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NANO EXPRESS Open Access

Effect of Engineered Nanoparticles on
Exopolymeric Substances Release from
Marine Phytoplankton
Meng-Hsuen Chiu1, Zafir A. Khan1, Santiago G. Garcia1, Andre D. Le1, Agnes Kagiri1, Javier Ramos1, Shih-Ming Tsai1,
Hunter W. Drobenaire1, Peter H. Santschi2, Antonietta Quigg3 and Wei-Chun Chin1*

Abstract

Engineered nanoparticles (ENPs), products from modern nanotechnologies, can potentially impact the marine
environment to pose serious threats to marine ecosystems. However, the cellular responses of marine phytoplankton to
ENPs are still not well established. Here, we investigate four different diatom species (Odontella mobiliensis, Skeletonema
grethae, Phaeodactylum tricornutum, Thalassiosira pseudonana) and one green algae (Dunaliella tertiolecta) for their
extracellular polymeric substances (EPS) release under model ENP treatments: 25 nm titanium dioxide (TiO2), 10–20 nm
silicon dioxide (SiO2), and 15–30 nm cerium dioxide (CeO2). We found SiO2 ENPs can significantly stimulate EPS release
from these algae (200–800%), while TiO2 ENP exposure induced the lowest release. Furthermore, the increase of intracellular
Ca2+ concentration can be triggered by ENPs, suggesting that the EPS release process is mediated through Ca2+ signal
pathways. With better understanding of the cellular mechanism mediated ENP-induced EPS release, potential preventative
and safety measures can be developed to mitigate negative impact on the marine ecosystem.
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Background
Engineered nanoparticles (ENPs), which range in size
between 1 and 100 nm (in at least one dimension), are
used in the fabrication of numerous consumer goods, in-
cluding printer inks and paints, detergents, bactericides,
coatings, cosmetics, sunscreen lotions, tires, computer
construction, and drug delivery. Given the promising
application of ENPs, funding for the National Nanotech-
nology Initiative (NNI) in the USA alone approached
$1.4 billion in 2017 [1–3]. Establishing foundational
knowledge at the nanoscale was the main focus of the
nanotechnology research community in the first phase.
As of 2009, this new knowledge underpinned about a
quarter of a trillion dollars worldwide market, of which
about $91 billion was in US products that incorporate
nanoscale components [4]. With the rapid development
of nanotechnology, it is inevitable that ENPs will eventu-
ally find their way to aquatic systems. The major

concern with ENPs in terms of their potential toxicity
(e.g., the potential for producing reactive oxygen species,
ROS) in the environment is related to their large and
unique surface reactivity. However, the actual impact on
the marine ecosystem remains largely unknown due to
complex environmental and biological factors of natural
waters and variety of ENPs [1, 5, 6]. Previous studies
have shown that ENPs can cause significant harm to the
algae-based marine ecosystem [7, 8]. Marine organisms
(particularly phytoplankton) have shown to interact with
ENPs leading to negative repercussions [9–11]. With the
potential increased nanotechnology utilization in diverse
fields, more and more ENPs may enter aquatic environ-
ments, so the cellular responses of marine phytoplank-
ton to ENPs warrant further attention [12–21].
Most marine microbes, whether auto- or hetero-

trophic, are generally capable of producing exopolymeric
substances (EPS), which have diverse functional roles
and physical properties in the marine ecosystem acting
as growth inhibitors, growth promoters, toxins, metal
scavengers, or as substrates for the heterotrophic cycle
[22–26]. EPS released from phytoplankton and bacteria
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in the ocean are polysaccharide-rich anionic colloidal
biopolymers that are critical for the formation of marine
gels, marine snow, and biofilms, as well as for colloid
and trace element scavenging and for providing protec-
tion against various environmental threat, including
ENPs [7, 15, 19, 20, 25, 27]. In addition, the secretion of
EPS is believed to be a natural response when phyto-
plankton experience various stress [8].
Ca2+ is a common second messenger involved in a

multitude of intracellular signaling pathways. It has been
demonstrated that Ca2+ is required for chemotaxis,
motility, and adhesion in the diatom Amphora coffeae-
formis [28]. Enhanced intracellular free Ca2+ levels are
known to lead to the activation of protein kinase C,
which is involved in many intracellular signaling path-
ways [29]. Since the release of EPS is closely related to
the motility and adhesion of diatoms, it was proposed
that a Ca2+-mediated secretion process controls the re-
lease of EPS from diatoms [30], and the direct evidence
verifying Ca2+ signaling, exocytosis, and correlating Ca2+

signaling with exocytosis has been reported in our previ-
ous study [31]. Past studies have also demonstrated that
interactions with ENPs can alter the intracellular Ca2+

pathways, which are essential for cell signaling [29, 32–
34]. Specific intracellular Ca2+ concentration changes
are important in cell signaling and secretion processes;
however, there are no reports of titanium dioxide
(TiO2), silicon dioxide (SiO2), or cerium dioxide (CeO2)
to alter intracellular Ca2+ level in phytoplankton.

In 2013, Quigg et al. [8] summarized the direct and
indirect toxic effects of ENPs on algae. In our previous
experiments, ENPs were shown to facilitate EPS aggrega-
tion [35]. In this regard, EPS may either exacerbate or
reduce direct ENP-induced toxicity toward aquatic or-
ganisms [7, 15, 36]. However, direct measurement for
EPS release from phytoplankton under ENPs stress has
never been reported. In this study, the aim is to study the
release of EPS from four different diatom species (Odon-
tella mobiliensis, Skeletonema grethae, Phaeodactylum
tricornutum, Thalassiosira pseudonana) and one green
algae (Dunaliella tertiolecta) under ENP treatments. By
understanding underlying mechanisms of ENP-induced
EPS-release in phytoplankton, implementation of pre-
ventative and safety measures can mitigate potentially
detrimental effects toward marine organisms.

Results and Discussions
ENP Characterization
Dynamic laser scattering (DLS) was used to characterize
size metrics of the following ENPs suspended in pure
water: TiO2, SiO2, and CeO2. The particle size distribu-
tion ranged from 7 to 66 nm in TiO2, 9 to 66 nm in
SiO2, and 12 to 70 nm in CeO2. Some larger sizes could
be due to aggregation or agglomeration while the pre-
dominant size for TiO2 is 25 nm, SiO2 is 10 to 20 nm,
and CeO2 is 15 to 30 nm, which are consistent with
manufacturer’s information (Fig. 1).

Fig. 1 ENP characterization by DLS assessment of a TiO2, b SiO2, and c CeO2 in L1 medium after sonication showing their size distribution. The
ENP final concentration in DLS sample is 1 μg/ml, the measuring time is 3 min right after the sonication
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ENPs Induce Intracellular Ca2+ Concentration in
Phytoplankton
To investigate whether ENPs could induce an increase
in intracellular Ca2+ concentration, phytoplankton cells
(OD 600 = 0.8) were loaded with Fluo-4AM dye and
exposed to 1 mg/ml of 25 nm TiO2, 10–20 nm SiO2,
and 15–30 nm CeO2 ENPs respectively. The change in
intracellular Ca2+ concentration, as represented by the
fluorescence intensity within phytoplankton cells, was
monitored for 150 s. Figure 2a–e show that 1 mg/ml of
three respective ENPs increased Ca2+ concentration in
SiO2 by approximately 50–300%, TiO2 by approximately
40%, and CeO2 by approximately 150–200%, while the
control conditions (L1 medium) remained unchanged.
The results show ENPs can induced significant intracel-
lular Ca2+ responses in phytoplankton and suggest that
phytoplankton respond to distinct ENPs through Ca2+

signaling pathways. Our data indicates only minor
changes in intracellular Ca2+ levels when TiO2 is
present, potentially attributed to substantial phytoplank-
ton cell death from TiO2-induced toxicity [37, 38]. In
our previous study, TiO2 prompted increase in the intra-
cellular Ca2+ concentration [34] alongside significant cell
apoptosis [39]. However, SiO2 surprisingly showed the
most obvious intracellular Ca2+ increase for all phyto-
plankton species, while CeO2 can only trigger an inter-
mediate intracellular Ca2+ concentration increase.
Previous research suggested potential of high CeO2

concentrations (> 50 mg/ml) to induce intracellular

oxidative stress and elevation of intracellular Ca2+ levels,
though effects were small, and supported our finding
[40]. We also measured the zeta potential of each ENPs
in artificial seawater to address the potential effect may cause
by the surface charge; however, the value was low. The
measurement indicated the ENPs are considered approxi-
mately neutral [41] (Additional file 1: Supplement data). This
served as the first report wherein disparate ENPs were found
to induce intracellular Ca2+ concentration changes in
specific phytoplankton, ultimately paving a new avenue for
future research.

ENP-Induced EPS Release in Phytoplankton
Enzyme-linked lectin assay (ELLA) was used to assess
the amount of EPS release from phytoplankton cells
when stimulated with TiO2, SiO2, and CeO2 ENPs, con-
centration range from 1 μg/ml to 5 mg/ml based on pre-
vious studies for TiO2 [42, 43] and CeO2 [44–46]. EPS
secretion was normalized to total phytoplankton DNA
amount (Additional file 1: Supplement data) in order to
have an equal base for comparison. Compared with the
control, we found that 10–20 nm SiO2 is able to increase
EPS release by up to 550% in Dunaliella, 500% in
Thalassiosira, 1000% in Skeletonema, 400% in Odontella,
and 900% in Phaeodactylum (Fig. 3). When the phytoplank-
ton species were exposed to TiO2, there was no strong effect
on EPS secretion, as only Skeletonema and Phaeodacty-
lum showed significant changes. EPS release data are
thus consistent with our intracellular Ca2+ concentration

Fig. 2 Measurement of intracellular Ca2+ concentration after stimulation by different ENPs. Different phytoplankton cells a Dunaliella tertiolecta, b
Thalassiosira pseudonana, c Skeletonema grathae, d Phaeodactylum tricornutum, and e Odontella mobiliensis were treated with TiO2 25 nm (green),
SiO2 10–20 nm (red), CeO2 15–30 nm (purple) with a concentration of 1 mg/ml and control (blue). Black arrow indicates the time point when
EPNs were applied (30 s). The measurements show representative data from an average of 20 individual cells
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results. TiO2 did not present a significant impact on the
production of EPS, similar to the fact that intracellular
Ca+2 concentrations showed very limit changes due to
the toxicity of TiO2 to phytoplankton. The production
and residues of ROS can lead to many complications such
as apoptosis in the phytoplankton [47–49]. In the CeO2

treatment, results showed minor effect in Dunaliella,
Skeletonema, Odontella, and Phaeodactylum. However,
SiO2 showed the most significant EPS induction in Tha-
lassiosira pseudonana (around 600%) and Skeletonema
grethae (around 1000–1500%). These data indicate that
different ENPs can induce specific EPS release from
phytoplankton, and intracellular Ca2+ changes also match
EPS release results. By assessing the changes in intracellu-
lar Ca2+ concentration, it is evident that there is a direct
connection in the Ca2+ cellular pathways in which ENPs
evoke the EPS secretion from phytoplankton. The
observation here is in agreement with our previous studies
based on Phaeocystis EPS release [31]. The results provide
direct evidence that phytoplankton can detect and distin-
guish ENPs responding with different EPS release regu-
lated by Ca2+ cellular pathways.
The use of ELLA allowed us to determine the release

of EPS via the interactions of the phytoplankton with the
ENPs. Our results indicate that EPS secretion was
significantly increased as the phytoplankton interacted
with SiO2 for Dunaliella tertiolecta, Thalassiosira
pseudonana, and Skeletonema grethae. It appears that
these diatoms are primed to recognize SiO2 particles.
However, in Phaeodactylum tricornutum, a strong EPS
secretion was not found. This difference represents EPS

release triggered by ENPs dependents on the phyto-
plankton species and ENPs concentration (Fig. 3). In a
previous study, oil spills caused large marine microbial
EPS releases that were proposed to counteract the nega-
tive consequence of oil spills [50]. In addition,
Boglaienko, and Tansel found that SiO2 particles was
able to remove oil aggregates efficiently [51]. Our finding
provides a new potential mechanism wherein low
toxicity SiO2 particles can induce EPS release from spe-
cific phytoplankton, potentially facilitating oil-spill re-
moval by promoting EPS aggregation. Cerium dioxide
has never been reported to disturb phytoplankton-based
marine ecosystems. Results here showed CeO2 ENPs can
impact all phytoplankton here except Thalassiosira pseu-
donana. CeO2 ENPs may, like SiO2, have the ability to
boost EPS release from particular phytoplankton for oil
mitigation applications.

Conclusions
The ENP-marine environment interaction is becoming
increasingly critical due to current and future discharges
of nanomaterials. Here, we demonstrate enhanced EPS
secretion as one of the major effects of ENPs to phyto-
plankton. We also provide evidence that different phyto-
plankton can respond differently to various ENP stresses
by regulating Ca2+ pathways. However, a complete
assessment of ENPs to marine ecosystem would need
further investigations to provide detailed knowledge and
understanding of the interactions between nanomaterials
and marine organisms.

Fig. 3 EPS release triggered by various ENPs. Different phytoplankton cells a Dunaliella tertiolecta, b Thalassiosira pseudonana, c Skeletonema
grathae, d Phaeodactylum tricornutum, and e Odontella mobiliensis were treated with TiO2 (circles), SiO2 (triangles), CeO2 (squares), respectively,
with concentrations of 5 mg/ml and 1 mg/ml, 0.5 mg/ml, 0.1 mg/ml, 10 μg/ml, 1 μg/ml (n = 3)
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Methods
Phytoplankton Culture
Batch cultures of Odontella mobiliensis (CCMP597),
Dunaliella tertiolecta (UTEX999), Skeletonema grethae
(CCMP775), Phaeodactylum tricornutum (UTEX646),
Thalassiosira pseudonana (Provasoli - Guillard marine
phytoplankton culture collection, West Boothbay Harbor,
MN, USA) were grown in L1 marine medium (Sigma,
MO, USA) on a 14:10 (light: dark) cycle at 100 μmol m
−2 s−1 and 24 °C under axenic conditions. Growth phase
of the culture was determined by cell counting with a
hemocytometer.

Nanoparticles and Characterization
All ENPs, TiO2, SiO2, CeO2 (Sigma-Aldrich, MO, USA),
were sonicated in pure water before usage. ENPs were
reconstituted with filtered L1 medium (Sigma, MO,
USA) before being tested. The size of ENPs was
independently confirmed using homodyne dynamics
laser scattering (DLS). Briefly, seawater samples were
refiltered through a 0.22-μm Millipore membrane (pre-
washed with 0.1N HCl) and poured directly into five
10 ml scattering cells that were then positioned in the
goniometer of a Brookhaven BI-200SM laser spectrom-
eter (Brookhaven Instruments, NY, USA). The autocor-
relation function of the scattering intensity fluctuations
detected at a 45° angle was processed on line by a
Brookhaven BI 9000ATautocorrelator, and particle size
distribution was calculated by the CONTIN method
(Provencher, 1982). Results from each sample were
collected in triplicate right after sonication. Calibration
of the DLS spectrometer was conducted using stand-
ard suspensions of monodisperse latex microspheres
(Polysciences, PA, USA).

ENP Treatment
The phytoplankton cells were cultured in a 96-well plate
with L1 medium for 24 h. Cells were treated with ENP
stocks: 5 mg/ml and 1 mg/ml, 0.5 mg/ml, 0.1 mg/ml,
10 μg/ml, 1 μg/ml of the TiO2, SiO2, and CeO2 (Sigma-
Aldrich, MO, USA) or L1 medium (control) for 48 h.
The supernatant containing secreted EPS was collected
and briefly centrifuged at 4000 rpm to remove the
residual ENPs. This protocol was adapted from our pre-
vious publication [34]. The concentration range used
here is not intended to represent or mimic the current
ENP levels in the environment but aims to assess the full
potential impact of ENPs on marine phytoplankton and
investigate the associate cellular mechanisms. As a
promising emergent nanomaterial, ENPs have not yet
reached their full commercial capacity. Detailed assess-
ment of their complete ecological impacts is much
needed before ENPs enter commercial and household
product market to introduce more ENPs into the ocean.

Enzyme-Linked Lectin Assay (ELLA)
The supernatant containing secreted polysaccharide was
collected and briefly centrifuged at 1700 rcf (Megafuge
1.0R) to remove the residual ENPs. The supernatant was
then incubated in a 96 well (Nunc MaxiSorp, VWR, CA,
USA) plate overnight at 4 °C. Afterwards the 96-well
plate was washed with PBST (PBS + 0.05% Tween-20)
and PBS and then blocked with 1% BSA. The 96-well
plate was washed again with PBST and PBS and
incubated with lectin (Concanavalin A, ConA) (Sigma-
Aldrich, MO, USA), conjugated to horseradish peroxid-
ase (HRP; 5 mg/ml) (Sigma-Aldrich, MO, USA), at 37 °C
for 1 h. The substrate, 3,39,5,59-tetramethylbenzidine
(TMB; Sigma-Aldrich, MO, USA), was added to each
well at room temperature followed by H2SO4 (Sigma-Al-
drich, MO, USA) in order to terminate the reaction. The
optical density was measured at 450 nm by PerkinElmer
VICTOR3 (MA, USA). This protocol was adapted from
our previous publication [34, 52].

DNA Determination
The pellet containing phytoplankton was collected and
obtained the ZR-96 Quick-gDNA kit (ZYMO Research,
CA, USA). In brief, 4× lysis buffer was used to break
phytoplankton cells and flow through the DNA binding
column, eluted by elution buffer in the end. DNA
concentrations were measured by NanoDrop ND-1000
(Thermo, CA, USA). Protocol was adapted from manu-
factured kit protocol.

Measurements of Intracellular Ca2+ Concentrations
Induced by ENPs
The phytoplankton cells were then loaded with a Fluo-
4AM dye (1 mM) (Kd = 335 nM, λEx = 494 nm, and
λEm = 506 nm, ThermoFisher, CA, USA) for 60 min
[31]. After the dye loading, the phytoplankton cells were
rinsed, incubated with L1 medium, and treated with the
1 mg/ml TiO2, SiO2, and CeO2 respectively. All calcium
signaling experiments were carried out on a Nikon
microscope (Nikon Eclipse TE2000-U, Tokyo, Japan).
Protocol and conditions were adapted from previous
publications [31, 34].

Zeta Potential of ENP Measurement
To measure the surface charges of ENPs, the zeta poten-
tial (ζ) of ENPs was measured with a Zetasizer Nano ZS,
Malvern, in the presence of artificial seawater at 25 °C.
After the data were collected from each sample, the
recorded values were averaged.

Statistical Analysis
The data is reported as means ± SD. Each experiment
was performed independently at least three times.
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Histograms were made by GraphPad Prism 6.0. (Graph-
Pad Software, Inc., San Diego, CA, USA).

Additional file

Additional file 1: Supplement data. (DOCX 224 kb)
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