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Abstract 

In this paper we investigate the neural correlates of syntactic 
classification of an acquired grammatical sequence structure 
in an event-related FMRI study. During acquisition, 
participants were engaged in an implicit short-term memory 
task without performance feedback. We manipulated the 
statistical frequency-based and rule-based characteristics of 
the classification stimuli independently in order to investigate 
their role in artificial grammar acquisition. The participants 
performed reliably above chance on the classification task. 
We observed a partly overlapping corticostriatal processing 
network activated by both manipulations including inferior 
prefrontal, cingulate, inferior parietal regions, and the caudate 
nucleus. More specifically, the left inferior frontal BA 45 and 
the caudate nucleus were sensitive to syntactic violations and 
endorsement, respectively. In contrast, these structures were 
insensitive to the frequency-based manipulation. 

Keywords: Artificial Grammar; Functional Neuroimaging; 
FMRI; Inferior Frontal Cortex; Caudate Nucleus. 

Introduction 
Humans possess adaptive mechanisms capable of implicitly 
extracting structural information solely from observation 
(Stadler & Frensch, 1998), as indicated by for example 
artificial grammar learning (AGL). Reber (1967) suggested 
that humans can learn artificial grammars implicitly by an 
abstraction process intrinsic to natural language acquisition. 
Chomsky, following von Humboldt, suggested that natural 
language is an example of the ‘infinite use of finite means’. 
The simplest relevant formal model incorporating this idea 
is represented by the family of right-linear phrase structure 
grammars, which can be implemented in the finite-state 
architecture (FSA), are typically used in AGL. 

It has recently been suggested that AGL is a relevant 
model for investigating aspects of language learning in 
infants (Gomez & Gerken, 2000), and second language 
learning in adults (Friederici, Steinhauer, & Pfeifer, 2002). 
Recent functional magnetic resonance imaging (FMRI) 
results indicate that language related brain regions are 
engaged in artificial grammar processing (Petersson, 
Forkstam, & Ingvar, 2004) and a number of FMRI studies 
have investigated implicit learning of material generated 

from artificial grammars (e.g., Seger, Prabhakaran, 
Poldrack, & Gabrieli, 2000; Skosnik et al., 2002). For 
example, Petersson et al. (2004) investigated a 
grammaticality classification task using an implicit 
acquisition paradigm without feedback in which the 
participants were only exposed to positive examples (i.e., 
well-formed consonant strings) generated by the Reber 
grammar. The results showed that artificial syntactic 
violations activated Broca’s region (Brodmann’s area (BA) 
44/45). In the current study we tested the validity of this 
finding in a modified experimental design, using 
classification strings that were balanced for substring 
familiarity relative the acquisition string-set, independent of 
grammatical status; and sequential instead of whole string 
presentation paradigm for the strings. 

Implicit statistical learning 
A complementary perspective on AGL views this as a 
model for investigating implicit learning (Forkstam & 
Petersson, 2005). Reber (1967) defined implicit learning as 
the process by which an individual comes to respond 
appropriately to the statistical structure inherent in the input. 
Thus, he argued, the capacity for generalization that the 
participants show in grammaticality classification is based 
on the implicit acquisition of structural regularities reflected 
in the input sample. Reber (1967) suggested that humans 
acquire implicit knowledge of the underlying structure 
through an inductive statistical learning process and that this 
knowledge is put to use during classification. Support for 
the implicit character of AGL comes for example from 
lesion studies on amnesic patients. Knowlton and Squire 
(1996) investigated amnesic patients and normal controls on 
a classical and a transfer version of the AGL task. The 
patients and their normal controls performed similarly on 
both AGL tasks while the amnesic patients showed no 
explicit recollection of whole-item or fragment (i.e., bi- or 
tri-gram) information. Based on the results from the transfer 
version they argued that AGL depends on the implicit 
acquisition of both abstract and exemplar-specific 
information. Knowlton and Squire (1996) suggested that the 
latter indicates that distributional information of local 
sequential regularities is acquired, while the former suggests 
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that abstract (i.e., ‘rule-based’) representations are also 
formed. Moreover, recent studies provide evidence that 
rapid (on the order of 2 – 10 min) ‘rule-abstraction’ 
(Marcus, Vijayan, Bandi Rao, & Vishton, 1999), learning of 
transition probabilities in artificial syllable sequences 
(Saffran, Aslin, & Newport, 1996), and AGL (Gomez & 
Gerken, 1999) also occur in young infants. Furthermore, the 
study of Gomez and Gerken (1999) also demonstrated that 
infants show some transfer capacity, suggesting that they 
were abstracting beyond the acquisition material. In 
addition, learning of long distance dependencies has been 
demonstrated in both sequence learning as well as in AGL 
(Ellefson & Christiansen, 2000; Poletiek, 2002). Thus, it has 
been suggested that induction cannot be explained entirely 
in terms of the acquisition of local sequential regularities 
(Meulemans & Van der Linden, 1997), and while Reber 
(1967) originally argued that the implicit learning process 
abstracted ‘rule-based’ knowledge (see Reber, 1993 for a 
modification of his position), these more recent studies 
suggest that dual mechanisms may be at play (cf. e.g., 
Forkstam & Petersson, 2005). 

The Reber grammar 
In general, formal (artificial) grammars serve as an 
intentional definition of languages (Chomsky, 1986). These 
represent the formal specification of mechanism(s) that 
generate various types of structural regularities (cf. e.g., the 
Chomsky hierarchy, Davis, Sigal, & Weyuker, 1994), and 
they are relevant for any cognitive domain which engages 
processes operating on structured representations, including 
for example the temporal organization of actions (i.e., 
planning), language, and perception/generation of musical 
sound patterns (Petersson, 2005a; Petersson et al., 2004). A 
formal grammar, as the one used in this AGL study, thus 
represents a specification of a finite generating/recognizing 
mechanism for a particular language; in our case the Reber 
language. The transition graph representation of the Reber 
machine (Figure 1) is thus an explicit generating and 
recognition mechanism for the Reber language (e.g., Davis 
et al., 1994). 
 

 
 

Figure 1: The Reber grammar is an example of a right-
linear phrase structure grammar. This can be implemented 
in a finite-state architecture, here represented by its 
transition graph (cf., Reber & Allen, 1978). 

Experimental design 
In the present event-related FMRI study we employed a 
modified AGL paradigm. As in the classical AGL paradigm 
there were both acquisition and classification phases, but 
with the modification that the participants participated in 
repeated acquisition phases over 8 days. During each 
acquisition phase, the 12 participants (dutch-speaking with 
university background, 8 females, mean age ± sd = 23 ± 3 
years) were engaged in a short-term memory task without 
performance feedback. They were presented with letter 
strings from an acquisition sample generated from the Reber 
grammar and had to retrieve these by typing each string on a 
keyboard immediately after presentation. The participants 
were informed before the acquisition session on day 1 that 
they would be asked to classify (i.e., guess based on ’gut 
feeling’) new items as grammatical (G) or non-grammatical 
(NG), subsequent to the acquisition sessions on day 1 and 
day 8. EPI-BOLD FMRI data were acquired (TR = 2.8 s and 
3.5x3.5x3.5 mm3 resolution; at 3T) during the classification 
sessions on day 1 and 8. 

Grammatical strings of 5-12 consonants were generated 
from the Reber grammar. The frequency distribution of bi- 
and trigrams (2 and 3 letter chunks) for both terminal and 
whole string positions were calculated for each string in 
order to derive the associative chunk strength (ACS) for 
each item (cf., Knowlton & Squire, 1996; Meulemans & 
Van der Linden, 1997). An acquisition set was selected as 
well as G and NG classification test strings. The NG strings 
were generated by a switch of letters in two non terminal G-
string positions. The classification set was further divided 
into high and low ACS items relative the acquisition string 
set. We thus manipulated two independent stimulus factors 
with respect to the classification set, grammaticality (G/NG) 
and ACS (H/L) in a 2x2 factorial experimental design. 

It has been argued that sensitivity to the level of ACS is a 
reflection of a statistical fragment-based learning 
mechanism while sensitivity to grammaticality status 
independent of ACS is related to a structure-based 
acquisition mechanism (Knowlton & Squire, 1996; 
Meulemans & Van der Linden, 1997). Consequently, it has 
been argued that sensitivity to ACS reflects an explicit 
declarative learning mechanism dependent on the medial 
temporal lobe (cf. e.g., Opitz & Friederici, 2003; Strange, 
Henson, Friston, & Dolan, 2001), while sensitivity to 
grammaticality status independent of ACS reflects an 
implicit procedural learning mechanism, which might be 
dependent on the interaction between prefrontal regions and 
the basal ganglia. 

Data analysis 
The FMRI data was pre-processed and anatomically 
normalized to a common stereotactic space, and statistically 
analyzed with a mixed effect procedure to allow for group 
level inferences in a factorial ANOVA design with non-
sphericity correction. Statistical inference was based on 
relevant condition contrasts (correct trials only) and we used 
the supra-threshold cluster-size test-statistic using a 
significance level of P < 0.05 corrected for multiple non-
independent comparisons based on the family-wise error 
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rate (Worsley et al., 1996). We explored the observed local 
maxima in the omnibus F-test (i.e. effects related to 
grammaticality and ACS manipulations, for within and 
between test days) with a region of interest (ROI) analysis. 

Results 
The behavioral results showed a significant sensitivity on 
both test days to grammaticality (F(11, 36) > 49, P < 0.001) 
and ACS (F(11, 36) > 19, P < 0.001) while the interaction 
was non-significant. We also observed a significant increase 
in sensitivity to grammaticality over test days (F(11, 84) = 
117, P < 0.0001; Figure 2). In contrast, this was not the case 
for ACS. Thus, already on the first classification test, most 
of the participants classified items reliably above chance 
and their performance improved with repeated acquisition 
sessions (Figure 2). 
 
 

 
 

Figure 2:  Endorsement grammaticality rates as a 
function of grammaticality status (G = grammatical, NG = 
non-G) as well as associative chunk strength (H = high, L 
= low). Error bars correspond to one standard deviation. 

 
 

The FMRI results showed that the grammaticality 
classification in comparison to baseline activated a similar 
set of brain regions during both day 1 and 8. A subset of this 
network was significant with respect to the omnibus F-test 
including the factors: grammaticality, ACS, and test day. 
This subset included regions in the ventrolateral prefrontal 
cortices bilaterally, centered on inferior frontal (BA 45/47) 
extending into middle frontal cortex (BA 46) and frontal 
operculum/anterior insula (BA 47). It further included 
regions in the anterior (BA 24/32) and posterior cingulate 
(BA 23/31), the right inferior parietal (BA 39) and superior 
temporal (BA 22) cortex, as well as the head of the caudate 
nucleus, bilaterally (Table 1, left; see also Figure 3 for 
regions sensitive to grammaticality status). 

 
Table 1:  Local maxima of significantly activated clusters in 
the omnibus F-test (threshold: P = 0.05, false discovery rate 
(FDR) corrected). Right part of the table describes the post-
hoc ROI analysis of the observed local maxima (radius = 5 
mm). G = grammatical string; NG = non-G; ACS = 
associated chunk strength; H = high ACS; L = low ACS; 
BA = Brodmann's area; significant interactions during test 
day 1 (†) or 8 (‡). 
 

Region (BA) Z99 x y z ACS GRAM  
     d1 d8 d1 d8  
L 45 4.2 -45 24 18   NG NG ‡ 
L 47 4.3 -33 18 -9 L  NG NG  
R 46 4.2 45 27 21 L L NG NG  
R 47 5.4 33 21 -6 L  NG NG  
R 32 4.5 6 27 33 L  NG NG  
R 39 3.5 54 -51 33   NG  † 
R 22 3.4 51 -48 18  L NG NG  
L 23/31 3.5 -12 -51 30 H   G  
31 4.1 0 -30 45 H  G G  
NC 3.7 3 15 -3 H   G  
R hipp  28 -30 -2  L    
L hipp  -28 -30 -2 H L    

 
 
 
 
 

 
 

Figure 3:  Regions significantly sensitive to grammatical 
status (G > NG in red, NG > G in blue; correct responses 
only). Left: test day 1. Right: test day 8. Threshold 
corresponding to P = 0.05 corrected for false discovery 
rate. (x = -45; z = -3). 
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In the ROI analysis of the network outlined above (Table 1, 
right), the left BA 45 was specifically and selectively 
sensitive to NG vs. G strings on both day 1 and 8. However, 
this was not the case for the ACS manipulation. 
Interestingly, the right inferior frontal (BA 45/46/47) and 
the anterior cingulate cortices (BA 32) regions were 
sensitivity to the level of ACS on test day 1. On test day 8, 
this was also the case for some right inferior frontal regions. 
Furthermore, the caudate nucleus was sensitive to G vs. NG 
strings on day 8. Finally, we observed hippocampal 
activations bilaterally related to the ACS manipulation on 
both test days (the MTL target regions were derived from a 
similar AGL study of Lieberman, Chang, Chiao, 
Bookheimer, & Knowlton, 2004). 

Structural vs. fragment knowledge 
We then investigated performance and regional specificity 
with respect to structural vs. fragment knowledge. More 
specifically, we investigated the performance differences 
between low ACS grammatical (LG) and high ACS non-
grammatical strings (HNG). Correct classification of the LG 
items depend maximally on the grammaticality status while 
the support from ACS information (if used at all) is 
minimized and hence this should maximize the sensitivity to 
structurally ('rule') based processes. Conversely, 
classification of the HNG items depend on the ACS status 
while the grammaticality status works in the opposite 
direction and hence correct classification maximizes the 
utilization of fragment or frequency based knowledge. This 
suggests that the LG vs. HNG contrast is selective for 
structurally based processes, while the HNG vs. LG contrast 
is selective for fragment/frequency based processes. 

In the behavioral data, we observed a clear preference for 
LG over HNG strings during test day 8 (only a trend during 
test day 1). This result lends support to the notion that 
structural (syntactic) regularities are used independent of 
fragment/frequency features during grammaticality 
classification. With respect to the FMRI data, we observed a 
significant caudate nucleus activation on day 8 (LG > HNG; 
x/y/z = 3/18/-3, cluster P = 0.023, Z99 = 4.3), suggesting 
that this region is selectively sensitive to structural 
processing. Conversely, we found the right frontal 
operculum to be significantly more sensitive to ACS (HNG 
> LG; BA 47, x/y/z = 36/24/-6, cluster P = 0.04, Z99 = 3.4), 
indicating that this region is related to fragment/frequency 
based processing. 

Discussion 
A primary objective of the present study was to replicate our 
previous finding (Petersson et al., 2004) showing that the 
left inferior frontal cortex (BA 44/45) is sensitive to 
artificial syntactic violations, using a 2x2 factorial design 
with substring familiarity (ACS; high/low) relative to the 
acquisition string set and grammatical status (G/NG) as 
factors, as well as using a sequential instead of whole string 
presentation paradigm. This was indeed the case, although 
the activated frontal regions were more extensive in the 
present study and also included right homotopic regions. 
However, the left inferior frontal gyrus (BA 45) was the 

only frontal region which did not show any sensitivity to the 
level of associative chunk strength on either of the test days 
(i.e., day 1 and day 8). This lends further support to the 
suggestion that the left inferior frontal region (BA 45) has a 
specific role in the processing structural regularities, while 
the right inferior frontal gyrus might be involved in more 
generic error detection processes (cf., Indefrey, Hagoort, 
Herzog, Seitz, & Brown, 2001). 

Recurrent corticostriatal networks 
The present results show that grammaticality endorsement 
(i.e., G vs. NG) correlates with caudate nucleus activity 
while syntactic violations (NG vs. G) correlate with the left 
inferior frontal cortex activation. This might result from 
integration (i.e., parsing) difficulties during processing of 
NG strings. These findings are in line with a procedural 
mechanisms for recursive integration of structured 
representations and it might be the case that the involvement 
of the basal ganglia reflect automatic aspect of the 
integration and the processing syntactic form, perhaps in 
interaction with the left inferior frontal region. For example, 
it has been suggested that neural systems supporting 
procedural learning and that are important for the on-line 
governing of the parsing process depend on recurrent 
networks implemented in corticostriatal loops (cf. e.g., 
Luciana, 2003; Nelson & Webb, 2003). Taken together, it 
might be suggested that the processing of inherently 
meaningless artificial grammar strings is dependent on the 
neural architecture for procedural learning, as well as 
regions implicated in general integrative processes in the 
analysis of linguistic form (left BA 44/45), and when 
aspects of this integration process becomes automatic, also 
on the head of the caudate nucleus. 

Grammar learning 
As previously noted in the introduction, Reber (1967) 
defined implicit learning as the process by which an 
individual comes to respond appropriately to the structure in 
the input ensemble. Thus, he argued, the capacity to 
generalize is based on implicit acquisition of structural 
regularities reflected in the input sample. However, 
alternative theoretical frameworks have questioned the 
abstract ('rule') acquisition interpretation and instead suggest 
that grammaticality classification utilizes exemplar-based 
(Vokey & Brooks, 1992) or, alternatively, is based on chunk 
(n-gram) representations (Perruchet & Pacteau, 1991). Thus, 
grammar learning, whether natural or artificial, is commonly 
conceptualized either in terms of structure-based ('rule') 
acquisition mechanisms or statistical learning mechanisms. 
Some aspects of natural language (e.g., syntax) are 
amenable to an analysis within the classical framework of 
cognitive science, which suggests that isomorphic models of 
cognition can be found within the framework of Church-
Turing computability (Davis et al., 1994). These language 
models typically allow for a greater structural expressivity 
than can be (strictly) implemented in the FSA. The FSA 
supports unlimited concatenation recursion and can support 
finite recursion of general type. These latter aspects are also 
characteristic for human performance. From a 

699



neurophysiological perspective, it seems natural to assume 
that the brain is finite with respect to its memory 
organization. However, it should be noted that the FSA 
behaves as a Turing machine as long as the memory 
limitations are not encountered (Petersson, Grenholm, & 
Forkstam, 2005). Now, if one assumes that the brain 
implements a classical model of language, then it follows 
immediately from the assumption of a finite memory 
organization that this model can be implemented in a FSA, 
although a context-sensitive or any other suitable formalism 
might be used as long as the finite memory organization is 
appropriately handled (Petersson, 2005b; Petersson et al., 
2004). 

Prefrontal function and lexicalization 
Prefrontal functions are commonly formulated within a 
framework of cognitive control and executive attention. 
Prefrontal working memory functions include on-line short-
term sustainability of representations ('maintenance', e.g., 
Baddeley, 2003; Baddeley, Gathercole, & Papagano, 1998) 
processing and integration of structured information 
('manipulation' and 'selection'), as well as monitoring and 
inhibition (Fuster, 1997; Mesulam, 1998, 2002). A simple 
formalization of some aspects of these ideas takes advantage 
of the fact that hierarchically structured information can be 
represented in terms of nested bracketed expressions or 
hierarchically structured trees (Petersson, 2005b; Petersson 
et al., 2005). If one assumes that these representations are 
recursively constructed from more primitive structures 
stored in long-term memory, one possibility is to interpret 
integration of structured information as resulting from the 
retrieval of simple long-term memory representations for 
on-line incremental integration by successive merging of 
primitive structures ('unification'). 

Returning to the issue of grammar learning, it is possible 
to take a view that is placed somewhere between the two 
more common conceptualizations. For example, the 
generative mechanism of the Reber machine is easily 
translated into a Minimalist-type or unification-based 
framework (Chomsky, 1995; Joshi & Schabes, 1997). Given 
a transition from state sj to sk when the terminal symbol T is 
recognized (sj →T sk in the transition graph), this would 
translate into a lexical item or feature vector [sj, T, sk], 
where sj, T, and sk should be interpreted as 'syntactic' 
features (e.g., 'specifier' feature sj, and 'complement' feature 
sk) and T as a 'surface' or 'phonological' feature. A finite 
transition graph thus generates a finite number of lexical 
items. The syntactic features of these representations could 
very well be generated or estimated based on a statistical 
learning mechanism. Moreover, there is no need for a 
specific 'rule' acquisition mechanism, because the parsing 
process might use general structure integration mechanisms 
already in place for merging or unifying structured 
representations (e.g., in the left inferior frontal region), as 
suggested in Petersson et al. (2004). Here, two lexical items, 
[si, R, sj], [sk, Q, sl], are allowed to unify if and only if sj = 
sk, or sl = si. We note that the syntactic features have 
acquired a particular functional role in this picture. This can 
be described in terms of monitoring or governing of the 
integration process based on selecting the pieces of 

information that can be merged. In other words, the finite-
state control has been distributed over the mental lexicon 
(long-term memory) among the lexical items in terms of 
control features. This view is more akin to lexical 
acquisition in that it suggests that simple structured 
representations are created (i.e., lexical items [sj, T, sk]) 
during acquisition. In essence, this re-traces a major trend in 
theoretical linguistics in which more of the grammar is 
shifted into the mental lexicon and the distinction between 
lexical items and grammatical rules is beginning to vanish 
(cf. e.g., Jackendoff, 2002; Joshi & Schabes, 1997; Vosse & 
Kempen, 2000). 

In summary, the picture just outlined provides an 
alternative view on AGL that is placed somewhere between 
the two more common conceptualizations in terms of a rule-
based acquisition or a statistical fragment (surface) based 
learning mechanism. Instead, the 'lexicalized' picture 
suggests that the acquisition of simple structured 
representations is akin to lexical learning and might be 
supported by statistical learning mechanisms. These 
representations are then activated, by for example an input 
string, and actively represented and integrated in a 
unification space (e.g., working memory) during parsing. 
The latter process is dependent on general integrative 
mechanisms in the left inferior frontal cortex, and when 
automaticity has developed, some aspects of this process 
appears to engage the head of the caudate nucleus. 
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