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RESEARCH

Patterns of spatial genetic structures 
in Aedes albopictus (Diptera: Culicidae) 
populations in China
Yong Wei1, Jiatian Wang1, Zhangyao Song1, Yulan He1, Zihao Zheng1, Peiyang Fan1, Dizi Yang1, Guofa Zhou2, 
Daibin Zhong2 and Xueli Zheng1*

Abstract 

Background:  The Asian tiger mosquito, Aedes albopictus, is one of the 100 worst invasive species in the world and 
the vector for several arboviruses including dengue, Zika and chikungunya viruses. Understanding the population 
spatial genetic structure, migration, and gene flow of vector species is critical to effectively preventing and controlling 
vector-borne diseases. Little is known about the population structure and genetic differentiation of native Ae. albopic-
tus in China. The aim of this study was to examine the patterns of the spatial genetic structures of native Ae. albopictus 
populations, and their relationship to dengue incidence, on a large geographical scale.

Methods:  During 2016–2018, adult female Ae. albopictus mosquitoes were collected by human landing catch (HLC) 
or human-bait sweep-net collections in 34 localities across China. Thirteen microsatellite markers were used to exam-
ine the patterns of genetic diversity, population structure, and gene flow among native Ae. albopictus populations. The 
correlation between population genetic indices and dengue incidence was also examined.

Results:  A total of 153 distinct alleles were identified at the 13 microsatellite loci in the tested populations. All loci 
were polymorphic, with the number of distinct alleles ranging from eight to sixteen. Genetic parameters such as PIC, 
heterozygosity, allelic richness and fixation index (FST) revealed highly polymorphic markers, high genetic diversity, 
and low population genetic differentiation. In addition, Bayesian analysis of population structure showed two distinct 
genetic groups in southern-western and eastern-central-northern China. The Mantel test indicated a positive cor-
relation between genetic distance and geographical distance (R2 = 0.245, P = 0.01). STRU​CTU​RE analysis, PCoA and 
GLS interpolation analysis indicated that Ae. albopictus populations in China were regionally clustered. Gene flow and 
relatedness estimates were generally high between populations. We observed no correlation between population 
genetic indices of microsatellite loci in Ae. albopictus populations and dengue incidence.

Conclusion:  Strong gene flow probably assisted by human activities inhibited population differentiation and pro-
moted genetic diversity among populations of Ae. albopictus. This may represent a potential risk of rapid spread of 
mosquito-borne diseases. The spatial genetic structure, coupled with the association between genetic indices and 
dengue incidence, may have important implications for understanding the epidemiology, prevention, and control of 
vector-borne diseases.
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Background
Aedes (Stegomyia) albopictus (Skuse, 1894) originated 
in Southeast Asia and spread to several islands in the 
Pacific and the Indian Oceans during the 17th and 18th 
centuries [1]. It was discovered in Albania in Europe in 
1979 [2], the USA and Brazil in North and South Amer-
ica in 1986 [3, 4], Fiji in Oceania in 1990 [5] and Nigeria 
in Africa in 1992 [6]. Global warming, winter diapause, 
and human-aided transportation have contributed to the 
global invasion of Ae. albopictus [7–9].

As a vector of over 20 arboviruses [10] and one of the 
100 worst invasive species in the world [11], Ae. albop-
ictus poses serious public health concerns for arbovirus-
related disease outbreaks. In China, dengue has been a 
threat for 40 years, since the first reported outbreak in 
1978 [12]. Local dengue transmission has been identi-
fied in Guangdong, Guangxi, Hainan, Yunnan, Fujian, 
Zhejiang and Henan provinces [13]. Aedes albopictus and 
Ae. aegypti are two important vector species responsi-
ble for dengue transmission in China. Aedes albopictus 
is the most predominant species and has been found in 
nearly one third of China [14]. This species has a wide 
range of distribution from north of 41°N latitude to the 
southern reaches of the country, while the distribution of 
Ae. aegypti is limited to small areas of southern China, 
including Hainan, Guangdong, Guangxi and Yunnan 
provinces [15, 16]. Li et al. [17] reported that Ae. aegypti 
was found only in two sites (Maoming, Guangdong and 
Sanya, Hainan) of the 26 mosquito surveillance sites in 
China. The relative proportion of Ae. albopictus to Ae. 
aegypti was >  20:1 in the two sites during 2005–2015, 
while the proportion of Ae. albopictus to Ae. aegypti 
was approximately 1:2 in 2014 in Jinghong city, Yunnan 
Province [18]. Aedes albopictus has been reported to 
be the sole mosquito vector for dengue transmission in 
Guangzhou, with no presence of Ae. aegypti identified 
over the past three decades [19]. The strong adaptabil-
ity of Ae. albopictus has contributed to the reemergence 
and wide spread of dengue [20] and the outbreaks of 
mosquito-borne diseases have spread with the expansion 
of mosquito habitats [21]. Vector surveillance, dispersal 
monitoring, and control play an important role in con-
trolling outbreaks [22].

Molecular markers can provide abundant information 
that is critical to studying the sources and routes of vec-
tor invasions [11, 23]. As the second generation of DNA 
markers, microsatellites or simple sequence repeats 
(SSRs), consisting of short tandem repeats of 1–6 nucleo-
tides, are widely distributed in the genomes of animals 
and plants [24]. Due to the advantages of simple opera-
tion, easy detection, good reproducibility, high polymor-
phism, and the inheritance of Mendelian codominance 
[25], microsatellite markers have been utilized to evaluate 

genetic diversity and population structure, and identify 
invasions of Ae. albopictus [22, 26, 27]. Multiple micro-
satellite markers for Ae. albopictus have been isolated 
previously, and there are more than 50 microsatellites 
applied in population genetic studies of Ae. albopictus 
[11]. Although mitochondrial DNA markers are rapidly 
evolving, non-recombining, maternally inherited, and 
exhibit high rates of mutation, mtDNA is not a strictly 
neutral marker; strong directional selection on mtDNA 
sequence has been reported in several insect species 
[28–30]. In order to obtain more accurate and detailed 
information on genetic structure, large-scale multi-site 
samplings should be conducted, and neutral microsatel-
lite markers should be used to investigate Ae. albopictus 
population genetics.

The present study was designed to address the follow-
ing questions: (i) What is the level of genetic diversity 
and population differentiation in and between Ae. albop-
ictus populations in China?; (ii) What are the patterns of 
colonization and dispersal (or gene flow) of Ae. albopictus 
in China?; (iii) Is there any association between genetic 
diversity indices and local dengue incidence? To address 
these questions, extensive mosquito samplings and a set 
of thirteen microsatellite loci were used in the study. The 
data gained from this study could provide useful infor-
mation for understanding the epidemiology, prevention, 
and control of vector-borne diseases.

Methods
Mosquito sampling and DNA extraction
From 2016 to 2018, adult female Ae. albopictus mosqui-
toes were collected by human landing catch (HLC) or 
human-bait sweep-net collections in 34 locations in 19 
provinces across northern and southern China, includ-
ing Hainan Island (Fig. 1, Table 1). The abbreviations of 
the 34 locations are as follows: LS, Lingshui; QZ, Qiong-
zhong; BS, Baisha; CM, Chengmai; ZJ, Zhanjiang; MM, 
Maoming; SZ, Shenzhen; GZ, Guangzhou; JY, Jieyang; 
MZ, Meizhou; JH, Jinghong; WZ, Wuzhou; RJ, Rongji-
ang; GY, Guiyang; CQ, Chongqing; TN, Tongnan; MS, 
Meishan; CS, Changsha; GAZ, Ganzhou; NC, Nanchang; 
WH, Wuhan; JZ, Jingzhou; AK, Ankang; LX, Lanxi; 
SX, Shaoxing; HZ, Hangzhou; ZMD, Zhumadian; KF, 
Kaifeng; LY, Linyi; LF, Linfen; SJZ, Shijiazhuang; TJ, Tian-
jin; BJ, Beijing; and SY, Shenyang.

In each location, 8–12 households or collection 
points at 400–3000 m apart were selected randomly 
for adult mosquito collections to minimize sibling bias. 
Approximately 30 Ae. albopictus female mosquitoes 
from each location with 2–3 individuals per collec-
tion point were used for DNA extraction and genetic 
analysis. Local dengue surveillance data from the 19 
provinces during 2011–2015 were obtained from the 
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website (http://www.phsci​enced​ata.cn/Share​/en/index​
.jsp) of the Public Health Science Data Center managed 
by the Chinese Center for Disease Control and Pre-
vention. The 19 provinces include those with frequent 
dengue fever outbreaks in the past 30 years, including 
Guangdong, Guangxi, Yunnan, Zhejiang and Hainan, 
as well as provinces with dengue outbreaks in recent 
years, including Hubei, Hunan, Guizhou and Jiangxi. 
Other provinces have imported cases, including Shanxi, 
Shandong and Liaoning. The collected specimens were 
identified morphologically to Ae. albopictus, and sam-
ples were stored in 70% ethanol. Total genomic DNA 
was individually extracted using the Insect DNA Kit 
(Omega Bio-tek, GA, USA), following the manufactur-
er’s protocol.

Cryptic species identification and Wolbachia infection
Aedes albopictus cryptic species identification was per-
formed by DNA sequencing of the mitochondrial gene 
cytochrome c oxidase subunit 1 (cox1) for the samples 
collected in Guangxi Province, where the cryptic species 
have been detected previously [31]. The Wolbachia infec-
tion status of individual mosquitoes was examined by 
PCR amplification of Wolbachia ribosomal DNA using a 
previously published method [31].

Microsatellite genotyping
A set of thirteen microsatellite markers was used to 
examine the patterns of genetic diversity, population 
structure, and gene flow among the native mosquito 
populations. These markers, which were developed in 

Fig. 1  Geographical locations of Ae. albopictus sampling sites in China. Abbreviations: LS, Lingshui; QZ, Qiongzhong; BS, Baisha; CM, Chengmai; 
ZJ, Zhanjiang; MM, Maoming; SZ, Shenzhen; GZ, Guangzhou; JY, Jieyang; MZ, Meizhou; JH, Jinghong; WZ, Wuzhou; RJ, Rongjiang; GY, Guiyang; CQ, 
Chongqing; TN, Tongnan; MS, Meishan; CS, Changsha; GAZ, Ganzhou; NC, Nanchang; WH, Wuhan; JZ, Jingzhou; AK, Ankang; LX, Lanxi; SX, Shaoxing; 
HZ, Hangzhou; ZMD, Zhumadian; KF, Kaifeng; LY, Linyi; LF, Linfen; SJZ, Shijiazhuang; TJ, Tianjin; BJ, Beijing; SY, Shenyang

http://www.phsciencedata.cn/Share/en/index.jsp
http://www.phsciencedata.cn/Share/en/index.jsp
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previous studies, included 3 dinucleotide and 10 trinu-
cleotide loci [27, 32]. The PCR reaction mixture consisted 
of 40 ng genomic DNA, 7.5 μl 2× PCR Master Mix (Pro-
mega, Madison, WI, USA), 0.05 μl (10 μM) M13 tagged 
forward primer, 0.2 μl (10 μM) reverse primer, and 0.2 μl 
M13 tagged fluorescent dye (FAM, HEX or TAMRA), in 
a final volume of 15 μl. The PCR cycling conditions were 
as follows: 95  °C for 5  min; 30 cycles of 95  °C for 30  s, 
58  °C for 40  s, and 72  °C for 45  s; 8 cycles of 95  °C for 
30 s, 53 °C for 40 s, and 72 °C for 45 s; and a final exten-
sion at 72 °C for 10 min. PCR products were sent to the 
Beijing Genomics Institute (BGI, Shenzhen, China) and 

processed in an automatic sequencer ABI 3730 (Applied 
Biosystems, Foster City, CA, USA). Allele sizes for each 
locus were read with GeneMarker software (version 
2.6.3) [33].

Data analysis
Analysis of pairwise relatedness
Pairwise genetic relatedness between individuals was 
examined by LRM estimator [34] and QGM estimator 
[35] using GenAlex v.6.5 [36] to detect kinship within 
and between Ae. albopictus populations. The coefficient 
of relationship, r ≥ 0.25 for LRM and r ≥ 0.5 for QGM 

Table 1  Sampling information of Ae. albopictus collection in China

Province Sample sites Abbreviation Sample size Latitude Longitude Collection date

Hainan Lingshui LS 32 18°30ʹ27″N 110°01ʹ59″E August 2016

Qiongzhong QZ 32 19°02ʹ06″N 109°50ʹ03″E August 2016

Baisha BS 22 19°13ʹ37″N 109°26ʹ51″E August 2016

Chengmai CM 32 19°44ʹ25″N 110°00ʹ02″E September 2016

Guangdong Zhanjiang ZJ 32 21°05ʹ37″N 109°42ʹ60″E September 2018

Maoming MM 28 21°31ʹ55″N 111°0ʹ31″E August 2018

Shenzhen SZ 32 22°32ʹ26″N 113°59ʹ56″E September 2018

Guangzhou GZ 32 23°11ʹ15″N 113°19ʹ42″E June 2018

Jieyang JY 32 23°37ʹ43″N 116°16ʹ43″E August 2018

Meizhou MZ 32 24°08ʹ11″N 115°40ʹ26″E August 2018

Yunnan Jinghong JH 25 22°0ʹ32″N 100°48ʹ0″E April 2018

Guangxi Wuzhou WZ 33 23°22ʹ51″N 110°54ʹ58″E October 2018

Guizhou Rongjiang RJ 32 25°56ʹ31″N 108°31ʹ40″E August 2018

Guiyang GY 31 26°33ʹ24″N 106°45ʹ36″E August 2018

Chongqing Chongqing CQ 32 29°30ʹ32″N 106°28ʹ36″E June 2018

Tongnan TN 28 30°09ʹ59″N 105°49ʹ54″E June 2018

Sichuan Meishan MS 32 30°11ʹ55″N 103°52ʹ01″E September 2018

Hunan Changsha CS 32 28°14ʹ25″N 113°04ʹ15″E July 2018

Jiangxi Ganzhou GAZ 32 25°52ʹ18″N 115°01ʹ29″E September 2018

Nanchang NC 30 28°40ʹ54″N 115°54ʹ27″E July 2018

Hubei Wuhan WH 31 30°30ʹ30″N 114°22ʹ39″E July 2018

Jingzhou JZ 28 29°50ʹ11″N 112°28ʹ15″E July 2018

Shanxi (west) Ankang AK 18 32°36ʹ21″N 108°25ʹ57″E September 2018

Zhejiang Lanxi LX 32 29°13ʹ16″N 119°28ʹ35″E October 2018

Shaoxing SX 27 29°50ʹ51″N 120°30ʹ04″E August 2018

Hangzhou HZ 25 30°18ʹ42″N 120°07ʹ09″E August 2018

Henan Zhumadian ZMD 32 32°58ʹ34″N 114°0ʹ27″E August 2018

Kaifeng KF 32 34°47ʹ53″N 114°18ʹ05″E August 2018

Shandong Linyi LY 31 35°20ʹ18″N 118°09ʹ06″E August 2018

Shanxi (east) Linfen LF 32 36°10ʹ34″N 111°36ʹ01″E September 2018

Hebei Shijiazhuang SJZ 32 37°54ʹ55″N 114°27ʹ49″E August 2018

Tianjin Tianjin TJ 32 39°06ʹ19″N 117°10ʹ41″E August 2018

Beijing Beijing BJ 30 39°51ʹ36″N 116°11ʹ45″E August 2018

Liaoning Shenyang SY 28 41°52ʹ28″N 123°33ʹ36″E August 2018
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was used to define a full sibling relationship (parents and 
offspring, or siblings that share the same parents), and a 
value of 0.125 < r < 0.25 for LRM and 0.25 < r < 0.5 for 
QGM indicates a half sibling (one shared parent). In 
order to reduce the siblings bias within population for 
analysis of genetic structure, we selected only one indi-
vidual from each putative full-sibling group within any 
population.

Genetic diversity and differentiation
Genetic variation within each locality was estimated 
in terms of the average number of alleles (Na), effec-
tive number of alleles (Ne), inbreeding coefficient 
(FIS), fixation index (FST), observed heterozygosity 
(Ho) and expected heterozygosity (He) using GenAlEx 
v.6.5 [36]. The number of migrants per generation, or 
gene flow, was calculated using the following formula: 
Nm  =  (1/FST  −  1)/4 [37]. Polymorphic information 
content (PIC) across all sixteen loci was assessed using 
Microsatellite Toolkit [38]. The possible presence of null 
alleles was checked at a population level for each marker 
using Micro-Checker (version 2.2.3) [39]. To determine 
whether the individuals in each study location were suf-
ficient for the research, the mean number of alleles per 
locus (Na) for each population was calculated with a rar-
efaction method using Allelic Diversity Analyzer (version 
1.0) [40]. Deviation from Hardy–Weinberg equilibrium 
(HWE) and linkage disequilibrium (LD) were computed 
using GENEPOP version 4.7 [41, 42]. Analysis of molecu-
lar variance (AMOVA) was performed using Arlequin 
version 3.5.2.2 [43]. To detect bottlenecks, the Wilcoxon 
test for heterozygosity excess was conducted with a 
two-phase mutation (TPM, 70% proportion of stepwise-
mutation model in TPM, 30% variance for TPM, 1000 
iterations) in BOTTLENECK v.1.2.02 [44, 45]. Genetic 
landscape shape (GLS) interpolation analysis was con-
ducted using Alleles In Space (AIS) software based on 
the pairwise genetic and geographical distance matrices 
[46]. Results of GLS interpolation analysis were imported 
into Surfer software to produce the contour map [47]. A 
Mantel test on geographical and genetic distance (pair-
wise phiPT) was performed in GenAlEx v.6.5 using 
9999 permutations. The correlation between geographi-
cal and genetic distance was plotted and the correlation 
coefficient (r) as well as R-squared were estimated using 
GenAlEx v.6.5.

Population structure
Geographical population structure was evaluated using 
the Bayesian clustering method in STRU​CTU​RE v.2.3 
[48], which identifies the most probable number of 
genetic clusters (K) and assigns individuals to these clus-
ters. We conducted different runs using different datasets 

for further clustering. For each dataset, the most likely 
number of clusters (K) was determined by conducting 5 
independent runs for each K, from K =  1 to the maxi-
mum number of populations included in the analysis. 
Each run assumed an admixture model and independ-
ent allele frequencies using a ‘burn-in’ value of 50,000 
iterations followed by 200,000 repetitions. The optimal 
number of clusters (K) was determined using the Delta 
K method of Evanno et  al. [49] in the online version of 
Structure Harvester v.0.6.94 [50]. Then we used a ‘burn-
in’ of 100,000 and runtime of 2,000,000 generations per 
iteration (20 iterations) for the optimal K-values [26]. To 
compile data from the 20 iterations for the independent 
values of K, we used the Greedy algorithm in CLUMPP 
v.1.1.2 with 1000 replicates [51]. The results were plotted 
in DISTRUCT v.1.1 [52]. Relationships among popula-
tions were assessed using principal coordinates analysis 
(PCoA) in GenAlEx v.6.5.

Correlation analysis between genetic indices and dengue 
incidence
Dengue incidence was calculated as the number of cases 
per 100,000,000 people. Due to the high variation in the 
number of cases, the data were rescaled with a log-trans-
formation using the equation Ln (µ), where µ is the num-
ber of cases per 100,000,000 people. Pearson’s correlation 
coefficient was used to analyze the correlation between 
dengue incidence after transformation and genetic indi-
ces, including allelic richness, private allelic richness, 
effective alleles, Shannon’s information index, observed 
heterozygosity and inbreeding coefficient. The correla-
tion analysis was performed using SPSS version 22. A sig-
nificance level at P < 0.05 was set for all statistical tests, 
and the sequential Bonferroni correction [53] was used 
when significant correlations were detected between the 
paired data.

Results
Detection of Ae. albopictus cryptic species and Wolbachia 
infection
No Ae. albopictus cryptic species was detected in the 
samples collected from Guangxi Province. The cox1 hap-
lotype was identical with the sequences on GenBank 
(KY765450, KY765452 and KY765455). All the samples 
showed positive infection of Wolbachia with type A and/
or type B. The majority of samples (> 93%) were infected 
with type A and type B together, only a few samples were 
infected with type A (5.1%) or type B (1.6%) (Additional 
file 1: Table S1).

Microsatellite analysis of genetic variability and diversity
Genotypes at 13 microsatellite loci were determined for 
1023 Ae. albopictus specimens collected in 34 locations 
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(Table 1). We compared the detailed pairwise relatedness 
of all specimens within and between populations (Addi-
tional file 2: Table S2). Genetic relatedness of full sibling 
among individuals within population were observed in 
16 out of the 34 Ae. albopictus populations with high 
proportion of kinship in Wuzhou, Beijing and Shenyang 
populations. Full sibling relationships were also found 
among 32 (94%) of the 34 Ae. albopictus populations with 
the highest proportion of kinship between Beijing and 
Shenyang. There were 559 pairs (0.107%) of half siblings 
and 68 pairs (0.013%) of full siblings among individual 
within populations, and 5882 pairs (1.125%) of half sib-
lings and 82 pairs (0.016%) of full siblings among indi-
viduals between populations (Table  2). We excluded 46 
samples of full siblings in collection sites and used the 
data from 977 Ae. albopictus specimens to conduct fur-
ther analysis. In total, 153 alleles were obtained. All loci 
were polymorphic, showing several distinct alleles rang-
ing from eight (Aealbmic9) to sixteen (ALB-TRI-6) with 
an average of 11.769 per locus (Table 2). Micro-Checker 
results suggest that locus Aealbmic12 has a high prob-
ability of null alleles, as its estimated null allele frequency 
is 0.317 calculated by Brookfield’s method [54]. There is 
no evidence of null alleles for loci Aealbmic9, Aealbmic8, 
Aealbmic6, ALB-DI-6 and ALB-TRI-33 (Table  2). The 
remaining loci exhibited signs of having null alleles, but 
their estimated frequency was lower than 0.200 (Table 2). 
PIC was high, with values ranging from 0.447 (ALB-DI-4) 
to 0.846 (ALB-TRI-6) (mean value 0.691) (Table 2). Shan-
non’s information index was consistent with PIC, rang-
ing from 0.880 (ALB-DI-4) to 1.973 (ALB-TRI-6) (mean 
value of 1.645) (Table 2). Among the 442 pairs tested for 
Hardy–Weinberg equilibrium (HWE) at each locus per 
population site after Bonferroni corrections, 158 pairs 
significantly departed from HWE (P  <  0.05), where 146 
of these significant departures indicated heterozygosity 
deficits (Additional file  3: Table  S3). No locus-by-locus 

pair showed significance consistently across all locations, 
though 165 of 2652 (6.22%) pairs tested for linkage dis-
equilibrium (LD) remained significant (Additional file 4: 
Table S4). Fifty-three (11.99%) pairs tested for HWE lost 
the significance after Bonferroni corrections, so did the 
161 (6.07%) pairs tested for LD.

The genetic diversity and difference analysis of Ae. 
albopictus showed that the mean number of alleles per 
locus at each location ranged from 5.308 (SY) to 9.000 
(LS), with an average of 6.912, and the allelic richness 
ranged from 4.327 (SY) to 7.561 (LS), with an average 
of 5.995 (Additional file  5: Table  S5). Allelic richness 
increased as the sample size increased (Additional file 6: 
Figure S1). The Ho values for each locus ranged from 
0.394 (ALB-DI-4) to 0.775 (Aealbmic9), and the He val-
ues for each locus ranged from 0.456 (Aealbmic6) to 
0.824 (ALB-TRI-6) (Table 3). The Ho values for each loca-
tion ranged from 0.501 (QZ) to 0.690 (SZ), and the He 
values for each location ranged from 0.619 (SY) to 0.763 
(LS) (Additional file 5: Table S5). Except in the location 
SZ, the He values were higher than the Ho values in all 
locations. Using the TPM model, tests for recent popu-
lation bottlenecks based on gene diversity and allele fre-
quency distribution were not significant, except in the 
SJZ population (Additional file 5: Table S5).

Genetic structure and differentiation
Based on Bayesian clustering analysis and the Delta 
K method, each population in this study was assigned 
to one of two genetically differentiated groups (K =  2, 
Additional file 7: Figure S2a), which splits southern and 
western China from a group comprising the eastern, cen-
tral and northern populations (Fig. 2a). Some admixture 
was observed between the groups. A further independ-
ent Bayesian clustering analysis and higher resolution 
were obtained by analyzing the structure plot for the 
two groups. In the first group, the southern popula-
tions can be separated from the western populations at 
K = 2 (Fig. 2b, Additional file 7: Figure S2b). In the sec-
ond group, the central, eastern, central northern, and 
northern clusters were divided at K =  3 (Fig.  2c, Addi-
tional file 7: Figure S2c). Additionally, the results of prin-
cipal coordinates analysis (Fig.  3) illustrated the genetic 
similarities among different populations in each region, 
which was similar to the results from STRU​CTU​RE. 
Based on these results, we divided the 34 populations 
into five clusters: southern (LS, QZ, BS, CM, ZJ, MM, JH, 
SZ, GZ, JY, MZ, GAZ, WZ), western (RJ, GY, CQ, TN, 
MS), central (CS, NC, WH, JZ, AK), eastern (LX, SX, 
HZ), and northern (ZMD, KF, LY, LF, SJZ, TJ, BJ, SY). The 
AMOVA results (Table  4) indicate that the majority of 
the variation in Ae. albopictus was found among individ-
uals and individuals within populations, accounting for 

Table 2  Genetic relatedness between samples in Ae. albopictus 
population

Abbreviation: n, number of comparisons

Kinship n Percentage

Within populations

 Half sibling 559 0.107

 Full sibling 68 0.013

 Total 627 0.120

Between populations

 Half sibling 5882 1.125

 Full sibling 82 0.016

 Total 5964 1.141

Total pairwise comparisons 522,753
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83.16% and 14.21% of the variation, respectively, while 
variations among groups and populations within groups 
accounted for only 1.30% and 1.32% of the total variation, 
respectively. Fisher’s exact test showed that there was sig-
nificant genetic variation at these four levels.

The pairwise FST values of Ae. albopictus ranged from 
0.005 to 0.049, with 500 out of 561 (89.13%) FST values 
showing significant genetic differentiation and one losing 

the significance after Bonferroni correction (Additional 
file 8: Table S6). However, the gene flow calculated by FST 
showed that the minimum value of Nm between popu-
lations is 4.88 (Additional file  8: Table  S6), suggesting 
strong gene flow. The genetic landscape shape analysis 
identified major potential gene flow barriers (Fig. 4). The 
high peaks of differentiation were found in southern and 
southwestern China, and low genetic differentiation was 

Table 3  Genetic indices for genetic markers of Ae. albopictus from China

Abbreviations: PIC, polymorphic information content; SI, Shannonʼs index; Ho, observed heterozygosity; He, expected heterozygosity

Locus No. of alleles Estimated null allele 
frequency

PIC SI Ho He

Aealbmic9 8 – 0.642 1.309 0.775 0.672

Aealbmic10 9 0.137 0.547 1.051 0.573 0.586

Aealbmic8 11 – 0.816 1.785 0.761 0.809

Aealbmic12 11 0.317 0.819 1.850 0.574 0.812

Aealbmic6 10 – 0.453 0.947 0.462 0.456

Aealbmic5 14 0.108 0.661 1.364 0.570 0.667

Aealbmic16 15 0.102 0.716 1.591 0.599 0.708

ALB-TRI-6 16 0.091 0.846 1.973 0.629 0.824

ALB-DI-6 13 – 0.744 1.569 0.485 0.743

ALB-DI-4 9 0.139 0.447 0.880 0.394 0.466

Aealbmic3 14 0.154 0.815 1.846 0.664 0.791

ALB-TRI-33 10 – 0.722 1.451 0.721 0.721

Aealbmic11 13 0.122 0.752 1.560 0.544 0.744

Mean 11.769 0.691 1.475 0.596 0.692

Fig. 2  Genetic structure of Ae. albopictus within 34 locations. Each vertical bar in the plots represents an individual sample and each color 
represents a cluster, where the color of the bar indicates the probability of assignment to each of K optimal clusters (different colors) determined 
using Evanno et al.’s ΔK methods. a K = 2 for all populations. b K = 2 for 18 populations in southern and western areas. c K = 3 for 16 populations in 
central, eastern, and northern areas



Page 8 of 15Wei et al. Parasites Vectors          (2019) 12:552 

detected among populations in the eastern and northern 
regions (Fig. 4). The Mantel test showed statistically sig-
nificant correlation (R2 =  0.245, P =  0.01) between the 
genetic distance (estimated as FST/(1  −  FST)) and geo-
graphical distance (estimated as Ln (km)) between popu-
lations (Fig. 5, Additional file 9: Table S7).

Correlation between population genetic indices 
and dengue incidence
In order to explore the association between genetic struc-
ture and vector-borne disease, we conducted Pearsonʼs 
correlation analysis of six genetic indices and annual 
dengue incidence from 2011 to 2015 in different prov-
inces (Table 5). Allelic richness (r = 0.530, P = 0.020) and 
private allelic richness (r =  0.551, P =  0.015) showed a 
positive correlation with dengue incidence after log-
transformations. However, the significance was lost 
after the Bonferroni correction for multiple testing 
(adjusted P-value  <  0.00238). Shannon’s information 

index (r = 0.455, P = 0.051), effective alleles (r = 0.353, 
P  =  0.139), observed heterozygosity (r  =  0.210, 
P  =  0.388) and inbreeding coefficient (r  =  0.089, 
P = 0.717) showed no statistically significant correlation 
to dengue incidence after log transformations.

Discussion
Few studies have reported the population structure and 
genetic diversity of Ae. albopictus in China, and they have 
focused on using mitochondrial DNA markers to analyze 
genetic diversity, regional structure, mainly in popula-
tions in southern China, or they have used a limited sam-
pling size [31, 55]. For example, Guo et al. [31] sequenced 
the mitochondrial DNA cytochrome c oxidase subunit 
1 (cox1) gene of 140 Ae. albopictus from 14 populations 
in southern China, and Zhang et al. [55] sequenced cox1 
of 119 Ae. albopictus from 17 populations in China. The 
results of these studies showed low genetic diversity and 

Fig. 3  Principal coordinates analysis based on co-dominant genotypic genetic distance, displaying genetic similarities among populations of Ae. 
albopictus sampled from different regions in China

Table 4  Analysis of molecular variance of populations from seven different clusters

Abbreviations: df, degrees of freedom

Source of variation df Sum of squares Variance 
components

Percentage of 
variation

P-value Fixation index

Among groups 4 121.507 0.060 1.30 P < 0.0001 FCT = 0.013

Among populations within groups 29 250.076 0.061 1.32 P < 0.0001 FSC = 0.013

Among individuals within populations 943 4837.406 0.653 14.21 P < 0.0001 FIS = 0.146

Within individuals 977 3735.000 3.823 83.16 P < 0.0001 FIT = 0.168

Total 1953 8943.989 4.597
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shallow genetic differentiation between some of the study 
populations. In the present study we included many new 
study sites and populations, such as those in the northern 
(SY, SJZ, TJ), western (MS, TN), and central areas (WH, 
JZ), etc. The 34 collecting sites were widely distributed, 
providing comprehensive information on the population 
structure of Ae. albopictus throughout China. The corre-
lation of average allele richness and sample size showed 
that when sample size < 15, allele richness increased rap-
idly as sample size increased, whereas it increased only 
slightly when sample size >  25. The number of samples 
in most populations was within the optimum range 
(25–30) [56]. The mean number of alleles per locus and 
the allelic richness were higher in southern populations 
than in northern populations, and the diversity of alleles 
gradually decreased from south to north. The climate in 
northern temperate areas may affect the life traits of Ae. 

albopictus. The period in which the climate is suitable for 
mosquito survival is longer in southern subtropical areas 
than in northern areas. The relatively low temperatures 
and dry climate in the north may not be suitable for mos-
quito survival, reproduction, and dispersal, resulting in 
lower allele richness and population diversity in northern 
populations [57, 58].

A major drawback of using microsatellite markers in 
population genetic studies is the potential impact of null 
alleles, such as reducing population genetic diversity and 
increasing genetic differentiation among populations [59, 
60]. Microsatellite null alleles are commonly more fre-
quent in arthropods than in other species [61–63]; this 
may be a result of large effective population size, as spe-
cies with large effective population size have relatively 
large proportions of individuals with null alleles [64]. 
Many studies have determined that a null allele frequency 

Fig. 4  Genetic landscape shape plot showing patterns of spatial genetic distance for 34 populations of Ae. albopictus. The GLS interpolation analysis 
is shown in Surfer software, where X- and Y-axes correspond to geographical locations and the different colors of image regions represent genetic 
distances
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<  0.2 has no significant effect on the accuracy of data 
analysis, and its effect on genetic diversity and genetic 
structure may be even less [64, 65]. In our study, null 
allele frequency was < 0.2 or absent, except at locus Aeal-
bmic12. Expected heterozygosity is a common parameter 
for measuring the genetic polymorphism of a popula-
tion [66]. Takezaki & Nei [67] suggested that an expected 
microsatellite heterozygosity between 0.5–0.8 indicates 
that the population genetic polymorphism is high. In the 
present study, the expected heterozygosity in all popula-
tions was between 0.6–0.8, and most were higher than 
the observed heterozygosity, indicating a deficit of het-
erozygosity except in the SZ and SY populations [68]. 
Insecticides have been used frequently in some areas, and 
fragmentation of habitats can intensify inbreeding within 
small populations, leading to a heterozygosity deficit. 
For bottleneck testing, we used the two-phase mutation 
(TPM) model, which is considered the best-fit for micro-
satellite data [44]. Our bottleneck test results indicated 
that only the SJZ population may have experienced a 
temporary bottleneck; this may be related to the wide use 
of insecticides [69] or sharp climatic changes [70] in the 
local area causing a decline in local populations.

Our results showed that FST-values in all pairwise 
populations were not high, but most were significantly 
different, indicating genetic differentiation between 
populations. The low genetic distance and pairwise FST 
may be related to the fact that most of the study sites 

are central cities in their provinces and transportation 
between them is convenient. Jinghong, a busy tourist des-
tination close to the Southeast Asian countries, connects 
to many cities via highways and airways but has no trains 
or high-speed rail, which explains the relatively high 
pairwise FST between Jinghong and other cities. Low FST-
values with no significant difference may be attributed to 
the close distance, convenient transportation, high traffic, 
and similar environmental conditions between popula-
tions [71]. China is home to an ancestral population of 
Ae. albopictus, and most populations in China have been 
stable for a long time [22]. Nm > 1 indicates that a popu-
lation is sufficient to prevent the occurrence of genetic 
differentiation [72]. Our results showed strong gene flow 
between populations, which can reduce genetic differ-
entiation. The results of genetic relatedness showed the 
individuals among different collection sites with long dis-
tance had different degrees of kinship, indicating poten-
tial human-aided dispersal of Ae. albopictus across the 
country. Extensive mosquito dispersal, probably aided by 
human transportation between these regions, also helps 
explain the low differentiation and the possible clustering 
between different regions.

There is some limitation for microsatellites compared 
to SNPs, the third generation DNA markers. Weaker sep-
aration between populations was usually obtained with 
microsatellites compared to SNPs. A total of 934 SNPs 
showed stronger power in distinguishing closely related 

Fig. 5  Correlation between genetic distance [FST/(1 − FST)] and geographical distance [Ln (km)] for all locations in China. The relationship was 
significant (Mantel test; R2 = 0.245, P = 0.01)
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individuals at a small spatial scale than 8 microsatellites 
in Ae. aegypti populations [73]. A total of 2185 SNPs out-
performed nine highly variable microsatellites in parent-
age and kinship assignment in An. darlingi populations, 
and the conventional approaches based on microsatellites 
may underestimate overall genetic distances in closely 
related vector populations [74]. The pairwise FST or the 
degree of differentiation in the present study may be 
smaller for microsatellites than if SNPs have been used. 
Therefore, we might overestimate the gene flow between 
populations through the analysis of microsatellites. 
Mitochondrial DNA has been widely used for the study 
of molecular taxonomy, phylogenetic relationships and 
population genetics in mosquitoes [75–77]. However, 
microsatellites outperformed mtDNA in assessing spa-
tial genetic structures. Only microsatellites not mtDNA 
showed small but positive and significant isolation-by-
distance patterns in An. sinensis populations [78]. No 
genetic structure was detected through mtDNA data 
while a high level of genetic structure was detected using 
the microsatellite markers inside polymorphic inver-
sions in An. arabiensis populations [79]. Guo et  al. [31] 

discovered the cryptic species in Wuzhou using mito-
chondrial DNA cytochrome c oxidase subunit 1 (cox1) 
gene to analyze population genetics of Ae. albopictus in 
southern China. We also have collected Ae. albopictus 
population from a different village in Wuzhou, but we did 
not find any individual belonging to a cryptic species by 
cox1 sequencing. One of the possible reasons might be 
due to location-specific or seasonal abundance features 
of the cryptic species.

The spread of dengue fever has been affected not only 
by the climate (e.g. temperature, rainfall, relative humid-
ity and sunshine) [80, 81], but also by the vector indices 
(e.g. container, house, Breteau, pupal or adult indices) 
and genetic factors of the populations [82–84]. Aedes 
aegypti population from French Polynesia was more 
susceptible to infection and had higher ability to trans-
mit DENV-1 than Ae. aegypti population from New 
Caledonia in the same experimental environment [84]. 
The genetic background of mosquito populations could 
influence the vector competence of mosquitoes, and the 
genetic indices can be utilized as a potential predictor of 
local dengue epidemiology [85]. The six genetic indices 

Table 5  The correlation of dengue incidence with six genetic indices among Ae. albopictus populations in different provinces

a  From 2011 to 2015 (per 100,000,000 persons)
b  The annual dengue case data was rescaled with a log transformation using the equation Ln (µ), where µ is the number of cases per 100,000,000 people

Abbreviations: Ne, effective number of alleles; SI, Shannonʼs index; Ho, observed heterozygosity; FIS, inbreeding coefficient

Province Allelic richness Private allelic 
richness

Ne SI Ho FIS Annual 
dengue casesa

Hainan 7.171 0.181 4.754 1.748 0.548 0.278 56

Guangdong 6.453 0.047 3.983 1.559 0.633 0.093 9541

Yunnan 7.263 0.418 4.718 1.682 0.592 0.204 1548

Guangxi 6.183 0.094 3.542 1.459 0.591 0.152 371

Guizhou 6.106 0.005 3.784 1.487 0.577 0.159 3

Chongqing 6.530 0.029 4.485 1.586 0.647 0.081 42

Sichuan 6.320 0.016 4.000 1.530 0.561 0.214 20

Hunan 5.506 0.025 3.539 1.359 0.518 0.209 37

Jiangxi 6.379 0.090 3.982 1.539 0.553 0.195 16

Hubei 5.994 0.052 3.949 1.490 0.546 0.213 23

Shanxi (west) 5.579 0.000 3.657 1.394 0.644 0.028 11

Zhejiang 5.704 0.129 3.678 1.409 0.628 0.018 59

Henan 6.134 0.094 3.981 1.530 0.658 0.059 17

Shandong 5.811 0.002 3.917 1.447 0.582 0.136 9

Shanxi (east) 5.697 0.011 3.785 1.422 0.551 0.183 1

Hebei 5.827 0.001 3.855 1.434 0.564 0.133 8

Tianjin 5.713 0.002 3.435 1.359 0.633 0.031 4

Beijing 5.653 0.000 3.455 1.379 0.600 0.076 69

Liaoning 4.904 0.001 3.183 1.236 0.597 0.001 7

Pearson’s correlation 
coefficientb

0.530 0.551 0.353 0.455 0.210 0.089

P-value 0.020 0.015 0.139 0.051 0.388 0.717
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are the main indices of population genetics, which could 
directly reflect the actual genetic variability and diver-
sity of local mosquitoes. But they were not significantly 
correlated with dengue incidence during 2011–2015. 
One possible reason might be that dengue outbreaks 
are mainly affected by climate and environment rather 
than genetic background of Ae. albopictus population 
in China. The other one might be that dengue incidence 
is associated with other genetic indices or other genetic 
markers rather than the six indices from 13 microsatel-
lites in this study. One genetic index, the inbreeding 
coefficient (FIS) might be expected to show significant 
positive correlation to dengue incidence, due to the ver-
tical transmission of dengue virus to mosquito offspring 
[86, 87]. This natural transovarial transmission process 
has been demonstrated in field-collected Ae. aegypti 
mosquitoes from some different areas [88–90]. The rate 
of vertical transmission initially increased in the few gen-
erations (F1–F2) of Ae. aegypti mosquitoes, and in subse-
quent generations it was found to be steady until at least 
the 7th generation through the inbreeding of each gen-
eration [91]. We inferred that the inbreeding within the 
mosquito population might lead to a substantial number 
of offspring carrying the dengue virus and an increased 
disease transmission within local areas. Inbreeding coef-
ficient has been found to be positively associated with 
dengue incidence in Ae. aegypti populations [85]. How-
ever, our study detected no significant correlation. One 
plausible explanation is that the amount of viral infection 
in the mosquitoes collected in our study is not enough to 
spread vertically to offspring. In addition, the endosym-
biotic bacteria Wolbachia existing in Ae. albopictus, not 
in Ae. aegypti naturally, has a blocking effect on the verti-
cal transmission of dengue virus [92, 93]. Although the 
specific mechanism of Wolbachia inhibiting dengue virus 
is unclear, the cytoplasmic incompatibility (CI) induced 
by Wolbachia can reduce the mosquito populations [94], 
and Wolbachia can induce density-dependent inhibition 
to dengue virus in mosquito cells [95]. At present, mos-
quitoes transfected with Wolbachia have been applied 
in the control of mosquitoes and mosquito-borne dis-
eases [96, 97]. The application would change the popu-
lation structure and genetic indices of local mosquitoes, 
and it would require our monitoring. Further research 
is needed to ascertain on whether these genetic indices 
could be supplementary indices for the prediction of the 
local dengue epidemiology.

Conclusions
This study reported not only the spatial genetic struc-
ture of Ae. albopictus but also the correlation of genetic 
indices with dengue incidence. Our results may have 
implications for predicting future dengue outbreaks 

and understanding the epidemiology, prevention and 
control of vector-borne diseases. Strong gene flow 
probably assisted by human activities inhibited popu-
lation differentiation and promoted genetic diversity 
among Ae. albopictus populations. This may repre-
sent a potential risk of rapid spread of mosquito-borne 
diseases. The data collected in this study, combined 
with other related factors such as climate, rainfall 
and human activities, will be valuable for vector con-
trol efforts as well as epidemiological prediction and 
modeling of the incidence and spread of vector-borne 
diseases.
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