from the harmonic to 

fundamental values (e.g., TZP SCF) and only by a similar amount upon 

inclusion of electron correlation in the harmonic values (e.g., TZP 

CISD). This is what was seen previollsly (for the triplet) and, in that 

case, was seen to severely underestimate the effects of anharmonicity in 

the vibrational normal modes (or, at least, the experimental and 

", 
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theoretical fundamental frequencies were still somewhat in 

disagreement). The large positive values of the anharmonic vibrational 

constants X12 and X23 which show the effect of normal mode frequency v2 

on the frequencies vI and v3 (that is, the anharmonic coupling between 

the normal modes) are unusual in sign (most anharmonic constants are 

expected to be negative, and a fundamental frequency is almost always 

smaller than the corresponding harmonic frequency), but show two other 

important points as well. First, the effect of addition of polarization 

functions is seen to be very important, changing the value of the 

constants by a factor of 2-3 (OZ vs. OZP, for example). Next, the 

constants seem to vary very little with improvement of the basis after 

the addition of polarization functions (OZP vs. TZP), and, therefore, 

appear to have almost converged with respect to basis set expansion at 

the TZP ~CF level of theoty in this case. The necessity of polarization 

functions is also seen clearly in a comparison of the values of w2' vz, 

and AZ; the harmonic frequency changes by over 30% with the addition of 

higher angular momentum functions to the basis, with the corresponding 

change in the fundamental of almost 100%. This is clearly due, not only 

to the poor description of the geometry and harmonic potential using an 

unpolarized basis, but, in addition, a poor description of the cubic and 

quartic potentials, as evidenced especially in the values of X12' XZ2' 

and Xn. 

Quartic and sextic centrifugal distortion constants of CH2 (IBI) 

are given in Table 18. As was the case for the triplet (ground state) 

methylene, the quasi-linear 1BI state must certainly have large higher­

order centrifugal distortion effects which cannot be properly treated by 



60 

perturbation theory. Thus, the leading quartic distortion terms ~K and 

~JK are not surprisingly predicted to be very large. The values of ~JK 

which are given in Table 18 are almost certainly not meaningful in the 

context of a perturbation treatment of vibration-rotation interaction, 

but are reported nonetheless for information or for potential future 

reference. In addition to the leading sextic term HK also being too 

large, the true importance of these higher-order centrifugal distortion 

effects is seen in the magnitude of two other distortion constants, the 

quartic constant ~ and the sextic constant HKJ • Of course, in a case 

like this, proper rotational energy levels, including the effects of 

higher-order distortion explicitly, could be obtained by rigorous 

diagonalization of a rotational Hamiltonian which included all of the 

higher-order term values. For this molecule, it seems likely that a 

much better description of the features of the vibration-rotation 

specrum could be obtained theoretically via a different formulation of 

the vibration-rotation Hamiltonian, for example, by using the semi-rigid 

(or non-rigid) bende~ Hamiltonian of Jensen and Bunker. 94 ,95 

Table l~ includes the vibration-rotation interaction constants and 

rotational constants of CD Z (IB I ). Of course, the interaction constants 

involving rotation~l constant A have been ommitted because in general 

they are too large to be properly considered based on perturbation 

formulas. The dramatic change of the values of the rotational constant 

Ae and of the interaction constant ~ upon going to a polarized basis at 

the SCF level of tlleory again emphasizes the importance of using 

polarization functions in order to properly describe a molecular 

potential energy surface. The fact that the only values of ~t which 

• 
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have reasonable values are those obtained from polarized bases also 

speaks to the necessity of using a balanced basis set which includes 

higher angular momentum functions, particularly for molecules in which a 

bending (internal or normal) coordinate must be properly described. 

The anharmonic constants reported in Table 20 also show dramatic 

evidence of the effect vf polarization functions on molecular 

constants. The values of all of the constants in Table 20 which involve 

the bending normal coordinate (w2' X12' X22' X23' v2' and 12) change 

markedly upon introduction of polarization functions into the basis 

(from DZ or TZ to DZP or TZP). The harmonic frequency increases by 200 

cm- 1; the anharmonic constants change by over 50%; the fundamental 

frequency increases by almost 300 cm- l ; and the frequency difference 

(anharmonicity) is reduced by over half when polarization functions are 

included in the basis set. This is a very dramatic demonstration of the 

role of higher angular momentum functions in the proper description of 

properties of the anharmonic force field as well as of the harmonic 

force field. 

I 
The formyl radical, HCO (2A,), has been found to play an important 

role in the chemistry of flames, and, after an earlier surge of work on 

97-100 its vibration-rotation spectra, has recently been the object of 

renewed interest and investigation. 101 ,157-162 This molecule falls 

unfortunately into the category of quasi-linear molecules which have 

already been discussed and shows the same breakdowns in the perturbation 

treatment of its vibration-rotation spectra as do CH2 (3 B1 ) and CH2 
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(l B1 ).94,95 The molecular structure, vibration-rotation interaction 

constants, and rotational constants are presented in Table 21. The 

equlibrium CH bond length is slightly longer here than, for example, in 

CH4 since the central carbon atom is effectively sp2 hybridized, with 

the equlibrium bond angle being 125-128°, or, only a few degrees larger 

than the idealized value of 120°; the equilibrium value of the CO bond 

length is, however, also longer than a typical CO double bond, as, for 

example, in H2CO (vide infra). The theoretical methods are seen to 

reproduce the experimentally determined CO bond length extremely well; 

the slight underestimation of the CH bond, even at the polarized (DZP or 

TZP) CISD level of theory is symptomatic of the inherent difficulty 

often encountered theoretically with molecules which are weakly bound, 

even with respect to linearization, for example. Of course this 

. discrepancy may also be due to the increased difficulty in fitting 

experimental spectral data for such a non-rigid molecule; in any case, 

the geometrical parameters are less well determined than one would 

expect for a typical small molecule, with the resultant expectation, as 

above, that the experimental rotational constants (particularly A) may 

be considerably larger than those theoretically determined and presented 

in Table 21. The vibration-rotation interaction constant ~ is not 

given in Table 21 since it describes the interaction between rotation 

about the molecular a axis and bending mode v3. This large vibration­

rotation interaction is that which is not well (or properly) described 

by the perturbation theory treatment. The remaining vibration-rotation 

constants are seen to be much smaller, often several orders of magnitude 

smaller than would be required by the magnitude ordering of the various 



.. 

63 

vibration-rotation terms in eq. (2) or eq. (12). 

tioth the harmonic and anharmonic vibrational frequencies and the 

vibrational anharmonic constants of HeO are given in Table 22. The most 

striking feature of this table is the difference between the theoretical 

and experimental values of the anharmonic constants Xrs • The 

theoretical values seem to be failing to reproduce even the relative 

magnitudes of these constants. However, examination of the paper by 

Dixon97 from which the experimental values of the anharmonic constants 

and harmonic frequencies are taken reveals that the spectral data which 

were available were fitted after fixing the values of the anharmonic 

constants X22, X23, and X33 to be identically zero. Thus, the 

"experimental" values may well be grossly in error, particularly since 

the theoretical values of Dixon's97 ignored constants are clearly non­

-1 negligible, i.e. --2 to -11 cm The only fact which remains clear 

from Dixon's analysis,97 in light of this theoretical determination, is 

that XII has a much larger value than any of the other anharmonic 

constants. This should be taken as a first indication that theory is 

now capable of providing spectroscopic data which are difficult (or 

impossible) to obtain directly from molecular spectra; in addition, it 

illay now be seen that comparisons between theoretical and "experimental 

values derived from anharmonic molecular force fields may, in fact, only 

be valid in cases where the experiments are based only on assumptions 

which are well-defined and justified from previous experience. In fact, 

almost any assumptions about the values of anharmonic molecular 

constants which are made in an experimental treatment of spectral data 

might now be made more accurately based on relatively easily available 
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theoretical anharmonic force fields. In this regard, one would hope 

that molecular spectroscopists might re-examine HCO (for example) with 

the ~ priori expectation of finding a richer, more informative rotation­

vibration spectrum based upon having an improved (ab initio) quartic 

force field in hand. 

The centrifugal distortion constants of HCO are presented in Table 

23. With the exception of the largest quartic term, the various 

coefficients are very small. This suggests that the equilibrium 

rotational constants may be more accurate than usual in this case for 

describing molecular rotational behaviour and the associated rotation­

vibration fine structure. The rotational constants would be 

particularly well-defined, it would seem, by inclusion of only the terms 

involving ~K (and possibly HK) into a rotational Hamiltonian to be 

diagonalized. 

The vibration-rotation interaction constants and rotational 

constants of DCO are given in Table 24. Just as for HCO (Table 21), the 

theoretical rotational constants are expected to underestimate the value 

of the experimental value(s), particularly A, because of the fact that 

the large vibration-rotation terms are neglected in the present 

treatment. 

The harmonic and fundamental frequencies and vibrational anharmonic 

constants of OCO are given in Table 25. Just as for HCO the agreement 

between the theoretical and "experimental" harmonic frequencies is 

rather poor due to the neglect of some of the anharmonic constants in 

the fitting of the observed fundamental bands. 97 As with HCO, the 

present availability of a complete quartic force field should encourage 
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re-examination of the anharmonic constants and harmonic frequencies of 

DCO. 

F. H
Z
co35 ,85,lOZ-105 

Formaldehyde, HZCO, ranks along with acetylene (C2HZ) among the 

most studied tetra-atomic molecules. These two molecules are, in fact, 

the only two molecules of greater than three atoms for which a complete 

quartic force field has been determined experimentally. In addition, 

formaldehyde is a theoretically well-behaved molecule and, as such, 

provides one of the best comparisons of molecular constants obtained 

from theoretical and experimental quartic force fields. In Table Z6, it 

should be noted that the geometrical parameters are in much better 

agreement, both at the SCF and CISD levels of theory and with all four 

basis sets, than any of thepreviousl~ discussed molecules. At the TZP 

CISD level of theory, the agreement is exact; this is very satisfying 

and provides high expectations regarding the theoretical prediction of 

the anharmonic force field of formaldehyde. The lower levels of theory 

and of basis are seen to perform satisfactorily as well for this 

strongly bound molecule which is subject only to small perturbations via 

rotation-vibration interaction. 

The theoretical harmonic and fundamental frequencies of HZCO are 

given in Table 27 along with those found experimentally in the landmark 

work of Reisner, ~ al. ,85 as well as previously by Duncan and 

Mallinson. 104 The theoretical harmonic frequencies are seen to be in 

much better agreement (even compared to the experimental fundamentals) 

than for most of the previously considered molecules. In addition, one 



may see that the frequency differences ~ are, in general, smaller than 

observed previously for molecules having large amplitude, highly 

anharmonic normal mode vibrations. Thus, the improvement gained upon 

increasing the basis set, inclusion of electron corelation, and 

consideration of the anharmonic force constants results in even better 

66 

agreement between the experimental and theoretical (anharmonic) 

vibrational frequencies. The anharmonicities associated with normal 

modes vI and v6 are the most severely underestimated theoretically; this 

is somewhat surprising for the CH stretching mode vI' but considerably 

less so for the out-of-plane bending mode v6 which could be expected to 

be rather more anharmonic. 

The vibrational anharmonic constants Xrs are given in Table 28. 

These constants are seen to agree quite well with the corresponding 

experimentally derived values. 8S The exceptions appear to be X12' X33' 

X34, X3S, and X46' all of which disagree in sign with the experimental 

constants; note, however, that all of these disagreements in sign are 

among constants of small absolute value, and, in fact, the absolute 

values of each of these constants is in agreement between the 

theoretical and experimental values (at least as much as the other 

anharmonic constants are in agreement). Additionally, the constants XIS 

and X16 appear to significantly underestimate the experimental values 

(perhaps these are the major contributions to the underestimated 

anharmonic contribution to VI); X14 and XSS appear to be somewhat more 

in disagreement than the majority of the reported constants; and XS6 

amazingly is underestimated at the highest level of theory, after being 

in good agreement with the smaller bases. 
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The singular anomaly associated with the vibration-rotation 

spectrum of formaldehyde is indicated in Table 29, along with the 

centrifugal distortion constants. The asymmetry parameter cr is much 

larger than the rotational constants; this is indicative of an 

approximate symmetric top molecule. That is, the rotational constants B 

and C of H2CO are accidentally nearly degenerate; thus, many of the 

centrifugal distortion constants may not be well-defined since they may 

have denominators containing the quantity (B-C). In addition, H2CO is 

the first molecule which has been examined here for which the quartic 

and sextic distortion constants are well-behaved. That is, there is no 

(apparent) breakdown of the perturbation formulas as has been seen 

previously when treating the formaldehyde molecule. This provides 

reassurance that the present implementation of the perturbation theory 

based formulas for centrifugal distortion constants is not flawed. 

Table 30 provides the vibrational frequencies of D2CO. Both the 

harmonic and fundamental frequencies are in good agreement theoretically 

with the experimental values. Although the agreement is not quite as 

-1 good as for H2CO, the average deviation is only approximately 50 cm in 

the harmonic frequencies and approximately 40 cm- 1 in the fundamental 

frequencies. The frequency differences show that the anharmonicity 

associated with a number of the normal mode frequencies is somewhat 

underestimated theoretically, in particular, ~1' ~3' and ~6. 

The vibrational anharmonic constants of D2CO are presented in Table 

31. In light of the previously mentioned underestimation of the 

anharmonicities of some normal modes, one might expect that the 

corresponding anharmonic constants might also be underestimated 
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theoretically by similar amounts. Otherwise, the excellent agreement 

seen for the anharmonic constants of H2CO should carryover to D2CO as 

well. 

The hydrogen sulfide molecule, although closely related in the 

periodic table to water, has been much less studied than its more common 

periodic neighbor (vide supra). In fact, one of the earliest papers 

which discussed the anharmonic force field of H2S appears to have been 

challenged very little by more recent experiments, despite the fact that 

the assumed structure is far from the currently accepted picture of the 

geometry of H2S. Thus, it appears that the most definitive work 

concerning the anharmonic force 

fitting reported by Botschwina, 

field of H2S is the theoretical surface 

107 
~ ale last year. Therefore, 

although the interbond (HSH) angle is in excellent agreement with the 

most accurate previous experimental determination, the small discrepancy 

in the bond length cannot be too surprising since the experimental 

result is not the result of a high-resolution (or high accuracy) 

experiment. The vibration-rotation interaction constants in Table 32 

are theoretically. among the most well-behaved such constants which are 

presented in this work; the rotational constants are well separated and 

reasonably small, and the interaction constants are proportionately 

smaller, as they should be for the present perturbation treatment to 

apply (and as has bee~ discussed previously). Thus, the present 

~ccumulation of data concerning the rotational constants and the 

interaction with the molecular normal mode vibrations should serve as a 
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highly reliable source of information for future investigation of the 

hydrogen sulfide molecule and its rotation-vibration spectra. 

The theoretical harmonic and anharmonic vibrational frequencies are 

compared with the available experimental data in Table 33. Even for a 

molecule which contains a third-row atom, H2S shows the same trends as 

seen previously with regard to expansion of the basis and inclusion of 

correlation. The overestimation of the experimental fundamental 

frequencies by the theoretical harmonic values is reduced somewhat at 

the CISD level of theory, and, by the inclusion of the effects of 

anharmonicity, both the harmonic and fundamental frequencies agree 

within a few cm- 1 at the highest level of theory employed here. 

The same questionable certainty associated with almost all of the 

centrifugal distortion constants tabulated for molecules here so far 

must also be applied to the quartic and sextic distortion constants of 

H2S in Table 34. Although the molecule is well-behaved theoretically in 

every other way, the leading quartic distortion terms of the H2S 

molecule are once again larger than those in which one would be able to 

place any measure of confidence. 

H. C2H4118-121 

122 A recent paper by Lee, Allen, and Schaefer which reports the .. 
harmonic vibrational frequencies of ozone (03) and ethylene (C2H4) using 

multi-reference (MR) CISO wavefunctions also gives an excellent 

discussion of the experimental state of affairs with respect to the 

vibrational (infra-red and Raman) spectrum of ethylene, and their key 

points are reviewed here. Although the ethylene molecule has a great 
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deal of symmetry (D 2h ), it has not been the object of high-resolution 

infra-red or Raman spectroscopic investigation until very recently. In 

fact, the observation and identification of the features in the infra­

red and Raman spectra of C2H4 and their assignment to ethylene's normal 

modes was a matter of some controversy until relatively recently. Now, 

however, with the assistance of large scale ~ initio calculations, the 

vibrational spectrum appears to be somewhat more clearly understood. 

The theoretically determined geometry of C2H4 at the DZP SCF and 

DZP CISD levels of theory are given in Table 35. Because of the number 

of atoms (and, therefore, the number of degrees of freedom) in ethylene, 

it was determined to perform only these levels of calculation with this 

molecule. In addition, the displacements required for the finite 

differences of third derivatives were performed with respect to 

symmetrized internal coordinates of C2H4 in order to minimize the number 

of third derivative calculations required. This technique, which 

substantially reduces the amount of computation time required relative 

to that for displacements of all the Cartesian coordinates (as was done 

for all of the other molecules herein), is certainly one which will 

become of greater use as both the number and size of molecules for which 

full quartic (and higher) force fields are being determined-by abinitio--­

methods grows. 

The harmonic and fundamental vibrational frequencies at the SCFand 

CISO levels of theory are compared with experiment in Table 36. In all 

cases the frequencies are in remarkable agreement. For the SCF values, 

the error in theoretical fundamental frequencies is between 5 and 14% 

higher than the corresponding experimental fundamental frequency. At 



.. 

71 

the CISD level of theory, the errors are reduced to within only 1 to 8% 

of the experimental values. The DZP SCF quartic force field is also seen 

to provide excellent agreement with ·the experimentally derived frequency 

differences; the underestimation is no more than 30 cm- 1 in any case. 

Lee, Allen, and Schaefer deal with the vibrational spectrum of C2H4 in 

much more detail, and for further discussion, the reader is referred to 

their paper. 122 

I. HCN29 ,123,124 

The HeN molecule is another of the molecules ~hose vibration­

rotation spectra have been well studied both experimentally and 

theoretically for many years. It is therefore somewhat surprising that 

the geometrical parameters presented in Table 37 for this molecule are 

not in better agreement. This is not to say that extensive study should 

necessarily lead to better agreement; however, since HCN is well-behaved 

and easily studied both experimentally and theoretically, and since both 

the experimental and theoretical techniques have been seen often to 

produce excellent agreement, it is in this way surprising that there is 

some discrepancy (although certainly not of a magnitude to demand great 

concern) in the geometrical parameters. Table 37 also'provides the 

first available comparison in this work of two experimentally available 

sets of values for the vibration-rotation interaction constants with 

those determined from the ab initio cubic force field. It is seen that 

reasonable agreement is, in fact, achieved, with the theoretical values 

in all cases being slightly smaller in absolute value. The quartic 

centrifugal distortion constant is seen, likewise, to be in excellent 
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agreement with the experimentally derived constant; this is an 

encouraging indication of the quality of many of the other quartic (and 

sextic) distortion constants which have been presented, but for which 

there do not exist experimental data with which to compare. 

The harmonic and anharmonic vibrational frequencies and anharmonic 

vibrational constants of HCN are given in Table 38. As with most 

molecules here, there is convergence of the molecular constants with 

basis set expansion, and improved agreement with experimental data upon 

the inclusion of electron correlation and anharmonic force field 

effects. Thus, the HCN molecule adds confirmation to the accuracy and 

reliability of ~ initio determined anharmonic force fields and 

molecular constants. 

The vibration-rotation interaction constants, rotational constants, 

centrifugal distortion constants, and rotational ~-type doubling 

constants of DCN are reported in Table 39. The same excellent agreement 

with the available experimental values is seen as was seen for HCN. 

The harmonic and anharmonic vibrational frequencies and the 

vibrational anharmonic constants of the DCN molecule are presented in 

Table 40. Considering the consistent agreement of all of the anharmonic 

molecular constants discussed so far of HCN/DCN, itis not surprising 

that the vibrational frequen~ies and anharmonic constants are in 

excellent agreement with the available experimentally derived data for 

these constants as well. 

J. co
2

68 ,69,127-129 

The carbon dioxide molecule, CO2 , owes much of its recognition 
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spectroscopically to the identification by Fermi68 of the anharmonic 

resonance between normal mode vibrations vI and 2v2. Because of this, 

C02 has been thoroughly studied spectroscopically and is the only 

molecule for which a force field complete through sixth order has been 

determined experimentally. The molecular constants of C02 are presented 

in Table 41. The best agreement for the CO bond length is at the DZP 

CISD level of theory; the increase in basis set to TZP at the correlated 

level of calculation leads to a striking change in the predicted bond 

length, giving very poor agreement for the structure of this molecule. 

The amount of fluctuation in the predicted bond lengths across Table 41 

with increasing basis set and with inclusion of correlation is quite 

unusual as well; there does not appear to be any obvious convergence of 

the molecular structure within the levels of theory considered here. 

The other molecular constants in Table 41 show good agreement with the 

extensive available spectroscopic data, however, the parameters show 

slower convergence with basis set than has been observed previously. 

(The poorer agreement with the experiments at the largest basis set 

levels compared to smaller bases, both here and for HCN considered 

above, may lead one to speculate that the potential energy surface of 

molecules having a substantial (fractional) portion of their bonding as 

multiple bonds may be less well described theoretically than those for 

molecules with mostly single bonds. The excellent agreement in, for 

+ example, vibrational frequencies for the molecules H20, NH 3 , CH4 , NH4 , 

HF, etc. which are often used as theoretical test cases may tend to 

overshadow the less spectacular, although nonetheless still good, 

results for such molecules as HCCH, HCN, H2CO, whichL-h~sel ves are 



often used as small test molecules.) 

The vibrational frequencies and anharmonic constants of carbon 

dioxide are given in Table 42. As for most molecules, it is clear in 

the Table that the SCF harmonic frequencies overestimate the 

experimental fundamental frequencies by somewhat more than 10% on 

average; the frequencies are corrected, becoming closer to both the 

harmonic and fundamental experimental frequencies by the inclusion of 
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correlation and effects due anharmonicity. The values of the anharmonic 

constants Xrr' are also in agreement with the experimentally well­

determined values of these constants. One may note in Table 42, 

however, the very poor agreement indicated by the use of the TZ basis; 

in particular, several of the constants predicted at this level of basis 

are in disagreement with the other theoretical determinations (as well 

as with experiment) in regard to either the sign or the magnitude of the 

constants (note, for example X12' X22' and X~2~2' as well as the 

pr~diction of a positive frequency shift on going from the harmonic to 

the fundamental frequencies of normal modes vI and v2 ). The further 

saturation of the sp basis without inclusion of polarization functions 

in the basis is clearly disfavored. 

K. N20I30-I32 

Nitrous oxide, N20, has been the object of a number of studies' 

which have been concerned particularly with ~-type doubling as a result 

of the anharmonic force field of a mol~cule. Thus, a large number of 

the molecular constants associated with the cubic and quartic force 

field of this molecule have been reported experimentally. The molecular 
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structure and other constants are given in Table 43 for the N20 

molecule. As with CO2 (vide supra) the bond lengths of N20 show rather 

poor convergence with basis set, with the TZP CISD result again showing 

a substantial deterioration of agreement with experiment relative to the 

corresponding DZP result (for the NN bond). The other values in Table 

43 show similar trends, i.e., not approaching the experimental values in 

a consistent way, either with expansion of the basis or, where 

applicable, with inclusion of electron correlation. This seemingly 

unfortunate result should rather encourage further studies on this 

molecule (and other multiply bonded molecules) both with respect to 

further basis set enlargement as well as to inclusion of a larger 

portion of the correlation energy, by, for example, CISO(T)(Q) or 

CCSD(T) methods, in order to better model both the harmonic and 

anharmonic force fields associated with N20. 

The vibrational frequencies and anharmonic constants of nitrous 

oxide are given in Table 44. The agreement between theoretical and 

experimental values is rather good, especially considering the rather 

poor and erractic behaviour already noted in regard to the molecular 

structure. The most unique feature of the values of the constants given 

in the Table is the remarkably small difference A2 between the harmonic 

and anharmonic values of the molecular bending frequency (002 and v2 ' 

respectively). The unpolarized bases (D2 and T2) again show severe 

discrepancies with the experimental data, indicative once more of the 

necessity of using a polarized basis for a proper description of the 

anharmonic potential energy surface of a molecule, even near its 

equilibrium where, in many cases, the geometry and frequencies, for 



example, may be in sufficiently good agreement with experimental 

evidence for many purposes (see, for example, the values Xl3 and X33). 

L. COS133-138 
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The carbonyl sulfide molecule, COS, although not as well-known as 

some of the other molecules investigated here, has a long spectroscopic 

history and, consequently, has been remarkably well characterized. The 

geometry and various vibration-rotation constants are compared with the 

experimental data in Table 45. A similar trend is seen as has been seen 

previously with respect to the bond lengths in this molecule. That is, 

there appears to be very slow convergence of the structural parameters 

with basis set enlargement, at least up to the levels of basis 

investigated here. This slow convergence is particularly noticeable 

once more for the CO bond length, for which the DZP CISD result is again 

in the best agreement with the experiment, and the TZP CISD result, 

although typically expected to give some small improvement, shows a 

large change away from the experimental value. The CS bond length shows 

somewhat better convergence with respect to basis set expansion on 

inclusion of electron correlation, with fair agreement with experiment 

at the TZP SCF level of theory, but much better agreement at the TZP 

CISD level ot theory. The quartic centrifugal distortion constant DJ is 

in excellent accord with the experimental value, as is the equilibrium 

2-type doubling constant q~, with the differences being only 

approximately 2%. 

The harmonic and fundamental vibrational frequencies and the 

vibrational anharmonic constants of COS are compared with experiment in 
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Table 46. The harmonic frequencies show remarkable agreement with the 

experimental values, with deviations of only a few wavenumbers in wI 

andw2' The CO stretch w3 seems to be somewhat larger than the 

experimental value, particularly with the DZP or TZP bases at either the 

SCF or CISD levels of theory. 

M C H 6,71,86,139-141 
·22 

The acetylene molecule, CZHZ' as mentioned previously, is one of 

only two molecules of more than three atoms for which there exists a 

completely determined experimental quartic force field. Thus, C2HZ 

provides another opportunity (with HZCD) for thorough examination of the 

performance of ~ initio higher derivative methods in the prediction of 

properties associated with the cubic and quartic anharmonic force 

constants of a molecule. The geometry, vibration-rotation interaction 

constants, rotational constants, centrifugal distortion constants, and 

!-type doubling constants of the C2H2 molecule are given in Table 49. 

The geometry suffers from the same distressing deterioration in quality 

of results (as compared to the experimental values) at the TZP CISD 

level of theory (relative to the DZP CISD results, for example) as has 

been seen repeatedly here for linear multiply bonded molecules. The 

theoretical vibration-rotation interaction constants appear to 

underestimate the corresponding experimental values by 2% or more, with 

strikingly less agreement between theory and experiment for the value of 

fI2" The quartic centrifugal distortion constant shows the same 

remarkable agreement between theoretical and experimental values at the 

highest levels of theory examined here as has been seen for each of the 
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preceding molecules for which there has been a reliable spectroscopic 

determination of this constant. This is encouraging once again in that 

many of the molecular constants which have never before been predicted 

by an ab initio theoretical approach appear to be in excellent accord 

with experimentally derived values, and, therefore, these constants (and 

others) should be of substantial value to molecular spectroscopists 

desiring to measure the fine structure associated with molecular 

vibration-rotation spectra. 

The vibrational frequencies and anharmonic constants of C2H2 are 

given in Table 48. The harmonic frequencies, for the most part show 

excellent convergence with size of basis; the exceptions, particularly 

v4 and vs' are much better represented by the CISD level of theory. The 

inclusion of the anharmonic force field effects, therefore, leads to 

excellent agreement as well with the experimental fundamental 

frequencies; normal mode vibrations v4 and Vs are t~en in better 

agreement with the experiments after correction of the CISD harmonic 

frequencies via the SCf cubic and quartic force constants. In general, 

the vibrational anharmonic constants are in very good agreement with 

those determined from experiment; the major exception appears to be the 

value of X4S. In this case, one might argu~ that, based on the 

previously mentioned severe overestimation of the harmonic frequencies 

w4 and ws' it is not surprising that this anharmonic interaction term is 

poorly described; on the other hand, this difference of both order of 

magnitude and sign for this constant might suggest an experimental re­

examination of the vibrational spectrum of acetylene (even in light of 

the poorly converged theoretical value). A few other of the anharmonic 
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constants have a somewhat larger than average (fractional) deviation 

from the experiment; however, these are in all cases small valued 

constants which could very well be in error either experimentally or 

theoretically (for example, X25' 'X44' and X~ 9 ) • 
4 '4 

+ 142-145 N. H3 

+ The H3 molecular ion is the only example of a symmetric top 

molecule for which data are given here. The geometry, vibration-

rotation interaction constants, rotational constants, and centrifugal 
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distortion constants are presented in Table 49. It will be noticed that 

only calculations at the SCF level of theory are given. It is also seen 

that the basis sets were extended further in this case to see the effect 

of approaching a saturated sp basis on the cubic and quartic anharmonic 

properties. The most notable feature of Table 49 is that although the 

(4s2p) extended basis gives almost identical results to the TZP basis, 

the further extension of the sp basis leads to quite substantial 

deterioration of the quality of the predicted molecular constants. 

Thus, even for a molecule of only hydrogen atoms, one must employ a 

basis which is well balanced (in addition to having polarization 

functions) in order to maintain the quality of results (even those which 

haved appeared to have converged with respect to basis set enlargement). 

The vibrational constants of H) are given in Table 50. In much the 

sane way as the vibration-rotation constants, for example, in Table 49, 

the data of Table 50 converge well up to the (4s2p) basis set level; 

however, the results with the (evidently) unbalanced (oversaturated) 

basis of (6s3p) composition are somewhat erratic and not always in line 
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with the other theoretical values of the molecular constants. It would 

be worthwhile, it seems, to investigate a basis of (4s2pld) character, 

for example, in order to see the effect of a more balanced basis 

expansion (i.e., inclusion of yet higher angular momentum functions 

rather than further saturation of the sp space) on the anharmonic force 

field of this molecule. 

The vibrational anharmonic constants were checked independently by 

the use of Watson's formulation l46 for the special case of an X3 

molecule. Exact agreement was found for all of the anharmonic constants 

by comparison with the results obtained from the general perturbation 

formulas for symmetric top molecules presented in section II. These 

independent calculations give reassurance once again that the present 

implementation of the general formulations of Mills, Watson, et ale is 

not in error. 

o. NH329,147-149 

Preliminary results on the anharmonic force field of the ammonia 

molecule, NH3' have been obtained. These early results indicate that 

the major points which have been noted repeatedly apply to NH3 as 

well. In particular, the geometry is in good agreement with 

experimental values at the DZP and TZP CISD levels of theory. The 

harmonic force field (i.e., the vibrational frequencies) show a 

convergence toward the experimental values with increase of the size of 

the basis as well as with the inclusion of electron correlation. The 

inversion motion of tile NH3 molecule is found to be highly anharmonic 

(as it is known to be from experimental data), and the use of 



unpolarized basis sets gives an unreasonably large correction to the 

harmonic frequencY!12 due to the effects of anharrnonicity. It will be 

of interest to see the performance of the larger basis sets and the 

effects of correlation on the description of this normal mode in 

particular. 
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v. Concluding Remarks 

This thesis has described a portion of the research which has been 

undertaken to investigate the feasibility of using ~ initio SCF cubic 

and quartic force constants, determined from the new methods of analytic 

SCF third derivatives, for determining anharmonic molecular constants of 

a wide variety of molecules.163-165 The research presented here has 

added immensely to the knowledge previously available (either 

experimentally or theoretically) concerning many vibration-rotation 

interaction constants (i.e., constants determined from higher potential 

energy derivatives). For a number of the molecules, the information 

given here should provide motivation for experimental re-examination of 

the molecular vibration-rotation spectra with the expectation of being 

able to derive much more insight due to the now available ab initio 

molecular cubic and quartic (anharmonic) force fields. In addition, 

some of the results presented raise additional questions. Specifically, 

how is one to deal with the apparent breakdown of the perturbation 

formulas for centrifugal distortion for many molecules and what level of 

basis set or correlation is necessary to properly converge the 

anharmonic constants of molecules containing multiple bonding?166 Other 

more subtle points may also be further investigated. For example, the 

vibrational and rotational t-type doubling constants have not been 

examined in detail with respect to the relative contributions from the 

harmonic, cubic and quartic terms; that is, one might find a way to 

approximate some of the molecular constants which depend on the higher 
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order force constants (and which are, therefore, not reported in 

standard ab initio calculations) using lower order force constants. 

With the full quartic force field of many molecules in hand, it 

should be possible to extend immensely the range of anharmonic molecuL:tr 

constants which are determined by ab initio methods. There are many 

spectroscopic constants which depend on the (cubic and) quartic force 

field of a Qolecule lSO ; all that is required is the formulation of these 

spectroscopic constants in terms of the potential energy derivatives 

(i.e., the cubic and quartic force constants). One particular set of 

constants which depends on the quartic force field is the set of octic 

centrifugal distortion constants. These constants are rarely measured, 

but often invoked as important for detailed description of molecular 

rotational fine structure. TI1e ten independent octic centrifugal 

distortion constants (that is, the measurable combinations of the 

fifteen pure distortion constants of this order) have been discussed and 

described recently.1S3,lS4 However, these octic centrifugal distortion 

constants have not been defined or formulated explicitly in terms of the 

quartic force field on which they depend; if this were to occur, the 

octic distortion constants of all the molecules discussed here (as well 

I 162-164) ld b ' d' 1 'I bl as many otlers wou e 1mme 1ate y ava1 a e. It is hoped, 

therefore, that ~ ini tio determinations of cubic and quartic force 

fields will continue, not only to give additional comment regarding the 

reliability of the anharmonic molecular constants determined in this 

way, but also to provide motivation for further development and study in 

both experimental and theoretical molecular spectroscopy. 
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Table I. Theoretical and experimental geo~etriea, dipole momenta, vibration-rotation Interaction conatants and 

rotational conatante of "20' 

SCF CISD Experi.ent S 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

Energy In hartree -76.01100 -76.01429 -76.04681 -76.04828 -76.13712 -76.15527 -76.24379 -76.26066 

re(OH) 10 A 0.9514 0.9527 0.9457 0.9453 0.97S9 0.9744 0.9623 0.9624 0.9572 

8e (HOH) in deg. 112.52 111.82 lOb.16 10b.12 110.54 110.22 104.13 104.36 104.52 

II In D 2.530 2.512 2.133 2.129 2.495 2.470 2.093 2.090 

at In c.-I 0.9442 0.7703 0.5854 0.5445 0.750 
A - 4.4795 - 4.2390 - 2.8426 - 2.8377 -2.941 
~ 
A 1.5746 1.4551 1.1003 1.0656 1.253 oJ 

8 0.17'J5 0.1743 0.2170 0.2103 0.238 °1 

~ - 0.0470 - 0.0502 - 0.1527 - 0.1520 -0.160 
II 0.1021 0.0826 0.1019 0.0947 0.078 0) 

• ~ .. 

\0 
0\ 



.. 

Table 1 continued. 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

C 
°1 0.16118 0.1534 0.1616 0.1541 0.202 

C 0.12113 0.1312 0.1372 0.1408 0.139 ~ 

~ 0.1440 0.1262 0.1319 0.1238 0.145 

Ae in clI- 1 33.7:.!48 33.0245 29.1829 29.1792 30.4693 30.3179 26.9091 27.0440 

8 13.3635 13.4364 14.6301 e 14.6506 13 .0017 13.0929 14.5169 14.4714 

Ce 
~.5710 9.5506 9.74411 ~.7535 9.1130 9.1440 ~.4297 9.4270 

1.0 34.7051 34.0313 29.7613 29.7930 

80 
13.2462 13.3331 14.5470 14.5742 

Cu 9.3504 9.3452 9.5295 9.5441 

, 
Av 34.7071 34.0333 29.7631 29.7949 
, 

60 13.248:l 13.3351 14.5488 14.5760 
, 

Cu 9.3475 9.3423 9.5267 9.5413 

1.0 ....., 

a Ref. 56. 



Table 'J.. Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic 

constants, and fundamental vibrational frequencies of "20. 

SCF CISD Experillents a 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

"'l in clI- 1 4():l1l.3 3990.3 4151.5 4114.5 3704.4 3683.0 3935.4 30115.7 3832.0, 3825.3 

"'2 1710.6 1723.2 1749.8 17411.1 1648.2 1663.6 1686.3 1660.8 1648.9, 1653.9 

~ 4204.2 4156.2 4267.1 4226.2 3875.3 3845.8 4048.4 3997.7 3942.5, 3935.6 

XII in CIII 
-1 - 42.466 - 311.215 - 40.084 - 38.395 - 42.6 

.- X12 - 11.157 - 8.118 - 15.628 - 14.653 - 15.9 

Xu -163.077 -149.321 -157.208 -150.864 -165.8 

X22 - 28.719 - 29.910 - 19.9897 - 20.702 - 16.8 

X23 - 11.255 - 9.226 - 17.921 - 17.111 - 20.3 

XJ) - 49.836 - 46.408 - 45.355 - 43.838 - 47.6 

VI in cm -I 3H65.3 3835.1 3984.9 3954.9 (]532.4) (3527.9) (3768.8) (3726.2) 3651.7 

v2 1641.5 1654.7 1693.1 1690.8 (1579.1) (1595.1) (1629.6) (1603.5) 1595.0 

v3 4Ulb.1I 39114.2 40HH.8 4054.5 (36I1H.U) (3673.7) (3870.1) (3826.0) 3755.8 

\D 
(X) 

• • 
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Table 2 continued. 

SCF 

OZ TZ DZ+P TZ+P 

Al 1n clI- I -172.0 -155.1 -166.6 -159.5 

A2 - 69.1 - 68.5 - 56.7 - 57.3 

A) -187.3 -172.1 -178.3 -171.7 

a Ret. 56. 

ClSD 

DZ TZ DZ+P 

(-172.0) (-155.1) (-166.6) 

(- 69.1) (- 68.5) (- 56.7) 

(-187.3) (-172.1) (-178.3) 

• 

TZ+P 

(-159.5) 

(- 57.3) 

(-171.7) 

Experiments 

-173.6 

-58.9 

-179.8 

\0 
\0 



Table 3. Theoretical and experimental valuea of quartic and sextic centrifugal distortion 

constants and asymmetry parameter for H20. 

SCF CISD Experiment 

IlZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

t.J 
x 106 in cm- I 760.4~ 774.81 1050.20 769.70 784.60 1179.57 1124.68 

t.JK x 10 
6 -3928.65 -3762.7H -4791.29 -3253.53 -3167.82 -4876.84 

t.1( x 106 44088.77 40798.61 27270.75 35430.12 34212.68 24443.88 

+J x 106 272.01 277. 79 415.48 273.73 278.7H 411.52 451.34 

~ x 106 680.06 674.94 442.67 611.95 633.08 335.63 

ItJ x 106 in cm- 1 0.1913 0.196~ 0.3704 

H JK x 10 6 -1.7632 -1.7196 -2.9064 

tlKJ x lOb -ll.1880 -9.6691 -3.8411 

HK x lOb 190.2246 16~.7759 73.2317 

hJ x 106 0.0938 0.0960 0.1830 

h JK x 10 b -0.0837 -0.0788 -0.377 5 

hI<. x 106 -4.5646 -3.7454 -0.6053 

~ 
0 

a in clll- 1 12.0026 1l.3678 7.0456 0 

~ 
~ 



f! , 

Table 4. Theor~tical and experimental vibration-rotation interaction constanta and rotational 

constanta of 020. 

SCF CISO Experimenta 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

a1' 1n clI- l 0.3033 0.2363 0.1743 0.1583 0.246 

A - 1.7990 - 1.7009 - 1.1316 - 1.12~7 -1.161 Q.L 

<4 0.7001 0.6479 0.4918 0.4774 0.593 

8 0.0752 0.0733 0.0918 0.0893 0.096 Ql 

~ - 0.0219 - 0.0232 - 0.0617 - 0.0615 -0.082 

8 0.0]42 0.0271 0.0316 0.0290 0.042 Q) 

QC 
1 0.0627 0.0571 0.0639 0.0611 0.077 

C 0.0489 0.0501 0.0516 0.0529 0.050 ~ 

~ 0.05]8 0.0472 0.0464 0.04]5 0.054 

Ae 1n cm -1 18.7611S 18.3722 16.2351 16.2330 16.9507 16.8665 14.9701 15.0451 

8 6.6872 6.7237 7.3210 7.3313 6.5062 6.5518 7.2644 7.2416 e I-' 
0 

Ce 4.93]U 4.9223 5.0457 5.0~04 4.7016 4.7188 4.8910 4.81S86 I-' 



Table 4 continued. 

SCF 

DZ TZ DZ+P 

Au 19.1 ~96 18.7806 16.4678 

BO 6.643~ 6.68~1 7.2902 

Co 4.8473 4.8451 4.9648 

AD 19.1601 18. 71H 1 16.4683 

B' 0 6.6440 6.6856 7.2907 

C· 0 4.8466 4.8443 4.9640 

a Ref. ~b. 

~ 

TZ+P DZ 

16.4800 

7.3029 

4.9716 

16.4805 

7.3034 

4.9709 

CISD 

TZ DZ+P 

Experiment 

TZ+P 

" ,. 

..... 
o 
N 
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Table ~. Theoretical and experimental harmonic vibrational frequenciea, vibrational anharllonic 

constants and fundamental vibrational frequencies of U20. 

SCF ClSD Experiment a 

DZ TZ DZ+P TZ+P OZ TZ DZ+P TZ+P 

"'I 1n cm -I 2892.7 286~.9 2992.6 296~.8 26~9.1 2644.2 2837.9 2801.4 28~~.6 

~J. 12~6.9 126~.9 1280.8 1279.6 1211.~ 1222.6 1233.8 121~.~ 1233.~ 

">.l 30'J0.7 30~4.6 3128.8 30'J8.8 2846.7 2824.6 296~.9 292'.1.1 2990.1 

Xli 1n cm -1 - 21.698 - 1'J.~90 - 20.786 - 19.914 - 22.6 

XI2 - 4.367 - 2.238 - 7.889 - 1.299 - 1.6 

Xl) - 84.6~'J - 71.281 - 81.~42 - 18.196 - 87.2 

X22 - 1~.873 - 16.617 - 1U.7'J2 - "1.192 - 9.2 

X23 - ~.9~3 - 4.3'.10 - 9.250 - 8.839 - 10.6 

X33 - 28.424 - 26.470 - 25.6~5 - 24.792 - 26.2 

\II 1n CII 
-1 2804.8 2787.0 2906.3 2965.8 (2~71.2) (2565.3) (2751.6) (2718.8) 2763.8 

\12 1220.0 122'.1.4 1250.6 1279.6 (1174.6) (1186.1) (1203.6) (1185.0) 1206.4 

\I) 2'J88.6 2960.9 3032.1 3098.8 (2744.~) (2730.8) (2869.2) (2836.0) 2888.8 
f--' 
0 
LV 



Table ~ continued. 

SCF 

DZ TZ l)Z+P TZ+P 

61 in em -I - 117.9 - 78.9 - 86.3 - 82.6 

62 - 36.9 - 36.5 - 3u.2 - 30.5 

6) -102.2 - 93.8 - 96.7 - 93.1 

---------------------------

a Ref, 56. 

ClSD 

DZ TZ DZ+P 

(- 87.9) (- 78.9) (- 86.3) 

(- 36.9) (- 36.5) (- 30.2) 

(-102.2) (- 93.8) (- 96.7) 

Experiment 

TZ+P 

(- 112.6) -92.6 

(- 30.5) -27.5 

(- 93.1) -101.3 

• It 

,..... 
o 
~ 
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Table 6. 

,. .. 

Theoretical and experimental geometries, dipole moments, vibration-rotation interaction constants, 

and rotational constants of CH Z (J B1 ). 

scr CISD Experimentsa,b 

UZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

~nergy in hartree -3~.91369 -3ti.914S4 -38.92764 -36.n693 -38.98226 -38.98986 -39.04947 

re(CH) in A 1.0743 1.0724 1.0756 1.0724 1.09S1 1.0879 1.0853 1.0789 1.0748 

6e (HCH) in deg. 130.26 130.32 129.36 129.61 133.12 132.99 132.68 133.84 

~ in 0 0.681 0.673 0.614 0.588 0.689 0.674 

a'i' in cm- I 0.8209 0.8128 0.720S 0.7362 

A 
~ 

ctj 2.3024 2.2622 2.0U85 2.1255 

II 0.1241 0.1166 0.1218 0.1189 °1 

B - 0.0084 - 0.0056 - 0.Oll7 - 0.0233 0-2 

II 0.0941 0.0866 0.0932 0.O1l1l5 °3 ~ 
0 
V1 



Table b continued. 

SCt' 

DZ TZ J)Z+P 

C U.1U91 0.1035 0.1055 Ql 

C 0.0772 0.0809 0.0785 ~ 
C 0.1029 0.0960 0.0965 Qj 

Ae in c .. - 1 47.8557 48.1416 46.1705 

lie 8.8036 8.8306 8.8472 

Ce 7.4357 7.4619 7.4245 

"D 
110 ll.b987 1l.7317 8.7505 

Co 7.2911 7.3217 7.2843 

I 

"D 
I 

110 8.700li 8.7339 1l.7525 
I 

c 0 7. 2881 7.3185 7.21113 

aRef • 1l5. 

bl{ef. 91. 

TZ+P DZ 

. 0.1035 

0.0788 

0.0951 

46.8784 51.4721 

8.8818 8.2856 

7.4671 7.1368 

8.7898 

7.3284 

11.7918 

7.3252 

CISD 

TZ DZ+P 

51.8798 49.7190 

8.4027 8.5218 

7.2315 7.2749 

TZ+P 

.. " 

Experillent. 

73.810575 

8.45042 

7.18431 

,.... 
a 

'" 



Table 7. 

"'I in c.- I 

~ 

"'3 

Xli in cm 
-1 

X12 

X13 

Xn 

Xl) 

X33 

VI in cm- I 

v2 

Vj 

r .. 

Theoretical and experimental harmonic vibrational frequencies, vibrational anhar.onic constants, 

and fundamental frequenciea of CH 2 (3 81 ), 

SCF CISD Experlmenta a 

DZ TZ UZ+P TZ+P DZ TZ DZ+P TZ+P 

3292.3 3238.) )287.4 )266.) )093.1 3059.2 3192.6 3178.8 3090 

U77 .':1 12b9.4 12':19.7 129H.2 1097.3 1104.5 1166.8 1147.5 1080 

3514.0 3453.6 3494.4 347H.l 3310.9 3274.1 3407.5 3404.6 3220 

- 29.122 - 26.032 - 27.014 - 26.090 

1.063 2.117 1.122 2.027 

-113.536 -100.686 -105.682 -102.025 

- 25.092 - 24.4H3 - 23.IH5 - 23.931 

- 3.023 - 2.329 - 4.117 - 3.095 

- 35.585 - 32.180 -32.432 - 32.286 

311b.7 3136.9 3181.0 3164.2 (2977.6) (2957.9) (3086.3) (3076.6) 2950 

1225.6 1220.3 1250.6 1249.H (1045.1 ) (1055.4) (1117.7) (1099.1 ) 963.0995 b 

)384.6 3337.7 3374.6 3361.0 (3181.4) (3158.2) (3287.7) (3287.5) 3080 .... 
0 
"--J 



Table 7 continued. 

SCF 

OZ TZ DZ+P TZ+P 

6 1 in clIl- I -lIS.S -101.3 -106.3 -102.2 

62 - S2.2 - 49.1 - 49.1 - 48.4 

6) -129.5 -115.9 -119.8 -117.1 

aRef • 8S, unless otherwise noted. 

bRef • 91; see also ref. 89. 

~ 

CISD 

DZ TZ l);£+P 

(-I1S.5) (-101.3) (-106.3) 

(- 52.2) (- 49.1) (- 49.1) 

(-129.5) (-115.9) (-119.8) 

TZ+P 

(-102.2) 

(- 48.4) 

(-117.1) 

-. 

Experillients 

-140 

-117 

-140 

t-' 
o 
00 



• 

Table 8. 

6J x lOb 1n cm- l 

6JK x 10 b 

~ x lOb 

+J x lOb 

~ x lOb 

HJ x lOb in cm- l 

H JK x 10 b 

HKJ x lOb 

HK x lOb 

hJ x 106 

hJK x 10 b 

hK x L06 

o 1n cm -1 

, It 

Theoretical and experimental values of quartic and sextic centrifugal distortion constants and 

ssymmetry parameter for CH2 (3 81 ). 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

32~.bll 337.07 331.03· 334.~7 320.81 340.71l 327.02 

-492~.70 -4991.00 -4~91.49 -4~73.~9 -7008.63 -7225.4'6 -6274.74 

86.71 88.99 89.41 88.97 84.22 89.24 87.65 

1092.57 1148.93 1074.90 1105.42 1187.27 1276.39 1146.65 

0.0470 0.0497 0.0494 0.0500 

-1.0129 -1.028~ -1.0685 -1.1286 

-84.llb4~ -89.~647 -68.7874 -71.1565 

39~4.731 41H9.528 3023.409 3299.503 

0.0220 0.0231 0.0232 0.0233 

0.1406 0.4620 0.1368 0.1497 

-52.3126 -54.b8H8 -40.3055 -43.1414 

63.4715 63.9287 57.8923 59.1526 

.... 
0 
\0 



Table 'l. 

at in clI- 1 

A 
G:2 

a1 

B 
Ql 

~ 
B 

a:3 

QC 
1 
C 

G:2 

~ 

Ae 1n clll- 1 

8 e 

Ce 

~ 

Theoretical and experimental vibration-rotation interaction constants, and rotational constants of 

3 CD2( B1)· 

uZ 

0.1102 

0.0513 

- 0.0059 

0.0352 

0.0419 

0.0281 

0.0400 

27.3858 

4.4054 

3.7'J49 

-

SCF 

TZ UZH' 

0.1042 0.0802 

0.9940 

0.0486 0.05U7 

0.0049 - 0.0110 

0.0325 0.0348 

0.0400 0.0410 

0.0295 0.0281 

0.0374 0.0375 

27.5494 26.4214 

4.4189 4.4272 

3.8081 3.7919 

CISO Experiment a 

TZ-tP OZ TZ OZ+P TZ+P 

0.0823 

1.0473 

0.0496 

- 0.0116 

0.0332 

0.0401 

0.0282 

0.0370 

26.8266 29.4553 29.6886 28.4521 37.786863 

4.4446 4.1462 4.2048 4.2644 ,..... 
,..... 

3.8129 3.6346 3.6831 3.7086 0 

.. ;t 
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Table ~ continued. 

SCF 

DZ TZ 

"0 1n cm- l 

110 4.3651 4.3808 

Cu 3.7399 3.7545 

A0 1n cm- 1 

8' 0 4.3657 4.3813 

C' 0 3.7391 3.7539 

aRet. 92. 

DZ+P TZ+P DZ 

4.3900 4.4090 

3.7386 3.7602 

4.3905 4.4095 

3.7378 3.7594 

fI 

CISD 

TZ DZ+P 

" 

TZ+P 

Experiment 

t-­
t-­
t--



Table 10. 

"'I 1n cm- I 

"'1. 

"'3 

XII 1n em -I 

XI2 

XI3 

Xn 

X23 

X33 

\/1 1n e .. - I 

\/2. 

\/) 

" 

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants, 

and fundamental vibrational frequencies of e02 (3 S1 ). 

sel elSO Experiment a 

OZ TZ OZ+P TZ+P OZ TZ OZ+P TZ+P 

:l3~8.~ 2319.3 2356.5 2340.7 2212.2 2188.8 2285.5 2273.9 

9~4.6 948.2 970.3 969.5 821.0 826.1 812.2 858.4 

2632.2 2581.0 2616.6 2604.7 2482. 7 2455.0 2553.9 2552.6 

- 15.043 - 13.429 - 13.989 - 13.467 

1.950 3.174 3.627 4.518 

- 511.192 - 52.0011 - 54.647 - 52.660 

- 14.495 - 14.189 - 13.877 - 14.044 

- 1.511 1.109 - 2.267 - 1.7'J.5 

- 21.335 - 19.368 - 19.460 - 19.397 

2300.0 2268.9 2303.0 2340.7 (2153.7) (2131.8) (2232.0) (2222.9) 

92~.8 921.1 943.2 969.5 ( 792.2) ( 199.1) ( 1145.1) ( 831.7) 152.3748 

2559.4 2521.7 2549.2 2604.7 (2409.9) (2389.7) (2486.5) (2486.6) 

~ 
~ 
N 

" .. 
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Table 10 continued. 

SCF 

DZ TZ UZ+P TZ+P 

61 in cm- l - 5H.5 - 51.0 - 53.5 - 51.0 

62 - 211.8 - 27.0 - 27.1 - 26.7 

63 - 72.8 - 65.3 - 67.4 - 66.0 

a Ref • 92. 

CISD 

DZ TZ 

(- 58.5) (- 51.0) 

(- 28.8) (- 27.0) 

(- 72.8) (- 65.3) 

,9 

DZ+P 

(- 53.5) 

(- 27.1) 

(- 67.4) 

• 

TZ+P 

(- 51.0) 

(- 26.7) 

(- 66.0) 

Experiment 

~ 
~ w 



Table 11. Theoretical and experimental geome(rlea. dipole momenta, vibration-rotation interaction conatanta, 

and rotational constanta of CH 2 (l A1 ). 

SCF CISD Experiment a 

l>l Tl DlH' TZ+P l>l TZ DZ+P Tl+P 

Energy in hartree - 3ij.86201 - 38.86354 - 38.8ij559 - 38.88698 - 38.94463 - 38.95287 - 39.01760 - 39.02513 

re(CH) in A 

ee(ltCIl) in deg. 

II in 0 

at 1n clll- 1 

~ 

a1 

tI 
al 

tI 
Q.

2 

IS 
"J 

• 

1.1034 1.1020 1.1005 1.0979 1.1338 1.1256 1.1167 

106.65 106.23 103.74 103.71 104.41 104.53 101.29 

2.411 2.377 2.103 2.065 2.186 2.171 1.884 

0.5691 0.491S2 0.4325 0.4144 

- 2.0905 - 2.0306 - 1.6597 - 1.6865 

0.9717 0.9327 0.7935 0.7893 

0.1291 0.1259 0.1408 0.13'H 

0.0683 - 0.0649 - 0.1215 - 0.1237 

0.0598 0.0457 0.0581 0.0521 

1.1113 

101.54 

1.867 

~ 

t--' 
t--' 
.f:' 
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Table 11 continued. 

SCF ClSD Experilllent 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

C 
°1 0.11t!4 0.1101 0.1119 0.1091 

C 0.1137 0.1231 0.1163 0.1179 o}. 

O-C 
j 0.0913 0.0780 0.0823 0.0781 

Ae in c .. - 1 22.4901 22.3264 21.1572 21.2427 20.2312 20.5863 19.4805 19.7780 

lie 10.6793 10.7645 11.1610 11.2175 10.4192 10.5548 11.2166 11.2862 

Ce 7.2410 7.2628 7.3066 7.3410 6.8773 6.9774 7.1181 7.1857 

Ao 22.7650 22.6262 21.3741 21.4841 

80 10.6190 10.7112 11.1223 11.1837 

c 0 7.07~3 7.1071 7.1513 7.1t!1S4 

I 

21.'4855 Ao 22.7664 22.6277 21.3755 20.1182 

I 11.2050 80 10.6203 10.7126 11.1237 11.1851 
I 

Co 7.0772 7.1051 7.1493 7.1863 7.0686 
I-" 
I-" 
VI 

aRef. 89. 



Table n. Theoretical and experimental harmonic frequenciea, anharmonic constants, and fundamental frequencies 

I of CH2 ( AI)' 

SCF CISD Experiment a 

DZ TZ DZ+P TZ+P DZ . TZ l)Z+P TZ+P 

"'I 1n cm- I 3086.9 3031.9 3\ 20.1 3097.6 2804.2 2783.6 2969.3 2954.5 

""2 141n.3 1498.0 1490.3 1485.0 1396.3 1418.6 1428.6 1420.0 

.., 3172.11 3U98.3 3193.4 3164.8 2891.5 l1!56.7 3047.2 3022.4 

Xli 1n cm 
-I - 31.267 - 27.155 - 27.971 - 26.653 

X12 21.624 - 24.268 17.747 24.948 

X\3 -124.916 -108.567 -112.579 -107.959 

X22 - 25.015 - 14.833 - 19.940 - 20.749 

X23 - 8.649 - 7.895 - 12.486 - 10.214 

X3) - 37.494 - 33.406 - 33.132 - 32.183 

VI in cm -1 2972.8 2911.2 3016.7 3002.8 (2690.0) (2662.7) (2865.9) (2859.7) 2805.9 

"'2 1439.8 1452.2 1453.0 1450.9 (1352.8) (1372.9) (1391.3) (1385.9) 

v3 3031.0 2973.3 3064.6 3041.3 (2749.7) (2731.7) (2918.4) (2898.9) 2864.5 
I--' 
I--' 
C]\ 

" 



Table 12 continued. 

SCF 

IlZ TZ OZ+P TZ+P 

6 1 1n clII- 1 -114.2 -120.7 -IUJ.4 - .94.8 

62 - 43.5 - 45.7 - 37.3 - ·34.1 

6) -141.8 -125.0 -1211.11 -123.5 

a Ref • 95. 

erso 

OZ TZ 

(-114.2) (-120.7) 

(- 43.5) (- 45.7) 

(-141.8) (-125.0) 

t 

OZ+P 

(-1U3.4) 

(- 37.3) 

(-128.8) 

TZ+P 

(- 94.8) 

(- 34.1) 

(-123.5) 

Eltperlll1ent 

~ 
~ 
-...J 



Table lj. 

AJ x lU6 in cm- l 

AJI{ x lU b 

~ x 106 

+J x 106 

+Jt x 106 

HJ x 106 in cll- 1 

HJI{ x 10 6 

tilU x lU6 

HI{ x 106 

hJ x 1U6 

hJI{ x 10 b 

hK x 106 

a 1n cm -1 

Theoretical and experimental values of quartic snd sextlc centrifugal distortion constanta and 

asymmetry parameter for CH 2 (lA l ). 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

596.19 614.08 701.36 719.45 6311.11 653.10 7115.49 806.93 

-2043.51 -1914.46 -2446.40 -2482.54 -1909.65 -1791.34 -2641.28 -2712.33 

17255.38 16512.34 14230.06 14494.57 14344.57 14598.59 12327.13 13028.54 

218.34 223.60 270.54 277 .26 236.00 238.47 310.93 318.45 

461.40 497.97 384.01 399.99 415.74 469.98 297.64 322.17 

0.1482 0.1522 0.2103 . 0.2206 

-1.1187 -1.0607 -1.5177 -1.5658 

-2.3278 -2.1866 -1.0030 -1.0328 

41.8808 38.9166 27.5613 28.6164 

U.0726 0.0743 0.1036 0.1085 

-0.0657 -0.0469 -0.1603 -0.1601 

-0.2568 -0.0688 0.2945 0.3241 

...... 

...... 
7.11561 7.6055 6.1589 6.1518 

(Xl 



Table 14. Theoretical and e~perimental vibration-rotation interaction conatanta, and rotational constants 

I of CD 2( AI)' 

SCF CISD Experiment 

Dl. TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

c4' 1n clI- l u.lIW9 0.1528 0.1284 0.11'J3 

A - 0.115113 - 0.8321 - 0.615'J 0.6864 Gz -

~ 0.4464 0.421'J 0.3665 0.3649 

B 0.0519 0.0566 0.0636 0.0633 QI 

~ - 0.03011 - 0.0296 - 0.0509 - 0.0519 

t I II 0.0195 0.0146 0.0118 0.0156 Q3 

aC 
1 0.0461 0.0440 0.0428 0.0418 

C 0.0431 0.0461 0.0435 0.0441 az 

~ 0.0328 0.0214 0.0316 0.0300 

Ae in cm- I 12.11102 12.1164 12.1014 12.1563 11.5115 11.1807 11.1479 11.3181 

Be 5.3440 5.3867 5.5851 5.6133 5.2139 5.2817 5.6129 5.6477 ..... ..... 
Ce 3.7761 3.11191 3.8220 3.11401 3.5949 3.6468 3.1332 3.1617 \0 



Table 14 continued. 

SCF 

DZ TZ 

Ao 12.91157 12.9024 

110 5.)207 5.)659 

Co ).71411 ).7)00 

AD 12.9861 12.9028 

II' 0 5. )211 5.)66) 

c' 0 :3.7142 ).7295 

DZ+P TZ+P DZ 

12.197~ 12.2574 

5.5699 5.5999 

).76)1 ).7822 

12.198) 12.2577 

5.5702 5.6002 

).7625 ).7816 

elSD 

TZ DZ+P 

11.4827 

5.70)6 

).75U2 

TZ+P 

11.6656 

5.7401 

).7851 

.. 

Experiment 

~ 
N 
o 



Table I~. 

"'I in cm- I 

"'2 

"'J 

XII 1n cm 
-I 

XI2 

XlJ 

x22 

X23 

X3) 

vI 1n cm -I 

v2 

v) 

~. . 

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants. 

and fundamental vibrational frequencies of C01(I A1 ). 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

2232.6 2193.2 22112.9 2246.7 2028.2 2012.7 2155.6 2144.4 

1097.6 1108.2 1099.6 1095.6 1033.1 1049.9 1053.0 1046.9 

2351.1 2295.5 23112.8 2341.6 2140.2 2114.5 2251.6 2233.6 

- 16.220 - 14.083 - 14.626 - 13.961 

- 15.778 - 15.406 - 15.834 - 15.575 

- 65.6911 - 56.824 - 59.043 - 56.489 

- 11.715 - 7.499 - 4.427 - 3.944 

- 4.294 - 3.941 - 6.636 - 5.424 

- 21.980 - 19.6611 - 19.368 - 111.836 

2159.4 2193.2 2196.2 2182.7 (1955.0) (1948.4) (2088.9) (2080.4) 

1074.1 1108.2 1079.5 1077.3 (1009.6) (1025.2) (1032.9) (l028.5) 

2272.2 2295.5 2291.2 2273.0 (2061.2) (2044.8) (2180.0) (2165.0) 
t-' 
N 
t-' 



Table I~ continued. 

SCF 

DZ TZ l)Z+P TZ+P 

6 1 in CII 
-I - 73.2 - 64.3 - 66.7 - 64.0 

62 - 23.S - 24.7 - 20.1 - 111.4 

6) - 79.0 - 69.7 - 71.6 - 68.6 

. ClSD 

l)Z TZ DZ+P 

(- 73.2) (- 64.3) (- 66.7) 

(- 23.S) (- 24.7) (- 20.1) 

(- 79.0) (- 69.7) (- 71.6) 

TZ+P 

(- 64.0) 

(- 18.4) 

(- 68.6) 

.. 

Experiment 

r­
N 
N 



., 

Table lb. 

'* p 

Theoretical and experimental geometries, dipole momenta, vibration-rotation interaction conatanta, 

and rotational conatants of eK2 (1 81 ), 

lie." eiSO Experiment 

DZ TZ DZ+P TZ+P OZ TZ OZ+P TZ+P 

~nergy 1n hartree - jd.84520 - 38.84588 - 38.86191 - 38.86330 - 38.91129 - 38.91891 - 38.98014 - 38.9H880 

re(CH) 1n A 1. 0670 1.0653 1.0701 1.0664 1.0915 1.0861 1.0817 1.0748 

6e (KCH) in deg. 150.41 150.88 142.65 143.03 143.87 143.19 141.36 142.49 

\l 1n 0 0.965 0.958 0.H04 0.762 

a1' 1n clII- 1 3.1395 3.2889 

A 
~ 

<4 

8 0.0837 0.0717 0.0948 0.0936 Q 1 
II 0.1927 0.1980 0.0741 0.0722 ~ 

II 0.0669 0.0607 0.0801 0.0776 "'3 

...... 
N 
W 



Table 16 continued. 

SC~' CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

C U.I059 0.1015 0.1036 0.1030 0 1 
c 0.0227 0.0259 0.0493 0.0492 0.2 

a<j 0.1205 0.1146 0.1089 0.1087 

Ae 1n COl 
-1 131.5393 136.11117 113.1')81 115.461') 85.27H6 83.0596 76.2584 81.7995 

lie 7.115H6 7.H672 11.1381 11.1754 7.7663 7.8748 8.0262 8.0746 

Ce 7.4156 7.4375 7.4130 7.4616 7.1181 7.1929 7.2619 7.3491 

Ao 
80 7.6869 7.7020 11.0136 H.0537 

Co 7.2910 7.3165 7.2821 7.3311 

Au 
I 

8u 7.6915 7.7069 8.0167 8.0569 

I 

Co 7.2841 7.3092 7.2774 7.3262 

~ 
N 
.&:-

\ -



Table 17. 

"'I in clII- I 

tal 

">.3 

Xll in cm -1 

Xl2 

XI) 

X22 

X2) 

X33 

VI 1n cm -I 

v2 

v) 

,/I l' 

Theoretical and experimental harmonic vibrational frequencie8, vibr8tional anharmonic con8tants, 

and fundamental vibrational frequencie8 of CH 2 (1 81 ), 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

3334.9 3281.8 3321.9 3299.0 3092.7 304~.9 3198.9 3188.6 

78~.9 768.7 1034.3 1033.3 922.1 942.8 1011.4 992.4 

)664.0 3601.9 )602.7 3~H9.2 33!14.1 3338.3 3477.6 3478.2 

- 30.406 - 28.3~1 - 28.~03 - 27.~17 

23.38~ 32.609 11.3~~ 11.124 

-114.270 -103.~47 -107. 7~6 -104.439 

-166.1:139 -169.191:1 - 71.863 - 72.331 

49.441 49.1~6 17.807 18.344 

- 40.396 - 36.74~ - 35.280 - 35.317 

3228.6 3189.6 3216.6 3197.3 (2986.4) (295).7) (3093.7) (3086.7) 

4tH!.7 471.2 905.1 903.3 ( 624.8) (645.3) (8H2.3) ( 862.5) 

355U.8 3501.2 3487.1 3475.6 (3280.!I) (3237.6) (3361.5) (3364.5) 

...... 
N 
VI 
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Table III. 

6J x 106 in cm- I 

t.JK x 10 b 

~ x IU6 

+J x lOb 

~ x lO6 

HJ x 106 in cm- 1 

HJI( x 10 6 

HKJ x lOb 

HI( x lO6 

hJ x 106 

hJI( x 10 6 

hI( x 106 

o 1n clll- 1 

t: 

Theoretical and experimental values of quartic and sextic centrifugal distortion constsnts snd 

asymmetry parameter for CH 2 (1 81 ), 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

23'J.53 247.85 255.42 257.'J7 247.66 266.27 260.81 263.83 

-13323.43 -13357.01 -13490.1'J -13441.66 -11464.63 -12601.64 

46.37 47.48 53.86 52.64 48.17 52.84 55.55 53.78 

2265.15 2452.00 1629.61 1687.12 1595.82 1701.69 1507.80 1621.79 

U.0249 0.0270 0.0292 0.0290 

-0.2010 -0.2262 -0.4028 -0.5834 

-1219.41 -1298.70 

0.0111 0.0120 0.0132 0.0130 

0.3264 0.3742 

f-" 
N 
00 

~ 



11> .. ~ 

Table I~. Theoretical and experimental vibration-rotation interaction conatanta and rotational constants of 

1 CD2{ B1)· 

SCF ClSD !xperi.ent 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

a(' in cm- I 0.7058 0.7607 

A 
(1.2 

4 

B 0.0340 0.0298 0.0387 0.0381 al 

II 0.0716 0.0736 0.0262 0.0256 ~ 

II 0.0259 0.0236 0.0309 0.0301 ~ 

C 0.0373 0.0355 0.0377 0.0373 al 

C 0.0171 0.0184 0.0210 0.0209 
~ 

~ u.0467 0.0445 0.0428 0.0428 

Ae 1n clIl- I 75.2744 77.9310 47.6108 48.9063 43.8013 47.5315 43.6395 46.8104 

lie 3.9325 3.9368 4.0724 4 .• 0910 3.8863 3.9406 4.0164 4.0406 

Ce 3.7373 3.7475 3.7515 3.7752 3.5997 3.6389 3.6779 3.7195 
~ 
N 
\D 



Table I'J continued. 

SCF 

DZ . TZ 

"0 
BU 3.866H 3.8733 

·cO 3.6867 3.6983 

AQ 

8' u 3.8679 3.8746 

C' 0 3.685U 3.6964 

-, If 

DZ+P TZ+P 

4.0245 4.0442 

3.1007 3.7247 

4.0252 4.0450 

3.6995 3.7234 

CISD 

DZ TZ DZ+P 

'. 

TZ+P 

Experiment 

t-' 
W 
o 



11. 

Table 20. 

Io.ll 1n cm- l 

<&>1 

~ 

XII 1n cm 
-1 

X12 

.. Xu 
II 

X22 

X23 

VI in cm- l 

v2 

VJ 

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants,_ 

and fundamental vibrational frequencies of CU2 (1 81 ), 

SCF ClSD Experiment 

DZ TZ DZ+P 

2368.1 2330.3 2365.6 

592.3 579.3 777.2 

27bl.9 2715.4 2710.1 

- 15.U63 - 13.909 - 14.333 

10.198 15.076 6.379 

- 59.071 - 53.559 - 55.742 

- 94.474 - 95.831 - 40.643 

31.567 31.396 11.392 

2313.6 2283.2 2312.2 

424.2 410.9 704.8 

2b98.4 265H.8 2b44.8 

TZ+P DZ 

2348.6 2199.5 

776.7 693.9 

2700.3 2554.1 

- 13.802 

b.437 

- 53.983 

- 40.964 

11.664 

2297.2 (2144.9) 

703.8 ( 525.8) 

2636.0 (2490.6) 

TZ DZ+P 

2167.4 2278.3 

709.0 760.0 

2511.6 2615.0 

(2120.3) (2225.0) 

(540.6) (687.6) 

(2455.0) (2549.8) 

TZ+P 

2269.6 

746.1 

2616.3 

(2218.2) 

(673.2) 

(2552.0) 

...... 
w 
...... 



Table 20 continued. 

SCF 

DZ TZ DZ+P TZ+P 

6 1 1n cm -\ - 54.6 - 47.1 - 51.3 - 51.4 

62 -1611.1 -1611.4 - n.4 - 72.9 

6) - 63.5 - 56.6 - 65.2 - 64.3 

" 
~ 

CISD 

DZ TZ 

(- 54.6) (- 47.1) 

(-168.1) (-168.4) 

(- 63.5) (- 56.6) 

DZ+P 

(- 53.3) 

(- 72.4) 

(- 65.2) 

TZ+P 

(- 51.4) 

(- 72.9) 

(- 64.3) 

Experiment 

to-' 
W 
N 



~ $ 

Table 21. Theoretical and experimental geometriea, dipole momenta, vibration-rotation interaction conatanta, 

and rotational constanta of HCO (2A,). 

SCt' CISD Experiments 

OZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

Energy 1n hartree -113.20457 -113.21217 -113.26955 -113.27586 -113.40109 -113.42746 -113.55127 -113.57694 

re(CH) 1n A 1.0921 1.0920 1.1064 1.1049 1.1178 1.1122 1.1190 1.1144 1. 125a , 1.16b 

re(CO) 1.1873 1.1766 1.1619 1.1543 1.2182 1.2028 1.1843 1.1752 1.175 I. 1 7 

6e (HCO) in deg. 129.39 128.82 127.49 127.70 127.15 126.61 125.18 125.56 124.95 ,123.8 

~ 1n 0 2.678 2.620 2.1891 2.191 2.169 2.141 1.779 1.807 

A -I 01 1n cm 1.4555 1.3964 1.2614 1.3317 

<4 -0.0680 -0.0880 -0.0601 -0.0653 

A 
0) 

~ 0.0016 0.0010 0.0013 0.0009 

8 0.0114 0.0115 0.0109 0.0111 0;l .... 
w 
w 

<4 - 0.0028 - 0.0023 - 0.0047 - 0.0050 



Table 21 continued. 

SCF 

DZ TZ 

C 
Q 1 0.0038 0.0032 
C U.OI04 0.0105 ~ 
c 

<1j 0.0049 0.0058 

Ae 1n c .. -I :l9.2204 :l8.7594 

II 1.4520 1.471H e 
Ce 1.3833 1.4064 

Au 30.0640 29.5654 

II(J 1.4469 1.4736 

Co 1.3737 1.3967 

, 
Au 30.0641 29.5656 
, 

By 1.4470 1.4738 

Co 1.3735 1.3965 

-----------------------------
aRef • 97. 

bKet. 98. 

" 

DZ+P TZ+P 

0.0035 0.0032 

0.UI00 U.OI0l 

0.0047 0.0048 

27.0190 27.2869 

1.5159 1.5333 

1.4353 1.4517 

27.5813 27.8492 

1.5121 1.5298 

1.4262 1.4427 

27.5814 27.8493 

1.5122 1.5300 

1.4260 1.4424 

ClSD 

DZ TZ 

26.0172 25.oU26 

1.3900 1.4263 

1.3195 1.3510 

DZ+P 

24.37'J0 

1.4727 

1.3888 

TZ+P 

25.1419 

1.4928 

1. 4091 

Experiment 

I-' 
W 
.z:.. 



~ , 

Table 22. 

"'I in clI- I 

"'2 

~ 

Xli in CII 
-I 

XI2 

" 
Xl3 

X22 

X2) 

X33 

VI in cm -I 

Vo2 

v) 

q 

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants, 

and fundamental vibrational frequencies of HCO (2A,). 

SCF CISD Experilllentsa,b 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

3150.5 3063.3 3006.6 2962.7 2868.0 2812.9 2853.4 2824.5 2768.2 

1983.0 1976.4 2135.3 2135.5 1794.9 1807.7 1991.8 1992.0 1862.2 

1240.6 1252.3 1254.2 1251.0 1140.4 1165.9 1159.9 1159.3 10~2.6 

- 86.033 - 80.361 - 116.191 - 86.427 -140.1 

0.018 - 7.580 0.446 1.239 - 0.3 

- 1~.425 - 30.U21 - 23.249 - 20.1137 - 0.2 

- 10.6113 - 10.406 - 10.466 - 10.590 0.0 

- 5.129 2.547 1.692 - 2.0211 0.0 

- 10.272 - 11.294 - 10.622 - 10.717 0.0 

H61S.8 21183.8 2822.8 2780.0 (2686.2) (2633.4) (2669.6) (2641.8) 2488, 2442 

1959.1 1953.1 2113.7 2114.0 (1771.0) (1784.4) (1970.2) (1975.4) 1861, 1868.1704 

1207.8 1216.0 1220.5 1218.2 (1107.6) (1129.6) (1126.2) (1126.4) 1090, 1080.7618 

I-' w 
V1 



Table 22 continued. 

SCF 

DZ TZ DZ+P. TZ+P 

t.l 1n cm- 1 -1111.11 -179.~ -111).8 -182.7 

t.Z - 23.9 - n.3 - 21.6 - 21.6 

t.3 - 32.8 - 36.3 - 33.7 - 32.9 

-----------------------------

aHarmonic frequencies and anharmonic constants from Ref. 97. 

bFundamental frequencies from Refs. 99, 100. 

J 

CISD 

DZ TZ 

(-ltH .8) (-179.~) 

(- 23.9) (- 23.3) 

(- 32.8) (- 36.3) 

DZ+P TZ+P 

(-183.8) (-182. 7) 

( -21.6) (- 21.6) 

(- 33.7) (- 32.9) 

Experiments 

-280.2, -3:l6.2 

-1.2, 5.97 

-2.6, -11.84 

~ 
l;J 
Cj\ 



"1 

Table ll. 

t.J x lU6 in clll- 1 

t.JK x 10 
6 

t.1( x lU6 

+J x 106 

~ x 106 

HJ x 106 in em-I 

HJK x IU II 

HIU x lU6 

IiK x 106 

IlJ x 106 

hJK x 10 6 

hK x 106 

a 1n em -1 

.. 

Theoretical and experimental values of quartic snd sextic centrifugal distortion constsnts and 

asymmetry parameter for HCO (2A,). 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

3.25 3.48 3.28 3.39 3.41 3.65 3.40 3.53 

-14.02 -15.98 -1.04 -1.03 6.18 2.18 

39514.31 36794.90 29596.78 31161.92 31715.59 28911.68 24086.12 27029.30 

0.25 0.27 0.29 0.30 0.27 0.30 0.31 0.32 

78.05 79.81 80.79 83.06 80.16 80.39 83.80 87.97 

0.0000. 0.0000 0.0000 0.0000 

0.0034 0.0036 0.0040 0.0041 

-0.6181 -0.5976 -0.4824 -0.5126 

191.5518 167.2178 113.8156 123.9lS71 

0.0000 0.0000 0.0000 0.0000 

0.0014 0.0014 0.0016 0.0018 

0.7332 0.724lS 0.6496 0.6736 

I-' 
w 
'-I 



Table 24. Theoretical and experimental vibration-rotation interaction conatants and rotational constants of DCO. 

SCF CISD Experiment a 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

A -1 
OJ 1n cm 

~ 
A 

03 

a't 0.0042 0.0039 0.0050 0.0051 

II 0.0092 0.0093 0.0084 0.0082 "'2 

~ - 0.0032 - 0.0027 - 0.0050 -0.0052 

c 0.0053 0.0049 0.0051 0.0051 01 

C 0.00H4 0.00H6 0.0084 0.0084 "'2 
c 0.UU34 0.0041 0.0032 0.0033 03 

Ae 1n cm -1 17.7017 17.42H:l Ib.3976 Ib.5Hll 15.6876 14.712 15.1881 

Be 1.2410 1. 2634 1. 2932 1.3065 1.1 'J 3b 1.2636 1.2795 

Ce 1.1597 1.1780 1.1987 1.2111 1.1092 1.1636 1.1801 

..... 
w 
co 

.1 
.. 
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Table 24 continued. 

SCF 

DZ TZ 

Ao 

Su 1.23~9 1.25112 

Co 101~1l 1.1692 

AD 
II' 0 1.2360 1.2~83 

C' 0 1.1~10 1.1691 

--------------------------.. 
. . 

a Ref • 91S. 

DZ+P TZ+P DZ 

1.2890 1.3024 

1.1903 1.2027 

1.2891 1.302~ 

1.1902 1.202~ 

CISD 

TZ DZ+P TZ+P 

Experiment 

14.6920 

1.281408 

1.171439 

..... 
W 
\D 



Table :l~. Theoretical and experimental har~onlc vibrational frequenciea, vibrational anhar~onic conatants, 

and fundamental vibrational frequencies of DCO. 

SCF CISO Experimentsa,b 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

wI 1n cm- 1 2359.8 2295.8 22117.3 2264.3 2132.2 2092.0 2143.9 2129.4 2068.3 

"'2 l'J2b.O 1918.5 2044.2 2034.2 1757.1 17b8.11 1931.7 1929.0 1820.3 

"') 964.4 973.9 975.7 974.1 884.9 905.0 900.2 900.7 848.8 

XII 1n em 
-1 - 42.414 - 39.308 - 29.221 -26.417 - 58.1 

X12 - 14.572 - 14.456 - 39.228 -43.880 - 32.4 

Xl) - 10.751 - 11.797 - 11.446 -10.564 - 0.5 

Xn - 8.419 - 8.000 - 7.818 - 8.408 1. 1 

X2) - 7.659 - 8.258 - 12.474' -14.016 0.0 

X)) - 4.966 - 5.583 - 3.805 - 3.388 0.0 

Vi 1n c~ 
-1 2262.3 2204.0 2203.5 2184.3 (2034.7) (2000.3) (2060.1) (2049.3) 1937,1909.7738 

"'2 1898.0 1891.1 2002.7 1988.4 (1729.1) (1741.4) (1890.3) (1883.2) 1800. 1794.857 

v J 945.2 952.7 956.1 955.1 ( 865.8) ( 883.8) ( 880.6) ( 881.6) 852, 846.5 

I-' 
.t:-
O 

• 



~ 

Table 2S cont1nued. 

SCF 

DZ TZ DZ+P TZ+P 

61 1n cm- l -.97.5 -91.7 -83.8 -80.1 

1:.2 -28.0 -27.4 -41.5 -45.8 

63 -19.1 -21.2 -19.6 -19.1 

-----------------------------

aHarmon1c frequenc1es and anharmonic constants from Ref. 97. 

bfundamenta1 frequencies from Refs. 99, 100. 

ClSD 

DZ TZ DZ+P 

(-97.5) (-91.7) (-83.8) 

(-28.0) (-27.4) (-41.4) 

(-19.1) (-21.2) (-1'J.6) 

TZ+P 

(-80.1) 

(-45.8) 

(-19.l) 

Experiments 

-31.3, -158.53 

-20.3, 

3.2, 

-25.44 

-2.3 

t-' 
~ 
t-' 



Table 2b. Theoretical and experimental geometries, dipole moments, vibration-rotation interaction constanta, 

and rotational constants of H2CO. 

SCF ClSD Experiment a 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

Energy in hartree· -113.83071 -113.d3755 -113.89476 -113.90005 -114.03746 -114.06478 -114.19558 -114.22102 

re (CO) 1n A 1.2170 1.208U 1.1885 1.1823 1.2501 1.2363 1.2019 1.2036 1.203 

fe(CH) 1n A 1.0843 1.0d28 1.0960 1.0943 1.1046 1.0963 1.1038 1.0994 1.099 

6e (HCO) in deg. 121.60 121.68 121.91 121.98 116.5 

\I io D 3.1904 3.1051 2.7753 2.8440 2.7785 2.4878 2.4779 

Ae 1n clll- 1 9.7989 9.8306 9.6605 9.7086 9.4485 9.6091 9.5247 9.6173 

Be 1.2815 1.2989 1.3315 1.3436 1.2165 1.2519 1.2959 1.3106 

Ce 1.1333 1.1473 1.1702 1.1803 1.0777 1.1076 1.14U7 1. 1534 

Au 9.7443 9.5763 9.6258 

llU 1. 2934 1.3272 1.3394 

Co L 1377 1.1613 1.1714 
...... 
.e-
N 

" t, 
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Table 26 continued. 

DZ TZ 

, 
Au 9.7444 

110 1.2'J34 

I 

Co 1.1376 

aRef • 127. 

SCF 

DZ+P TZ+P DZ 

9.5764 9.6258 

1.3272 1.3395 

1.1612 1.1713 

'. 

CISD 

TZ LlZ+P TZ+P 

Expe r ll11en t 

~ 
.l:­
t.) 



Table 27. 

"'1 (A I) 1 n em -I 

"'2 (AI) 

"'3 (AI) 

"'4 (8 I) 

"'5 (82) 

"'b (82) 

'J I 1n cm -I 

Vz 

v) 

v4 

v5 

Vb 

~ 

Theoretical and experimental harmonic and funda~ental vibrational frequenciea of "2eo. 

SCF CISD 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

3223.~ 31~1I.0 3136.2 3099.2 3022.0 29811.tl 30H.~ 3021.7 

11178.2 11176.~ 200~.9 2000.8 1697.3 1726.4 18611.4 1866.2 

Ib~ 1.4 164~.1i Ib~I.~ 11)~4.8 1540.2 1~57.9 1586.8 1592.1 

1324.~ 1))0.3 13)1.9 l:l41.5 1189.8 12U6.3 1234.7 124 ~. 2 

3315.3 3242.8 3213.7 3173.7 3106.2 3077 .1 3131.1 3096.9 

1J50.2 1371.3 131)4.5 1369.1) 1261.2 13Ol.3 1299.1 1301).9 

3075.2 3023.9 3001.6 2969.9 (2873.7) (2854.5) (2917.9) (2892.4) 

1850.6 1847.1 1980.8 1976.0 (1669.7) (1697. 1) (1843.4) (1841.4) 

1624.1 1621.~ 1621.0 1625.3 (1512.8) (1529.7) (1556.0) (1562.6) 

1305.3 1310.8 1313.5 1322.2 (117U.5) (1186.9) (1216.4) (1225.9) 

3155.1 3095.1 3065.0 3036.1 (2946.0) (2929.4) (2982.5) (2959.3) 

1331.b 1348.9 1345.3 1350.9 (1242.6) (1279.9) (1279.8) (1288.2) 

.. 

Eltperimentsa,b 

2977.91,2944.) 

177I1.ltl,171»).7 

1~28.9~,1~62.6 

1191.02,1191.0 

2997.04,3008.7 

1298.91,1287.7 

2811.42,2782.4 

175~.86 ,1746.0 

1500.32,1500.1 

1170.22,1167.2 

2861.30,2843.2 

1250.56,1249.1 

~ 
~ 
~ 
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Table 27 continued. 

SCF 

DZ TZ DZ+P TZ+P 

6\ 1n cm -1 -148.3 -134.1 -134.6 -129.3 

62 - 27.6 - 29.3 - 2~.0 - 24.8 

63 - 27.4 - 211.2 - 30.8 - 29.5 

64 - 19.3 - 19.4 - US.3 - 19.3 

6~ -160.2 -147.7 -148.6 -137.6 

66 - 18.6 - 22.4 - 19.3 - 18.7 

aflrst entry from Ref. 8S. 

bSecond entry from Ref. 104. 

·tl .. 

CISD 

DZ TZ DZ+P 

(-148.3) (-134.1) (-134.6) 

(- 27.b) (- 29.3) (- 2~.0) 

(- 27.4) (- 2ts.2) (- 30.ts) 

(- 19.3) (- 19.4) (- 18.3) 

(-160.2) (-147 .• 7) (-148.6) 

(- 18.6)' (- 22.4) (- 19.3) 

TZ+P 

(-129.3) 

(- 24.8) 

(- 29.~) 

(- 19.3) 

(-137.6) 

(- 18.7) 

Experiments 

-19~.44 ,-161.9 

- 32.33,- 17. 7 

- 28.79,- 6LS 

- 23.95,- 23.8 

-153.71,-165.5 

- 49.91,- 38.6 

.­
.p. 
VI 



Table Lt!. Vibrational anharmonic constants of H2CO. 

SCF !=:xperiment 

UZ TZ DZ+P TZ+P 

XII in cm 
-I - 30:404 - 27.4~9 - 27.699 - 26.951 - 28.95 

Xl2 - 9.503 - 8.771 1.086 - 0.955 1.115 

XI3 - 25.91111 - 24.448 - 33.912 - 31.890 - 23.03 

XII, - 7.243 - 5.251S - 3.866 - 2.832 - 10.099 

XI5 -124.194 -111.353 -ll3.265 -110.334 -193.32 

Xlb - 1S.144 - 8.584 - 6.199 - 4.775 - 4':1.78 

X2L - 6.186 - 5.984 - 8.190 - 8.286 - 9.926 

X23 - 5.163 - 7.307 - 5.034 - 4.731 - 8.26 

X24 - 3.461 - 3.267 - 4.064 - 3.928 - 7.199 

XL5 - 7.873 - 10.210 - 15.426 - 12.178 - 17.23 

X26 - 4.534 - 5.206 1S.308 5.324 6.581 

Xj) 0.1~0 0.270 1.722 1.598 - 0.164 

X34 1.471 1.462 0.510 0.633 1.769 

X35 - 15.252 - 13.968 - 8.549 - 2.029 6.00 

X)b - 10.379 - 13.308 - 21.599 - 27.363 - 29.861 

t-' 
.p-
0\ 

~ 



Table 28 continued. 

SCF 

DZ TZ 

X44 - 4.161 - 4.73H 

X45 - 19.757 - 19.613 

X4b 7.047 6.769 

X55 - 34.504 - 31.242 

X5b - 15.324 - 15.288 

X(, 6 1.471 - "1..300 

~ ~ 

aRe!. d5. 

DZ+P TZ+P 

- 4.578 - 5.193 

- 17.779 - 18.376 

6.b25 b.77u 

- 31.183 - 30.977 

- 17.534 - 8.424 

- 2.080 - 2.225 

Experiment 

- 3.157 

-13.35 

- 2.d6U 

-17.97 

-17.63 

- 1.567 

1> 

f-' 
.t--

" 



Table L'l. Theoretical and experimental values of quartic and aextic centrifugal distortion constants and 

asymmetry parameter of H2CO. 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

AJ x 106 1n cm- I 2.29 20 14 2020 2028 2.46 2.26 2033 

AJK x 10 
6 38.97 39.52 40.12 39.46 39.64 40.66 41.5) 

At( ]I. 106 594.57 572.95 586.55 585.15 607.56 538.72 604.25 

+J ]I. 106 0.29 0.2'J 0.30 0.28 0.30 0.30 0.31 

~ x 106 27.14 27.78 28.20 27.03 27 .57 28.67 29.22 

; , 
x 106 1n cm- 1 . ; HJ 0.0000 0.0000 0.0000 

HJK x 1U 6 O.OOO'J 0.0010 0.0010 

HKJ x 106 -0.0014 -0.0021 -O.OO:LO 

HI( x 106 0.1114 0.1087 0.1129 

hJ ]I. 106 0.0000 0.0000 .0.0000 

hJK]I. 10 6 0.0004 0.0004 0.0004 

hK ]I. 106 0.0296 0.0294 0.0299 

a 1n clII- I 109.4490 100.3625 99.5349 

I--' 
~ 
(Xl 
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Table JO. Theoretical and experimental harmonic and fundamental vibrational frequencies of D2CO. 

SCF elSD 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

wI(A1) in cm -I 2360.5 2311.2 2308.2 2280.0 2199.9 2176.7 2232.3 2208.6 

142 (A I) 1809.4 1802.4 1935.1 1931.2 1629.3 1642.6 1810.0 1809.5 

(j),/A1 ) 1210.1 1213.2 1202.6 1204.7 1139.3 1162.1 1157.9 1161.2 

1014 ( III ) 1059.8 1064.1i 10bli.4 1076.5 951.6 965.1 91i9.8 998.5 

"'s (11 2 ) 2471.6 2419.1 2399.2 2368.9 2316.3 2296.2 2337.7 2311.5 

"l>(B 2) 1063.'J 10110.5 1077 .8 10l!2.4 9'J2.7 1024.8 1024.7 1031.5 

\II in em-I 2286.2 2243.5 2245.7 2218.9 (2125.6) (2109.0) (2169.8) (2147.5) 

"2 17115.0 17711.2 19011.2 1'J04.4 (1604.9) (1618.4) (1783.1) (171:12.8) 

") 1194.0 1195.9 1185.1 1190.7 (1123.2) (1144.8) (1140.4) (1147.3) 

"4 1047.1 1052.0 1056.3 1063.11 ( 938.8) ( 952.3) ( 977.7) ( 985.8) 

\15 1383.5 2340.1 2325.0 2283.4 (2228.2) (2217.2) (2263.5) (2226.1) 

\lb 105'2.7 1067.1 1066.3 1074.0 ( 981.5) (1011.3) (1013.2) (1023.1) 

Experiment A 

2143.5 

1716.7 

1139.6 

955.0 

2254.5 

1014.3 

2056.4 

1700.0 

1106.0 

938.0 

2160.0 

990.2 

~ 
~ 
~ 



Table )0 continued. 

SCF 

OZ TZ UZ+l' 

Al 1n CII 
-1 - 74.3 - 67.7 - 62.5 

A2 - 24.4 - 24.2 - 26.9 

A) - 16.1 - 17.3 - 17.5 

A4 - 12.11 - 12.S - 12.1 

A5 - 1111.1 - 79.0 - 74.2 

Ab - 11.2 - 13.5 - 11.5 

-----------------------------

aket. lu4. 

"' 

CISD 

TZ+P UZ TZ 

- 61.1" (- 74.3) (- 67.7) 

- 26.7 (- 24.4) (- 24.2) 

- 13.9 (- 16.1) (- 17.3) 

- 12.7 (- 12.11) (- 12.S) 

- 85.4 (- IIS.1) (- 79.0) 

- 11.4 (- 11.2) (- 13.5) 

DZ+P TZ+P 

(- 62.5) (- 61.1) 

(- 26.9) (- 26.7) 

(- 17.5) (- 13.9) 

(- 12.1) (- 12.7) 

(- 74.2) (- 85.4) 

(- 11.5) (- S.4) 

~ 

Experiment 

-S7.1 

-16.7 

-33.6 

-17.0 

-94.5 

-24.1 

~ 
VI 
o 
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Table 31. Vibrational anharmonic constants of D2eo. 

SCF Experiment 

1);£ TZ DZ+P TZ+P 

Xu 1n cm 
-I - 1~.269 - 13.tW~ - 12.368 - 12.04~ 

XI2 - ~.~23 - ~.135 - 8.274 - 8.318 

Xlj - 17.29~ - 21.1~2 - 16.029 - 22.180 

X14 1.726 5.403 4.815 8.801 

Xl~ - 62.790 - 56.1~1 - 53.372 - 51.792 

X16 - 3.b30 - 3.081 - 2.559 - 0.506 

X22 - 6.927 - 6.713 - 6.390 - 6.364 

X23 - 2.655 - 3.284 - 2.252 - 2.277 
I' 

X24 - 4.5CJ5 - 4.644 - 7.456 - 7.065 

X2S - 4.345 - 3.920 - 5.617 - 5.386 

X26 - 3.909 - 4.b~4 - 4.634 - 4.903 

X)) 0.728 1.722 0.079 1.890 

Xj4 1.763 1.8~9 0.804 0.900 

X)5 - 9.650 - 1i.161 ,.. 4.804 - 16.866 

X)b - 7.262 - 10.675 - 13.019 ~.O25 

~ 
U1 
~ 



Table )1 continued. 

DZ TZ 

Xi, 4 - 3.973 - 4.911 

Xi,s - 11.576 - 11.617 

Xi, 6 3.064 2.963 

XSS - 20.321 - 18.477 

XSb - 6.594 - 4.328 

X&6 1.025 1.786 

SCF 

DZ+P 

- 3.7511 

- 10.313 

2.902 

- Ill.503 

- 0.262 

1.366 

TZ+P 

- 5.058 

- 10.633 

2.884 

- 18.405 

- 12.588 

1.692 

Experiment 

.. 

r-' 
VI 
N 
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Table 32. TheoretIcal and experimental geometrlea, dIpole moments, vIbration-rotation interactIon constants, 

and rotatIonal constsnta of "2S, 

SCF CISD ExperIment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

Energy 1n hartree -39H.62451 -3~8.67165 -39H.b7211 -398.70550 -39H.83505 -398.83689 

re(SH) 1n A. 1.3505 1.3471 1.3347 1.3349 1.3762 1.3723 1.3405 1.3401 1.334 

6e (I1Sli) 1n deg. 96.U8 94.00 94.06 94.71 94.71 92.57 92.58 92.27 

Il 1n- 0 1.824 1.834 1.297 1.306 1.692 1.710 1.216 1.226 

aA in cm-\ 
1 0.1874 0.1873 0.1370 0.1357 

A -0.4004 -0.3996 -0.3488 -0.3481 ~ 

<4 0.2524 0.2514 0.1921 0.1911 

8 0.1138 0.1148 0.1147 0.1138 °1 
8 

Cl-L -0.1095 -0.1076 -0.1069 -0.1632 

IS 0.0762 0.0773 U.0775 0.0767 °3 

I-" 
\Jl 
(..l 



Table 32 continued. 

SCF 

DZ TZ 

oC 
I 0.0717 0.0720 

C 0.0669 0.0676 02 

~ 0.0511 0.0512 

Ae in clII- 1 10.9000 10.9584 

Be 8.2947 11.3343 

Cc 4.7103 4.7339 

• 

DZ+P TZ+P 

0.0624 0.0619 

0.0597 0.0592 

0.0449 0.0446 

10.7301 10.7393 

8.7766 8.7660 

4.8278 4.1$264 

CISD 

DZ TZ 

10.2880 

8.2079 

4.5655 

DZ+P TZ+P 

.. 

Experiment 

~ 
V1 .,.. 
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Table )). Theoretical and experimental har~onic vibrational frequenciea, vibrational anharmonic constants, 

and fundamental vibrational trequencies of H2S. 

SCF CISD Experi~ents 

til. TZ DZ+P TZ+P tiZ TZ DZ+P TZ+P 

wI 1n cm- I 2677.7 2708.3 21l60.3 2861.4 2455.0 2485.3 27115.3 2784.2 2721 

"'2 1317.0 1331.9 1321.5 1318.5 1201l.3 1219.4 1250.7 1249.0 1201 

"'3 2695.3 2724.0 2871.6 2872.9 2478.3 2505.3 2801.3 2799.9 2734 

Xll in cm -I - 24.378 - 25.263 -21.216 -20.992 

XI2 - 22.849 - 23.295 - 11.774 - 11.315 

.. Xl3 - 95.316 - 98.967 - 84.705 - 83.922 
II 

X22 - 4.767 - 5.762 - 6.124 - 6.141 

X;n - 20.774 - 21.8110 - 18.587 - 18.305 

X3) - 24.556 - 25.246 - 21.542 - 21.341 

VI 1n em -I 2569.9 2596.7 2769.6 2771.8 (2347.2) (2373.7) (2694.6) (2694.6) 2615 

v2 1285.6 1297.8 1294.1 1;191.4 (1177.0) (11115.3) (1223.3) (1221.9) 1183 

v) 2588.1 2613.1 2776.9 2779.1 (2371.1) (2397.4) (2706.6) (2706.1 ) 2626 

I-' 
Ln 
Ln 
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Table 34. 

6J x 106 in cm- l 

6JK x 10 b 

6,:., x lOb 

+J x lOb 

~ x 106 

II 

.. 

Theoretical valuea of some quartic centrifugal diatortion constants of "25. 

5CF CI50 

ilZ TZ UZ+P TZ+P OZ TZ DZ+P 

246.16 471.62 471.58 447.22 

-l213.81 -1573.07 -1578.57 -1379.44 

2844.62 2912.07 2928.95 2926.88 

168.11 201$.30 208.32 192.74 

-46.10 

Experiment 

TZ+P 

,.... 
VI 

" 



Table 3~, 

Energy In hartree 

re(CC) 1n A 

re(CH) 

6e (HCH) 1n deg. 

Ae In clD- 1 

Be 

Ce 
; I 

Ao 1n em-I 

BO 

Co 

., 

Theoretical and experimental geometries and rotatIonal constants 

of (,;2H4' 

DZP SCF DZP ClSD Experlment1l8 

-78.049308 -78.328495 

1.3245 1.3390 1.339 

1.0788 1.0855 1.085 

116.83 116.99 117.83 

4.9514 

1.0157 

0.8428 

4.9082 

1.0095 

0.8351 

oj 

t-' 
VI 
ex> 
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Table lb. Theoretical and experimental harmonic and fundamental vibrational 

frequenciea of C2"4' 

DZP SCF DZP ClSD Experilllentsa,b 

"'I (ag> 1n cm- 1 3322 32~2 31,3 

"'2 (ag> 1817 1737 16~~ 

"'3 (ag ) 1471 1410 1370 

"'4 (a g> 1132 1070 1044 

~ (big) 338~ 3321 3232 

"'b (big) 1336 1273 124~ 

"'7 (b lu > 1078 983 969 

~ (b2g > 108~ 88~ 9~9 

"'9 ( b2u > 3411 3349 3234 

"'10 (b2u ) 887 842 843 

"'II (b3u > 3300 3226 3147 

"'12 (b)u> 1~82 1~18 1473 

\/1 1n clI- I 3199 3129 3026 

\12 1784 1704 1623 

\/) 1449 13118 1342 

.... 
VI 
\D 



Table 36 cont1'nued. 

DZP SCF 

V4 1111 

Vs 3260 

vb 1316 

~ 1063 

"8 1068 

~ 3280 

vlO 887 

Vu 3159 

v12 1550 

• 0 

61 1n cm- 1 -123 

62 -33 

63 -22 

64 -21 

65 -125 

flt, -20 

• '"' 

DZP CISD 

1049 

3196 

1253 

968 

868 

3218 

842 

3085 

1486 

(-123) 

-33) 

-22) 

( -21) 

(-125) 

( -20) 

Experiment. aob 

1023 

3086 

1222 

949 

940 

3105 

826 

2989 

1444 

-127 

-32 

-28 

-21 

-14b 

-23 

-

,..... 
0\ 
o 
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Table )b continued. 

DZP SCF 

67 -15 

6tj -17 

~ -131 

610 0 

6 11 -141 

6 12 -32 

aHarmonic frequencies froll Ref. 119. 

bfundallental frequencies as found in Ref. 120. 

DZP CISO 

( -15) 

( -17) 

(-13l) 

( 0) 

(-141) 

( -32) 

'. 

Experillentsa,b 

-15 

-19 

-129 

-17 

-158 

-29 

~ 
Q\ 
~ 



TIIDle 37. Theoretical and experimental geometries, dipole moments, vibration-rotation interllction 

conatanta, rotational constanta, centrifugal distortion constanta, and rotat10nal {-type 

doubling conatants of HCN. 

SCF CISO Experiments 

DZ TZ OZ+P TZ+P DZ TZ DZ+P TZ+P 

Energy 1n hartree-91.HJ694 -92.84767 -92.H7520 -92.89955 -93.03202 -93.05574 -93.16042 -93.18467 

re(CH) in A I.U542 1.0547 1.063H 1.0576 1.0720 1.0700 1.0707 1.0625 1.0657,1.0655-

re(CN) 1.1507 1.1375 1.1366 1.1268 1.IH32 1.1648 1.1631' 1.1497 1.153U,I.1532-

~ 1n 0 3.296 3.283 3.216 3.244 3.130 3.138 3.001 3.043 

01 xlV 3 1n clII- 1 8.002 8.296 7.690 7.913 9.309,10.0 

0L xlU 3 -2.602 -3.079 -3.327 -2.556 -3.750,-3.6 

Cl-j xlU 3 9.605 9.403 9.590 9.707 10.776,10.4 

tie 1n cm- I 1.4951 1.5244 1.5223 1.5475 1.4189 1.45HO 1.4612 

80 
1.4HH9 1.5186 1.5170 1.5412 1.47822162 

~ 
0\ 
N 

II' 
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Table 37 continued. 

SCF 

DZ TZ DZ+P 

b -1 OJ xlU in CII! l.442 2.616 2.432 

HJ xlO l2 2.474 l.1I52 l.639 

qi xlO J in cm- I 6.329 6.580 6.714 

q~ xlO8 -5.019 -5.531 -5.686 

q~ xlO8 4.342 4.754 4.941 

A Ref • 114. 

ClSD 

TZ+P I>Z TZ 

2.534 2.542 2.758 

2.1147 

6.738 6.398 6.927 

-5.2]4 

4.429 

.. 

DZ+P TZ+P 

2.512 2.9093 

6.789 

Experiments 

7.483 

-11.9 

...... 
0-
W 



Table )Il. 

"'I 1n cm- I 

"'2 

"'3 

Xli 

X12 

X13 

X22 

X23 

X33 

X1 212 

~ 
p 

Theoretical and experimental harmonic vibrational frequencies, vibrational anhar~onic 

constants and fundamental vibrational frequencies of HCN. 

SCF CISD Experi~ents 

DZ TZ 1)Z+l' TZ+P 1)Z TZ DZ+P TZ+P 

2326.8 2)14.8 2403.2 2409.4 2104.0 2104.3 2213.9 2131 .82. 2121l. 9a 

81l2.7 119~.4 8~6.6 902.6 761.0 7311.6 7H.9 726.61, 727.0a 

Jb'J7.0 3626.3 3631.2 3623.2 34921 3430.0 3531.0 3438.34,3442.0a 

- 8.1811 - 7.861 -11.25 

- 1.446 - 1.488 - 3.06 

-13.036 -13.793 -16.78 

- 0.734 - 6.2116 - 2.43 

-20.744 -19.038 -19.06 

-52.399 -45.250 -50.25 

,..767 6.583 5.27 

.. 

...... 
0-­
.&:-
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Table 3M continued. 

SCF 

DZ TZ DZ+P TZ+P 

VI 2302.4 :l31l5.3 

v 2 874.2 880.1 

v) 3564.9 3506.8 

6
1 

1n clII- 1 -24.1 

62 - 8.5 -22.5 

63 -132.1 -116.4 

" 
aRe!. 126. 

ClSD 

DZ TZ DZ+P 

(2079.7) 

(752.5) 

(3360.0) 

(-8.5) 

(-132.1) 

, 

TZ+P 

(-24.1) 

(-22.5) 

(-116.4) 

Experiment8 

2096.68 

713.74 

3311.47 

- 12.87 

-126.87 

...... 
0\ 
I.J1 



Table 39. 

Q1 x10] in cm- 1 

a:z xIO] 

~ xlO 3 

Be 1n c .. - 1 

- BO 

b -1 D J xlO in cm 

HJ xlU I2 

e 3 . -I 
q2 xlU 1n CIII 

q~ xlOtl 

K 8 ql xlO 

• .. 

Theoretical and experimental vibration-rotation interaction conatanta, rotational conatants, 

centrifugal distortion constants, and rotational t-type doubling constanta of DCN. 

sa CISD Experiment 

OZ TZ UZ+P TZ+P lJZ TZ DZ+P TZ+P 

5.]28 5.369 5.210 5.]56 6.690 

-3.200 -3.562 -3.793 -3.167 -4.290 

9.577 9.580 9.42] 9.544 10.170 

1.2221 1.2434 1.2397 1.2595 1.1621 1.1912 1.1934 

1.2178 1.2395 1.2362 1.2552 

1.616 1.728 1.612 1.689 1.664 1.802 1.649 

1.538 1.1l07 1.592 1.721 

5.304 5.486 5.577 5.590 5.387 5.798 5.678 

-3.971l -4.297 -4.547 -4.071 

3.]95 ].633 3.904 3.]75 

t--' 
C)\ 
C)\ 
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Table 40. Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic 

constants and fundamental vibrational frequencies of DCN. 

SCF CISD Experiment 

DZ TZ l>Z+P TZ+P l>Z TZ DZ+P TZ+P 

wI 1n cm- I :l117.4 2100.0 2155.7 2154.9 1940.4 19)4.2 2U24.9 1952.81 

wL 
7U3.4 714.2 683.9 720.8 605.8 588.7 601.0 580.03 

~ 2926.8 2879.8 2916.5 2918.7 2728.0 2688.5 2781.3 2703.85 

Xli - 5.988 - 6.103 -7.03 

XI2 3.790 4.247 2.68 

X13 -30.351 -30 •. 872 -32.44 

X22 - 0.997 - 4.560 -2.08 

X2) -15.765 -15.224 -15.96 

X)) -19.869 -15.524 -20.56 

Xt 212 
2.952 4.149 3.25 

." 
vI 2U94.1 2131.5 (1917.0) 1925.27 

v2 697.4 705.8 ( 599.8) 570.34 

V) 2856.2 2857.0 (2657.3) 2630.33 
I-' 
(j\ 

-...J 
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Table 41. Theoretical and experimental geometries, vibration-rotation interaction constants, rotational constants, 

centrifugal distortion conetants, and rotational 1-type doubling constants of CO2, 

SCF CISD Experiments 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

Energy in hartree -IH7.~~339 -187.56279 -lH7.67624 -187.68791 -187.85244 -187.89160 -18H.09488 -188.13506 

r e (CO) inA 1.1651 1.1594 

3 -I 
0 1 xllJ in cm I.U7 1.1155 

~ xlO J -0.648 -I.IHOO 

a:J xlO) 3.268 3.2642 

8e 1n cm- I 0.3882 0.3920 

80 0.31166 0.3910 

b -I OJ xlO 1n em 0.119 0.1263 

HJ xlO l2 0.009 0.0134 

1.1453 1.1387 1.1925 

1.0296 1.04 

-0.7025 -0.67 

2.9603 2.97 

0.4017 0.4064 0.3706 

0.4044 0.4051 

0.1132 0.1170 0.1225 

0.0125 0.014 

1.1833 1.1647 1.1287 1. 1621 

1.21 

-0.72 

3.09 

0.3939 

0.39021 

0.135 

..... 
0\ 
\0 



I&bl~ 41 cont1nued. 

SCF 

DZ TZ 

q~ x10) 1n ca- 1 0.51S7 0.6571 

q~ x108 -0.048 -0.1122 

K II q2 x10 0.0)7 0.0996 

It 

~ 

DZ+P TZ+P DZ TZ 

0.5829 

-0.0522 

0.0420 

ClSD 

DZ+P TZ+P 

Exper1aenta 

~ ..., 
,Q 
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Tabl~ 4Z. 

"'I 1n CI1l 
-1 

"'l 

"'j 

XII 

XIZ 

X13 

X22 

X2) 

x)) 

Xtzt z 

t 
... ' 

Theoretical and experimental har~onic vibrational frequenciea, vibrational anharmonic constants, and 

fundsmental vibrational frequencies of CO 2, 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

1400.2 1381.2 1513.4 1514.7 1289.3 1428.3 

717.4 608.0 7M.O 776.5 639.0 711.6 

2 383.7 2301.7 2590.3 2570.7 2254.2 2479.3 

-3.053 -2.805 -2.739 

-5.172 30.352 -5.417 

-25.206 -23.365 -21.336 

1.546 -1.246 1.729 

-14.099 -8.518 -12.760 

-15.874 -13.812 -13.170 

-0.982 5.592 -1.123 

~ 
-....j 

~ 



Table 42 continued. 

SCF 

OZ TZ DZ+P 

\11 l376.3 1394.2 1491.9 

\12 711.5 620.8 761.0 

"3 23H.3 2253.9 2540.5 

6 1 in CII 
-1 -23.9 13.1 -21.6 

62 -6.0 12.8 -5.0 

6) -Sts.4 -47.8 -49.8 

ClSD 

TZ+P DZ TZ 

(1265.4) 

(633.0) 

(2195.8) 

(-23.9) (13.1 ) 

(-6.0) (12.8) 

(-58.4) (-47.8) 

DZ+P TZ+P 

(-21.6) 

(-5.8) 

(-49.8) 

Experiments 

l388.17 

667.40 

2349.16 

~ 
....... 
N 
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T&bl~ 43. Th~oretlc&l and e~perlmental geometries, dipole moments, vibration-rotation interaction constants, 

rotational constants,centrifugal distortion conatants, and rotational (-type doubling constants of H20. 

SCF CISD Experiments 

uz TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

Energy 1n hartree -lHj.~9~411 -IH].60967~ -18).715760 -18).726722 -18).918705 -18).960408 -184.16117) -184.20)2)7 

re(NN) 1n A 1.10«>9 1. 096) 1.09~~ 

re(NO) 1. 2~~7 1.2496 1.1872 

II 1n 0 1. 539~ 1.5610 0.8244 

01 xl0 3 1n cm- I 1. 778~ 2.0) 2.55 

n:z xlO 3 -U.0046 -0.4) -0.48 

03 xl 03 6.0)40 ~.37 2.85 

BI! 1n clII- 1 0.4023 0.4080 0.4)17 

110 U.39l!4 0.4047 0.429~ 

1.0866 1.1494 1.1337 1.1285 

1.1796 1.2577 1.2492 1.1990 

0.7950 

0.4)80 0.)881 0.)9~9 0.4156 

1.1162 

1.1900 

0.4232 

1.128 

1.184 

0.4~4) 

).4~ 

-0.56 

1.79 

0.419011 

...... 
"-J 
W 



Tabl~ 4) continued. 

DZ 

() -I uJ xlO in cm 0.231S 

HJ xlO l2 -0.650 

qi xlO) in CII 
-\ 0.8954 

q~ xlLl8 0.2694 

~ Ii 
q2 xlO -0.3969 

SCF 

TZ DZ+P TZ+P DZ 

0.23111 0.1610 

-0.520 -0.078 

ClSD 

TZ DZ+P TZ+P 

Experil1lentII 

0.176 

0.792 

.... 
"-.J 
.po 



Table 44. 

"'I 1n c.- 1 

"'2 

"3 

Xli 

X12 

.. Xi3 
: I 

X22 

X2) 

X)) 

XL 2 L2 

t· 

• 

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and 

fundamental vibrational frequencies of H20. 

SCF ClSD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

24)0.'1 2404.1 2589.0 2595.8 2164.4 2160.2 2402.6 2419.1 

554.9 519.1 668.4 707.0 507.2 461.8 606.4 644.5 

964.0 991.1 1358.0 1354.2 1109.6 1113.6 1352.4 1347.5 

-15.457 -14.073 

-7.923 -11.637 

27.013 -73.678 

0.219 0.529 

-17 .261 -6.621 

-39.404 -0.123 

0.282 -0.215 

f-' ...., 
V1 



Taole 44 continued. 

SCF 

OZ TZ DZ+P TZ+P 

VI 2405.6 2512.4 

v2 543.2 661.7 

"'3 881.4 1314.3 

6 1 in cm -1 -l5.3 -7b.6 

6 2 -11.7 -6.7 

6) -82.6 -43.7 

i: 

CISD 

OZ TZ 

(2139.1) 

(495.5) 

(1027.0) 

(-25.3) 

(-11.7) 

(-82.6) 

OZ+P 

(2326.0) 

(599.7) 

(1308.7) 

(-76.6) 

(-6.7) 

(-43.7) 

TZ+P 

,,~, 

Experiments 

2223.76 

588.78 

1284.9 

~ 
'-I 
0\ 



II 

t '. 

Table 4~. Theoretical and experimental geometriea, dipole moments, vibration-rotation interaction constanta, 

rotational conatants, centrifugal diatortion conatanta, and rotational i-type doubling constanta of COS. 

SCII' elSO Experimenta 

DZ TZ DZ+P TZ+P OZ TZ OZ+P TZ+P 

Enersy 1n hartree -510.176021 -510.187518 -510.279955 -510.286839 -510.430225 -510.458104 -510.669445 

r<!(CO) 1n A- 1.1511 1.1411 1.1352 

r <! (CS) 1.601l5 1.6151 1.5736 

II 1n D 0.1612 0.0569 0.3376 

3 -1 
Q 1 x10 1n cm 1.0827 1.0320 1.01 

~ xl0 3 -0.2609 -0.3150 -0.31 

~ x10] 0.9698 0.9098 0.79 

8e inca- 1 U.1966 0.1968 0.2042 

8u 0.1959 0.1962 0.2036 

1.1273 1.1845 1.1710 10 1595 

1.5739 1.6164 1.6251 1.5732 

0.3247 0.4419 0.3696 0.5241 

0.2052 0.1905 0.1917 0.1966 

1.14~4 

1.5688 

0.5566 

1.1545,1.155 4 1 

1.56JO,I.5620', 

0.6298 

-0.3524 

1.2262 

0.2034282 

0.2028563 

t-' 

" " 



Table 45 continued. 

SCF 

DZ TZ 

OJ xl06 in clI- I 0.0454 0.0450 

HJ 1110 12 -0.01411 -0.0125 

e j -I q2 xlO in CII! 0.2077 0.2073 

q~ xl08 0.0008 -0.0013 

q~ 1I10b -0.0098 -0.0072 

'. 

CISD 

DZ+P TZ+P DZ TZ 

0.0409 

-0.007 

DZ+P TZ+P 

Experiment I 

0.04280 

0.2110 

I-' 
'-I 
CXl 



Tab!!! 4b. 

"'I 1n c.- I 

"'2 

"'3 

Xil 

Xu 

Xl) 

Xn 

XZ3 

X)) 

Xt2tZ 

(; 

,~ 

Th!!or!!tical and experimental harmonic vibrational tr!!quenciea, vibrational anharmonic conatants, and 

fundamental vibrational frequencies of COS. 

SCF CISD Experiment 

uZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

797.1 802.3 891.0 886.8 71J6.2 802.6 891.6 874.27 

534.9 ~36.4 ~74.8 ~83.1 48~.0 ~36.3 ~24.20 

2170.1 21~~.9 2198.5 2297.3 2008.4 2002.8 2193.0 2094.1~ 

-6.717 -6.1~~ -3.2~ 

-).460 -6.20~ -3.14 

2.004 1.928 -2.53 

0.743 1.406 2.3~ 

-3.773 -~.6n -14.~6 

-13.607 -12.~64 -1l.~9 

-0.~45 -1.79 

.... 
" \0 
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Table 47. Theoretical and experimental geometriea, vibration-rotation interaction constants, rotational constants, 

centrifugal distortion constants, and rotational t-type doubling constants of C2"2' 

SCF CISD Experiments 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

Energy 1n hartree -76.799232 -76.811127 -76.831903 -76.843052 -76.977294 -77.000722 -77.082305 -77 .106963 

r e(CC) 1n " 1.2U10· 1.1875 1.19l.l 1.1811 1.2299 1.2101 1.2131 1.1979 

re(CH) 1.0538 1.0536 1.0616 1.0554 1.0707 1.0686 1.0691 1.0601 

3 -I 
01 xlO 1n CJII 6.3808 6.2490 6.25 6.3954 6.86 

~ xl0
3 4.7264 5.0156 4.74 4.9314 6.21 

03 xlO 
3 5.5233 5.2544 5.36 5.4236 5.60 

CIt. xl0 3 
-O.bO~O -1.9262 -1.46 -1.1190 -1.29 

~. xlO 
3 -1.bll21 -0.6804 -2.12 -2.UI95 -2.15 

8e in cea -I 1.1897 1.2101 1.1999 1.2189 1.1388 1.1680 

110 1.1836 1.20U 1.1953 1.2137 

I--' 
00 
I--' 



Tablt 47 continued. 

SCF 

DZ TZ 

U
J 

1I10b 1n clI- I 1. 3930 1.4S08 

H
J 

xlOl2 1.2883 1.3088 

t ) -I 
q4 xlD 1n CII 4.1517 4.1418 

qi ltlO!! 

q~ ltlO!! 

q5 ltlOl 1n ClII-
1 4.00B 4 .• 1400 

: t q~ ltlUd 

q~ ltlOS 

• ~ 

DZ+P. TZ+P UZ 

1.3839 1.4322 1.4207 

1.269S 1.3010 

4.4991 4.4477 

4.1779 •• 2637 

CISO 

TZ DZ+P 

1. SOB 

.. 

TZ+P 

t 

Experiment. 

I.S80 

I-' 
ex> 
N 
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Table 411. Theoretical and experimental har.onic vibrational frequencies, vibrational anharmonic constants, and 

funda~ental vibrational frequencies of C2H2• 

SCF CISD Experiment 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

"'I In ell 
-I 3732.3 36111.6 3676.7 3673.4 3Hl.3 3485.3 3495.1 

"'2 2167.6 2179.0 2203.4 2219.2 2005.9 2023.8 2007.6 

"') 3622.2 3557.4 3571.3 3558.6 3431.7 3373.2 3415.2 

"'4 1142.7 909.2 766.7 820.0 6711.6 675.6 624.0 

~ 1187.1 901.1 1158.2 1177 .4 749.7 741.1 746.7 

XII -25.510 -22·950 -23.398 -23.093 -18.57 

XI2 -9.870 -9.598 -9.380 -9.332 -13.09 

Xl) -104.761 -93.111 -96.905 -94.302 -102.39 

XI4 -13.018 -13.359 -10.251 -10.792 -16.54 

XI5 -9.462 -10.904 -8.219 -10.037 -10.85 

X22 -5.l51 -5.560 -5.432 -5.669 -5.77 

Xn -4.969 -5.0b9 -4.1116 -5.1911 -2.82 

Xl4 -9.349 -11.771 -10.295 -9.667 -12.70 

X25 1.733 2.263 1.960 1.705 -1.38 
...... 
CO 
W 



Table 4~ continued. 

SCF ClSD Experll11entll 

DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P 

X3) -27 .056 -23.165 -25.133 -24.264 -30.95 

X) .. -8.122 -7.667 -5.000 -5.956 -8.22 

X15 -9.688 -8.460 -8.016 -8.313 -8.68 

Xt.4 0.470 -11.067 2.479 1.506 3.072 

Xt.5 47.3]b 36.150 52.664 43.753 -2.406 

X55 -1.290 -3.438 -2.146 -2.501 -2.334 

Xt4 '4 1.650 4.691 1.158 1.413 0.756 

Xt 4 t5 
6.539 

I. 

Xtsts 
).]]8 4.281:1 3.714 3.815 3.492 

\/1 )601.5 3560.1 3558.3 3554.6 (3400.5) (3363.8) 

\/2 2142.1 2154.0 J.l77 .2 2192.6 (1980.4) (19911.8) 

\/) )495.4 3445.8 3457.3 3446.0 (3304.9) (3261.7) 

\/4 tH7.9 922.7 815.2 856.4 (713.8) (697.2) 

\/5 ':125.1 911.0 901.0 909.1 (787.8) (742.8) 

~ 
CO 
~ 

~. t~~ 

.. 
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Table 48 continued. 

SCP 

DZ TZ DZ+P TZ+P 

6 1 in c.- 1 -lJU.8 -121.5 -UH.4 -U8.8 

62 -25.5 -25.0 -26.2 -26.6 

6) -126.8 -111.5 -114.0 -112.5 

64 35.2 21.6 48.5 36.5 

65 38.1 1.7 42.8 31.7 

CISD 

DZ TZ 

(-130.8) (-121.5) 

(-25.5) (-25.0) 

(-126.8) (-111.5) 

(35.2) (21.6) 

(38.1) (1.7) 

." 

DZ+P 

(-U8.4) 

(-26.2) 

(-114.0) 

(48.5) 

(42.8) 

TZ+P 

(-118.8) 

(-26.6) 

(-112.5) 

(36.5) 

(31.7) 

Experl_nta 

I-' 
<:Xl 
\J1 



Table 49. Theoretical geometries, vibration-rotation interaction constants, 

rotst10nal constants, and centrifugal diatortion constants of Hj. 

SCF 

DZ TZ DZP TZP (481p) (683p) 

Energy In hartree -1.27582 -1.2797H -1.29575 -1.29675 -1.29935 -1.29972 

r e 1 n " 0.d4'J7 0.8bll U.8b13 0.8657 0.8b92 0.8683 

8 -I 
QI 1n cm l.b1U3 1.153H 1.3273 1.2172 1.1841 1.1729 

~ -0.1541 -0.2374 -0.141b -0.1324 -0.1354 -0.1194 

C U.8052 0.57b9 0.6b37 0.b086 0.5920 0.5028 Qj 

t: 1.0328 0.9274 0.'J791 0.9b57 0.9b03 0.4863 
~ 

8e 1n cm -I 4b.3355 45.121b 45.0949 44.b389 44.2833 44.3b93 

Ce 23.lb77 22.5b08 22.5475 22.3194 22.1417 22.184b 

80 45.b844 44.7821 44.5729 44.1627 43.8267 43.1281 

Co 21.7323 21.3449 21.23b5 21.0495 20.8853 21.7050 

~ . ' ~ . 

t-­
ex> 

'" 
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Table 49 continued. 

DZ TZ DZ+P 

D J in clI- l 0.03793 0.03479 0.03585 

DK 0.0;021 0.024t17 0.02526 

DJK -0.06156 -0.05635 -0.05758 

H
J 

xl oj in cm- l 0.0510 0.0465 0.0483 

HJK -0.1951 -0.1729 -0.1782 

~ 0.2407 0.2102 0.2156 

HK -0.0960 -0.0831 -0.0850 

6) -0.0151 -0.0125 -0.0118 

SCF 

TZ+P (4a2p) 

0.03511 0.03511 

0.02468 0.02469 

-0.05631 -0.05632 

0.0471 0.0476 

-0.1726 -0.1743 

0.2081 0.2101 

-0.0819 -0.0827 

-0.0114 -0.0115 

(6a3p) 

0.041H 

0.02777 

-0.06071 

0.1068 

-0.2830 

0.2349 

-0.0589 

0.0470 

,.. F~ 

~ 
CO 

" 



Table 50. 

"'I 1n CII 
-I 

"'2 

XII 

Xl2 

X12 

g22 

\II 

"2 

6 1 1n clI- 1 

62 

«t. " 

Theoretical harmonic vibrational frequencies, vibrational anharmonic 

+ constants and fundamental vibrational frequencies of "3' 

SCF 

DZ TZ DZP TZP (4s2p) 

3729.8 3727.0 3604.4 3576.6 3535.4 

2901.7 2919.3 2905.2 289b.b 28b1.3 

-77.370 -63.030 -52.b39 -52.574 -49.278 

-233.IH7 -1811.112b -171.104 -167.201 -162.789 

-9b.459 -93.987 -81.043 -81.363 -81.145 

8b.101 840118 70.25b 70.034 69.902 

3351.2 3412.1 3328.1 3304.2 3274.1 

258b.5 2627.0 2646.8 2639.0 2606.4 

-3711.& -314.9 -276.4 -272.3 -261.3 

-315.2 -292.3 -258.4 -257.7 -254.9 

(bs3p) 

3521.7 

28bO.8 

-48.308 

-160.394 

-81.862 

47.832 

32b4.7 

2582.8 

-257.0 

-278.0 

.' .. 

I-' 
IX) 
IX) 



----
LA WRENCE BERKELEY LABORA TORY 

TECHNICAL INFORMATION DEPARTMENT 
UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

-~ 




