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SOME NUCLEAR AND ELECTRONIC GROUND-STATE PROPERTIES 
OF Pa233 Am 24l and 16~hr Am--z4 2 ' . 

Joseph Winocur 

Lawrence Radiation Laboratory 
University of California 

· Berkeley, California 

April 13, 1960 

ABSTRACT 

The atomic-beam, magnetic-resonance method has been used 

to study some properties of the nuclear ground-state and the low­

lying electronic states of three radioactive actinide isotopes. The 

following results were obtained: 

Isotope T l/2 

Pa233 · 27 .4d 

Am
241 

458yt·. 

Am
242 

16 hr 

.I J 

3/2 11/2 

9/2 

7/2 

f.li(measured) = 

5/2* 7/2* 

1 7/2 

gJ a(Mc) . b(Mc) 

0.8141 (4) +595(40) - 2400(300) 

0.8062(15) 

0. 7923(15) 

3.4(1. 2) nm 

1.9371(10) ±17 .144(8) + 123.82(10) 

1.9371(10) ±10. 124(10) ± 69.639(40) 

The starred results are confirmations of earlier measurements made 

by optical spectroscopy. 

The observed electronic energy levels of protactinium very 

probably arise from the configuration (5f)
2 

(6d) (7s)
2

. Experimental 

transition intensities indicate that the ordering of these levels is 
2&3 

probably inverted. From the observed hfs constants of Pa · and 

detailed calculations involving the electronic wave functions, we infer 

the following values of the nuclear moments: 
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233 
f.1

1
(Pa ) = +2.1 nm 

233 
Q (Pa ) = - 3.0 barns. 

From the ratios of the hfs constants of the two americium 

isotopes, together with the optically measured nuclear moments of 

Am 
241

, it follows that 

242 
f.11(Am ) = ± 0.33 nm 

' 242 -
Q (Am )= + 2. 76 barns. 

and 

A description of the experimental technique, and an analysis of 

the results;:~are presented. 
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L INTRODUCTION 

Th. d "b . . . f h . p 233 1s paper escr1 es an-1nvest1gat1on o t e 1sotopes a , 

Am
241

, and 16-hr Am
242

, performed by the atomic-beam, magnetic­

resonance spectroscopy method. Most of the results of these experi­

ments have been published, 
1

• 
2 

or will.be published shortly. 
3

• 
4 

This 

research is part of a general program to study the nuclear and 

electronic ground-state properties of the actinide elements. Previous 

atomic-beam measurements .of actinide elements have been carried 

out by Hubbs, et al., under the direction of Professor W. A. 
. . 239 239 238 242 5-9 

N1erenberg, on Pu , Np , Np , and Cm . At present, 

research is expanding rapidly into the rare earth region of the 

periodic chart, where many radioactive isotopes can easily be pro­

duced by means of pile production. Two new atomic-beam apparatuses 

are being built at the iaboratory, which will make possible very pre­

cise hyperfine structure (hfs) measurements. Theycan be used.to 

measure accurately the nuclear dipole moment, from its interaction 

with an applied magnetic field. Furthermore, the high-current, 

88-in. cyclotron l_lnder construction at the Lawrence Radiation 

Laboratory should m,ake possible the study of cyclotron-produced 

radioactive isotopes with low reaction eros s sections. Also, some 

transcurium isotopes may soon be available in sufficient quantity for 

atomic~ beam studies. These advancements offer exciting possibilities 

for future research. 



IL EXPERIMENTAL METHOD 

A. Theoretical Foundations 

1, Introduction 

The proper values of the Hamiltonian function form the basis for 

interpretation of the experimental data. Therefore we will begin by 

discus sing the appropriate Hamiltonian for the system under in­

vestigation. For all practical purposes, the system in atomic-beam 

research is a beam of noninteracting atoms moving with thermal 

velocity and subject to external forces of magnetic origin only. To 

this degree of approximation, and with the further assumption of a 

simple atomic system with n electrons moving about a point nucleus 

with charge Ze, the nonrelativistic Hamiltonian is given by 

~-- 2/ 2 2 7 -+ ~ /~ I: (p. 2m- Ze /r.) +I: e /r .. + I: a 1 ~ .. •s.· .. · ·-;:•~ 
i 1 1 i > j 1J n .... i 1 1 · . .~. s 

+ t")-:Ji.· 
JY mag. (Il-l) 

Here r. 
1 

is the distance of the ith electron from the nucleus, r .. 
2 1J 

is the mutual distance of the ith and jth electrons 

the electrostatic interaction between electrons, and 

I: 
i>:j 

I is e r .. 
1J 

-+ -+ 
I:_ an1! 1( si is the magnetic interaction of the electronic orbits and 

1 

spins, The hyperfine~structure Hamiltonian, 9-fhfs' is defined as 

the noncentral interaction between nucleus and electrons. The 

magnetic-energy operator, C:W , arises fromthe inte·:r·adion:df ;-r-mag. 
the atom with an external magnetic field. 

The Hamiltonian function as written, is too complex to permit 

the exact calculation of the eigenvalues. The usual approach is to 

separate ~ into a spherically symmetric part, 

~o= I: [p:. 2
/Zm + U (r.)l, 

i 1 1 _j 
(II-2) 

.. 



-8-

and a nonspherical part, V = cy(- ~O , where U(r.) is the spher­
.1 

ically symmetric potential seen by an electron as screened by all of 

·the other electrons. This approach permits a separation of vari­

ables so that the eigenfunctions of ~O may be written as a product 

of single-electron wave functions (Hartree functions) or as an anti­

symmetrized product (Hartree-Fock functions). The electrostatic 

plus fine-structure interactions then remove the degeneracy with 

respect to how the individual angular momenta are coupled to yield 
~ -+ -+ 

a total electronic angular momentum, J, where .T = 1:;(1. + s. ). In 
1 1 

most atoms, the electrostatic interaction is much larger than the 

spin-orbit interaction, so that the individual 1. and s. add 
1 1 

separately to give a total orbital angular momentum L, and a total 

spin, S. The fine- structure perturbation then splits the L-S terms 

to produce the multiplet structure. In the heavier elements, the fine­

structure interaction increases until it may become of the same 

magnitude as the electrostatic energy, so that L and S are no longer 

good quantum numbers. For I: a_ 0 7. · 7. > > 1:; e
2 
/r .. , thel 1. 

IJ.A. • 1 1 1J . 1 

and si of each atom are tightly coupred t9 form ji' the total angular 

momentum of the ith..electron. The electrostatic energy than acts as 

a perturbation that splits the J levels. 

The next term in the Hamiltonian is the hyperfine-structure 

interaction. It couples the electronic angular momentum J, with 

the nuclear spin, I, to form the total angular momentum, F, which 

may take any of the values II-J r ' I I-J +1 I ' " I+ J 0 This 

interaction for all atomic systems is much smaller than any of the 

previously discussed terms in the Hamiltonian. Therefore only 

matrix elements of ~ hfs diagonal in J are important. The off­

diagonal elements in J make a second-order contribution to the hfs 

energy which is proportional to ~W/~E. Here ~W is the hfs 

energy, and ~E is the separation of the nearest J state that is 

coupled by the hfs interaction, 
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The final term in the Hamiltonian, ~ , splits each 
· mag. 

hyperfine level into ZF+l levels. Here F is no longer a good 

quantum number, but its projection, m, along the quantization axis, 

taken as the direction of the magnetic field, is a good quantum 

number. 

2, Hyperfine Structure 

H f . h b h b. f . . 10-13 yper 1ne structure as een t e su Ject o many treatlses, 

the most recent being that of Schwartz, 
13 

The eigenvalues of the 

hfs Hamiltonian are usually found in an IJF represent-ation, since 

these are the quantum numbers most characteristic of the atom in 

the absence of any external forces. It is useful to derive the diagonal 

matrix elements in an Im
1
JmJ representation as well, because 

they will have direct application to the americium investigations. 

Since the hfs is an invariant quantity, it may be written as the con­

traction of two spherical tensors, 

OJ+-·hfs = E 
k 

I: 
q 

( ) qM N 
- k, q k, -q -

(II- 3) 

where Nk is a spherical tensor of rank k which operates in the ,q 
space of the electronic coordinates only, and M_ operates on the -·-k, q 
nucleons in the same manner. We wish to calculate the expectation 

values of (.fohfs in states having the quantum numbers Im
1
JmJ: 

W = (Im IJmJ I ~hf m 1mJ s 
(II-4) 

By means of the Wigner-Eckar.~ theorem, the dependence of this 

expression upon the projection quantum numbers may be factored out. 

I) 

(II- 5) 
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The bracket expression is a Wigner 3-j symboL The double­

barred quantities, called reduced matrix elements, are independent 

·of any magnetic quantum numbers, 

~~ are defined by
13 

The hfs interaction constants, 

~ = (JJI Nk JJ) (II ~ II). (II-6) 

Applying the Wigner-Eckart theorem to the matrix elements on the 

right side of (II-6), and combining with (II-5) leads to 

( 
J kd)(. I k I)·. 

-JO.J -IOI_'" 

(II-7} 

The expressions for the dipole (k=l), quadrupole (k=2), and octupole 

(k=3) terms are 

W · (k=l) = A
1
· mimJ/IJ , 

mimJ 

and 

A3mimJ [}J(J+l)-5mJ2~~ [3I(I+l}~5m/·~D 
I (I- 1 ) ( 2I- 1} J ( J- 1} ( 2 J- 1} 

(II-8a) 

(II- 8b} 

(II-8G} 

One can: obtain the energy eigenvalues in an IJFm representation 

by transforming from the m
1
mJ representation via 

IJFm) = I: (-)I-J-mJ .j 21"+1 ( I J F)limiJmJ}. (II~9} 
m -mimJm 

and applying Eqs, (II-7), It is simpler, however, to employ a 

theorem due to Racah: 

(IJFm IMk · Nk I IJFm) = (-)I+J+F {: : :H ~II I)(J~ Nk ~ J). 

(II~ 10) 
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The curly-bracket expression is the Wigner 6-j symbol, and the 

last two terms are the same reduced matrix elements that appeared 

in the previous formulas, The hyperfine-structure energy, which 

is now labelled by F, is given by 

w -F- IJF ) . 
m 

The first three terms in this expansion are 

{II-11) 

W F{k=2) = 3A2 [c{C+l) - j I {l+l) J (J+l~ /21(21-l) J {2J -1), 

and 
SA3 [c 3+4C 2 + ~ c{-3I(l+l)J{J+l)+I{l+l)+~ -41{I+l)J{J+l)J 

W F{k=3) = 
41(1-1){21-l )J{J -l)(2J -1) 

{11-12) 

where C = F{F+l) - l{l+l) - J{J +l ), The ~ 1 s are related to the 

frequently used hyperfine-structure constants a, b, and c, as follows: 

A 1 = IJa, A 2 = b/4, and A 3 = c. 

An important problem is to evaluate the interaction constants 

in terms of the nuclear moments. The expressions for a and b 

for a single relativistic electron bound to a nucleus, as given by 

Schwartz, are 
13 

a-=± 

and 

2f.Lif.L0{2J+l) 

a.a
0

IJ{J+l) 

2 
b = e Q(2J-l) 

{2J +2) 

( 

r 

) r- 2 FG dr, which is ± as j 
l 

= 1 + 2' {II-l3a) 

-3 2 2 
r {F + G ) dr, {II-l3b) 
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Here a. is the fine structure constant, · a
0 

is the Bohr radius, 

J.Lo :; j e I V2 me is the Bohr magneton, and F and G are the 

relativistic radial wave functions. The nuclear magnetic dipole 

moment, f-11' and electrical quadrupole moment, Q, are defined by 

and 

f-11 = [II I~ (gL Lz ~ gSSz)d II J f-Lom/M 
1 

Q = [11 r E 
i 

(II-14a) 

(II-14b) 

where gL is one for protons and 0 for neutrons, g
8 

is the nucleon­

spin g factor, and m and M are the electronic and nuclear masses, 

The nuclear moments are related to the nuclear matrix elements by 

f-11 = (II IM1 In) (II-15a) 

and 

(II-15b) 

The equations for. a and b also apply to the interaction of a .single 

valence electron outside closed subshells of other electrons. If there 

is .more than one valence electron, the electronic wave function .must 

be expressed in terms of the single-electron wave functions in 

accordance with the electronic coupling scheme. For the special, 

but useful, case in which non-s electrons are coupling to the Hund 1 s 

·rule ground·- state term, S = E· n 1 /2, L = E n 1 /2 (2£. - n 1 +1), 
i. .i. 

the forms of the interaction constants can be written explicitly as 
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r 
L@(J+l)+L(L+l)- S(S+l)] (2£-n1 +l)n1 /2L 

n 1 ( 21 - n 1 + 1 ) ( 21 - 2n 1 + 1) { [ 
± L(L+l) J(J+l) + S(S+l) - L(L+lil 

2 LS ( 2 L- l ) ( 21 + 3} ( U - l ) 

~ [J (J+l)- L(L+l)- S(S+l)][r!J+l)+L(L+l)-S(S+l]TI 

and 

2 [3K(K+l)-4L(L+l)J(J+l~ 
b = e Q -----------

2L(2L-l) (J+l) (2J+3) 

with 

K = S(S+l) - L(L+l)-J(J+l), 

(II-l6a} 

< 
1 ) n 1 ( 21 - n 1 + l )( 21 - 2n 1 + 1 } 

~ (±_) -r3 nh 
X X (21-l) (21+3} 

(II-l6b) 

(II-16c) 

and where n 1 is the number of electrons in the £ orbital. The sums 

are taken over all orbitals that contain less than a full shell of 

electrons, The positive signs apply to shells that are less than half 

full and the negative signs apply to shells that are more than half 

full. In the latter case, n 1 is taken as the number of electrons 

missing from a full shell. The derivation of Eq. (II-l6a) has been 

published. 
6 

Equation (II-16b), which was derived by W. A. Nierenberg, 

is not yet published. 
14 

(A derivation is present~d in Appendix A.) 
- l 

When n 1 =1, and S = 2 , these formulas reduce, as they must, to 

the nonrelativistic expressions for the dipole and quadrupole interaction 

constants of a single electron: 

a= 2 ~I ~O (~3 )n£ L(L+l/rJ(J+l) (Il-l 7a) 

and 

(Il-l 7b) 

'.I 



-14-

3. Magnetic Interaction 

If I and J are good quantum numbers, the Hamiltonian 

expressing the interaction of the electrons and the nucleus with an 

applied magnetic field may be written 

_.. __. _,.. _,._ 
· ' = - JJ.J · H - JJ.I . H , mag. 

(II-18) 

- -+ where JJ. J and JJ-1 
are the electronic and nuclear magnetic moments, -and H is the applied field. The electronic and nuclear g factors are 

defined by 

and 

(II- 19) 

Thus, we have 

where we have taken the magnetic field to be in the z direction. 

In an ImiJm3 representation, 9J.·mag. is diagonal: 

(lmiJm
3

1 oW-. 
1" mag. 

In an Fm representation, there will be matrix elements connecting 

states for wh,ich F differs by ±1. However, -if %- is much 
mag. 

smaller than any other term in the Hamiltonian, then the eigenvalues 

of 94-mag. are given to a good approximation by the diagonal 

matrix elements: 

(IJ Fm /·9+-mag, 

g1_JJ.OHzm [F(F+l) + I(L+l)-J(J+l] /,.2F(F+l). 

(II- 22) 
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In atomic- beam research, measurements are made on the 

components of the hfs in a magnetic field. To the approximation 

that I and J are good quantum numbers, the only part of the total 

Hamiltonian that needs to be considered for this application is 

O'pJ... 
1 

= ~hfs + Op/.. mag. (II- 23) 

This expression is not diagonal in either the low-field Fm rep­

resentation, or in the high-field mimJ representation. The 

eigenvalues must therefore be obtained by using one representation 

as a basis and then performing.~a tr,.ah.sfo.rrp.ati<Dn that brings .. the~ energy 

rnat_r.ix intG. diagonal form. 

There are no matrix elements connecting states that differ 

in m, so that the (2Ifl) (2J+l)-order secular equation is factored 

into 2(I+J)+l determinants, one for each value of m. The maxi­

mum order of any determinant is either 2I+l or 2J +l, whichever 

is smaller. For the special instance when I or J is equal to 
l 

the highest-order polynomial expression is at most quadratic, 
2 
and the eigenvalues of the energy matrix can be written in exact form, 

The solution for J= i is 

wl;tere 

w =-
~w 

2(21+1) 

~w 

2 [ 

ill/2 
l+4mx/(2I+l)+x J 

(II- 24) 

~W = ha(2I+l)/2, and x = (gi-gJ) 1-10 Hz/~W. 
The sign of the square root is ± as F = I ± 1/2. This equation was 

first derived by Breit and Rabi. 
15 

Figure l is a plot of W/a vs x 

for K
39

, which is characterized by J = l/2, I = 3/2, and gi :> 0 
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K~9 

HYPERFINE STRUCTURE OF 
THE SYSTEM J=!;I=i 

0.8 1.0 

g 
X=~ 

1.2 1.4 1.6 1.8 2.0 

Fig. 1. Energy levels of the system I - 3/2, , 
J = 11/2, in a magnetic field. 

2.2 2.4 

MU-16343 

I 
2 
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B. Apparatus 

The atomic- beam apparatus employed in these investigations 

h 
0 h d 0 0 d b R bolb d utilizes t e atom1c-resonance met o as ong1nate y a 1 an 

modified by Zacharias. 
17 

A schematic diagram of the apparatus 

is shown in Fig. 2. Details of its construction are well presented 

in the thesis of G. B~ink; 18 
therefore, no attempt will be made to 

discuss any physical details of the apparatus except in those few 

cases where modifications were necessary. In the protactinium 

research, special problems arose in connection with attaining a 

sufficiently high oven temperature. Also, because of the high 

radiation l~vel of this isotope, rapid loading of the oven into the oven 

loader was important. For these reasons, the oven loader was 

modified. Figure 3 is a picture of the oven~loader assembly used 

in this -work, Glass Kovar, which frequently cracked at elevated 

temperatures, were replaced with ceramic bushings. The oven is 

held in place by a 0.040-in. tantalum rod which fits into a 3/16-in, 

. sleeve on the high-voltage connecting rod. The oven is heated by 

electron bombardment. The filament is a 0.010-in. thoriated­

tungsten wire which has been coated with a colloid carbon- suspension 

(Aquadag) to increase the electron emission. The ~pplication of 300 

watts of power to the oven heats it to about 3000°C. No breakdowns 

occured in the oven loader, but the neoprene 0-ring through which the 

brass cylinder that holds the oven loader must slide burned out 

frequently. Each time this occured, the machine had to be let down 

to air in order to replace the 0-ring. Satisfactory service was 

finally obtained from 0-ring made of Uiton. Oven design is different 

for each of the two elements studied (see Fig. 4) and will be discussed 

later, 

Table I lists the radiofrequency equipment used in the pre­

sent work. The hairpin that carries the rf current is a section of 

. I ·• 

shorted 50-ohm coaxial line (see Fig. 5). The rf loop can be used to 'fl 

excite either sigma or pi transitions, Sigma transitions (~m=O) are 
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l [ I J l 
o£;;'·1 / 5 I 

0-----------·--------~ 

0 ~~~ B r 0 

0 

I 
I 

I Ft 

:o ---,-----
1 

I 
I 
I 
I 
I 

l 

MU-13185 

Fig. 2. Schematic arrangement and trajectory}n _an 
atomic- beam, flop-in apparatus. · 
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• 

ZN-2453 

Fig. 3. Electron- bombardment oven-loader assembly 
used in protactinium research. 
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ZN-2451 

Fig. 4. Atomic-beam ovens. Left to right: tantalum 
oven for Pa research, tungsten oven for Pa research, 
and molybdenum oven and inner liner for Am research. 
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\ 
TO VACUUM SEAL 

LOOP ORIENTED 
FOR SIGMA TRANSITIONS 

(~mF=O) 

LOOP ORIENTED 
FOR PI TRANSITIONS 

(~mF=± I) 

MU-18042 

Fig. 5. Dual-purpose radio frequency loop. 
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Table I 

Radiofrequency equipment 

Equipment 

Oscillators 

General Radio 805-C 

Hewlett Packard 608A 

General Radio 1208-B 

General Radio 1209- B 

Hewlett Packard 612A 

Airborne Instruments Lab. Type 124C 

Hewlett Packard 540A transfer oscillator 

Amplifiers 

ifi 500 wide-band amplifier 

ifi 510 wide-band amplifier 

Hewlett Packard 491A traveling-wave 

tube amplifier 

Other.Equipment 

Hewlett Packard 524B electronic counter 

Frequency range (Me) 

0,016 to 50 

10 to 500 

65 to 500 

250 to 920 

450 to 1250 

220 to 2500 

100 to 200 

Frequency range (Me) 

0,5 to 240 

0,5 to 240 

1200 to 4000 

Hewlett Packard 524A and 524B frequency-converter units 
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produced by components of the rf field parallel to the C field, and 

pi transitions (..6.m= 1) are produced by components of the rf field 

perpendicular to the C field. 

Potassiurn-39 was used exclusively as the calibration isotope 

in all of the runs. The C field was usually calibrated after each 5-

min exposure. If the C field drifted measurably between settings, 

then the resonance was repeated. Typical full line widths at half 

maximum were about 50 kc at low field, and about one part per 

thousand at high fields. The counting rates were normalized by 

taking a direct beam exposure (with magnets on) after each resonance 

exposure. 

The radioactive beam is collected on freshly flamed platinium 

discs, 0.495-in. in diameter and 0.001-in. thick. The collection 

efficiency for protactinium and americium is high, and reproducible. 
233 242 . 

The Pa and 16-hr Am 1sotopes are counted in continuous-flow 

proportional beta counters. Americium-241 is counted in fission­

alpha simple transistorized counters. 

More discussion of the atomic-be,am magnetic-resonance 

technique may be found in references 19 to 21. Applications to radio-
. 22 23 

active elements are discussed by W. A, N1erenberg. ' 

/ 
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C. IBM Routines 

·To facilitate the analysis of experimental results, two 

routines utilizing the IBM-653 computer were constructed, 
23 

The first routine computes the eigenvalues of the Hamiltonian 

[_Eq. (II-23U as a function of the magnetic field, Only the dipole and 

quadrupole terms are included in the hfs part of the Hamiltonian, 

The input information is the nuclear spin, I, the electronic angular 

momentum, J, the total angular momenta and magnetic quantum 

numbers of two levels, F 
1

, m 
1

; F 2 , m 2 , and b/ a, The outpl!-t con­

tains the eigenvalues of the two levels, their difference, and the 

derivative of the difference with respect to the magnetic field, 

The second routine takes a set of data and performs a least-
2 

squares fit to yield a, b, the errors in a and b, and X for the 

optimum fit. Apararneter which measures the closeness of fit 

between the observed and the theoretical frequencies, X 
2 

is defined 

by 
2 

X = 

Here f b. 
0 s. 

2 [ . 2 a£ 2 2] · l: (£ b -f). I (Llf b. ). + ( ~H ) AH. . o s. 1 o s. 1 on . 1 
1 1 

and f are the observed and calculated frequencies, 

Af b is the uncertainty of the measurement, 
0 s. H is the magnetic field, 

and AH is the field uncertainty. The sum is taken over all observed 

_resonances. 

A disadvantage of the second. routine is. that the value of gJ 

must be known, presumably from the stable isotope of the element 

under study. However, there are many elements for whi:ch accurate 

values of gJ have not been measured, In order to circumvent this 

difficulty, the routine was modifed for the IBM 704, 
24 

The new 

routine compCute--sc; a and b for a fixed gJ or else varies gJ to­

gether with a and b, and calculate$_ the error in gJ, a, and b, for 
2 

minimum X , Other advantages which the new routine offers are 

higher speed, greater flexibility, and more easily comprehensible 

output form. 
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Another program written for the IBM 704 has been very useful 

for analyzing electronic structure. Given an arbitrary matrix 

W=~th.B, where A(e. g,. the electrostatic energy in L-S coupling) 

is diagonal, and B(e. g. the spin-orbit energy) is not, the routine 

will compute the eigenvalues and eigenvectors of W, as a function 

of X. by using GivenJ s method. 
25 

Furthermore, it will use the 

eigenvectors to transform an arbitrary matrix such as that of gJ' 

a. or b, into the new coordinate system, The diagonal elements of 

the transformed matrix .are the expectation values of the variables 

gJ' etc. in the. new basis. 
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III. PROT ACTINIUM- 233 

A. Introduction 

The long-lived isotope of protactinium, Pa 
231

, was dis­

covered by Hahn and Meitner in 1917 and, independent! y, by Soddy 

and Cranston at about the same time. 
26 

In· 1934, Schuler and Gollnow 

observed the arc spectrum in the range 6500 to 4300 .R, and 

. measured the nuclear spin to be 1=3/2. 
27 

This is the earliest re­

corded spin measurement of a radioactive nuclide. 

The atomic-beam measurements of Np and Cm are pertinent 

to the investigations of Pa. Neutral atoms of these elements have 

the ground state configurations (5f)
4

{6d)(7s)
2

, (5£)
7

(6d)(7s)
2

, and 

(5f)
2

(6d)(7!3)
2

, respectively. The most appropriate basis for 

interpretation of the electronic coupling in these ele.ments is one in 

which the Sf electrons and the 6d electron couple independently to 

form two systems with angular momenta J 
1 

and J 2 , respectively. 

Momenta J 
1 

and J 2 'then couple to form a total angular momentum, 

J, This is called J -J coupling. Physically, it corresponds to a 

situation in which the electrostatic interaction between shells is much 

smaller than any interactions within each shell. 

In section IIIDl, we shall calculate to first order the electro­

static interaction energy and the electronic g factors of Pa in the J -J 

coupling scheme .. The calculated and experimental results will then 

be compared, in order to test 'the validity of the J -J coupling model. 

The nuclear data is interpreted in terms of the Bohr­

Mottelson-Nilsson model of the nucleus. 
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B. Beam Production 

Protactinium-233 is produced by neutron irradiation of Th
232

, 

leading to 23.5-mih, Th
233

, which beta decays into 27.4-day Pa
233 

Two grams of thorium-metal slivers were bombarded for 10 days 

at a flux of 2Xlo
14 

neutrons/cm
2 

... sec .. ~- to yield about 50 curies of 

materiaL The isotope was identified from its decay rate, and from 

a y-pulse-height analysis (Fig. 6). 

Many difficulties were encountered in the initial effort to 

form an atomic beam of protactinium. Although we could detect 

· the radioactive Pa 
233 

when the target material was evaporated in 

the tantalum source oven, it was clear from the observed throw-

out ratio that the beam contained a large fraction of molecules. The 

throw-out ratio, defined as the ratio of the direct beam intensity at 

the detector with the deflecting magnets turned off to the beam in­

tensity with the magnets on (with the stop wire out in both cases), 

is a measure of the molecular content of the beam. A small ratio 

indicates that the beam probably contains a large fraction of molecules. 

We observed a throw-out ratio of less than 2/1 in protactinium. 

This indicated that about 50o/o or less of the beam was atomic. A low­

field search was made with the beam of protactinium that has been 

produced by evaporatichL" of the target materiaL No resonances 

were observed. We then decided to look for a chemical procedure 

that would yield a beam with a higher fraction of atoms. To this end, 

we attempted the carbon-reduction technique, described in referenc-es 

7 and 9, on both the thorium metal and on oxidized thorium. Neither 

effort produced any change in the beam characteristics. 

Next we tried to separate the protactinium from the thorium, 

in the belief that the thorium in some way was interfering with the 

reduction of the protactinium. A TT A- benzene extraction method 

was not satisfactory because a large residue was left with the 

separated protactinium. Another separation method known to work 

efficiently with actinide elements is that of anion-exchange. We 
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performed the separation, employing this method, and obtained 

protactinium with no contaminants and virtually no thorium pre-

sent. The procedure is to dissolve the thorium-protactinium target 

in concentrated HCl and to run the solution through a column 

containing Dowex-1 anion resin. The thorium runs through the column, 

but the protactinium is adsorbed. A small amount of additional HCl 

is added to wash out any thorium still in the column. The protactinium 

is then eluted with 3.0M HCl-O.OlM HF. The addition of a small 

fraction of fluoride ion to the eluant causes the protactinium to be 

more rapidly desorbed from the column. 

The protactinium solution was.boiled down to a fraction of a 

milliliter. A large excess of HN0 3 was then added and the solution 

again was boiled down to just a few drops. About one drop was pi­

petted from the solution into the tantalum source oven and evaporated 

to dryness. The HN03 is added so that the oxide rather than the 

chloride would be present. An excess of carbon was also added to the 

oven with the protactinium before placing the oven into the oven 

chamber of the apparatus. When heat is applied to the mixture, 

considerable out- gassing occurs, until a temperature of about 

1500°C is reached. The outgassing presumably is due to CO 

escaping when the carbide is formed. No appreciable amount of beam 

is detected until the oven reaches a temperature of about 2500° C. 

Then, at a critical temperature, the beam becomes very intense and 

the temperature must be lowered in order to reduce this intensity 

to the desired leveL This effect is probably due to the sudden dis­

sociation of the carbide. The measured throw-out ratio in this in­

stance was 4/1, indicating that the beam was at least 7 5o/o atomic 

and probably higher. Resonances were subsequently observed with 

this beam. At least for the present, the procedure just described 

was considered satisfactory. 
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For purposes of investigating the hyperfine structure of the 

atom, the beam possessed a pa'rticularly undesirable characteristic. 

The background, which was normally about 0.1% of the full beam 

would begin to increase slowly after approximately an hour of running 

time. For low-field observations, this effect was unimportant, since 

typical resonance intensities were several tenths of a percent. How­

ever, high-field resonances on the order of 0.15% became difficult, 

if not impossible to observe. Of necessity, we experimented with 

various techn!iques to eliminate the high background. Believing that 

the increase in background was due to creep, we tried a differently 

designed oven, one which pontained an inner liner with a sharp lip. 

This pa[ticular oven design was effective for the investigations of 

P 
23 9 th . . . d" d . h' d u e amer1c1um 1sotopes 1scusse 1n t 1s paper, an many 

of the rare earths. It did not, however work for protactinium. We 

also experimented with various oven materials in order to eliminate 

the high background. Among those tried were tantalum with a carbon 

inner liner, carbon, tantalum with a tungsten inner liner, tungsten, 

and tungsten with a tungsten inner liner. In addition, a lanthanum 

reduction,technique similar to that used on americium oxide (section 

IV:a~, was attempted. None of the above-mentioned endeavors yielded 

any noticeable improvements in the background behavior. 

Thinking that perhaps interaction of the protactinium with the 

tantalum slits might ·affect the background, w~ now tried a tungsten 

oven without any slits, the atoms escaping through a 0.040-in. -diam 

hole drilled in the wall of the oven .. The slits on the tungsten oven 

had been made from tantalum foil,. because tungsten cannot be spot 

welded onto tungsten. In spite of the large oven aperture, the back­

ground decreased to only 0.05% of the full beain and remained this low 

for over 10 hr. of running time. Believing that at last a satisfactory 

oven design had be.en discovered, we repeated this technique with a 

similar tungsten oven only to find that the background had risen.again. 

A tantalum shie.ld containing .a 0.060-in. -diam circular hole 

colinear with the oven slit was attached to the ground plate in frortt of 
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the oven. If the high background were due to the formation of a layer 

of material on the front face of the oven, then the aperture should 

have decreased the background. It did not. 

Next we redesigned the oven so that the exit slit was small 

enough to form a well-collimated beam without the necessity of 

attaching tantalum slits. Ovens were made from tungsten, by using 

a 0.020-in. -diam circular exit aperture, and from a 90% tantalum-10% 

tungsten alloy into which were drilled two 0.010-in. -diameter., 

holes, one above the other. The background observed .from the 

tungsten oven was as:low as 0.01% of the full beam, but the resonance 

intensities .also decreased, so that the signal-to-noise ratio of the 

intermediate field resonances remained at about 2/l. The alloy 

oven was also fairly successful in that the background remained at 

approximately 0.05%, ·and resonant intensities were double the back­

ground. However, a smaller fraction of the protactinium could be 

evaporated from the alloy oven than from the tungsten oven. 

The high background was apparently caused by the interaction 

of protactinium with tantalum. This mechanism would also explain 

the decrease of recovered beam from the alloy oven. 
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C. Experimental Observations 

1. Low- Field Data 

The initial pro.cedure of the investigation is to make a search 

at some low value of the magnetic field for all observable flop-in 

transitions. In order to improve the precision of the measurement 

and to resolve any resonances that may overlap, the transitions are 

then followed to successively higher values of the field. To the extent 

that F remains a goo~ quantum ~umber, the resonant frequency is 

given by the low.:..field formula (II-22). The nuclear term, for our 

present purposes is neglected. Thus we have 

v = F(F+l) +. ~(J+l) - I(I+l) 

2F(F+l) 
(III- l) 

where I, J, and gJ must be determined from the observed data. 

When more than one electronic level is present in .the beam, the re­

sonances associated with each J state are fitted to this formula for 

a different value of J and g
3

. Eight individual transitions belonging 

to three separate electronic states and a nucleus with spin 3/2 were 

observed at values of the magnetic field from 2.8 to 20.8 gauss. The 

experimental data is summarized in Table II. The weighted mean 

values of g
3

, as determined from this data,· are: 

J = 11/2: gJ = 0.8145 ( 1 0) 

J = 9/2: gJ = 0.8062 (15) 

J = 7/2: gJ - - 0. 7923 (15) 

To within the experimental accuracy, no deviations from the 

low-field formula were observed. Resonances in the states of 

maximum F for each of the three J states observed at 20.8 gauss 

are shown in Fig. 7. Observed ratios of resonance intensities indicate 

that the ordering of the low-lying electronic levels is probably in­

verted. A schematic drawing of the splitting of the hfs levels in a 

magnetic field, for the system I=3/2,. J= 11/2, is shown in Fig. 8. 



-32 l-

rl 
li 

0.5 

J - .!.!_ 
- 2 

0.4 ~"r F=7 

\ J = _g_ 
6 

E F= 6 
0 y 
a.> 0.3 

..0 

\ -(.) 
a.> 

J ~ 

J = .l 
"'0 0.2 2 

\ f - F=5 c 2 

~ a.> J 
(.) 
~ /, !'N a.> 0.1 ? a.. 

~6 
Q-11 ....... Q 

0 
16.000 .I .2 17.5 .6 18.5 .6 .7 

Frequency (Me/sec) 

MU-19067 

Fig. 7. 
233 

Observed Pa resonances at 20.75 gauss. 



Fig. 

Pa 13! 

HYPERFINE STRUCTURE OF 
THE SYSTEM J" 112 , I = 3/2 

-32 2--

mFm1 m"' 

7 i 

··--'i 5·! 
•·l 

q 

5 ·--I 
4-! 
3·f 

5 i 
4 ! ' 3-.--. 

F•7 --4~--------...,t.:,..C,.L----+~'-- 2-J 

4 l 

3 *--i 2-! 
1-l 

3 i 
2·--! 
1-t 
o-i 

F•6~~~~2f 'll I *-t o-t 
·1-i 

->·! 
-1-t I 0.---., 
I f 

F•5~~~~--3·f ·2-j 
".--i 
o I 

-4-! 
-3-i- 5 -2,---. 

F:4 --41~-------".--'>..--'>,---"~..--'>,---".----"~-1 f 

-o-i 
-4-i- 1 .,.---. 
.. ! 

-e-t 
-s-t 9 ... ---, 
-3 ! 

·7·! 
-6-l __ 'i 
-5j 

FIELD- -4! 

Mu-15.804 

B. Schematic diagram of the hyperfine-~tructure 
levels of Pa233 in a magnetic field. 



..r-~ ... .-:-. 

Table II 

233 . 
Pa low-field data 

J H v(Mc) 
(gauss) ·,gJ 

F=7 F=6 F=5 F=4 

11/2 2.819(30) 2,512(35) 
0.810(11) 

5.567(30) 5, 582(50) 6. 535(50) 
0.813( 7) 0.812( 6) 

10.865(30} 9. 700{50) 10.912(35) 12.812(35) 16. 112(50) 
0.8117(40) 0,8144(28) 0.8152(22) 0.8150(25) ! 

(.N 

20.7 55(30) 18.590(25) 20.812(50) 24,450(60) 30. 800(60) w 
8 

0 .. 8144(11) 0.8132(20} 0.8145(20) 0.8155(16} 

9/2 2.819(30) 2,400(35) 
0.811(11) 

10.865(30) 0 '0 - -- ,;_gd1.§2.(50) 10A12(35) 12.560(60) 
0.8033(43) 0.8055(27) 0.8058(40) 

20.7 55(30) 17.575(30) 19.912(50) 24.000(50) 
0.8067(15) 0,8065(20) 0.8060(17) 

7/2 10.865(30) 8,425(50) 
0. 7914(48) 

20.7 55(30) 16. 115(30) 
0. 7924(15) 

•. ·-
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2. Hyperfine"-Structure Data 

The hfs constants are determined from the field dependence 

of the observed transitions.. The resonant frequency, in an intermediate 

field is a function of·. a, b, gJ, and gr Three transitions associated 

with different values o£ the total angular momentum, F, for the 

electronic state J = 11/2 were observed at successively higher values 
- . 

of the field, The observations are shown in Figs, 9, 10, and 1 L The 

IBM- 704 routine described in section II-C was employed to analyze 

the experimental data, While a, b, and gJ were allowed to vary, 

gi was kept fixed, The program was then repeated for another value 

of gl' The results of a series of data analyses for different values 

of
2 

gi are shown in ·Table IlL The variation of g~ as a function of 

x is plotted in Fig, 12, The experimental data and the calculated 

residuals for gi = 12.4X 10-
4 

(referred to the Bohr magnetron) are 

presented in Table IV .. 

To interpret x 2 
(see section IIC for the definition), we 

assume that if a series of measurements of a resonant frequency were 

.made, they would obey a normal distribution, Experimentally, only 

. one measurement of each frequency is made; hence, the standard 

deviation is · undetermined, Instead, an arbitrary fraction of the 

observed line width is selected to be the measured uncertainty.. If 

this chosen uncertainty is equal to one standard deviation, then the 

resulting X 
2 

will correspond to a probability P equal to approxi­

mately 0 .. 3, where P is the probability that X 
2 

should exceed its 

observed value .. 

For example, in the Pa 
233 

analysis, one~fourth of the full 

width at half maximum was chosen as .the experimental uncertainty in 

the measurement of a resonance,. Fourteen sets o,f data were analyzed 

with the IBM-704 computer, as a function of a, b, gJ' and g .. The 

minimum value of x 2 
was L 23, For 14 observations adjustied to 

four independent variables • there are n= 14-4= 10 degrees of freedom, 

The value of x 2 
corresponding to n=lO, and P=0,3 is 1 L8, 

28 
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Table III 

P 233 d 1 . a ata ana ys1s 

a(Mc) 

5.66 -0.81391 566 

7.65 ,-0.81396 574 

9. 71 -0.81401 582 

11.84 -0.81406 5·92 

12.39 -0.81408 595 

12.94 -0.81409 597 

14.06 -0.81412 603 

16.38 -0.81418 614 

18.83 -0 .. 81424 628 

21.40 -0.81431 643 

b(Mc) 

-2086 

-2172 

-2267 

-2370 

-2396 

-2423 

-2483 

-2608 

-2750 

-2911 

2 
X 

. 3.85 

2.56 

1.68 

1. 26 

1.227 

1. 231 

1. 34 

1.99 

3, 31 

5.41 
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Table IV 

Pa233 hfs data 

... 
Data No. H v V -V Transition 

(gauss) 
obs. obs. calc. 

(Me) 

1 20. 754(18) 18.590(12) +0.008 a 

2 55.192(21) 49.470(50) +0.0 17 a 

3 105. 804(24) 94.910(75) -0.002 a 

4 156.142(29) 140.230(40) -0.010 a 

5 225.3 71 (42) 202. 770(40) -0.009 a 

6 318.227(58) 287.010(40) -0.042 a 

7 450.668(74) 408.120(30) +0. 031 a 

8 149. 713(30) 150. 330(40) +0.0 18 b 

9 207.147(39) 208.025(40) +0.0 14 b 

10 308.464(58) 309.840(30) -0.010 b 

11 99.548(25) 147.800(25) -0.003 c 

12 144, 665(30) 214.980(50) - +0.011 c 

13 207.147(3-9) 308.160(50) -0.006 c 
---

14 258. 908(48) 385.460(63) -0.018 c 

a (7,-1--7,-2) 

b(6, 0 +-+ 6' -1) 

c(4,2 +-+ 4, 1) 

... 
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This means that the uncertainties were chosen approximately 

(11,8/1.23)
1

/
2 -v 3 times larger than an rms uncertainty, and 

therefore the calculated errors in a, b, and g
3 

are about three times 

the rms error. The factor of three absorbs any unknown systematic 

error. The measured value of g
3 

is more sensitive to systematic 

errors in the field calibration, and one part in 2000 is .chosen as the 

upper limit of accuracy with which gJ can be measured. 

The value of g
1 

which minimizes. X 
2 

is + 12.5.><.10-
4

. The 

experimental error in g
1 

is determined from Fig. 12. The value 

of .6g
1 

is chosen such that if g
1 

gives a x 2 
for which P=0.3, 

then g
1 

+ .6g
1 

will give a x 2 
for which P = 0. 02. The uncertainties 

in a, b, and gJ must be modified to include the effect of the un­

certainty in g
1

. The final data is: 

-4 
g

1 
= + 12.5(4.5)Xl0 or f.ll = + 3.4(1.2) nm 

gJ = - 0.8141(4) 

a = + 595(40) Me 

b = 2400 (300) Me. 

Figure 13 shows the behavior of the hfs levels as a function of b/ a. 
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D. Interpretation of Data 

1. Electronic p:tructure 

Protactinium, . with 91 electrons, has an inert core of 86-

electrons, and 5 electrons in outer shells. The ground- state config-
:S 2 2 2 3 

uration of thorium is (7s) (6d) , and that of uranium is (7s) (5f) 6d. 

Therefore the most reasonable configuration assignments for 

protactinium are {6d)
3

, 5f{6d)
2

, {5f)
2
6d, or (5f)

3
. Of these, only 

the configuration (5f) 
2
6d -has a ground state J = 11/2 as predicted by 

Hund 1 s .rule. This plus the fact that the calculated gJ values agree 

with the measured ones indicate that the ground- state configuration of 

protactinium is almost certainly (5f) 
2
6d. 

The best model for interpretation of the data is one in which 

the electrons in each s_hell couple independently to the Hund 1 s-rule 

ground state. The Hund 1 s -rule ground-state -of the configuration 

(5f)
2 

is 
3

H4 with gJ = - 0.800; for 6d .it is 
2n 3/ 2 , with 

gJ = - 0. 800. In the limit of pure J -J coupling between shells, four 

levels characterized by J = 11/2, 9/2, 7/2, and 5/2, with 

gJ = - 0.800 for all of them is predicted. In comparison, the cal­

culated gJ values for pure L-,S coupling among all electrons is 
4 4' 4 

gJ( K 11 ; 2> =- 0.769, gJ( I
9

; 2) =- 0.727, and gJ{ H 7; 2> =- 0.702. 

The values of gJ in J -J coupling are in better agreement with the 

observed values. 

In the J -J scheme, the ground-state multiplet is produced 
I 

by the weak electrostatic interactions between 5f and 6d electrons. 

The energy of interaction can ·be calculated by first expanding the J -J 

wave function into the sum of determinantal wave functions, and 

then taking matrix elements of the electrostatic energy operator be­

tween these wave functions. This procedure can become very tedious. 

For example, the J = 7/2 wave function contains 42~-determinants, 

and the diagonal element involves several hundred nonvanishing 

direct and exchange integrals. 
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It will be more convenient to calculate the electrostatic energy 

in the L-S scheme, and then transform the energy matrix to the 

J -J scheme. The energy in L-S coupling~'an be calculated by means 

of the diagonal sum rule. However if a term exists that can be formed 

in more than one way, this method gives the mean energy of the 

identical terms, The terms are then separated by diagonalizing the 

matrix connecting them, 

Another method of calculation applicable to the L-S scheme 

is that of tensor algebra, 29 • 
30

. The tensor method eliminates the 

necessity for calculating electronic wave functions, and. displays 

the functional dependence of the energy matrix in compact form. The 

tensor method is particularly useful for studying the electronic 

structure of protactinium and will be employed in the following analysis. 

The L-S matrix elements of the electrostatic energy have 

the form 
2 

e 

2 
The subscripts 1 and 2 refer to the configurations (5f) and 6d, 

(III-2) 

respectively. Thus £
1 

=3, and P. 2=2, The matrix (III-2) may be 

written as a sum over the radial integrals Fk{5f, 6d) and Gk(5£, 6d)~ 1 

(The radial integrals are defined in Appendix C. ) 

(LSI~ t LS) = E tFk + E gkGk 0 (III-3) 
r

12 
k=2;4 k=l, 3,5 

The interaction among the (5£) 
2 

electrons is independent of L and S 

and merely adds a constant term to (III-3), Judd
32 

has derived an 

expression for these coefficients for the general case in which an 

i. 2 electron interacts with an arbitrary number (n) of equivalent P. 1 
electrons. He expands · t and gk into a sum over fractional 

parentage states, When n=2, this sum reduces to a single term, 

and the expressions for t and gk become 
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(III-4) 
and 

(-)8 1 +S'1 G2s
1 

+1)(2S' 
1 

+1). 

(2L
1 

+1)(2L 1

1
+l)J l/

2 

' (Ill-S) 

where L is the resultant orbital angular .moment-um L of the parent 
2 2 

term. Any term of f has the parent F; therefore L = 3. In 

Appendix B, we derive the form of ;c and gk for the configuration 

i. 
1 

2
.R. 2 by an alternate method, and obtain agreement with Judd 1 s 

result when n = 2. 

We shall assume that the electrostatic interaction between the 

Sf electrons and the 6d electron is small in comparison with the 

electrostatic interaction among the Sf electrons. This means 

that matrix elements involving excited terms of the (Sf)
2 

crinfiguration 

can be neglected. The ground term of l is . 
3

H. Therefore we have 

L 1 =L' 1 =S, and s
1 

=S 1 

1 
=1, only. Tables of 3-j and 6-j symbols are 

found in Edmonds. 
3 3 

The 3-j symbols appearing in Eq. (III-4) are 



~ 

-46-

k=2 ' k=4 

(~ k ~) (41 105) 
1

1
2 

- (2177) 
1

1
2 

= 
0 

I 

and 

(2 z) = k 
- (2135) 

1
1

2 
(2135)

1
1

2
· 

\o 0 o; 
The 3-j symbol in Eq. (III-5) is 

k=l k=3 

-pI 3 s > 
1 I 2 

( 41 1 o 5 > 
1 I 2 

- !1 o 1 2 3 1 > 
1 I 2 

. 

The 6-j symbol in Eq. (III-5) is 

S=ll2 S=3l2 

p 1 

: "\ = 

2 
116 -113 . 

• 1 s l 2 
The 9-j symbol in Eq. (III-5) is evaluated from its definition as the 

sum over three 6-j symbols: 

(-)k+L+l r : 
3 :1 = r: 2 

:l= 
r 3l[2 k 3 } 2 . 5 3 

k k E (-) r (2r+ b)t 3 
! 

l3 
r 

rjl:3 .r 2 l 5 2 LJ 3 5 

[L 2 :} /.,r ~5 

In Table V are listed all of the 6-j symbols required in order to 

evaluate the 9-j symbol. The 6-j symbols in Eq. (III-4) are also 

contained in this table and do not have to be evaluated separately. 

(III- 6) 



6-j k 
symbol 

{ 
5 3 31 
3 5 r f 

{2 k 3} 1 
3 r 2 3 

5 

rL 2 51 l r 5 2 

Table V 

Some 6-j symbols used in calculating f'- and gk 

L r=O 

{1135)1/2 

{1135)112 

{1135) 112 

7 {1155) 112 

6 -{1155)112 

5 {1155)112 

4 -{1155)112 

3 {1155)112 

r=l 

{51616)112 

= {8135) 112~~ 
~ { 11280) 112 ' 

{1170)112 

113{11)112 

-1110{11)112 

-1110{11)112 

-215{11)112 

=215{11)112 

r=2 

- (l3l 154) 112f6 

{24) 112135 

-11/70{6) 112 

117{6)112 

P/ 1 o o 1 > 
1 I 2 

(33191)
1

1
2
110 

- {7 I 429) 
1

1
2
; 2 

0 

{2I5H13I231)112 

r=3 

0 

.~ 

r=4 

{1317) 11
2 
133 

{1115)
1

1
2
121 

{1115) 
1

1
2
121 

{1142){55) 11
2 

1I3{5005S) 11
2 

{415005)
1

1
2 

{41715)
1

1
2
13 

{91155)
1
1

2
118 

{13/385).}'C6> 

I 
,.p.. 
-J 
I 
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Performing the indicated summation in Eq, (III-6) yields 

(III- 7) 

L k=l k=3 k=5 

7 -2/231 -1/308 -1/8,470 

6 1/385 1/210 41/50,820 

5 l/385 -19/13,860 -79/30,492 

4 l/990 l/315 23/4,356 

3 l/5, 390 79/48,510 -8321/1,067,220 

Having evaluated each of the n-j symbols in (III-4) and (III- 5), 

can now calculate fk and k The result is we g 0 

2 r4 l 3 5 
i I JL _g_ _g_ 

4K: 2/21 -4/693 -4/7 -2/21 -10/2541 

4I: -11/105 .8/231 -6/35 -44/315 -205/7,623 

4H: -l/9 -8/99 6/35 -38/945 -1,975/22,869 

4G: 0 26/297 -1/15 -88/945 -575/3267 

4F: 52/3"15 -26/693 3/245 316/6,615 -41,605/160,083, 

The energies of the doublet terms can be obtained from the above table 

by leaving ~ unchanged and multiplying gk by -1/2, 
. . 

No experimental or theoretical values of the radial integrals 

Fk and Gk are available for _protactinium, However, Racah, in an 

a~alysis of the Th(III) spectra has calculated the values of the radial 

integrals which give the best agreement with the observed spectra, 
34 

We have evaluated the radial integrals for the Hartree, relativistic, 
35 

normal-uranium atom wavefunctions Cohen, .qth the help of an 

IBM 653 computer, A brief description of this program is given in 
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Appendix C, The Sf and 6d uranium electron densities are plotted 

in Fig, 14. The values of the radial integrals of Th(III) and U(I) are 

compared in Table VI. 

Table VI 

Values of the radial integrals 

k ~_(5f, 6d)cm -1 k -1 
G (Sf, 6d)cm 

k ~ 
F (5f)cm 

Th u Th u Th u 

1 

2 

4 

6 

19,950 

15,662 

34,808 

20,222 

43,425 77,631 

39, 531 59, 596 

25,030 51,747 

1 

3 

5 

k 
Although the F 1 s 

14,805 

13,545 

8,995 

21,413 

16,308 

13,840 

and Gk' s are sensitive to the electronic 

wave functions, their ratios should not be very sensitive to the wave 

functions. This statement is approximately verifed by the values in 

Table VL At this time, there is no preference for either set of 
' calculated integrals. We will therefore calculate the electrostatic 

energy from each set and compare the results, 
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Table VII 

Term energies in em -1 

"Term From Th From U 

4K -79_76 -10645 

41 -6219 - 9267 

2H -4091 - 6412 

4G ;;;246o - 3612 

4H -2266 - 3682 

21 788 214 

4F 1196 2432 

2G 3287 4461 

2F 3460 6265 

2K 6702 10120 
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51 

RADIUS (Atomic Units) 
MU-14569 

Fig. 14. Uranium 5£ and 6d electron densities (after 
l S. Cohen). 
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The term energies a-re listed in Table VIL ·. It :ls encouraging to note 

the similarity between the level orderihg predicted by the radial 

integrals of Racah and those calculated from Cohen 1 s uranium wave 

functions. 

We now proceed to obtain the electrostatic energy in the J -J 

couplingscheme, The LS-JJ transformation coefficient is given by 

(Ll Lz)L, {Sl sz)s, J I {Ll sl) J l, (LzSz)J 2' J) 

~ [(2L+ 1) (25+1) (2J 1 + 1 )(f.! t n 1/,h r ~11 
1 J 1 

(III-8) 

The smallest argument appearing in the 9-j symbol is S 2= l/2, 

Therefore the formula for the 9-j symbol can be simplified to an ex~ 

pression involving the sum of only two 6-j symbols. 

The ground (5f)
2 3

H term is split by the fine-structure inter­

action into the levels J 
1 

=4, 5, and 6; the 6d 
2

D term is split into 

J 2=3/2, and 5/2, The electrostatic interaction between these two 

systems gives rise to the following states in the J 
1 

J 2J coupling 

scheme: 4(3/2)J, 4{5/2)J, 5(3/2)J, 5(5/2)J, 
1
6(3/2)J, and 6(5/2)J. 

Neither the electronic g factor nor the hfs -interaction operators 

couple any of the three last-mentioned J
1 

J 
2

J states with the 4(3/2)J 

ground state. Since they do not produce any first-order effects, these 

states will be neglected, The LS-J J transforrra tion coefficients to 

the states 4(3/2)J, 4(5/2)J, and 5(3/2)J, with J=ll/2, 9/2, 7/2, and 

5/2, are presented in Table VIII. 
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Table VIII 

LS-JJ transformation coefficients 

1 . 1 
( (52) L (1 7 ) S; Jl(51)4(2 7 )z: ;J) 

J 

11/2 9/2 7/2 5/2 
------------------------------------------~----~ 

21 

ZH 

ZG 

ZF 

4K 

41 

4H 

4G 

4F 

(9/11)
1

/
2 

-(26) 1/~o 
- (7 /10)(2/165) 

112 

· -<6/5) 1 / 2fs~ 

(lSZ/11) 1
/

2
/10 

(26/33) 
112

/10 

- (1/26) 
112 

(71/30)/(11)
1

/
2 

- (41/1 0)/ (195) 
112 

- (39/55) 
112

/5 

( 18/55 )(91/15) l/Z 

-(2/5)(13/165) 112 

-(13/110)(6/5)
1

/
2 

(8/5)(13/110)
1

/
2 

(4/5)(3/110)
1

/
2 

·~ (273/55) l/Z /10 

(7/10) (13/15)
1

/
2 

-(19/5) (2/165)
1

/
2 

-(14/15)
1

/
2
/5 

08'2-/l;)l{Zj!:; ; ,, . 
-(6/5)

1
/

2
/5 (3/10)

1
/

2 

(3/5)(7 /6) 
112 

(1/2)
1

/
2
/5 (8/15)

1
/

2 

-(13/15)
1

/
2
/5 

(4/5) (7/15)
1

/
2 

- (2/5) (7 /3) l/2 
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Table VIII(Continued) 

25+1 
• 

.L J 

,. 
1112 912 712 512 

2 
I 

< 2 I 15) < 7 > 1 I 2 

2H (415)1(3) 
1
1

2 
(13110)

1
1

2
15 

2G (715)(2115)
1
1

2 
(113) 

1
1

2
/5 

2F (7) 11215 

4K 3(21143) 11 2 

41~ 34155 < 141 55)(39 11 o> 11
2 

4H (5815)(112145)
1

/
2 

(546/55)
1
1

2 15 (546/55) 
1
1

2
/5 

4G (3915) 
1
1

2
/55 (7 /55)(2115) 112 

(19110)(6/55)
1

/
2 (3/5) 1/2 

4F (3155) 
1
1

2
/5 (3/5 )(3/22) 

1
/

2 (1/3)1/2 

21 -(415)(7111) 11
2 

2H -(415)/(33) 11
2 

- (2/5)(91/55) 
1
1

2 

2G - (21/55) 
112

; 5 -(42/11)
1

/
2
15 · 

2 -<2111)
1

/
2
15 -(1115)

1
/

2 
F 
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Transformation of the electrostatic energy in the L-S scheme 

to the Jl-J2 s eheme yields the following energy matrices: 

J=11/2 

42 s2 4~ 4~ 5 ~ 4~ \ .. 
2 2 2 2 2 2 

42 -6455 1507 -2489 -8768 1867 -3052 
2 

s2 1507 -4513 -.1915 
-1 1867 -6889 -2681 -1 em em 

2 ! I 
4~ -2489 -1915 -3287 1-3052 -2681 -51591 

2 I 

J=9/2 

42 -5290 865 -1174 -7989 1249 -1634. 
2 

s2 865 -1011 296 
-1 1249 -1733 369 -1 em em 

2 

4~ -1174 296 -3669 -1634 369 -5633 
2 

:lit 

J=7/2 

42 264 . 1213 -1574 104 1955 -2413 
2 

52 1213 646 -1044 -1 1955 1515 -1620 -1 
CilJ. em 

2 

4~ -1574 -1044 -1283 1-2413 -1620 -2038 
2 

I 

;· -~~-r •.• • 

) 
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4~ 3 4'~ 
J=5/2 3 53 4~ 5 --- 4-z 2 . 2 2 "Z t.. 

4~ 1307 -1978 2663 -3287 
2 

-1 - ;1 5~ .em ,em 
2 

4~ -1978. - 847 -3287 - 939 
2 

The matrices in the first column are calculated from Racah' s values 

o.f the radial integrals; the matrices in the second column are calcu­

lated from the uranium radial integrals. 

To complete the energy matrix, we must add the spin-orbit 

energy which splits th~ .·J 1 J 2 states. This is 

4~ 
2 

4~ 
2 
0 

5~ 
2 

5 ~ ::. '(9/~)a 5f 
2 

4~ 
2 

4 ~ (5/2)a6d 
2 

The rows and columns of the above matrices are identified by the J 1 J 2 
states as shown at. the left of the rows and above the columns. The 

matrix of the total energy may be written in the form 

W = S + A E, (III-9) 

where W is the s_um of the spin-orbit matrix,S, plus the calculated 

electrostatic matrix, E, multiplied by _ A. Here A is a parameter 

which is proportional to the strength of the electrostCJ,tic interaction; 

in effect, it is a constant which multiplies each of the radial integrals. 

The justification for introducing A rests on the fact that the ratios 
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of the calculated integrals can be approximately correct, even if the 

magnitude of each integral is incorrect, The eigenvalues and 

eigenfunctions of W are a function of A., which is chosen so as to 

yield the best agreement between the observed g values and those 
J 

values calculated from the eigenvectors. 

Before proceeding to diagonalize _ W, we shall first calculate 

the matrix elements of g
3

. The electronic g factor, gJ' is defined 

by 

I: (g, £ +g s ). JmJ) 
i x. Z· · S Z 1 

Here g1 = ~ 1 is the electron-orbital g factor, 

electron- spin g factor, and i. and 
z 

s 
z 

are the 

g = - 2.0023 is the 
s 

z components of 

the orbital and spin angular momenta. The sum is .restricted to 

unfilled shells, if we assume that the core is not polarized. The gJ 

matrix in the J 1 c~J 2 scheme can be obtained by a transformation of 

the diagonal gJ matrix from the L-S scheme via the coefficients in 

Table VIII. It can also be calculated with the use of the tensor method, 

by considering the angular momenta as tensors of rank one. The 

most general tensor that we will need to evaluate in the J -J coupling 

scheme is 

(i.1
2

L1S1, 1 2• JilJ'z.J'mJ 'Tkoi 1 1
2
LlSl,i.2,JlJ2JmJ)' 

where T kO is an arbitrary tensor of rank k. 

is obtained from the Wigner-Eckart theorem: 

(J'mJ ITkol JmJ) = (~)J-mJ(J k J ) 
~mJO mJ 

The spatial dependence 

(III- 11) 

Tensor Tk may be written as the sum of a tensor Tk(l) which 

operates on system (1), and a tensor Tk(2) which operates on system 

(2). Therefore the reduced matrix element may be written )1, 
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The reduced matrix elements in (III-12) can be further reduced, since 

Tk(l) and Tk(2) are each the sum of a tensor that acts on ordinary 

space and a tensor that acts on spin space. Equation {III-12) may be 

reapplied with J 
1 

=L
1

, J 2 =S
1

, and . J=J 
1

. For Tk·O = I:(-l +g s ). , z s z 1 

the matrix elemen.t of T kO can be ultimately, reduced until it involves 

only the reduced matrix; elements 

and 

(s s 1/2 s) = (3/2) ' 0 

(III~l3) 

(III-14) 

Application of Eqs, (III-11), (III-12), (III-13), and (III-14) yields the 

followingexpressionfor g
3 

with J
1
=J'

1 
and J 2=J 1

2
: 

(III-15) 

Here g
3 

and g
3 

are the Lande 1 g factors of systems (1) and {2) 

respectiJely. and &.e have 

(III-16a) 

and 

c2 = J(J+1) + J 2(J ?+1) - J 1 (J 1 +1) (III-16b) 

Calculation of the matrix elements off-diagonal in J 
1 

or J 
2 

is 

straightforward. Consider (JU 1J 2Jm
3 

jj2: (-iz+gssz)il J
1
J2JmJ) • 

where J 
1 

=4, J 1 

1 
=5, J 

2
=3/2, and J is arbitrary. The 3-j symbol in 

(III-11) is 
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112. 
J(J+l) (2J+l) 

The 6- j symbol in (III-12) is 

I'J· J' J 1 1
1
"s J 312 ' 1 . 2 

) - ( 
') I - ) 

l J Jl 1 J l J 4 1 

= (- r.!+~/~·fY +1512) (J + 7 /2) ( -J +1312)~-slzlz. ,__ L 990(2J+l)(2J+2)J J~ 

The s~cond part of (III-12) is zero because of the 6 function. To 

evaluate (J' 1 /E (-l z +g
5

s z)i I J 1 ), we need to know 

{: : : - - 1155, t : :} = - (1155)
1

1
2 

' 

(1 1 
2 

L 1 ~1 1 111 1 
2 

L 1 ) ~ ( 16 5 I 2) 
1 I 2 ,. and 

(s/sli gsslisl2Sl) = gs(312)ll2. 

Taking both of the .. e:
1 

electrons into account leads finally to 

and 

<3Hs :jj~ <-£ +g s >- 3H4> = - 3(6l5>ll2<g +1> 
z s z 1 s 

I 
(5 (312) Jm3 j ~ ( -£ z +gs s z)i 4(3I2)Jm3 )1mJ (III-18) 

= - [6 < J + 1 5 I 2 > < J + 7 I 2 > < 1 3 I 2- J > < J- 5 I ~1 I 2 
< g 8 + 1 >I 1 o J < J + 1 >. 

(III-17) 

A similar calculation of the matrix element nondiagonal in J 2 yields 

(III-19) 

and 

(4(5I2)Jm3 l-£ 2 + gssz f 4(3I2)JmJ)ImJ (III-20) 
z 

= QJ+l5I2)(J-3I2)(13I2-J)(J+512]
1

1
2 

(gs+l)llOJ(J+l). 

The matrix elements of (g s -£ ) vanish between a state with J
1

=6, 
s z z 

and any other state, and between states that differ in both J 
1 

and J 2 . 



So far in the discussion, we have assumed that the £
2 

con-
3 

figuration couples to a pure ground H term. This assumption· must 

be modified when we calculate gJ' because the 'Spinebr~bit . .c'Z interaction 

admixes excited terms into the J 
1 

=4 ground level, which significantly 

affect the g of the 4(3/2)J state. We shall treat this effect in first 
J . 

order,. and consider the perturbatio·n of the state 4(3/2)J only, The 

possible terms of an £
2 

configuration are 
1 . 3 31 
,SDGI and PFH, Of 

these, the terms 
3

H, 
3

F, and 
1

G can give rise to a J 
1 

=4 level. 

1 t 
. 0 • • 36 

The matrix of the spin-orbit plus 

3H 

-3a5£ 

- (1 0/3) l/
2

a
5

£ 

e ectros ahc 1nteract1on 1s 

lG 3F 

G , (III-21) 

F+(3/2)a5£ 

l 3F Here G and F are the electrostatic energies of the .. G and terms 

with respect to the 
3

H term, and are given in reference 3L These 

energies can be written in terms of F 2 (5£) = F
2

(5£)/225, if some 
4 2 6 2 

values of F /F , and F /F are assumed, Use of the calculated 

uranium radial integrals (Table VI) to obtain these ratios yields 
-1 

G=20,3F2 , and F=l2.3F2. In section (IVD), we find that F 2=153 em 

gives the best agreement with the observed gJ values of americium, 

The radial integral, F 
2

, is proportional to (Z- a), The value of the 

. .... 11 d f h . . d 1 . 58 3 7 
screen1ng constant, v, usua y use or t e act1n1 e e ements lS , 

Therefore the extrapolated value of F 
2 

for protactinium is (33/37) 

153= 136,5 em -l. Judd has found that the low lying electronic levels in 

U(I) can be fitted satisfactorily by assuming a
5

£ = 1300 em -l, and 
-l 32 

a 6d = 1700 em , · The eigenvector of the lowest-energy state of the 

above ·written matrix, in ~hich F
2

=136.5 cm-l and a
5
{1300 cm-

1
, is 

I 3 . 1 3 
J= 4) = - 0.939 H

4
) - 0.323 G

4
) + 0.095 F 

4
) (III-22) 
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and the g factor of thi: state is ~=0. 8226. In pure J ~J coupling 

between the systems f (J=4) and 0 3/ 2 , the calculated g factors 

are gJ=ll/2= - 0.8185, gJ= 9/ 2=-0.82ll, and gJ= 7 ; 2=-0.8260. The 

complete matrices of gJ in the J -J coupling scheme are: 

4~ 5~ 4~ 

gJ=9/2: 

gJ=7/2 

3 
4-

2 

'3 
~5-

2 

4~ 
2 

4~ 
2 

5~ 
2 

4~ 
2 

4~ 
2 

3 
5-

2 

4~ 
2 

2 2 2 

- 0.8185 -0.0388 ,+0.0572 

-0.0388 -1.0023 

+0.0572 -0.9369 

-0.8211 -0.0586 +0.0909 

-0.0586 -1.0405 

+0.0909 -0.9089 

-0.8260 -0.0714 +0.1266 

-0.0714 -1.1114 

+0.1266 -0.8568 

The eigenvalues and eigenvectors of the energy matrices W were 

calculated with the use of an IBM-704 computer routine described in 

(IIC). The eigenvalues of the J= 11/2, 9/2, and 7/2 matrices are 

shown in Fig. 15. The gJ matrices were then transformed with the 
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Fig. 15. Calculated electronic energy levels J -11/2, 
J=9/2, and J=7 /2 of· protactinium, in J -H coupling·. 
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same unitary matrix which brings the energy matrix into diagonal 

form. The elements occuring along the diagonal of the gJ matrix 

are the characteristic g factors, 

Figure 16 shows how gJ (calculated from Th(Ill) radial 

integrals) varies with X. for the three lowest J states. The observed 

gJ values are indicated by the arrows. There is no single value of 

X. for which the observed and calculated g factors are in satisfactory 

agreement. However, the situation can be improved by taking into 

account the other electronic states that are admixed by the electro­

static interaction into the ground leveL These are the states that were 

previously neglected because they are not directly coupled by the 

single-particle operators (-£ +g s ) and Nk. The excited states all z s z 
have larger gJ values than the ground state and will therefore increase 

the calculated g factor. The calculation of this correction would require 

first evaluating (III-4) and (III-5) for each term of the configuration f
2 

that can interact with a d electron to form a IJ 
1 

J 2J) state for which 

J=ll/2, 9/2, or 7/2, and then transforming the L-S energy matrix 

via Eq. (III-8) to the J 
1
-J 2 coupled states. An additional complication 

is the occurence of matrix elements between states that differ in L 1 
and s

1
. This would be a useful problem to program for a high-speed 

computer. 

2, Hyperfine Structure 

The nuclear magnetic-dipole and electric-quadrupole moments 

can be evaluated from the observed hfs constants. The desired re-

lations hip is given by (II-6 ). This formula may be placed in a more 

convenient form by using (II-15a, b) plus the Wigner-Eckart theorem 

to yield 

J) (III-23) 

and 

(III- 24) 
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16. Calculated gJ-factors of.the levels J=ll/2, 
9/2 and 7/2 of protactinium as a function of the 
strength of the electrostatic interaction, in 
J -J coupling. 



The problem now is to evaluate the reduced matrix elements 

(J 1 
1 J 1 

2J liNk II J 1 J 2J) for k = 1 and k ::: 2. Since Nk may be 

expressed as the sum of a part which acts on system (1) and a part 

which acts on system (2), Eq. (III-12) is applicable. For the special 

case when J 
1 

=J 1 

1 
and J 

2
=J' 2 , we can derive expressions for A

1 
and A 2 in terms of the hfs constants calculated from Eqs. (Ii-15) 

and (II-16 a, b) for each configuration. The result is 

and 

Al = [clAl(Ll,Sl,Jl)/Jl+ C2Al(L2,S2,J2)/JJ /2(J+l) 

- [3c 1(c 1-l)-4J 1 (J 1+1) J(J+l)]A2 (L
1
,s1,JJ 

= 
J l (2J l -1 )(2J +2)(2J +3) 

[3 c 2 (c 2 -1) -4J 2 (J 2+1) J(J +1 >] A 2(L2 , s
2

, J 2> 
+ 

Here ~(L1 , s
1

, J 
1

) and ~(L2 , s
2

, J 
2

) are the calculated hfs constants 

of system (1) and system (2), respectively, and c
1 

and c 2 are 

defined by Eq. (III-16 a, b). 

To obtain the matrix elements that are nondiagonal in J 
1 

or 

J 2 , we must expand Nk into a sum of tensors, each of which acts on 

only a single electron, For the quadrupole interaction, it is easy to 

show that 
3 

(e/r )C 2 (III-25) 

where Ckm :; (4 TI/(2k+l) ) Ykm' and Ykm is a normalized spherical 

harmonic. 
38 

The dipole tensor, as shown by Trees, may be written 

(III- 26) 

where P. is a first-rank tensor that arises from the orbital motion of 

the electron, and (~XC~) 1 is a tensor of rank 1 formed from the 

product of a tensor of rank 1 with a tensor or rank 2, which arises 

from the interaction of the nucleus with the spin moment of an electron. 



The reduced matrix elements of !:.._ have already been calculated in 

section .(III-Dl), where we found the reduced matrix elements of the 

quantity (-1 + g s ). The .reduced matrix element of the spin tensor - s-
is 

(LI sl J' I / ~~ x c2) (I).~ I,! sl J I) = [3(2J I +I )(2J' I +Il]. I/2 

L L 2 

(Sll ~~~Sl) (Ll/1 c2/l Ll) s: Sll I . (III-27) 

JU 
1 

A similar expression applies to the reduced matrix element of system 

(2). Here (:~~L(IC 2 II£JfiL) is determined by further application of 

Eq. (III-12) and the fact that we have · 

. £I 
.f) = (-) 1/2 (.fli'' k (III- 28) 

0 0 

In the previous section, we showed that first-order calculations 

employing the J- J . coupling model were inadequate. to explain the o b­

served electronl.c g factors, Nevertheless, the J -J coupling scheme 

is more appropriate to protactinium than is the L-S coupling scheme; 

therefore it will be used as the basis for calculating the hfs constants. 

Table IX presents a list of dipole and quadrupole matrix elements 

evaluated for J -J coupling. ·The value of (l/r
3

) n£ is estimated 

from relativistic, uranium wave functions .(see Appendix C): 

~/r3)n1 
"~/r)~£ 

We use (l/r
3

) , 

for the quadrupole 

yields 

Sf 

= 3.99 

6d 

2.39 

-3 
= 3.89 1.99 ao 

and ," ~/r? " as the expectation value of I/r
3 

and dipole matrix elements, respectively. This 
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Table IX 

Hfs matrix elements 

1. Dipole 

(3H41 N1 3H4) = 1184. l'o ;;/r\ Sf 
1sy-s ~ I 

(1G411 N1111G4) = 12 {0 l'o ~/r3) Sf 

(3Hsll Nl~~ 3H4) = + (77/75) (10 ~0 <l/r3) Sf 

(2D~/J Nd/ 2D~)= + 2(3/S)1/2 ~'o <1/r3) 6d 

2 2 

(
2

D N I 2n ) = 48 I 3 1 3 ' - - fi5 ~'o ~/r' 6d 
2 2 

(3H 2D 
4 3 11 . Nl ·j' 3H4 2n_3 !.!_) = 48 .fli l296 Ji;rj)s£ 

2 2 33 i_225 \ 
2 2 

!..!._ ,. :'1 N I; I 3 H 2D !..! ) = -
2 1 l 4 ~ 2 

2 



(
3

H411 N2 

(lG 
4 

(3H 
5 

2 2 

-&8-

Table IX (continued) 

. \ 

(3H 2D !l_l N 3H ,2~ 
4 3 2 2 4 3 

!J:.) = 4/273 
2 55 [ 

364 (1/ 3)\ 
e 2475 · r 5£ 

2 

ll 

2 

2 

Nzi3H5 2Dl 1: ) = :: 

2 

/273 
55 

(3H 2D . !J:.I'j' N l!l3H 2D .!_!) = 4 I 273 
4 s 2 I 2 4 ~ 2 5s 

2 2 

2 2 

(3H5 2D3 1: I N2113H4 2Dl 1:) = - (52/275) (14/15) 1/2 e ~/r' 5£ . 

2 2 
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4~ 3 4 5 
2 52 2 

4~ 285.8 -8.2 ~.6 
2 

3 
-8.2 240. 5 f.LI(nm) Me a = 5-

2 

4~ 3.6 243.7 
2 

and 

4~ 745.6 -76.9 151.1 
2 

b = 
3 

5- -76.9 363.7' Q (barns) Me , 
2 

4~ 151.1 476. 
2 

Here (4 
3 

ll II N 114 
3 11 

) has been evaluated for the wave function 
-;- 2 k ~ ~· 

(III- 22), omitting the 11 3 
F 4 ) state. 

The ground- state electronic wave function is the eigenvector 

of the . W matrix for an appropriate value of ~. We shall use 

~ = .!. , because this is the value which Judd estimates that the radial 

integ~als calculated by Racah should be multiplied by in order to obtain 
32 1 

agreement with the observed U(I) spectrum. For >.. = , the ground-

state wave function is 
2 

11 .4 ~ J= -)=-0.976 !..!:.. ) + 0.124 5 ~ ~) - 0.178 4~ .!...!), 
2 2 2 2 2 2 2 

(III- 29) 

The hfs constants in this electronic state are calculated on the 

IBM- 704 computer by transforming the hfs matrices with the same 

matrix that diagonalizes W. The results are: 

a = 287 f.LI(nm) Me 

b = 802 Q (barns) Me. 



The measured hfs. constants are a = 595(40) Me, and b = - 2400(300) 

Me;. Therefore the nuclear moments are inferred to be: 

1-Lr = 595/287 = + 2.1 nm 

· Q =-2400/802 = - 3.0 barns. 

3. Second-Order Perturbation 

So far, we have assumed that J is. a good quantum number. 

Thisassumption is valid as long.as·the second-order contribution to 

the energy, 

w = F ;,, (J-1 IF'm~hfs. + Yf;,ag.l JIFm)
2
/(EJ-EJ-l)' 

(III- 30) 

is negligible in comparison with the first-order energy. If it is not, 

then the second-order field-dependent energy terms, which cannot be 

distinguished experimentally from those of first order, will affect the 

computed value of g
1 

and, to a smaller extent, a, b, and g
3

• 

An approximate upper limit to the second-order energy is 

w ~ 
F 

2W W 
hfs mag. 

EJ-EJ-l 

A./ 2,4000.700 

L5X 10 7 
= Oo2. Me~ 

This amount is larger than a line width. However, we will show by 

means of more exact calculations that the second-order effect is really 

quite negligible. 

The second-order dipole and quadrupole interactions, calculated 

in J ~J coupling by means of the tensor methods previously described, 

are 

JIFm) 

and 
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(J-1 IFm N
2

; M
2 

.JIFm) = 
2

e
2

Q [F(F+l)-3~[(F_±8)(7-F)(F+4)(F-3U l/2 

495,j15 

[- (91/!65) ~/r3)sr+0/r 3\dJ. 

(III- 31) 

The matrix element of the magnetic-field interaction, 

J:+- . = ~ (- J. +g s ). f.L
0

H , may be written 
mag. i z s z 1 z 

(J -1 IFmj1+ I JIFm) = f(F, m)(J -1 n ~ ( .. J., +g s ). ' J) f.LoHz , 
· mag. II i z s z 1 

where 
F 

f(F,m)=(-) (III- 32) 

9/2 

Matrix elements ofcrt between states thaf differ in the total angular 
·mag. 

momentum, F, are neglected, because no hfs :r:natrix elements occur 

between these states. 

It is not sufficient to calculate the reduced electronic matrix 

element in pure J -J coupling, because it vanishes in lowest order: 

3 9 II' I~ 3 11 12 ,J (4- - I~ (-£ +g s ). - -) = - - (g -g. ) = 0 . (III-34) 
2 2 i z s z 1 2 2 i1T J2 Jl 

We must therefore evaluate matrix elements between the ground state 

and states which are admixed by the electrostatic interaction. These 

are 

3 2 9

1
.
1 

I 3 2 11 1/2 
( H4 D3/2 2 ~ ( _J. z +gs s z)i H5 D3/2 -2-) = 36 (26) (gs+l )/55, 

3 2 9 
( HS D3/2 2 

1

3 2 11 
~ (-J. +g s ). H 4 D. / 2 - ) = 
. Z SZl 5 

2 1 

(III- 35a) 

(6/5} (2_6/I0;/
2

(gs +1), 

(III- 3Sb) 

.!.!.) =- (6jssr(g
5

+1), 
2 

(III- 35c) 



and 

.!..!_) 
2 

(2/ 5) ( 14/11) 
1126ss +1~ 

The electronic wave function of the J= 11/2 state is given by Eq. 

(III- 29). For the J=9/2 state, it is {for A = :;} 1 
' 9. 39 39 159 J= -)=0.990 4- -)-0.081 5--)+0.115 4--). 

2 22 22 22. 

The coefficients f(F. m) for the observed transitions are 

f(7,m)=O, 

£(6, 0) ~ £(6. -1) = (1/12) (1/77) 112
• 

and 

f(4, 2) - f(4, 1) :.: (1/20) (6/55) l/Z • 

(III- 35d) 

(III-36) 

(III- 3 7) 

The electrostatic energy calculations in.dicate that the J=9/2 

state is approximately 800 em -l above the ground state, It is difficult 

to estimate the uncertainty, but ± 600 em -l would be reasonable. 

On the basis of the previous· assumptions, we find that the 

second-order perturbation at a magnetic field of 500 gauss is less than 

1 kc for any state, F, and hence may be entirely neglected. 

4. Nuclear Structure 

Protactinium- 233 falls in the region of nuclides that are best 

interpreted in terms of the Bohr-Mottelson-Nilsson spheroidal-core 
39-43 . . 1 model. Th1s model p1ctures the nucleons as moving in an axia ly 

symmetric but nonspherical nuclear potentiaL Assuming a two-di­

mensional harmonic oscillator -type potential, Nils son has calculated 

the eigenvalues and eigenvectors of the individual nucleons as a 

function of the axial deformation. The single-particle le-vels are shown 

in Figs. 17 and 18. 
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In addition to the quantum numbers I and ml' he introduces 

several other quantum numbers to distinguish the different single­

particle states in a nonspherical field. These are K, the component 

of I along the nuclear symmetry axis; the parity, n = ±; N, the 

total number of·· nodes perpendicular to the symmetry axis; A, the 

component of the particle 1 s orbital angular momentum along the 

symmetry axis; ~ , the spin component along the symmetry axis, and 

n = A + ~ . The state of a nucleon is written in this .notation as 

Kn [Nn~ A J. Figure 19 shows the relationships among these quantum 

numbers, 

A rotational band is associated with each intrinsic configuration. 

The energy of the rotational levels is approximately given by 

Erot. = ~; ~(HI)+ d(-)1+
1

(1+1/2) o (K, r;zj. (III- 38) 

Here ~ is the effective moment of inertia of the nucleus, and d is 

the decoupling constant. If K = 1/2, this formula shows that the level 

I= K = 1/2 may not necessarily lie lowest. 

The irregularity in the observed energy levels of Pa 
233 

suggest 

that they belong to a K = 1/2 band. MottelSO:t:J. finds that the levels are 

fitted quite well by assuming j} /W = 6 kev and d = - 1.3. 
43 

Figure 

20 shows the observed vs the theoretical levels of the K = 1/2 band. 

Thus the observed spin I = 3/2 is in agreement with this interpretation. 

The 9lst proton in Pa
233 

is assigned the orbital 1/2- [s3~ (see Fig. 

1 7). 

An expression for the nuclear-dipole moment fJ-
1
, in terms of 

the eigenvectors a£A of the last odd nucleon has been given by 

Nilsson. 
41 

For K = 1/2, it is 

I-
1 

a!O ~ 1 
{ (g - g ) [.! 2 2 -+-\ _!_)~ fJ. = ~ (alO -a.£1·)+(-). .. 2 -(I+ 

I I + 1 S L 4 £ 2 2 £ 

I- 1 

~ ) J + gRI(I+l)}. e 2 1 + (gL-gR) 4 + (-) (I+ (Ill- 39) 
2 

.. 
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Fig. 19. Angular-momentum relationships for deformed 
nuclei in the ground state. 
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Here we have gS =(_;:~~~) and gL "(~)for protons andneutrons, 

respectively. The 'g fac or of the core
1

, gR' is equal to Z/ A?! 0.4 

for a uniformly charge.d nucleus. The nuclear moment fi
1

, was 

calculated from the revised wave functions of Mottelson-Nilsson. 
42 

The results for d = - l. 3zare: 

= 
0 

2.09 

0.1 

2,32 

0.2 

2.63 

0.3 

2. 77 

where o is a parameter that characterizes the eccentricity of the 

nuclear potentiaL Nuclear systematics indicate that o 1 0. 23, 
44 

although this value of o predicts that d = - .2, 5. The value of o 
may be estimated from the measured nuclear Q. The intrinsic 

quadrupole moment, Q , is approximately 
,0 

Q
0 

= (4/5)ZR
0 

2 o (1+ _!_ o) , (III-40) 
2 

R :!' 1.2X.l0-
13 

A 1/ 3 em is the mean charge radius of the nucleus. 0 ' 
The relation between _ Q and 0

0 
is 

Q = 3K
2

-I(l+l) 

(Itl) (21+3) 
(III-41) 

1 
For K = - and I = 3/2, we have Q

0 
= - SQ. The measured Q is 

2 
- 3,0 

barns; therefore Q
0 

is +15 barns, and o is 0. 3. 

of the nuclear moment corresponding to o = 0. 3 is 

The predicted value 

fir = 2, 77 nm. This 

value is intermediate between the inferred moment of 2.1 nm and the 

measured moment of 3,4 (1.2) nm, For a nuclear spin, 'l = 3/2, the 

measured Q can be negative only if K = _!_ • Thus the observ~d sign 

and magnitude of Q are in agreement with
2
the configuration assign-

ment _!_ - [ 530] for the, odd proton. 
2 



E. Summary 

The electronic angular momenta and associated g factors of 

the three lowest-lying energy levels of protactinium have been measured. 

The results are: 

J=ll/2 g - - 0.8141(4) 
J 

J=9/2 gJ - - 0.8062(15) 

J=7/2 gJ - - 0. 7923(15) 

The L-S coupling model is unsatisfactory because it predicts that 

the lowest~lying levels should be the J=ll/2, 13/2,.15/2, and 17/2 
. 4 

multiplet of the term K. The J -J coupling model, on the other 

hand, correctly predicts the observed level sequence, as arising from 

the interaction of the system (5f)
2 3

H4 with (6d) 
2n 3; 2to yield 

J=ll/2, 9/2, 7/2, and 5/2. The calculated energy separations are 

in agreement with very crude estimates that can be made from ob­

served resonance intensities. The · gJ values calculated by means of 

the J -IT. model in the first or.cler of perturbation are (for >.. = .!_ ) 

and 

J= 11/2 

J=9/2 

J=7/2 

0.796. 

0. 794, 

gJ = - o. 757 0 

2 

Thus we see that although the J -J coupling model provides the most 

accurate basis for interpretation of the electronic coupling, the real 

situation is significantly more complicated, The reason as shown by 

the previous calculations, is that the electrostatic interaction between 

shells is comparable with the fine-structure interaction. The J -J 

coupling approximation should improve for the heavier actinides, 

because the fine- structure interaction which increases with the fourth 

power of Z ff t" will predominate over the electrostatic interaction. · e ec 1ve 
The nuclear spin is measured to be I = 3/2. From the measured 

dipole-interaction constant, a= 595 (40) Me, and the quadrupole in­

teraction constant, b = - 2400(300) Me, we have inferred that f-1
1
=2. 1 nm 
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and Q = - 3.0 barns. The nuclear moments are subject to errors 

arising from incomplete knowledge of the electronic wave functions 

and uncertainty in the value of ( l/r
3
). The dipole moment f!I has 

been measured directly from its interaction with the applied 

magnetic field. The result is f!I = 3,4 (1. 2) nm, We have shown that 

the second-order perturbation from the J=9/2 level does not effect 

the data sufficiently to alter the measured f!r The value of f!I 

calculated on the basis of the spheroidal-core model of the nucleus is 

2. 77 nm, The sign of the measured quadrupole moment is negative, 

in agreement with the orbital assignment .!_ - [53~ of the 91 st proton 
. p 233 2 1n a . 



IV. AMERICIUM-241 

A. Introduction 

Americium was first sythesized and identified by 8eaborg, 

James, Morgan, and Ghiorso, in 1944. 
26 

Fred and Tomkins
43 

photographed the spectrum of Am(I) with a 30-ft, spectrograph, and 

observed many lines with wide hfs, all with 6 components. They 
46 . 

concluded that I=S/2. Later, Thorne observed .the spark spectra 

of Am
241 

and confirmed that I=S/2. Manning, Fred, and Tomkins 
47 

de­

termined the dipole moment !J.I = L4 nm from spark lines in the ground 

(Sf) 
7 

(7s) 98 4 and 
7

8
3 

terms, using the Goudsmit Fermi-8egre 

formula. They. determined the quadrupole moment Q = 4. 9 barns 

from arc lines due to transitions from (Sf) 
7 

7s7p 
10

P
9

/ 2 and 
10

P 7 / 2 
7 2 8 . 48 49 

to (Sf) (7s) 8 7/ 2 . Fred and Tomkms ' have measured over 

3000 americium lines. To date, they have classified 112 Am(I) lines 

and 173 Am(II) lines, but have made only a few term assignments 

in the excited spectra. They have measured the ionization potential 

of Am(I) to be 6.0 ev. 

The objective of this research was to measure the electronic 

g factor, gJ' and the hfs interaction constants a and b. They 

can be interpreted to yield information concerning the coupling of 

electrons in the electronic ground state. Furthermore, the values of 

a and b together with the optically measured nuclear moments can 

serve as a basis for determining.the moments of other americium 

isotopes (see section V). 

The results of the gJ measurement of americium, taken to­

gether with the curium data, 9 are very significant. The ground­

state configuration of curium is (Sf) 7 6d(7s)
2

, giving rise to four low­

lying levels. The observed gJ values of these levels are in good 

agreement with values calculated on the assumption that the Sf 
8 electrons couple to a pure .h!und' s-rule ground state, 8

712
, which then 

interacts with a slightly perturbed 
2n

3
/ 2 state of the 6d electron. 



However, the results of the present investigation definitely show that 

the gJ value of americium, which has a (Sf) 
7 

(7s) 
2 

ground- state 

configuration, is less than the pure L-S coupled gJ by several 

percent. Since the (Sf) 
7 

configuration of curium should have 

approximately the same gJ value as americium, this indicates that 

the previous agreement in curium was most likely accidental. More 

recent calculations of the curium gJ factors in intermediate coupling 

show that they can be fitted on the assumption of an impure (Sf) 
7 

32 
ground state. 

B. Beam Production 

Americium-241 was obtained from the A. E. C. stockpile in a 

weak HC l solution. The isotope was identified by a pulse -height 

analysis of its y spectrum with a RCL 256-channel analyser. 

We experimented with several chemical procedures before 

finding one that would produce a satisfactory beam of atoms. The 

carbon-reduction method described in section IIIB yielded a weak beam 

constituted mainly of ';tn9}e;cules,. Next a barium reduction technique 

in which barium metal is added to AmF1 3 was unsuccessfully tried. 

The success of this method depends upon holding the mixture in 

equilibrium at a critical temperature until the reduction process is 

completed. In the atomic- beam apparatus, there is no fine control 

over the reaction rate, and the barium would boil out of the oven be­

fore the reduction could take place. 

An atomic beam was eventually made by using lanthanum metal 

to reduce americium oxide. The procedure is, first, to separate 

approximately 10 mg of americium from the stock solution, and then 

to add concentrated." NH4 0H dropwise until a white Am(OH) 3 
precipitate forms. Next the precipitate is transferred to a platinum 

crucible and is heated in an induction heater until it becomes oxidized. 

The americium oxide is then transferred to the inner liner of the atomic= 

beam oven. An excess of lanthanum metal is added. The oven (Fig. 21) 
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Fig. 21. Cutaway view of molybdenum oven used for 
production of the americium beam. 
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is made from molybdenum and has a sharp edged inner liner to pre­

vent the lanthanum from creeping up the wall of the oven and clogging 

the slit, After the oven is inserted and heated to a temperature of 

about l000°C, a beam of atoms with a throwout ratio of 20/1 is 

formed, The reduction process takes place very rapidly, and one must 

be careful to lower the temperature before too much of the material 

escapes, 

After the initial success of the method, it was used exclusively 

for the remainder of the investigation, andno subsequent failures 

occurred. We found, on the average, that 1 mg of americium-241 

would yield a full beam of 100 counts per minute (c/m) at the detector 

for approximately 1 hr. Typical res.onance intensities were about 2 c/m. 

The counting of the platinum discs exposed during the runs was done 

in 2n alpha counters with backgrounds of 0.1 c/m. 

C. Experimental Observations 

A search tO find transitions between the Zeeman components 
. 241 

of the hfs of Am was performed at a field of 2,1 gauss. Four 

resonances were observed. (Fig, 22), each of which approximately 

fit the low-field formula 

v = F(F+l) + J(J+l) - I(I+l) 

2F(F+l) ~j~6Hzjh. 
(IV- 1) 

with I=5/2 and J=7 /2, but with gJ significantly smaller than the 

L-S coupled value of 2.002. Figure 23 is a schematic of the hfs 

splitting of a system with 1=5/2 and. J=7/2. In order to improve the 

precision of the gJ measurement, and to measure the hfs inter­

action constants, we decided to follow the resonance associated with 

the state F=6 to higher values of the magnetic field, Res.onances were 

observed at 8.2, 12.1, and 20.8 gauss, 
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Fig. 22. Results of Am 
241 

low-field search at 2.1 gauss. 
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With the aid of the IBM-653 computer routines discussed in 

section·IIC, the data was fitted to the transition (6, -2 <~?6, -3). 

Fairly satisfactory agreement between experiment and theory was 

obtained from the values a= 7 Me, b/a = 0, and g
3 

=- 1.9. These 

values were then used to predict transition frequencies at higher values 

of the field. Resonances were found successively at 26.5, and 36.2 gauss, 

but in each case the resonant frequency differed from the predicted 

frequency by much more than the uncertainties in a, b, and g
3 

could account for. 

Because the hfs constants are small, the high-field solution 

to the Hamiltonian is a good approximation to use at the last value 

of the magnetic field. The eigenvalue of the Hamiltonian in a high­

field or m
1
m

3 
representation is given by Eqs. (II7) plus (II21). 

Omitting higher-order interactions thank = 2 gives 

[3mJ 
2

::J(J-i-t). 3mi 
2:i(;+i)] 

W = g3 f.L0H m 3 +gif.LOH mi+am3 m 1-rb - . (IV2) 
z z 4I(2I-l) J (2J -1) 

The frequency of a ~F=O transition at high fields becomes 

(IV3) 

Instead of using the approximate values of a, b, and g to predict 
J 

the frequencies at higher values of the field, we used an extrapolation 

method based on Eq. (IV -3). In this way, resonances were successively 

observed at 46.1, 71.6, 93.0, 121.7, 250A, and 540.9 gauss. From 

the last few resonances, we could obtain the value of g
3

, because we 

have 

(IV ~4) 

~here the subscripts .1 and 2 refer to a particular high-field measure­

ment. Using this measured value of g
3

, we attempted to determine 

a and b from the observed data; but no values of a and b could be 

found that would fit the data to the transition (6, -2 (-'>6, -3). 



We decided to make a search at the highest field reached, 

namely 540.9 gauss, in order to find the other flop-in transitions. 

Their measurement would yield a direct determination of a, which 

is independent of the value of gJ.. The theoretical frequencies of these 

transitions are 

and 

v 6 (-5/2, 1/2<'-} -5/2, -1/2) = (gJf.lOHz 

v 5 (-3/2, 1/2<:--)-3/2, -1/2) = {gJf.lOHz 

5a/2)/h 

3a/2)/h 

(IV- 5) 

The m
1
mJ quantum numbers are written in the parentheses. The 

subscript is the value of F that this transition is associated with at 

low field. Since the quadrupole interaction depends quadratically on 

m
1 

and mJ' b does not enter into the high~field expression for v. 

The frequency separation between any two adjacent resonances 

is exactly equal to a/h Meo One resonance, presumably due to the 

transition v
6

, had been observed at 540.9 gauss. The other three 

.6.F=O transitions must occur at the frequencies v 6 +a/h, v 
6 

+2a/h, and 

v 6+3a/h. Starting from the observed resonance frequency, exposures 

were taken at 1-Mc intervals. The line width at this field was also 

1 .Me, thus permitting the use of such large frequency increments. 

Four resonances were observed, two at higher frequencies 

. than the first observed resonance, and two at lower frequencies. The 

five resonances were spaced at regular intervals of approximately 

.17 Me each (Fig, 24). These results were very significant, because 

they enabled us to correctly, interpret the previous data, At 20.8 

gauss, we had observed the transition v 
4 

rather than v
6

, without 
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realizing it, All subsequently observed high-field resonances were 

due to this same transition, v 
4

. The resonance at 8. 2 gauss was 

also incorrectly identified .. It is the transition v 5 ~ The fifth 

resonance at 540.9 gauss is the first of the two .6.F= 1, .6.m= 1 

transitions: 

v(3/2, 1/2(-)3/2, -1/2) = (g
3 

p.
0

Hz + 3a/2)/h 

and (IV -6) 

v(5/2, 1/21::::--)5/2, -1/2) = (gJ !J. 0Hz + 5a/2)/h . 

Having correctly identified the resonances, we obtained close agree­

ment between experimental frequencies, and theoretical frequencies 

calculated from gJ = - 1. 937, a = 17 Me, and b/a = - 7. These values 

of a and b imply that the frequencies associated with the F=6 and 

F=S flop-in transitions cross at a field of about 5 gauss. This fact 

helps to explain why we inadvertently jumped from one transition to 

another when the field was increased . 

. The zero~field separations between the hfs levels were 

calculated from the values of a and b that fitted the data best. A 

search was then made at 1.4 gauss to find the direct transitions 

allowed by the selection rules .6.F=±l, .6.m=O, ±1. Four different 

.6.m=r0 or sigma transitions were induced (see Fig. 25). 

All observed data is presented in Table X. Values of a, b, and 

g J were determined with the IBM-704 routine previously described. 

The results for g
1

) 0 are: 

a = ± 17 .144(8) Me 

b = + 1 2 3. 8 2 ( 1 0) Me 

g.JZ=- 1.9369(3) 

X = 2.9. 

Figure 26 shows the behavior of the hfs levels as a function of b/ a, 

The results of negative g
1 

were identical for this number of significant 

digits, 
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Data No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

f 

H 
(gauss) 

8.2.48{40) 

12.150(38) 

20. 754(35) 

20. 754(35) 

26.517(44) 

36.198(41) 

46.077(47) 

71.628(39) 

93.043(40) 

121.670(42) 

169.074(59) 

250.442(81) 

540.90(15) 

540.90(15) 

540.90 (15) 

540.90(15) 

540.90{15) 

Table X 

Am
241 

Data 

v 
obs. 

(Me) 

14.08{07) 

21.95(10) .. 

42.35(25) 

39.86{10) 

56.30(20) 

~.82.40(26) 

110.45(25) 

181.85(30) 

240.80(40) 

319.10(50) 

448.50(60) 

669.60(60) 

1425.0 (8) 

1441.2 (1.0) 

1457.5 (1.0) 

1474.5 (6) 

1492.7 (6) 

v - v 
obs. calc. 

(Me) 

-0.02 

-0.01 

0.15 

0.03 

-0.18 

-o.e4 

0.05 

-0.02 

-0.13 

-0.19 

0.06 

0.09 

0.20 

o·.41 

0.06 

-0.14 

0.35 

Transition 

b 

c 

a 

c a 
-.:9· 

a w· 
11--· 
; 

a 

a 

·::a 

a 

a 

a 

a 

c 

b 

a 

( 3 , 1 ~-~ 3 , O) 

( 3, 2&----)2, 1) 

i ... 
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Data No. 

18 1.418(28) 

19 1.418(28) 

20 1.418(28) 

21 1.418(28) 

a(4, 0<-'>4, -1) 

b (5, 1<;-)5, ~'2) 

c(6, -2(-).6, -3) 

Table X (continued) 

Am
241 

Data 

90.10(10) -0.01 .(3' 1(-;> 2,1) 

96.84(12) 0.00 ( 4, 0<.---? 3,0) 

81.45(10) 0.01 : ( 5' -k.-.> 4' - 1) 

39. 75(05) 0.00 ( 6' - 2(~' - 2) 
l 

-.!;>. 
,:1:>.. 
I 
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The uncertainties in the individual frequency measurements 

which in turn determine X 
2 

as well as the uncertainties in a, b, and 

gJ' are chosen arbitrarily as one-half of the full width at half­

maximum. There are 22 sets of data fitted to three parameters, to 

give 19 degrees of freedom. The value of x 2 
which corresponds to 

P=O. 3 is 21.7. 
28 

Thus the calculated uncertainties are probably 

about (21. 7/2. 9) l/
2 

= 2. 7 times as small as the rms uncertainties. 

This factor allows for unknown systematic errors, To account for 

field-dependent systematic errors affecting g
3

, we.:..ta.ke one part per 

2000 as the uncertainty. In the next section, an independent measure­

ment of the g
3 

of Am
242 

is made, The weighted mean is 

gJ =- 1.9371(10). 

In principle, there can be higher-order interaction constants 

than dipole and quadrupole. The limitation is that the highest-order 

pole must be equal to 2I or 2J, whichever is smaller. To within the 

accuracy of the experiment, no higher-order multipoles were ob­

served. 

D. Electronic Structure 

1. Electronic Coupling 

The observed value of gJ =- 1.9371(10) is significantly 

different from the L-S coupled value of -2.062. The major contribution 

to this deviation comes from the breakdown of L-S coupling. The 

possible terms of an f
7 

configuration have been given by Condon and 
31 

Shortley: 

6
PDFGHI 

4
SPDFGHIKLMN 

226575533 

2
SPDFGHIKLMNOQ 

257 \/ 997542 
10 

.• 



The number beneath the term designation shows the number of times 

.this term occurs in the configuration. The fine-structure interaction 

couples states, that differ by ~L=O±l, ~S=O±l, and ~J=.O. Thus 
6 

only the P term is mixe.d into the ground state by the second-order 

per~urbation. However, a ground state ~hat is a linear combination 

of S and 
6

P has no matrix element of the quadrupole interaction. 

Thus it is necessary to include the 
6n term, which is admixed in 

the next higher order of the perturbation. The ground-state wave 

function in this approximation is written 

6 6 
p7 /2mJ) + f3 . 0 7 /2mJ)' 

(IV- 7) 
where 

8 I -r- 16 I 6 a.=- ( 87/2 ~ a5f \' si P7/2) E( P) 

6 1-16 I 6 13 = - ( P7 /2 a5f i · si 0 7 /2) E( D) 
i 

and 

(IV -8b 

6 6 6 6 
Here E( P) and E( D) are the energies of the P and · D terms 

with respect to the 
8s ground term and a

5
f is the find structure of 

a Sf electron. The magnetic quantum numbers in Eq. (IV -8) are omitted 

since the matrix elements are independent of them. Using the results 

derived in the next section, a. and f3 may pe written 

1/2 6 a. = (14) a
5
/E( P), and 

The value of a. which yields the measured gJ value is 

a.obs. = 0.46(1) . 

An approximate value of a
5

f deduced from optical data in 

Am(III) is 2700 em 
01

. 50 The separation of the 
6

P and 
8s terms of 

Cm+
3 

in a crystalline field of LaC1
3 

was found to be 25,000 cm-
1

. 
51 

Using these values gives 

I.a. 1 1 = 0.40 . ca c. 
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The agreement betw~en the observed and calculated values of a is 

close enough to show that the observed g J can be interpreted on 

the basis of the breakdown of L-S coupling. Because a is so large, 

the perturbation treatment is probably inaccurate. Therefore the 

eigenvectors were calculated more accurately with the aid of the 

IBM-7a4 eigenvalue routine described in section IIC. We will discuss 

the results of this calculation in the next section, after first deriving 

the appropriate matrix elements of the electrostatic and spin-orbit 

energy. 

2. Electrostatic and Spin-Orbit Energy 

The electrostatic energy is calculated by means of the diagonal 

sum rule. This says that the sum of the roots of the secular equation 

is equal to the sum of the diagonal matrix elements occurring in it. 

Following the method of Condon and Shortley, 
31 

we classify the zero­

order states of f
7 

according to m
5 

and mL. Only m
5

=5/2 needs 

to be listed, because we are interested only in the sextet terms: 

5/2 6 

5/2 ~ 5 

A (3+2+l+a+- 1+ -2+3-) [6IJ 

B (3+2+l+a+- 1+ -2+2-) I6I l 

c (3+2+l+a+- 1+ -3+3-) L6Hj 

5/2 4 -l D (3+2+l+a+- 1+ -2+a-) 6I 

E (3+2+l+a+- 1+ -3+2-) 6H 

F (3+2+l+a+- 2+ -3+3-) L6 G_~ 
5/2 3 G (3+2+l+a+- 1 + - 2+a,-> 

-6 -, 
I 

H (3+2+1 +a+ - 1 + -3+1-) 6H 

I (3+2+1 +a+- 2+ -3+2-) 6G 

J (3+2+1+ -1+ -2+ -3+3-) 16F 
L 

5/2 2 K (3+2+l+a+ -1+ -2+ -1-) r6I···; 

L (3+2+1+a+ -1+ -3+ a-) . 6Hl 

M (3 +2+1 +a} ,. 2-1:. -_ 3-1:. {-r- 6 . 
G 

' 
N (3+2+1+ -1+ -2+ -3+2-) 6FI 
0 (3+2+a+ -1+ -2+ -3+3-) 6nj 

.. 
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ms mL 

5/2 1 p (3+2+l+o+ -1+ -2+ -2-) 61 

Q ( 3+ z+ 1 + o + -1 + -3 + -1-) 6H 

R ( 3 + 2 + 1 + o + - 2+ - 3 + o-) 6G 

s (3 + 2 + 1 + - 1 + - 2+ c- 2 + 3-) 6F 

T (3+2+o+ -1+ -2+ -3+2-) 6D 

u (3+l+o+ -1+ -2+ -3+3-) 6 p 

The terms that have components in each partition are placed 

in_the brackets. Writing 
6

1 for the first-order energy of the term 
6

1, 

and A for the diagonal matrix element of A, etc., (it will be clear from 

the context whether A is a wave function or a matrix element) we 

obtain: 

61 =A 

6
1+

6
H=B+C 

6 
H=B+C.-A 

etc. 

The diagonal matrix elements A, B, 0 • 0 0 U can be written as a 

sum over Slater inter grals, by using 7
6 

(7) and Table 2
6 

of Condon 
31 

and Shortley. The term energies become: 

8 - 0 s -
6

p = 15F 2 + 165F 
4 

+ 3003F
6 

6 n= 41F2 + 297F4 + 1001F
6 

6 F = 70F2 + 231F4 + 2002F6 
6

G = 90F2 + 101F4 + 1638F6 
6

H = 85F2 + 249F4 + 1729F6 
61 = 35F2 + 189F4 + 1715F6 , (IV -9) 



2 4 6 
where F 2 = F /225, F

4 
= F /1089, F

6 
= F /7361.64, and 

Fk = Fk(Sf, Sf). The ratio of the Fk 1 s is fairly insensitive to the 

form of the potentiaL Using hydro genic wave functions, Elliott et al. 
52 

calculated F 4/F 2 = 0.142 and F 
6
/F 2 = 0.0161. We have also 

calculated these ratios from the uranium wave functions of Cohen 

(see Table VI), and find F 4/F
2 

= 0.1586 and:_F
6
/F2 = 0.02037. 

These ratios predict the following energies for the terms of interest: 

(1) (2) 

8s = 0 0 

6 = p 86.8 102.3 

6D = 99.3 108.5 ' (IV-10) 

where columns (1) and (2) give the electrostatic energy in units of 

F 2 , jor the -~ .L F k ratios determined from hydro genic and uranium 

wave functions, respectively. 

To find the spin-orbit-energy matrix elements, we first expand 

the SLJmJ wave function into the sum of antisymmetric zero-order 

states, The 
8

s 7 /Z wave function is obviously 

The wave functions of the other two terms are obtained by the 

procedure described in Condon and Shortley. 
31 

The lowering operator 

L = Lx - iLY is applied to A = I(}L rriL =6 ). , 'This yields _;; 

6
I mL =5). Then I6H mL=5) is determined from the fact that it is 

orthogonal to j6I mL=S). This process is continued until all of the 

I SLm
5
mL) wave functions of S=S/2, m

5
=5/2 have been obtained. 

The SLJmJ states are then determined either by application of the 

operator J = J - iJ to the state of maximum mJ, or else by use 
X y 

of Wigner.,coefficients to vector~add the SLmSmL wave functions. In 

this way, the 
6

P 7 /Z and 
6n 7 /Z wave functions were found to be 

.• 
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6p7 /2 7 /2) o (3/28) l/2r- (5/3) 1/20+ (2) I/2R- (2)1/2 

S + (5/3)
1

/
2 

T - u] (IV -12) 

and . . t +(2/5) 
1

/
2s 

6o7 / 2 7 /2) o (5/6)(1/21 )
1

/
2
[<5) l/

2 
P-(3) I/

2
Q+(2/5) 1/

2
R- (3) 1/ 2T+(5) 1/

2u] 
- (1/3)(2/21) l/

2 
(K

3
+K

2
+K

1 
+K

0 
+K _ 

2
) 

1/2 
-(2) (L3+L2+L

1
+L_

1
+L_ 3) 

1/2 
+2(3/5) (M3 +M2+M0 +M_ 2 +M= 3 ) 

1/2 
-(2) (N3 +N

1
+N

1
+N_ 1+N_ 2+N_ 3 ) 

(IV -13) 

where K 3 is that wave function which results when m 1 =?+ in K 

is replaced by ~m1 =3-. The other wave functions written with a sub­

. script are defined similarly. 

The matrix elements of the spin-orbit operator in the si. msmi. 

scheme are 

--. -1 . s s£ 1 m 1 m 1 ) = O(£m·£ 1 m 1 )m m + 1/2 O(m I m ±1) 
s i. ' i. s s ' s 

X F~,-m+I/2)(-Hm+l/2~ l/2 

(IV -14) 

where m = m + m n• and m 1 =m 1 + rn. 1 • The spin-orbit matrix s /X. s .lh 

elements in the SLJIT1J scheme are found by repeated application of 

formula (IV12) to the products occuring in the expansion of 

(SLJmJ !Aj S 1 L 1 JmJ}, where A is T a 5 f 7i.-;i. The results are: 



. 8 
( 8 7/2 H 6 - 1/2 

p7 /2} - (14) aS£ 

6 
( p7/2 'A 

6 1/2 
D 7/ 2) = (9/10) (S) aS£ 

6 
( p7/2 I AI 6 

n7 /2) = o 

6 
( D7/2 IAI 6 

D7/2)=0. (IV-lS) 

Adding the electrostatic energies in column (2) of (IV -10) to the 

spin-orbit energy yields the following matrix for the total energy W; 

8 s 6 P ·---~-P- ·-- ----- --·· 
8s ~--o -----(;~) 1/ 2x 

6

6

p 1

1 

(14) l/2x /102.3 l/Z (9/10)(5) 
1

/
2

x I 
D I (9 lO)(S) X 108.S I 

w = (IV -16) 

where x = aS£/F 
2

. The eigenvalues of this matrix were computed by 

the IBM-704 computer for a range of values of x. The matrix that 

transformed W into diagonal form was then applied .to the g matrix, 
88 6P 6n 

8 s 2.0023 I 

6 P II l. 71S9 I 
I 

6D / l.S886 J 

~--------·----·-··---------L 

(IV -17) 

to yield gJ as a function of x. · The value of x corresponding to 

gJ = - 1.9371(10) is x = 17. 7(2). The eigenvalues are 
8

S=O, 
6

P=l23F2 , and 
6

D=203F2 . The eigenvector of the ground state is 

7 7 
= 0. 882 s7 2.) - 0.4S7 p7 2.) + 0.114 D7 

7 
) . -) -

2 2 2 2 - 2 
2 2 2 

(IV-18) 

.. 

,.. 
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-1 
Taking the optically observed a

5
f=2700 em together with the 

-1 6 -1 
measured x=l7. 7 yields F 2=153 em and . W( P) = 1880 em . This 

is in reasonable agreement with the. 25,000 em -l separation between 

the 8s and 
6P terms of:Cm +

3 
in a crystalline field of LaC1

3
, 

51 

because the crystalline field increases the interaction energy. 

3. Hyperfine Structure 

8 . 
A pure S ground term cannot give rise to any hfs interaction. 

Therefore we look first to the breakdown of L-S coupling as an ex­

planation .of the observed hfs. The hfs interaction constants 

will be calculated for the electronic grom~d state [Eq. (IV -18j. Since 

fJ.I and Q have been measured, this will give information relating to 

the electronic system. 

The dipole constant, a, is equal to 

a = - fJ.I ( J J } Hz } JJ) I lJ, (IV -19) 

where . Hz is the z component of th~ magnetic field, at the nucleus 

due to all of the electrons and is given classically by 

H 
z = 

~ --
[

s r t 3 (r · s) z J 
2 ~ I 3 J. - z f-lo ( 1 r i ) z -=-----;2::----- i . 

i r 
(IV- 20) 

11 
The diagonal matrix elements in the zero-order scheme are 

~ 2ms[3m1 
2

-1 (i+l)J~· 
mi. - • 

. (21-1) (21+3) i .1 

(I"V-21) 
We will also need to evaluate matrix elements. that are not diagonal in m 1 -and m , By the Wigner-Eckarttheorem, the matrix elements of r are 

s ··. 
. -proportional to those of J.. Therefore we have 1. 1 

(J..smnms j HI ism 1 m')= (ism m I~~ c J. tc 2 1~ (J.. (1•s)t(1•-;)£ ) 
x s J. s J. sl . ~ 1 z L2 z . z 

1 l - s J. 2] "\ ·l J. s m n ' m ' ) • Z J1 · X S 
(IV-22) 
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The constants c
1 

and c
2 

can be determined by setting the diagonal 

matrix element in (IV- 2 .2). equal to (IV- 21). This yields 

3 
c

1 
=- 2fJ.

0
(1/r ) 

and 
3 

c 2 = 4 f.J-
0

(1/r )/(21- 1) (21+3). (IV-23) 

When these values of c 
1 

and c 
2 

are substituted into Eq. (IV- 22), 

the matrix elements of the magnetic field can be calculated in the , 

£sm.£ ms scheme. Application of the field operator to the wave 

functions (IV-12) and (Iv-!3) yields the following nonvanishing matrix 

elements: 

(IV-24) 

(IV-25) 

The quadrupole interaction constant, b, can be written 

2 
1 

2 3 r b = - e Q(J J E (3 cos 8 - 1 )./r. JJ) . 
. 1 1 

(IV-26) 
1 

The matrix element of 3 cos 
2 e~ 1 in the zero-order scheme is 

2 
3m£ ·-£(£+1) 

2o(m m ,m 1 m 1 )------

£. s £ s ( 2£ ~ 1) ( u + 3) 

(IV-27) 
The only nonvanishing matrix element of this operator in the j J J) 

ground state is 

7 6 r 2 t 6 7 ) = 2 (5 ) 112115 . ( ~ P 7/ 2 3 cos EL 1 D 7 / 2 
2 

(IV-28) 

For the ground- state wave function (IV 18), the hfs constants 

defined by Eq. (IV19) and (IV26) become 
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a=- (f.J.If!O/IJ) 0/r3) ~ 2 7 6 IHJ 6 7 
) 

5f 
(-0.457) (- p7 /2 p7/2 

L . 2 2 

+2(0.882)(0.114) ( 7._ ss7/2~H~ 6 !.._~ (IV-29) 0
7/2 2 2 ,.j 

a,nd 

6D 7._) • 
7/2 2 

(IV- 30) 

Evaluation of these expres;:;ions, using the optically measured nuclear 

moments f!I=l.4 nm and Q=4. 9 barns, and the values of (l/r
3

) Sf 

(l/r
3
)5f = 3.99 ao -

3 
and II (l/r

3
) II Sf= 3.89 ao -

3
' yields 

and 

b=+l37 Me. 

These numbers agree in magnitude very well with the measured values 

a=+"l7.144(8) Me 

and 

bd:l23, 82(1 0), Me, 

but ther.e is a disagreement in the sign of one of the hfs constants. 

This is similar to the situation in other atoms with half-filled shells, 
5 7 

namely :oMn (3d) and Eu (4f) . Heine has calculated the effect of 

the exchange interaction between the half-filled shell and the core 11sn 

electrons in Mn ++ and was able to obtain agreement with the observed 

hfs. 
53 

In Eu, the sign and magnitude of the measured a and b 

disagree with the calculated values. 
54 

However, the measured 

quadrupole constant in Eu is only of the order of 1 Me. This could 

be due to the relativistic breakdown of L-S coupling, since only a 

small perturbation is needed to effect a sign change. In Am, it is 

unlikely that relativistic effects can produce the observed magnitude of 

b Th f b 1. h h . f b . Am 241 . 't' 0 . ere ore, we e 1eve t at t e s1gn o 1n 1s pos1 1ve. n 

the other hand, the dipole interaction, which is very sensitive to a 

small admixture of an excited s state (because of the hfs of an s 

electron is usually quite large) is probably negative. 
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V. AMERICIUM-242 

A. Introduction 

P . 0 0 

• f 16 h Arn242 . b 1" d rev1ous to our 1nvest1gat1on o - r , 1t was e 1eve 

that this isotope was the metastable state of the two isomers of Arn
242 

(half lives of 16 hr and 152 yr). We measured the nuclear spin and 

obtained a value I= 1, which was not in agreement with the interpretation 

of the nuclear energy-level scheme., This result led members of 

the nuclear spectroscopy group at the Lawrence Radiation Laboratory 

to renew investigations of the i·someric pair, 
55 

They were able to 

p~rform an isomedc separation of 16-hr Am 
242

_from an old sample 

containing 152-yr -Am 
242 

by collecting recoils from the internal 

conversion of the isomeric transition, thus proving that the 16-hr 

activity is the ground state. Study o£ the conv.ersion-electron in­

tensities in Am 
242

m showed that· this isomer decays by an E4 

transition. 
56 

This result, coupled with the spin measurement, 
242m 

leads to a spin assignment of 5 for Am · . They also conclude from 
242 13- -transition prob~bilities that the 16~hr Am (henceforth caUed 

242 
Am ) belongs to a K=O rotational band. Our measurements of the 

nuclear magnetic-dipole and electric-quadrupole moments are in 

agreement with this supposition. 



B. Beam Production 

Arnericium-242 WiS produced by the reaction 

Am 241 (n, y}Arn 242 . 

The isotope is identified by observing its decay rate .(Fig. 27), and 

its y-pulse-height spectrum (Fig. 28). 

The problem of producing a beam of atoms had already been 

solved by the previous work on Am 
241 

It was necessary, however, 

to devise a safe means of packaging the americium, for the americium 

powder which is to be irradiated has a dangerous level of a. activity. 

Figure 29 is a picture of the container used to hold the americium. 

Approximately 5 mg of americium oxide is poured into an aluminum 

capsule with a screw-on cap. The capsule is sealed in a quartz tube, 

. which is placed in a larger aluminum capsule. The package is sent 

to the General Electric nuclear reactor at Vallecitos and placed in the 

core position, where it receives a flux of 9.5X 10
13 

neutrons/sec-cm
2 

for a duration of 16 hr. 

The beam is detected by counting the emitted beta particles in 

flow-proportional beta counters. Contamination of the sample due to 

the presence of Am 
241 

decay is not a problem. A typical neutron 

bombardment yields approximately 1000 times more americium-242 

activity than americium-241 activity, as calculated from the thermal­

neutron reaction-cross-section value of 620 barns for Arn
241

. 
57 
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I= I decoy 
T1 = 16.0 hr 
2 

Direct-beam decay 
T1 = 16.4 hr 
2 

~~---~~---~~---~---~~---~~---~~ 0 8 16 24 32 40 48 

Time (hr} 
MU-19065 

Fig. 27. Decay of full-beam and spin I=l-resonance ex­
posures in .Azn242. 
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MU-19617 

242 
Gamma pulse-height spectrum of 16-hr Am • 
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29. Neutron- bombardment container for production 
of Am 242 . Left to right: aluminum target cap~tlle, 
quartz tube, and aluminum container for the 
americium powder. 

ZN-2452 



C. Experimental Observations 

Magnetic transitions between states of the same total angular 

momentum, F w-e're:firstinduce_dirl'aniagrietic fi'eldof0.-7 gauss. Exposures 

to the beam were taken at discrete frequencies corresponding to 

values of the nuclear spin I from 0 to 5. The 

from Eq. (IV -1) for the state of maximum F, 

gJ=-1.9371(10) previously measured in Am
241 

frequency is calculated 

employing the value of 

bnly the value of the 

radio frequency that corresponds to a spin of 1 produced an increase 

in signal at the detector. To confirm the spin assignment and at 

the same time undertake to measure the hyperfine structure, we. ob­

served the same transition at a field of 2.8 gauss, This is the transition 

associated with the state F =l+J=l+7/2 = 9/2. Transitions be-
max. 

tween magnetic sublevels· in states F=7 /2, and F=5/2 were also 

found at the last value of the magnetic field. Figure 30 shows these 

three observed resonances. Even at this low value of the magnetic 

field, there is considerable quadratic shift, indicating a small hyper­

fine structure. The arrow labeled v,. is the. frequency calculated 
00 

from formula (IV -1). Frequency v b is calculated from the hfs a, 
constants that were determined at a later time and is included for 

comparison. Each of the three transitions were observed again at 

successively higher values of the field. The ratio of h to a that 

gave a best fit to the data was approximately 7. From the hfs level 

diagram in. Fig. 31, we see that this value of b/ a causes an inversion 

in the hfs level ordering. Figure 32 is a schematic of the hfs energy 

levels of Am 
242 

in a magnetic field when the level ordering is 9/2, 

5/2, and 7/2. The values of m associated with the flop-in transitions 

are different from what they would be if the level ordering were normal. 

There are 12 different flop-in transitions between the states 

F = 9/2 and. F = 7/2. A search was made for the line (9/2, ~ l/2L-) 

7/2, 1/2) at a field of 0.7 gauss. The resonance was observed and 

identified from its field dependence, by reobserving the same 
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16 hr- Am
242 

H = 2.82 gauss F=~ 
10 ~, 

E F=~ 7 

~ 0 8 2 F=2 
(I) Jr\ ..0 

!~\ -0 6 \, (I) 
~ 

"'0 ,f 4 j \~ - i \ c: 
(I) 
0 
~ 

2 -~ (I) 
CL ~ 

JICXl 
1
ra,b Zloo r Jl a,b 

i 
Jl b ll 0'l.t 

5.7 B .9 6.0 .I 7.0 .I .2 .3 .4 .5 .6 9.6 .7 .8 .9 10.0 

Frequency (Me/sec) 
MU-18790 

Fig. 30. Observed Am
242 

transitions .at 2.8 gauss. 



,.. 

.. 

-112-

w f 30 -a 

hfs I evels 9 
J-7 20 F=2 I=l - 2 F=~ 

2 
10 

-20 -10 10 

F= .1.. F:L 2 2 

-10 
9 

F=-
2 

-20 

Fig. 31. Hyperfine-structure energy levels of the 
system I = 1, J = 7/2, in the absence of an 
applied field. whfs/a ~ b/a • 

20 

..!L_ 
a 

MU-18793 
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M Mx MJ 16 hr.-Am242 
9/2 I 

7 712 0 /2. 
hfs schematic 

512 -I I:: I 
J ==1 

712 I 
51 512 0 2 3/2 -I 

512 I 
3/. 3/2 0 

F 

112 2 _, 9/ 
2 

3/2 I ,/ . 112 0 2 -112 -I 5/2 

-I I 
0 -/2 
I ~ 2 

_, 
3 0 - /'2 

I 
.::.... 

-I 5 
0 -/2 

C)) 

-312 !L -912 _, 
7 -712 0 - /2 -512 I 

Field 

Mti-18792 / 

Fig. 32. Schematic diagram of the hyperfine-structure 
levels of Arn242 in a magnetic field. 

" 
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transition between the levels F - 5/2, and F • 7/2. This fact serves 

to identify the observed resonance, since the transition is induced by 

a sigma hairpin. Figure 33 shows the observed direct transitions. 

The data was analyzed by means .ofthe IBM-704 hyperfine 

routine previously described. The results of analyzing the 22 observed 

resonances for gi positive are: 

a= ± 10.124(10) Me 

b = ± 69.639 (40) Me 

g.JZ = - 1.9385(8) 

X = 4,2, 

The results for gi taken negative were the same. One half of the 

full line width at half maximum was selected as the uncertainty in 

each resonance. The ,value of X 
2 

indicates that these unc'ertainties 

are about one-half of the rms uncertainties. The above value of 

gJ' when appropriately weighted and ave.raged with the value from the 
. 241 

Am measurements, yields gJ = ~ 1.9371{10). The. data was 

analysed again for a fixed value of gJ equal to the weighted mea-n 

. (Table XI). The calculated hfs . constants did not change. This is 

reasonable since a and b are determined primarily from the low­

field ~F= 1 transitions. 

For two isotopes of the same element, the electronic matrix 

element (J J J! Nk IJJ J) is the same .. Therefore by Eq. (II~6) and 

(II-14a, b) it is possible to relate the hfs .constants of two such 

isotopes by 

or a I/ f.L ~ a v I 1 /fl. 1 

I I 
and 

A2/Q = A2 I /Q 1 or b/Q = b' jQ:1 
0 

Application of these formulas to Am 
242 

yields 

and 

f.LI(Am242) = ± 10.124 

17.144 

242 69.639 
Q(Am ) = + 

1 
--- (1.4) = ± 0.33 nm 

(5/2) 

(4. 9) = + 2. 76 barns. 

(V -1) 

(V ~2) 
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Fig. 33. Observed ..6.F=l transitions of Am
242 

at 0. 7 
gauss. 
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D. Nuclear Structure 

Americium- 242, which has an odd-odd nucleus, can be interpreted 

in terms of the spheroidal-core model. The odd~proton orbital is 

most likely 5/2- ~231, which is the ground state of Am
241 

and 

Am
243

, 
44 

The odd-n;utron orbital is probably the-- 5/2+ G22J 

ground state of the isotones Pu
241 

and Cm
243 

(see Fig. 18). 

According to Nordheim 1 s coupling rules as modified by Gallagher 
58 

and Moszkowski, we have 

for 

and 

and 

K = n + n p n 

n = A ±1/2 and n = A ±1/2, 
p p n n 

K = n - n p n 

n =A ±1/2 
p . p 

n =A + 1/2 . n n 
(V -3) 

242 0 

Application of these rules to Am pred1cts that K=O is the ground 

state. This situation is similar to the one in Pa 
233

, where we have 

K=fl=l/2, but I=3/2. 

The observed signs and magnitudes of the nuclear moments 

lend support to the assignment K=O .. For a K=O rotational band, the 

nuclear angular momentum,. I, must be perpendicular to the sym­

metry axis; hence there can be no contribution to the nuclear dipole 

moment from the odd nucleons. The nuclear core has _a magnetic 
·r 

moment f.LI = gR I, where gR is the. g factor of the collective 

motion of the ~ore. For a uniformly charged nucleus_. gR=Z/A. 

These relations yield J.LI(calc.) = + 0. 39, in good -agreement "f~th the 

magnitude and sign of the observed value, if we assume f.LI > 0 and 

Q Lo. 



Table XI 

Americiurn-242 Data 

Data No. H v V -V Trans-
(gauss) 

obs. obs. calc. 
ition..:.' .. .:. _l . (Me) (Me) 

1 2.818(27) 5. 95(15) =0.0 18 a 

2 2.818(27) 7.35(15) 0.051 b 

3 2.818(27) 9.73(15) -0.064 c 

4 5. 566 (27) 11.95(10) 0.105 a 

5 5.566(27) 14. 70(10) -0.003 b 
I 

6 5.566(27) 19.25(8) 0.060 c ...... 
..... 

9~564(26) 20.60 (12) 0.067 
.....:! 

7 a I 

8 9.564(26) 25.90(10) 0.023 b 

9 9.564(26) 32.60(12) 0.143 c 

16 14.678(31) 31.96(12) -0.028 a 

11 - 14.678(31) 40.55(10) 0.024 b 

12 14.678(31) 480 91(12) 0.191 c 

13 21.931 (35) 49.20 (20) 0. 109 a 

14 21.931(35) 61.50 (20) 0.065 b 

15 21.931(35) ?0.35(20) 0.069 c 

16 46.077 (4 7) 112.20(30) 0.346 a 

17 46.077 (4 7) 130.00(40) 0.113 b 

·-



':}'~ ,, 

Table XI 

Americium- 242 Data 

Data No. 

. 18 46.077(47) . - 133. 95(30) 0.147 c 

19 540. 903(220) 1467 .80(80) 0.471 c 

20 0.711(028) 52.04(10) -0.004 d 

21 o.71H28) 111.125(75) 0.001 e 
i 

22 1.418.(28) 109.680(75) 0.000 -e -00 
l 

a(9/2, ~ 1/2 L--79/2, -3/2) • 

b(7/2, 3/2 t....---77 /2, 1/2) • 

c(5/2, 1/2!:-;>'5/2,~1/2) . 

d(5/2, 1/2 <,~)7/2, 1/2) . 

e(9/2, -1/2~7 /2, 1/2) . 
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The quadrupole measurement can also be analyzed in terms 

of the Bo~r-Mq~~e~~()n:Nilsson nuclear model. Nuclear systematics 

indicate that the intrinsic quadrupole moment. Q
0

, of nuclides in the 

transuranic region of the nuclear chart are positive. 
44 

The relation 

between the measured quadrupole moment,.· Q, and Q
0 

is 

3K
2 

- 1(1+1) 
Q = - Qo . 

(1+1) (21+3) 
(V -4) 

For 1=1. K=O, this gives Q = -Q0j5, or 0
0 

= 13,8 nm. Thus Q
0 

has the correct sign if it is assumed that J.LI is greater tl}an zero. 

The observed magnitude of Q is even more striking when we compare 
. 241 . 242 

the measured and theoretlcal values of Q(Arn )/Q(Arn · ). By 

Eq. (V -4), this ratio should be -25/14 = - 1. 786. The .measured value 

is -123.817/69,639 =- 1.778. 
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APPENDICES 

A. The Quadrupole Interaction Constant 

The quadrupole interaction constant, b, is defined by 

. 2 
b = - .e Q(JJ 

2 . . 
·~ (3cos e - 1). 

1 i 
JJ) . 

In pure L-S coupling among n equivalent electrons, the wave 

function is 

(A-1) 

(A- 2) 

2 
In Eq, (A-1) (3cos B - 1) behaves like a second-ranktensor~::. There-

for we can write: 

(JJ ~ (3cos
2e - 1).1 JJ) ·= 

. 1 
1 

2 

0 
L) 

= b
0

(n,.t, L) [3K(K+l)- 4L(L+l)J(J+liJ /(J+l)(2J+~) (A-3) 

Here b
0 

· is a constant that depends on the Hund 1 s -rule ground term of 

the configuration .tn, but does not depend on J, and K is defined in 

. (II-16e). c.To evaluate b
0

, we first evaluate the matrix element (A-3) 

for the state J = L+S. This gives 

(L+S, L+S f ( 3 cos 
2 

G • l)i 1 L+S, L+S) = 2b0 L(, ZL-1'). (A-4) 

By expanding the electronic wave function into the zero-order scheme, 
6 . . 

Hubbs et aL have shown for the Hund 1 s-rule term that 

(L+S, L+S I~ (3cos 2e - 1 ). I L+S, L+S) =- n(2.t -n+l )(U- 2n+l) 
i 1 (U-1)(21+3) 

(A-5) 
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Solving (A-4) and (A-5) for b
0

, combining (A-3) with (A-1), and then 

summing over all unfilled shells yields Eq. (II-16b). 

B. The Electrostatic Energy 

The form of the coefficients 1 and gk have been derived by 

Racah_
29 

for the interaction of two electrons. He finds 

and 

where 

= (-/1+
1

2+L (1 I' c (1) l ' k 
l 

k 
g = - ( l/2 + 2s(l)· s(2) (B- 2) 

(B- 3) 

The extension of these results t<:i' the configuration. 1
1

2
1

2 
is straight­

forward for the direct:.:.:: __ interaction. We use the fact that 

2 
W(1

1 
1

2
) = 2W(1

1
1

2
) , (B~4) 

and replace 

(- / ~ (1 1 II ck ( 1 > ll 1 1 > 

in Eq. (B-1) with 

(:.:)\Li'~_e 1· 2 L:
1 

C (1"' 1 2 L. i 11
) \ k._, 1- l"" 
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To obtain the exchange interaction, we follow the approach of 

Racah, and expand the exchange interaction into the sum of "direct 11 

interactions by means of the formula 

Thus bk may be written 

bk = (-) k+11+12 (1 
. 1 ; (- ) r ( Zr + 1 ) { : 

u (1) . ' u (2) 
r · r 

(B-6) 

) , (B- 7.) 

where u is a tensor of rank r · defined by its reduced matrix, 
r 

(n1 u 
r 

n 1 1' ) = 6 (n, n 1 ) 6 (1, 1 1 ) 0 (B-8) 

The matrix element of u (1) o u (2) for the configuration 
r r , 

2 
J. 

1 
1 

2 
is 

2 2 . 
(1 1 L 1,1 2 ,L ur(l) · ur(2) 1 1 L 1,1 2.L) 

= (- / z + L 1 +1; l+L, ZL 1 +l )( z L 1 ' + 1 ~I z { L l 2 

r L
1 

k 
Therefore b becomes 

bk = (-) k+L+1l+Ll+Lli (11 Ck 12)2 ~ (-)2r(2r+l) 
r 

L 

r 

LB 
1 

1 
1 

(B-9} 

l 
J 



The sum on the right side of Eq. (B-10) is equal to 

{

.fl 
(-/l+Ll+Ll'+L+k .fl 

Ll 

.f 1 Ll
1

} 
k .f . 0 

2 
.f2 L 

(B-11) 

The spin contribution to gk is 

This expression has a different form from the spin-dependent part of 

Eq. (III-5), but they are the same numerically. 

Equation (III-4) follows from Eqs. (B-•1), (B-4), (B-5), and 

(III-28). Equation (III-5) follows from (B-2), (B-4). (B-10), (B-11), 

(B-12), and (III-28). 
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C. Calculation of Radial Integrals 

The Slater integral Rk is defined by 

a a 
where a =:: n J.. , and the subscripts refer to electrons 1 and 2. 

Cohen has calculated the relativistic Hartree wave functions 

F and G of uranium and has tabulated them as a function of 

p = in(l000r/a
0

) in increments· ~p=l/4. In terms of these variables, 

the numerically calculated int!=!gral is 

27.434 ~ 
j 

J 

j 
~ 

i= 1 
r F. (a) F. (c)+G. (a)G; (c0 L 1 1 1 1 .!J 

X rF. (b)F. (d)+G. (h) G. (d)] em -l (C- 2) 
L J J J J 

The radial integrals Fk and Gk are defined in terms of Rk by 

k k . 
F (a, b) = R (ab, ab) 

and 

Gk(a, b) = Rk(ab, ba). 

Comparison of Eqs. (II-12a) and (II-17) shows that for the 

dipole interaction, we have 

:'/ /~/r3\ :: = 2 

'\ ·I ua
0

(i..+l) 
r FG dr. J -2 

Comparison of Eqs. (II-12b) and (II-18) shows that for the quadrupole 

interaction, we have 

! 3) j -3 2 2 \(/r .= r (F +G. )dr (C-5) 

The integrals are evaluated numerically, as .follows: 

(C-6) 

-3 
a

0 
(C-7) 
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