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Abstract: This study investigated the predictive role of baseline 18F-FDG PET/CT (bPET/CT) ra-
diomics from two distinct target lesions in patients with classical Hodgkin’s lymphoma (cHL). cHL
patients examined with bPET/CT and interim PET/CT between 2010 and 2019 were retrospectively
included. Two bPET/CT target lesions were selected for radiomic feature extraction: Lesion_A, with
the largest axial diameter, and Lesion_B, with the highest SUVmax. Deauville score at interim PET/CT
(DS) and 24-month progression-free-survival (PFS) were recorded. Mann–Whitney test identified the
most promising image features (p < 0.05) from both lesions with regards to DS and PFS; all possible
radiomic bivariate models were then built through a logistic regression analysis and trained/tested
with a cross-fold validation test. The best bivariate models were selected based on their mean area
under curve (mAUC). A total of 227 cHL patients were included. The best models for DS prediction
had 0.78 ± 0.05 maximum mAUC, with a predominant contribution of Lesion_A features to the
combinations. The best models for 24-month PFS prediction reached 0.74 ± 0.12 mAUC and mainly
depended on Lesion_B features. bFDG-PET/CT radiomic features from the largest and hottest lesions
in patients with cHL may provide relevant information in terms of early response-to-treatment
and prognosis, thus representing an earlier and stronger decision-making support for therapeutic
strategies. External validations of the proposed model are planned.
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1. Introduction

Hodgkin’s lymphoma (HL) is a rare B-cell malignancy with an estimated incidence
of 2.3 to 2.6 cases per 100,000 people per year [1,2]. The so-called “classical” HLs (cHL)
represent the vast majority of HL cases (about 95%) and are distinguished from nodular
lymphocyte-predominant types due the indolent presentation and more favorable progno-
sis of the latter [1,3]. Nowadays, 18F-FDG PET/CT plays a central role in the management
of this disease. Baseline 18F-FDG PET/CT (bPET/CT) enables patients’ risk stratifica-
tion [1,4–6], as five-year relative survival rate relies strongly on disease stage [2] but also
allows therapeutic planification [3,5]. Interim PET/CT (iPET/CT), performed after two
to four courses of primary chemotherapy (PCT), has proven its usefulness, as numerous
trials have used an iPET/CT response-adapted approach to evaluate early escalation or
de-escalation of therapy [7]. In particular, the 5-point Deauville score (DS) derived from
iPET/CT has proven high prognostic efficacy [8,9].

Despite recent therapeutical advances [10], about 25% of HL patients still relapse or
die because of disease progression [1,11], calling for new prognostic factors to be found,
particularly on bPET/CT. Radiomics, an emerging field of research aiming to extract
mineable, quantitative, high-dimensional data from clinical images, has been suggested as
a solution [12–14]. Various studies have explored the possibilities offered by radiomics in
HL [15] whether for computer-aided histological classification [16], staging [17,18], early
metabolic response assessment [19–21], or refractory disease prediction [22,23].

The extraction of parameters and the construction of radiomic models is a long and
complex process requiring a rigorous approach. Several methodological frameworks have
been proposed [16,24]. The variability of target volume delineation protocols, the lack of
validation cohorts, and the lack of methodological harmonization are factors that limit the
diffusion of this type of approach in clinical routine [13,25,26].

This study aimed at investigating whether bPET/CT radiomic models, which are
derived from two distinct and easy-to-identify target lesions (the largest and the hottest),
could predict tumor aggressiveness and patients’ prognosis considering early response to
PCT (DS at iPET/CT) and progression-free survival (PFS) in a large monocentric cohort of
cHL patients. In addition, inter-scanner performance differences were assessed.

2. Materials and Methods
2.1. Study Design, Patients, and Data Collection

This retrospective study was approved by the Ethical Committee of Fondazione
Policlinico Universitario A. Gemelli IRCCS (study code 3834), and all included subjects
signed an informed consent form.

Medical records of all patients consecutively diagnosed with HL and referred to the
hematology unit between September 2010 and October 2019 were reviewed. Patients
were included if they had undergone a bPET/CT and an iPET/CT after the first two
cycles of PCT and had an available clinical follow-up of at least 2 years. Exclusion criteria
were LPHL histology, presence of other synchronous/metachronous tumors, extensive
surgical resection of disease for diagnostic purposes before bPET/CT, and first evaluation
at disease relapse.

2.2. Image Acquisition Protocol

PET/CT studies were acquired according to European Association of Nuclear Medicine
guidelines [27]. Patients fasted for ≥6 h, and their blood glucose levels were <200 mg/dL
before administration of 236 ± 50 MBq of 18F-FDG. Images were acquired after 60 ± 10 min
of uptake time using a Gemini GXL (Philips Healthcare, Cleveland, OH, USA) or a Biograph
mCT (Siemens Healthineers, Erlangen, Germany) PET/CT scanner, applying the respective
standard reconstruction protocol (Table 1) [27].



Diagnostics 2023, 13, 1391 3 of 14

Table 1. Acquisition settings of the two employed scanners.

Acquisition Protocol Scanner_1
Philips Gemini GXL

Scanner_2
Siemens Biograph mCT

kV 120
mAs 40–50

CT Image matrix size 512 × 512
Voxel size (mm) 3.5 × 3.5 × 5 0.97 × 0.97 × 3

Field of view From skull base to mid-thighs

Reconstruction method
3D-LOR-RAMLA

No PSF
No TOF

3D-OSEM
PSF
TOF

Iterations 3 2
Subsets 33 21

PET Voxel size (mm) 4 × 4 × 4 3.2 × 3.2 × 5
Filters applied Gaussian filter 5 mm Gaussian filter 2 mm

Axial matrix size 128 × 128 400 × 400
Minutes per bed position 3 2.5

Field-of-view From skull base to mid-thighs
LOR-RAMLA, line of response-row-action maximum likelihood algorithm; 3D-OSEM, ordered subset expectation
maximization; PSF, point-spread-function; TOF, time of flight.

2.3. Image Segmentation and Radiomic Features’ Extraction

PET/CT images were reviewed by two experienced nuclear medicine physicians
blinded to patients’ clinical and follow-up data.

For target lesion contouring, a semiautomatic gradient-based segmentation tool
(PETEdge, version 7.0.5 of MIM Encore Software Inc., Cleveland, OH, USA) [28,29] was used
to delineate volumes of interest (VOIs) on two distinct nodal lesions for each bPET/CT
scan (Figure 1). Target Lesion_A was the lesion with the largest axial diameter (Dmax)
identified on CT images. When a bulky tumor was present, Lesion_A was identified as
the single distinct lesion with Dmax among contiguous lesions in the bulk. Target Lesion_B
was the lesion with the highest SUVmax. When more than one lesion visually showed
similar 18F-FDG uptake, a VOI was drawn around each one to choose the hottest. The
conventional parameters Dmax, SUVmax, SUVmean, and metabolic tumor volume (MTV) at
40% of SUVmax threshold (MTV40) were extracted for each VOI. No manual adjustment
was added to the segmentation process.

To add the total metabolic tumor volume (TMTV) to the conventional parameters
described above, a total-body PET segmentation tool (LesionID, version 7.0.5 of MIM Encore
Software Inc., Cleveland, OH) was applied to each bPET/CT scan. As described in [30],
the program workflow firstly used a PET Response Criteria in Solid Tumors (PERCIST)-
based background threshold (liver) to identify all lesions with higher uptake, then applied
a fixed relative threshold of ≥41% of the SUVmax of each VOI to create the boundaries
of the metabolically active region within each lesion. Physicians were required to reject
false-positive lesions (sites of physiological uptake, external contamination, and pathologic
uptake deemed lymphoma-unrelated) before all approved VOIs were computed to obtain
TMTV [30,31].

For the two target lesions, a rich set of additional radiomic features was extracted
using Moddicom [32], an open-source software library in R [33] and Image Biomarker
Standardization Initiative (IBSI)-compliant [34]. Moddicom’s image features belonged to
the following IBSI classes: morphological, intensity-based statistical, intensity-histogram,
grey-level co-occurrence matrix (GLCM), grey-level run-length matrix (GLRLM), and grey-
level size-zone matrix (GLSZM) [34] (Supplemental Table S1). No spatial interpolation
or kernel-based filter application to the images was needed before running them in the
software due to the homogeneous geometry in the DICOM series.
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Figure 1. Example of target lesion contouring with PETEdge tool from MIM Encore Software. (A) 
Maximum-intensity projection of a 44-year-old male patient with Stage II nodular sclerosing 
Hodgkin’s lymphoma. This case of rare tonsillar lymphoma was chosen to easily show contouring 
of two lesions on the same slice. Axial, sagittal, and coronal PET views (B) of Lesion_A 
(pink-contoured volume of interest, Dmax 2.7 cm) and Lesion_B (cyan-contoured volume of interest, 
SUVmax 18.8). 

For the two target lesions, a rich set of additional radiomic features was extracted 
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the following IBSI classes: morphological, intensity-based statistical, intensity-histogram, 
grey-level co-occurrence matrix (GLCM), grey-level run-length matrix (GLRLM), and 
grey-level size-zone matrix (GLSZM) [34] (Supplemental Table S1). No spatial interpola-
tion or kernel-based filter application to the images was needed before running them in 
the software due to the homogeneous geometry in the DICOM series. 

2.4. Statistical Analysis and Radiomic Models 
For early response-to-treatment assessment, complete metabolic response corre-

sponded to iPET/CT DS 1–3, while DS 4–5 was associated to partial/no metabolic re-
sponse [5]. Twenty-four-month PFS was defined as the interval between histological di-
agnosis of cHL and the first clinical detection of progression during treatment, treatment 
escalation, and lack of complete remission after PCT or disease relapse. 

Figure 2 shows the statistical workflow employed. Briefly, a Mann–Whitney test was 
performed to identify the most promising image features (p < 0.05) from Lesion_A and 
Lesion_B with regards to DS (<4 or ≥4) and 24-month PFS (“no event” or “event” at 24 
months). Among the statistically significant features, the first 60 were used to build all 
possible bivariate models through logistic regression (LR) analysis. LR bivariate models 
were trained/tested with a cross-fold validation test (training set vs. testing set: 80% vs. 
20%, 20 repetitions). The best models were then selected on the base of receiver operating 

Figure 1. Example of target lesion contouring with PETEdge tool from MIM Encore Software.
(a) Maximum-intensity projection of a 44-year-old male patient with Stage II nodular sclerosing
Hodgkin’s lymphoma. This case of rare tonsillar lymphoma was chosen to easily show contouring of
two lesions on the same slice. Axial, sagittal, and coronal PET views (b) of Lesion_A (pink-contoured
volume of interest, Dmax 2.7 cm) and Lesion_B (cyan-contoured volume of interest, SUVmax 18.8).

2.4. Statistical Analysis and Radiomic Models

For early response-to-treatment assessment, complete metabolic response corresponded
to iPET/CT DS 1–3, while DS 4–5 was associated to partial/no metabolic response [5].
Twenty-four-month PFS was defined as the interval between histological diagnosis of cHL
and the first clinical detection of progression during treatment, treatment escalation, and
lack of complete remission after PCT or disease relapse.

Figure 2 shows the statistical workflow employed. Briefly, a Mann–Whitney test
was performed to identify the most promising image features (p < 0.05) from Lesion_A
and Lesion_B with regards to DS (<4 or ≥4) and 24-month PFS (“no event” or “event” at
24 months). Among the statistically significant features, the first 60 were used to build all
possible bivariate models through logistic regression (LR) analysis. LR bivariate models
were trained/tested with a cross-fold validation test (training set vs. testing set: 80% vs.
20%, 20 repetitions). The best models were then selected on the base of receiver operating
characteristic (ROC) curves, mean area under the ROC curves (mAUC), and SD to the
normal. Moreover, the same statistical workflow was applied to analyze radiomic data
separately for each scanner (Scanner_1: Gemini GXL; Scanner_2: Biograph mCT).
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3. Results
3.1. Patients’ Characteristics

Among the 247 patients with cHL referred to the hematology unit between 2010
and 2019, 227 fulfilled the inclusion criteria and were included in the study (Figure 3).
Patients’ characteristics are reported in Table 2. Disease stage was limited (I/II) in 51.5%
(117/227) patients and advanced (stage III/IV) in 48.5% (110/227). Mean follow-up time
was 56 months (range, 2–127). Adverse events at 2 years from bPET/CT were recorded in
46 patients. The 24-month PFS was 78.46%.
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Table 2. Patients’ characteristics (n = 227).

Sex: n (%)
Male 110 (48.5%)
Female 117 (51.5%)

Age at diagnosis: years
Mean (Range) 40 (16–83)
Ann Arbor Stage: n (%)
I 3 (1.3%)
II 114 (50.2%)
III 38 (16.8%)
IV 72 (31.7%)

Bulk: n (%)
Yes 45 (19.8%)
No 182 (80.2%)

Disease sites: n (%)
Only nodal 117 (51.5%)
Nodal and extranodal 110 (48.5%)

Histological subtype: n (%)
Nodular sclerosing 174 (76.6%)
Mixed cellularity 12 (5.3%)
Lymphocyte-rich 6 (2.7%)
Lymphocyte-depleted 5 (2.2%)
cHL-NOS 30 (13.2%)

PCT: n (%)
ABVD/MBVD 208 (91.6%)
BEACOPP 13 (5.7%)
Other 6 (2.7%)
Post-PCT radiotherapy on involved field 185 (81.5%)
Therapy escalation during PCT 22 (9.7%)

cHL-NOS, classical Hodgkin’s lymphoma with no possible further histological subtype assessment; PCT,
primary chemotherapy.

3.2. Radiomic Features

Table 3 shows bPET/CT conventional parameters extracted from Lesion_A and Le-
sion_B (Dmax, SUVmax, SUVmean, and MTV40) and TMTV. Their statistical correlation
with the outcomes is also itemized. For DS prediction, TMTV, Lesion_A_Dmax, and
Lesion_A_MTV40 were among the first 60 significant features at Mann–Whitney test in
the univariate phase of the radiomic computational pipeline (Figure 2). Among the first
60 most relevant features for 24-month PFS prediction, the conventional PET/CT param-
eters were Lesion_A_Dmax, Lesion_A_SUVmax, Lesion_A_SUVmean, Lesion_A_MTV40,
Lesion_B_Dmax, Lesion_B_SUVmax, Lesion_B_SUVmean, Lesion_B_MTV40, and TMTV.
Figure 4 shows the anatomical locations of Lesion_A and Lesion_B among all patients.
The mediastinum was the most frequent site for both lesions (Figure 4).

At iPET/CT, DS was 1 for 31/227 patients (13.6%), 2 for 87/227 (38.3%), 3 for 63/227
(27.8%), 4 for 42/227 (18.5%), and 5 for 4/227 (1.8%). Image features extracted with
Moddicom are described in Supplemental Table S1.
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Table 3. Characteristics of bPET/CT conventional parameters and their correlation with outcomes
(DS and 24-month PFS).

PET/CT Parameters Lesion_A Lesion_B

Dmax (cm)
Mean 4.45 2.09
Median 9 1
Range 0.58–11.13 0.34–6.43
DS-corr (p) 0.001 * 0.483
PFS-corr (p) 0.009 * 0.019 *

SUVmax
Mean 14.44 13.41
Median 21 11.5
Range 2.55–66 2.19–39.13
DS-corr (p) 0.032 * 0.062
PFS-corr (p) 0.011 * 0.021 *

SUVmean
Mean 6.7 8
Median 8 14
Range 1.28–22.14 1.5–27.68
DS-corr (p) 0.299 0.235
PFS-corr (p) 0.012 * 0.021 *

MTV40 (mL)
Mean 77.97 9.08
Median 55 4
Range 0.1–721.16 0.02–139.19
DS-corr (p) 0.001 * 0.485
PFS-corr (p) 0.017 * 0.025 *

TMTV (mL)
Mean 237.77
Median 331.5
Range 0.73–1145.68
DS-corr (p) 0.0005 *
PFS-corr (p) 0.003 *

Dmax, maximal axial diameter; DS-corr, p-value of the correlation coefficient with Deauville score; PFS-corr,
p-value of the correlation coefficient with 24-month progression-free survival; SUV, standard uptake value; MTV,
metabolic tumor volume; TMTV, total metabolic tumor volume; *, p-value < 0.05.
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3.3. Radiomic Models

The first two best bivariate models at cross-fold validation test for DS prediction are
shown in Figure 5A, with a maximum mAUC of 0.78 ± 0.053 in the model combining
a GLCM correlation feature from Lesion_A and the GLCM joint entropy feature from
Lesion_B. Overall, Lesion_A concurred predominantly in the best bivariate models with
features from several IBSI classes, while Lesion_B scantly contributed and almost only with
the “entropy” feature from the GLCM class (Supplemental Table S2).
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The first two best bivariate models for 24-month PFS prediction are shown in Figure 5B,
with the maximum mAUC (0.74 ± 0.12) found in the combination of TMTV and a Lesion_B
GLRLM feature. In this case, the overall best combinations saw no contribution from
Lesion_A radiomic features. Lesion_B instead, especially combined with TMTV, was the
most representative, with features belonging to numerous IBSI classes (Supplemental
Table S3).
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3.4. Scanner-Based Radiomic Models

At bPET/CT, 119/227 patients (52.4%) were scanned on Scanner_1 and 108/227 (47.6%)
on Scanner_2. For DS prediction, Scanner_1 was the best-performing for every relevant
feature. The best bivariate radiomic models came from the combination of Lesion_A
features belonging to different IBSI classes, more often GLCM-related ones (Supplemental
Table S4), with a minor contribution of TMTV. The best mAUC (0.95 ± 0.06) was obtained
combining Lesion_A entropy and autocorrelation features from GLCM class (Figure 6A).
The best bivariate radiomic models for 24-month PFS prediction were found with features
extracted from Scanner_2 images (Figure 6B, maximum mAUC: 0.87 ± 0.14), with features
almost all belonging to Lesion_B (Supplemental Table S5).
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4. Discussion

This study shows that bivariate models of bPET/CT radiomic features primarily from
the largest lesion (Lesion_A) likely foresee cHL patients’ response to early evaluation during
PCT (DS at iPET/CT), while bivariate models of radiomic features primarily from the
hottest lesion (Lesion_B) seem to predict patients’ long-term outcome (PFS). The dichotomy
became even more evident, and radiomic models also had higher prognostic power when
analyzing image data divided by scanner. Conceivably, there may be a different grade
of strength in how a feature can provide informative contents with regards to a specific
outcome depending on the underlying scanner technology. Indeed, bivariate models of
mainly morphology-related radiomic features belonging to Lesion_A (the largest) had
higher significance for DS prediction when extracted from Scanner_1 (Philips Gemini GXL).
A possible explanation is that the morphology of the lesions might have been influenced
by PSF modeling, TOF, and image-smoothing applied during image reconstruction on
Scanner_2 (Siemens Biograph mCT) but not on Scanner_1. Instead, for PFS prediction,
bivariate analysis was successful on features belonging to Lesion_B (the hottest) and
on Scanner_2. Interestingly, the best models often combined features from GLSZM and
GLRLM classes, which deal with grey-level discretization [34]. Scanner_2 has a more up-
to-date technology compared to Scanner_1, and its higher spatial resolution may explain
our results.

Besides the two target lesions, significant prognostic power was also provided by
TMTV for both DS and PFS. This finding is in line with other studies [35,36]. However,
an applicable threshold has not currently been identified for TMTV as for other radiomic
features, and calculation methodology has varied among studies [12,13,37,38], preventing
its use in clinical routine settings [13,16]. In our study, a gradient-based algorithm for
target volume segmentation was employed, considering its known higher accuracy and
consistency compared to constant-threshold or manual contouring (especially for lesions
<2 cm) [28,39]. TMTV instead was assessed using a fixed relative threshold method [37],
which in a single automatic program workflow has been previously described [38,40,41] and
deemed to allow fast, reproducible, and practical calculations in patients with disseminated
disease [38]. However, recent investigations using different scanners and segmentation
methods in both HL and non-HL have interestingly concluded that calculations from
different contouring techniques generate similar results [38,42,43].

To our knowledge, this is the first study in the literature proposing a reasonable
trade-off between previously suggested numbers of target lesions and methodological
approaches, and we believe it could draw a feasible path towards application in clinical
practice. Previous reports have described correlation between tumoral bulks and DS [19,44],
high SUVmax and tumor aggressiveness [45–47], radiomics from one/several/all lymphoma
lesions, and prognosis in univariate/multivariate analyses, though mostly in small cohorts
and with no model validation [12,13].

However, the present study has some limitations. The first is its retrospective, single-
center nature, which influenced population numerosity. Even if quite a numerous cohort
was recruited compared to other cHL studies in the literature, we recognize it is still limited
for our results to be generalizable. Moreover, this characteristic limited the possibility
of performing per-stage and per-histological subtype sub-analyses. On the one hand,
the heterogeneity of our population may be seen as representative of a real-life clinical
scenario and inclusion-bias avoidance, with proportions of the distribution of disease
stage percentages matching the ones of the US/EU population, with stage II being the
more frequently presented at diagnosis, followed by stages IV, III, and I. On the other
hand, histology and stage at diagnosis are known to impact patients’ response to therapy
and survival [1,2,4–6] and will therefore need to be taken into account in further larger
studies. We also limited our analysis to PET parameters, overlooking CT parameters other
than Dmax [17,48]. All volumes corresponding to the chosen criteria for radiomic target
lesions were analyzed regardless of size, but the use of an IBSI-compliant platform that
succeeded analyzing small volumes may be rather seen as an overcoming of what was
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a challenge in other studies [43]. The use of images acquired from different scanners
and the lack of resampling or harmonization of the acquired images may be considered
as further limitations [49]. Conversely, these traits combined with avoidance of manual
adjustments to the image contouring method proposed may allow time saving, consistency,
and generalization of our results to other institutions for a desirable external validation,
which would help in strengthening and anticipating the decision-making process in cHL
patients’ treatment by combining the prognostic power of two target lesions at bPET/CT.
Multicenter studies with a larger and more homogeneous cohort may allow for stronger
results and comparison with conventional clinical prognostic models.

5. Conclusions

This large monocentric retrospective study on cHL patients offers a broader insight
into baseline PET/CT and shows that bivariate radiomic models from the largest and the
hottest lesions provide significant information about patients’ outcome (DS in iPET/CT
and PFS, respectively). TMTV has prognostic significance for both DS and PFS. Bivariate
models of higher prognostic power were found when the underlying scanner technology
was considered, unveiling possible image morphological distortions following appliance
of multiple reconstruction algorithms.

Further studies including correlations with clinical parameters and external validation
of our proposed model are auspicial.
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