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Systematic Studies of Molecular Vibrational Anharmonicity
and Vibrationm-Rotation Interaction by Self-Consistent-Field
Higher Derivative Methods;

Applications to Asymmetric and Symmetric Top

and Linear Polyatomic Molecules
David Allen Clabo, Jr.

Abstract

Inclusion of the anharmonicity of molecular normal mode vibrations
{i.e., the third and fourth (and higher) derivatives of a molecular
Born—-Oppenheimer potential energy surface] is necessary in order to
theoretically reproduce experimental fundamental vibrational frequencies
of a molecule. Although ab initio determinations of harmonic
vibrational frequencies may give errors of only a few percent by the
inclusion of electron correlation within a large basis set for small
molecules, in geheral, molecular fundamental vibrational frequencies are
more often available from high resolution vibration—-rotation spectra.
Recently developed analytic third derivatives methods for self-
conéistenc—fiela (SCF) wavefunctions have‘made it possiﬁle to examine
with previously unavailable accuracy and computational efficiency the
anharmonic force fields of small molecules. In particular, cubic force
constants, and quartic force constants by finite differences of cubic
force constants, allow theoretical determination of a number of
anharmonic molecular properties, including vibration-rotation

interaction constants, vibrational anharmonic constants, fundamental



vibrational frequencies, quartic and sextic centrifugal distortion
constants, and rotational constants which include zero-point vibrational
and centrifugal distortion corrections, and vibrational and rotational
L-type doubling constants and rotational f£-type doubling constants.
Application is made here to a variety of asymmetric and symmetric
top and linear polyatomic molecules in order to predict their anharmonic
properties. Quadratic, cubic, and quartic force constants are evaluated
for the molecules H,0, H,S, H,CO, HCO(ZA'), CH2(3BI), CHZ(IAI),
cH,(18)), c,H,, HCN, CO,, N,0, COS, C,H,, H}, NH;, and several
isotopomers. For most molecules the anharmonic molecular constants
which are available from experiments are well reproduced theoretically
using DZP or better basis sets, at which level the calculated constants
seem to have converged with respect to.basis set expansion as well,
although execpéions have been noted. Particularly good agreement is
found for fundamental vibrational frequencies obtained from CISD
harmonic frequenéiés and SCF anharmonic corrections within the same

basis set.
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I. Introduction

It is well knownl—6

that at the_gk_initio self-consistent-field
(SCF) level of theory, theoretically determined harmonic vibrational
frequencies overestimate experimental fundamental vibrational
frequencies by about 8-12% for ordinary (valence bonded) molecules.

This deviation is attributed in mqst cases to (1) basis set
incompleteness, (2) electron correlation effects, and (3) anharmonicity.

The recent theoretical development of analytical derivative
methods’ 9 makes it possible to examine these errors in more detail. A
near Hartree-Fock limit calculation of harmonic vibrational frequencies
for Hy0 by Amos10 shows that there still exists about 7% deviation from
the experimental harmonic frequencies. Therefore, the errors attributed
to basis set incompleteness are, in fact, to a large degree intrinsic to
SCF wavefunctions, at leést for the wide variety of molecules which have
been thoroughly studied.

A systematic study of configuration interaction wavefunctions
including all single and double excitations (CISD) for the closed-shell
molecules HCN, H,CO, H,0 and CH, was carried out seven years ago.2 The
best agreement between theoretical and experimental harmoaic vibrational
frequencies is found by using CISD calculations in coajunction with a
double-zeta (DZ) basis set. The average error of 2.0% is very
satisfactory. One must realize, however, that this good agreement of

vibrational frequencies is obtained at the sacrifice of the geometrical

parameters. In general, both the bond lengths and bond angles of a



ﬁolecule are predicted to be a few percent too large at the DZ-CISD
level of theory compared to experimental values; this exaggeration of
geometrical parameters compensates for the steepness of curvature of the
potential energy function to give apparent better agreement of the
harmonic vibrational frequencies. With double-zeta plus polarization
(DZP) basis sets, CISD calculations produce much better agreement of the
geometrical parameters, but, however, overestimate the harmonic
vibrational frequencies by somewhat more, with an average error of 3.5%.

These observations suggest the necessity of célculations which
include a larger part of the electron correlation. In this regard a
study of CI harmonic vibrational frequencies including single, double,
triple, and quadruple excitations (CISDTQ) for several small molecules
[HF, N,, CO, H,0, NHj, CHy(la|) and cH, (®B))] is under way in our

12 It has been found so far that 1) the geometries of these

laboratory.
molecules agree well with experimental results at the DZP—CISb and TZP-
CISD levels of theory, but surprisingly, not as well when higher
excitations are included; 2) harmonic vibrational frequencies at the
DZP-CISDTQ and TZP-CISDTQ levels of theory are predicfed to be 1-27%
lower than the corresponding frequencies based on SCF wavefunctions but
still 4-87% higher than experimental valuesz; and 3) double polarization
functions, even at the CISDTQ level of theory, are necessdary to
reproduce experimental dipole moments correctly.

Other workers have recently reported studies of harmonic
vibrational frequencies which include correlation through the use of

second-order M&ller—Plesset (many-body) perturbation theory

[M(B)P(T)2]. Analytic second derivatives for MP2 wavefunctions have
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4.13-14 Applications have been given to several

recently been reporte
small molecules using near-Hartree-Fock limit basis sets15 for which it
is found that theoretical harmonic vibrational frequencies are within a
mean error of 1.5% of the corresponding experimental vibrational

frequency. A comparison of vibrational frequencies for several medium-

16

sized molecules using both MP2 and CISD analytic second

derivativesl7’l8

has shown that these methods are quite similar in their
abilities to predict both molecular structure and harmonic vibrational
frequencies within a few percent of experimental values.

Other recent work in this laboratory19 has involved determination
of harmonic vibrational frequencies from finite differences of analytic

20 of coupled cluster wavefunctions including all single and

gradients
double excitations (CCSD)zl; preliminary results indicate that CCSD
wavefunctions give qualitatively similar results as CISDTQ wavefunctions
with, for example, a DZP quality basis set. Thus several methods of
including the effects of electron correlation have shown that some
improvement may be gained in agreement with experimental vibrational
frequencies by inclusion of a substantial fraction of the electronic
correlation energy in the molecular wavefunction.z’lz’w’l(”19
The importance of studying anharmonicity in the vibrational-

rotational states of polyatomic molecules has become more and more

evident by advances in molecular laser spectroscopy of positive22 and

23 24

negative molecular ions and clusters and by progress in theoretical
and experimental studies of the fine structure of the vibrational-
rotational spectra of molecules during the last three decades. A number

of ab initio studies of anharmonicity have been reported in the



lit:erat:ure.zs_37

Most of these papers treat only vibrational
anharmonicity, in particular cubic and quartic internal force constants
in addition to quadratic force constants. These anharmonic force

constants are usually obtained by a least squares fit to a polynomial

expansion of the energy and/or lower energy derivatives with respect to

internal coordinates.11 Using recently developed analytic third

38-40

derivatives of the SCF energy , anharmonic vibrational constants and

vibration-rotation interaction constants have been reported for the Hy0

36,37

and NHq molecules by Gaw and Handy. The analytic third derivative

method has been extended recently to general open—-shell SCF

wavefunctions40

with applications to the vibration-rotation interaction
constants (as well as the cubic force constants) of CH, (331), CH,
(18)), ciy (tap), Hy€0 (3a™), Hyco (1A"), and HyCO (PAT), as well as to
both closed- and open-shell two—configurationé‘l’42 (TC)SCF and pair-
excited multi-configuration (PE-MC)SCF wavefunctions.43

This thesis represents a systematic study of vibrational anharmonic
coﬁstants and various vibration-rotation interaction constants for a
series of experimentally well-characterized asymmetric and symmetric top
and linear polyatomic molecules. This work is the most thorough and

systematic evaluation of the performance of analytic third derivatives

of SCF¥ wavefunctions for predicting anharmonic properties of small

¥

molecules now available. The results presented herein reconfirm the
trends indicated by previous workers,36_40 namely that the SCF_ cubic
force field, as well as the quartic force field obtained from finite
differences of the cubic force constants, shows surprisingly little

variation with basis set; for most anharmonic molecular constants and
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properties, the values predicted via analytic SCF higher (i.e., third
and fourth) derivatives seem to have converged with repect to basis set
variation at the DZP (or better) basis 1evel_for most molecules. These
results also show that the order of the vibrational anharmonic constants
and various vibration-rotation interaction constants is of the order of

1072

of the corresponding harmonic vibrational frequency or equilibrium
rotational constant, respectively, as is anticipated by the perturbation
theory treatment, and that the anharmonic constants are, in fact, also
well reproduced by SCF wavefunctions with DZP or better basis sets.
Particularly good agreement with experimental values of the various
anharmonic constants is indicated when a CISD harmonic force field,
i.e., vibrational and rotational constants, is coupled with and,
therefore, corrected by the corresponding SCF cubic and/or quartic force
constants computed with the same basis set.

Some limitations are also indicated by the results which are
presented. First, one must exercise caution occasionally in the choice
of a basis, depite the previously mentioned overall trend of small
variation with basis. Second, for some molecules, caution is necessary
in the analysis and interpretation of results as, for example, in the
case of an asymmetric top which accidentally approximates a symmetric
top, a quasi-linear molecule, a molecule exhibiting a strong Coriolis or
vibrational anharmonic resonance Q!igg infra), etc. For these cases,
the perturbatién theory of non-interacting, well-separated rotational
and vibrational energy levels on which these particular calculations are

based breaks down.

The next section will serve as a review of the necessary theory and



formulas which have been derived from perturbation theory for the
calculation of anharmonic quantities in asymmetric and symmetric top and
linear polyatomic molecules. The third section will briefly describe
the procedures taken in this study, including the molecules chosen of
each rotational type, descriptions of the basis sets employed, and a few
comments regarding the methods used in practice for determining the

quadratic, cubic, and quartic force fields of the molecules which have

been examined. Finally, the data are presented, followed by appropriate-

discussions, including comparisomns with the available experimental data.

<=



II. The Evaluation of Various Vibration—-Rotation Constant:s“‘"50

A. Energy expressions49

The vibration-rotation term values of a polyatomic molecule may be
expressed empirically as the sum of a vibrational term which is
independent of the rotational quantum numbers and a rotational term
which is largely independent of the vibrational quantum numbers, that

is,49

T(v,J) = G(v) + FV(J) . (1)

The rotational term values FV(J) are interpreted as the eigenvalues of
an effective rotational Hamiltonian which is slightly different for each
vibrational state. For a molecule of the asymmetric top rotational

type, the form of this Hamiltonian issl—53

- (o) ;2 1 2
Hrot/hc Y B Je 77 (TC'mBB)V Iy J8
a a, R
6 v 4 2 2 4
+
g ®aaa Ja * ais aaB(Ja JB * JB Ja )
2 2 2 2 2 2
+ ) W Jg 3y * I T Iy) ot (2)

a¥ B#Y @

where the summations. of a and B go over the principal molecular

rotational axes a, b, and c; J,, J,, and J, are then components of the
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total angular momentum in units of # ; Av’ By, and C, are the effective

rotational counstants; the (T&GBB)V are the quartic centrifugal

distortion constants as defined by Kivelson and Wilson54 and the QNQY

are effective sextic centrifugal distortion constants?®? in cm~!l,

The rotational terms FV(J) of a symmetric top molecule may be

fitted to a formula of the form49

i B 2 2_
F () =B [J(T+1) -K'] +A K I 2(Az) ke,

t
‘ 2 2 4
-y, [J@+Dn ] (D), JW + 1) K7 = (D) K
+ ) (ntJ)v JJ + 1) klt + ) (ntk)v k32t + e e e (3)
t t

The first three terms are quadratic in the angular momenta, i.e. in J,
the total rotational angular momentum; in k, the component of J along
the principal molecular axis (with K = 'kl); and in Qt the vibrational
angular momentum. Thus, the coefficients Ay, B, and (Ag.), may be
thought of as etfective rotational constants. The terms in the second
and third lines of eq. (3) are quartic in the angular momenta, and the
cqefficients may be thought of as effective quartic centrifugal
distortion constants. The terms which are sextic in the angular momenta
are given by Aliev and Watson in eq. (35) of their paper55 iﬁ an
alternative form of the rotation—vibration Hamiltonian, namely, in terms
of a cylindrical.tensor representation of the components of the total

X

angular momentum, J, = J_ % in; nonetheless, the coefficients of their

eq. (35) are the effective sextic centrifugal distortions of a symmetric



top molecule. The first term of eq. (2) is more accurately written as

A, 32+ B (2 Ji ) (4)
for a rigid rotor prolate symmetric top (A > B = C). For an oblate top
(A =B > C), one should replace A by C in (4). One should also recall
that, for a rigid rotor symmetric top for which the Hamiltonian (2) is
truncated after the first term, namely (4), the first two terms of eq.
(3) give exact eigensolutions for the rotational energy levels and that
this is simplified from the case of the asymmetric top for which not
even approximate solutions for the rotational term values exist in terms
of the rotational angular momentum quantum numbers.

A linear polyatomic molecule is only one special case of a
symmetric top molecule, for which A = 0 and B = C (note that the
rotational copstants A is the smallest valued rotational constant in
this case). Most of the>perturbation formulas which have bheen derived,
therefore, for linear moolecules may be obtained from the corresponding
more general relations for a symmetric top molecule by imposing the
restrictions implied by symmetry and by the subsequent redefining of the
rotational constants. The rotational term values FV(J) of a linear

50

polyatomic molecule are then given in the form

2 | 2.2
F (D = B 0@+ 1D =21 =030+ 1) - 2]

+H; 3 PEPELIE B , (5)



10
where £ is the total vibrational angular momentum (2 = ) ¢ )s By is the
t
effective rotational constant, Dj is the effective quartic centrifugal
distortion constant, and Hj is the effective sextic centrifugal
distortion constant.
The vibrational term values G(v) of an asymmetric molecule are

given by49 v

G(v) = ) wgvr+1/2) + Yy er(vr+1/2)(vs+l/2) + e R
r . r>s

(6)

where w. is the rth harmonic vibrational frequency and X,.g4 are the

vibrational anharmonic constants.

The vibrational term formula for a symmetric top molecule is49

Gv) = T varlhd) + ) x v +Yd) (v, +1hd )

r
r r'#r

+ Z 'gtt|2t2t|+ ¢ e 0 (7)
£t

where subscripts r and r' denote either non-degenerate or degenerate

normal modes and t and t' indicate degenerate normal modes only. In eq.

(7) w. and w.: are harmonic frequencies, X, pt+ and g, .+ are the X
vibrational anharmonic constants, and d,. is the degeneracy of the rth
normal mode. : ¥

The vibrational term values G(v) of a linear polyatomic molecule

are expressed as



11

G(v) =} W (vr +1/2dr) + ) Xrg (vr + 1/2dr) (vS + l/zds)
r r 28

)

X
tot! Q(t zt'

2 + ¢ o o (8)

tlt'

where all of the notation is as in eq. (7) for symmetric tops, except

that Xg, 0. 4 labels the vibrational anharmonic constants involving only
tt

components of degenerate normal modes.

In order to follow the conventional treatment by Nielsen?3748 ang

the previous communications36—40, the dimensionless normal coordinate is
defined as
1
= 2
q. Yo Q, , (9)
where
vo= 2/ e 2mcw /. (10)
r T r

The vibrational energy is then expanded in terms of these dimensionless

normal coordinates, q,, as

1 1
Ve = ) wal + % ) brer %9 * 3T ) Prstu 9rds9tdy
r rst rstu

+ Y 3 , (ll)

where 4., and ¢.4., are the cubic and quartic anharmonic force



12
constants, respectively. It should be noticed that the multiple
summations in eq. (11) are unrestricted and that the 4¢'s differ from

Nielsen's original anharmonic k's by multiplicative factors.ag’56
g

B. Vibration-rotation interaction constants49’50’57
i/
For an asymmetric top the vibrational dependence of the effective
rotational constant along the molecular b axis is given by49
B=B—yaB(v +1/2)+'-- (12)
v e " r T ’
r
where B, is the equilibrium rotational constant, and the sum runs over
all the normal modes. Of course, similar expressions hold for the
vibrational dependence of A, and C, involving rotation about the
molecular a and c¢ axes, repspectively. In general the ag are expected
to have a magnitude of the order of 10_'2 of the corresponding rotational
constants. 8 01
The vibrational dependences of the effective rotational constants
for a prolate symmetric top molecule are given by[‘9
B=B-—ZaB(v+1/2d)+--° (13)
v e c T r r ~
and ¥
A = A - § a (v +lpd )+ e (14)
v e T r r



k)

13
where B, and A, are the two distinct equilibrium rotational constants of

a prolate symmetric top molecule; a% and a% are the vibration-rotation

interaction constants; and, as before, d. is the degeneracy of the rth

r

normal mode and the summation runs over all the normal modes. For an
oblate top, A in eq. (l4) should be replaced by C.

The vibrational dependence of the single degenerate effective

rotational constant for a linear polyatomic molecule is given bySO

= — \ l [ ] * L)
B, = B, % a (v +lpd ) + , (15)

where B, is the equilibrium value of the rotational constant, the a. are

vibration-rotation interaction constants, and, again, the summation runs
over all the normal modes.
Perturbation theory provides the formula for a? for asymmetric tops

as49

(bg&)42 2 2
- B 2B2 { Z 3[ar ] + z [ (b)]Z 3wr Ty
r W 41 Cr,s 2 2
r £ g s#r W -
r s

clh ¢ (bb) “r

T (h) z ¢rrs g ( w3/2 » b (16)
s

In this perturbation formula, as well as in many others to come (vide

infra), the rotational constants A, B, and C are the experimentally

derived values which, of course, contain all of the effects due to zero-
point vibrations, centrifugal distortion, etc. At a theoretically
determined equilibrium geometry, R,, the rotational constants which are

obtained are the equlibrium rotational constants A,, B and C, of the

e
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non-vibrating molecule at its equilibrium geometry, Ry f{i.e., the first
term of eq. (12)]. Thus, in the calculation of ag from eq. (16), for
example, the leading factor in the calculations is, in fact, ZBg/wr'

The reader should bear this in mind throughout the remainder of the
presentation of the equations as well as the discussions, since this
subtle difference will provide some of the explanation for the small
discrepancies between experimental andléé_initio rotational constants
and related values of vibration-rotation interaction constants.

The equilibrium rotational constants are defined by

2 .
() _ n
Be ~ 2hcl ’ - an
a
and the inertial derivatives aias) present in eq. .(16) are defined as
al
N (18)
r aQr e

where I, = I,, and I g are the equilibrium moments and products of

()

inertia. The Coriolis zeta constant Er s
bl

» which.couples normal

coordinates Qp and Qg through rotation about the a axis, is defined by

C(a) -3 [L(B) LN L(Y)L(S)]

r,s i ir is ir is

» (19)
where L is a matrix which transforms the normal coordinates to mass-—
weighted Cartesian coordinates. 1In eqs. (17)-(19), «, B, and Y are
cyclic permutations of x, y, and z, and for a =z, x, vy (i.e., a 1t

)51,62

representation the rotational constants Béz), Béx), and BéY) are

-
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those normally associated with the principal rotational axes a, b, and
¢, respectively, and are those traditionally labeled A, B, and C.
Perturbation calculations give the following formulas for the
, . . C . . 49 _
& vibration-rotation interaction constants for a symmetric top (s = non-

degenerate mode, t = degenerate mode):

.
(zz),2 2 2
a2, 3RSY) (2y.2 3w * g,
- %z : * z [z ts s] 2 2
w 41 s'#s ? W, = 0,
s A s s
1y (zz) s |
* "( ) z,rbsss g1 ——m—377_] (20)
S'
(xz),2
2A2 3 t ] 3w2 w2
A _ e a (z) 2 t t!
T % T { L) [z, ¢ 2 p)
w 41 t'#t ab w - w
t B t t!
el (zz) “t
+ ( ) 5 I 372 1 (21)
a s
2 2 2
2B ( ;XX)] [a;xy)]
-8 - {
ws _4IB
(y) ,2 (x) ,2 3w§ mi
P + 2 {[Cs,t ] + [CS,t ] } 2 2
t a W, - w
S t
cdh o (xx) s
F TP D a0 gy | (22)
S'
232 i Exz)]Z 3[a§xx)]2
_ aB - e { a + a
¢ w 81 41
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3w2+m2
1 (92 (x) 2y "t s
+ z {[Cs,t] + [Cs,t ]} 2 2
S a a w - w
t s
. (y) 9 (x) 9 3wi + w,
+ 0y {2 1 122 17
b t t t t 2 2
t'#t a, a a, a w w_,
t t
1/ (xx) "t
c\/2 XX
o) L et 3 575 - (23)
S a a ws

These formulas are written in a form that applies to all symmetric top

molecules provided that the orientation of the doubly degenerate
| (xz) _

b

coordinates has been chosen to make a 0 and céz)t' = 0 for
' 49 a’a
all t and t'.

Perturbation theory gives the formulas for the vibration-rotation

interaction constants . of a linear molecule asso
ZB2 3a 3w2 + mz
—a = e [ + Z C2 s t
S m 41 st 2 2
) e t N - 0y
S t
b2 s
S é,’%ss' a, 6——;§77———) ] (24)
Sl
2B§ 3w§ + mi
- = 1
% () o, 27 2
) S w - W
t t S
1 0
cy/2 _t
+ TT(h) SZ (bstt: a5 ( (03/2 ) ] ’ (25)
s

where the subscript s and s' denote non—degenerate modes and t indicates
a degenerate mode. One should again note the use of Ag and Be’ the

equilibrium values of the rotational constants, in eqs. (20)-(25). At

-
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the theoretically determined equilibrium geometry, the equilibrium
rotational constants are determined and used in the perturbation
formulas above. It ié most convenient, then, to deal with the various

¥ vibration-rotation interactions (vide infra) as corrections to this
equilibrium rotational constant [as, for example, in eqs. (13)-(15)].

The parameters a_, are the normal coordinate derivatives of the

s
equilibrium moment of inertia of a linear molecule, in analogy with eq.
(18) for asymmetric and.symmetric top molecules. For a linear molecule
Tya = IaB = IBB’ and, therefore, the superscripts are suppressed; the
inertial derivatives are only evaluated for non—-degenerate normal modes.
The Coriolis zeta constants Tgts Which couple normal coordinates QS

and Q. through rotation about the x and y axes, have the following

relationship for linear molecules:

. (26)

It is useful to note that for a linear molecule the nonvanishing

, . . 7
cubic force constants involving degenerate coordinates t are5

s ] = ¢ (27)
Stata Stbtb
’ $ r = d ' . (28)
Stata Stbtb
C. Coriolis resonemc:el*f”éﬂ’50’63
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When two vibrational states of an asymmetric top molecule are
accidentally degenerate, i.e., w. = W, the second term in eq. (16) due
to Coriolis interactions is no longer valid since the treatment of such
terms by perturbation theory is no longer adequate. This situation is
known as Coriolis resonance, and in such a case the second term for

47

resonating states in eq. (16) should be replaced according to

2 2 2
. 3wt + w (W - w)
2 b) 12
LS00 .S RS VY § S . . (29)
’ W= ’ ug(wr + ms)

One should notice that the Coriolis resonance can be observed between
modes only when the corresponding Z value does not vanish from symmetry
conditions. This replacing of terms, or, rather, removal of offending
terms, is not a solution to the problem of accidental near-degeneracy.
A proper treatment would involve diagonalization of the 2x2 Hamiltonian
matrix which couples the normal modes involved to give the exact
vibrational energy eigenvalues.

For an accidental degeneracy of two different normal modes r and r'
in a symmetric top molecule (wr =~ w.r, where r and r' are either non-
degenerate or degenerate normal modes and r # r'), then the term (or
terms) in eqs. (20)-(23) which contain w. = wer in their denominators
are no longer valid for the description of the so-called Coriolis
contribution to the vibration-rotation interaction constants. In this
case, the modes r and r' are said to have a Coriolis resonance, and the

offending terms are replaced accordingly. Thus, for the Coriolis

interaction of two non-degenerate normal modes s and s' caused by

w
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rotation about the z axis, the second term of eq. (20) must be replaced

in the case of resonance according to

2 2 2
Jw” + w (v - w,)
2 ! 2 !
TN Tt /] (35010 s, (30)
) S w, - w_, ’ wo (o, + o)
s s s'''s s

For two different degenerate normal modes coupled by a Coriolis

interaction by rotation about the z axis, the second term of eq. (21) is

replaced in the case of a resonance by50

2 2 2
(z) 2 3% * Y 1 .(z) 2 (o = o)
[y - ’ 2 i
a’ b P T Y a’'b e (0 + 0 0)

For the Coriolis interaction between a non-degenerate normal mode s and

a degenerate normal mode t induced by rotation about the x or y axis,

“the second term of eq. (22) is replaced in the case of resonance bySO .
2 2
{[,e(y) ]2 + [C(X) ]2} Jug +ow
s,t s,t 2 2
a a W= w
S t
)
(w - w )"
N (0S4 T 150 S Ut S-S £} )
S,ta S,ta w (0 + )
t s t
and the third term in eq. (23) is‘replacedSO by
3w2 + mz
e(y) ;2 (x) ;2 t s
(7 1%+ () 18—
a a W, - w
t s
2
(v - o)
sl el g2 ) g2y s (33)
S,t s’ta w (v + w)
st S

Lastly, for the Coriolis interaction between two different degenerate
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normal modes t and t' via rotation about the x or y axis, the fourth

term of eq. (23) is replaced in the case of a Coriolis resonance by

3m2 + w2
e(y) 2 (x) 2 t t' »
Uyt + 150 1% ——
a’ a a’ a W = Wy
2 o
(v - w )
2 t '
R L (L L C R b : (34)
a’ a a’ a w L, (w + v ,)
t'tt t'

If the vibrational frequencies of two distinct normal modes s and t
of a linear polyatomic molecule are accidentally degenerate (ws = mt),
then the second terms of eqs. (24) and (25) are no longer valid for
describing the Coriolis contribution to vibration-rotation
interaction. That is, the perturbation theory treatment of two such
accidentally interacting states is no longer adequate. 1In this
situation, the normal modes s and t are said to have a Coriolis

47

resonance, and the offending terms are replaced according to

2 2
3w + (w = w)
52~t ; 't)f > -l Czt w, - y~ (33)
s W - S ¢ nS UJt
s t
in eq. (24) and
2 2 2
3wT + w (w w )
SO > =lp il L (36)
st 2 2 st
w - w w (v + w)
t s s t s

in eq. (25). Of course, a Coriolis resonance will only be observed
between normal modes s and t if the corresponding value of the Coriolis

constant g . is non-vanishing from symmetry considerations. Note that in
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linear molecules s is always a non-degenerate normal mode and t is
always a degenerate normal mode.

D. Centrifugal distortion constants*9731,33
The centrifugal distortion tensor of Wilson and Howard64 is a term

in the transformed Hamiltonian of the form

YooYyt JJJJ (37)
4 .
afys aByS "a Ry §
and is expressed as
4 a(aﬂ)a(Yﬁ)
e - “ kK (38)
afyd ZhCIaISIYIS K Ak

One should note that the quartic centrifugal distortion constants of eq.
(38) depend only upon the quadratic (harmonic) part of the vibrational

potential [see eqs. (10) and (11)]°8 and are expected to be of the order

4 49,61

Kivelson and

of 107" of the corresponding rotational constants.

54 and Watson®3,66 have shown that the only terms in the summation

Wilson
(37) which influence the rotational Hamiltonian to first order can be

written in the form of the quartic centrifugal distortion constants

Taaﬁe in eq. (2), where

(1-§ ) . (39)

' = +
TaaBB TuaBB Zraﬁaﬂ af

In eqs. (37)-(39) the formulas are written in a form such that T and T'

have units of cm 1.
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Following Aliev and WatSOH,SO’Sl’SS the rotational derivatives are
defined as
iy ﬁ3 [ aéaB)
B = - ] . (40)
1y
k 2h3/2(:3/2%/(2 I,

R .
Watson51 has proposed the use of the dimensionless parameter Cg' which

is related to Bgs byss’67

B8

k .
G — (41)

k

in order to simplify the form of many relations involving vibration-
rotation interaction.51 Eq. (38) may then be rewritten in the following

alternative forms using these newly defined parameters:

aB .. y8
B B
T @2
Y K %
- . af Y6
TaFYé 2 ) uka Ck . (43)

k

The rotational constants are then expressed with quartic centrifugal

distortion corrections as

v = 1 - -

A At M'(3Tbcbc 2Tcaca ZTabab) (44)
v = 1 - -

B B+ A‘(Brcaca 2Tabab 2Tbcbc) (45)
v - 1 - -

€ €+ A4(3Tabab ZTbcbc ZTcaca) ’ (46)
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and the asymmetry parameter ¢ is defined as

2A' - B' - C' '
o = e . (47)

One should note that the convention used here is that in which the
rotational constants corrected for quartic centrifugal distortion are
labeled by primes (i.e., A', B', C') and that this is the opposite of
the labeling used by Kivelson and Wilson54. The formulas given in eqs.
(44)-(46) are general for the correction due to centrifugal distortion
for any rotational constant; that is, one may equally well obtain Al
from A,, Ay from A,, etc. (and similarly for B and C) from these
equations. In particular, the values of Ajj, B}, and C§ (and the
correéponding value for o), that is, equilibrium rotational constants
(vide supra) which are corrected for both zero-point vibration-rotation
interaction (eq. (12), v=0) and quartic centrifugal distortion [eqs.
(44)-(46)] are reported in the results and accompanying discussion which
follow below; this is the result which is suggested by Kivelson and
Wilson's treatment.54
The quartic Centrifugal~distortion constants appearing in the

54

Kivelson-Wilson formalism”” for an asymmetric top molecule are

D. = - ———[3 3t + 2(t + 27 Y] (48)

T +
bbbb cccee bbcc bebe

= - —1 - y -
DK DJ /(1 (Taabb * Zrabab) (chaa + Zrcaca)] (49)
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= - - =1

Dig = = D5 = Dg =T 0aa (50

R, = ~ L [T - T - 2(7 + 27T )

5 32 bbbb ccee aabb abab
+ 2(rCcaa + zrcaca)] (51)

- 1 - '
R6 - 64 [Tbbbb + chcc 2(Tbbcc + zrbcbc)] (52)
§, = - —— (x -1 ) . (53)
J 16 bbbb ccece

In these formulas, T eaR?d and Tapqp 2PPear only in the form of

2 (l-Ga ) as already described in eq. (39).

Taass T “Tasar 8

Wat:sonéS’66 has shown that only five linear combinations of the
six t' constants can be determined from spectra. In his reduced form
the five independent centrifugal distortion constants are related to the

quantities defined above by

AJ = DJ - 2R6 (54)
8¢ = Dy + 12Rg . (55)
A¢ = Dy = LOR, (56)
§. = & ' (57)
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_ _ _4(2A-B -0
K 5 B = C Rg -« (58)

In eq. (58) the rotational constants which are employed in the present
implementation are the effective (i.e., zero-point corrected) constants

~which have also been corrected for quartic centrifugal distortion,

namely A}, B}, and Cj, as is implied by Kivelson and Wilson % and as has

been discussed previously (vide supra).

Using thé centrifugal distortion tensor of eqs. (42)-(43), the

quartic centrifugal distortion constants for a symmetric molecule are

given by
1
= - + + 2 + 4
DJ 32 (3Txxxx 3Tyyyy Txxyy 4Txyxy) » (59)
= -1 - - - -
Dy Dy M'(Tzzzz Tzzxx Tyyzz 2szxz Tyzyz) » (60)
and
= - - -1 .
DJK DJ DK /4 1'zzzz (61)

For a linear molecule, the inertial derivatives ag defined by eq.
(18) and following eq. (25) are used to redefine the rotational

derivatives of eq. (35) for a linear molecule following Aliev and

Watson51’55 by

XX vy ' ﬁ3 as
B = B = B = - . ( ) . (62)
s s s 2h3/2c37zm1[2 Ii
s
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The quartic centrifugal distortion constant Dj is then expressed in

terms of Bg and Wy as

%
Dy =Y ) — , (63)
S ]

and the sextic centrifugal distortion constant Hj is given by

4p? B’ B_B_,B_.

H - ~J - 2B2 ) S _ 1 5 p s s''s
J e ~ 3 6 “, . 'ss's" '

B 5 w ss's W oW oW,

e s s's''s

(64)

In eqs. (63) and (64), the summations are only over totally symmetric
normal modes.
In order to calculate the sextic centrifugal distortion constants

of asymmetric and symmetric top molecules, additional parameters must be

afy 50,55
k

introduced. The parameters b of Aliev and Watson are defined as

follows:

- - 1.
b2 = Z (w 2 + 2w 2) w/2 B¢ Ba .’(a) " (65)
g Ly

- - 1
b8 - ¥ (mlz + Zwkz) wﬁZ[Baq Bﬂc§8£+ ZB?SBa céai] (66)
9‘ vy s

1
Xyz _ v =2 5,72y J21pY2g LX) L gExg (YD
b CH 20,%) ) [BY Btk T Bo Byt ik
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+ B% B (z)]

g Bz Bok! (67)

in which, in egs. (65) and (66), a and 8 range over x, y, and 237, and,

in eq. (66), o * -B. Watson®! has also defined a dimensionless higher-~

order Coriolis tensor CEBY related to bEBY according to
aty bgBY
= - N . (68)
ﬁ?

The components of CEBX are given explicitly by Watson in eq. (124) of

51 in terms of the harmonic vibrational frequencies

his review article

(uy), rotational constants [Béa)], Coriolis coupling coefficients

[;%“&], and the coupling parameters C&S [eq. (41)]; recall that « and B
bl

range over the principal rotational axes a, b, c.

The empirical expressions for the sextic centrifugal distortion

constants of an>asymmetric top molecule are55
Hy= %40 * 2@204 (69)
By = %420 = 12%04 * 204 * 160 856
y 2
16 (R5 20R6) S111 + 8(2A B C) S111 (70)
_ 10 _ 10
k3 = P20 T T3 P20 T 30204 7 iy OD
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He = %960 =73 %20 T 28%04 3 Hig (72)
hyp = %050 % %06 - @3)
hJK = @222 - lOd>006 + 4o 6204 + 2(DJK - 20 GJ - 4R6) s111
- 4(B - C) s° (74)
5111
bo 3202
he = %40 F 3 Bops T —FT) B0
20 802
+ 4[p, S r o+200+ 2y R s
106 2

The constants defined by eqs: (69)~(75) are the seven determinable
combinations of the ten sextic centrifugal distortion
constants.>22,35,58,66 To determine these constants, the equilibrium
values of the rotational constants are used in egs. (70), (74), and
(75), and the parameter o of eqs. (70), (74), and (75) is as defined by
eq. (47) and is used as is discussed above.

The formulas for the ¢'s as they appear in the orthorhombic
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Hamiltonian (2) are presented in Table IV of Aliev and Watson's paper55

51 The formulas given above are those

and in Table 7 of Watson's paper.
obtained by Aliev and Watson55 from the cylindrical tensor
representation of the rotation-vibration Hamiltonian; their paper
defines these parameters #249,2m,2n in terms of the ®4q) of the
orthorhombic Hamiltonian (2) (see Table VII of ref. 55). The formulas
above are derived from the particular treatment in which the parameter
s111 of the first rotational contact transformation has been left free
[s11) = ~4Rg/ (B — C)].56 |

The sextic distortion constants for the particular case of a

symmetric top molecule with C3, symmetry are obtained similarly55 by

H = Iy (8 .+ @yyy) (76)
Ho, = zazgx - 3H, (77)
Hep = 20, - 2H, - 3H, (78)
He = P22z ~ By ~ gk~ Hy (79)
by WiCo -0, (80)

where, for a symmetric top molecule, the formulas for the &'s are also

55

presented in Table IV of Aliev and Watson's paper and in Table 7 of

Watson's paper.51

At this point it would be appropriate to correct the rotational
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constants further to account for the effects of sextic centrifugal
distortion. :However, no formulas which define this correction (by, for
example,the addition of terms to eqs. (44)-(46) which would involve the
® 4R coefficients) in terms of the available (i.e., previously
determined) molecular constants have been given or are presently
available.

E. Vibrational anharmonic constants45-50

The vibrational anharmonic constants appearing in the vibrational

term formula (3) may be determined using the results of perturbation

theory. For an asymmetric top molecule the general formulas are49
2 2
8w~ - 3w
_ 1 _ 1 2 r S '
Xer = 1 ¢rrrr 16 E ¢‘rrs 2 (81)
s o (bw_ - w )
S r s
for the diagonal terms and
1 1 : rrt{btss
Xeg = 74 Oress ~ 74 ) w
t t
2 2
wlw - w - w)
Y Z 2 t ot r S
2 ¢
t rst rst
) w
sl P2 oty (- 2 (82)
r,s r,s r,s wg w_

for the off-diagonal terms, where
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w o +w +w w +w -w
( r s t) ( r s t)

bree =
X (wr - W + mt) (mr - w, - wt) .

All of the summations in eqs. (81) and (82) are unrestricted.
9

For a symmetric top molecule the general formulas are

8w - 3u?,
S S

= L S 2
Xss 16 ¢ssss 16 z, d)sss' 2 2
S w 1(4“) - W v)
s s s
2
L . 1 5 ¢2 Smt - 3w
Xt 16 "teet 16 stt 2
s w (bw - w))
1 } 52 8w - 3w _,
16 -, “tee! (4 2 )
W LBW = Dy
1 1 2 v
24 = = 5= ¢ - = 1 ¢ >
tt 8 tett 16 stt 4 2
W, =
2
. 1 Z ¢2 8mt - w,
16 o tet' (4w2 m2 )
t' t t!
+ A[cé”t 12,
a’’b

for the diagonal terms and

31

(83)

(84)

(85)

(86)
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sss” 's"s's!
Xgg! = 1/4 ¢sss's' -1/4 Z
s W
s
W (0, = w =w )
s s s
—1/2 z 'bss's"
s” ss's™
z 2 Wy Wgr
ra et = 4 ) (87)
’ ujs' ws

= 1 -1
Xst /s bgger = 4 g,

w ((02 - mz - wz)
t' e s t

-l KL
gr Stt Aster
w(x) 12 (y) 2 “s “t
R L R G e R

Xeer = 8 (¢ b oerer t % e erer) ©
aaaa aabb s s
2 2
. 2 ms(ms - o wt,)
) dsee A
stt!
2 2
oW (W W= w w_ )
t t t
_1/2 z 'btt't
t" tt't
» w
2 2 t '
R VRIS LI YIS A F—y (89
t ,t t ,t W, D)
a’’b a’ a t t
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g = 5@ ) ¢2 s P Ce Z ¢2 WgPpr Ve
r = ' e - ] "
tt s stt Astt, het tt't Att't"
S e 2 AP e lP LB g
t ,t t ,t t ,t t',t
a’"a a’’b a’b a’>b

for the off-diagonal terms. All of the summations in eqs. (84)-(90) are
- unrestricted, however, as previously, the index s runs only over non-
degenerate normal modes and the index t runs only over degenerate normal
modes.

For a linear polyatomic molecule the general formulas are50

1 1 2 8“’2 - 3‘*’§'
Xss = 16 ’ssss ~ 16 X' %ss! 2 2 oD
s w (4w - w.,)
s s'
2 2
811) - 3(1)
1 1 2 t s
Xt 16 %teee 16 + Psee 2 (92)
w (4wt - w. )
1 1 ¢ 2 “s
X = - =0 - =) 4 (93)
20 48 Tttt I o stt (Z”"i - 2
for the diagonal terms and
_ 1 1 1
Xgg! L 4)sss's' A g. b5 %sss! w_
2 2
) W . (ws.. R ms')
-l L g (94)
s" A
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1 -1 1
Xst A@sstt /a4 g, bsss’ ¢s'tt w_,
2
w (w - w - w )
2 t' t! t
- 1/2 E ¢Stt'
L]
t Astt'
2 (% wt
+ B o [+ —1 (95)
1 w A
t s
= L -1 1
Xeet T8 (9 t t't! % ¢ erer) /h ) bseefserer W
aaaa aabb s s
2 2 2
w (w - w - wl,)
2 t t'
- Yy T8 —S (96)
stt'
w W w
1 2 stt'
X h ) 4 (97)
Ztit, s stt' A '
stt

for the off-diagonal terms. The denominator A..r.» in egs. (87), (90),

and (94)-(96) is that defined in general by eq. (83).

F. Anharmonic resonance['()’[‘7

If either of the relationships (98) or (99) is satisfied

accidentally for an asymmetric top molecule,

Zwr = W, and ¢rrs £ 0 (98)
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w. + W = and ¢rst =0 ' (99)

the quantities X, and X.g described in the preceding section may become
indefinitely large and, thus, the method described above, which is based
on perturbation theory, will fail. This phenomenon is known as
vibrational anharmonic resonance47, and the case given in eq. (98) is

68,69

generally referred to as Fermi-Dennison resonance.

The component of the diagonal terms [eq. (81)] which contains ¢%r§s

a coefficient may be factored asl‘6’47
2 2
8w - 3w
2 r s 1 2 1 1 4
¢rrs 2 - - A2¢rrs [ 20 + w 70 - w % ] .
ws(éwr - ws) r s r s s

(100)

When the anharmonic resonance Zmr * Wy occurs, the resonating terms are

replaced47 accordiné to
2 2
8w” - 3w
2 r ] 1. 42 4 1 4
¢rrs 2 >/ ¢rrs [ 2w + ® w ] - (10D
ws(4mr - ms) r s s

Similarly the component of the o6ff-diagonal terms [eq. (82)] which

2
has ¢rst as a coefficient may be factored into

2 2 2
wt((ut - W, - lUS)

W+ ow + + w - - + - -
(:r R fut) ((or Wy (t) (wr Wy /nt) (:or W mt)

2 1 1 1
+

= 1 -
/[‘ ‘brst [ W o+ w + l.ut w + o = u)t w - + mt
r s r S r S

77
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] (102)

Thus, if W + Wy = W » the resonating terms should be replaced47

according to

2 1 2 1
¢rst A > M’¢rst [ w + w+ w
rst r s t
+ 1 - 1 1. (103)
w - w + w o= - w
T S t r s t

The components of the diagonal vibrational anharmonic terms for a
symmetric top molecule [eqs. (84)-(86)] and for a linear molecule [eqs.
(91)-(93)] which have ¢2 ras a coefficient may be factored just as eq.

rrr

(100) for asymmetric top molecules into

8w’ - 3u?,
¢2 r r Y ¢2 [ 1 _ 1
rrr' 4 2 2 ) 2 Prere ) + 2y -
W ( o 0y w. Ony W Qr
+ 4 ] (104)
Wy
r

where r and r', denoting either non-degenerate or degenerate normal

modes, replace r and s in eq. (100);

12 1 _ 1 )
b, 7 /2¢rrr.[ 1

2
4Guy_ = w_, 2+ w_, 20 - w_,
r r r T r r

(105)
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g - 2
2 e 7 % L 42 1 1
e el ~ ) =—/2¢ttt'(2 A - vy -
wt.( w, W w, W w, Wy
- f; ) (106)
t'

If an anharmonic resonance (2w, = wrv) occurs, the resonating terms

should be replaced according to

37

(107)

2 2
8w - 3w
2 ' 2 1 4
d>rrr' : 2 - > %Q cbrrr'[ + ]
(4w - w_,) 2w + w w
Wpr r r' r r' '
in eqs. (84)-(86), (91), and (92);
0w
2 r' .l 2 1
(brl’.'l" p) 3 > - /2 ¢rrr|[—w—_—] ’ (108)
b T - w_, 20+ w_,
r r r r
in eqs. (86) and (93); and
2 2
8w” - w”,
¢2 ' L = > =1 152 , ( ! + 4 ) (109)
ttt (4 2 - 2 ) tet 2 + "
wty wt mr| Cl)r wr, r'

in eq. (86).

Similarly, the components of the off-diagonal terms [eqs. (87)-(90)

2

and (94)-(97)] which have Srprpn

as a coefficient may be factored into
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2 2 2
2 wr" (mr" wr mr')
¢ [}

w + w + W ., 5] + w o, - " W - + " W - - "
(r Lt l,)(r " wr)(r Wy wr)(r 1 wr)

2 1 1 1
=1/4 r1’rr|rn [ - +
w + w ,+w, w o+t w - w ., W, =+ w,
T r T
- L ] (110)
W o= W =0,
r T
and
2 © W r W
‘rr'r” (w +w +w, ) (w +w -w, ) (w -w +w,.)(w -w. -w,)
r r' r" T r' r” r r' r” ' "
1,2 1 1 1
= (b T [ = =
3 rer W o+ ow +ow, w o+ W=, w, =0 ,+ w_.,
T r r r
1
+ ] - (111)
wo- ow - w,
o T r

If the resonance W, + ., = W.. OCCUrs, the resonating terms should be

replaced according to

2 2 2
9 wr..(wr..- W - wr.) )
L. > et L
rr'r rr'r
rr'r w_oo+t w o+ w .,
+ 1 - 1 ] (112)
w_ = W, +t W . W= w_ ., = W
r r r r

in eqs. (87)-(89) and (94)-(96) and
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52 e 12 [ 1 } 1
rr'r” 8 "rr'r"”
rrqru w + W '+ W_ . w - ) '+ [(V
1
+ ] (113)
W = W_g= W_.
T T T

respectively. One should recall that A.p.:.» 1in egs. (103), (112), and
(113) has been defined previously by eq. (83).

G. Fundamental vibrational frequencies44

The fundamental vibrational frequencies V. of an asymmetric top
molecule are obtained from harmonic frequencies WL and anharmonic

constants ¥X.¢ defined in the preceding sections by

Vp T et 2xrs * U@ z Xrs ) (114)
s#r
The fundamental frequencies are those which correspond most closely with
those obtained from high-resolution (infra-red, Raman, microwave, etc.)
vibration-rotation spectra.

The fundamental frequencies of a symmetric top molecule are
obtained similarly from the harmonic frequencies and the anharmonic
vibrational constants using a more general formula of the form of egq.
(114) which takes explicit account of the degenéracies within normal

modes which exist in symmetric top molecules as follows:

= l d
v w o+ X r (1 + dr) + X er'

+ g , (115)
r r r'—tr rr

r'
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where d,. is the degeneracy of normal mode r and g,.,. is zero for non-
degenerate modes.

The fundamental frequencies of a linear molecule are obtained from
the harmonic frequencies and the anharmonic constants in exgctly the
same way as for the more general symmetric top, with the exception of
the anharmonic vibrational constants involving only degenerate modes,

which are labelled as Xg g as indicated previously, so that
r*r

= 1
vo= e o+ (L+d)+l, Z Xeprdpr + Xg , (116)
r'#r rr

where x, , 1is also zero for non-degenerate modes.
r'r

H. Vibrational f-type doubling constant:s.50’€’1’70"72

Vibrational f%-doubling is an effective interaction between two
otherwise degenerate vibrational wavefunctions differing only in the ¢-
quantum numbers such that A%, = +1, A%+ = - 1. The expression for the
vibrational f-doubling constant in a symmetric top molecule is obtained

as

L ms((oz - w, - mi,)
Tegr = 7L %o A,
S stt
b i by
' tee” “e'e't 1
- }, + /4(1) 1yt d ' v)
£ Zwt..' tatatat tatatbtb
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2
(z)]2 t

- A z
[ tt! W w

(117)
where A1 is already defined in eq. (83).

The vibrational energy levels of a linear polyatomic molecule may
also be perturbed by vibrational 2-type doubling if two or more doubly
degenerate vibrational modes are excited. The expression for the

vibrational 2-doubling constant for a linear molecule is given by

w (wz - mz - mz )
: 2 s s t t!
rtt' == Z ¢ '
stt 27
stt'
+1/‘*(d’t tt'e! % ¢ t't') i (118)
aaaa aabb

where Aj., 1 is as defined by eq. (83).
I. Rotational f-type doubling constants.49’50’6l’73’74

For any symmetric—top molecule the k=f= £ | levels in a degenerate
vibrational state are split by a second-order vibration—rotation
interaction into a doublet which is referred to as the rotational 2-type
doubling. Perturbation calculations have been described by both
Grenier-Besson’* and 0ka.®! Their results give the following formula

for the 2-type doubling constant q, for C3v molecules:
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This equation may be applied to a molecule belonging to any symmetric-
top point goup of which Cjy is a subgroup. Molecules with fourfold axes
require a different formula.

It should be realized that rotational 2-type doubling constants
must be expected to show both a dependence on the vibrational quantum

numbers v, and the rotational quantum numbers J and K of the form

q, * qEE) + qEJ) J(J + 1) + qEK) (X - zi)
- (V) d;
* L v ) e (120)
r

In the present study only the leading term qge) is considered,
although there have occasionally been observations of the vibrational
and rotational dependences. 1In fact, éq. (119) bnly applies strictly to
qle).

The rotational f¢-type doubling constant q, associated with a
degenerate normal mode vibration ®. of a linear molecule has also been
observed to have v, J, and K dependence, but in the present study only
the contributions due to the centrifugal distortion are counsidered using

the formulation by Watson73

4 - q£e> " qEJ)J(J +1) + qEK)(K + D% . 12D

The qge) values are given by
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are presented in Table V of Watson's
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ITII. Test Molecules and Basis Sets

In order to study the anharmonic properties of asymmetric top
molecules, we have chosen the molecules H,0, HyS, H5CO, HCO, CHZ(BBi),
CHZ(lAl), CHZ(lBl), CoHg4, and their isotopic variants. For most of
these molecules, the anharmonic rotational and vibrational behaviour has
been well-described experimentélly (XEQS.EEEEE)‘ In order to determine
the effects on the calculated anharmonicity of a change in basis set, we
have chosen four basis sets, of double-zeta (DZ), triple-zeta (TZ),
double-zeta plus polarization (DZP), and triple-zeta plus polarization
(TZP) quality. The DZ basis is derived from the primitive gaussian set

of Huzinaga75

which is contracted to form a (9s5p/4s2p) set of functions
for carbon, nitrogen, and oxygen, an (lls7p/6s4p) set on sulfur, and a
(4s/2s) set on hydrogen, as suggested by Dunning.76’77 The TZ basis

75

consists of the same primitive functions which are more loosely
contracted to give a (9s5p/5s3p) basis for carbon and oxygen, an
(l1s7p/7s5p) basis for sulfur and a (4s/3s) basis for hydrogen. For the

DZP and TZP bases, a single set of polarization functions, consisting of

six cartesian d-type gaussian functions for each heavy atom, with

exponents ad(C) = 0,75, ud(N) = (.80, ad(O) 0.85, ad(S) = 0.75, or a

set of p-type functions for hydrogen, ap(H) 0.75, was added to the DZ
and TZ bases, respectively.

The geometries of all of the test molecules were completely
optimized with each of the féur basis sets at both the SCF and CISD

1,5

levels of theory using analytic gradient methods ’~, in conjunction with

a Newton-Raphson optimization scheme, such that residual gradients were
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less than 10—7 hartree/bohr (or radian). Harmonic vibrational

frequencies were determined analytically for SCF wavefunctions78-80 and

by finite differences of analytic gradients for CISD wavefunctions.81

38-40 ,nq quartic

Cubic force constants were determined analytically
force constants by finite differences of third derivatives for SCF
wavefunctions. The rotational and vibrational anharmonic constants were
then evaluated using the various formulas presented in the previous
section.

As test molecules of symmetric—top type, Hg, D;, NH3, and NDj were
chosen. The equlibrium geometries and harmonic vibrational frequencies
of the parent molecules were determined as above in conjunction with the
analytic SCF first and second and CISD first derivative methods, within
each of the four basis sets already designated.

The linear polyatomic molecules chosen for inclusion in the
systematic study of anharmonicity are HCN, DCN, €Oy, N20, C0S, and
Cotoye In this case, the primiﬁive functions as they are published by
Huzinaga75 were employed, since the more commonly used tabulation of

77

Dunning and Hay contains a minor typographical error; namely, the

second most diffuse s exponent of sulfur should be 0.426475. Otherwise,
the basis sets and optimization methods were unchanged for this set of
molecules as well.

Finite difference calculations were performed to obtain SCF fourth
and CISD second derivatives. Calculations of SCF third and CISD first
derivatives were performed after taking both positive and negative

displacements of the individual atomic Cartesian coordinates; the

displacements used were 0.0001 bohr for the determination of SCF fourth
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derivatives and 0.001 bohr for CISD second derivatives. These small
displacements were.chosen to insure that the potential energy surface
near the theoretical equilibrium geometry was being properly
described. Descriptions of properties of potential energy surfaces
yhich depend on the magnitude of the coordinate displacement have been

noted previously when rather large displacements were used.11
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IV.Results and Discussion

The vibrational and rotational spectra of the HZO molecule have
been for many years among the most frequently and intensely studied
molecular spectra, both experimentally and theoretically. Thus, it is
not surprising that the full quartic forcg field of the Hy0 molecule has
been known quite accurately for some time experimentally and that
numerous workers have attempted to reproduce this quartic force field
theoretically. One should note, however, that until very recently85’86
molecular spectroscopists were unable to determine the full
quartic force field of molecules largef than triatomics and that the
number of such triatomics was itself relatively small. The recent
development of third derivative methods for SCF potential energy
surfaces has made it possible to examine theoretically the anharmonic
properties of small molecules with greater accuracy and more efficiently
than was previously possible by using, for example, surface fitting
procedures or other similar methods. Thus, not surprisingly,  the H,0
molecule was among the first examined by Gaw E£“§£L?6'37’39 using
analytic SCF third derivative techniques. The vibration-rotation
interaction constants determined from the analytic SCF cubic force field
which were reported were, indeed, in excellent agreement with the
experimentally determined values, somewhat more accurate than previous

theoretical estimates, and at a cost considerably less than for a



48
surface fitting procedure, for example. The vibration-rotation
constants GE are presented in Table 1, along with the energy,
geometrical parameters, dipole moment, and rotational constants for the
Hy0 molecule. One should notice that the vibration-rotation constants

39 and are in

in Table 1 agree exactly with those presented by Gaw
excellent agreement witn the best available experimentally derived
values of these molecular constants.

The harmonic and fundamental vibrational frequencies and
vibrational anharmonic constants of HZO are presented in Table 2. The
harmonic frequencies are seen to converge émoothly toward the
experimental values, so that there remains only about 50 em™! difference
at the largest basis set correlated level of theory (TZP CISD). The DZP
CISD and TZP CISD levels of theory are expected, based on past
experience, to give between them the best overall agreement in both
geometry.and vibrational frequencies for small molecules. The
fundamental frequencies appear to be in slightly poorer agreement; up to
approximately 75 cm_1 higher than the experimental fundamental
frequencies. The numbers given in parentheses in Table 2 are the CISD
harmonic frequencies which have been adjusted according to the SCF
quartic force field with the same basis. The quantities labeled A, are
the differences v, - w, between the ‘fundamental and harmonic vibrational
frequencies. For the CISD values of Ars the SCF values have been
transcribed and placed in parentheses for clarity. It appears then that
the SCF quartic force field underestimates the anharmonicity measured

experimentally by a few percent. The bend and asymmetric stretch normal

mode differences are underestimated by only 3-4%, but the symmetric
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stretch anharmonicity is lower by almost 10% compared to experiment.

The quartic and sextic centrifugal distortion constants of H20 are
given in Table 3. It is impossible to state what level of certainty may
be associated with these constants. Experimental values of these
constants have not been located. Thus, although both the harmonic force
field on which the quartic constants are based and the cubic force field
for the sextic constants have been seen to be rather reliable for
determination of harmonic frequencies and vibration-rotation constants,
for example, one must use caution since the theoretical prediction of
these constants from ab initio molecular wavefunctions is presently
unprecedented. The leading quartic terms, Ag and Ajg, appear to be much
too large, since, in principal, these distortion constants should be of
the order of 107% of the equilibrium rotational constants. The origin
of the order of magnitude discrepancy for-thése constants is presently
unclear.

The vibration—-rotation interaction constants for DZO are given in
Table 4., Similar good to fair agreement is seen for these constants as
for the corresponding constants for H,0. The rotational constants in
fable 4 are similarly well-behaved and convergent with repect to basis
set expansion, as has been seen previously for H,O0.

The vibrational frequencies and anharmonic constants of D0 are
presented in Table 5. The excellent convergence toward the experimental
harmonic frequencies is again noted for this isotopomer. The only
notable featu;es are that the CISD harmonic frequencies consistently
underestimate the values of the harmonic frequencies and that the

fundamental frequencies are in slightly better agreement with experiment
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than was noted for Hy0.
B. CHy(3B)87791

Methylene, CHy, has become a paradigm for computational quantum
chemistry,92 by serving as a principal indicator of the cooperative role
that computation can play with experiments. The controversies regarding
the bent structure of methylene and the singlet-triplet (S-T) energy gap
between the ground state (331) and the first excited singlet state
(lAl), have now been clearly resolved with the aid of theory.93
However, as with many other small molecules, there still exists some
discrepancy regarding the exact bond lengths and vibrational frequencies
of CH,, indicating that the anharmonic nature of the potential energy
surface must play a key role, as is known to be the case for many small
molecules. 1In particular, CH, is known to be a quasi-linear molecule,93
that is, the bending mode involves large amplitude displacements from
the molecular equilibrium structurer(giving rise to the term "quasi-
linear™) so that the molecular normal mode vibrations are not well
described within the harmonic approximation.

The theoretically determined geometrical parameters of CH2 at the
various levels of theory and of basis set are given in Table 6, along
with the vibration-rotation interaction constants and rotational
constants. As has been noted for many molecules, the geometry is
somewhat underestimated at the DZ and TZ SCF levels of calculation.
However, in contrast to the expected improvement upon going to a
polarized basis, neither the DZP nor TZP SCF results appear to approach

the experimental structural values; most surprising is that, for the HCH-
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bond angle, the DZ CISD value, which for most molecules would be
severely overestimated, is in the best agreement with the experiment.
Even the inclusion of correlation with the largest basis set used here
(TZP CISD) leads to underestimation of both the bond length and angle,
by 0.004»A and 1.2°, respectively. This somewhat unusual behaviour
involving the geometry of this molecule hints at what has been indicated
above, that is, that anharmonicity is important for the description of
the potential energy surface on which CHy resides.

The rotation-vibration interaction constants a? of CHy have been
previously reported; the values reported in Table 6 agree exactly with
those of Gaw, Eﬁuil;ﬁo These values support the contention of CH, beiﬁg
a quasi-linear molecule, specifically that there exists a strong
coupling between the vy bending mode and rotation about the molecular a
axis (the Symmetry z axis). "The values obtaiped for aé are
unrealistically large, and are, therefore, not reported in Table 6.
Based on perturbation theory, the a constants should be of the order of
1072 of the corresponding rotational constant; otherwise, one must
conclude that the vibrational normal mode is not, in fact, merely a
perturbation of the rotational motion, as is the case here. It is seen
also that the interaction between v3, the asymmetric CH stretch, and
rotation about the a axis is also quite large; aithough the values of a%‘
are, in fact, approximately 28% of A,, it is nonetheless seen that the
total effect due to zero—point vibration is only about 2%, or, of the
expected order of magnitude. It is for this reason that a% is reported
in Table 6. The vibration-rotation interaction between the other

vibration-rotation pairs is seen to be at least a factor of 10 smaller
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than those through which vy and vj interact with molecular a axis
rotation.. Because the experimental values of the geometry and the
rotational constants are interdependent, some small differences in the
geometry determined theoretically, as noted above, wouid be expected to
lead to small differences in calculated (equilibrium) rotational
constants; the extremely large difference between the reported and
calculated values in Table 6 is certainly related to the magnitude of
the vibration-rotation interactions. If, for example, the experimental
determination did not take into account a large vibration-rotation
iﬁteraction, the (indirectly) measured Ao could be erroneous; on the
other hand, if, in fact, the reported experimental value includes
vibration-rotation interaction, the large discrepancy indicates the
magnitude of such an interaction, i.e., "50% of the theoretical A,, and
confirms the previous contention that this interaction is indeed not a
simple perturbation. The remaining rotational constants are seen to
agree acceptably well, i.e., within 2% when using the highest level of
calculation available in this work.

The harmonic and fundamental vibrational frequencies and the
vibrational anharmonic constants of CHy are given in Table 7. It is
seen that, at the SCF. level of theory, there remains somewhat more than
10% difference between the theoretical harmonic and experimental
fundamental frequencies (somewhat qore still for the bending mode V2)°
The large discrepancy still remaining at the CISD level is again unusual
for a small molecule. The theoretical fundamental frequencies are
predicted to lie closer to the experimental frequencies, as they must,

but, however, there is still a much larger difference between the
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experimental and theoretical frequencies than one would expect. The
frequency differences A, show that the anharmonicity in 3B1 CH, is quite
considerably underestimated by the SCF quartic force field described
ﬁere. Evidently, there are large contributions to the vibrational
potential due to higher-order force constamts.

The quartic and sextic centrifugal distortion conétants of
methylene are given in Table 8. As with H,0, the leading quartic terms
are much larger than would be expected from the perturbation theory
treatment which defines these constants. The quartic distortion term AK
is not reported in Table 8 because its magnitude is nearly that of a
rotational constant based on the perturbation formulas. In addition,
the leading sextic term, Hy, is approximately an order of magnitude
larger than would have been anticipated from expected order of magnitude
considerations. Again, there is no indication of the origin of the
evident breakdown of the pe;turbation theory for the description of the
centrifugal distortions of this molecule. For a quasi-linear molecule
such as CHjp, the molecular distortions caused by the large amplitude
bending mode coupled to molecular rotations could contribute
significantly to higher-order (i.e., quartic, sextic, etc.)
distortions. Without the benefit of experimental insight, little else
may be said.

The rotational constants and vibration-rotation constants of CDy
are given in Table 9. As for the érotiated isotopomer, the strong
vibration-rotation interaction between molecular a axis rotation and
vibrational normal mode Vv, precludes accurate prediction of rotational

constant A. Thus, this constant is predicted significantly lower
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theoretically than the experimental data indicate.

The harmonic and fundamental vibrational frequencies and
vibrational anharmonic constants of CDy are reported in Table 10. The
lack of available experimental data precludes much comment on the data
there. The fundamental frequency V; is seen to be predicted quite a bit
too large compared to experiment. Evidently, as with CH,, the
anharmonicity of vibration is significantly underestimated and higher-
order force constants are important.

Other theoretical methods which are not based on perturbation
theory have been developed for treating molecules like 3B1 CH2 which
have large amplitude stretching or bending motions or other large
deviations from the rigid rotor and/or harmonic oscillator
approximations of molecular spectroscopy. One of the most successful
methods is based on the semi-rigid bender or non-rigid bender

94 which have been developed and applied to a number of non-—

95

Hamiltonians

rigid (e.g., quasi-linear) molecules, including CHj.

c. CcH, (14))89,96

In contrast to triplet methylene, singlet methylene is much more
strongly bent at its equilibrium geometry, and, therefore, provides much
better agreement between theoretical and experimental descriptions of
the potential energy surface of the molecule near its minimum energy
conformation. As a consequence of the smaller bond angle, singlet
methylene does not have the same large amplitude bending motion which
caused a poor description of vibrational anharmonicity and vibration-

rotation interaction in triplet methylene. The geometry, vibration-
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1Al CHy are

potation interaction constants, and rotational constants of
presented in Table ll. A comparison with the ;orresponding data for 381
CH, in Table 6 shows that the bond lengths of the singlet are somewhat
longer, by 0.025 A at the TZP SCF level of theory and by 0.033 & at the
TZP CISD level of theory. More striking, however, is the difference in
bond angles between the two electronic states of this molecule; the bond
angle for singlet methylene is predicted theoretically to be 25-31° less
than for the triplet. Another way to view this effect is to realize
that the singlet bond angle is slightly smaller than that expected for

an sp3 hybridized atom, whereas the triplet has an angle which is much

larger than even that expected for an sp2

hybridized center. This
decrease in bending angle is seen to result in a much larger dipole
moment, as might be expected from the localization of the non-bonding
electron pair into a single moleculér orbital, as opposed to the
separation into different carbon 2p-like orbitals in the triplet.
AAnother consequence of the increased bending of the molecule away from
linearity is that correspondingly more vibrational quanta are required
to reach a linear nuclear coanfiguration; thus, the bending potential of
singlet methylene is deeper than that for triplet methylene. This
further leads to an expectation that the vibration-rotation interaction
in the singlet molecule will be somewhat less than in the triplet,
particularly the interaction with rotation about the molecular a axis.
This ié, in fact, what is observed in the data of Table 11, in which all
of the vibration-rotation interaction constants appear to be wéll—

behaved, that is, of the proper order of magnitude relative to the

equilibrium values of the rotational constants. Even the largest
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interaction constants, those involving, not surprisingly, the bend Vo
and rotation about the molecular a axis, are less than 10 % of the
affected rotational constant, A, and the overall zero-point correction
is approximately 17.

The frequencies and anharmonic constants associated with the normal
mode vibrations of CH, (lAl) are presented in Table 12. The agreement
between theoretical and experimental fundamental frequencies is seen to
be excellent. The more strongly bent singlet methylene is not only free
from large vibration-rotation perturbations, but, evidently, also from
large vibrational anharmonic coupling between normal modes. The
anharmonicity as determined theoretically, although predicted to be of
about the same magnitude for singlet as for triplet methylene, seems to
reproduce the experimental anharmonicity much better in the case of
singlet methylene.

The quartic and sextic distortion constants of lAl CHy are given in
Table 13. Once more, in the absence of experimental verification or
contradiction, little can be added to the simple presentation of the
theoretical data. The leading quartic term Ag is ounce again larger than
one might expect, and there is no indication in the geometry, rotational
constants, etc. that might suggest an explanation for the pgrsistent
(evident) breakdown of the pertutrbation theory for this term.

The vibration-rotation interaction constants and rotational
constants of CD2 are given in Table l4. -The rotational constants an
interaction terms are well-behaved theoretically and converge with both
basis expansion and inclusion of correlation. These data for this

experimentally easily accesible small molecule should encourage further
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spectroscopic investigation of the vibration-rotation spectra in order
to help to confirm (or refute) the reliability of ab initio cubic (and
quartic) force fields.

The harmonic and fundamental frequencies of singlet CD, are given
in Table 15 along with the vibrational anharmonic constants and are
presented with only one comment. Singlet methylene has proven
theoretically to provide data related to its ab initio cubic and quartic
force fields which is both well-converged theoretically and in excellent
agreement with the available experimental data. One would hope for more
experimental data to test the conclusions made as well as to shed light
on the ambiguous portions of the anharmonic force field, for example,
the centrifugal distortion constants.

p. cH, (18))%°

The open—-shell singlet electrqnic state (lBl) of methylene (CHy) is
structurally similar to the ground (triplet) state. That is, the CH
bond lengths are shorter and the HCH bond angle quite a bit larger than
those of the lower singlet (lAl) state. In this respect, it also has
many of the same difficulties associated, from a theoretical point of
view, with a quasi-linear molecule. The geometrical parameters,
vibration-rotation interaction constants, and rotational constants for
CH, (lBl) are given in Table 16. As can be seen there, the interbond
angle is, in fact, approximately 10° larger than even for the triplet
state discdssed above. One might expect, then, an even greater coupling
between vibration and rotation, particularly rotation about the

molecular a axis causing significant centrifugal distortion of (or being
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significantly affected by) the vy, HCH bending mode. This is strikingly
evident in that the interaction constants a involving all three normal
mode vibrations and the rotational constant A are quite large; in fact,
each has been judged meaningless in the context of a perturbation theory
approach to vibration-rotation interaction and are, hence, not presented
in Table 16. The values of a% are given at the DZP and TZP SCF levels
of theory, since these values seem to be much more reasounable (3-4% of
Ae at the same level of theory), and, in fact show little variation upon
going to the larger of the two bases. The interaction constants
involving the other rotational constants B and C are, however, well
behaved, indicating that these (much smaller) rotational constants have
less interaction with the normal mode vibrations, including the highly
anharmonic quasi-linear mode Vj.

Table 17 contains the harmonic and fundamental vibratiomnal
frequencies of CH, (lBl), as well as the vibrational anharmonic
constants. Although this particular electronic state of this molecule
is somewhat more poorly characterized than the two previously discussed
lower lying states, one has a sense from Table 17 that many of the
difficulties seen for the vibrational frequencies of the triplet may
occur here as well and, most likely for similar reasons. The normal
mode frequencies change by only about 100 cm_l from the harmonic to
fundamental values (e.g., TZP SCF) and only by a similar amount upon
inclusion of electron correlation in the harmonic values (e.g., TZP
CIsD). This is what was seen previously (for the triplet) and, in that
case, was seen to severely underestimate the effects of anharmonicity in

the vibrational normal modes (or, at least, the experimental and

.3
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theoretical fundamental frequencies were still somewhat in
disagreement). The large positive values of the anharmonic vibratiomal
constants )y and xp3 which show the effect of normal mode frequency vy
on the frequencies v; and vy (that is, the anharmonic coupling between
the normal modes) are unusual in sign (most anharmonic constants are
expected to be negative, and a fundamental frequency is almost always
smaller than the corresponding harmonic frequency), but show two other
important points as well. First, the effect of addition of polarization
functions is seen to be very important, changing the value of the
constants by a factor of 2-3 (DZ vs. DZP, for example). Next, the
constants seem to vary very little with improvement of the basis aftér
the addition of polarization functions (DZP vs. TZP), and, therefore,
appear to have almost converged with respect to basis set expansion at
the TZP SCF level of theory in this case. The necessity of polarization
functions is also seen clearly in a comparison of the values of wy, vy,
and Ay; the harmonic frequency changes by over 30% with the addition of
higher angular momentum functions to the basis, with the corresponding
change in the fundamental of almost 100%Z. This is clearly due, not only
to the poor description of the geometry and harmonic potential using an
unpolarized basis, but, in addition, a poor description of the cubic and
quartic potentials, as evidenced especially in the values of ¥jj, X990
and x;,3.

Quartic and sextic centrifugal distortion constants of CH2 (lBl)
are given in Table 18. As was the case for the triplet (ground state)
methylene, the quasi-linear lBl state must certainly have large higher-

order centrifugal distortion effects which cannot be properly treated by
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perturbation theory. Thus, the leading quartic distortion terms Ag and
AJK aré not surprisingly predicted to be very large. The values of Ayg
which are given in Table 18 are almost certainly not meaningful in the
context of a perturbation treatment of vibration-rotétion interaction,
but are reported nonetheless for information or for potential future
reference. In addition to the leading sextic term Hyg also being too
large, the true importance of these higher—-order centrifugal distortion
effects is seen in the magnitude of two other distortion constants, the
quartic constant ¢y and the sextic constant Hgj. Of course, in a case

-like this, proper rotational energy levels, including the effects of
higher-order distortion explicitly, could be obtained by rigorous
diagonalization of a rotational Hamiltonian which included all of the
higher-order term values. For this molecule, it seems likely that a
much better description of the features of the vibration-rotation
specrum could be obtained theoretically via a different formulation of
the vibration-rotation Hamiltonian, for example, by using the semi-rigid
(or non-rigid) bender Hamiltonian of Jensen and Bunker.2%»95

Table 1Y includes the vibration-rotation interaction constants and
rotational constants of CDZ'(lBl). 0f course, the interaction constaats
involving rotational constant A have been ommitted because in general
they are too large to be properly considered based on perturbation
formulas. The dramatic change of the values of the rotational constant

A, and of the interaction constant ag upon going to a polarized basis at

the SCF level of theory again emphasizes the importance of using

polarization functions in order to properly describe a molecular

potential energy surface. The fact that the only values of a? which
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have reasonable values are those obtained from polarized bases also
speaks to the necessity of using a balanced basis set which includes
higher angular momentum functions, particularly for molecules in which a
bending (internal or normal) coordinate must be properly described.

The anharmonic constants reported in Table 20 also show dramatic
evidence of the effect of polarization functions on molecular
constants. The values of all of the constants in Table 20 which involve
the bending normal coordinate (wz, X125 X225 X235 Voo and Az) change
markedly upon introduction of polarization functions into the basis
(from DZ or TZ to DZP or TZP). The harmonic frequency increases by 200

Cm_l; the anharmonic constants change by over 507%; the fundamental

l; and the frequency difference

frequency increases by almost 300 cm
(anharmonicity) is reduced by over half when polarization functions are
included in the basis set. This is a very dramatic demonstration of the

role of higher angular momentum functions in the proper description of

properties of the anharmonic force field as well as of the harmonic

force field.

E. HCO (ZAI )97"101
: /

The formyl radical, HCO (2A'), has been found to play an important
role in the chemistry of flames, and, after an earlier surge of work on
. . . - 97-100 .
its vibration—-rotation spectra, has recently been the object of

101,157-162 This molecule falls

renewed interest and investigation.
unfortunately into the category of quasi-linear molecules which have

already been discussed and shows the same breakdowns in the perturbation

treatment of its vibration-rotation spectra as do CHy (331) and CH,
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(lBl)-94’95 The molecular structure, vibration-rotation interaction
constants, and rotational constants are presented in Table 21. The
equlibrium CH bond length is slightly longer here than, for example, in
CH, since the central carbon atom is effectively sp2 hybridized, with
the equlibrium bond angle being 125-128°, or, only a few degrees larger
than the idealized value of 120°; the equilibrium value of the CO bond
length is, however, also longer than a typical CO double bond, as, for
example, in HyCO (vide infra). The theoretical methods are seen to
reproduce the experimentally determined CO bond length extremely well;
the slight underestimation of the CH bond, even at the polarized (DZP or
TZP) CISD level of theory is symptomatic of the inherent difficulty
often encountered theoretically with moleculés which are weakly bound,
even with respect to linearization, for example. Of course this
.discrepancy may also be due to the increased difficulty in fitting
experimental spectral data for such a non-rigid molecule; in any case,
the geémetrical parameters are less well determined than one would
expect for a typical small molecule, with the resultant expectation, as
above, that the experimental rotational constants (particularly A) may
be considerably larger than those theoretically determined and presented
in Table 21. The vibration-rotation interaqtion constant ag is not
given in Table 21 since it describes the interaction between rotation
about the molecular a axis and bending mode v3. This large vibration-
rotation interaction is that which is not well (or properly) described
by the perturbation theory treatment. The remaining vibration-rotation

constants are seen to be much smaller, often several orders of magnitude

smaller than would be required by the magnitude ordering of the various
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vibration-rotation terms in eq. (2) or eq. (12).

Both the harmonic and anharmonic vibrational frequencies and the
vibrational anharmonic constants of HCO are given in Table 22. The most
striking feature of this table is the difference between the theoretical
and experimental values of the anharmonic constants x,gqe The
theoretical values seem to be failing to reproduce even the relative
magnitudes of these constants. However, examination of the paper by
Dixon97 from which the experimental values of the anharmonic constants
and harmonic frequencies are taken rgveals that the spectral data which
were available were fitted after fixing the values of the anharmonic
constants X7, Xp3, and X33 to be identically zero. Thus, the
"experimental” values may well be grossly in error, particularly since

97

the theoretical values of Dixon's ignored counstants are clearly non-

negligible, i.e. ™=2 to -11 cm—l. The only fact which remains clear

97

from Dixon's analysis, in light of this theoretical determination, is
that x;; has a much larger value than any of the other anharmonic
constants. This should be taken as a first indication that theory is
now capable of providing spectroscopic data which are difficult (or
impossible) to obtain directly from molecular spectra; in addition, it
may now be seen that comparisons between theoretical and experimental
values derived from anharmonic molecular force fields may, in fact, only
be valid in cases where the experiments are based only on assumptions
which are well-defined and justified from previous experience. In fact,
almost any assumptions about the values of anharmonic molecuiar

constants which are made in an experimental treatment of spectral data

might now be made more accurately based on relatively easily available
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theoretical anharmonic force fields. 1In this regard, one would hope
that molecular spectroscopists might re-examine HCO (for example) with
the a priori expectation of finding a richer, more informative rotation-—
vibration spectrum based upon having an improved (ab initio) quartic
force field in hand.

The centrifugal distortion constants of HCO are presented in Table
23. With the exception of the largest quartic term, the various
coefficients are very small. This suggests that the equilibrium
rotational constants may be more accurate than usual in this case for
describing molecular rotational behaviour and the associated rotation-
vibration fine structure. The rotational constants would be
particularly well-defined, it would seem, by inclusion of only the terums
involving A¢ (and possibly Hg) into a rotational Hamiltonian to be
diagonalized.

The vibration-rotation interaction constants and rotational
constants of DCO are given in Table 24. Just as for HCO (Table 21), the
theqretical rotational constants are expected to underestimate the value
of the experimental value(s), particularly A, because of the fact that
the large vibration-rotation terms are neglected in the present

treatment.

The harmonic and fundamental frequencies and vibrational anharmonic
constants of DCO are given in Table 25. Just as for HCO the agreement
between the theoretical and "experimental” harmonic frequencies is
rather poor due to the neglect of some of the anharmonic constants in

97

the fitting of the observed fundamental bands. As with HCO, the

present availability of a complete quartic force field should encourage
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re-examination of the anharmonic constants and harmonic frequencies of
DCO.

F. HZCO35,85,102—105

Formaldehyde, H,CO, ranks along with acetylene (CyH,) among the
most studied tetra-atomic molecules. These two molecules are, in fact,
the only twp molecules of greater than three atoms for which a complete
quartic force field has been determined experimentally. In additiom,
formaldehyde is a theoretically well-behaved molecule and, as such,
provides one of the best comparisons of molecular constants obtained
from theoretical and experimental quartic force fields. 1In Table 26, it
should be noted that the geometrical parameters are in much better
agreement, both at the SCF and CISD levels of theory and with all four
basis sets, than any of the previously discussed molecules. At the TZP
CISD level of theory, the agreement is exact; this is very satisfying
and provides high expectations regarding the theoretical prediction of
the anharmonic force field of formaldehyde. The lower levels of theory
and of basis are seen to perférm satisfactorily as well for this
strongly bound molecule which is subject only to small perturbations via
rotation-vibration interactidn.

The théoretical harmonic and fundamental frequencies of HyCO are
given in Table 27 along with those found experimentally in the landmark

85 as well as previously by Duncan and

work of Reisner, et al.,
Mallinson.l0% The theoretical harmonic frequencies are seen to be in

much better agreement (even compared to the experimental fundamentals)

than for most of the previously considered molecules. In addition, one



66
may see that the frequency differences A are, in general, smaller than
observed previously for molecules having large amplitude, highly
anharmonic normal mode vibrations. Thus, the improvement gained upon
increasing the basis set, inclusion of electron corelation, and
consideration of the anharmonic force constants results in even better
agreement between the experimental and theoretical (anharmonic)
vibrational frequencies. The anharmonicities associated with normal
modes Vi and vg are the most severely underestimated theoretically; this
is somewhat surprising for the CH stretching mode v, but considerably
less so for the out-of-plane bending mode Vg which could be expected to
be rather more anharmonic.

The vibrational anharmonic constants ¥,.q are given in Table 28.
These constants are seen to agree quite well with the corresponding
experimentally derived values.85 The exceptions appear to be X12s X33
X345 X35, and X4¢s all of which disagree in sign with the experimental
constants; note, however, that all of these disagreements in sign are
among constants of small absolute value, and, in fact, the absolute
values of each of these constants is in agreement between the
theoretical and experimental values (at least as much as the other
anharmonic constants are in agreemen;). Additionally, the constants ¥jg
and Xjg appear to significantly underestimate the experimental values
(perhaps these are the major contributions to the underestimated
anharmonic contribution to Vl); Xj4 and Xg5 appear to be somewhat more
in disagreement than the majority of the reported constants; and X56
amazingly is underestimated at the highest level of theory, after being

in good agreement with the smaller bases.
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The singular anomaly associated with the vibration-rotation
spectrum of formaldehyde is indicated in Table 29, along with the
centrifugal distortion constants. The asymmetry parameter o is much
larger than the rotational constants; this is indicative of an
approximate symmetric top molecule. That is, the rotational constants B
and C of H,CO are accidentally nearly degenerate; thus, many of the
centrifugal distortion constants may not be well-defined since they may
have denominators containing the quantity (B-C). In addition, HZCO is
the first molecule which has been examined here for which the quartic
and sextic distortion constants are well-behaved. That is, there is no
(apparent) breakdown of the perturbation formulas as has been seen‘
previously when treating the formaldehyde molecule. This provides
reassurance that the present implementation of the perturbation theory
based formulas for centrifugal distortion constants is not flawed.

Table 30 provides the vibrational frequencies of D,CO. Both the
harmonic and fundamental frequencies are in good agreement theoretically
with the experimental values. Although the agreement is not quite as
good as for HyCO, the average deviation is only approximately 50 cm_l in

l in the fundamental

the harmonic frequencies and approximately 40 cm™
frequencies. The frequency differences show that the anharmonicity
associated with a number of the normal mode frequencies is somewhat
underestimated theoretically, in particular, Ay, A3, and Age.

The vibrational anharmonic constanté of D2CO are presented in Table
3le 1In light of the previously mentioned underestimation of the

anharmonicities of some normal modes, one might expect that the

corresponding anharmonic constants might also be underestimated
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theoretically by similar amounts. Otherwise, the excellent agreement
seenvfor the anharmonic constants of H,CO should carry over to D,CO as
well.

G. HZ5106—117
The hydrogen sulfide molecule, although closely related in the
periodic table to water, has been much less studied than its more common
periodic neighbor QZEQS.EEBEE)' In fact, one of the earliest papers
which discussed the anharmonic force field of H9S appears to have been
challenged very little by more recent experiments, despite the fact that
the assumed structure is far from the currently accepted picture of the
geometry of H,S5. Thus, it appears that the most definitive work
concerning the anharmonic force field of H,yS is the theoretical surface

107 therefore,

fitting reported by Botschwina, et al. last year.
although the interbond (HSH) angle is in excellent agreement with the
most accurate previous experimental determination, the small discrepancy
in the bond length cannot be too surprising since the experimental
result is not the result of a high-resolution (or high accuracy)
experiment. The vibration-rotation interaction constants in Table 32
are theoretically among the mpst well-behaved suchigqupants which are
presented in this work; the rotational constants are well separated and
reasonably small, and the interaction constants are proportionately
smaller, as they should be for the present perturbation treatment to
apply (and as has been discussed previously). Thus, the present

accumulation of data concerning the rotational constants and the

interaction with the molecular normal mode vibrations should serve as a
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highly reliable source of information for future investigation of the
hydrogen sulfide molecule and its rotation-vibration spectra.

The theoretical harmonic and anharmonic vibrational frequencies are
compared with the available experimental data in Table 33. Even for a
molecule which contains a third-row atom, H,S shows the same trends as
seen previously with regard to expansion of the basis and inclusion of
correlation. The overestimation of the experimental fundamental
frequencies by the theoretical harmonic values is reduced somewhat at
the CISD level of theory, and, by the inclusion of the effects of
anharmonicity, both the harmonic and fundamental frequencies agree

within a few cm™!

at the highest level of theory employed here.

The same questionable certainty associated with almost all of the
centrifugal distortion constants tabulated for molecules here so far
must also be applied to the quartic and sextic distortion constants of
H)S in Table 34. Although the molecule is well-behaved theoretically in
every other way, the léading quartic distortion terms of the H,S
molecule are once again larger than those in which one would be able to
place any measure of confidence.

H. CZH4118—121

A recent paper by Lee, Allen, and Schaefer122

which reports the
harmonic vibrational frequencies of ozone (03) and ethylene (CZHA) using
multi-reference (MR) CISD wavefunctions also gives an excellent
discussion of the experimental state of affairs with respect to the

vibrational (infra-red and Raman) spectrum of ethylene, and their key

points are reviewed here. Although the ethylene molecule has a great
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deal of symmetry (Djy), it has not been the object of high-resolution
infra-red or Raman spectroscopic investigation until very recently. 1In
fact, the observation and identification of the features in the infra-
red and Raman spectra of CoH, and their assignment to ethylene's normal
modes was a matter of some controversy until relatively recently. Now,
however, with the assistance of large scale ab initio calculations, the
vibrational spectrum appears to be somewhat more clearly understood.

The theoretically determined geometry of C2H4 at the DZP SCF and
DZP CISD levels of theory are given in Table 35. Because of the number
of atoms (and, therefore, the number of degrees of freedom) in ethylene,
it was determined to perform only these levels of calculation with this
molecule. In addition, the displacements required for the finite
differences of third derivatives were performed with respect to
symmetrized internal coordinates of C2H4 in order to minimize the number
of third derivative calculations required. This technique, which
substantially reduces the amount of computation time required relative
to that for displacements of all the Cartesian coordinates (as was done
for all of the other molecules herein), is certainly one which will

become of greater use as both the number and size of molecules for which

full quartic (and higher) force fields are being determined-by ab initio--—- -

methods grows.

The harmonic and fundamental vibrational frequencies at the SCF and
CISD levels of theory are compared with experiment in Table 36. In all
cases the frequencies are in remarkable agreement. For the SCF values,
the error in theoretical fundamental frequencies is between 5 and 147

higher than the corresponding experimental fundamental frequency. At
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the CISD level of theory, the errors are reduced to within only 1 to 8%
of the experimental values. The DZP SCF quartic force field is also seen
to provide excellent agreement with the experimentally derived frequency
differences; the underestimation is no more than 30 cm—l in any case.
Lee, Allen, and Schaefer deal with the vibrational spectrum of CyH, in
much more detéil, and for further discussion, the reader is referred to

their paper.122

I. HCN29,123,124

The HCN molecule is another of the molecules wpose vibration—
rotation spectra have been well studied both experimentally and
theoretically for many -years. It is therefore somewhat surprising that
the geometrical parameters presented in Table 37 for this molecule are
not in better agreement. This is not to say that extensive study should
necessarily lead to better agreement; however, since HCN is well-behaved
and easily studied both experimentally and theoretically, and since both
the experimental and theoretical techniques have been seen often to
produce excellent agreement, it is in this way surprising that there is
some discrepancy- (although certainly not of a magnitude to demand great
concern) in the geometrical parameters. Table 37 also provides the
first available comparison in this work of two experimentally avéilablé
sets of values fop the vibration-rotation interaction constants with
;hose determined from the ab initio cubic force field. It is seen that
reasonable agreement is, in fact, achieved, with the theorétical values
in all cases being slightly smaller in absolute value. The quartic

centrifugal distortion constant is seen, likewise, to be in excellent
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agreement with the experimentally derived coustant; this is an
encouraging indication of the quality of many of the other quartic (and
sextic) distortion constants which have been presented, but for which
there do not exist experimental data with which to compare.

The harmonic and anharmonic vibrational frequencies and anharmonic
vibrational constants of HCN are given in Table 38. As with most
molecules here, there is convergence of the molecular constants with
basis set expansion, and improved agreement with experimental data upon
the inclusion of electron correlation and anharmonic force field
effects. Thus, the HCN molecule addé confirmation to the accuracy and
reliability of ab initio determined anharmonic force fields and
molecular constants.

The vibration-rotation interaction constants, rotational constants,
cgntrifugal distortion constants, and rotational f-type aoubling
constants of DCN are reported in Table 39. The same excellent agreement
with the available experimental values is seen as was seen for HCN.

The harmonic and anharmonic vibrational frequencies and the
vibrational anharmonic constants of the DCN molecule are presented in
Table 40. Considering the consistent agreement of all of the anharmonic
molecular constpnts~discussed so far of HCN/DCN, it is not surprising
that the vibrational frequencies and anharmonic constants are in
excellent agreement with the available experimentally derived data for
these constants as well,

J. C0268,69,127—129

The carbon dioxide molecule, CO,, owes much of its recognition
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spectroscopically to the identification by Fermi68

of the anharmonic
resonance between normal mode vibrations v; and 2v,. Because of this,
COy has been thoroughly studied spectroscopically and is the only
molecule for which a force field complete through sixth order has been
determined experimentally. The molecular constants of CO, are presented
in Table 4l. The best agreement for the CO bond length is at the DZP
CISD level of theory; the increase in basis set to TZP at the correlated
level of éalculation leads to a striking change in the predicted bond
length, giving very poor agreement for the structure of this molecule.
The amount of fluctuation in the predicted bond lengths across Table 41
with increasing basis set and with inclusion of correlation is quite
unusual as well; there does not appear to be any obvious convergence of
the molecular structure within the levels of theory considered here.

The other molecular constants in Table 41 show good agreement with the
extensive available spectroscopic data, however, the parameters show
slower convergence with basis set than has-been observed previously.
(The poorer agreement with the experiments at the largest basis set
levels compared to smaller bases, both here and for HCN considered
above, may lead one to speculate that the potential energy surface of
molecules having a substantial (fractional) portion of their bonding as
multiple bonds may be less well described theoretically than those for
molecules with mostly single bonds. The excellent agreement in, for
example, vibrational frequencies for the molecules H,0, NH5, CH,, NHZ,
Hy¥, eté. which are often used as theoretical test cases may tend to

overshadow the less spectacular, although nonetheless still good,

results for such molecules as HCCH, HCN, H,CO, which—tiemselves are
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often used as small test molecules.)

The vibrational frequencies and anharmonic constants of carbon
dioxide are given in Table 42. As for most molecules, it is clear in
the Table that the SCF harmonic frequencies overestimate the
experimental fundamental frequencies by somewhat more than 107 on
average; the frequencies are corrected, becoming closer to both the
harmonic and fundamental experimental frequencies by the inclusion of
correlation and effects due anharmonicity. The values of the anharmonic
constants ¥X,.,: are also in agreement with the experimentally well-
determined values of these constants. One may note in Table 42,
however, the very poor agreement indicated by the use of the TZ basis;
in particular, several of the constants predicted at this level of basis
are in disagreement with the other theoretical determinations (as well
as with experiment) in regard to either the sign or the magnitude of the
constants (note, for example ¥j, X22» and x22£2’ as well as the
prediction of a positive frequency shift on going from the harmonic to
the fundamental frequencies of normal modes v, and vz). The further
saturation of the sp basis without inclusion of polarization functions

in the basis is clearly disfavored.

<. N20130—132 -
Nitrous oxide, N,0, has been the object of a number of studies -
which have been concerned particulagly with 2-type doubling as a result
of the anharmonic force field of a molecule. Thus, a large number of
the molecular constants associated with the cubic and quartic force

field of this molecule have been reported experimentally. The molecular
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structure and other constants are given in Table 43 for the N,0
molecule. As with C02 QXEQENEEEEE) the bond lengths of N20 show rather
poor convergence with basis set, with the TZP CISD result égain showing
a substantial deterioration of agreement with experiment relative to the
corresponding DZP result (for the NN bond). The other values in Table
43 show similar trends, i.e., not approaching the experimental values in
a consistent way, either with expansion of the basis or, where
applicable, with inclusion of electron correlation. This seemingly
unfortunate result should rather encourage further studies on this
molecule (and other multiply bonded molecules) both with respect to
further basis set enlargement as well as to inclusion of a larger
portion of the correlation energy, by, for example, CISD(T)(Q) or
CCSD(T) methods, in order to better model both the harmonic and
anharmonic force fields associated with N,0.

The vibrational frequencies and anharmonic constants of nitrous
oxide are given in Table 44. The agreement between theoretical and
experimental values is rather good, especially considering the rather
poor and erractic behaviour already noted in regard to the molecular
structure. The most unique feature of the values of the constants given
in the Table is the remarkably small difference A, between the harmonic
and anharmonic values of the molecular bending frequency (wz and Vo
respectively). The unpolarized bases (DZ and TZ) again show severe
discrepancies with the experimental data, indicatiye once more of the
necessity of using a polarized basis for a proper description of the
anharmonic potential energy surface of a molecule, even near its

equilibrium where, in many cases, the geometry and frequencies, for
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example, may be in sufficiently good agreement with experimental

evidence for many purposes (see, for example, the values X13 and X33)°

-

L. cogl33-138

The carbonyl sulfide molecule, COS, although not as well-known as
some of the other molecules investigated here, has a long spectroscopic
history and, consequently, has been remarkably well characterized. The
geometry and various vibration-rotation constants are compared with the
experimental data in Table 45. A similar trend is seen as has been seen
previously with respect to the bond lengths in this molecule. That is,
there appears to be very slow convergence of the structural parameters
with basis set enlargement, at least up to the levels of basis
investigated here. This slow convergence is particularly noticeable
once more for the CO bond length, for which the DZP CISD result is again
in the best agreement with the experiment, and the TZP CISD result,
‘although typically expected to give some small improvement, shows a
large change away from the experimental value. The CS bond length shows
somewhat better convergence with respect to basis set expansion on
inclusion of electron correlation, with fair agreement with experiment
at the TZp SCFrlevel of theory, but much better agreement at the TZP
CISD level of theory. The quartic centrifugal distortion constant Dy 1is
in excellent accord with the experimental value, as is the equilibrium
2-type doubling constant q%, with the differences being only
approximately 2%.

The harmonic and fundamental vibrational frequencies and the

vibrational anharmonic constants of COS are compared with experiment in
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Table 46. The harmonic frequencies show remarkable agreement with the
experimental values, with deviations of only a few wavenumbers in w;
andwy. The CO stretch wy seems to be somewhat larger than the
experimental Qalue, particularly with the DZP or TZP bases at either the

SCF or CISD levels of theory.

M. c2H26,71,86,139—141

The acetylene molecule, CoHy, as mentioned previously, is one of
only two molecules of more than three atoms for which there exists a
completely determined experimental quartic force field. Thus, CyHy
provides another opportunity (with H,CO) for thorough examination of the
performance of ab initio higher derivative methods in the prediction of
properties associated with the cubic and quartic anharmonic force
constants of a molecule. The geometry, vibration—rotation interaction
constants, rotational constants, centrifugal distortion constants, and
2-type doubling constants of the CyH, molecule are given in Table 49,
The geometry suffers from the same distressing deterioration in quality
of results (as compared to the experimental values) at the TZP CISD
level of theory (relative to the DZP CISD results, for example) as has
been seen repeatedly here for linear multiply bonded molecules. The
theoretical vibration-rotation interaction constants appear to
underestimate the corresponding experimental values by 2% or more, with
strikingly less agrcement between theory and experiment for the value of
Ny The quartic centrifugal distortion constant shows the same

remarkable agreement between theoretical and experimental values at the

highest levels of theory examined here as has been seen for each of the
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- preceding molecules for which there has been a reliable spectroscopic
determination of this constant. This is encouraging once again in that
many of the molecular constants which have never before been predicted
by an ab initio theoretical approach appear to be in excellent accord
with experimentally derived values,_and, therefore, these constants (and
others) should be of substantial value to molecular spectroscopists
desiring to measure the fine structure associated with molecular
vibration—rotétion spectra.

The vibrational frequencies and anharmonic constants of C,Hy are
given in Table 48. The harmonic frequencies, for the most part show
excellent convergence with size of basis; the exceptions, particularly
v, and Vg, are much better represented by the CISD level of theory. The
inclusion of the anharmonic force field effects, therefore, leads to
excellent agreement as well with the experimental fundamental
frequencies; normal mode vibrations v, and vg are then in better
agreement with the experiments after correctioﬁ of the CISD harmonic
frequencies via the SCF cubic and quartic force constants. In general,
the vibrational anharmonic constants are in very good agreement with
those determined from experiment; the major exception appears to be the
value of x,5. In this case, one might argue that, based on the
previously mentioned severe overestimation of the harmonic frequencies
wy and wg, it is not surprising that this anharmonic interaction term is
poorly described; on the other hand, this difference of both order of
magnitude and sign for this constant might suggest an experimental re-
examination of the vibrational spectrum of acetylene (even in light of

the poorly converged theoretical value). A few other of the anharmonic
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constants have a somewhat larger than average (fractional) deviation
from the experiment; however, these are in all cases small valued
constants which could very well be in error either experimentally or
theoretically (for example, X25s X44» and X24£4)°
N. Hg 142-145

The Hg molecular ion is the only example of a symmetric top
molecule for which data are given here. The geometry, vibration-
rotation interaction constants, rotational constants, and centrifugal
distortion constants are presented in Table 49. It will be noticed that
only calculations at the SCF level of theory are given. It is also seen
that the basis sets were extended further in this case to see the effect
of approaching a saturated sp basis on the cubic and quartic anharmonic
properties. The most notable feature of Table 49 is that although the
(4s2p) extended basis gives almost idgntical results to the TZP basis,
the further extension of the sp basis leads to quite substantial
deterioration of the quality of the predicted molecular constants.

Thus, even for a molecule of only hydrogen atoms, one must employ a
basis which is well balanced (in addition to having polarization
functions) in order to maintain the quality of results (even those which
haved appeared to have converged with respect to basis set enlargement).

The vibrational constants of H; are given in Table 50. In much the
sane way as the vibration-rotation constants, for example, in Table 49,
the data of Table 50 converge well up to the (4s2p) basis set level;
however, the results with the (evidently) unbalanced (oversaturated)

basis of (6s3p) composition are somewhat erratic and not always in line
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with the other theoretical values of the molecular constants. It would
be worthwhile, it seems, to investigate a basis of (4s2pld) character,
for example, in order to see the effect of a more balanced basis
expansion (i.e., inclusion of yet higher angular momentum functions
rather than further saturation of the sp space) on the anharmonic force
field of this molecule.

The vibrational anharmonic constants were checked independently by

the use of Watson's formulat:ion146

for the special case of an X3
molecule. Exact agreement was found for all of the anharmonic constants
by comparison with the results obtained from the general perturbation
formulas for symmetric top molecules presented in section II. These.
independent calculations give reassurance once again that the present
implementation of the general formulations of Mills, Watson, et al. is
not in error.
0. NH329,147-149

Preliminary results on the anharmonic force field of the ammonia
molecule, NHj, have been obtained. These early results indicate that
the major points which have been noted repeatedly apply to NH; as
well. In particular, the geometry is igwgood agreement with
experimental values at the DZP and TZP CISD levels of theory. The
harmonic force field (i.e., the vibrational frequencies) show a
convergence toward the experimental values with increase of the size of
the basis as well as with the inclusion of electron correlation. The

inversion motion of the NHy molecule is found to be highly anharmonic

(as it is known to be from experimental data), and the use of
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unpolarized basis sets gives an unreasonably large correction to the
harmonic frequency », due to the effects of anharmonicity. It will be
of interest to see the performance of the larger basis sets and the
effects of correlation on the description of this normal mode in

particular.
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V. Concluding Remarks

This thesis has described a portion of the research which has been )
undertaken to investigate the feasibility of using ab initio SCF cubic
and quartic force constants, determined from the new methods of analytic
SCF third derivatives, for determining anharmonic molecular constants of
a wide variety of molecules.163_165 The research presented here has
added immensely to the knowledge previously available (either
experimentally or theoretically) concerning many vibration-rotation
interaction constants (i.e., constants determined from higher potential
energy derivatives). For a number of the molecules, the information
given here should provide motivation for experimental re—examination of
the molecular vibration-rotation spectra with the expectation of being
able to derive much more insight due to the now available ab initio
molecular cubic and quartic (anharmonic) force fields. 1In addition,
some of the results presented raise additional questions. Specifically,
how is one to deal with the apparent breakdown of the perturbation
formulas for centrifugal distortion for many molecules and what level of
basis set or correlation is necessary to properly converge thé
anharmonic constants of molecules containing multiple bonding?166 Other' é
more subtle points may also be further investigated. For example, the
vibrational and rotational l—type'doubling constants‘have not been
examined in detail with respect to the relative contributions from the
harmonic, cubic and quartic terms; that is, one might find a way to

approximate some of the molecular constants which depend on the higher
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order force constants (and which are, therefore, not reported in
standard ab initio calculations) using lower order force constants.

With the full quartic force field of many molecules in hand, it
should be possible to extend immensely the range of anharmonic molecular
constants which are determined by ab initio methods. There are many
spectroscopic constants which depend on the (cubic and) quartic force
field of a moleculelso; all that is required is the formulation of these
spectroscopic constants in terms of the potential energy derivatives
(i.e., the cubic and quartic force constants). One particular set of
constants which depends on the quartic force field is the set of octic
centrifugal distortion constants. These constants are rarely measured,
but often invoked as important for detailed description of molecular
rotational fine structure. The ten independent octic centrifugal
distortion constants (that is, the measurable combinations of the
fifteen pure distortion constants of this order) have been discussed and
described recencly.153’154 However, these octic centrifugal distortion
constants have not been defined or formulated explicitly in terms of the
quartic force field on which they depend; if this were to occur, the
octic distortion constants of all the molecules discussed here (as well
as many other5162_164) would be immediately available. It is hoped,
therefore, that ab initio determinations of cubic and quartic force
fields will continue, not only to give additional comment regarding the
reliability of the anharmopic molecular constants determined in this
way, but also to provide motivation for further development and study in

both experimental and theoretical molecular spectroscopy.



10.

1.

12.

13.

84

References
P. Pulay, Mol. Phys. 17, 197 (1969).
Y. Yamaguchi and H. F. Schaefer, J. Chem. Phys. 73, 2310 (1980).
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, "Ab
Initio Molecular Orbital Theory"”, (Wiley-Interscience, New York,
1986).
Y. Yamaguchi, M. J. Frisch, J. Ff Gaw, H. F. Schaefer, and J. S.
Binkley, J. Chem. Phys. 84, 2262 (1986).
P. Pulay, in "Modern Theoretical Chemistry”, ed. H. F. Schaefer
I11, (Plenum, New York, 1977), Vol. 4, pp. 153-185.
G. Fogarasi and P. Pulay in "Vibrational Spectra and Structure”,
ed. J. Durig, (Elsevier, Amstérdam, 1985), Vol. 14, pp. 125-2109.
J. F. Gaw and N. C. Handy, Ann. Rep. Prog. Chem. (Sect. C, Physical
Chemistry, The Chemical Society, London) 81, 291 (1984).
H. F. Schaefer III and Y. Yamaguchi, J. Mol. Struct. 135, 369
(1986).
P. Jdrgensen and J. Simons ed., "Geometric Derivatives of Energy
Surfaces and Molecular Properties”, (Reidel, Dordrecht, 1986).
R. D. Amos, to be published, quoted by ref. ll.
J. F. Gaw and N. C. Handy, Chem. Phys. Lett. 128, 182 (1986).
T. J. Lee, R. B. Remington, Y. Yamaguchi, and H. F. Schaefer, to be
submitted. |
N. C. Handy, R. D. Amos, J. F. Gaw, J. E. Rice, E. D. Simindiras,

T. J. Lee, R. J. Harrison, W. D. Laidig, G. B, Fitzgerald, and R.




14.

15-

16.

17.

18.

19.

2().

21.

22,

85
Je. Bartlett, in "Geometrical Derivatives of Energy Surfaces and
Molecular Properties”, eds. P. Jdrgensen and J. Simons, (Reidel,
Dordrecht, 1986).
N. C. Handy, R. D. Amos, J. F. Gaw, J. E. Rice, and E. D.
Simindiras, Chem. Phys. Lett. 120, 151 (1985).
E. D. Simindiras, N. C. Handy, and R. D. Amos, Chem. Phys. Lett.
133, 324 (1987).
E. D. Simindiras, R. D. Amos, N. C. Handy, T. J. Lee, J. E. Rice,
and He. F. Schaefer III, manuscript in preparation.
D. J. Fox, Y. Osamura, M. R. Hoffmann, J. F. Gaw, G. Fitzgerald, Y.
Yamaguchi, and H. F. Schaefer III, Chem. Phys. Lett. 102, 17
(1983).
T. J. Lee, N. C. Handy, J. E. Rice, A. C. Scheiner, and H. F.
Schaefer III, J. Chem. Phys. 85, 3930 (1986).
T. J. Lee, G. E. Scuseria, J. E. Rice, A. C. Scheiner, and.H. F.
Schaefer III, manuscript in preparation.
A. C. Scheiner, G. E. Scuseria, J. E. Rice, T. J. Lee, and H. F.
Schaefer III, submitted to J. Chem. Phys.
G. E. Scuseria, A. C. Scheiner, T. J. Lee, J. E. Rice, and H. F.
Schaefer III, J. Chem. Phys. 86, 2881 (1987); R. J. Bartlett, G. D.
Purvié, Int. J. Quantum Chem 14, 561 (1978); R. J. Bartlett, Ann.
Rev. Phys. Chem. 32, 359 (1981); G. D. Purvis, R. J. Bartlett, J.
Chem. Phys. 76, 1910 (1982). |
See, for example, C. S. Gudeman, M, H. Begemann, J. Pfaff, and R.
J. Saykally, Phys. Rev. Lett. 50, 727 (1983); C. S. Gudeman, M. H.

Begemann, J. Pfaff, and R. J. Saykally, J. Chem. Phys. 78, 5837



23.

24.

25.

26.

27'

28.

86
(1983); M. W. Crofton and T. Oka, J. Chem. Phys. 79, 3157 (1983);
M. W. Crofton, W. A. Kreiner, M. Jagod, B. D. Rehfuss, and T. Oka,
J. Chem. Phys. 83, 3702 (1985); M. Bogey, C. Demuynck, and J. L.
Destombes, J. Chem. Phys. 83, 3703 (1985); M. W. Crofton, M. Jagod,
B. D. Rehfuss, and T. Oka, J. Chem. Phys. 86, 3755 (1987).
See, for example, J. C. Owrutsky, N. H. Rosenbaum, L. M. Tack, and
R. J. Saykally, J. Chem. Phys. 83, 5338 (1985); D. M. Neumark, K.
R. Lykke, T. Anderson, and W. C. Lineberger, J. Chem. Phys. 83,
4364 (1985); K. Kawaguchi and E. Hirota, J. Chem. Phys. 84, 2953
(1986); N. H. Rosenbaum, J. C. Owrutsky, L. M. Tack, and R. J.
Saykally, J. Chem. Phys. 84, 5308 (1986); B. D. Rehfuss, M. W.
Crofton, and T. Oka, J. Chem. Phys. 85, 1785 (1986); L. M. Tack, N.
H. Rosenbaum, J. C. Owrutsky, and R. J. Saykally, J. Chem. Phys 85,
4222 (1986); M. Gruebele, M. Polak, and R. J. Saykally, J. Chem.
Phys. 86, 1698 (1987); M. Okamura, L. I..Yeh, D. Normand, J. J. H.
van den Biesen, S. W. Bustamente, Y. T. Lee, T. J. Lee, N. C.
Handy, and H. F. Schaefer IIIT, J. Chem. Phys. 86, 3807 (1987).
See, for example, M. Okamura, L. I. Yeh, and Y. T. Lee, J. Chem.
Phys. 83, 3705 (1985).
B. J. Rosenberg, W. C. Ermler, and I. Shavitt, J. Chem.-Phys. 65,
4072 (1976).
P. Pulay, W. Meyer, and J. E. Boggs, J. Chem. Phys. 68, 5077
(1978).

P. Pulay, G. Fogarasi, F. Pang, and J. E. Boggs, J. Am. Chem. Soc.

101, 2550 (1979).

D. Steele, J. Mol. Struct. 79, 13 (1982).



29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

42.

87
P. Pulay, J.-G. Lee, and J. E. Boggs, J. Chem. Phys. 79, 3382
(1983).
N. Tanaka, Y. Hamada, Y. Sugawara, M. Tsuboi, S. Kato, and K.
Morokuma, J. Mol. Spectrosc. 99, 245 (1983).
P. Botschwina and P. Sebald, J. Mol. Spectrosc. 100, 1 (1983).
S. Kondo, Y. Koga, T. Nakanaga, and S. Saeki, J. Mol. Spectrosc.
100, 332 (1983).
S. Kondo, Y. Koga, and T. Nakanaga, J. Chem. Phys. 81, 1951 (1984).
S. Kondo, J. Chem. Phys. 81, 5945 (1984).
L. B. Harding and W. C. Ermler, J. Comp. Chem. 6, 13 (1985).
J. F. Gaw and N. C. Handy, Chem. Phys. Lett. 121, 321 (1985).
Je F. Gaw and N. C. Handy, in "Geometric Derivatives of Energy
Surfaces and Molecular Properties”™, ed. P. Jprgensen and J. Simons
(Reidel, Dordrecht, 1986), pp. 79-94.
J. F.-Gaw, Y. Yamaguchi, and H',F' Schaefer, J. Chem. Phys. 81,
6395 (1985).
J. F. Gaw, Y. Yaﬁaguchi, H. F. Schaefer, and N, C. Handy, J. Chem.
Phys. 85, 5132 (1986).
Je. F. Gaw, Y. Yamaguchi, R. B. Remington, Y. Osamura, and H. F.
Schaefer, Chem. Phys. 109, 237 (1986).
M. Duran, Y. Yamaguchi, and H. F. Schaefer III, submitted to J.
Koutecky Festschrift, Theor. Chim. Acta.
M. Duran, Y. Yamaguchi, and H. F. Schaefer III, unpublished
results.
M. Duran, Y. Osamura, Y. Yamaguchi, and H. ¥. Schaefer, submitted

to M. J. S. Dewar Festschrift, J. Mol. Struct.



44,

45.

46.

47.

48

49,

50.

51.

54.

55.

56.

57.

58.

59.

60,

88
G. Herzberg, "Infrared and Raman Spectra of Polyatomic Molecules”,
(D. van Nostrand, New York, 1945).
H. H. Nielsen, Phys. Rev. 60, 794 (1941).
H. H. Nielsen, Phys. Rev. 68, 181 (1945).
H. H. Nielsen, Rev. Mod. Phys. 23, 90 (1951).
H. H. Nielsen, in "Handbuch der Physik”, ed. S. Fligge, (Springer-
Verlag, Berlin and New York, 1959), Vol. 38.
I. M. Mills, in "Molecular Spectroscopy: Modern Research"”, eds. K.
N. Rao and C; W. Mathews (Academic Press, New York, 1972), Vol. 1,
pp. 115-140.
D. Papousek and M. R. Aliev, "Molecular Vibrational-Rotational
Spectra”, (Elsevier, Amsterdam, 1982).
Je. K. G. Watson in "Vibrational Spectra and Structure”, ed. J. R.
Durig, (Elsevier, Amsterdam, 1977), Vol. 6, pp. 1-89.
J. K. G. Watson, J. Chem. Phys. 48, 4517 (1968).
F. X. Kneizys, J. N. Freedman, and S. A. Clough, J. Chem. Phys. 44,
2552 (1966).
D. Kivelson and E. B. Wilson, J. Chem. Phys. 20, 1575 (1952).
M. R. Aliev and J. K. G. Watson, J. Mol. Spectrosc. 61, 29 (1976).
A. R. Hoy, I. M. Mills and G. Strey, Mol. Phys. 24, 1265 (1972).
L. Henry and G. Amat, J. Mol. Spectrosc. 5, 319 (1960).
M. R. Aliev and J. K. G. Watéon in "Molecular Spectroscopy: Modern
Research™, ed. K. N. Rao, (Academic Press, Orlando, 1985), Vol. 3,
pp. 1-67.
G. Amat and H. H. Nielsen, J. Chem. Phys. 36, 1859 (1962).

G. Amat, H. H. Nielsen, and G. Tarrago, "Rotation-Vibration of



61.

62,

63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.

17.

78.

79.

80.

89
Polyatomic Molecules”, (Dekker, New York, 1971), pp. 91-109.
T. Oka, J. Chem. Phys. 47, 5410 (1967).
G. W. King, R. M. Hanier, and P. C. Cross, J. Chem. Phys. 11, 27
(1943).
T. Nakagawa and Y. Morino, J. Mol. Spectrosc. 38, 84 (1971).
E. B. Wilson and J. B. Howard, J. Chem. Phys. 4, 260 (1936).
J. K. Go Watson, J. Chem. Phys. 45, 1360 (196§).
J. K. G. Watson, J. Chem. Phys. 46, 1935 (1967).
M. R. Aliev and V. M. Mikhaylov, J. Mol. Spectrosc. 49, 18 (1974).
E. Fermi, Zeits. f. Physik 71, 250 (1931).
D. M. Dennison, Phys. Rev._ﬁlR 304 (1932).
G. Amat and H. H. Nielsen, J. Mol. Spectrosc. 2, 152 (1958).
G. Strey and I. M. Mills, J. Mol. Spectrosc. 59, 103 (1976)>.
M. L. Grenier-Besson, J. Phys. Radium 21, 555 (1960).
J. K. G. Watson, J. Mol. Spectrosc. 101, 83 (1933).
M. L. Grenier-Besson, J. Phys. Radium 25, 757 (1964).
S. Huzinaga, J. Chem. Phys. 42, 1293 (1965).
T. H. Dunning, J. Chem. Phys. 53, 2823 (1970).
T. He Dunning and P. J. Hay, in "Modern Theoretical Chemistry”, ed.
He F. Schaefer III, (Plenum, New York, 1977), Vol. 3, pp. 1-27.
P. Saxe, Y. Yamaguchi, and H. F. Schaefer, J.AChem. Phys. 77, 5647
(1982).
Y. Osamura, Y. Yamaguchi, P. Saxe, M. A. Vincent, J. F. Gaw, and H.
F. Schaefer, Chem. fhys. 72, 131 (1982). ‘
Y. Osamura, Y. Yamaguchi, P. Saxe, M. A. Vincent, and H. F.

Schaefer, J., Mol. Struct. 103, 183 (1983).



81.

82.

83.

84.

85.

86.

87.

838.

89.

90.

91.

92.

93.

94.

90
B. R. Brooks, W. D, Laidig, P. Saxe, J. P. Goddard, Y. Yamaguchi,
and H. F. Schaefer, J. Chem. Phys. 72, 4652 (1980).
B. T. Darling and D. M. Dennison, Phys. Rev. 57, 128 (1940).
H. B. Schlegel, S. Wolfe, and F. Bernardi, J. Chem. Phys. 63, 3632
(1975).
R. J. Bartlett, L. Shavitt, and G. P. Purvis, J. Chem. Phys. 71,
281 (1979).
D. E. Reisner, R. W. Field, J. L. Kinsey, and H.-L. Dai, J. Chem.
Phys. 80, 5968 (1984).

H. Finsterhtlz, H. W. Schrotter, and G. Strey, J. Raman Spectrosc.

11, 375 (1981).

P. R. Bunker and P. Jensen, J. Chem. Phys. 79, 1224 (1983).

T. J. Sears, P. R. Bunker, and A. R. W. McKellar, J. Chem. Phys.

77, 5363 (1982).

H. Petek, D. J. Nesbitt, C. B. Moore, F. W. Birss, and D. A,
Ramsay, J. Chem. Phys. 86, 1189 (1987).

M. D. Marshall and A. R. W. McKellar, J. Chem. Phys. 85, 3716
(1986).

A. R. W. McKellar, C. Yamada, and E. Hirota, J. Chem. Phys. 79,
1220 (1983).

H. F. Schaefer III, Science 231, 1100 (1986).

I. Shavitt, Tetrahedron 41, 1531 (1985).

P. R. Bunker and B. R. Landsberg, J. Mol. Spectrosc. 67, 374
(1977); P. Jensen and P. R. Bunker, .J. Mol. Spectrosc. 99, 348
(1983); P. Jensen and P. R. Bunker, J. Mol. Spectrosc. 118, 18

(1986); P. Jensen, Comp. Phys. Rep. 1, 1 (1983).



95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107,

108.

109.

110,

91
P. Jensen, P. R. Bunker, and A. R. Hoy, J. Chem. Phys. 77, 5370
(1982); P. R. Bunker and P. Jensen, J. Chem. Phys. 79, 1224 (1983).
H. Petek, D. J. Nesbitt, P. R. Ogilby, and C. B. Moore, J. Phys.
Chem. 87, 5367 (1983).
R. N. Dixon, J. Mol. Spectrosc. 30, 248 (1969).
J. S. Shirk and G. C. Pimentel, J. Am. Chem. Soc. 90, 3349 (1968).
G. E. Ewing, W. Thompson, and G. C. Pimentel, J. Chem. Phys. 32,
927 (1960).
D. E. Milligan and M. E. Jacox, J. Chem. Phys. 41, 3032 (1964).
K. M. Christoffel, J. S. Bittman, and J. M. Bowman, Chem. Phys.
Lett. 133, 525 (1987).
D. R. Johnson, F. Jo Lovas, and W. H. Kirchhoff, J. Phys. Chem.
Ref. Data 1, 1011 (1972).
Y. Tanaka and K. Machida, J. Mol. Spectrbsc._éi, 429 (1977).
Je Lo Duncan and P. D. Mailinson, Chem. Phys. Lett. 23, 597 (1973).
E. De Simindiras, N. C. Handy, and R. D. Amos, Chem. Phys. Lett
133, 324 (1987).
C. R. Bailey, J. W. Thompson, and J. B. Hale, J. Chem. Phys. 4, 625
(19306).
P. Botschwina, A, Zilch, H.-J. Werner, P. Rosmus, and E.-A.
Reinsch, J. Chem. Phys. 85, 5107 (1986).
T. H. Edwards, N. K. Moncur, and L. E. Snyder, J. Chen. Phys_ié,
2139 (1967).

R. L. Cook, F. C. de Lucia, and P. J. Helminger, J. Mol. Struct.

28, 237 (1975).

H. C. Allen, Jr. and E. K. Plylar, J. Chem. Phys. 25, 1132 (1956).



111.

112.

113.

114.

115.

l116.

I17.

118'

119.

120.

121.

122,

123.

124,

92
W. C. Lane, T. H. Edwards, J. R. Gillis, F. S. Bonomo, and F. C.
Murray, J. Mol. Spectrosc. 95, 365 (1982).
J. R. Gillis and T. H. Edwards, J. Mol. Spectrosc. 85, 55 (1981).
J. M. Flaud, quoted by Ref. 107.
R. E. Miller, G. E. Leroi, and D. F. Eggers, Jr., J. Chem. Phys.
46, 2292 (1967).
L. Lechuga-Fossat, J.-M. Flaud, C. Camy-Peyret, and J. W. C. Johns,
Can. J. Phys. 62, 1889 (1984).
H. C. Allen, Jr., R. E. Naylor, and E. K. Plylar, J. Res. Natl.
Bur. Stand. 53, 321 (1954). |
H. C. Allen, Jr., E. K. Plylar, and L. R. Blaine, J. Res. Natl.
Bur. Stand. 59, 211 (1957).
J. L. Duncan, I. J. Wright, and D. V. Lerberghe, J. Mol. Spectrosc.
42, 463 (1972).
J. L. Duncan, D. C. McKean, and P. D; Mallinson, J. Mol. Spectrosc.
45, 221 (1973).
D. V. Lerberghe, I. J. Wright, and J. L. Duncan, J. Mol. Spectrosc,
42, 251 (1972).
T. Nakanaga, S. Kondo, and S. Saeki, J. Chem. Phys. 70, 2471
(1979). o : . ——
T. J. Lee, W. D. Allen, and H. F. Schaefer TIII, submitted to J.
Chem. Phys.
I. Suzuki, M. A. Pariseau, and J. Overend, J. Chem. Phys. 44, 3561
(1966). ’
U. Wahlgren, J. Pacansky, and P. S. Bagus, J. Chem. Phys. 63, 2874

(1975).



125.

126.

127,

128.
129.
130.
131.
132.
133.
134.
135.

136.

137.

138.

139,

141,

142,

143.

93
G. Strey and I. M. Mills, Mol. Phys. 26, 129 (1973).
K. Yamada, T. Nakagawa, K. Kuchitsu, and Y. Morino, J. Mol.
Spectrosc. 38, 70 (1971).
M. A. Pariseau, I. Suzuki, and J. Overend, J. Chem. Phys. 42, 2335
(1965).
I. Suzuki, J. Mol. Spectrosc. 25, 479 (1968).
C. P. Courtoy, J. Mol. Spectrosc. 2, 173 (1958).
I. Suzuki, J. Mol. Spectrosc. 32, 54 (1969).
J. Pliva, J. Mol. Spectrosc. 33, 500 (1970).
J. Pliva, J. Mol. Spectrosc. 27, 461 (1968).
Y. Morino and T. Nakagawa, J. Mol. Spectrosc. 26, 496 (1968).
A. G. Maki, J. Mol. Spectrosc. 23, 110 (1967).
W. King and W. Gordy, Phys. Rev. 93, 407 (1954).
M. W. P. Strandberg, T. Wentink, Jr., R. L. Kyhl, Phys. Rev. 75,
290 (1949).
Y. Morino and C. Matsumura, Bull. Chem. Soc. Japan 40, 1095 (1967).
A. G. Maki, E. K. Plyler, and E. D. Tidwell, J. Res. Natl. Bur.
std. A66, 163 (1962).
E. Abramson, R. W. Field, D. Imre, K. K. Innes, and J. L. Kinsey,
J. Chem. Phys. 83, 453 (1985).
Je K; G. Watson, M. Herman, J. C. Van Craen, and R. Colin, J. Mol.
Spectrosc. 95, 10l (1982).
J. C. Von Craen, M. Herman, R. Colin, and J. K. G. Watson, J. Mol;
Spectrosce 111, 185 (1985).
T. Oka, Phys. Rev. Lett. 45, 531 (1980).

G. D. Carney and R. N. Porter, Phys. Rev. Lett. 45, 537 (1980).



144,

145,

146.

147,

148,

149.

150'

154,

155.

156.

157.

94
G. D. Carney, Mol. Phys. 39, 923 (1980).
S. C. Foster, A. R. W. McKellar, I. R. Peterkin, J. K. G. Watson,
F. S. Pan, M. W. Crofton, R. S. Altman, and T. Oka, J. Chem. Phys.
84, 91 (1986), and references therein.
J. K. G. Watson, J. Mol. Spectrosc. 103, 350 (1984).
Y. Morino, K. Kuchitsu, and S. Yamamoto, Spectrochimica Acta 24A,
335 (1968).
W. S. éenedict and E. K. Plylar, Can. J. Phys. 35, 1235 (1957)f
W. S. Benedict and E. K. Plylar, J. Chem. Phys. 32, 32 (1960).
I. M. Mills, in "Theoretical Chemistry, Specialist Periodical
Report”, (The Chemical Society, London, 1974), Vol. 1, pp. 110-159.
M. R. Aliev and V. T. Aleksanyan, Opt. Spektrosk. 24, 201 (1968).
G. Cartwright and I. M. Mills, J. Mol. Spectrosc. 34, 415 (1970).
F. W. Birss, K. Hui, and R. E. Ds McClung, J. Mol. Spectrosc. 100,
382 (1983).
Ch. V. S. Ramachandra Rao, J. Mol. Spectrosc. 102, 79 (1982).
C. di Lauro and I. M. Mills, J. Mol. Spectrosc. 21, 386 (1966).
K. Sarka, D. Papousek, and K. N. Rao, J. Mol. Spectrosc. 37, 1
(1971).
B. M. Stone, M. Noble, and E. K. C. Lee, Chem. Phys. Lett. 118, 83
(1985).
J. M. Brown and D. A. Ramsay, Can. J. Phys. 53, 2232 (1975).
J. W. C. Johns, A. R. W. McKellar, and M. Riggin, J. Chem. Phys.
67, 2427 (1977).
J. M. Brown, J. Butenshaw, A. Carrington, K. Dumper, and C. R.

Parent, J. Mol. Spectrosc. 79, 47 (1980).



161.

162,

163.

164.

165.

166.

95
B. M. Landsberg, A. J. Merer, and T. Oka, J. Mol. Spectrosc. 6, 459
(1977).
R. S. Lowe and A. R. W. McKellar, J. Chem. Phys. 74, 2686 (1981).
Asymmetric Top Molecules: D. A. Clabo, Jr., R. ﬁ. Remington, W. D.
Allen, Y. Yamaguchi, and H. F. Schaefer 111, to be submitted to
Chem. Phys.
Linear Polyatomic Molecules: D. A. Clabo, Jr., R. B. Remington, W.
D. Allen, Y. Yamaguchi, and H. F¥. Schaefer III, manuscript in
preparation.
Symmetric and Spherical Top Molecules: D. A. Clabo, Jr., R. B.
Remington, W. D. Allen, Y. Yamaguchi, and H. F. Schaefer III,
research in progress.
Prof. W. Maier is thanked for pointing out that, in addition to
multiple bonding, each of Fhe molecules which shows poor -
convergence of anharmonic properties with basis set has a number of
lone-pair/lone-pair (or similar) interactions which are also almost

certainly poorly described theoretically without the use of an

extensive and flexible basis.

@



Table 1.

Theoretfcal and experimental geometries, dipole moments, vibratifon-rotation interaction constants and

rotational constants of H20.

SCF CISD Experiment®
DZ T2 DZ+P TZ+P pZ 12 DZ+P TZ2+P

Energy fn hactree -76.01100 -76.01429 -76.04681 -76.04828 =76.13712 -=76.15527 -16.24379 -76.26066

r (OH) ta A 0.9514 0.9527 0.9457 0.9453 0.9759 0.9744 0.9623 0.9624  0.9572
8, (HOH) fn deg. 112.52 111.82 106.16 106.12 110.54 110.22 104.13 104.36  104.52
wia D 2.530 2.512  2.133 2.129 2.495 2.470 2.093 2.090

& tn ca”! 0.9442  0.7703  0.5854  0.5445 - - - - 0.750
o - 4.4795 - 4.2390 - 2.8426 - 2.8377 - - - - -2.941
o} 1.5746 1.4551 1.1003 1.0656 - - - - 1.253
of 0.1795 0.1743  0.2170 0.2103 - - - - 0.238
5 - 0.0470 - 0.0502 -~ 0.1527 - 0.1520 - - - - -0.160
o) 0.1021 0.0826 0.1019 0.0947 - - - - 0.078
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Table 1| continued.

SCF CIsp Experiment
174 T2 DZ+P TZ+P Dz TZ DZ+P TZ+P
& 0.1688  0.1534  0.1616  0.1541 - - - - 0.202
o 0.1283  0.1312  0.1372  0.1408 - - - - 0.139
o 0.1440  0.1262  0.1319  0.1238 - - - - 0.145
3
A, tn ca”! 33.7268  33.0245  29.1829  29.1792  30.4693  30.3179  26.9091  27.0440
B, 13.3635  13.4364  14.6301  14.6506  13.0017  13.0929  14.5169  14.4714
c, 9.5710  9.5506  9.7448  9.7535  9.1130  9.1480  9.4297  9.4270
Ay 34.7051  34.0313  29.7613  29.7930 - - - -
B 13.2462  13.3331  14.5470  14.5742 - - - -
<, 9.3504  9.3452  9.5295  9.5441 - - - -
Ay 34.7071  34.0333  29.7631  29.7949
B, 13.2482  13.3351  14.5488  14.5760
c, 9.3475  9.3423  9.5267  9.5413

2 Ref. Sb.
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Table 2.

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic

constants, and fundamental vibrational frequencies of Hzo.

SCF CISD Experiments®
Dz T2 DZ+P TZ4P D2 T2 DZ+P TZ+P
w n ca! 4U28.3  3990.3  4151.5 4114.5 3704.4 3683.0 3935.4 3585.7 3832.0, 3825.3
w, 1710.6 1723.2  1749.8 1748.1 1648.2 1663.6 1686.3 1660.8 1648.9, 1653.9
wy 4204.2  4156.2 4267.1 4226.2 3875.3 3845.8 4048.4 3997.7 3942.5, 3935.6
xy; 10 ca”! - 42.466 - 38.215 - 40.084 - 38.395 - - - - - 42.6
Xi2 - 11.157 - 8.118 ~ 15.628 - 14.653 - - - - - 15.9
X3 -163.077 -149.321 -157.208 ~150.864 - - - - -165.8
X22 - 28.719 - 29.910 - 19.9897 - 20.702 - - - - - 16.8
X23 - 12.255 - 9.226 - 17.921 =~ 17.117 - - - - - 20.3
X33 - 49.836 - 46.408 - 45.355 -~ 43.838 - - - - - 47.6
v, in cn” ! 3865.3  3835.1  39Y84.9 3954.9 (3532.4) (3527.9) (3768.B) (3726.2) 3651.7
vy 1641.5 1654.7  1693.1 1690.8 (1579.1) (1595.1) (1629.6) (1603.5) 1595.0
vy 401b.8  3984.2  4088.8 4054.5 (3688.0) (3673.7) (3870.1) (3826.0) 3755.8
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Table 2 coantinued.

SCF CISD Experiments
pzZ TZ DZ+P TZ+P bz T2 DZ+P TZ+P
4 in cm_l -172.0 -155.1 ~166.6 ~159.5 (=172.0) (-155.1) (-166.6) (-159.5) -173.6
4, - 69.1 - 68.5 - 56.7 - 57.3 (- 69.1) (~ 68.5) (- S56.7) (- 57.3) -58.9
84 -187.3 -172.1 -178.3 -171.7 (-187.3) (-172.1) (~178.3) (-171.7) -179.8
2 Ref. 56.
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Table 3.

Theoretical and experimental values of quartic and sextic centrifugal distortion

constants and asymmetry parameter for H20.

SCF CISD Experiment
LZ T2 DZ+P TZ+P DZ T2 DZ+P TZ+P

8, x 10% 1n ca™!  760.45 774.81 1050.20  769.70  784.60 1179.57 1124.68

8 x 10° -3928.65 -3762.78 -4791.29 -3253.53 -3167.82 -4876.84

8, x 10° 44088.77 40798.61 27270.75 35430.12 34212.68 24443.88

o, x 108 272,01 277.79  415.48  273.73  278.78  411.52  451.34

o x 10 680.06  674.94 442,67  611.95  633.08  335.63

a; x 10% 1n ™l 0.1913  0.1965 0.3704

By x 108 -1.7632 -1.7196 ~2.9064

e, x 10° ~11.1880 ~9.6691 -3.8411

He x 10° 190.2246 165.7759 73.2317

hy x 10° 0.0938  0.0960 0.1830

nye x 10° -0.0837 -0.0788 -0.3775

he x 10° ~4.5646 =3.7454 ~0.6053

o tn ca”! 12.0026 11.3678 7.0456

001



Table 4.

Theoretical and experimental vibration-rotation interaction constants and rotational

congstants of DZO'

SCF C1sp Experiment?
Dz T2 DZ+P TZ+P bz TZ DZ+P TZ+P

o tn ca! 0.3033  0.2363 0.1743  0.1583 - - - - 0.246
o) - 1.7990 - 1.7009 - 1.1316 = 1.1297 - - - - -l
4 0.7001  0.6479  0.4918  0.4774 - - - - 0.593
af 0.0752  0.0733  0.0918  0.0893 - - - - 0.096
<& - 0.0219 - 0.0232 - 0.0617 - 0.0615 - - - - -0.082
o} 0.0342  0.0271 0.0316 - 0.0290 - - - - 0.042
of 0.0627 0.0571 0.0639  0.0611 - - - - 0.077
o 0.0489  0.0501 0.0516  0.0529 - - - - 0.050
o 0.0538  0.0472  0.0464  0.0435 - - - - 0.054
Ag 1n cm” 18.7618 18.3722 16.2351  16.2330  16.9507  16.8665 14.9701  15.0451

B, 6.6872  6.7237  7.3210  7.3313  6.5062  6.5518  7.2644  7.2416

Ce 4.9330  4.9223  5.0457  5.0504 4.8910  4.8886

4.7016 4.7188
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Table 4 continued.

SCF

CISD Experiment
Dz TZ DZ+P TZ+P [\Y4 TZ DZ+P TZ+P
A, 19.1596 18.7806 16.4678 16.4800 - - - -
By 6.6435 6.6851  7.2902 7.3029 - - - -
C 4.8473  4.8451  4.9648 4.9716 - - - -
A 19.1601 18.7811 16.4683  16.4805 - - - -
B 6.6440 6.6856  7.2907 7.3034 - - - -
ch 4.8466  4.8443  4.9640 4.9709 - - - -
3 Ref. 5b.
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Table 5.

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic

constants and fundamental vibrational frequencies of DZO'

SCF ClsD Experiment®
174 TZ DZ+P TZ+P 0z TZ DZ+P TZ+P
w tn ca! 2892.7  2865.9  2992.6  2965.8  2659.1  2644.2  2837.9  2801.4  2855.6
w, 1256.9  1265.9 1280.8  1279.6  1211.5  1222.6  1233.8  1215.5  1233.5
wy 3090.7 3054.6 3128.8  3098.8  2846.7  2824.6  2965.9  2929.1  2990.1
Xy, 10 ea” - 21.698 - 19.590 ~ 20.786 - 19.914 - - - - - 22.6
X12 - 4.367 - 2.238 - 7.889 - 7.299 - - - - - 7.6
X13 - 84.659 - 77.281 - 81.542 - 78.196 - - - - - 87.2
X22 - 15.873 = 16.617 - 10.792 = 11.192 - - - - - 9.2
X23 - 5.953 -~ 4.390 - 9.250 - 8.839 - - - - - 10.6
X33 - 28.424 - 26.470 - 25.655 - 24.792 - - - - - 26.2
v tn ca! 2804.8  2787.0 2906.3  2965.8  (2571.2) (2565.3) (2751.6) (2718.8) 12763.8
vy 1220.0  1229.4  1250.6  1279.6  (1174.6) (1186.1) (1203.6) (1185.0) 1206.4
vy 2988.6  2960.9  3032.1  3098.8  (2744.5) (2730.8) (2869.2) (2836.0) 2888.8
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Table 5 continued.

SCF CISD Experiment
Dz T2 DZ+P TZ+P ['Y4 T2 DZ+P TZ+P
8) in en ! - 87.9 - 78.9 - 86.3 - 82.6 (- 87.9) (-~ 78.9) (- 86.3) (- 82.6) -92.6
4, - 36.9 - 36.5 - 30.2 - 30.5 (- 36.9) (- 36.5) (- 30.2) (- 30.5) =-27.5
8, -102.2 - 93.8 - 96.7 - 93.1 (-102.2) (-~ 93.8) (- 96.7) (- 93.1) -101.3

3 Ref. 56.
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Table 6.

and rotational constants of CHZ (381).

Theoretical and experimental geometries, dipole moments, vibration-rotation {nteraction constants,

SCF C1SD Experiments®:P
vz T2 DZ+P TZ+P Dz T2 DZ+P TZ+P
Energy in hartree -38.91369 -38.91454 -38.92764 -38.92893 -38.98226 -38.98986 -39.04947
£ (CH) in A 1.0743 1.0724  1.0756 1.0724 1.0951 1.0879 1.0853 1.0789 1.0748
8,(HCH) fn deg.  130.26 130.32 129.36 129.61 133.12 132.99 132.68 133.84
wia D 0.681 0.673 0.614 0.588 0.689 0.674
o 1n ca”! 0.8209 0.8128 0.7205 0.7362 - - - -

S 8>

2.3024 2.2822 2.0085 2.1255
o} 0.1241 0.1166 0.1218 0.1189
o - 0.0084 - 0.0056 - 0.02i7 - v.0233
o 0.0941 0.0868 0.0932 0.0885
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Table 6 continued.

SCF CISD Experiments
bz T2 DZ+P T2+P bz T2 DZ+P TZ+P
o 0.1091 0.1035 0.1055  +0.1035 - - - -
oS 0.0772 0.0809 0.0785  0.0788 - - - -
o 0.1029 0.0960 0.0965 0.0951 - - - -
A, 1n ca” 47.8557  48.1416  46.1705  46.8784  S1.4721  S51.8798  49.7190 73.810575
B, 8.8036 8.8306 8.8472 8.8818 8.2856 8.4027 8.5218 8.45042
C, 7.4357 7.4619 7.6245 7.4671 7.1368 7.2315 7.2749 7.18431
Ao - - - - - - - -
By 8.6987 8.7317 8.7505 8.7898 - - - -
¢y 7.2911 7.3217 7.2843 7.3284 - - - -
B 8.7008 8.7339 8.7525 8.7918
<y 7.2881 7.3185 7.2813 7.3252
2Ref. 85.
bref. 91.
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Table 7.

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants,

and fundamental frequencies of CHz (381).

SCF CISD Experiments?®
Dz TZ DZ+P TZ+P 172 T2 DZ+P TZ+P

w in cm”l 3292.3 3238.3 3287.4 3266.3 3093.1 3059.2 3192.6 3178.8 3090

wy 1277.9 1269.4 1299.7 1298.2 1097.3 1104.5 1166.8 1147.5 1080

wy 3514.0 3453.6 3494 .4 3478.1 3310.9 3274.1 3407.5 3404.6 3220

X11 in ca - 29.122 - 26.032 - 27.014 - 26.090 - - - -

X12 - 1.063 2.117 1.122 2.027 - - - -

X13 -113.536 -100.686 ~105.682 -102.025 - - - -

X272 - 25.092 - 24,483 - 23.815 - 23.931 - - - -

X23 - 3.023 - 2.329 - 4.117 - 3.095 - - - -

X33 - 35.585 - 32,180 -32.432 - 32,286 - - - -

vy in co! 3176.7 3136.9 3181.0 3164.2 (2977.6) (2957.9) (3086.3) (3076.6) 2950

v) 1225.6 1220.3 1250.6 1249.8 (1045.1) (1055.4) (1117.7) (1099.1) 963.0995°
vy 3384.6 3337.7 3374.6 3361.0 (3181.4) (3158.2) (3287.7) (3287.5) 3080
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Table 7 continued.

SCF

CISD Experiments
174 TZ DZ+P TZ+P Y A T2 DZ+P TZ+P
4 in cn-l -115.5 -101.3 -106.3 -102.2 (-115.5) (-101.3) (-106.3) (-102.2) -140
8, - 52.2 - 49.1 - 49,1 - 48.4 (~ 52.2) (- 49.1)_ (- 49.1) (- 48.4) -117
44 -129.5 -115.9 -119.8 -117.1 (-129.5) (-115.9) (-119.8) (-117.1) -140

2Ref. 85, unless otherwise noted.

bRet. 91; see also ref. 89.
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Table 8. Theoretical and experimental values of quartic and sextic centrifugal distortion constants and
asymmetry parameter for CH, (JBl).
SCF CISD Experiment
Dz TZ DZ+P TZ+P pZ TZ DZ+P TZ+P
&, x 10° 1n ca™!  325.68 337.07 331.03- 334.57 320.81 340.78 327.02
Ajg X 10® -4925.70  -4991.00 -4591.49 -4573.59 -7008.63 -7225.46 -6274.74
a x 108 - - - - - - - -
o x 100 86.71 88.99 89.41 88.97 84.22 89.24 87.65
# x 108 1092.57 1148.93 1074.90 1105.42 1187.27 1276.39 1146.65
H, x 10% 10 ca”!  0.0470 0.0497 0.0494 0.0500
Hj x 10° -1.0129  -1.0285  -1.0685  -1.1286
By x 10° ~84.8645 -89.5647 -68.7874 -71.1565
He x 10° 3954.731  4189.528  3023.409  3299.503
hy x 10® 0.0220 0.0231 0.0232 0.0233
hjy x 10° 0.1406 0.4620 0.1368 0.1497
hy X 10® -52.3126 ~54.6888 -40.3055 -43.1414
o
o tn ca} 63.4715  63.9287  57.8923  59.1526 o



Table Y. Theoretical and experimental vibration-rotation interaction constants, and rotational constants of

3
€D, (°B)).
SCF CISD Experiment?®
DZ TZ DZ+P TZ+P bz TZ Dz2+P TZ+P
& tn ca”! 0.1102 0.1042 0.0802 0.0823 - - - -
A - -— - - - - - -
02
4 - - 0.9940 1.0473 - - - -
o 0.0513 0.0486 0.0507 0.0496 - - - -
& - 0.0059 - 0.0049 -~ 0,0110 - 0.0116 - - - -
% 0.0352 0.0325 0.0348 0.0332 - - - -
of 0.0419 0.0400 0.0410 0.0401 - - - -
o 0.0281 0.0295 0.0281 0.0282 - - - -
o5 0.0400 0.0374 0.0375 0.0370 - ' - - -
A, tn ca”! 27.3858  27.5494  26.4214  26.8266  29.4553  29.6886  28.4521 37.786863
B, 4.4054 4.4189 4.4272 4.4446 4.1462 4.2048 4.2644 .
’—l
Ce 3.7949 3.8081 3.7919 3.8129 3.6346 3.6831 3.7086 o



Table Y continued.

SCF CISD Experiment

Dz TZ DZ+P TZ+P Dz TZ DZ+P TZ+P
Ag in ca”} - - - - - - - -
By 4.3651 4.3808 4.3900 4.4090 - - - -
<, 3.7399 3.7545 3.7386 3.7602 -~ - - -
Ab in cm_l - - - - - - - -
Bb 4.3657 4.3813 4,3905 4.4095 - - - -
C6 3.7391 3.7539 3.7378 3.7594 - - - -
8Ref. 92.
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Table 10. Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants,

and fundamental vibrational frequencies of 002 (331).

SCF C1SD Experiment®
Dz 2 DZ+P TZ+P Dz 12 DZ+P TZ+P

w in ca”! 2358.5 2319.3 2356.5 2340.7 2212.2 2188.8 2285.5 2273.9

w) 954.6 948.2 970.3 969.5 821.0 826.1 872.2 858.4

wy 2632.2 2587.0 2616.6 2604.7 2482.7 2455.0 2553.9 2552.6

xj, to ca”! - 15.043 - 13.429 - 13.989 - 13.467 - - - -

X2 1.950 3.774 3.627 4.518 - - - -

X3 - 58.792 - 52,008 - 54.647 - 52.660 - - - -

X2 - 14.495 - 16.189 - 13.877 - 14.044 - - - -

X23 - 1511 - 1.109 - 2.267 - 1.725 - - - -

X33 - 21.335 - 19.368 - 19.460 - 19.397 - - - -

v tn ca”! 2300.0 2268.9 2303.0 2340.7 (2153.7)  (2137.8)  (2232.0)  (2222.9)

v 925.8 921.1 943.2 969.5 ( 792.2)  ( 799.1) ( B&S.1) ( 831.7) 752.3748

vy 2559.4 2521.7 2549.2 2604.7 (2409.9)  (2389.7)  (2486.5)  (2486.6)
’—J
=
N
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Table 10 continued.

SCF CISD Experiment
Dz T2 DZ+P TZ+P 174 T2 DZ+P TZ+P
8, in ca”! - 58.5 - 51.0 - 53.5 - 51.0 (- 58.5) (= 51.0) (- 53.5) (- 51.0)
8, - 28.8  -21.0 - 27.1 - 26.7 (- 28.8) (- 27.0) (- 27.1) (- 26.7)
8y -72.8  -653  -61.4 - 66.0 (- 72.8) (- 65.3) (- 67.4) (- 66.0)
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Table 11. Theoretical and experimental geometries, dipole moments, vibration-rotation interaction constants,

and rotational constants of CH2 (lAl)°

SCF c1sp Experiment?

vz TZ DZ+P TZ+P vz T2 DZ+P TZ+P

Energy fn hartree - 38.686201 - 38.86354 - 38.88559 - 38.88698 - 38.94463 - 38.95287 ~ 39.01760 - 39.02513

ro(CH) tn A 1.1034 1.1020 1.1005 1.0979 1.1338 1.1256 1.1167 1.1113

8, (HCH) 1n deg.  106.65 106.23 103.74 103.71 104.41 104.53 101.29 101.54

u in D 2.411 2,377 2.103 2.065 2.186 2.171 1.884 1.867

& tn ca! T 0.5691  0.4982  0.4325  0.4144 - - - -

o - 2.0905 - 2.0306 - 1.6597 - 1.6865 - - - -

4 0.9717  0.9327  0.7935  0.7893 - - - -

o} 0.1291 0.1259  0.1408  0.1391 - - - -

o - 0.0683 - 0.0649 - 0.1215 - 0.1237 - - - -

o 0.0598 0.0457 0.0581 0.0521 - - - -
|
=
£

% -
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Table 1l continued.
SCF _ CISD Experiment
D2 T2 DZ+P TZ+P DZ TZ DZ+P TZ+P
o 0.1184 0.1101 0.1119 0.1091 - - - -
o 0.1137  0.1231  0.1163  0.1179 - - - -
o 0.0913 0.0780 0.0823 0.0781 - - - -
A, in ca”} 22.4901  22.3264  21.1572  21.2427  20.2312  20.5863 19.4805 19.7780
B, 10.6793  10.7645  11.1610  11.2175  10.4192  10.5548 11.2166 11.2862
C, C7.2410 7.2628 7.3066 7.3410 6.8773 6.9774  7.1181 7.1857
Ay 22.7650  22.6262  21.3741  21.4841 - - - -
B, 10.6190  10.7112  11.1223  11.1837 - - - -
¢ 7.0793 7.1072 7.1513 7.1884 - - - -
Ay 22.7664 22,6277  21.3755  21.4855 20.1182
By 10.6203  10.7126  11.1237  11.1851 11.2050
<o 7.0772  7.1051  7.1493  7.1863 7.0686

S1T
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Table 12.

Theoretical and experimental harmonic frequencies, anharmonic constants, and fundamental frequencies

1
of CHy ("A}).

SCF -CISD Experiment?®
pZ TZ DZ+P TZ+P Y 12 DZ+P TZ+P
w ta co”! 3086.9 3031.9 3120.1 3097.6 2804.2 2783.6 2969.3 2954.5
w) 1483.3 1498.0 1490.3 1485.0 1396.3 1418.6 1428.6 1420.0
wy 3172.8 3098.3 3193.4 3164.8 2891.5 2856.7 3047.2 3022.4
x| in e - 31,267 - 27.155 - 27.971 - 26.653 - - - -
X12 21.626 - 24.268 17.747 24.948 - - - -
X13 -124.916 -108.567 -112.579 ~-107.959 - - - -
X22 - 25.015 - 14.833 - 19.940 - 20.749 - - - -
X23 - 8.649 - 7.895 - 12.486 - 10.214 - - - -
X33 - 37.494 - 33.406 - 33.132 - 32.183 - - - -
v n el 2972.8 2911.2 3016.7 3002.8 (2690.0)  (2662.7)  (2865.9) (2859.7)  2805.9
“ﬁ 1439.8 1452.2 1453.0 1450.9 (1352.8)  (1372.9)  (1391.3)  (1385.9)
vy 3031.0 2973.3 3064.6 3041.3 (2749.7)  (2731.7)  (2918.4)  (2898.9)  2864.5
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Table 12 continued.

SCF

CISD Experiment
vz T2 DZ+P TZ+P DZ T2 DZ+P TZ+P
4 1n cm-l -114.2 -120.7 -103.4 - 94.8 (~114.2) (-120.7) (-103.4) (- 94.8)
A, - 43.5 - 45.7 - 37.3 -'34.1 (- 43.5) (- 45.7) (- 37.3) (- 34.1)
Ay -141.8 -125.0 -128.8 -123.5 (-141.8) (-125.0) (-128.8) (-123.5)

3Ref. 95.
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Table 13.

Theoretical and experimental values of quartic and sextic centrifugal distortion constants and

_asymmetry parameter for CH, (lAl).

SCF CISD Experiment
174 TZ DZ+P TZ+P DZ T2 DZ+pP TZ+P
8, x 10% 1n ca™!  596.19 614,08 701.36  719.45  638.11  653.10  785.49  806.93
agg x 10° -2043.51  -1914.46 -2446.40 -2482.54 ~1909.65 -1791.34 -2641.28  ~2712.33
8 x 108 17255.38  16512.34  14230.06  14494.57  14344.57  14598.59  12327.13  13028.54
¢ x 10° 218.34  223.60  270.54  277.26  236.00  238.47  310.93  318.45
o x 10° 461.40  497.97 384,01  399.99  415.74  469.98  297.64  322.17
Hy x 10° 1n en™!  0.1482  0.1522  0.2103 - 0.2206
Hyg x 106 -1.1187  -1.0607 ~ -1.5177  -1.5658
Hey x 108 -2.3278  -2.1866  -1.0030  -1.0328
Hy x 100 41.8808  38.9166  27.5613  28.6164
n, x 108 0.0726  0.0743  0.1036  0.1085
hy x 10° ~0.0657  -0.0469  -0.1603  -0.1601
e x 10° -0.2568  -0.0688 0.2945  0.3241
-
o tn co” 7.8561 7.6055  6.1589  6.1518 @



i

Table 1l4. Theoretical and experimental vibration-rotation interaction constants, and rotational constants
of €D,(14)).
SCF CISD Experiment
DL 1z DZ+P TZ+P Dz 12 DZ+P TZ+P
o tn ca” 0.1809 0.1528  0.1284 0.1193 - - - -
o - 0.8583 - 0.8327 0.6759 0.6864 - - - -
4 0.4464 0.4279 0.3665 0.3649 - - - -
o) 0.0579 0.0566 0.0636 0.0633 - - - -
& - 0.0308 - 0.0296 0.0509 0.0519 - - - -
o 0.0195 0.0146 0.0178 0.0156 - - - -
of 0.0467 0.0440 0.0428 0.0418 - - - -
o5 0.0431  0.0467  0.0435  0.0441 - - - -
a% 0.0328 0.0274 0.0316 0.0300 - - - -
Ag in ca” 12.8702 12.7764 12.1074 12,1563  11.5775  11.7807 11.1479 11.3181
B, 5.3440 $.3867 5.5851 5.6133 5.2139 5.2817 5.6129 5.6477
c 3.7761 3.7891 3.8220 3.8401 3.5949 3.6468 3.7332 3.7677
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Table 14 continued.

SCF

CISD Experiment
174 T2 DZ+P TZ+P DZ T2 DZ+P TZ+P
Ag 12.9857 12.9024 12.1979 12.2574 - - 11.4827 11.6656
By $.3207 5.3659 5.5699 5.5999 - - 5.7036 5.7401
Co 3.7148 3.7300 3,7631 3.7822 - - 3.7502 3.7851
A6 12.9861 12.9028 12.1983 12.2577 - - - -
B 5.3211 5.3663 5.5702 5.6002 - - - -
Cb 3.7142 3.7295 3.7625 3.7816 - - - -
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Table 15. Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants,

and fundamental vibrational frequencies of CDz(lAl).

SCF CISD Experiment

Dz T2 DZ+P TZ+P Dz 2 DZ+P  TZ+P
w o ca”! 2232.6  2193.2  2262.9  2246.7 2028.2  2012.7 2155.6  2144.4
w 1097.6 1108.2 1099.6 1095.6 1033.1 1049.9 1053.0 1046.9
w 2351.1 2295.5  2362.8  2341.6  2140.2  2114.5  2251.6  2233.6
x, in ca”! - 16.220 - 14.083 - 14.626 - 13.961 - - - -
X2 - 15.778 - 15.406 - 15.834 - 15.575 - - - -
X3 - 65.696 - 56.824 - 59.043 - 56.489 - - - -
X272 - 6715 - 7.499 - 4.427 - 3.944 - - - -
X23 Z 4.294 - 3.941 - 6.636 - 5.424 - - - -
X33 - 21.980 - 19.665 - 19.368 - 18.836 - - - -
v, in cn”! 2159.4  2193.2  2196.2  2182.7 (1955.0)  (1948.4)  (2088.9)  (2080.4)
v 1074.1 1108.2 1079.5 1077.3 (1009.6)  (1025.2)  (1032.9)  (1028.5)
vy 2272.2 2295.5 2291.2  2273.0  (2061.2)  (2044.8)  (2180.0)  (2165.0)
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Table 15 coantinued.

SCF

C1SD Experiment
Dz TZ DZ+P TZ+P vz T2 DZ+P  T2+P
8 tn ca”! - 73.2 - 643 - 66.7 - 64.0 (- 73.2) (- 64.3) (- 66.7) (- 64.0)
8 - 235 - 2.0 - 204 - 18.4 (- 23.5) (- 26.7) (- 20.1) (- 18.4)
8 - 79.0 -69.7 =716 -68.6 (- 79.0) (- 69.7) (- 71.6) (- 68.6)
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Table l6.

Theoretical and experimental geometries, dipole moments, vibratfon-rotation interaction constants,

and rotational constants of CH, (151).

SCF " CISD Exper{ment

D2 TZ DZ+P TZ+P bz TZ DZ+P TZ+P

Energy in hartree - 38.84520 - 38.84588 - 38.86191 - 38.86330 - 38.91129 - 38.91891 - 38.98014 - 38.98880

re(CN) in A

8,(HCH) 1n deg.

pin D

S 8 B

e -
—

Sa o

in ca”

1.0670 1.0653 1.0701 1.0664 1.0915 1.0861 1.0817 1.0748
150.41 150.88 142.65 143.03 143.87 143.19 141.36 142.49
0.965 0.958 0.804 0.762
- - 3.1395 3.2889 - - - -
0.0837 0.0717 0.0948 0.0936 - - - -
" 0.1927 0.1980 0.0741 0.0722 - - - =
0.0669 0.0607 0.0801 0.0776 - - - -

€CT



Table 16 continued.

SCF CIsb Experiment
Dz 12 DZ+P TZ+P DZ 12 DZ+P TZ+P

o 0.1059 0.1015 0.1036 0.1030 - - - -

o 0.0227 0.0259 0.0493 0.0492 - - - -

o 0.1205 0.1146 0.1089 0.1087 - - - -

A, 1n ca”l 131.5393  136.1817  83.1981  85.4619  85.2786  83.0596  76.2584 81.7995

b, 7.8586 7.8672 8.1381 8.1754 7.7663 7.8748 8.0262 8.0746

C, 7.4156 7.4375 7.4130 7.4616 7.1181 7.1929 7.2619 7.3491

AO - - - - - - - -—

By 7.6869 7.7020 8.0136 8.0537 - - - -

¢ 7.2910 7.3165 7.2821 7.3311 - - - -

A‘) - - - -

B, 7.6915 7.7069 8.0167 8.0569

¢ 7.2841 7.3092 7.2774 7.3262
b
N
£



Table 17. Theoretical and experimental harmonic vibratfonal frequencies, vibrational anharmonic constants,
and fundamental vibrational frequencies of CH2 (lBl).
SCF CISD Experiment
Dbz TZ DZ+P TZ+P pz TZ Dpz+p TZ+pP

w in ca”l 3334.9 3281.8 3321.9 3299.0 3092.7 3045.9 3198.9 3188.6

w, 785.9 768.7 1034.3 1033.3 922.1 942.8 1011.4 992.4

wy 3664.0 3601.9 3602.7 3589.2 3394.1 3338.3 3477.6 3478.2

xyj i ca - 30.406 - 28.351 - 28.503 -~ 27.517 - - - -

X12 23.385 32.609 11.355 11.124 - - - -

X13 -114.270 -103.547 -107.756  -104.439 - - - -

X272 -166.839 -169.198 - 71.863 - 72.331 - - - -

X23 49.441 49.156 17.807 18.344 - - - -

X33 - 40.396 - 36.745 -~ 35.280 - 35.317 - - - -

v, in ca”! 3228.6 3189.6 3216.6 3197.3 (2986.4) (2953.7) (3093.7) (3086.7)

v, 488.7 471.2 905.1 903.3 ( 624.8) (645.3) (882.3) ( 862.5)

vy 3550.8 3501.2 3487.1 3475.6 (3280.9) (3237.6) (3361.5) (3364.5)

61
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Table 1&.

Theoretical and experimental values of quartic and sextic centrifugal distortion constants and

asymmetry parameter for CH2 (lBl).

SCF CISD Experiment

Dz TZ DZ+P TZ+P DZ TZ DZ+P TZ+P
8; x 10% 10 o™t 239,53 247.85 255,42 257.97 247.66  266.27 260.81 263.83
by x 10° - - -13323.43 -13357.01 =13490.19 -13441.66 -11464.63 -12601.64
o x 108 - - - - - - - -
o, x 10° 46.37 47.48 53.86 52.64 48.17 52.84 55.55 $3.78
o x 10° 2265.15 2452.00 1629.61  1687.12  1595.82  1701.69  1507.80  1621.79
H; x 10® 1o ca™! v.0249 0.0270 0.0292  0.0290
Hy, x 106 -0.2010 -0.2262 -0.4028  -0.5834
Hyy % 10° - - ~1219.41 -1298.70
e x 108 - - - -
h, x 10° 0.0111 0.0120 0.0132 0.0130
hy x 108 - - 0.3264  0.3742
he x 108 - - - -
o in ca} - - - -

82T



Table 19Y.

Theoretical and experimental vibration-rotation interaction constants and rotational constants of
1
co,('s)). )
SCF CISD Experiment
pZ TZ DZ+P TZ+P Dz TZ DZ+P TZ+P
& in ca” - - 0.7058 0.7607 - - - -
OrA - - - - - - - -
2
a} 0.0340 0.0298 0.0387 0.0381 - - - -
o 0.0716  0.0736  0.0262  0.0256 - - - -
& 0.0259 0.0236 0.0309 0.0301 - - - -
of 0.0373 0.0355 0.0377 0.0373 - - - -
o 0.0171 0.0184 0.0210 0.0209 - - - -
o 0.0467 0.0445 0.0428 0.0428 - - - -
A, in cn” 75.2744  77.9310  47.6108  48.9063  43.8013  47.5315  43.6395 46.8104
8, 3.9325 3.9368 4.0724 4.0910 3.8863  3.9406 4.0164 4.0406
Ce 3.7373 3.7475 3.7515 3.7752 3.5997  3.6389 3.6779 3.7195

6CT



Table 1Y continued.

SCF CISD Experiment
0z T2 DZ+P T2+P Dz T2  DZ+P TZ+P

AO - - - - - - - -
B, 3.8668 3.8733  4.0245 4.0442 - - - -
g 3.6867 3.6983  3.7007 3.7247 - - - -
A6 - - - - - - - -
B, 3.8679 3.8746 4.0252 4.0450 - - - -
) 3.6850 3.6964 3.6995 3.7234 - - - -

(=1

w

o



Table 20.

Theoretical and experimental harmonic vibrational frequencies, vibrational

and fundamental vibrational frequencies of C02 (lBl).

anharmonic constants,.

SCF

CISD Experiment

Dz T2 DZ+P TZ+P DZ T2 DZ+P TZ+P
w, in ca”l 2368.1 2330.3 2365.6 2348.6 2199.5 2167.4 2278.3 2269.6
w) 592.3 579.3 777.2 776.7 693.9 709.0 760.0 746.1
wy 2761.9 2715.4 2710.1 2700.3 2554.1 2511.6 2615.0 2616.3
X1 in ca” - 15.063 -~ 13.909 - 14.333 - 13.802 - - - -
X} 2 10.198 15.076 6.379 6.437 - - - -
X13 - 59.071 - 53.559 - 55.742 - 53.98) - - - -
X22 - 94.474 - 95.831 - 40.643 - 40.964 - - - -
X23 31.567 31.396 11.392 11.664 - - - -
v in co”} 2313.6 2283.2 2312.2 2297.2 (2144.9) (2120.3) (2225.0) (2218.2)
vy 424.2 410.9 704.8 703.8 ( 525.8) (540.6) (687.6) (673.2)
W 2698.4 2658.8 2044.8 2636.0 (2490.6) (2455.0) (2549.8) (2552.0)

TET



Table 20 continued.

SCF

CISD Experiment
Dz T2 DZ+P TZ+P 174 T2 DZ+P TZ+P
8 tn ca! - 546 - 47.1 - 533 - Sl (- 54.6) (- 47.1) (= 53.3) (- 51.4)
8 S168.1  ~16B.6 - 724 - 72,9 (-168.1)  (-168.4) (- 72.4) (- 72.9)
4y - 83.5 - 56.6 - 65.2 - 643 (- 63.5) (- 56.6) (- 65.2) (- 64.3)
H
w
(3]



Table 21. Theoretical and experimental geometries, dipole moments, vibration-rotation interaction constants,

and rotational constants of HCO (zA').

SCF l CISD Experiments

174 T2 DZ+P TZ+P DZ TZ DZ+P TZ+P

Energy in hartree -113.20457 -113.21217 ~113.26955 ~113.27586 -113.40109 -113.42746 ~113.55127 -113.57694

t (CH) 10 A 1.0921 1.0920 1.1064 1.1049 1.1178 1.1122 1.1190 11146 1.125%, 1.16°
r,(CO) 1.1873 1.1766 1.1619 1.1543 1.2182 1.2028  1.1843 1.1752  1.175 , 1.17
8,(HCO) 1n deg.  129.39 128.82 127.49 127,70 127.15 126.61  125.18 125.56 124,95 ,123.8
win D 2.678 2.620 2.1891 2,191 2.169 2.141 1.779 1.807
o 1n ! 1.4555  1.3964 1.2614  1.3317 - - - -
<4 -0.0680  -0.0880  -0.0601  -0.0653 - - - -
A - - - - - - - -
a3
o 0.0016 0.0010  0.0013 0.0009 - - - -
a) 0.0114 0.0115 0.0109 0.0111 - - - - —
Lo
(%)

q% . - 0.0028 - 0.0023 - 0.0047 - 0.0050 - - - -



Table 21 contfinued.

SCF CLSD Experiment
DZ T2 DZ+P TZ+P D2 T2 DZ+P TZ+P

o 0.0038 0.0032 0.0035 0.0032 - - - -

o5 0.0104 0.0105 0.0100 0.0101 - - - -

o 0.0049 0.0058 0.0047 0.0048 - - - -

A, tn ea”! 29.2204  28.7594  27.0190  27.2869  26.0172  25.0026  24.3790  25.1419 ‘

. 1.4520 1.4787 1.5159 1.5333 1.3900 1.4263 1.4727 . 1.4928

C, 1.3833 1.4064 1.4353 1.4517 1.3195 1.3510 1.3888 1.4091

A 30.0640  29.5654  27.5813  27.8492 - - - -

B, 1.4469 1.4736 1.5121 1.5298 - - - -

¢, 1.3737 1,3967 1.4262 1.4427 - - - -

A& 30.0641  29.5656  27.5814  27.8493

a; 1.4470 1.4738 1.5122 1.5300

Co 1.3735 1.3965 1.4260 1.4424

3Ref. 97.

bket. 98.
}.—J
w
Pl



Table 22. Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants,
and fundaméntal vibrational frequencies of HCO (2A').
SCF CISD Experimentsd+®
DZ TZ DZ+P TZ+P DZ TZ DZ+P TZ+P

w in el 3150.5 3063.3 3006.6 2962.7 2868.0 2812.9 2853.4 2824.5 2768.2

w, 1983.0 1976.4 2135.3 2135.5 1794.9 1807.7 1991.8 1992.0 1862.2

wy 1240.6 1252.3 1254.2 1251.0 1140.4 1165.9 1159.9 1159.3 1092.6

x| tn ca !l - 86.033 - 80.361 - 86.191 - 86.427 - - - - -140.1

X 2 0.018 - 7.580 0.446 1.239 - - - - - 0.3

Xi3 - 19.425 - 3v.021 - 23.249 - 20.837 - - - - - 0.2

X272 - 10.683 -~ 10.406 - 10.466 ~ 10.590 - - - - 0.0

X23 - 5.129 2.547 - 1.692 - 2.028 - - - - 0.0

X33 - 10.272 - 11.294 - 10.622 - 10.717 - - - - 0.0

v in ca” ! 2965.8 2883.8 2822.8 2780.0 (2686.2) (2633.4) (2669.6) (2641.8) 2488, 2442

v 1959.1 1953.1 2113.7 2114.0 (1771.0) (1784.4) (1970.2) (1975.4) 1861, 1868.1704

vy 1207.8 1216.0 1220.5 1218.2 (1107.6) (1129.6) (1126.2) (1126.4) 1090, 1080.7618
[
W

w



Table 22 continued.

SCF C1SD Experiments
Dz TZ DZ+P. TZ+P DZ T2 DZ+P TZ+P

5 in ca”l -181.8 -179.5 -183.8 -182.7 (-181.8) (-179.5) (-183.8) (-182.7) -280.2, -326.2

8, - 23.9 - 23.3 - 21.6 - 21.6 (- 23.9) (- 23.3) ( -21.6) (- 21.6) -1.2, 5.97

4y - 32.8 - 36.3 - 337 - 32.9 (- 32.8) (- 36.3) (- 33.7) (- 32.9) -2.6, ~11.84

3Harmonic frequencies and anharmonic constants from Ref. 97.

YFundamental frequencies from Refs. 99, 100.
H
w
2}



Table 3.

Theoretical and experimental values of quartic and sextic

asymaetry parameter for HCO (2A').

centrifugal distortion constants and

SCF CISD Experiment

DZ T2 DZ+P TZ+P 172 TZ DZ+P TZ+P
8; x 1% 1n co”! 3.25 3.48 3.28 3.39 3.41 3.65 3.40 3.53
8 x 10° - - -14.02  -15.98 -1.04 -1.03 6.18 2.18
¢ x 108 39514.31  36794.90  29596.78  31161.92 31715.59  28911.68  24086.12  27029.30
¢ x 108 0.25 0.27 0.29 0.30 0.27 0.30 0.31 0.32
o x 108 78.05 79.81 80.79 83.06 80.16 80.39 83.80 87.97
H; x 10° 1n ca™!  0.0000  0.0000  0.0000  0.0000
Hyp x 10° 0.0034 0.0036 0.0040 0.0041
M, x 108 -0.6181  -0.5976  -0.4824  -0.5126
Hy x 10° 191.5518  167.2178  113.8156  123.9871
ny x 10° 0.0000  0.0000  0.0000  0.0000
hy x 108 0.0014  0.0014  0.0016  0.0018
he x 108 0.7332  0.7248  0.6496  0.6736
o in cm—l = - - -

LET



Table 24. Theoretical and experimental vibration-rotation interaction constants and rotational constants of DCO.

SCF ‘ . CISD Experlment‘
Dz T2 DZ+P TZ+P Dz TZ DZ+P TZ+P

a; in ca”! - - - - - - - -
A - - - - - - - -

A - - - - - - - -
3

o 0.0042 0.0039 0.0050 0.0051 - - - -
oy 0.0092  0.0093  0.0084  0.0082 - - - -
4 - 0.0032 - 0.0027 - 0.0050  -0.0052 - - - -
af 0.0053 0.0049 0.0051 0.0051 - - - -
o5 0.0084  0.0086  0.0084  0.0084 - - - -
o 0.0034  0.0041  0.0032  0.0033 - - .- -
Ae tn co! 17,7017 17.4282  16.3976  16.5811 15.6876  14.712 15.1881

B, 1.2410 1.2634 1.2932 1.3065 1.1936  1.2636 1.2795

Ce 1.1597 1.1780 1.1987 1.2111 1.1092  1.1636 1.1801

8¢€T



Table 24 continued.

SCF CISD Experiment
DZ TZ DZ+P TZ+P Dz TZ DZ+P TZ+P
AO - - - . - - - - -
B, 1.2359 1.2582 1.2890 1.3024 - - - -
Cy 1.1511 1.1692 1.1903 1.2027 - - - -
Aé - - - - - - - - 14.6920
B} 1.2360 1.2583 1.289] 1.3025 - - - - 1.281408
Cé 1.1510 1.1691 1.1902 1.2025 - - - - 1.171439
3Ref. 98.
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Table 25. Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants,

and fundamental vibrational frequencies of DCO.

SCF CISD Experlments"b
Dz T2 DZ+P TZ+P DZ T2 DZ+P TZ+P

w in co ! 2359.8 2295.8 2287.3 2264.3 2132.2 2092.0 2143.9 2129.4 2068.3

w) 1926.0 1918.5 2044.2 2034.2 1757.1 1768.8 1931.7 1929.0 1820.3

wy 964 .4 973.9 975.7 974.1 884 .9 905.0 900.2 900.7 848.8

x;; In crn_1 - 42,414 - 39.308 - 29.221 -26.417 - - - - ~ 58.1

Xj2 - 14.572 - 14.456 -~ 39,228 -43.880 - - - - - 32.4

13 - 10.751 - 11.797 - 11.446 ~-10.564 - . - - ~ - 0.5

X722 - 8.419 - 8.000 - 7.818 ~ 8.408 - - - - - 1.1

X23 - 7.659 - B8.258 - 12.474 -14.016 - - - - 0.0

X33 - 4.966 -~ 5.583 - 3.805 - 3.388 - - - - 0.0

v; in ca”! 2262.3 2204.0 2203.5 2184.3 (2034.7) (2000.3) (2060.1) (2049.3) 1937, 1909.7738

v 1898.0 1891.1 2002.7 1988.4 (1729.1) (1741.4) (1890.3) (1883.2) 1800, 1794.857

vy 945.2 952.7 956.1 955.1 ( 865.8) ( 883.8) ( 880.6) ( 881.6) 852, 846.5
H
B
o



Table 25 continued.

SCF CISD Experiments
DZ TZ DZ+P TZ+P 174 TZ DZ+P TZ+P
4 in ca”! -97.5 -91.7 -83.8 -80.1 (-97.5) (-91.7) (-83.8) (-80.1) -31.3, -158.53
8, -28.0 -27.4 ~41.5 -45.8 (-28.0) (=27.4) (-41.4) (-45.8) -20.3, -25.44
8y -19.1 -21.2 -19.6 -19.1 (~19.1) (-21.2) (-19.6) (-19.1) 3.2, -2.3

2Harmontc frequencies and anharmonic constants

Fundamental frequencies from Refs. 99, 100.

from Ref. 97.

™l



Table 26.

Theoretical and experimental geometries, dipole moments, vibration-rotation interaction constants,

and rotational constants of HZCO.

SCF

CIsD

Experiment?

0Dz

T2

DZ+P

TZ+P

DZ

T2

DZ+P

TZ+P

Energy in hartree

£, (C0) in A
r.(CH) 1n A
ee(HCO) in deg.

uin D

A in ca”

~113.83071 =113.83755 -113.89476 -113.90005 ~114.03746 -114.06478 -114.19558 -114.22102

1.2170

1.0843

121.60

3.1904

9.7989

1.2815

1.1333

1.2080

1.0828

121.68

3.1051

9.8306

1.2989

1.1473

9.7443

1.2934

1.1377

1.1885
1.0960

121.91

2.7753

9.6605
1.3315

1.1702

9.5763

1.3272

1.1613

1.1823
1.0943

121.98

2.8440

9.7086

1.3436
1.1803

9.6258

1.3394

1.1714

1.2501

1.1046

2.7785

9.4485

1.2165

1.0777

1.2363

1.0963

2.4878

9.6091

1.2519

1.1076

1.2019

1.1038

2.4779

9.5247

1.2959

1.1407

1.2036 1.203
1.0994 1.099

116.5

9.6173
1.3106

1.1534

T



Table 26 continued.

SCF CISD Experiment
DZ TZ DZ+P TZ+P DZ TZ DZ+P Tz+P
A, 9.7644  9.5764  9.6258
B 1.2934  1.3272 13395
<o 1.1376 1.1612 1.1713
3Ref. 127.
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Table 27.

Theoretical and experimental harmonic and fundamental vibrational frequencies of HZCO.

SCF C1sD Experiments®+®
Dz T2 DZ+P TZ+P Dz 12 DZ+P TZ+p
w (A tn o™l 322305 3158.0 3136.2 3099.2 3022.0 2988.6  3052.5 3021.7 2977‘91,2964.3
w, (A)) 1878.2 1876.5 2005.9 2000.8 1697.3 1726.4  1868.4 1866.2 1778.26,1763.7
wy (A}) 1651.4 16498 1651.9 1654.8 1540.2 1557.9  1586.8 1592.1 1528.95,1562.6
w, (B)) 1324.5 1330.3 1331.9 1341.5 1189.8 1206.3  1234.7 1245.2 1191.02,1191.0
wg (By) 3315.3 3242.8 3213.7 3173.7 3106.2 3077.1  3131.1 3096.9 2997.04,3008.7
v (By) 1350.2 1371.3 1364.5 1369.06 1261.2 1302.3  1299.1 1306.9 1298.91,1287.7
v, 1n ca! 3075.2 3023.9 3001.6 2969.9 (2873.7)  (2854.5)  (2917.9)  (2892.4)  2811.42,2782.4
vy 1850.6 1847.1 1980.8 1976.0 (1669.7)  (1697.1)  (1843.4)  (1841.4) 1755.86,1746.0
vy 1624.1 1621.5 1621.0 1625.3 (1512.8)  (1529.7)  (1556.0)  (1562.6) 1500.32,1500.1
v, 1305.3 1310.8 1313.5 1322.2 (1170.5)  (1186.9)  (1216.4)  (1225.9) 1170.22,1167.2
v 3155.1 3095.1 3065.0 3036.1 (2946.0)  (2929.4)  (2982.5) (2959.3)  2861.30,2843.2
Ve 1331.6 1348.9 1345.3 1350.9 (1242.6)  (1279.9)  (1279.8)  (1288.2) 1250.56,1249.1

VAA



Table 27 continued.

L)

SCF CISD Experi{ments
DZ T2 DZ+P TZ+P pz TZ DZ+P TZ+P
8, in cm“l _ ~148.3 ~134.1 -134.6 -129.3 (~168.3) (-134.1) (-134.6) (~129.3) ~195.46 ,-161.9
8, - 27.6 - 29.3 - 25.0 - 24.8 (- 27.¢6) (- 29.3) (-~ 25.0) (- 24.8) - 32.33,- 171.7
b8, ~ 27.4 ~- 28.2 - 30.8 - 29.5 (- 27.4) (~ 28.2) (- 30.8) (- 29.5) - 28.79,~ 62.5
a, . - 19.3 - 19.4 - 18.3 - 193 (~ 19.3) (- 19.4) (- 18.3) (~ 19.3) - 23.95,- 23.8
&g -160.2 ~147.7 -148.6 -137.6 (-160.2) (-147.7) (-148.6) (~137.6) -153.71,-165.5
8¢ - 18.6 - 22.4 - 19.3 - 18.7 (- 18.6) (- 22.4) (- 19.3) (-~ 18.7) - 49.91,- 38.6

3First entry from Ref. 85.

bSecond entry from Ref. 104.

Y1



Table 8.

'Vibratlonal anharmonic constants of H2C0.

SCF Experiment
vz 12 DZ+P TZ+P
x; tn ca! - 307404 - 27.459 - 27.699 - 26.951 ~ 28.95
X2 - 9.503 - 8,771 - 1.086 =~ 0.955 1.115
X5 - 25.988 - 24.448 - 33.912 - 31.890 - 23.03
X4 - 7.243 - 5.258 - 3.866 =~ 2.832 - 10.099
X1 -124.194  -111.353  -113.265 ~-110.334 -193.32
Xi6 - B.144 -~ 8.584 - 6.199 ~ 4,775 - 49.78
X22 - 6.186 - 5,984 - 8.190 - 8.286 - 9.926
X23 - 5.163 - 17.307 -~ 5.034 - 4,31 - 8.26
X2 - 3.461 - 3.267 -~ 4.064 - 3.928 -~ 7,199
X25 - 7.873 - 10.210 - 15.426 - 12.178 - 17.23
Y26 - 4.53% - 5,206 8.308 5.324 6.581
X33 0.150 0.270 1.722 1.598 - 0.164
X34 1.471 1.462 0.510 0.633 - 1.769
X35 - 15.252 - 13.968 -~ 8.549 - 2.029 6.00
X36 - 10.379 - 13.308 - 21.599 - 27.363 - 29.861

9%t
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Table 28 continued.

SCF Experiment
Dz TZ DZ+P TZ2+P

X44 - 4.161 - 4.738 -~ 4.578 - 5.193 - 3.157

X4 5 - 19.757 - 19.613 ~ 17.779 - 18.376 -13.35

X46 7.047 6.769 6.825 6.770 - 2.860
X55 - 34.504 - 31.242 - 31.183 - 30.977 -17.97

Xs¢ - 15.324 - 15.288 - 17.534 - 8.424 -17.63

X6 6 - l1.471 - 2.300 - 2.080 - 2.225 - 1.567
dRef. 85.

LT



Table 29.

Theoretical and experimental values of quartic and sextic centrifugal distortion constants and

asymmetry parameter of H,Co.

SCF CISD Experiment

VYA T2 DZ+P TZ+P )Y T2 DZ+P TZ+P
8; x 10° tn co” 2.29 2.14 2,20 2.28 2.46 2.26 2.33
ay * 10° 38.97 39.52 40.12 39.46 39.64 40.66 41.53
8 x 10° 594,57 $72.95 $86.55 585.15 607.56 $38.72 604.25
o =106 0.29 0.29 0.30 0.28 0.30 0.30 0.31
o = 10° 27.14 27.78 28.20 27.03 27.57 28.67 29.22
), x 10® 1o ca” 0.0000  0.0000  0.0000
My x 108 0.0009  0.0010  0.0010
Hey x 100 -0,0014  -0.0021  -0.0020
He x 10° 0.1114 0.1087 0.1129
hy; x 10° 0.0000 0.0000 .0.0000
hy x 108 0.0004 0.0004 0.0004
ne x 108 0.0296 0.0294 0.0299
5 tn cal 109.64490 100.3625  99.5349
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Table 30.

Theorecical and experimental harmonic and fundamental vibrational frequencies of D,CO.

SCF CISD Experlnent‘
DZ TZ DZ+P TZ+P- Dz T2 DzZ+p TZ+P
wl(Al) tn ca™! 2360.5 2311.2 2308.2 2280.0 2199.9 2176.7 2232.3 2208.6 2143.5
w,(A}) 1809.4 1802.4 1935.1 1931.2 1629.3 1642.6 1810.0 1809.5 1716.7
wy(A)) 1210.1 1213.2 1202.6 1204.7 1139.3 1162.1 1157.9 1161.2 1139.6
w, (B)) 1059.8 1064.8 1068.4 1076.5 951.6 965.1 949.8 998.5 955.0
we(B,) 2471.6 2419.1 2399.2 2368.9 2316.3 2296.2 2337.7 2311.5 2254.5
w (By) 1063.9 1080.5 1077.8 1082.4 992.7 1024.8 1024.7 1031.5 1014.3
v, in ca” ! 2286.2 2243.5 2245.7 2218.9 (2125.6) (2109.0) (2169.8) (2147.5)  2056.4
vy 1785.0 1778.2 1908.2 1904.4 (1604.9)  (1618.4) (1783.1) (1782.8) 1700.0
vy 1194.0 1195.9 1185.1 1190.7 (1123.2)  (1144.8) (1140.4) (1147.3) 1106.0
v, 1047.1 1052.0 1056.3 1063.8 ( 938.8) ( 952.3) ( 977.7) ( 985.8) 938.0
vg 2383.5 2340.1 ©2325.0 2283.4 (2228.2) (2217.2) (2263.5) (2226.1)  2160.0
Ve 1052.7 1067.1 1066.3 1074.0 ( 981.5) (1011.3) (1013.2) (1023.1) 990.2

6%1



Table 30 contfinued.

SCF CIsD Experiment

YA T2 DZ+P TZ+P bz T2 DZ+P TZ+P
4; in <:|:.l - 74.3 67.7 - 62.5 6l.1 (- 74.3) (~ 67.7) (- 62.5) (- 61.1) -87.1
4, - 24.4 24.2 26.9 26.7 (- 24.4) (- 24.2) (- 26.9) (- 26.7) -16.7
8y - 16.1 17.3 - 17.5 13.9 (- 16.1) (- 17.3) (- 17.5) (~ 13.9) ~33.6
4, -~ 12.8 12.8 12.1 12.7 (- 12.4) (- 12.8) (-~ 12.1) (- 12.7) -17.0
8¢ - d4.1 79.0 - 74.2 85.4 (- 88.1) (- 79.0) (-~ 74.2) (~ 85.4) -94.5
' - 11.2 13.5 - 11.5 8.4 (-~ 11.2) (-~ 13.5) (= 11.5) (-~ 8.4) -24.1
2Ref. lU4.
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Table 3Jl.

Vibrational anharmonic constants of DZCO.

SCF Experiment
vz TZ DZ+P TZ+P
xy; in em - 15.269 - 13.805 - 12.388 - 12.045
X2 - 5.523 - 5.135 - 8.274 - 8.318
x| 3 - 17.295 - 21.152 - 16.029 - 22.180
X4 1.726 5.403 4.815 8.801
Xy - 62,790 - $56.151 - 53,372 - 51.792
X16 - 3.630 - 3.081 - 2.559 - 0.506
x22 - 6.927 - 60713 - 60390 - 60364
X23 - 2.655 - 3.2846 - 2.252 - 2,277
X24 ~ 4.595 - 4.644 - 7.456 -~ 7.065
X25 ~ 4.345 - 3,920 -~ 5.617 - 5.386
X26 = 3,909 - 4,654 - 6.634 - 4.903
X33 0.728 1.722 0.079 1.890
X34 1.763 1.859 0.804 0.900
X35 - 9.650 -~ B8.167 =~ 4.804 - 16.866
X36 - 7.262 - 10.675 - 13.019 5.025
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Table

31 continued.

SCF Experiment
Dz TZ DZ+P TZ+P
X464 - 3.973 - 4.911 - 3,758 -~ 5.058
X5 - 11.576 - 11.617 - 10.313 ~ 10.633
X46 3.064 2.963 2.902 2.884
X5 - 20.321 - 18.477 - 18.503 - 18.405
Xs¢ - 6.594 - 4.328 - 0.262 - 12.588
X6 - 1.025 - 1.786 - 1.366 - 1.692
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Table 32.

Theoretical and experimental geometries, dipole moments, vibration-rotation interaction constants,

and rotational constants of st.

SCF

C1SD Experiment
Dz TZ DZ+P TZ+P Dz TZ DZ+P TZ+P
Energy in hartree -398.62451 -398.67165 ~398.67211 -398.70550 ~398.83505 -398.83689
r (SH) 1n A 1.3505 1.3471 1.3347 1.3349 1.3762 1.3723 1.3405 1.3601  1.334
8,(nSH) Ln deg. 96.08 94.00 94.06 94.71 94.71 92.57 92.58  92.27
b tn D 1.824 1.836 1.297 1.306 1.692 1.710 1.216 1.226
o tn ca”! 0.1874  0.1873  0.1370  0.1357 - - - -
o -0.4004  -0.3996  -0.3488  -0.3481 - - - -
4 0.2524  0.2514 0.1921 0.1911 - - - -
o} 0.1138  0.1148  0.1147 0.1138 - - - -
o -0.1095  -0.1076  -0.1069  ~0.1632 - - - -
a3 0.0762  0.0773  0.0775  0.0767 - - - -
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Table 32 continued.

SCF CISD Exper{ment
Dz T2 DZ+P TZ+P VYA T2 DZ+P TZ+P
o 0.0717 0.0720 0.0624 0.0619 - - -
a5 0.0669  0.0676  0.0597  0.0592 - - -
ag 0.0511 0.0512 0.0449 0.0446 - - -
A, tn ca”! 10.9000  10.9584  10.7301 10.7393  10.2880
B, 8.2947 8.3343 8.7766 8.7660 8.2079
c 4.7103 4.7339 4.8278 4.8264 4.5655
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Table 33.

Theorecical and experimental harmonic vibrational frequencies, vibrational anharmonic constants,

and fundamental vibrational trequencies of H,s.

SCF CISD Experiments

13 T2 DZ+P TZ+P nZ 12 DZ+P TZ+P
w 1n ca”! 2677.7 2708.3 2660.3 2861.4 2455.0 2485.3 2785.3 2784.2 2721
w, 1317.0 1331.9 1321.5 1318.5 1208.3 1219.4 1250.7 1249.0 1201
wy 2695.3 2724.0 _2871.6 2872.9 . 2478.3 2505.3 2801.3 2799.9 2734
xp) in em” - 24,378 - 25.263 -21.216 ~20.992 - - - -
X2 - 22.849 - 23.29Y5 - 11.774 -~ 11.315 - - - -
X13 - 95.316 - 98.967 - 84.705 - 83.922 - - - -
X22 - 4,767 - 5.762 - 6.124 - 6.141 - - - -
X23 - 20.774 - 21.880 - 18.587 -~ 18.305 - - - -
X33 - 24.556 - 25.246 - 21.542 - 21.341 - - - -
v, tn e ! 2569.9 2596.7 2769.6 2771.8 (2347.2)  (2373.7)  (2694.6)  (2694.6) 2615
v, 1285.6 1297.8 1294.1 1291.4 (1177.0)  (1185.3)  (1223.3)  (1221.9) 1183
vy 2588.1 2613.1 2776.9 2779.1 (2371.1)  (2397.4)  (2706.6) (2706.1) 2626
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Table J4.

Theoretical values of some quartic centrifugal distortion constants of HZS‘

SCF CISD Experiment
vz TZ DZ+P TZ+P Dz TZ DZ+P TZ+P
8, x 10® 1n ca”! 246,16 471.62  471.58 447.22
b5 x 108 -1213.81  -1573.07 ~1578.57 -1379.44
s x 108 2844.62  2912.07  2928.95 2926.88
¢, x 10° 168.11 208.30  208.32 192.74
o x 10° ~46.10
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Table 35.

Theoretical and experimental geometries and rotational constants

of CZ"A'

DZP SCF DZP CISD Experiment!!8

Energy in hartree -78.049308 -78.328495

r (CC) 1n A 1.3245 1.3390 1.339
£, (CH) 1.0788 1.0855 1.085
8,(HCH) 1n deg. 116.83 116.99 117.83
A tn ca ! 4.9514

B, 1.0157

c, 0.8428

Ag 1in e} 4.9082

By 1.0095

¢ 0.8351

86T



Table 3Jb. Theoretical and experimental harmonic and fundamental vibrational
frequencies of C,H,.
DZp SCF pZP CISD Experlments"b
wy (ag) in cm 3322 3252 3153
w) (ug) 1817 1737 1655
wy (ag) 1471 1410 1370
y, (ag) 1132 1070 1044
wg (blg) 3385 3321 3232
uy (blg) 1336 1273 1245
wy (blu) 1078 983 969
iy (ng) 1085 885 959
wg  (by ) 3411 3349 3234
wpy (by) 887 842 843
wpy (by,) 3300 3226 3147
W) (b3u) 1582 1518 1473
v in ca”! 3199 3129 3026
v, 1784 1704 1623
1449 1348 1342
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Table 36 continued.

DZP SCF DZP CISD Experiments®:?
v, 1111 1049 1023
vg 3260 3196 3086
Yo 1316 1253 1222
v 1063 968 949
vy 1068 868 940
w 3280 3218 3105
vio 887 842 826
v 3159 3085 2989
vi2 1550 1486 1444
8, in cm -123 (-123) -127
8, -33 ( ~33) -32
85 -22 ( -22) -28
8, -21 ( -21) -21
8 -125 (-125) -146
8¢ -20 ( -20) -23

091



Table 36 continued.

“a

DZP SCF DZP CISD Experimentsd:P
8 -15 ( -15) -15
by -17 ( -17) -19
& -131 (-131) -129
8,4 0 ( 0) =17
8, -141 (-141) -158
8, -32 ( ~32) -29

®Harmontc frequencies from Ref. 119.

Pfundamental frequencies as found in Ref. 120.
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Tavle 37. Theoretical and experimental geometries, dipole moments, vibratifon-rotation fnteraction
constants, rotational constants, centrifugal distortion constants, and rotational t-type

doubling constants of HCN.

SCF CISD Experiments

Dz T2 DZ+P TZ+P Dz TZ DZ+P TZ+P

Energy in hartree-92.83694 -92.84767 -92.87520 -92.89955 ~93.03202 -93.05574 -93.16042 -93.18467

£ (CH) 1n A 1.U542  1.0547  1.0638  1.0576  1.0720  1.0700  1.0707  1.0625 1.0657,1.0655
e

£ (CN) 1.1507  1.1375  1.1366  1.1268  1.1832  1.1648  1.1631° '1.1497 1.1530,1.1532°
bin D 3.296  3.283  3.216  3.244  3.130  3.138  3.001  3.043

ap x103 tn ea™! 8002 B.296  7.690  7.913 -- -- -- --  9.309,10.0

a, x103 -2.602  -3.079 - -3.327  -2.556 -- -- -- - -3.750,-3.6

a, x103 9.605  9.403  9.590  9.707 -- -- -- --  10.776,10.4

be tn ca”! 1.4951  1.5244  1.5223  1.5475  1.4189  1.4580  1.4612

1.488Y 1.5186 1.5170 1.5412 - - - - 1.47822162
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Table 37 continued.

SCF CISD Experiments
DZ T2 DZ+P TZ+P DZ T2 DZ+P TZ+P
b, x16® tn ca”! 2,442 2.616 2.432 2.534 2.542 2.758 2.512 2.9093
H,y x10!2 2,476 2,852 2,639  2.847 -- -- -- -~
q§ x10% fa ca”l 6.329  6.580 6.714 6.738 6.398 6.927 6.789 - 7.483
qj x108 -5.019  -=5.531  -5.686  -5.234 - - - -~ -8.9
qf§ x108 4.362 4,754 4.941 4.429 -- -- -- -
%Ref. 1l4.
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Table 3B. Theoret{cal and exper{mental harmonic vibrational frequencies, vibrational anharmontc

constants and fundameantal vibrational frequencies of HCN.

SCF CISD Experiments
DZ TZ DZ+P TZ+P bZ TZ DZ+P TZ+P

w 1in em! 2326.8 2314.8 2403.2 2409.4 2104.0 2104.3 2213.9 2131.82,2128.9%
w, 882.7 895.4 856.6 902.6 761.0 738.6 753.9 726.61, 727.0°
wy 3097.0 3626.3 3631.2 3623.2 34921 3430.0 3531.0 3438.34,3442.0%
X]1 - 8.188 - 7.861 - -- -- -- -11.25
X|2 . ~ 1.446 ~ 1.488 - - - - - 3.06
X13 -13.036 ~13.793 - -- - -- -16.78
X272 - 0.734 - 6.286 - - - - ~ 2.43
X23 ~20.744 ~19.038 - -~ - -- ~-19.06
X33 -52.399 -45.250 - - - - ~50.25

4.767 6,583 - - - - 5.27
Xy,
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Table

38 continued.

SCF CISD Experiments
DZ T2 DZ+P TZ+P Y4 TZ DZ+P TZ+P
v, 2302.4 2385.3  (2079.7) 2096.68
vy 874.2 880.1 (752.5) 713.74
vy 3564.9 3506.8  (3360.0) 3311.47
A tn ca”! -24.1 (-24.1)
8, - 8.5 -22.5  (-8.5) (-22.5) - 12.87
8 -132.1 ~116.4  (-132.1) (-116.4) -126.87
%Ref. 126.
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Table 39.

Theoretical and experimental vibration-rotation interaction constants, rotational constants,

centrifugal distortion constants, and rotational t-type doubling constants of DCN.

SCF CISD Experiment
DZ T2 DZ+P TZ+P bz T2 DZ+P TZ+P
a; x10% 10 ™! 5.328 5.369 5.210 5.356 6.690
oy x10° -3.200  -3.562  -3.793  -3.167 -4.290
ay x103 9.577 9,580  9.423  9.544 10.170
B, in ca”! 1.2221  1.2436  1.2397  1.2595  1.1621  1.1912  1.1934
B 1.2178  1.2395  1.2362  1.2552
D, x10° tn ea™!  1.616 1.728 1.612 1.689 1.664 1.802 1.649
My x10!2 1,538 1.807  1.592 .72l
q x10% ta ca”l 5,304 5.486 5.577 5.590 5.387 5.798 5.678
q x10® -3.978  ~4.297  =4.547  -4.071
q5 =108 3.395 3.633 3.904 3.375
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Table 40.

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic

conatants and fundamental vibrational frequencies of DCN.
SCF CIsSD Experiment

Dz T2 bz+P TZ+P vz T2 DZ+P TZ+P
w; in cm 2117.4 2100.0 2155.7 2154.9 1940.4 1934.2 2024.9 1952.81
w, 703.4 714.2 683.9 720.8 605.8 588.7 601.0 580.03
wy 2926.8 2879.8 2916.5 2918.7 2728.0 2688.5 @ 2781.3 2703.85
X11 - 5.988 - 6.103 -7.03
X]2 3.790 4.247 2.68
Xi3 -30.351 -30.872 -32.44
X2 - 0.997 - 4.560 -2.08
X23 -15.765 ~15.224 ~-15.96
X33 -19.869 -15.524 ~20.56

2.952 4,149 3.25
Xtyt,
vy 2094.1 2131.5 (1917.0) 1925.27
v, 697.4 705.8 ( 599.8) 570.34
vy 2856.2 2857.0 (2657.3) 2630.33
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Table 4l.

L 2

Theoretical and experimental geometries, vibration-rotation interaction coanstants, rotational constants,

centrifugal distortion constants, and rotational t-type doubling constants of COz.

SCF C1SD

Experiments

[+74 T2 DZ+P TZ+P 174 TZ DZ+P

TZ+P

Energy in hartree -187.55339 -187.56279 -187.67624 -187,68791 -187.85244 -187.89160 -188.09488

re(CO) in A

%

xilU3 in cm.l

xlOJ

xlO3

in ca

x10° {n em

xlO12

1.1651 1.1594 1.1453 1.1387 1.1925 1.1833 1.1647
1.137 1.1155 1.0296 1.04 - - -
-0.648 ~1.1800 ~0.7025 -0.67 - - -
3.268 3.2642 2.9603 2.97 - - -
0.3882 0.3920 0.4017 0.4064 0.3706 - ) -
0.3866 0.3910 0.4044 0.4051 - - -
0.119 0.1263 0.1132 0.1170 0.1225 - -
0.009 0.0134 0.0125 0.014 - - -

-188.13506

1.1287 1.1621

~ 0.3939

- 0.39021

- 0.135
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Table 41 continued.

SCF

CIsD Experiaents
DZ TZ DZ2+P TZ+P Dz T2 DZ2+P TZ+P
q§ x103 1n ca”! 0.587 0.6571 0.5829 - - - - -
a3 xi0® -0.048 -0.1122 -0.0522 - - - - -
q§ =108 0.037 0.0996 0.0420 - - - - -
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Table 42. Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and
fundamental vibrational frequencies of COz.
SCF CI1SD Experiment
Dz T2 DZ+P TZ+P Dz T2 DZ+P TZ+P
@ 1in cat 1400.2 1381.2 1513.4 1514.7 1289.3 1428.3
un) 717.4 608.0 766.0 776.5 639.0 711.6
©, 2383.7 2301.7 2590.3 2570.7 2254.2 2479.3
X}1 -3.053 -2.805 -2.739 - - - -
Xj2 -5.172 30.352 -5.417 - - - -
Xi3 ~25.206 -23.365 -21.336 - - - -
X722 1.546 ~1.246 1.729 - - - -
X213 -~14.099 -8.518 -12.760 - - - -
X33 -15.874 -13.812 -13.170 . - - - -
x‘z‘z -0.982 5.592 -1.123 - - - -
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Table 42 continued.

SCF CISD Experiaents
pz TZ DZ+P TZ+P pz T2 DZ+P TZ+P
vi 1376.3 1394.2 1491.9 (1265.4) 1388.17
vy 711.5 620.8 761.0 (633.0) 667.40
) 2325.3 2253.9 2540.5 (2195.8) 2349.16
4, in cn -23.9 13.1 -21.6 (-23.9) (13.1) (-21.6)
8, -6.0 12.8 -5.0 (~6.0) (12.8) (-5.8)
8y ~58.4 -47.8 -49.8 (~58.4) (-47.8) (~49.8)
-
~
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Table 43.

Theoretical and experimental geometries, dipole moments, vibration-rotatfon interaction constants,

rotational constants,centrifugal distortion conatants, and rotational t-type doubling constants of Nj0.

SCF

CISD Experiments

vz

T2

DZ+P TZ+P

Dz TZ DZ+p TZ+P

Energy fn hartree ~183.595411 -183.609675 -183.715760 -183.726722 -183.918705 ~183.960408 -184.161173 -184.203237

re(NN) in A

'e(NO) 1.2557
u 1n D 1.5395
a) x103 in co”! 1.7785
o x103 -0.0046
ay x10 6.0340
B, ta cn”! 0.4023
B 0.3984

1.10069

1.0963

1.2496

1.5610

0.4080

0.4047

1.0955 1.0866
1.1872 1.1796
0.8244 0.7950
2.55
-0.48
2.85
0.4317 0.4380
0.4295

1.1494 1.1392 1.1285 1.1162 1.128

1.2577 1.2492 1.1990 1.1900 1.184

0.4543

0.3881 0.3959 0.4156 0.4232 0.419011
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Table 4] continued.

SCF CISD Experinents
02 12 DZ+P T2+0 oz T2 DZ+P T2+P
b, x10% tn ca”! 0.238 0.2381 0.1610 0.176
My xio!? -0.650 ~0.520 ~0.078
o5 x10° 1n ca”! 0.8954 0.792
q; x108 0.2694
o5 108 -0.3969

LT



Table 44. Theoret{cal and experimental harmonic vibrational frequencies, vibratfonal anharmonic constants, and

fundamental vibrational frequencles of Nzo.

SCF C1SD Experiment

DZ TZ DZ+P T2+P Dz TZ DZ+P TZ+P

w 1in ca”l 2430.9 2404.1 2589.0 2595.8 2164.4 2160.2 2402.6 2419.1

w 554.9 519.1 668.4 707.0 507.2 461.8 606.4 644.5

wy 964.0 991.1 1358.0 >1354.2 1109.6 1113.6 1352.4 1347.5
X1 ~-15.457 -14.073 - - - -
xlz -7.923 ‘110637 - - - -
x ] X13 27.013 -73.678 ‘ - - - -
X22 0.219 0.529 - - - -
X23 -17.261 -6.621 - - - -
X33 -39.404 : -0.123 - - - -
Xlzlz 0.282 -0.215 - - - -

LT



Table 44 continued.

SCF CISD Experiments
Dz TZ D2+P TZ+P Y4 TZ DZ+P TZ+P
v 2405.6 2512.4 (2139.1) (2326.0) 2223.76
v, 543.2 661.7 (495.5) (599.7) 588.78
v 881.4 1314.3 (1027.0) (1308.7) 1284.9
4, in cn” ~25.3 -76.6 (~25.3) (-76.6)
Az ~11.7 ‘6&7 (-11.7) ('6-7)
a4 -82.6 -43.7 (-82.6) (-43.7)

9.1



Table 45. Theoretical and experimental geometries, dipole moments, vibration-rotation interaction constants,

rotational constants, centrifugal distortion constants, and rotational t-type doubling constants of COS.

SCF - CISD Experiments

0z T2 DZ+p TZ+P bz T2 DZ+pP TZ+P

Energy in hartree -510.176021 -510.187518 -510.279955 ~-510.286839 ~510.430225 -510.458104 -510.669445

r,(C0) fn A 11511} 1.1411 1.1352 1.1273 1.1845 1.1710 1.1595 1.1494 1.1545,1.1554¢
r, (Cs) 1.6085 1.6151 1.5736 1.5739 1.6164 1.6251 1.5732 1.5688 1.5630,1.5620:
uw in D 0.1612 0.0569 0.3376 0.3247 0.4419 0.3696 0.5241 0.5566

i

a; x10? 1a ca” 1.0827 1.0320 1.01 0.6298
a, x10° -0.2609 -0.3150 -0.31 -0.3524
oy x10° 0.9698 0.9098 0.79 ‘ 1.2262
B, 1n ca! 0.1966 0.1968 0.2042 0.2052 0.1905 0.1917 0.1966 0.2034282
B, 0.1959 0.1962 0.2036 0.2028563

LLT



Table 45 contiaued.

SCF CISD Experiments
pZ 12 DZ+P T2+P pZ T2 DZ+P TZ+P
D, x10° fa ca”! 0.0454 0.0450 0.0409 0.04280
My x10'2 ~0.0148 -0.0125 -0.007
q5 x10% tn ca”! 0.2077 0.2073 0.2110
q3 x108 0.0008 -0.0013
q§ x10° -0.0098 -0.0072
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Tabdle 4o.

Theotetical and experimental harmonic vibrational frequencies, vibrational anharmonic conatants, and

tundamental vibrational frequencies of COS.

SCF CISD Experiaent
vz T2 DZ+P T2+P pz TZ D2+P TZ+P
w 1in ce 797.1 802.3 891.0 886.8 796.2 802.6 891.6 874.27
“ 534.9 536.4 574.8 583.1 - 485.0 536.3 $24.20
wy 2170.1 2155.9 2298.5 2297.3 2008.4 2002.8 2193.0 2094.15
X1 -6.717 -6.155 - - - - -3.25
X|2 -3.460 ~-6.205 - - - - ~3.14
X)3 2.004 1.928 - - - - -2.53
X2 0.7413 1.406 - - - - 2.35
- - - - - - -14.56
X213 3.773 5.692 14.5
X33 -13.607 -12.564 - - - - -11.59
-0.545 . - - - - -1.79
Xe,t, :
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Table 47.

Theoretical and experimental geometries, vibration-rotation interaction constants, rotational constants,

centrifugal distortion constants, and rotational t-type doubling constants of C,Hy.

SCP CISD Experiments

02 T2 Dz+p TZ+P Dz T2 DZ+P TZ+P
Eoergy {n hartree ~76.799232 -76.811127 -76.831903 -76.843052 -76.977294 =77.000722 ~77.082305 -77.106963
£,(CC) tn A 1.2010° 1.1875 1.1912 1.1811 1.2299 1.2101 1.2131 1.1979
£, (CH) 1.0538 1.0536 1.0616 1.0554 1.0707 1.0686 1.0691 1.0601
a, x10% fa ea”! 6.3808 6.2490 6.25 6.3954 6.86
o, x103 4.7264 5.0156 4.74 4.9314 6.21
ay x10° 5.5233 5.2544 5.36 5.4236 5.60
a, x10° ~0.6090 -1.9262 -1.46 -1.1190 -1.29
a x10° -1.6821 -0.6804  ~2.12 -2.0195 -2.15
B, tn ca”! 1.1897 1.2101 1.1999 1.2189 1.1388 1.1680
By 1.1836 1.2045 1.1953 1.2137
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Table 47 continued.

scy CISD Experiaents
bz T2 DZ+P. T2Z+P vz Tz DZ+P TZ+P

b, x10° tn ca”! 1.3930 1.4508 1.3839 1.4322 1.4207 1.5053 1.580

i, x10t? 1.2883 1.3088 1.2695 1.3010

q§ x10% tn ca”l 4.1517 4.1418 4.4991 4.4477

qg x108

qf x108

qf x10% tn ca™! 4,003 4.1400 4.1779 4.2637

qg xan

q§ xlO8

-
~
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Tad

le 43.

G

Theoretical and experimental harmonic vibrational frequencies, vibrational anharmonic constants, and

fundanental vibrational frequencies of czuz.

SCF CISD Experiment
0z 12 DZ+P T2+P Dz 12 DZ+P T2+P
® 1n ca’ 3732.3 3681.6 3676.7 3673.4 3531.3 3485.3 3495.1
Y 2167.6 2179.0 2203.4 2219.2 2005.9 2023.8 2007.6
wy 3622.2 3557.4 3571.3 3558.6 3431.7 3373.2 3415.2
w, 842.7 909.2 766.7 820.0 678.6 675.6 624.0
g 887.1 901.1 858.2 877.4 749.7 741.1 746.7
X1 -25.510 -22.950 ~23.398 -23.093 - - - - -18.57
X12 -9.870 -9.598 ~9.380 -9.332 - - - - -13.09
X3 -104.761 -93.111 -96.905 ~94.302 - - - - -102.39
X14 -13.018 -13.359 ~10.251 -10.792 - - - - ~16.54
x5 -9.462 ~10.904 -8.219 -10.037 - - - - -10.85
X22 -5.251 -5.560 ~5.432 -5.669 - - - - ~5.77
X2 -4.969 ~5.069 -4.616 -5.198 - - - - -2.82
X24 ~9.349 -8.771 -10.295 -9.667 - - - - -12.70
X25 1.733 2.263 1.960 1.705 - - - - -1.38
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Table 48 continued.

SCF

C1SD Experiments
Dz 12 DZ+P TZ4P ) 12 TZ+P

X33 -27.056 -23.165 ~25.133 -24.264 ~30.95
X34 -8.122 -7.667 ~5.000 -5.956 -8.22
X35 -9.688 -8.460 -8.016 -8.313 -8.68
Xai 0.470 -8.067 2.479 1.506 3.072
s 47.336 36.150 $2.664 43,753 -2.406
Xss -1.290 -3.438 -2.146 -2.501 -2.334
Xy 1 1.650 4.691 1,158 1.413 0.756

474 :

- - - - - - - 6.539

X2

uts
Xy 1 3.338 4,288 3,714 3.815 - - - 31,492

sts
v) 3601.5 3560.1 3558.3 3554.6 (3400.5)  (3363.8)
v 2142.1 2154.0 2177.2 2192.6 (1980.4)  (1998.8)
vy 3495.4 3445.8 3457.3 3446.0 (3304.9)  (3261.7)
v 877.9 922.7 815.2 856 .4 (713.8) (697.2)
v 925.2 911.0 901.0 909. 1 (187.8) (742.8)

981
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Table 48 continued.

SCP CISD Experisents
[+¥4 T2 DZ2+P TZ+P DZ T2 DZ+P TZ+P
&) in ca”! -13u.8 ~121.5 -118.4 -118.8 (-130.8) (-121.5) (-118.4) (-118.8)
4, -25.5 -25.0 -26.2 -26.6 (~25.5) (-25.0) (-26.2). (-26.6)
44 ~-126.8 ~111.5 ~-114.0 ~112.5 (-126.8) (-111.5) (-114.0) (-112.5)
8, 35.2 21.6 48.5 36.5 (35.2) (21.6) (48.5) (36.5)
4q 38.1 1.7 .42.8 31.7 (38.1) (1.7) (42.8) (31.7)
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Table 49.

Theoretical geometries, vibration-rotation interact{on constants,

rotational constants, and centrifugal distortion constants of H;.

SCF

DZ 12 DZP 2P (482p) (683p)
Energy in hartree -1.27582 -1.27978 -1.29575 -1.29675 -1.29935 ~-1.29972
r, in A 0.8497 0.8611 0.8613 0.8657 0.8692 0.8683
u? in ca” ! 1.6103 1.1538 1.3273 1.2172 1.1841 1.1729
ag -0.15641 -0.2374 -0.1416 -0.1324 -0.1354 -0.1194
a? 0.8052 0.5769 0.6637 0.6086 0.5920 0.5028
u% 1.0328 0.9274 0.9791 0.9657 0.9603 0.4863
B, ta co”} 46.3355 45.1216 45.0949 44,6389 44.283) 44,3693
Ce 23.1677 22.5608 22.5475 22.3194 22.1417 22,1846
By 45.6844 44.7821 44,5729 44,1627 43.8267 43.1281
CO 21.7323 21.3449 21,2365 21,0495 20.8853 21.7050
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Table 49 continued.

SCF

Dz TZ DZ+P TZ+P (482p) (683p)
D, in Cn-l 0.03793 0.03479 0.03585 0.03511 0.03511 0.04145
Dy 0.02721 0.02487 0.02526 0.02468 0.02469 0.02777
DJK -0.06156 ~0.05635 -0.05758 ~-0.056131 -0.05632 -0.06071
HJ xle in cm—l 0.0510 0.0465 0.0483 0.0471 0.0476 0.1068
Hpp - =0.1951 -0.1729 -0.1782 -0.1726 -0.1743 -0.2830
uKJ 0.2407 0.2102 0.2156 0.2081 0.2101 0.2349
Hy -0.0960 -0.0831 -0.0850 -0.0819 -0.0827 -0.0589
4y -0.0151 -0.0125 -0.0118 -0.0114 -0.0115 0.0470
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Tabie 50.

Theoretfical harmonic vibrational frequencies, vibrational anharmonic
constants and fundamental vibrational frequencies of H;.
SCF
Dz 12 Dzp TZP (482p) (683p)
w in cm 3729.8 3727.0 3604.4 3576.6 3535.4 3s521.7
w, 2901.7 2919.3 2905.2 2896.6 2861.3 2860.8
X1y -77.370 -63.030 -52.639 -52.574 ~49.278 -48.308
Xj2 -233.817 ~-188.826 -171.104 ~-167.201 -162.789 -160.394
X22 -96.459 -93.987 -81.043 -81.363 -81.145 -81.862
877 86.101 840118 70.256 70.034 69.902 47.832
vy 3351.2 3412.1 3328.1 3304.2 3274.1 3264.7
vy 2586.5 2627.0 2646.8 2639.0 2606.4 2582.8
8 tn ca”! -378.6 -314.9 ~276.4 -272.3 -261.3 -257.0
8 -315.2 -292.3 -258.4 -257.7 -254.9 -278.0
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