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Abstract 
In this paper, a two by three approach to modeling categorization is 
presented. Similarity representations based upon a geometric, an  
additive tree and an additive cluster model are combined with an 
exemplar model and a prototype model in a single approach. The 
six models are applied to the categorization of pictorial known and 
unknown fruits and vegetables (Smits et al., 2002). For novel 
stimuli, the geometric exemplar model and the cluster models gave 
the best account, indicating a strategy where people compare 
stimuli with stored members on more general continua or a limited 
set of features.  For well-known stimuli, the tree-based models 
gave the best account of the data, suggesting more elaborate 
taxonomic knowledge. More generally, the results show that 
different categorization models may perform better for different 
sets of stimuli, and that a systematic empirical comparison of such 
models is needed.  

Introduction 
A major contribution of categorization research over the last 
decades has been to establish the relation between similarity 
and categorization. Rosch and Mervis’ (1975) seminal paper 
on the graded structure of categories showed that categories 
are ill-defined, and that the extent to which an instance of a 
category is seen as a typical member is positively related to 
similarity towards the category in question and inversely 
related to similarity towards relevant contrast categories 
(e.g., Verbeemen et al., 2001). Given the importance of 
similarity in categorization, a formal model should take a 
clear stance on two issues: The nature of similarity 
computation and the relevant objects of comparison in this 
calculation.  First, the model must make assumptions about 
the nature of similarity, especially when the structure of the 
stimuli under investigation is not experimentally 
controllable. There are two main approaches to similarity, 
geometric and feature-based. The geometric approach (e.g., 
Carroll & Arabie, 1980; Shepard, 1964) represents stimuli 
in abstract space where similarity is inversely related to the 
distance between stimuli. In the feature-based approach (e.g. 
Shepard & Arabie, 1979; Tversky, 1977), similarity is 
considered a function of feature overlap, where 
commonalities increase and differences decrease overall 
similarity. Second, a model should specify the objects used 
in similarity calculation. In particular, information 

employed in making category decisions may be stored at the 
category level, or it may be stored at the level of individual 
instances of a category. The former approach is known as 
the prototype view (e.g., Hampton, 1979; Smith & Minda, 
1998), and the latter as the exemplar view (e.g., Medin & 
Schaffer, 1978; Nosofsky, 1986). In this paper, we argue for 
a systematic evaluation of these formal models in a two by 
three approach that compares prototype and exemplar 
models on the one hand, and geometric and feature 
representations on the other hand.  

The Generalized Context Model and a 
Geometric Prototype Model 

In the generalized context model (GCM; Nosofsky, 1984, 
1986, 1992), an exemplar model, categorization is assumed 
to be a function of similarity towards all relevant stored 
exemplars. In case (physical) dimensions are unavailable, 
the GCM fitting procedure starts with a multidimensional 
scaling procedure (MDS; Borg & Groenen, 1997) on 
proximity measures of all stimuli involved. The coordinates 
of these stimuli are then used as input for the model. In the 
case of two categories, A and B, the probability that stimulus 
x is classified in category A is given by: 
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where βΑ   lies between 0 and 1 and serves as a response 
bias parameter towards category A. The parameters ηXA and 
ηXB denote the similarity measures of stimulus x toward all 
stored exemplars of category A and B, respectively: 
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with yxk and  yjk as the coordinates of stimulus x and the j-th 
stored exemplar of category A (or B for ηXB, respectively) 
on dimension k. The weight of the k-th dimension is denoted 
by wk, with all weights restricted to sum to 1. The power 
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metric, determined by the value of r, is usually given a 
value of either 1 or 2, corresponding to city-block and 
Euclidean distance, respectively.  

A prototype model can be constructed with the GCM as a 
start (Nosofsky, 1986, 1987, 1992; Smits et al., 2002). With 
the prototype defined as the central tendency of a category 
(Malt & Johnson, 1992; Malt & Smith, 1984; Rosch & 
Mervis, 1975), the object created by taking, on each 
dimension, the average coordinate over all members of the 
category, is a good way to define a prototype. The similarity 
function changes to:  
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where ky.  denotes the mean value of all stored members of  
category A on dimension k. We will refer to (3) in 
combination with (1) as the Geometric Prototype Model 
(GPT). 
 A number of studies have already been conducted that 
compared prototype and exemplar models (e.g., Nosofsky, 
1992; Nosofsky & Zaki, 2002; Smith & Minda, 1998, 2000; 
Smits et al., 2002). In many, the GCM performed better than 
prototype models. In the next section we elaborate on the 
major alternative to geometric similarity models, the 
contrast model (Tversky, 1977). 

The Contrast Model and Categorization 
In the contrast model, similarity between two stimuli is 
defined as a function of the features that these stimuli 
possess: 

         
)()()(),( ABfBAfBAgbaSim −−−−= βαθ I                  (4) 

 
where )( BAg I  is a function of the features shared by 
objects a and b (the common features), and )( BAf −  and 

)( ABf −  are functions of the features that belong to one 
stimulus but not the other (the distinctive features). 
Different models have been proposed, mostly focused on 
either the common feature component or the distinctive 
feature components. 

Pruzansky, Tversky and Carroll (1982) reanalyzed 20 data 
sets taken from various published studies, divided into two 
groups depending on the hypothesized structure of the 
stimuli used: conceptual (e.g., vegetables) and perceptual 
(e.g., polygons) stimuli. For 10 out of 11 studies of 
conceptual stimuli, analyses of proximity data proved better 
when performed by ADDTREE, a distinctive features 
approach to similarity. Seven out of nine studies of 
perceptual stimuli showed a clear advantage for low-
dimensional MDS solutions.  

A number of studies have been conducted that compared 
geometric and featural exemplar models. Lee and Navarro  
(2001) used additive clustering to extract common features 

from similarity data and provided excellent accounts of an 
artificial learning experiment with ALCOVE (Kruschke, 
1992). Takane and Shibayama (1992) analyzed 
identification data of digits taken from Keren and Baggen 
(1981) and they too obtained excellent results for a featural 
version of the similarity-choice model (Luce, 1962) based 
on ADDTREE (Corter, 1982; Sattath & Tversky, 1977). 
Whereas clustering provides a very flexible way of 
representing similarity, allowing for overlapping clusters, 
additive trees are more restrictive in that they impose a 
hierarchy. There are, however, reasons to apply tree models, 
especially in the case of conceptual knowledge.  A tree 
model produces, in general, a higher amount of features for 
the total set than additive clustering. But the amount of 
shared features is lower in general, and most weight is given 
to idiosyncratic features. This may be appropriate for well-
known stimuli (McCrae & Cree, 2002), as people can be 
expected to have a fair amount of background knowledge 
about these stimuli, but it is unclear whether this is plausible 
in the case of novel stimuli.      

The implementation of the feature structure in the GCM 
yields the featural exemplar model with similarities as: 
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where yjk = 1 if stimulus j has feature k and yjk = 0 
otherwise. Therefore, the term yxk (1-yjk) is 1 if and only if 
the target stimulus x possesses the feature and the 
“reference” stimulus j does not, and vice versa for yjk (1-yxk). 
Each feature has a weight wk that corresponds to the length 
of the segments in the tree. We will refer to this model as 
GCM-F (generalized context model – featural).  

The featural prototype model will be illustrated using 
Figure 1, for an additive tree solution for birds and 
mammals. Distances between objects are defined by the 
sum of the horizontal segments on the shortest path between 
two stimuli (vertical segments are added for visual ease 
only). Each segment represents a feature that applies to all 
of its children with more general features closer to the left 
(“root”) and more specific features located towards the right 
(endpoints) of the tree. The model is again formally similar 
to the featural GCM with the prototype treated as a pseudo-
exemplar. The distance function equals: 
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where ypk is 1 if the prototype of A has the feature, and 0 
otherwise. The frequency weighting term corresponds to the 
relative frequency or proportion with which the feature  
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Figure 1: Example of a rooted additive tree. 
 
occurs within A, i.e. the proportion of stored members of 
category A that possess that particular feature. This 
corresponds to the idea that the impact of the features in the 
prototype, which is seen as a pseudo-exemplar, depends on 
the prevalence of those features in the category1. We will 
refer to this model as FPT (featural prototype model). 
 The application of the featural models to an additive 
clustering solution, i.e. a common features model, is 
straightforward, as the feature structure is defined. This is 
not the case for additive trees as they produce distinctive 
features: a feature that adds to the difference between two 
stimuli may belong to one or the other. This is not a 
problem for exemplar models as distances between objects 
remain unchanged, but it will be required for a prototype 
model. To define a particular structure, one needs to define 
a root. If the root in Figure 1 is placed anywhere else it 
would imply that some members of one category possess 
some of the most general features of the other category but 
share none of the features belonging to members of their 
proper category. This is implausible as it would imply that 
some stimuli are seen as members of a category on a purely 
idiosyncratic basis and not because they share any features 
with that category, even though these stimuli would possess 
the most general features of a related contrast category. 
Therefore, in the remainder of this article, we will assume 
that the root is placed on the segment or path that best 
approximates this linearly separable structure (Medin & 
                                                           
1 As the similarity structure was derived from the presented 
stimuli, we assume that a presented exemplar has all of its features 
to the full extent. Because a prototype is a construction after 
encountering exemplars, we assume that the activation and impact 
of its features is dependent on the frequency of those features in its 
own category (Kellogg, 1980). Because the prototype is treated as 
a pseudo-exemplar, we assume that its features can be no more 
than fully active (in the case of a feature that applies to all of its 
members), resulting in a factor of 1. We assumed that the features 
of stored exemplars in the exemplar model were not weighted 
dependant on the frequency of occurrence in other exemplars. This 
was confirmed post hoc: fit values were much worse when 
weighted for frequency.  
 

Schwanenflugel, 1981) for stored (well known) categories2. 
(This implies that one has to decide, a priori, which objects 
are considered to be stored members of a given category, as 
is the case for all other models. The choice of a root that 
best approximates separability serves to define the feature 
structure and not category membership for stored items, 
which is already determined.) 

Analysis of Smits et al.’s data 
Smits et al. (2002) analyzed a stimulus set consisting of 
pictures of 79 well-known items, retained after an exemplar 
generation task for the categories fruit and vegetables, and 
30 fruits or vegetables, mostly exotic, that were completely 
unknown to participants. Ten participants completed a 
feature applicability task for all stimuli, for the 17 most 
frequently generated features for fruit and vegetables, 
generated by a different group of thirty participants. (Taking 
the most frequently generated features ensures that the 
analysis is not clouded by potentially unreliable features that 
are important to only a few subjects.) A similarity matrix 
was then obtained by correlating the feature applicability 
vectors for all 109 stimuli, after summing over participants. 
A different group of thirty participants classified the well-
known stimuli as belonging to either fruit or vegetables. A 
group of twenty different participants did the same for the 
novel stimuli. Smits et al. then predicted category decisions 
based on the geometric versions of the GCM and the GPT 
and found a clear advantage of the GCM over the prototype 
model. Since their data from the categorization task had a 
fair amount of variance in the categorization proportions 
even for the well-known stimuli, it is possible to fit the 
respective models to old and novel stimuli separately. 
Therefore, we will analyze the data in a 2 × 3 × 2 
framework, where the last factor is added to assess the fit of 
the models for old and novel stimuli separately.  

Generating Similarity Representations 
In order to obtain dimensions, similarities between 109 old 
and novel fruits and vegetables were reanalyzed with 
ALSCAL (Takane, Young & De Leeuw, 1977), using the 
BIC criterion (Schwarz, 1978)3 to determine the optimal 
                                                           
2 ADDTREE starts by grouping together the closest pair of objects, 
and then creates a dummy object with the average of the distance 
of the original objects to all other objects. This procedure is 
repeated until there are three objects left, and the root is placed so 
as to minimize the variance to the last three objects. Here we 
minimize the variance on the path that provides the best linear 
separation for well-known stimuli in a similar way. 
3 BIC = -2 ln(L) + k ln(n), where L is the likelihood value (the 
probability of the data given a certain model), k is the number of 
free parameters, and n is the number of data points. Lower means 
better, and only the difference in free parameters needs to be taken 
into account. The first term decreases with increasing model fit, the 
second is a penalty term that increases with the number of free 
parameters and data size. As such, the measure is a trade-off 
between model fit and model complexity. The statistic is most 
appropriate when the information provided by the data is relatively 
large as compared to any prior information, as is the case in all the 
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dimensionality (Lee, 2001b). A three-dimensional solution 
was chosen that explains 96 percent of the variance. 
 Following the same procedure for additive clustering, an 
analysis with ADCLUSGROW (Lee, 2001a) resulted in 32 
clusters that explained 96 percent of the variance.  

Finally, the same similarity matrix was reanalyzed using 
ADDTREE/P (Corter, 1982). The explained variance was 
84 percent.  The algorithm does not readily lend itself to the 
BIC-guided approach and usually fits to maximum 
complexity, in this case with 209 arcs (features). To the 
extent that this may cause the fitting of error, it may cause a 
drawback for the categorization models as the error would 
be “plugged” into the model, clouding the explanatory 
power of the underlying feature structure. At first sight this, 
and the lower fit value, would indicate that these models are 
less appropriate. 

(It is important to note that these analyses were based on 
correlation patterns and not on the rough feature vectors, so 
the similarity algorithms, especially in the featural 
approach, are in no way restricted to have as much or less 
features than the original feature vectors.) 

Fitting the Similarity Representations to the 
Categorization Models 
The geometric models were fitted with the Euclidean 
distance metric (r = 2), as this resulted in clearly better fit 
values. The GCM and GPT were fitted as discussed 
previously with four free parameters: the bias parameter β, 
the sensitivity parameter c, and two dimension weights, as 
weights are restricted to add to 1. Feature weights for the 
tree- and cluster-based models were taken from the original 
solutions, however, to keep the number of parameters 
feasible for estimation, hence there are two free parameters, 
β and c. Stored members are the same in all models and are 
based on the earlier exemplar generation task. (Note that the 
tree-based models were based on the original ADDTREE 
solution after placing the root so as to provide the best linear 
separation, for known stimuli, between fruit and vegetables. 
Compared to the actual generation task for well-known 
stimuli, only one item, rhubarb, was generated as a fruit but 
closer to vegetables according to the ADDTREE solution.4)  

Results and Discussion All models were fitted by 
maximizing the binomial likelihood. Correlations between 
predicted and observed category decisions ranged from .85 
to .93 with the best performing models ≥  .92, indicating a 
fair but not perfect amount of explained variance. The 
models were evaluated using BIC. Results are summarized 
in Table 1. 
 Analyses of the 30 novel stimuli separately are presented 
in the first panel of Table 1. The lowest (best) BIC value 
was obtained for the GCM, but the difference with the 

                                                                                                  
analyses presented here. It is also fit to compare nonnested models. 
(For an extensive discussion, see Kass & Raftery, 1995.)  
4 In the actual classification task (not the generation task), the 
proportion of classifications for rhubarb as a fruit was only .33. 

cluster-based exemplar and prototype models is small. All 
ADDTREE-based models performed clearly worse. The  
current results do not clearly favor exemplar or prototype 
models for novel stimuli, but it appears that the geometric 
approach to prototypes provides less explanatory power as 
compared to the clustering approach. 
 
Table 1: -ln(L)5 and BIC (only the difference in parameters 

taken into account) for the category fruit for all models.  
 
          MDS ADCLUSGROW ADDTREE/P          

  GCM GPT GCM-F FPT GCM-F FPT 
1.New             
-ln(L) 73.95 83.27 81.38 82.12 90.83 93.01 
BIC 160.69 179.33 162.76 164.24 181.66 186.02 
2.Well-             
known             
-ln(L) 351.75 405.29 364.87 388.51 334.75 330.18 
BIC 719.04 826.12 729.74 777.02 669.50 660.36 
  
 Analyses of the well-known stimuli resulted in a very 
different pattern. BIC values for the analyses of the 79 well-
known stimuli separately are presented in the second panel 
of Table 1. The BIC values for the geometric and the 
cluster-based models were clearly higher (worse) than for 
the tree models. Clearly, the data from the well-known 
subset is best accounted for by the tree-based models that 
assume more elaborate taxonomic knowledge. The 
difference between the exemplar and prototype model is 
rather small and should be interpreted with caution. This 
result appears to contradict the earlier fit values where the 
MDS and additive clustering solutions provided a 
substantially better fit to the similarity data. In fact, a better 
fit to similarity data need not imply a better fit of the 
categorization model: those aspects of stimuli that are 
activated in a similarity task may very well be different 
from what is activated in a categorization task, especially 
after a concept has become well-elaborated. In other words, 
the less flexible and hierarchic structure of trees may not 
have captured all aspects of similarity, but the aspects it did 
capture may be more relevant for categorization of well-
known concepts. Indeed, every aspect of similarity that is 
not used in categorization can be considered error in the 
model. 
 In fact, the most interesting pattern that emerges from 
these data is the fact that categorization of novel stimuli is 
best explained by those models that are based on the flexible 
representations that best explain similarity. These models 
have either a limited number of dimensions or a limited 
number of features, with little idiosyncratic features in the 
                                                           
5 This value is the most “democratic” measure as it only 
incorporates model fit, (incorrectly) disregarding the penalty term 
for free parameters. The measure is equal to the sum of minus the 
log likelihoods of the individual data points and is therefore 
sensitive to the size of the data set; hence differences in fit between 
the two datasets are not directly interpretable (the same is true for 
the BIC measure).  
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latter case. Categorization of well-known stimuli, on the 
other hand, is best explained by the models that use a 
representation that is less close to the similarity data but that 
impose a more elaborate taxonomy and more idiosyncratic 
features. 
 An interesting interpretative property of additive trees in 
this respect is the fact that, at each node of the tree, a feature 
that applies to all of its children is linked to a limited 
number of alternatives. Second, branches in the tree tend to 
have a higher weight as one goes down in the tree. This 
implies that the number and weight of commonalities 
decreases with the number of nodes between stimuli. It also 
means that those features that add most weight to the 
difference are less likely to be related as the number of 
nodes increases and vice versa. A similar argument was 
made by Markman & Gentner (1993) who presented stimuli 
with different ontological distances and found a similar 
pattern when subjects listed commonalities and alignable 
and nonalignable differences. A possible explanation for the 
good results of tree-based models could be that, as a concept 
becomes more elaborated, people tend to gravitate to an 
alignable structure that might dominate other, presumably 
less alignable, aspects of similarity.  

Conclusion 
The goal of the present paper was two-fold. First we 
presented a general framework, in which different models 
(i.e., exemplar and prototype models, embedded in either 
dimensional or featural similarity representations) could be 
systematically formulated, compared and tested. Given the 
framework, one can investigate precisely in what situations 
which model aspects perform best. Second, the framework 
was applied to categorization data of well-known and novel 
stimuli in the context of familiar natural language concepts. 
The results indicate that, depending on the amount of 
knowledge and mastery of the stimuli, different 
representational structures and different decision processes 
may operate. 
 One may wonder how these results relate to the findings 
from the category learning literature (e.g., Nosofsky, 1992; 
Smith & Minda, 2000; Stanton, Nosofsky & Zaki, 2002). In 
most of these studies, exemplar models embedded in 
multidimensional representations have been shown to 
account very well for the categorization data. However, in 
these studies, artificial categories are used almost 
invariably, with stimuli that vary along a limited number of 
salient dimensions. Formal models, such as the ones 
described in our paper, have seldom been applied to natural 
language concepts, which are far more complex than the 
stimuli used in the artificial category literature, and of which 
our participants arguably have a much richer and more 
elaborate knowledge than even the best trained participants 
have of artificial stimuli. (For other attempts to apply formal 
models to natural language concepts, see Bailey & Hahn, 
2001; Smits et al., 2002; Storms, De Boeck, & Ruts, 2000, 
2001; Verbeemen et al., 2001.) However, in spite of 
participants’ extensive knowledge of such concepts, 

determining the relevant underlying dimensions or features 
for categorization with natural language concepts is perhaps 
the most crucial problem in modeling natural language 
categories (see, e.g., Murphy & Medin, 1985). The two by 
three framework that was presented here may serve as a 
valuable tool in this endeavor.  
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