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Article

ABCB-mediated shootward auxin transport feeds
into the root clock
Jian Chen1,2,† , Yangjie Hu3,† , Pengchao Hao4 , Tashi Tsering4, Jian Xia4 , Yuqin Zhang3,

Ohad Roth3 , Maria F Njo1,2 , Lieven Sterck1,2 , Yun Hu5, Yunde Zhao5, Danny Geelen6 ,

Markus Geisler4 , Eilon Shani3 , Tom Beeckman1,2,*,† & Steffen Vanneste1,2,6,7,**,†,#

Abstract

Although strongly influenced by environmental conditions, lateral
root (LR) positioning along the primary root appears to follow
obediently an internal spacing mechanism dictated by auxin oscil-
lations that prepattern the primary root, referred to as the root
clock. Surprisingly, none of the hitherto characterized PIN- and
ABCB-type auxin transporters seem to be involved in this LR
prepatterning mechanism. Here, we characterize ABCB15, 16, 17,
18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-
down and genome editing of this genetically linked group of ABCBs
caused strongly reduced LR densities. These phenotypes were
correlated with reduced amplitude, but not reduced frequency of
the root clock oscillation. High-resolution auxin transport assays
and tissue-specific silencing revealed contributions of ABCB15-22
to shootward auxin transport in the lateral root cap (LRC) and
epidermis, thereby explaining the reduced auxin oscillation. Jointly,
these data support a model in which LRC-derived auxin contri-
butes to the root clock amplitude.
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Introduction

The root system of plants is of vital importance for their growth and

survival as it anchors the plant in the soil and is required for the

uptake of water and nutrients and symbiotic interactions. The

complexity of root systems can be easily expanded by LR branching

according to environmentally imposed limitations and stimuli

(Motte et al, 2019). LR development is a multistep process occurring

over a long time, involving coordinated signaling across several

tissues (Stoeckle et al, 2018). The plant hormone auxin is a key

regulator of many organogenetic events in plants (Vanneste &

Friml, 2009). Its local accumulation triggers dramatic, prepro-

grammed transcriptional changes that are associated with the

progression of the developmental program (Vanneste & Friml, 2009).

This is also the case for LR development, where auxin accumulation

defines the positioning of prebranch sites (PBS) along the primary

root, and thus root architecture complexity (De Smet et al, 2007;

Dubrovsky et al, 2008; Moreno-Risueno et al, 2010; Xuan

et al, 2016). Therefore, plants have established intricate mecha-

nisms to control auxin distribution within tissues (Rosquete

et al, 2012; Adamowski & Friml, 2015), which can be adjusted

according to the developmental stage, hormones, and environmen-

tal signals (Motte et al, 2019). In the current model, it is proposed

that the decision to initiate LR formation is made in a zone close to

the meristem (De Smet et al, 2007; De Rybel et al, 2010). In this

zone, oscillatory gene expression, also referred to as the root clock,

was reported to correlate with the activity of the auxin signaling

output reporter DR5:LUC (Moreno-Risueno et al, 2010). This peri-

odic auxin signaling selects a subset of cells to gain a higher compe-

tence to form a LR reflected in a maintained expression of the auxin

output reporter DR5:LUC. These sites together with the developing

LRs display strong DR5:LUC activity and are together referred to as

PBS (Moreno-Risueno et al, 2010). Indole-3-butyric acid (IBA) to

indole-3-acetic acid (IAA) conversion in the LRC contributes to the

amplitude of this oscillation (De Rybel et al, 2012; Xuan et al, 2015),

and cyclic programmed cell death of the LRC contributes to the

frequency of this oscillation (Xuan et al, 2016). An alternative model

is the reflux-and-growth model, which proposes auxin oscillations

are an emergent feature associated with meristem cell division and
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elongation (van den Berg et al, 2021). In this model, cell division

and meristem size determine the oscillation frequency, while cell

elongation controls oscillation amplitude.

The prevailing model of auxin transport in the root meristem can

best be summarized as a reverse fountain of auxin flowing rootward

through the vascular tissue and being redirected shootward through

the outer layers of the meristem (Grieneisen et al, 2007). This outer

shootward auxin flow is thought to rejoin the central rootward

auxin flow. Both aforementioned LR prepatterning models are based

on the principles outlined by the reverse fountain model.

The reverse fountain model for auxin transport is based on cell-

to-cell transport via a highly coordinated network of auxin uptake

and efflux carriers. The uptake of IAA is mainly affected by efficient

IAA�/H+ symporter via AUX1/Like-AUX1 family members (Swarup

& Bhosale, 2019). Multiple members of the PIN and ABCB protein

families are known effectors of cellular efflux. All Arabidopsis PINs

transport IAA into the endoplasmic reticulum or into the apoplast

(Adamowski & Friml, 2015), likely via the proline cross-over-based

elevator mechanism of deprotonated, cytosolic IAA� that was

recently uncovered (Ung et al, 2022; Yang et al, 2022). In contrast, of

22 full-sized ABCBs (containing two transmembrane domains and

two nucleotide-binding domains) (Kang et al, 2011), only ABCB1,

ABCB19, ABCB4, ABCB21, ABCB6, ABCB20 have been implicated in

auxin transport (Geisler et al, 2017; Zhang et al, 2018; Jenness

et al, 2022). ABCB14 was shown to transport malate instead of IAA

(Lee et al, 2008). Recently, a group of closely related ABCBs

(ABCB15,16,17,18, and 22) were predicted to also transport IAA,

based on the presence of a diagnostic D/E-P motif (Hao et al, 2020).

Genetic and biochemical studies have indicated a tight interplay

between both PINs and ABCBs (Bandyopadhyay et al, 2007; Blake-

slee et al, 2007; Mravec et al, 2008; Deslauriers & Spalding, 2021). A

recent simulation of auxin transport in the root meristem identified

strong PIN-ABCB co-dependent auxin efflux, in combination with

individual auxin transport activities, and fluxes via plasmodesmata

as the most likely scenario underpinning auxin transport in the root

tip (Mellor et al, 2020, 2022). The proposed auxin transport compo-

nents of the reverse fountain are AUX1, for auxin uptake, in combi-

nation with PIN1, PIN2, PIN3, PIN4, PIN7, ABCB1, ABCB19, and

ABCB4 for auxin efflux. Of these key auxin transporters, only AUX1

was experimentally proven to be involved in the auxin component of

the root clock (Xuan et al, 2016). Despite the strong overlap between

the expression domains of PIN2, ABCB1, ABCB4, and ABCB19 efflux

carriers, neither the pin2 mutant, nor the pin2abcb1abcb19 triple

mutant showed reduced LR densities (Xuan et al, 2016). Moreover,

the reported abcb4 root phenotypes seem to be dependent on the

growth conditions (Santelia et al, 2005; Terasaka et al, 2005; Lewis

et al, 2007; Kube�s et al, 2012). This suggests that the auxin efflux

component of the root clock is distinct from the currently character-

ized set of auxin transporters.

Here, we show that five closely related plasma membrane local-

ized ABCBs (ABCB15, 16, 17, 18, and 22) contribute to shootward

auxin transport in the root. By characterization of knock-outs and

knock-down lines, we found that their reduced LR density correlates

with a reduced amplitude of the root clock oscillation. Interestingly,

a detailed analysis of the root meristem and LRC of our knock-down

lines revealed a strong correlation between LRC cell death rate and

root clock oscillation frequency, instead of the predicted reduced

oscillation frequency. Jointly, our data expand the repertoire of

auxin-transporting ABCBs to improve our understanding of auxin

transport mechanisms in the root.

Results

Loss of function of cluster ABCB15-22 genes causes defects in
root system architecture

Of 22 full-sized ABCBs in Arabidopsis (Kang et al, 2011), we

selected five closely related, but poorly characterized ABCBs,

ABCB15, 16, 17, 18, and 22 (hereafter ABCB15-22), for detailed

functional characterization.

First, we analyzed the phenotype of T-DNA insertion mutants in

these genes. None of these single mutants displayed significant

defects in LR density (Appendix Fig S1A–E), indicating functional

redundancy among these ABCBs. Their proximity on the chromo-

some precluded generating higher-order mutants by crossing. There-

fore, we attempted to simultaneously target multiple members of

this subgroup on via CRISPR/Cas9-mediated genome editing and via

a silencing approach.

On the one hand, we designed three multiplex genome editing

constructs to target multiple members of the group III ABCBs

(Appendix Fig S2A–D). From transformants expressing the respec-

tive constructs, we could isolate: a line with mutations in the entire

subgroup, named pentaCRISPR (Appendix Fig S2A); three lines

with different mutant alleles in ABCB16, 17, 18, and 22, named

quadriCRISPR (lines F33#1, F33#6 and B64) (Appendix Fig S2C and

D); and a double mutant in ABCB16 and 18, named b16b18CRISPR

(Appendix Fig S2B). An attempt to delete the entire genomic region

via genome-editing was not successful.

On the other hand, we identified within a collection of artificial

microRNA (amiRNA) lines (Zhang et al, 2018) a homozygous line for

pro35S:amiR-2572 (named amiR-2572), overexpressing an amiRNA

that is predicted to target ABCB15, ABCB16, ABCB17, ABCB18, and

ABCB22 (Appendix Fig S3A and Dataset EV1). Via Q-RT–PCR on

dissected root meristems, we confirmed the transcriptional silencing of

ABCB15, ABCB16, ABCB18, and ABCB22 (Appendix Fig S3B). Simi-

larly, by crossing amiR-2572 to the corresponding YFP-ABCB reporters,

we observed reduced protein levels of most of these ABCBs, but not of

the non-target ABCB1 and ABCB19 (Appendix Fig S3C and D).

Assuming limited overlap of potential off-targets in these indepen-

dent knock-out and silencing lines, we determined the developmental

importance of these genes. Strikingly, the amiR-2572 line, the

pentaCRISPR and the three quadriCRISPR lines all had shorter roots, a

reduced LR density (Fig 1A–G) and smaller rosettes in the soil

(Appendix Fig S2E and F). Consistently with more genes being mutated,

the pentaCRISPR phenotypes were more outspoken than quadriCRISPR and

amiR-2572, and even showed reduced fertility (Appendix Fig S2E). In

contrast, the b16b18CRISPR double mutant did not display significant root

phenotypes compared to WT (Fig 1A–D). The gradient of phenotypic

penetrance in pentaCRISPR compared to quadriCRISPR and b16b18CRISPR

supports functional redundancy and/or cooperativity among ABCB15,

16, 17, 18, and 22, in the root and shoot.

Together, these analyses suggest a role for members of the ABCB15-

22 cluster in root architecture. Additional mutant combinations will be

needed to fully dissect the individual contributions of each ABCB to the

observed phenotypes.
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ABCB15-22 control auxin oscillation amplitude

Given the pronounced phenotypes in the root, we focused on under-

standing the LR defects in these lines. More detailed phenotyping

revealed that amiR-2572 had a strong reduction in the early LRP stages,

without accumulating intermediate LRP stages (Appendix Fig S4A and

B), suggesting that the reduced density of emerged LRs in these lines is

due to a defect at the level of LR initiation.

Figure 1.
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Lateral root initiation (stage I) is the first anatomical hallmark of

LR formation and is preceded by a local maximum of auxin signal-

ing that was installed by the root clock pre-patterning. Such persis-

tent auxin maxima, together with LRP visualized by DR5:LUC,

hotspots are jointly referred to as prebranch sites (PBS) (Bustillo-

Avendano et al, 2022) (Appendix Fig S4C). Consistently with the

reduced LR initiation (Appendix Fig S4A and B), amiR-2572 showed

a reduced prebranch site density (Fig 2A and B). Prebranch site

formation is instructed by an oscillating auxin signaling (DR5:LUC)

maximum (Appendix Fig S4D–F), of which the oscillation period

correlates with the rate of programmed cell death in the LRC, and

its amplitude is correlated with the concomitant auxin burst derived

from the dying cells (Xuan et al, 2016). The root meristem was

significantly shorter in amiR-2572 than in WT (Fig 2C and D). Inter-

estingly, the LRC contained similar numbers of cells in both back-

grounds (Fig 2E), with the most distal cell being shorter in amiR-

2572 than in WT (Fig 2F), jointly indicating a reduced cell elonga-

tion in the LRC to match the reduced root meristem size. The period

of the disappearance of DR5:VENUS stripes demarcating cell death

in the LRC was also unaffected (Fig 2G and H) and did match with a

DR5:LUC oscillation period that was similar in amiR-2572 and wild

type (Fig 2I). In contrast, the DR5:LUC oscillation amplitude in

amiR-2572 was significantly smaller than in the WT (Fig 2J). That

amiR-2572 impacts on the root clock amplitude, but not its

frequency, correlates with the observed LR defect. According to the

current model, a sufficiently intense auxin response is required to

translate auxin oscillations into prebranch sites, and thus represents

a plausible explanation for the LR defect in amiR-2572. It is however

difficult to exclude effects of the overall reduced growth habit of

amiR-2572.

ABCB15-22 activities increase cellular IAA efflux

ABCB15, 16, 17, 18, and 22 contain the conserved D/E-P motif that

was proposed to be diagnostic of their auxin transporting activities

(Hao et al, 2020). This, together with the defects in auxin-regulated

LR development and root clock amplitude, prompted us to test their

auxin transport capacities.

We first determined their subcellular localization. The YFP-ABCB

signals co-localized with propidium iodide in Arabidopsis roots

(Fig 3A; Appendix Fig S5A) and were present in Hechtian strands,

connecting the retracted cell to the cell wall after plasmolysis

(Fig 3B; Appendix Fig S5B). Similarly, these YFP-ABCBs co-

localized with the endocytic tracer dye FM4-64 at the plasma

membrane in protoplasts prepared from Agrobacterium-transfected

N. benthamiana leaves (Appendix Fig S5C). Jointly, these data show

that ABCB15-22 localize to the plasma membrane.

Overexpression of respective YFP-ABCBs increased the IAA

export in N. benthamiana mesophyll protoplasts at rates compara-

ble to those seen upon overexpression of the best characterized

auxin-transporting ABCB1 (Geisler et al, 2005) (Fig 3C). The pres-

ence of intact IAA in the supernatant after protoplast separation

demonstrated that the N. benthamiana-expressed ABCBs stimulated

the export of intact IAA, and not a catabolic product

(Appendix Fig S6A and B). Importantly, the loading of radiolabeled

substrates was not indirectly influenced by over-expression of ABCB

as exemplified for ABCB17 (Appendix Fig S6C). Mutation of P980 of

the conserved D/E-P motif in ABCB17 to glycine entirely reverted

IAA export to vector control levels (Fig 3C), strongly suggesting that

enhanced IAA export upon over-expression of members of this

ABCB subgroup is most likely driven directly by these ABCBs, rather

than indirectly by upregulation of or interaction with tobacco-

endogenous transporters. In contrast, none of these ABCBs

enhanced the export of the diffusion control, benzoic acid (BA)

(Appendix Fig S6D). Moreover, overexpression of ABCB17, as a

representative of this group of transporters did not result in signifi-

cantly altered export of putative ABC transporter substrates other

than IAA, including indole-3-butyric acid (IBA) (Ruzicka

et al, 2010), abscisic acid (ABA) (Kang et al, 2015) and trans-zeatin

(tZ) (Zhang et al, 2014), as well as the ABCB14 substrate, malate

(Lee et al, 2008) and diffusion control, benzoic acid (BA) (Fig 3D).

This apparent high selectivity is especially remarkable for IBA,

which differentiates from IAA solely by an extension of 2 C-atoms in

the acid moiety.

Conversely, endogenous auxin transport activities were signifi-

cantly reduced in leaf mesophyll protoplasts of amiR-2572, but not

in abcb T-DNA insertion mutants (Fig 3E), without altering BA

export (Appendix Fig S6E). This indicates that the ABCBs that are

targeted by amiR-2572 contribute to auxin transport in leaf meso-

phyll cells.

Jointly, these data highlight ABCB15-22 as a group of ABCBs that

stimulate auxin transport.

ABCB15-22 contribute to shootward auxin transport

Previously, we inferred from tissue-specific complementation

assays, chemical genetics and in silico modeling that shootward

auxin transport in the LRC is a critical determinant of auxin oscilla-

tion amplitude (De Rybel et al, 2012; Xuan et al, 2015, 2016). The

defect in auxin oscillation amplitude in amiR-2572, together with

the observed IAA transport activities of ABCB15-22 indicates that

they could represent the elusive efflux component in this model. To

test this hypothesis, we determined shootward auxin transport rates

in amiR-2572 roots.

◀ Figure 1. Silencing and mutating ABCB15-22 causes root architecture defects.

A Macroscopic seedling phenotype of 12-day-old b16b18CRISPR, quadriCRISPR F33#1/#6, pentaCRISPR and amiR-2572, compared to WT (Col-0). Scale bars = 1 cm.
B–D Boxplots showing the quantification of lateral root number per seedling (B), primary root length (C), and lateral root density (D) in seedlings depicted in (A). n = 13

(Col-0), 12 (b16b18CRISPR), 13 (amiR-2572), 11 (quadriCRISPR F33#1), 11 (quadriCRISPR F33#6), 12 (pentaCRISPR).
E Macroscopic seedling phenotype of 12-day-old quadriCRISPR B64 compared to WT (Col-0) and amiR-2572. Scale bars = 1 cm.
F, G Boxplots showing the quantification of primary root length (F) and LR density (G) in seedlings depicted in (E). n = 12 (Col-0), 13 (quadriCRISPR B64), 11 (amiR-2572).

Data information: For (B–D, F, G), One-way ANOVA in combination with Tukey’s multiple comparisons test, significant differences (P ≤ 0.05) are indicated by different
lowercase letters. Central bands in the box plots show the medians; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5
times the interquartile range from the 25th and 75th percentiles, outliers are represented by dots.
Source data are available online for this figure.
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Indeed, local, exogenous application of radiolabeled IAA to the

root tip, revealed a significant reduction in shootward auxin trans-

port in amiR-2572 roots (Fig 4A). In a complementary approach, we

monitored auxin dynamics in the meristem with cellular resolution,

using a recently developed estradiol-inducible auxin biosynthesis

system that can be activated specifically in the quiescence center

(QC) (pWOX5:XVE>>YUC1-2A-TAA1) (Hu et al, 2021). Simultane-

ous expression of YUC1 and TAA1 results in IAA synthesis from

tryptophan (Mashiguchi et al, 2011; Won et al, 2011). In WT (Col-

0), estradiol treatment (5 lM) induced a strong ectopic DR5:VENUS

expression in the LRC, epidermis and the stele in the elongation

zone within 7.5 h. These effects were further enhanced after 9 h

estradiol treatment (Fig 4B and C). This is consistent with auxin,

which was produced in the QC, being transported via the LRC and

epidermis towards the tissues of the elongation zone, where it acti-

vates DR5:VENUS expression. In estradiol-treated pWOX5:

XVE>>YUC1-2A-TAA1 x amiR-2572, the induction of DR5:VENUS in

the elongation zone was at both time-points severely reduced

compared to the pWOX5:XVE>>YUC1-2A-TAA1 control (Fig 4B and

C). Additionally, we noted a delay in the emergence of lateral roots

in induced pWOX5:XVE>>YUC1-2A-TAA1 x amiR-2572 (Fig 4D),

which is consistent with a role in the shootward auxin transport

mechanism that contributes to LR formation.

A network of ABCB15-22 expression in the outer tissues of
the root

Using promoter:NLS-GUS-GFP reporters, we found strong promoter

activities for ABCB15, B16, B17, and B22 in the outer tissues of the

root meristem (Fig 5A–C; Appendix Fig S7A–C) and for ABCB16 in all

stages of LR development (Appendix Fig S7B). ABCB18 was almost

not expressed in the root meristem, but showed very weak expression

in vascular tissues of the hypocotyl and mature root tissues

(Appendix Fig S7C). Confocal microscopy and histological sections

revealed that the root meristematic expression of ABCB15, B16, B17,

and B22 was largely restricted to the epidermis and/or LRC (Fig 5A–

C). The expression patterns of the ABCB15-22 cluster define a network

with overlapping and/or complementary expression across the outer

layers of the root, reflecting that they could exert functionally redun-

dant and/or cooperative functions in these tissues.

The expression pattern of the ABCB15-22 members in the outer

layers of the root overlaps with those of ABCB4 and the ABCB1/B19

pair, suggesting they could act in the same pathway. Therefore, we

crossed amiR-2572 to abcb4 and abcb1abcb19 double mutants. The

amiR-2572 LR and root length phenotypes were epistatic over abcb4

and abcb1abcb19 root phenotypes (Appendix Fig S8A–F), suggesting

non-overlapping functions within these ABCBs in the regulation of

LR density, despite the significant overlap of their expression

domains in the root meristem.

Together with the expression patterns and phenotypes, these

data are consistent with the ABCB15-22 cluster contributing to

shootward auxin transport mechanism in the outer layers of the

meristem that contributes to the DR5:LUC oscillation amplitude and

LR density.

ABCB15-22 activities in the outer layers of the root are involved
in PBS formation

The amiR-2572 line had prominent seedling phenotypes, not only in

the shoot, but also had a reduced root meristem size (Fig 2C and D),

which complexifies the interpretation of its LR phenotype. To specifi-

cally assess the contribution of ABCB15-22 activities in the outer

tissues of the root to LR density, we pursued a tissue-specific silenc-

ing strategy. Therefore, we used synthetic trans-acting small-

interfering RNAs (syn-tasiRNAs) in the AtTAS1c backbone (Car-

bonell et al, 2014), that are predicted to target ABCB15, 16, 17, 18,

and 22 (syn-tasi-1522). Two independent and distinct syn-tasiRNAs,

indicated as “syn-tasi-1522A” and “syn-tasi-1522B” (Dataset EV1;

Appendix Fig S3A), were expressed in the outer layers of the root

(LRC, epidermis, cortex) via the PIN2 promoter (Marques-Bueno

et al, 2016). For both syn-tasi-1522A and syn-tasi-1522B, we charac-

terized two independent lines. Each line displayed significant reduc-

tions in LR density, but not in root length (Appendix Fig S9A–F).

We validated the transcriptional silencing of ABCB15, ABCB16,

ABCB17, ABCB18, and ABCB22 via Q-RT–PCR in the strongest line,

syn-tasi-1522A#1 (Appendix Fig S3B). The silencing activities were

also confirmed by analyzing the F1 cross to the respective fluores-

cently labeled ABCB reporters. The crosses with syn-tasi-1522A#1

revealed significant reductions of YFP-ABCB15, B16, B17, B18, and

B22, but not of the more distantly related ABCB1-GFP or ABCB19-

◀ Figure 2. The amiR-2572 line has reduced auxin oscillation amplitude and LR density defects.

A Luciferase image of the whole WT and amiR-2572 seedlings after 10 min exposure to visualize the pre-branch sites in the root by DR5:LUC luminescence.
B Quantification of pre-branch site density in 10-day-old WT and amiR-2572 determined by DR5:LUC luminescence, n = 26 (WT and amiR-2572).
C Confocal images of root tips in 5-day-old Col-0, amiR-2572 and syn-tasi-1522A#1 seedlings. LRC cells were indicated by white asterisks. The distal LRC cells were

indicated by white arrows The scale bar represents 50 lm.
D–F Quantification of meristem size (D), LRC cell number (E), and distal LRC cell length (F) in 5-day-old Col-0, amiR-2572 and syn-tasi-1522A#1 seedlings. The meristem

size was measured along the yellow dashed lines in (C), as estimated by the distance from the QC to the first elongating cortical cell, nD/E/F = 33/30/22 (WT), 34/30/
26 (amiR-2572) and 37/30/23 (syn-tasi-1522) from three independent biological repeats.

G Macroview stereo microscopic view of DR5:VENUS expression in root tips of 3-day-old WT, amiR-2572 and syn-tasi-1522A#1 seedlings, red arrows indicate DR5:
VENUS stripes in the lateral root cap. Scale bar = 50 lm.

H Quantifications of the time interval(s) between the consecutive disappearance of DR5:VENUS stripes in the most-distal lateral root cap in 3-day-old WT, amiR-2572
and syn-tasi-1522A#1. n = 15 (WT), 18 (amiR-2572) and 17 (syn-tasi-1522A#1).

I, J Quantification of the oscillation period (I) and amplitude (J) of DR5:LUC in 3-day-old WT and amiR-2572, n = 21 (WT and amiR-2572).

Data information: For (B, I, J), Unpaired two-tailed Student’s t-test with Welch’s correction, P < 0.05 (*), P < 0.001 (***). For (D–F, H), One-way ANOVA in combination
with Tukey’s multiple comparisons test, significant differences (P ≤ 0.05) are indicated by different lowercase letters. Central bands in the box plots show the medians;
box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers
are represented by dots.
Source data are available online for this figure.
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GFP (Appendix Fig S3C and D). Jointly, these data show efficient

and specific silencing of the intended target ABCBs in the syn-tasi-

1522A#1. Using the same F1 cross strategy, we also assessed the

tissue-specificity of these silencing constructs. The pro35S-driven

amiR-2572 caused ubiquitous silencing in the root and the leaf

epidermis. In contrast, the proPIN2-driven syn-tasi-1522A#1

Figure 3. Analysis of plasma membrane localization and cellular transport activities.

A Co-localization of YFP-ABCB15 with Propidium Iodide (PI) in root epidermal cells of 3-day-old seedlings. A plot of the fluorescence intensity of YFP and PI along the
dashed lines shows the colocalization of the YFP and PI intensity peaks. Scale bars = 10 lm.

B Presence of YFP-ABCB15 on Hechtian strands of epidermal cells of 3-day-old seedlings after 10 min 0.8 M mannitol treatment. Cell walls are counterstained by Pro-
pidium Iodide (PI). The white arrow indicated the Hechtian strands. Scale bars = 10 lm.

C IAA export assay. Export of [3H]-IAA, assayed in parallel from tobacco mesophyll protoplasts expressing ABCB1, ABCB15-22 and ABCB17P980G against vector control.
mean � SE; n = 26 (vector control), 44 (ABCB1), 5 (ABCB15), 4 (ABCB16), 9 (ABCB17), 5 (ABCB18), 9 (ABCB22) and 8 (ABCB17P980G), transport experiments generated from
independent tobacco transfections.

D Export assay of plant hormones IAA (nVC/ABCB17 = 26/9), IBA (nVC/ABCB17 = 6/6), BA (nVC/ABCB17 = 7/7), ABA (nVC/ABCB17 = 6/6), tZ (nVC/ABCB17 = 7/6) and malate (nVC/ABCB17 = 6/
16) in parallel from N. benthamiana mesophyll protoplasts expressing ABCB17 against vector control. mean � SE; transport experiments generated from independent
tobacco transfections.

E [3H]-IAA export from WT, abcb15-1, abcb16-1, abcb17-1, abcb18-1, abcb22-1, amiR-2572 and syn-tasi-1522A#1 Arabidopsis leaf mesophyll protoplasts, mean � SE;
n = 9 (WT), 4 (abcb15-1), 3 (abcb16-1, abcb17-1, abcb18-1) and 4 (abcb22-1), n = 4 (WT, amiR-2572) and 6 (syn-tasi-1522A#1).

Data information: For (C–E), Unpaired two-tailed Student’s t-test with Welch’s correction, P < 0.05 (*), P < 0.01 (**).
Source data are available online for this figure.
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Figure 4. ABCB15-22 contribute to shootward auxin transport for LR induction.

A Shootward auxin transport assay of [3H]-IAA and [14C]-BA in WT (Col-0) and amiR-2572 roots, mean � SE; n = 3 (Col-0 and amiR-2572; IAA); n = 4 (Col-0; BA) and 3
(amiR-2572; BA).

B Analysis of DR5:VENUS expression in the root elongation zone of 4-day-old pWOX5:XVE>>YUC1-2A-TAA1, in Control and amiR-2572 treated with b-estradiol (5 lM) for
0, 7.5 and 9 h. Images are composed of several tiles generated in a single snap with automatic assembly, PI in gray. The zoomed images of the yellow squares are pre-
sented below each root showing the accumulation of the DR5:VENUS signal in the elongation zone. Scale bar = 100 lm.

C Quantification of DR5:VENUS signals in the epidermis of the elongation zone shown in (B). n0h = 40/40, n7.5h = 70/70, n9h = 140/160 (WT/amiR-2572) from at least 4
(0 h), 7 (7.5 h), 14 (9 h) seedlings of each treatment.

D LR density of pWOX5:XVE>>YUC1-2A-TAA1, in control and amiR-2572 treated with b-estradiol. Seven-day-old seedlings were transferred to MS plates containing
500 nM b-estradiol. The primary root length and the total number of emerged LRs were recorded after 5 and 8 days of treatment. n = 9 (Col-0; Mock), 7 (amiR-2572;
Mock), 11 (Col-0; Estradiol) and 10 (amiR-2572; Estradiol).

Data information: For (A, C, D), Unpaired two-tailed Student’s t-test with Welch’s correction, P < 0.05 (*), P < 0.001 (***). Central bands in the box plots show the medi-
ans; box limits indicate the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles,
outliers are represented by dots.
Source data are available online for this figure.
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silencing activity was largely restricted to the outer layers of the root

and was more efficient in these outer root meristem tissues than in

amiR-2572 (Fig 6A–D; Appendix Fig S10). The absence of silencing

in the leaf of syn-tasi-1522A#1, in comparison to amiR-2572 (Fig 6A

and E), matched a lack of auxin transport defects in leaf mesophyll

cells (Fig 3E, Appendix Fig S6E). Therefore, syn-tasi-1522A#1

phenotypes should mainly derive from gene silencing in the outer

tissues of the root. The lack of overt root length, meristem or LRC

defects in syn-tasi-1522A#1 (Fig 2C–F) compared to amiR-2572,

therefore demonstrates that ABCB15-22 have additional roles in

overall plant growth and development. Importantly, a significant

reduction in LR initiation (Appendix Fig S9G and H), prebranch site

formation (Fig 6F), and reduced DR5:LUC oscillation amplitude

(Fig 6G and H) could still be detected. These data suggest that the

network of ABCB15-22 activities in the outer layers of the root modu-

lates prebranch site formation via contributions to auxin oscillation

amplitude.

Discussion

For a long time, ABCB1/19 and ABCB4/21 were the only character-

ized auxin-transporting ABCBs (Geisler et al, 2017). Of the remain-

ing ABCBs, ABCB14 was found to import malate (Lee et al, 2008).

Recently, the repertoire of auxin-transporting ABCB was further

expanded with the ABCB6/20 pair (Zhang et al, 2018), raising the

question if more ABCBs could be classified as auxin transporters.

Among all thus far characterized auxin-transporting ABCBs, a

conserved D/E-P motif was identified that was not only essential for

auxin transport activities, but was also sufficient to introduce a

significant auxin transport capacity to the malate-transporting

ABCB14 (Hao et al, 2020). ABCB15, 16, 17, 18, and 22 contained

this motif, highlighting them as putative auxin transporters. Indeed,

we found that overexpression of these ABCBs increases the auxin

efflux from tobacco protoplasts and that this activity depends on the

presence of an intact D/E-P motif that is was proposed as diagnostic

for auxin transporting capacity in ABCBs (Hao et al, 2020). More-

over, the amiR-2572 displayed defects in shootward auxin transport

in the root. To control artifacts related to developmental changes in

amiR-2572, we used tissue-specific silencing lines. The syn-tasi-

522A#1 displayed root clock amplitude and PBS defects similar to

those observed in amiR-2572. Using transient overexpression

assays, we found increased IAA export from plant cells, while we

did not detect a change in the export of the structurally related IBA,

malate or other structurally unrelated molecules, suggesting that

this group of five ABCBs have a high IAA specificity compared to

the PLEIOTROPIC DRUG RESISTANCE (PDR) subclade of ABCGs. In

example ABCG36 has been implicated in the transport of auxin

Figure 5. ABCB15-22 expressed in the outer layers of the root meristem.

A, B Expression pattern of proABCB15:NLS-GFP-GUS, proABCB16:NLS-GFP-GUS, proABCB17:NLS-GFP-GUS, proABCB18:NLS-GFP-GUS, and proABCB22:NLS-GFP-GUS expression
in roots of 3-day-old seedlings, using confocal microscopy showing longitudinal overview pictures (Propidium iodide in magenta), and images zoomed on the epi-
dermis and LRC corresponding to yellow squares (A); cytological sections of GUS stained roots of 3-day-old seedlings, counterstained with ruthenium red (B). Scale
bars represent 20 lm for both graphs.

C Root annotation schematic representation of the summary expression pattern of ABCB15-22 in the root meristem.
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analogs (2,4-D) and precursors (IBA), auxin transport inhibitor

(NPA), but could not transport IAA (Ito & Gray, 2006; Ruzicka

et al, 2010). While we cannot exclude that this group of five ABCBs

have additional substrates, our data could only detect effects on IAA

transport, suggesting specificity. More work is needed to establish

the auxin transport characteristics of these ABCBs, for instance via

biochemical assays and heterologous systems. The availability of 11

auxin-transporting ABCBs implies a large potential for functional

Figure 6. Tissue-specific silencing of ABCB15-22 impairs auxin oscillation amplitude and LR density.

A Fluorescence of YFP-ABCB17 in the root meristem and leaf in 3-day-old F1 crosses with WT, syn-tasi-1522A#1 and amiR-2572, propidium iodide (PI) in magenta.
Red arrows highlight the position of the epidermis. Scale bars = 50 lm.

B Schematic representation of root geometry with the indication of regions of interest for YFP-ABCB17 signal quantification. Red (Stele), and black (epidermis/LRC).
C, D Quantification of YFP-ABCB17 fluorescence intensity in the stele (C) and epidermis/LRC (D) of A, measured at regions of interest corresponding to colors shown in

panel (B). n = 16 (WT, syn-tasi-1522A#1) and 14 (amiR-2572).
E Quantification of YFP-ABCB17 fluorescence intensity in the leaf epidermis. The average fluorescence intensity of five cells per leaf was measured as one sample.

n = 16 (WT, syn-tasi-1522A#1) and 14 (amiR-2572).
F Quantification of pre-branch site density in 10-day-old WT and syn-tasi-1522A#1 determined by DR5:LUC luminescence, n = 15 (WT) and 14 (syn-tasi-1522A#1).
G, H Quantification of the oscillation period (G) and amplitude (H) of DR5:LUC in 3-day-old WT and syn-tasi-1522A#1, n = 27 (WT) and 23 (syn-tasi-1522A#1).

Data information: For (C–E), One-way ANOVA in combination with Tukey’s multiple comparisons tests; significant differences (P ≤ 0.01) are indicated by different lower-
case letters; For (F–H), Unpaired two-tailed Student’s t-test with Welch’s correction, P < 0.001 (***). Central bands in the box plots show the medians; box limits indicate
the 25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles, outliers are represented
by dots.
Source data are available online for this figure.
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redundancy, making it difficult to uncover the contributions of

ABCB-mediated auxin transport to developmental processes. This is

illustrated by the appearance of increasingly severe phenotypes in

double and higher order mutants in ABCB1, 4, 6, 19, and 20 (Geisler

et al, 2003; Zhang et al, 2018; Jenness et al, 2022). Similarly, we

found increasingly penetrant phenotypes with increasing numbers

of ABCB15-22 genes being mutated. While most of them are

expressed in the same region, their expression pattern is not fully

overlapping, and in some case mainly complementary, resulting in a

complex genetic interaction. A full dissection of the genetic interac-

tions among these ABCBs will require additional mutant combina-

tions, tissue-specific complementation, and modeling.

Interestingly, all auxin-transporting ABCBs characterized to date

have been shown to be expressed in roots and seem to contribute to

auxin transport in the root. Recent models of auxin transport in the

root meristem are based only on ABCB1, 4 and 19, and could be

used to simulate realistic auxin distribution patterns (Mellor

et al, 2022). However, the auxin distribution changes predicted by

simulating the abcb4 mutant did not match the experimental find-

ings, a finding that was proposed to be attributable to uncharacter-

ized ABCBs. Our analyses show that ABCB15-22 are expressed in

tissues of the root meristem overlapping with the modeled ABCB4

activity and seem contribute to shootward auxin transport. There-

fore, it will be interesting to evaluate these ABCBs to improve

models of auxin transport in the root.

At its core, the spacing of LRs in Arabidopsis is determined by

prepatterning along the root that is instructed by the periodic activa-

tion of auxin signaling in the pericycle (De Smet et al, 2007;

Moreno-Risueno et al, 2010; Xuan et al, 2015). This model of LR

prepatterning assumes a local build-up or oscillation of auxin that

triggers LR initiation when an auxin signaling threshold is surpassed

(Xuan et al, 2015).

Two models based on the reverse fountain auxin transport model

have been proposed to explain this oscillation in auxin signaling. In

the first model, periodic cell death of the lateral root cap releases auxin

into the shootward auxin flow, resulting in a peak of auxin in the stele

tissues (Xuan et al, 2016). Consequently, the rate of LRC cell death set

the frequency of the oscillation, and the auxin transport rates set the

amplitude of the oscillation. In the reflux-and-growth model, cell divi-

sion and elongation dynamics in a growing root model automatically

generate auxin oscillations (van den Berg et al, 2021). In this model,

cell division rates and meristem size set the oscillation frequency,

while elongation rates determine the priming amplitude. According to

the reflux-and-growth model, the smaller meristem in amiR-2572

should translate into a reduced oscillation frequency and downstream

a reduced LR density. Instead, we found that oscillation frequency was

unaffected in amiR-2572 and that this frequency did match with LRC

cell death rates. In this background, LRC cell death rates thus seem to

have a greater contribution to the auxin oscillation frequency than

meristem size and proliferation rates.

Materials and Methods

Plant material and growth conditions

Arabidopsis thaliana Colombia (Col-0) ecotype was used as

wild type. abcb15-1 (SALK_034562) (Kaneda et al, 2011), abcb16-

1 (SALK_006491), abcb17-1 (SALK_002801), abcb18-1 (SALK_013774),

and abcb22-1 (SALK_202270), abcb4-2/pgp4-2 (SALK_072038) (Lewis

et al, 2007) and b1-100b19-3(b1b19) (Wu et al, 2010). Arabidopsis

transgenic lines DR5rev:VENUS-N7 (Heisler et al, 2005) and DR5:LUC

(Moreno-Risueno et al, 2010) were crossed and homozygous lines

were selected and used as T0 for AtTAS1c-ABCBs transformation.

Arabidopsis seeds were surface sterilized by chlorine gas, seeds were

then sown in Petri dishes (12 cm × 12 cm) containing sterile half-

strength Murashige and Skoog medium (0.5 × MS salts, 0.8%

sucrose, 0.5 g/l 2-(N-morpholino) ethanesulfonic acid, pH 5.7, and

0.8% w/v agar), and grown under continuous light, after 3 days

vernalization at 4°C.

Plasmid construction

Most constructs were generated by the Gateway system� (Invitro-

gen, Carlsbad, CA, USA). To construct the YFP fusion, coding

sequences amplified from genomic DNA were cloned into pDONR-

P2R-P3 (ThermoFisher Scientific) using the primers listed in

Appendix Table S1. The pro35S-driven N-terminal YFP fusion

expression clones were constructed by recombining pEN-L4-35S-R1

(Karimi et al, 2007), pEN-L1-Y-L2 (Karimi et al, 2007) and the

respective CDS clones into pH7m34GW using multisite LR recom-

bination. For the promoter:NLS-GFP-GUS reporters, ~2 kb promoter

fragments upstream of the coding sequence were amplified from

genomic DNA using primers listed in Appendix Table S1 and

subsequently cloned into pENTRTM TOPO� vector (pENTRTM/D-

TOPO� Cloning Kits, ThermoFisher Scientific) to generate the

corresponding entry clones. The promoter:NLS-GFP-GUS was gener-

ated by performing an LR recombination reaction between Nuclear

GFP fusion (pEN-L1-NF-L2) (Karimi et al, 2007), GUS reporter

(pEN-R2-S*-L3) (Karimi et al, 2007) and pH7m34GW (Karimi

et al, 2007). syn-tasi-1522A and B constructs were generated using

primers TASI-IIIa/b-F/R (Appendix Table S1) as described (Car-

bonell et al, 2014; Fahlgren et al, 2016) and were recombined to

pH7m24GW together with pEN-L4-pPIN2-R1 (Marques-Bueno

et al, 2016).

The pWOX5:XVE>>YUC1-2A-TAA1 construct was generated by

cloning the YUC1-2A-TAA1 cassette into XhoI and SpeI sites of the

pER8 vector (Zuo et al, 2000). The full-length cDNA of YUC1 was

cloned into the BamHI site and the full-length cDNA of TAA1 into

the BglII site of the pM2A vector containing 2A peptides

(Kim et al, 2011). For QC-specific activation of the YUC1-2A-TAA1

cassette, the genomic DNA of WOX5 promoter (WOX5pF:

CAATATATCCTGTCAAACaaagacttttatctaccaacttcaa; WOX5pR:

GCCGTTAACGCTTTCATcgttcagatgtaaagtcctcaactgt) was used.

Design of amiRNA and syn-tasiRNA sequences

amiRNA and syn-tasiRNA sequences were designed using the online

tools P-SAMS amiRNA Designer and P-SAMS syn-tasiRNA Designer

(Fahlgren et al, 2016). For most constructs, no specificity filtering

could be applied. To identify putative predicted off-targets, we used

the Web MicroRNA Designer Target Search tool (http://wmd3.

weigelworld.org/) (Ossowski et al, 2008). The following (standard)

settings were used: genome (Araport11 201606 cdna), mismatches

5, apply miRNA filter (yes), Perfect-match dG Cut-off (70),

Hybridization temperature (23), Folding program (RNAcofold),
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Show flanking sequence (no), show only one isoform (yes), sort

mode (ascending order).

Generation of pWOX5:XVE>>YUC1-TAA lines

pWOX5:XVE>>YUC1-2A-TAA1 (pWOX5>>YUC1-TAA1) was intro-

duced into the DR5:VENUS background by transformation and 10

independent lines were selected. Homozygous lines for both

pWOX5>>YUC1-TAA1 and DR5:VENUS were crossed to amiR-2572

lines to generate F1 seeds. Homozygous plants for pWOX5>>YUC1-

TAA1, DR5:VENUS and amiR-2572 were gained by resistance selec-

tion and phenotyping in the F3 population.

Agrobacterium and Arabidopsis transformation

Agrobacterium tumefaciens strain GV3101 was transformed with the

relevant binary plasmids via the freeze–thaw procedure (Chen

et al, 1994). An individual PCR confirmed Agrobacterium colony

was used for floral dip (Clough & Bent, 1998). Transformants were

selected, and the segregation of the T2 was analyzed using appropri-

ate antibiotics.

Phenotyping and LR staging

To quantify the LR phenotype in wild-type plants and mutants,

emerged LR of whole seedlings were counted under a dissecting

microscope, 8 days after germination. Root lengths were measured

via Fiji (ImageJ 1.52n) (Schindelin et al, 2015) using digital images

obtained by scanning the Petri dishes. To analyze the LR primor-

dium stages, root samples were cleared as described previously

(Malamy & Benfey, 1997). All samples were analyzed by differential

interference contrast microscopy (Olympus BX51).

Oscillation analysis and prebranch site

The Luciferase imaging of whole seedlings and oscillation expres-

sion analysis was performed as described (Xuan et al, 2018). A

Lumazon FA imaging system (Nippon Roper) carrying a CCD

camera from Princeton Instruments Ltd. (Trenton, NJ, USA) or

NightSHADE LB985 in vivo plant imaging system (BERTHOLD

TECHNOLOGIES) carrying a deep-cooled slow scan CCD camera

from Andor Instruments Ltd. (Belfast, UK) were used for luciferase

imaging.

To monitor the pre-branch site numbers, we used 8-day-old DR5:

LUC seedlings for pre-branch site quantification. The D-luciferin

solution (1 mM) was sprayed gently on the seedlings, kept for

10 min in the dark and imaged in the Lumazon system with a 15-

min exposure time. Static luminescence signals that were visible

along the primary root outside the OZ were counted as pre-branch

sites.

To monitor the periodic time and amplitude of DR5 oscillations.

Three-day-old DR5:LUC seedlings were transferred to plate spraying

with 1 mM D-luciferin solution. The sequential images of the root

tip are taken every 15 min with 7 min exposure time. The luciferase

signal was quantified by measuring the analog digital units per pixel

with the Fiji software. A square region was selected where a pre-

branch site is formed, and this region should cover DR5 oscillation

that occurred prior to pre-branch site formation. The signal intensity

changes in this region overall images of the movie were measured

(Appendix Fig S7B and C). The difference between the highest value

and lowest value of DR5:LUC in the OZ defines the amplitude of

DR5 oscillations (Appendix Fig S7C). The period of the DR5 oscilla-

tions was determined based on the number of frames that space a

DR5:LUC maximum in the OZ (Xuan et al, 2018).

Macroview stereo microscope

To monitor the DR5:VENUS signal over time, an Olympus MVX10

macroview stereo microscope was applied to image the fluorescence

signal from vertical growing Arabidopsis roots as described (Xuan

et al, 2016). Three-day-old seedlings were imaged every 10 min

with 1 s exposure time to visualize the DR5:VENUS stripes. To deter-

mine the time between the consecutive disappearances of the

nuclear-localized fluorescence signals in the most distal lateral root

cap cell files. The time-lapse pictures were saved as tiff files and

further analyzed with FIJI software. The number of frames up to the

frame with a complete absence of the fluorescence signal in the

most distal lateral root cap, were counted. The time between two

consecutive events was calculated based on the number of frames

counted.

Confocal microscopy

For reporter lines and translational fusion, seedlings were imaged

on a Zeiss 710 confocal microscope. For the propidium iodide (PI)-

treated root images, seedlings were stained with 2 lg/ml PI for

3 min, washed with water, and used for confocal imaging. For root

imaging, GFP was excited at 488 nm and acquired at 500–530 nm.

YFP was excited at 514 and the emission between 519–564 nm was

collected for YFP and between 614–735 nm for PI. Confocal settings

were kept constant between WT (Col-0), syn-tasi-1522A#1 and

amiR-2572 F1 progeny with either pro35S:YFP-ABCB15, B16, B17,

B18, and B22. Fluorescence intensities were measured by FIJI soft-

ware (https://imagej.net/Fiji). The average intensity was measured

in a fixed-size dashed line box for all seedlings by the “rectangle

tool”.

For the pWOX5:XVE>>YUC1-2A-TAA1 experiments seeds were

sown on MS plates, stratified at 4°C for 2 days, and grown vertically

in the growth chamber for 4 days at 21°C. Four-day-old seedlings of

the pWOX5:XVE>>YUC1-2A-TAA1, DR5:VENUS in Col-0 and amiR-

2572 background were treated with 5 lM estradiol for the indicated

time-points. Seedlings were stained in 10 mg/l propidium iodide for

2 min and rinsed in water for 30 s. Confocal microscopy was

performed using a Zeiss LSM780 inverted confocal microscope

equipped with a 20×/0.8 M27 objective lens. VENUS and propidium

iodide were excited using an argon-ion laser and a diode laser,

respectively. VENUS was excited at 514 nm and detected at 518–

588 nm, and propidium iodide was excited at 561 nm and detected

at 588–718 nm.

GUS staining and root sectioning

The GUS assay was performed as previously described (Beeckman &

Viane, 2000). For Arabidopsis cross-section root specimens, GUS-

stained seedlings were subjected to fixation, dehydration, and

embedding as previously described (De Smet et al, 2004). GUS-
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stained tissues were imaged using a Leica Bino, Olympus BX51

microscope, and a Keyence VHX-7000 microscope.

Genotyping

T-DNA lines for the ABCB single mutants were ordered from The

Arabidopsis Information Resource (https://www.arabidopsis.org/),

and genotyping primers for T-DNA insertion were designed using

the T-DNA Primer Design Tool powered by Genome Express

Browser Server (GEBD) (http://signal.salk.edu/tdnaprimers.2.

html). Homozygous mutants were selected by PCR performed with

primers listed in Appendix Table S1.

RNA extraction and RT-Q-PCR

Total RNA was extracted with the ReliaPrepTM RNA tissue Miniprep

System (Promega) from plants grown in vitro. cDNA synthesis was

performed with a random and Oligo-d(T) primer mix (Quanta

qScript cDNA SuperMix). RT–qPCR was done on a LightCycler 480

(Roche Diagnostics) on 384-well plates with LightCycler 480 SYBR

Green I Master (Roche). qPCR data were processed and analyzed

with qbase+ software. qPCR was performed with primers listed in

Appendix Table S1.

Auxin transport measurements

Simultaneous 3H-IAA and 14C-benzoic acid (BA) and other

hormones exported from tobacco (N. benthamiana) and Arabidopsis

mesophyll protoplasts were analyzed as described (Henrichs

et al, 2012). Tobacco mesophyll protoplasts were prepared 4 days

after Agrobacterium-mediated transfection with proS35S:ABCB1-

YFP, pro35S:YFP-ABCB15, pro35S:YFP-ABCB16, pro35S:YFP-ABCB17,

pro35S:YFP-ABCB18, pro35S:YFP-ABCB22, and mutation. Relative

export from protoplasts is calculated from exported radioactivity

into the supernatant as follows: (radioactivity in the supernatant at

time t = 10 min) � (radioactivity in the supernatant at time

t = 0) × (100%)/(radioactivity in the supernatant at t = 0 min);

presented are mean values from > 4 independent transfections or

protoplast preparations. Shootward (basipetal) polar auxin transport

(PAT) in roots was measured as described (Lewis & Muday, 2009).

For validating the integrity of exported IAA, [2,4,5,6,7-2H5]IAA

(D5-IAA) was used in vector control tobacco export experiments as

described above. Export supernatants were acidified using formic

acid to pH < 3 and desalted on self-packed C18-SPE columns. After

elution with 0.1% formic acid in acetonitrile, samples were dried

and resuspended in HPLC mobile phase. LC–MS measurements

were performed on a QExactive Plus mass spectrometer (Thermo

Fisher) coupled to an EasyLC 1000 nanoflow-HPLC. The mass spec-

trometer was operated in positive ion mode (ESI) with an electron

spray voltage of 2.3 kV at 250°C of the heated capillary temperature.

Fragmentation was induced by a normalized collision energy of

30%.

CRISPR/Cas9 mutagenesis and selection of mutant alleles

All single-guide (sg) RNAs in this study were designed using the

CRISPR-P tool (http://cbi.hzau.edu.cn/cgi-bin/CRISPR) (Lei et al, 2014)

to align the ABCBs coding sequence. The sgRNAs were designed to

target multiple ABCBs at once: sgRNA-19 targets ABCB16, 18, 22, 17

(20% cleavage), and 15 (0.3% cleavage); sgRNA-5 targets ABCB16, 17,

18 and 22 (61% cleavage); sgRNA-20 targets ABCB18, 22, 16 (92%

cleavage), 17 (10% cleavage) and 15 (0.1% cleavage); sgRNA3 targets

ABCB16, 18, 17 (0.4% cleavage), and 15 (0.1% cleavage) and sgRNA4

targets ABCB16, 17, 18 (49% cleavage), and 15 (0.1% cleavage).

Vectors were assembled using the Golden Gate cloning system (Engler

et al, 2014). To generate the CRISPR_A construct, the sgRNA-19,

sgRNA-20, sgRNA-3 and sgRNA-4 were cloned downstream of the

Arabidopsis U6 promoter (pATU6) in the Level 1 acceptors pICH47761,

pICH47772, pICH47781 and pICH47791, respectively, as previously

described (Soyk et al, 2017). In the CRISPR_B construct, the sgRNA-19,

sgRNA-5, and sgRNA-20 were cloned into L1 acceptors pICH47761,

pICH47772, and pICH47781, respectively, following the above proce-

dure. The Level 1 constructs were assembled in the binary Level 2

vector pAGM4723. sgRNA sequences and primers used for genotyping

are listed in Appendix Table S1.

For the CRISPR_C construct, the 20 nt protospacer (ACAT-

TAGTCCAGGGATCAAG) was picked to target ABCB16 and 18. The

oligos (FW: attgACATTAGTCCAGGGATCAAG; REV: aaacCTT-

GATCCCTGGACTAATGT) were annealed and cloned into a modi-

fied binary vector pDe-CAS9-Crimera which contains a PPT cassette

and two BsaI sites. In brief, the oligos were incubated at 95°C for

5 min and cooled at RT for 20 min. The annealed oligos and the

pDe-CAS9-Chimera vector were added in the following reaction

(20 ll): 3 ll of annealed oligos; ~150 ng of CAS9 vector; 1 ll T4
ligase (400,000 units/ml, NEB); 1 ll BsaI-HF v2 (20,000 units/ml,

NEB); Cutsmart buffer (NEB) and T4 ligase buffer (NEB). The ther-

mal cycler conditions were 37°C for 5 min followed by 16°C for

5 min for 35 cycles, 50°C for 20 min and 80°C for 20 min. 1/10 of

the reaction was transformed into E. coli DH5a.

Box plots

Box plots were generated by a web tool BoxPlotR (http://shiny.

chemgrid.org/boxplotr/) (Spitzer et al, 2014), center lines show the

medians; box limits indicate the 25th and 75th percentiles as deter-

mined by R software; whiskers extend 1.5 times the interquartile

range from the 25th and 75th percentiles, outliers are represented by

dots.

Experimental study design and statistics

No statistical methods were used to estimate the sample size. No

blinding was done.

Data availability

This study includes no data deposited in external repositories.

Expanded View for this article is available online.
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