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Polarization contributions to intermolecular interactions revisited with
fragment electric-field response functions

Paul R. Horn1, a) and Martin Head-Gordon1, b)

Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California,
Berkeley, CA 94720 and Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA,
94720 Phone: 510-642-5957 Fax: 510-643-1255

The polarization energy in intermolecular interactions treated by self-consistent field (SCF) electronic
structure theory is often evaluated using a constraint that the atomic orbital (AO) to molecular
orbital transformation is blocked by fragments. This approach is tied to AO basis sets, overestimates
polarization energies in the overlapping regime, particularly in large AO basis sets, and lacks a useful
complete basis set limit. These problems are addressed by the construction of polarization subspaces
based on the responses of isolated fragments to weak electric fields. These subspaces are spanned by
fragment electric-field response functions (FERFs), which can capture effects up to the dipole (D), or
quadrupole (DQ) level, or beyond. Schemes are presented for the creation of both non-orthogonal and
orthogonal fragment subspaces, and the basis set convergence of the polarization energies computed
using these spaces is assessed. Numerical calculations for the water dimer, water-Na+, water-Mg2+,
water-F− and water-Cl− show that the non-orthogonal DQ model is very satisfactory, with small
differences relative to the orthogonalized model. Additionally, we prove a fundamental difference
between the polarization degrees of freedom in the fragment-blocked approaches and in constrained
density schemes. Only the former are capable of properly prohibiting charge delocalization during
polarization.

I. INTRODUCTION

Energy decomposition analysis (EDA) methods
in electronic structure theory1 seek to partition in-
teraction energies into physically meaningful contri-
butions such as permanent electrostatics, induced
electron polarization, dispersion interactions, charge
transfer, Pauli repulsions, etc. Such contributions
are useful for understanding the ways in which dif-
ferent components of a system interact and for de-
termining modifications of a system that might lead
to a desired outcome. While these physical concepts
may be intuitive, their definitions are not unique, ex-
cept in the regime where different fragments do not
overlap. However, the interesting regime of inter-
molecular interactions is of course the overlapping
regime! The goal of this work is to present a new
definition of the energy lowering associated with po-
larization which has several desirable qualities that
not all other definitions satisfy.
In the opinion of the authors, the following are

attractive properties of an energy decomposition
scheme and its corresponding definitions of terms:

1. Total interaction energy corresponds to a well-
defined computational method. An EDA

a)Electronic mail: prhorn@berkeley.edu
b)Electronic mail: mhg@cchem.berkeley.edu

should subdivide the total intermolecular in-
teraction energy calculated by a useful stan-
dard electronic structure method, such as a
density functional theory, into physically in-
terpretable contributions.

2. Basis function independence. The approach
should not rely on the use of a particular
type of basis function, such as atomic orbitals
(AO’s), but rather should be applicable to any
convenient one-particle basis including plane
waves, finite elements, etc, in addition to AO’s.

3. Non-trivial basis set limit. In the overlapping
regime it should be possible to converge each
energy term to a stable and physically mean-
ingful complete basis set limit.

4. Correct asymptotic behavior. The energy con-
tributions must reproduce their known asymp-
totic behavior. For example, intermolecular
polarization between neutral molecules with
permanent dipoles yields an asymptotic R−6

dependence with known coefficient.

5. Quantum mechanical energies. The en-
ergy contributions should be constructed from
terms that obey Fermionic quantum mechan-
ics. For example there should be no role for
the classical electrostatic interactions associ-
ated with the quantum density.



6. Continuous. The energy contributions should
be continuous functions of the nuclear coordi-
nates if the overall intermolecular interaction
energy is continuous.

7. Computationally feasible. The computational
cost for evaluation of each term should not be
significantly greater than the direct evaluation
of the entire intermolecular interaction.

8. Variational. To ensure validity in both weak
and strong interaction regimes, the energy con-
tributions should be defined as constrained
variations2–4 relative to an unconstrained cal-
culation.

This work will focus on the construction of a def-
inition for the polarization contribution to the in-
teraction energy satisfying all of the above criteria
but most notably the second two points, basis type
independence and a non-trivial basis set limit.
There are many schemes for analyzing interaction

energies that do not compute a polarization term
with the meaning used in this work. The most com-
mon approach is to simply treat these two forms of
relaxation, polarization and charge transfer, as in-
separable, leading to the induction term in the tra-
ditional SAPT5–9, the orbital term in Bickelhaupt-
Baerends EDA10–12, ETS13–16, and the CI-singles
based scheme of Reinhardt et al.17, as well as the
“polarization” term in LMO-EDA18–20 and in the
deformation density based scheme of Mandado and
Hermida-Ramón21.
Our view is that the polarization contribution

to interactions is a physically meaningful quantity
that is closely related to isolated monomer prop-
erties, despite not being uniquely defined in the
overlapping regime. There are both variational and
non-variational approaches to computing polariza-
tion energies. Among the non-variational schemes
are those based on symmetry adapted perturba-
tion theory (SAPT) that either bin excitations us-
ing a basis partitioning22,23 to prohibit, or add
potentials24 to discourage, charge transfer contribu-
tions to the induction term. Another non-variational
approach is natural energy decomposition analysis
(NEDA)25–29 in which the polarization contribution
is largely determined by the natural bond orbital
(NBO) method’s ability or lack thereof to construct
monomer Lewis structures from supersystem den-
sities. Moreover, the NEDA polarization energy is
computed as a difference involving the classical in-
teraction of monomer densities.
The pioneering Kitaura-Morokuma (K-M)

EDA30–32 can be seen as the progenitor of varia-

tional EDAs, although it has the disadvantage that
the energies used to define the polarization contri-
bution do not correspond to the expectation values
of valid wavefunctions. In much the same vein,
the PIEDA33,34 and SCCCMS-based35,36 EDAs
use FMO37–40 and point charges, respectively, to
optimize monomer wavefunctions in the presence
of the classical electrostatic potentials of all other
monomers, so the polarized state energy is also
not the expectation value of an antisymmetric
wavefunction. The CAFI41 method also employs
FMO to relax monomer wavefunctions but then
uses a basis partitioning of CI-singles to investigate
the additional polarization contributions that arise
together with charge transfer . A slightly different
approach to polarization is taken by the CSOV42

and RVS32,43 schemes in which the intermediate
variational solutions come from the removal of
certain orbital rotations in the optimization based
on the monomer attribution of orbitals. The wave-
functions in these two methods are valid; however,
subsystems are not able to relax simultaneously
in contrast to the KM and related polarization
schemes.
A novel method for the calculation of polarization

energies is the constrained DFT approach of Wu3,4,
which constructs a polarized wavefunction by im-
posing a real-space population constraint. One ad-
vantage of this variational approach is that it cir-
cumvents the partitioning of basis functions among
monomers that can be problematic for other meth-
ods; however, this method is not without its draw-
backs, discussed at length later. We also mention
that Řezáč and de la Lande45 have recently used a
similar constraint to isolate charge transfer contri-
butions to the interaction energy.
A fairly common approach to obtaining a vari-

ational polarization energy is to solve for a po-
larized state using SCF for molecular interac-
tions (SCF-MI) SCFMI46,47, which both produces
a valid wavefunction through constraints and al-
lows for the simultaneous relaxation of all species.
SCFMI polarization is a component of several EDA
schemes including the block-localized wave function
(BLW)-EDA48–51 and the absolutely localized MO
(ALMO)-EDA2,52–54 schemes and the method of De
Silva and Korchowiec55. We also note that the ap-
proach of Yamada and Koga56 likewise uses SCF-
MI to compute polarization energies; however, un-
like the other three methods, the subspaces used
are based on NBOs with the aim of investigating
intramolecular interactions.
In the SCFMI-based schemes2,48–55, the polarized

state is obtained by the minimization of the single
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determinant electronic energy of a collection of frag-
ments with the constraint that the AO-to-MO co-
efficient matrix is fragment-blocked with an integer
number of electrons assigned to each fragment. The
polarization energy lowering is defined as the differ-
ence between the energy of this constrained solution
and that of the frozen orbital density matrix, which
is the projector into the span of the occupied or-
bitals of the fragments computed in isolation within
their subspaces. The parameters for on-fragment-
subspace orbital mixings are the degrees of free-
dom in the constrained optimization problem. These
intra-subspace occupied-virtual rotations are seen as
the polarization of each fragment, an interpretation
that is reinforced by the fact that displacements on
this constrained surface preserve fragment popula-
tions by the Mulliken definition53,57. Unlike in the
KM polarization scheme, SCFMI polarization both
recognizes and tries to relieve the increased kinetic
energy that is a consequence of overlapping fragment
occupied subspaces. The remaining inter-subspace
rotations that lead to the optimal unconstrained de-
terminant are identified as charge transfer in char-
acter because they do allow for changes in fragment
populations by the Mulliken definition. The inter-
pretation of the partitioned singles is simple and in-
tuitive provided that the fragment subspaces which
delimit intra- from inter-fragment mixings are in fact
meaningful.
The definition of the polarization energy lowering

in the SCFMI-based EDA schemes has two major
weaknesses. The first is that the definitions for the
fragment subspaces which determine the degrees of
freedom in the variational energy calculation are in-
trinsically tied to the use of an atom-centered basis
set. This means that standard SCF-MI is not appli-
cable to calculations involving plane-wave basis sets
among others. The second weakness is the assump-
tion that the subspaces constructed from these AO
functions are fragment-ascribable. In the limit that
each atom is given a complete basis set, the fragment
subspaces become linearly-dependent, and the sub-
space rotation constraint is effectively removed so
that the SCFMI energy is equal to the full SCF en-
ergy. Hence the charge transfer contribution to the
interaction becomes zero, a trivial basis set limit.
This lack of a meaningful basis set limit for the
SCFMI-based polarization term has been discussed
by several authors24,58,59.
Recently60, an approximate lower bound for the

polarization contribution was computed by the same
constrained optimization but using orthogonal frag-
ment subspaces of minimal rank designed to com-
pactly describe intra-fragment orbital relaxations.
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FIG. 1: Basis set convergence of some ALMO-EDA
energy terms for the aug-cc-pVQZ/B3LYP optimized
water dimer with an intermolecular distance of RO−H

= 1.96Å. The upper panel shows the effect of adding
diffuse functions, while the lower panel shows the effect

of increasing the cardinal number, X.

The upper bound was taken as the SCFMI-based
polarization energy, which is clearly valid at the ba-
sis set limit and also very likely true for some of the
larger common basis sets. Figure 1 demonstrates the
poor basis set convergence of the polarization energy
lowering in the original ALMO-EDA scheme com-
pared to the much more quickly converged frozen
and total interaction energies as a function of both
basis set augmentation and basis set zeta. In prac-
tice (e.g. in using the ALMO-EDA or the BLW-
EDA), the restriction to AO basis sets was simply an
accepted limitation, and the lack of a useful basis set
limit was tempered by the use of basis sets with func-
tion spaces that were largely fragment-ascribable
(e.g. typically no larger than aug-cc-pVTZ). It is
the goal of this work to overcome these weaknesses
in the original definition of the polarization energy
lowering in the SCFMI-based schemes by construct-
ing new fragment subspaces.

The remainder of this paper is organized as fol-
lows. The theory, Sec. II, is based on defining “frag-
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ment electric-field response functions” (FERFs) for
each fragment, which form an appropriate basis for
describing inductive effects. The FERFs can exactly
(in a sense to be discussed) capture the response of
an isolated fragment to weak electric fields. One
FERF per occupied orbital is required for each in-
dependent component of a weak applied field. Thus
there are 3 FERFs per occupied orbital for thee
dipole (D) responses to a uniform field, 5 for the
quadrupole (Q) responses to a field gradient, 7 for
octupole (O) responses, etc. The polarization mod-
els we explore involve the use of D, DQ, or DQO
sets of FERFs. The FERFs can be used directly as
a basis for polarization, in which case they are non-
orthogonal from one fragment to the next, and we
will refer to such models as nD, nDQ, and nDQO.
Alternatively, we next define orthogonalized FERFs,
which give rise to the oD, oDQ, and oDQO mod-
els, using an importance-weighted orthogonalization
that allows the FERFs that contribute most to po-
larization to be least distorted. Next, the interpreta-
tion of the SCFMI equations is re-evaluated in terms
of orbital rotations, leading to an important distinc-
tion between some variational polarization schemes.

We then turn to the results of test calculations
assessing the various FERF models on polarization
contributions to a range of model intermolecular in-
teractions. Vastly improved basis set convergence
characteristics are found relative to the standard
ALMO polarization model. We assess the differ-
ences in polarization energies predicted by the non-
orthogonal and orthogonal models. The paper con-
cludes with our recommendations for the use of these
models, as well as some discussion of their merits
relative to existing variational treatments of polar-
ization in EDAs.

II. THEORY

General notation in this work is as follows: sub-
space indices: capital Roman X,Y...; AO and sub-
space basis indices: lower case Greek µ, ν...; vir-
tual MO indices: a, b...; occupied MO indices: i, j...;
generic MO indices: r, s..... This work considers non-
orthogonal subspaces and thus makes considerable
use of tensors with both covariant (subscript) and
contravariant (superscript) indices.61 Dots are used
as placeholders for clear index ordering in quantities
that have both covariant and contravariant indices.
For instance, the matrix C with matrix elements

CXµ •
• Y r has rows corresponding to contravariant ba-

sis vectors associated with subspace X and columns

corresponding to covariant molecular orbitals asso-
ciated with subspace Y, both occupied and virtual.
For simplicity, matrices are generally given in spin-
orbital notation, which permits simplification to any
of the standard spin cases, such as either restricted
or unrestricted. Exceptions will explicitly include a
spin index as a subscript, as in Cα. Further notation
will be introduced as needed.

A. Electric-Field Response Functions to Define
Polarization Subspaces of Isolated Fragments

The role of the fragment polarization subspaces is
to separate rotations that are polarization-like from
those that are charge-transfer-like. An unambiguous
distinction between the two only exists in the non-
overlapping, well-separated, weak-field regime where
charge-transfer is zero because of the lack of overlap
but polarization is non-zero because of the presence
of a field. In this limit, other fragments are well ap-
proximated by low-order multipole expansions, and
polarization is the response to this multipole field,
which, for single-determinant methods, is merely a
matrix of occupied-virtual rotations.
It is preferable to consider polarization spaces that

are inherent to the molecule such that they can be
computed for the fragment in isolation with a suffi-
ciently complete basis of any type. The first essential
(and trivial) component of this space is the span of
the occupied orbitals of the isolated fragment. The
remaining vectors must come from the fragment’s
virtual subspace, and it is necessary to include some
portion of this space in order that the given fragment
is able to relax in the presence of other perturbing
species.
In order to select supersystem-independent virtual

functions, we consider fragment responses to general
weak fields, field gradients, and so forth such that
the fragment is able to respond to the presence of
some other arbitrary, well-separated fragment. This
will ensure that the correct asymptotic polarization
behavior is recovered to sufficient accuracy. These
orbital responses are exactly those computed in the
calculation of dipole, quadrupole and higher polar-
izabilities, which are the second derivatives of the
electronic energy with respect to field perturbations.
Denoting derivatives with superscripts, the orbital

response (of a fragment) to the field component Fµ is
∆µ. It is the solution to the following (coupled per-
turbed SCF (CPSCF)) linear equations obtained by
differentiating the zero field SCF stationarity condi-
tion, E∆ = 0, with respect to the field component
Fµ, which couples to the molecule by the multipole
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moment matrix Mµ in the core hamiltonian, h:

E∆∆ ·∆µ = −E∆h · hµ (II.1)

E∆h · hµ ≡ ∂2E

∂∆ai∂hλσ
(hµ)λσ = 2(Mµ)ai (II.2)

E∆∆ is the usual SCF orbital Hessian. In this work,
the equation is solved for all RHS simultaneously us-
ing conjugate gradient preconditioned with the eas-
ily inverted EP · P∆∆ portion of the Hessian. The
fragment center of mass is taken as the origin for
computing the cartesian multipole matrices, which
are then transformed to the real spherical harmonic
multipole matrices62 appearing in the RHS.
The fragment orbital response matrix, ∆µ, for a

given field component, Fµ = Fx, Fy, Fz,
∂Fx

∂z ,
∂Fy

∂z ,
etc., which couples through the multipole moment
matrix Mµ = µx, µy, µz, Qxz, Qyz, etc., is in general
dense, describing the mixings of all occupied orbitals
with all virtual orbitals. Singular Value Decomposi-
tion (SVD) of these amplitudes expressed in an or-
thogonal basis for a specific spin (we consider only
the restricted closed-shell and unrestricted cases in
this work),

(∆µ)ai = (Lµ)ab(dµ)bj(R
T
µ )ji, (II.3)

yields a unitary transformation of the virtual or-
bitals, (Lµ)ab. This transformation allows for the
description of the orbital response in terms of only
min(O, V ) virtual orbitals, which are the fragment
electric-field response functions (FERFs) for field
component µ:

(Vµ)
ν •
• b = Cν •

• a (Lµ)ab (II.4)

FERFs are only defined for positive singular val-
ues, (dµ)bj ̸= 0. For basis sets that are appropriate
for the calculation of polarizabilities (discussed at
length later), the number of fragment virtual orbitals
is considerably larger than the number of fragment
occupied orbitals, and the subspace spanned by the
FERFs is a small subset of the total virtual space.
The number of FERFs is no larger than one FERF
per considered field component per occupied orbital.
Within this subspace, the response of the fragment
to a weak field component of the given type is de-
scribed exactly.
In this work, we consider three non-orthogonal

FERF models for the polarization subspace for each
fragment, A. First, the non-orthogonal dipole type,
nD:

RnD
POL,A = PA ⊕ span{Vµx ,Vµy ,Vµz} (II.5)

Second, the non-orthogonal dipole plus quadrupole
type, nDQ (using spherical harmonic indices):

RnDQ
POL,A = span{ RnD

POL,A,VQ2,−2 , (II.6)

VQ2,−1 ,VQ2,0 ,VQ2,1 ,VQ2,2}

Third and most demanding, the non-orthogonal
dipole plus quadrupole plus octupole type, nDQO:

RnDQO
POL,A = span{ RnDQ

POL,A,VO3,−3 , (II.7)

VO3,−2 ,VO3,−1 ,VO3,0 ,

VO3,1 ,VO3,2 ,VO3,3}

It is clearly possible to continue this series of mod-
els, but arguments will be made for the preferred
truncation later, based on test calculations. For spin
unrestricted calculations, alpha and beta polariza-
tion subspaces of these types will in general be dif-
ferent. No reference has been made to atom-tagged
AO functions in these FERF models, and the frag-
ment SCF and CPSCF equations can be solved in
an appropriately complete basis of any type.

B. Constrained Solutions for General Fragment
Spans

Given vectors, Gµ •
• Aλ, for each fragment, A, span-

ning the fragment’s polarization subspace, as defined
by the projector RPOL,A, one can obtain the po-
larized (SCFMI) determinant by solving one of the
following slightly generalized non-linear eigenvalue
problems for each fragment46,47 and for each spin.
In the equations below, the subscript S denotes the
formulation of Stoll46:

[GT (1− SP+ SPA
S )F (II.8)

× (1−PS+PA
SS)G]AACA

= [GTSG]AACAϵA

(PA
S )µν =

∑
Z

Gµ •
• Zλ(TZ)

Zλ •
• Zj (II.9)

×
(
(σOO)

−1
)ZjAi

(TT
A ) • Aσ

Ai • (GT ) • ν
Aσ •

and the subscript G is used to denote the
Gianinetti47 approach.

[GT (1− SP+ SPA
G)F (II.10)

× (1−PS+PA
GS)G]AACA

= [GT (S− SPS+ SPA
GS)G]AACAϵA
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(PA
G )µν =

∑
Y Z

Gµ •
• Zλ(TZ)

Zλ •
• Zj (II.11)

×
(
(σOO)

−1
)ZjAi (

(σOO)
−1
)AiY k

× (TT
Y ) • Y σ

Y k • (G
T ) • ν

Y σ •

In the above equations, the one-particle density ma-
trix P is the projector into the occupied subspace,

P =
∑
XY

GTX (σOO)
−1

TT
Y G

T (II.12)

(σOO)XY = TT
XγTY (II.13)

γ = GTSG (II.14)

and the Fock matrix, F, is the derivative of the en-
ergy with respect to this occupied subspace projec-
tor:

Fµν =
∂E

∂Pµν
(II.15)

CA are the fragment coefficient matrices for the co-
variant molecular orbitals in the contravariantG ba-
sis with the occupied subset of these vectors denoted
by T and the virtual subset denoted by V. The
CA can be collected into a global matrix, C, which
is subspace-block-diagonal, analogous to the coeffi-
cient matrices in the original SCFMI scheme (for
which G, the matrix of subspace vectors in terms of
the AO basis, is simply the identity matrix).
The projected Fock operators in the LHS of equa-

tions (II.8) and (II.10) can be extrapolated and di-
agonalized using the DIIS63 algorithm with the fol-
lowing error vector for each fragment, A:

ErrAA = γAA

[
γ−1GTSPF (PS− 1)G

]
AA

− Transpose (II.16)

Alternatively, one can zero the gradient of the en-
ergy with respect to intra-subspace orbital rotation
parameters, {∆A} (which can also be collected into
a global fragment-diagonal matrix, ∆):

CA ← CAUA = CA exp
(
∆A −∆T

A

)
(II.17)

CAµ •
• As ← CAµ •

• Ar σ
ArAt
AA [ (II.18)

+ σAtAs +∆AtAs −∆AsAt

+ 1
2∆AtAuσ

AuAv
AA ∆AvAs − 1

2∆AtAuσ
AuAv
AA ∆AsAv

− 1
2∆AuAtσ

AuAv
AA ∆AvAs +

1
2∆AuAtσ

AuAv
AA ∆AsAv

+O
(
∆3
)
]

∂E

∂∆ApAq

∣∣∣∣
∆=0

=
∂E

∂Pµν

∂Pµν

∂∆ApAq

∣∣∣∣
∆=0

(II.19)

= 2[δprδ
q
i − δpi δ

q
r ]

×

[∑
Z

(σOO)
−1TT

ZG
TF (I−PS)GCA(σAA)

−1

]AiAr

for each subspace, A with one’s non-linear solver
of choice. Contravariant indices with bars (Ap) in-
dicate that the index is not globally contravariant
but rather contravariant with respect to the covari-
ant metric for the given subspace (A). The gradi-
ent is subspace-blocked, and exponentiation of the
corresponding displacements yields subspace-block-
diagonal orthogonal (in the general non-orthogonal
sense) orbital updates. We note that this gradient
as written has occupied-occupied rotation depen-
dence in addition to the usual occupied-virtual de-
pendence if intra-subspace occupied-virtual orthogo-
nality is not enforced (if the columns of TA and VA

are not orthogonal). The subspace-block-diagonal
vectors in C, thus far only assumed to be intra-
subspace linearly independent, can be chosen to be
intra-subspace orthonormal (σAA = I) without loss
of generality, resulting in slightly simpler expressions
and algorithms.
In several calculations in this work, a quasi-

Newton algorithm incorporating an approximate in-
verse Hessian (preconditioned L-BFGS)64,65 and the
Newton-Raphson algorithm itself were employed to
solve the SCFMI problem to obtain the polarized de-
terminant. The Hessian for the SCFMI problem has
been presented previously for different variables46,
and it is presented without the assumption of intra-
subspace orthogonality for the orbital rotation pa-
rameters used in this work in the appendix (C.2)
along with relevant intermediates. Additionally, in
Appendix D we include a detailed discussion of our
preconditioning strategy.

C. Orthogonal Polarization Subspaces

We next consider the construction of orthogonal
fragment polarization subspaces that are based on
the non-orthogonal subspaces discussed above. Or-
thogonalized models are a way to explore approxi-
mate bounds on the magnitude of polarization en-
ergy lowerings. They may be particularly appealing
to those who, for one reason or another, consider car-
rying a metric to be heretical66 and prefer instead
the onus of the caveats that we now enumerate:
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1. The construction of orthogonal projectors
from non-orthogonal spans is not unique, and
while it is possible to form these orthogonal
subspaces in a way that is in some sense opti-
mal, the corresponding merit function will al-
ways be arbitrary.

2. Orthogonal subspaces ascribed to fragments
are not appropriate spans for describing the
electronic structure of those fragments in iso-
lation (except in the uninteresting limit where
no orthogonalization is required).

3. If the number of degrees of freedom in the
SCFMI problem is unchanged, then, while
the orthogonal subspaces may seem more re-
strictive, all that can be said is that the de-
grees of freedom are different. SCFMI energies
computed with arbitrary orthogonal subspaces
therefore have no variational guarantee to be
an upper bound to the energy computed with
non-orthogonal subspaces of the same rank.

4. As an extreme example, the exact MO’s (after
localization) can be partitioned into orthogo-
nal SCFMI subspaces such that the exact SCF
energy could be obtained from the solution of
the (albeit poorly) constrained SCFMI prob-
lem.

To avoid such pitfalls, we insist that the vectors af-
ter orthogonalization be justifiably tagged to a sub-
space. From the previous section, we already have
a method to ascribe all polarization-relevant vec-
tors in the system to non-orthogonal SCFMI sub-
spaces. Hence an appropriately weighted symmet-
ric orthogonalization67 (II.20), which preserves frag-
ment tagging by pairing each non-orthogonal vector
with a single orthogonal counterpart, is a natural
choice.

Gµ •
• Aλ ←

∑
B

Gµ •
• BρC

Bρ •
• Br (II.20)

×
[
W (WσW)

− 1
2

]Br •

• As

For systems like water interacting with a sodium
cation, minimal CT is expected, but inappropriate

construction of the orthogonal subspaces could in-
hibit the water molecule from properly polarizing in
response to the presence of the cation. The result
would be an unduly large CT contribution to the
interaction. To allow adequate water polarization
with orthogonal subspaces, we could preserve the im-
portant water FERFs unmodified and orthogonalize
the less vital sodium FERFs against them. To bring
about this outcome in a black-box way, we will con-
struct the weights such that FERFs deemed more
important for polarization are given larger weights
so that they are least deformed by orthogonaliza-
tion. The resulting weights should create the great-
est lower bound on the stabilization energy from po-
larization. Non-orthogonal FERFs contain exactly
the degrees of freedom necessary for the fragment to
relax in the presence of weak fields, and any modifi-
cation of the FERF subspaces (such as orthogonal-
ization) should impede this relaxation.

Orthogonalization necessitates that functions in
one domain develop “tails” in other domains. Some
systems could exploit such degrees of freedom dur-
ing the polarization stage of the calculation to bring
about delocalization of charge that would have oth-
erwise occurred during the CT portion of the cor-
responding non-orthogonal calculation. This should
only occur when there is a physical motivation for
such mixings. For systems with very little CT, such
as H2O-Na+, this premature delocalization of charge
should only occur to a negligible extent even if the
orthogonal subspace construction permits it. The
question of whether this consequence of orthogonal-
ization is problematic (giving overly large polariza-
tion energies when CT is important), must be as-
sessed by test calculations.

In this work, the weight matrix is chosen to be di-
agonal with values between 1 and 100 to avoid poor
conditioning of WσW from an excessively large
range of weights. The first step in generating the
weights is the construction of intra-subspace mixing
amplitudes, (XA)V O, by considering the rotations
necessary to solve the Stoll46 equation (II.8) for each
fragment and unique spin with fixed frozen orbital
density and corresponding Fock operators68,69.

(FA)V O + (FA)V V (XA)V O − (XA)V O (FA)OO − (XA)V O (FA)OV (XA)V O = (0A)V O (II.21)

(FA)OO =

[∑
Y Z

(σOO)
−1TT

Y G
TFGTZ(σOO)

−1

]
AA

(II.22)
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(FA)V O =

[∑
Z

VT
AG

T (1− SP)FGTZ(σOO)
−1

]
AA

(II.23)

(FA)V V =
[
VT

AG
T (1− SP)F (1−PS)GVA

]
AA

(II.24)

In practice, the projected virtuals used for the ampli-
tudes are on-fragment orthogonalized to remove any
virtual vectors lying entirely in the occupied sub-
space. Singular value decomposition (SVD) of the
amplitudes for each fragment (II.25) yields a single
scalar for each orbital that describes, after transfor-
mation by the eigenvectors, the importance of that
orbital for intra-subspace relaxations.

(XA)V O = LAxAR
T
A (II.25)

In general, the amplitudes have different row and
column dimensions, leaving some vectors with a
weight of identically zero. In order to give all vec-
tors non-zero weights, the non-zero singular values
across all fragments are uniformly scaled such that
the smallest non-zero singular value is 1. The vec-
tors with exactly zero singular values are then given
weight 1 such that they have the same importance
as the least important vector with non-zero singular
value. The weights are then forced to be in the range
1 to 100 while still preserving importance ordering
by taking the weights associated with all vectors to
the same power.
With the weights in hand, application of (II.20)

is straightforward. This process is performed first
for the occupied orbitals of the supersystem, pro-
viding a new definition of the occupied subspace of
each fragment. The process is then repeated for the
globally projected and intra-subspace orthonormal-
ized FERFs determined by the field responses, tak-
ing into account the newly defined, orthogonal frag-
ment occupied subspaces in the construction of the
amplitudes. The projection of virtual FERFs into
the orthogonal complement of the global occupied
subspace allows for the construction of orthogonal
fragment subspaces without changing the supersys-
tem occupied subspace projector from that of the
frozen orbitals.
Because the occupied orbitals used to compute the

weights for the virtual subspaces weighted symmet-
ric orthogonalization are orthogonal, the linearized
version of the amplitude equation (II.21) obtained
by deleting the term quadratic in (XA)V O yields the
same equation for the amplitudes used previously to
construct a compact set of orthogonal functions for

polarization, polMOs60. While the intra-subspace
amplitudes are determined using the same expres-
sions, there are important differences between the
current procedure and that which defines the pol-
MOs. Notably, in the polMO procedure, amplitudes
are computed using fragment-tagged occupied and
virtual vectors with a collective span equal to that
of all atom-centered AO basis functions on the frag-
ment. Moreover, only eigenvectors with non-zero
singular values are included in the weighted sym-
metric orthogonalization, and the singular values as-
sociated with these vectors are used directly as the
weights. Thus, the treatment of weights and the
spans that are considered for orthogonalization are
different. Furthermore, the polMO procedure relies
on atom-centered basis functions to define fragment
subspaces for amplitude construction.
The variational polarization of a system with or-

thogonal fragment subspaces can be performed using
a simplified version of the Stoll46 and Gianinetti47

eigenvalue equations as described previously60. Al-
ternatively, one can use the above gradient and Hes-
sian equations (Appendix D) for Newton or quasi-
Newton methods with γ = σ = I.

D. Delineation Between Polarization and Charge
Transfer

One consequence of using both the general,
non-orthogonal and orthogonalized versions of the
FERFs is that fragment populations as computed
by the traditional AO Mulliken scheme can change
during self-consistent polarization. This was not
the case for the original, atom-centered AO basis
scheme53,57. However, charges are preserved by a
modified Mulliken definition where instead of trac-
ing fragment-diagonal blocks of the contravariant-
covariant density matrix in the AO basis, one instead
traces the contravariant-covariant density matrix in
the basis of the columns of G defining the polariza-
tion subspace of each fragment. Again, the original
SCFMI-based EDA result is recovered for G = I.
A notable special case occurs when non-

orthogonal FERFs are computed using only the AO
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functions from that fragment, which is the way they
are later employed in production calculations. In
this case, there is also no charge flow during polar-
ization by the traditional Mulliken definition as the
non-orthogonal FERF polarization subspaces are ex-
act subsets of the original SCFMI polarization sub-
spaces. Another special case arises when one of the
orthogonal schemes is used. In this case, both the
modified Mulliken and comparably modified Löwdin
schemes will compute no inter-fragment charge flow
during polarization.
The population conserving character of the

SCFMI degrees of freedom by a modified Mulliken-
like definition is the basis for the interpretation of
the intra-subspace relaxations in the polarization
step as excluding charge transfer interactions; how-
ever, the SCFMI-based schemes are not the only
ones that can make this claim. The density-based
EDA of Wu3,4 likewise conserves fragment popula-
tions during the polarization stage of the calculation
though by a real-space partitioning of charges. We
shall show that the distinction between these two fla-
vors of variational polarization goes well beyond the
definition of the chosen population scheme. SCFMI-
allowed rotations are not only population conserv-
ing but also what we will refer to as charge-flow-
prohibiting. Charge-flow-prohibiting rotations are a
subset of the population conserving rotations, all of
which are allowed in Wu’s constrained-DFT-based
decomposition.
The remainder of this section is structured as fol-

lows. First, we will show in a more involved but in-
structive way that SCFMI rotations are population
conserving. Next, we will introduce the full SCF de-
grees of freedom into the SCFMI objective function
by the construction of linearly dependent subspaces
and identify the form of displacements utilizing these
additional degrees of freedom that are likewise pop-
ulation conserving. Finally, we will discuss the in-
terpretation of these population conserving but not
charge flow prohibiting displacements as they relate
to polarization and charge transfer.
The population of a domain, A, by a generalized

Mulliken definition is:

PopA = [SPAS]µν P
µν (II.26)

where we define:

Pλσ
A =

∑
X

Mλ •
• Aπ̃µ

Aπ̃Xβ̃(MT ) • σ
Xβ̃ • (II.27)

µAπ̃Xβ̃ = (MT ) • λ
Aπ̃ • SλσM

σ •
• Xβ̃

(II.28)

The usual AO Mulliken scheme is recovered with
M = I. The operator P̂A is neither a projec-
tor nor symmetric except when the columns of M
are orthogonal. The change in the population of
domain A due to SCFMI-like displacements, D =
[DA,DB , ...], can be written as:

∆PopA =
∑
X

DX ·
∂PopA
∂∆X

∣∣∣∣
∆=0

(II.29)

+
∑
XY

1

2
DX ·

∂2PopA
∂∆X∂∆Y

∣∣∣∣
∆=0

·DY +O(D3)

The first (E.1) and second (E.2) derivatives of popu-
lations with respect to the SCFMI parameters, ∆X ,
can be found in the appendix along with the rele-
vant intermediates. If M = G, corresponding to the
modified Mulliken definition discussed above, it can
be shown that both the population gradient and Hes-
sian with respect to SCFMI rotations are zero (Ap-
pendix E), yielding by (II.29) constant populations
through second order in SCFMI displacements.
We now construct linearly dependent SCFMI sub-

spaces, A′, B′, ..., (the above equations do not re-
quire any particular relationship among the vectors
G defining different subspaces beyond that it be pos-
sible to construct a nonsingular occupied subspace
metric) such that each occupied orbital is able to
mix with every other orbital, the full degrees of free-
dom in unconstrained SCF. The distinction is that,
in the linearly dependent SCFMI case, independent
displacements are made on a number of Grassmann
manifolds equal to the number of subspaces instead
of only one, and the difficulties associated with these
redundant and less connected degrees of freedom are
shifted into the objective function with variable oc-
cupied subspace metric.

span{G]A′} = span{M]A,M]B ,M]C , ...} (II.30)

(CA′)ν •
• A′r = Gν •

• A′π(CA′)A
′π •

• A′r (II.31)

=
∑
X

Mν •
• Xρ̃(CA′)Xρ̃ •

• A′r

We have used the notation X]Y to indicate the
columns of the matrix X with label Y.
For the purposes of this discussion, we will con-

sider a specific initial condition where the orbitals in
each subspace are written as follows:

(CX′)µ •
• Zŝ = (II.32)[

δµλ −
(
δµσ − δµσδ

X
Z

)
Φσν

X Sνλ

]
×Mλ •

• Zγ̃(CZ)
Zγ̃ •
• Zs
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Φσν
X = Mσ •

• Xα̃(µ
−1
XX)Xα̃Xβ̃Mν •

• Xβ̃

The vectors (CZ)
Zγ̃ •
• Zs span the same space as the

columns M]Z and are thus of the same form as
the MOs for subspace Z in a G = M SCFMI
calculation. The hat notation, Zŝ, in the coef-
ficients, (CX′)µ •

• Zŝ, has been introduced to carry
along Mulliken-domain-based tags from the G = M
SCFMI subspace Z to the linearly dependent SCFMI
subspaceX ′. The MOs in subspaceX ′ are in general
of the form (II.31), but the Mulliken-domain attri-
bution of the columns of (Cα,X′)µ •

• X′s by (II.32) will
allow us to identify the form and character of the
new degrees of freedom in the linearly dependent
SCFMI.
Vectors of the form (Cα,X′)µ •

• Zŝ are virtuals in lin-
early dependent SCFMI subspace X ′ if X ̸= Z, and
these vectors, by (II.32), are in the orthogonal com-
plement of the G = M SCFMI subspace X. This
means that rotations involving the (CX′)µ •

• Zŝ(X ̸=
Z) are explicitly new degrees of freedom for linearly
dependent subspace X ′ relative to those of X. A con-
sequence of this choice is that the subspace met-
ric for X ′, σX′X′ , and thus its inverse are block-
diagonal:

(σX′X′)Xr̂Zŝ = δXZ (σX′X′)Xr̂Xŝ (II.33)

Moreover, by (II.32), vectors previously in subspace
X are duplicated in subspace X ′, which means that
SCFMI subspaces X and X ′ can and do have all
occupied vectors identical at our initial condition.
This establishes the connection between primed and
unprimed subspace counterparts, and their indices
should be assumed to be coupled in expressions in
which they both appear. We note that in order
to maintain these Mulliken-based labels for general
Mulliken subspaces, orthogonality of the MOs in
each linearly dependent SCFMI subspace, X ′, is not
assumed.
In this notation, the degrees of freedom in A′

corresponding to those in A, all of which have al-
ready been shown to be population conserving, are
of the form (∆A′)Ap̂Aq̂, and because of the way
in which the vectors spanning A′ were constructed
((II.32) and (II.33)), they remain population con-
serving by (II.29) after introducing the new degrees
of freedom (Appendix F). New variables are of the
form (∆A′)AîBŝ because our parametrization has no
virtual-virtual rotation dependence and because all
occupied orbitals in A′ at the initial condition have
Mulliken-domain tag A. These new variables will be

referred to as delocalization degrees of freedom. It is
important to note that vectors written Bî in A′ are
virtual vectors for subspace A′ despite the occupied
index.
With the form of the new degrees of freedom iden-

tified and the old degrees of freedom verified to re-
main population conserving, it is clearly possible
to write the change in population to second order
in terms of delocalizing displacements (II.29) for a
general, non-orthogonal Mulliken partitioning (Ap-
pendix F); however, such a cumbersome expression
is not apt for the current purpose. To facilitate
interpretation, we will analyze the case where the
columns of M are orthogonal, and thus σOO, σXX ,
σX′X′ , and µ are or can be chosen without loss of
generality to be I. In this case, the change in popu-
lation to second order is:

∆PopA =
∑
X′

∑
Z ̸=X

∑
îâ

[(DX′)XîZâ]
2[δZA − δXA ]

(II.34)
The displacements that zero (II.34) for all A are

delocalizing but also population conserving for small
displacements, and it is clear from this expression
that there are many delocalizing rotations that pro-
duce no net change in populations through second
order. If we consider a system with only two Mul-
liken domains, A and B, then by conservation of
total population we need only satisfy:

0 =
∑
îâ

[(DB′)BîAâ]
2 − [(DA′)AîBâ]

2 (II.35)

and the physical interpretation is that charge flows
from domain A into domain B, but an equal amount
of charge flows from domain B into domain A.
We do not see these sorts of delocalizations as

polarization in character but rather as contribut-
ing to the kinetic energy lowering associated with
inter-fragment orbital or bonding interactions. We
emphasize that methods that merely constrain pop-
ulations like those based on constrained DFT al-
low all population conserving rotations including
some of those that we have termed delocalizing. In
SCFMI-based schemes, only charge-flow-prohibiting
rotations contribute to polarization, and all delocal-
ization degrees of freedom - population conserving
though they may be - are treated collectively as
charge transfer contributions.
An important class of systems that highlights the

difference between the two approaches to polariza-
tion are those in which all fragments are equiva-
lent by symmetry. Meaningful population schemes
should respect the point group symmetry of the
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system, as must the unconstrained density. Thus,
if the fragments are all constrained to have the
same charge, then schemes that allow all popula-
tion conserving rotations must then yield identically
zero “charge transfer” contribution! SCFMI-based
schemes that only allow charge-flow-prohibiting ro-
tations do not enforce this trivial solution for CT,
although it may still be zero for other reasons. The
case of high symmetry systems is merely an extreme
example of complexes where the forward and back
donation of electrons is not well described by their
signed sum. Thus, this distinction between the two
approaches is expected to be quite relevant beyond
model systems.
We note that Misquitta24 also discusses the im-

precision of the label “CT” with a preference instead
for the term delocalization. We agree with this inter-
pretation; however, to avoid unnecessary confusion,
we will continue to use the term charge transfer to
describe the energy lowering associated with the de-
localization degrees of freedom. Possible further de-
compositions along these lines within the CT term
are beyond the scope of this work.

E. Treatment of Charge Transfer and Basis Set
Superposition Error

With new schemes for polarization defined and the
frozen energy unaltered, it remains to discuss the
treatment of the final component of energy lower-
ing, charge transfer, in light of these modifications.
In this work we employ only the subtractive ap-
proach in which the charge transfer energy lowering
is computed as the difference between the energy of
the optimal subspace-rotation-constrained determi-
nant and the fully optimized supersystem determi-
nant, guaranteeing recovery of the total binding en-
ergy. Note that the tools developed for decomposing
charge transfer interactions in the original ALMO53

scheme are not directly applicable here if one seeks
to recover the full binding energy or a perturbative
approximation thereof because not all vectors in the
supersystem have been assigned to a fragment. The
development of modified approaches will be a focus
of future work.
If isolated fragments are computed with only their

respective AO basis sets, then there will be a non-
zero basis set superposition error (BSSE) contribu-
tion to the interaction energy. BSSE was problem-
atic for SCFMI-based EDA schemes previously be-
cause the diffuse basis sets required to make BSSE
negligible had to be avoided to ensure that the
polarization and CT terms remained meaningful.

With these new FERF schemes, creating fragment-
ascribable subspaces is no longer an issue, and large
basis sets that do not require BSSE corrections can
be employed. For systems with many fragments, the
ability to compute responses fragment by fragment
(without using the global basis) is an immense com-
putational advantage.

III. RESULTS AND DISCUSSION

A. Computational Details

Calculations in this work were performed with a
development version of QChem70,71, which was ex-
tensively modified to implement the non-orthogonal
FERF (using fragment blocking) and orthgonalized
FERF models for describing polarization. Because
multiply augmented Dunning basis sets have not
been defined for all of the elements used in this work,
multiply augmented basis sets were constructed for
all atoms systematically from Dunning72,73 aug-cc-
pVXZ basis sets by the addition of one primitive
per angular momentum with an exponent half the
size of the next smallest primitive exponent for that
angular momentum. Multiply augmented functions
used in this work are thus slightly less diffuse than
those in parametrized basis sets; however, this al-
lows for basis sets of larger rank to be used before
encountering severe linear dependencies. Though
the method can be used with any density functional,
the B3LYP74–76 functional is used throughout this
work as it is in common use and its second func-
tional derivatives are available to us. Additionally
its deficiencies for intermolecular interactions relate
to dispersion-dominated interactions, which are not
of interest here. It should be noted that, for func-
tionals with density-independent corrections (for ex-
ample, dispersion-corrected functionals of the D2 or
D3 type77,78), the binding energy associated with
these corrections resides in the frozen orbital energy
term. While the systems analyzed in this work are
dimers, this method can treat a cluster of an ar-
bitrary number of fragments either directly or by
means of a many-body expansion of arbitrary order.

B. Assessment of Non-Orthogonal Fragment Electric
Field Response Functions (FERFs)

The new methods for constructing the FERFs do
not depend on the use of atom-centered basis func-
tions. However, because our molecular electronic
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structure code70,71 is based on gaussian AOs, we do
in fact employ these standard quantum chemistry
basis sets to demonstrate basis set convergence and
assess both behavior and feasibility of these models.
We compute FERF spans using only the given frag-
ment’s AO functions and not the entire supersystem
basis as the goal is to identify basis sets capable of
describing both the ground state density as well as
the field responses. Hence the FERF polarization
energies are variationally guaranteed to be less than
or equal in magnitude compared to the correspond-
ing ALMO polarization energies.
Figure 2a shows the basis set convergence of the

polarization energy of the original ALMO and the
new non-orthogonal FERF models, for the water
dimer. It is clear from Figure 2a that ALMO does
not converge at all in the basis set sequences ex-
amined. By contrast, the new FERF-based mod-
els do converge towards basis set limits which are
characteristic of each model. Whilst the nD model
is clearly converged at the aTZ basis, larger ba-
sis sets are required to converge the higher order
FERF models, particularly the nDQO model. For
the smallest basis sets considered (e.g. TZ), the re-
sponse schemes produce polarization energies that
are quite similar to the ALMO result, primarily due
to basis set deficiencies.
Some general observations about convergence of

the FERF models can be made. For atoms, each
multipole response order requires basis functions of
one higher angular momentum relative to that of the
highest momentum valence orbital (eg. p-orbitals
allow s-orbitals to respond to a dipole field, and d-
orbitals allow s-orbitals to respond to a quadrupole
field). The analogous response pairs are less clear for
molecular fragments where functions of higher angu-
lar momentum than an atom’s valence are necessary
to describe the chemical environment (i.e. d func-
tions for the water molecule). However the behavior
is analogous: referring again to Figure 2a, basis set
convergence is achieved for nD at triple zeta, nDQ
at quadruple zeta, and nDQO at quintuple zeta pro-
vided sufficiently diffuse functions are included.
Given the increasing difficulty in converging the

nD, nDQ, and nDQO models with respect to ba-
sis set, it is preferable to use lower order models
if they are qualitatively correct on approaching the
non-overlapping regime. It is also clear from Figure
2a that the progression of FERF model subspaces
to high multipole orders will eventually develop the
flexibility and thus the problems of the ALMOmodel
itself. For this reason also, we would like to choose
the smallest FERF model that is capable of a correct
description of long-range polarization.

To this end, we investigated the distance depen-
dence of the polarization energy of the FERF models
and the original ALMO scheme for the dissociation
of the water dimer along the O-O coordinate (Figure
2b). The d-aug-cc-pVQZ basis was chosen because
it is one of the smallest to display clear differences
in polarization energies for all methods at Re. The
polarization energies all appear fairly similar past
Re and at first seem only to distinguish themselves
at compressed distances where there is no a priori
correct answer.
To further differentiate the models, we investi-

gated the polynomial decay (Figure 3) that they
yield for the polarization energy for the water dimer
(asymptotically an R−6 dipole induced-dipole in-
teraction). Figure 3a shows the polynomial decay
in the overlapping regime, highlighting again the
considerable differences in the models for short in-
termolecular distances. In the long-range (Figure
3b), all methods approach but do not reach the
R−6 limit before numerical difficulties set in at large
ROO. Evidently higher order polarization terms
(e.g. quadrupole-induced dipole) are not yet negligi-
ble at these separations. Nonetheless, the interfrag-
ment overlaps are small enough that we can view the
most variationally flexible method, ALMO, as the
correct answer. This is because, in the long range,
charge transfer is zero, and, because our model
chemistry lacks a description of long-range electron
correlation, all binding beyond the permanent elec-
trostatic interaction (described by the ALMO frozen
energy term) is the exact polarization energy of the
classical polarization theory within this model chem-
istry. In the case of a model chemistry that does in-
clude long-range electron correlation, such as in the
case of the exact exchange-correlation functional it-
self, deviations from the classical polarization theory
will arise due to ALMO’s effective partitioning of the
polarization-dispersion cross terms of the classical
polarization theory into separate contributions. A
thorough treatment of inter-fragment electron cor-
relation contributions to binding within the frame-
work of SCFMI-based EDA is beyond the scope of
this work but will be addressed in a future publica-
tion. The inability of a FERF model to reproduce
the exact ALMO result in the long range thus in-
dicates that it is inadequate for the description of
polarization in the molecular field, which is more
complicated than a simple field or field gradient.
Based on Figure 3b, the distance dependence of

the polarization energy as computed by the nDQ
and nDQO models is the same as that of ALMO
while nD, which has the least variational flexibility
to describe polarization, behaves qualitatively differ-
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FIG. 2: Basis set convergence (a) at Re (RO-H = 1.96
Å) and distance dependence (b) of the polarization

energy computed by ALMO and FERF models for the
B3LYP/aug-cc-pVQZ optimized water dimer. The
upper panel, (a), shows that the FERF polarization
energies converge to useful basis set limits, which the
ALMO model cannot achieve. The lower panel, (b),

shows the distance dependence of
B3LYP/d-aug-cc-pVQZ ALMO and FERF polarization
energies, the total interaction energy (INT) and the

ALMO charge transfer (CT) energy for rigid
dissociation along the O-O coordinate. While similar at

Re and beyond, the polarization models produce
considerably different results at compressed geometries.

ently from the rest. From this data it would seem
that the nD model is potentially inadequate for de-
scribing the polarization of molecular systems, and
thus nDQ is the simplest FERF model with sufficient
accuracy.

We also investigated the convergence of the po-
larization energy computed by the various non-
orthogonal models as a function of basis set cardinal
number (i.e. X in aug-cc-pVXZ) for the ammonia
dimer (Figure 4a) and methane interacting with a
sodium cation (Figure 4b). The ammonia dimer
results (Figure 4a) show that the nD model is ac-
ceptably converged at aug-cc-pVTZ, nDQ by aug-
cc-pVQZ, and nDQO likely by aug-cc-pV5Z based
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FIG. 3: Polynomial decay of the polarization energy
computed using B3LYP/d-aug-cc-pVQZ ALMO and
FERF models for the rigid dissociation along the O-O
coordinate of the aug-cc-pVQZ/B3LYP optimized

water dimer. The slope at point R was computed by
linear regression of the log(-POL) vs. log(RO-O) plot
for the closest 11 points within 0.25Å of RO−O. The

upper panel (a) contains results at shorter O-O
separations, demonstrating the different character of
the ALMO and FERF models at these distances. The
lower panel (b) shows results at longer distances, where
the R−6

O−O asymptote is approached but not reached
before numerical difficulties associated with very small
polarization energies arise. Only the least flexible nD
model fails to achieve the correct ALMO limiting

behavior.

on the water results above employing more diffuse
functions. The angular momentum needs for the po-
larization of methane in response to a sodium cation
(Figure 4b) are by comparison less severe with nD,
nDQ, and nDQO all converged by aug-cc-pVQZ.

We analyzed the distance dependence of the po-
larization models for the qualitatively different CH4-
Na+ interaction (Figure 5) in the aug-cc-pVQZ ba-
sis, which was shown to be sufficient to converge all
considered FERF models at equilibrium. The polar-
ization energies computed at compressed distances
are not dramatically different for this system, likely
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FIG. 4: Basis set convergence of B3LYP/aug-cc-pVXZ
polarization energies with respect to cardinal number,
X, for the ammonia dimer (upper panel, (a)), and the
methane-Na+ complex (lower panel, (b)), both at their
B3LYP/aug-cc-pVQZ optimized geometries. Due to the

lack of an aug-cc-pV5Z basis set for sodium, the
aug-cc-pVQZ basis was used for Na+ only in the

aug-cc-pV5Z calculations.

because there is little legitimate charge transfer that
unduly flexible polarization subspaces could attempt
to describe. Figure 6 shows the exponent computed
for the polynomial decay of the various polarization
models throughout the C-Na coordinate. The nD
model distinguishes itself from the others both in
the short-range (Figure 6a) and in the long-range
(Figure 6b) which asymptotes to R−4, a monopole
induced-dipole interaction. All models closely ap-
proach R−4 decay before polarization energies be-
come too small to compute reliably. As for the wa-
ter dimer, the nD model behaves qualitatively differ-
ently from the others, while both nDQ and nDQO
closely track the ALMO results, which should be the
correct result at these large separations. Thus, nDQ
is again the simplest model with sufficient flexibility
to describe the long-range polarization.
We emphasize that, unlike the original ALMO

scheme, the new FERF models do have a basis set
limit, and it is moreover achievable. Higher or-
der field response models partition more of the sin-
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gle particle space into fragment-ascribable subspaces
with the unwanted consequences of (i) larger basis
sets to converge these larger subspaces, as well as (ii)
expected ALMO-like behavior of high order models.
With this in mind, we recommend the nDQ model
as the change in qualitative behavior as well as the
computed polarization energy when going from nD
to nDQ is palpable while the change in going from
nDQ to nDQO seems insufficiently large to justify
the increased ambiguity in distinguishing inter- and
intra-fragment rotations or the increased cost. The
aug-cc-pVQZ basis has been shown to be quite ad-
equate for the nDQ model (aug-cc-pVTZ is nearly
adequate), and so QZ basis sets will be used for the
DQ models in the remainder of this work.

C. Assessment of Orthogonalized FERF Models

With a model based on responses to weak fields
and field gradients decided (FERF/nDQ), we now
consider the orthogonalized variant of this scheme.
Our first test is the water dimer. The polarization
energy lowerings as computed by the nDQ, oDQ, and
ALMO models as a function of augmentation of the
cc-pVQZ basis are shown in Figure 7. Both the nDQ
and oDQ methods yield acceptably converged val-
ues at the level of single augmentation though more
stringently at double augmentation. Moreover, for
all levels of augmentation considered, the oDQ po-
larization energy lowering is fairly close to but never
exceeds that computed by the nDQ model. The gap
is less than 1kJ/mol, which may then be viewed as
the difference in predictions between the orthogo-
nalized and non-orthogonalized models in the mod-
erately overlapping regime. It is encouraging that
this difference is small compared to the magnitude
of the nDQ polarization interaction (indeed it is
smaller than the nD vs nDQ difference discussed in
the previous section). Of course there is no difference
between the orthogonal and non-orthogonal FERF
variants in the non-overlapping regime.
These same methods have been applied to the

water-Na+ system that was used to motivate the
weight matrix construction, (Figure 8a), as well as
to the much stronger water-Mg2+ interaction (Fig-
ure 8b). Both systems show good convergence for
the FERF models by aug-cc-pVQZ with over 90% of
the nDQ polarization energy lowering recovered by
the orthogonal variant, yielding a qualitatively con-
sistent interpretation of the interactions as being po-
larization dominated in both schemes. While larger
than the very small values seen in the ALMO scheme
(ALMO ECT is -2.2 kJ/mol for water-Na+ and -6.8
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energies computed using B3LYP for water interacting
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(b)) at B3LYP/aug-cc-pVQZ optimized geometries.

kJ/mol for water-Mg2+ at aug-cc-pVQZ), CT values
for the FERF models are still much smaller than
the corresponding polarization contributions (even
in the oDQ case, which has larger CT contributions
than nDQ, ECT is -4.4 kJ/mol for water-Na+ and
-28.3 kJ/mol for water-Mg2+ at aug-cc-pVQZ).
We also consider relatively strong (water-F−, Fig-
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FIG. 9: Convergence with respect to basis
augmentation of ALMO and FERF polarization

energies computed using B3LYP for water interacting
with the F− (upper panel, (a)), and Cl− (lower panel,

(b)) anions, at B3LYP/aug-cc-pVQZ geometries.

ure 9a) and weak (water-Cl−, Figure 9b) interac-
tions with non-negligible CT contributions. These
dimers are interesting tests to explore whether or not
the energy difference between the non-orthogonal
and orthogonal schemes increases in the presence
of significant CT. Both figures, but particularly the
fluoride-water results, show the increased difficulty
involved in converging DQ responses with respect to
basis set augmentation for anionic systems relative
to the cationic and neutral systems examined above.
This is to be expected as anionic systems require
more diffuse functions than the corresponding neu-
tral system to describe the ground state density, and
the prerequisites for describing the responses of this
density should increase in kind. The more weakly in-
teracting water-Cl− system is fairly well converged
at the level of double augmentation while water-F−

requires a triply augmented basis to converge the
orbital response subspace.

One interesting aspect of the results shown in Fig-
ure 9 is the pronounced decrease in the magnitude of
the polarization energy obtained by both the nDQ
and oDQ models for the fluoride-water interaction

as the degree of basis set augmentation increases.
Does this mean that polarization is over-estimated in
the aug-cc-pVQZ basis? We think the answer is no.
Rather, we conclude that the basis set limit optimal
functions for polarization of the isolated fragment
(which is the basis of the FERF models) are not op-
timal for polarization of the fluoride anion in close
contact with the water molecule and vice versa. By
this argument (as well as practical imperatives), use
of the singly augmented aug-cc-pVQZ basis remains
a reasonable choice even for anions, in preference to
multiply augmented basis sets.
The fraction of nDQ polarization energy recov-

ered by the oDQ scheme is considerable in both
cases though less impressive in the case of water-
F− when compared to the even more strongly inter-
acting water-Mg2+ system investigated above. This
is likely a consequence of the increased difficulty in
meaningfully orthogonalizing the more diffuse func-
tions necessary to describe the anionic system. Fur-
thermore, despite the large CT character of these in-
teractions and the exaggerated problem of tails when
orthogonalizing diffuse functions, the oDQ polariza-
tion energy does not exceed that of the nDQ model
throughout the basis augmentation series.
The last system that we examine in this section

is the methyl radical interacting with sodium cation
(Figure 10). This system, like its closed shell coun-
terpart, methane-Na+, discussed above, is expected
to have a negligible charge transfer contribution.
The occupied and nDQ virtual spans are different
for the α and β one-particle subspaces of the methyl
radical, and it is the goal of the orthogonalization
procedure to maximize the ability of both subspaces
to allow the methyl radical density to relax in the
presence of the cation. The orthogonalization is
quite successful to this end: the gap between nDQ
and oDQ is less than 10% of the polarization in-
teraction. In this case, the ALMO model itself is
also quite well-behaved, as a consequence of the very
small charge-transfer contribution.
The orthogonalization scheme largely accom-

plishes its aims for the systems investigated here.
Should the orthogonal FERF variant, specifically
oDQ, be used in practice in preference to the non-
orthogonal nDQ model? Though the method is
successful, it entails an additional set of arbitrary
choices beyond those involved in construction of
the naturally non-orthogonal FERFs. The non-
orthogonal models have the tremendous advantage
of being able to describe the occupied subspace of
the isolated fragment, unlike any orthogonal scheme
in the overlapping fragment regime. The orthogo-
nal fragment subspaces are also necessarily super-
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FIG. 10: Convergence with respect to basis
augmentation of ALMO and FERF polarization

energies computed using B3LYP for methyl radical
interacting with Na+ at the B3LYP/aug-cc-pVQZ

optimized geometry (RC-Na = 2.66 Å).

system dependent and are therefore not inherent to
a single fragment. Moreover, most variational ar-
guments are sacrificed as the orthogonal subspaces
are in general subsets of only the entire one-particle
span of the supersystem. However, the orthogo-
nal schemes do have a place in assessing the uncer-
tainty in the construction of fragment subspaces by
the non-orthogonal schemes, as they provide a lower
bound estimate on the magnitude of the polarization
energy lowering.

D. Application of New Polarization Schemes to a
Bonded Interaction

The final system that we investigate is the disso-
ciation of ethane into two doublet methyl fragments
using the aug-cc-pVQZ basis, which has been shown
to be generally sufficient to describe the nDQ and
oDQ models in particular. The decomposition of the
binding energy using the various polarization models
appears in Figure 11a. The considerable difference
in results for the different polarization models is not
surprising given both the importance of CT interac-
tions and the overall strength of the interaction. The
polarization models all give reasonable curves for the
polarization energy; however, the choice of model
also determines the shape of the CT energy curve
(Figure 11b), and not all of these are so reasonable.
Notably, the ALMO curve is non-monotonic! The
expected CT behavior is to increase with decreas-
ing C-C distance. While still monotonic, the nDQO
curve has a similar noticeable change in curvature
around the equilibrium separation, and it is not until
one decreases SCFMI flexibility to the level of nDQ

subspaces that this feature is largely removed. This
finding further illustrates the tendency toward spu-
rious ALMO-like behavior for higher order FERF
models (though the nDQO model at aug-cc-pVQZ
may not be converged and may be somewhat biased
toward ALMO-like behavior).
Figure 11 also contains data for the oD, oDQ,

and oDQO polarization models. Unlike most of the
previous cases, the oDQ polarization energy devi-
ates appreciably from the nDQ model at compressed
bond distances. This difference is larger between
oDQO and nDQO and smaller between oD and nD
as one might expect given the ranks of their respec-
tive polarization subspaces. We note also that the
behavior of oDQ is considerably closer to that of
oDQO than of oD, suggesting a rather rapid conver-
gence of the orthogonal FERF models with respect
to multipole order. The considerable difference be-
tween the non-orthogonal and orthogonal polariza-
tion models for these short C-C separations indicates
a fairly large degree of uncertainty in the numerical
values for the polarization and charge transfer con-
tributions provided by each model order in the very
strongly overlapping regime.
Whilst Figure 11b reaffirms our preference for

lower order FERF models, Figure 12 illustrates the
inadequacy of the nD model for the description of
polarization in molecular systems as it fails yet again
to achieve the ALMO long-range limiting behavior.
The expected polarization decay for this system is
R−6

C−C for a dipole induced-dipole interaction, which
is approached but not reached (Figure 12b). The
oD, oDQ, and oDQO curves are of course equivalent
to the nD, nDQ, and nDQO curves within numerical
limitations for appreciable separations where orthog-
onalization becomes irrelevant, but it is interesting
that the oDQ curve (and to a lesser extent oDQO)
approximates the limiting R−6

C−C decay at noticeably
shorter distances than the other methods (Figure
12a). Because of the spurious, ALMO-like behavior
of the nDQO model and the deficient long-range po-
larization in the nD model, we are once again lead
to the conclusion that nDQ is the most appropriate
non-orthogonal FERF model for polarization. Its or-
thogonalized counterpart, oDQ, has been shown to
be a reasonable indicator for uncertainty, not triv-
ially providing a very similar result to nDQ when
interactions are particularly strong.

IV. CONCLUSIONS

In this work, we have presented and applied
a method of constructing non-orthogonal and or-
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FIG. 11: B3LYP/aug-cc-pVQZ energy components for
rigid dissociation of B3LYP/aug-cc-pVTZ optimized

ethane along RC-C to form two methyl fragments. The
upper panel, (a), shows the polarization energy
computed by various models along with the total

interaction energy (INT). The difference between the
nDQ and oDQ polarization models for compressed
geometries indicates intrinsic uncertainty in the
numerical values for the polarization and CT

contributions provided by these models in the very
strongly overlapping regime. The lower panel, (b),
shows the CT contributions for ethane dissociation.
The curious non-monotonic character of CT in the

ALMO model due to a partial description of CT during
polarization is removed by the use of the nDQ model.

thogonal fragment electric-field response functions
(FERFs) that exactly describe the polarization of
a molecular fragment by an electric field and its
spatial derivatives. When applied to a cluster, the
FERFs define subspaces of fragment-tagged virtual
functions that allow for the definition of a polar-
ization energy (based on solving trivially modified
SCFMI equations in the FERF basis) that has the
desirable properties listed in the introduction. These
properties include basis type independence and a
non-trivial basis set limit, which were not features
of the AO-subspace SCFMI-based polarization em-
ployed by several EDA methods. Our main conclu-

-‐14	  

-‐12	  

-‐10	  

-‐8	  

-‐6	  

-‐4	  

-‐2	  

1	   3	   5	   7	   9	  

Sl
op

e	  
of
	  L
og
(-‐P

O
L)
	  v
s	  L

og
(R

C-‐
C)
	  

RC-‐C	  (Å)	  

nD	  

nDQ	  

nDQO	  

oD	  

oDQ	  

oDQO	  

ALMO	  

-‐6.25	  

-‐6.20	  

-‐6.15	  

-‐6.10	  

-‐6.05	  

-‐6.00	  

10	   12	   14	   16	   18	   20	  
Sl
op

e	  
of
	  L
og
(-‐P

O
L)
	  v
s	  L

og
(R

C-‐
C)
	  

RC-‐C	  (Å)	  

nD	  

nDQ	  

nDQO	  

oD	  

oDQ	  

oDQO	  

ALMO	  

FIG. 12: Polynomial decay of the B3LYP/aug-cc-pVQZ
polarization energy using the ALMO and FERF models

for dissociation of ethane, using the same level of
theory as Figure 11, and the same protocol for tangent
evaluation as Figure 3. The upper panel (a), shows the
short-range behavior, while the lower panel, (b) shows
the long-range behavior. Only the simple nD model
fails to achieve the correct ALMO limiting behavior.

sions are as follows:

1. Test calculations showed that, unlike nD, the
FERF nDQ model is capable of describing
long-range induced electrostatic interactions in
molecular systems. We recommend the small-
est adequate FERF model, nDQ, over the
nDQO or other higher order models because
with the increased flexibility that these higher
order models provide, the problems associated
with separating polarization and charge trans-
fer in large basis ALMO calculations will be
reintroduced. Our investigation of ethane dis-
sociation suggests that this unwanted behav-
ior from undue variational flexibility is already
present at the nDQO level. Moreover, it has
been shown that reaching the basis set limit
for the FERF/nDQ model for polarization is
feasible.
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2. In practice, the FERF/nDQ model can be sat-
isfactorily employed with a basis set of aug-cc-
pVQZ size, and results close to the limit are
generally obtained. Even the smaller aug-cc-
pVTZ basis appears to give useful results, for
systems where aug-cc-pVQZ is too computa-
tionally demanding.

3. The orthogonal oDQ scheme was shown for
several equilibrium structures to yield polar-
ization energies close to but not exceeding the
corresponding nDQ model, demonstrating its
utility for approximating a lower bound on the
magnitude of the polarization component of
interactions. These orthogonalization effects
were shown to be relatively small, and there-
fore there is no necessity to use orthogonal
schemes, contrary to claims that have period-
ically been made without numerical support.

4. The only other method for computing polar-
ization energies that meets all of the crite-
ria in the introduction is the CDFT scheme
of Wu. We have highlighted a fundamental
difference between the degrees of freedom in
that scheme and in the SCFMI based schemes.

Only the latter are capable of properly pro-
hibiting charge delocalization during polariza-
tion.

5. We intend to incorporate the FERF/nDQ
model for describing intra-fragment polariza-
tion into a future energy decomposition analy-
sis method, which we hope to report on in due
course.
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Appendix A: SCFMI Density Matrix First Derivative

Recalling the definition of the density matrix
(II.12) and the SCFMI parametrization in terms of
orbital rotations (II.18), the first derivative of the
density matrix with respect to these degrees of free-
dom and the necessary partials are:
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Appendix B: SCFMI Density Matrix Second Derivative

The second derivative of the density matrix (II.12)
with respect to SCFMI rotation parameters (II.18)
is:
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The necessary partials in addition to (A.2) and (A.3) are:
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+Trans[CkDl]

Appendix C: SCFMI Energy Orbital Hessian

The second derivative of the electronic energy
with respect to SCFMI orbital rotations is:
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This expression can be simplified using (II.15),
(D.6), (A.1), and (B.1) to yield the Hessian with-
out the assumption of intra-subspace orthogonality:
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Appendix D: SCFMI Energy Preconditioning Strategy

The SCFMI orbital Hessian in the case of intra-
subspace orthogonality is as follows (where we are

reverting to considering the spin cases explicitly, as
indicated by the spin labels):
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where:

(Παβ)µνλσ ≡
∂2E

∂Pµν
α ∂Pλσ

β

(D.6)

The tensor Π involves the two electron integrals and
second derivatives of the exchange correlation energy
in the case of DFT. Apparent inconsistences in the
covariant-contravariant notation are a consequence
of the omission of metrics equivalent to the identity.
The contraction of the SCFMI Hessian with a trial
vector for the solution of the Newton step by conju-
gate gradient or MINRES is straightforward.
We have considered two levels of preconditioning

for the solution of this linear equation, and we use
these same approximate inverse Hessians to augment
the quasi-Newton algorithm. The less expensive of
the two preconditioners considers terms from EP ·
P∆∆, lines (D.2) through (D.5), assuming weakly
overlapping fragments such that overlap-like terms
can be approximated by kronecker deltas:

(Bα)
(AiAa) •

• R = (D.7)

(Happrox.
αα )(AiAa)(AjAb)(Xα)(AjAb)R

(Happrox.
αα )(AiAa)(AjAb) = (D.8)[
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T
αFαGαTα,Y (σα,OO)

−1

]AiAj

B is the matrix of column vectors (R) with poten-
tially alpha and beta portions to be preconditioned
(our approximate Hessian is spin-block-diagonal),
and X are the preconditioned vectors. The lin-
ear equation defined by (D.7) and (D.8) can eas-
ily be solved by the application of pseudocanonical-
like intra-subspace occupied-occupied and virtual-
virtual rotations, which bring the approximate Hes-
sian (D.8) into diagonal form.
A more expensive but still linear scaling precondi-

tioner which does not involve the contraction of trial
vectors with two-electron integrals or XC matrix
derivatives considers all subspace-diagonal blocks of
terms from EP · P∆∆, (D.2) through (D.5), which
are again spin-diagonal:

(Happrox.
αα )(AiAa)(AjAb) = (D.9)

2
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The solution of the linear system defined by (D.7)
and (D.9) can be computed separately for each sub-
space by a linear solver such as conjugate gradient
using a more approximate and less expensive pre-
conditioner such as (D.8). One could continue nest-
ing preconditioners in this way to precondition with
all of EP · P∆∆, (D.2) through (D.5), but the in-
clusion of inter-subspace blocks makes the matrix
application to a trial vector quadratic in subspaces.
This is in general an undesirable cost increase for

quasi-Newton methods; however, it has been a help-
ful strategy in the context of preconditioning the
conjugate gradient iterations for the solution of New-
ton steps where the expensive operation is multipli-
cation by the entire Hessian (D.1), which requires
the additional, more expensive contractions with Π.
We note that other authors79,80 have previously em-
ployed full BFGS initialized with an approximate
Hessian to solve the SCFMI problem. The approach
taken in this work uses a newly calculated and thus
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more relevant approximate Hessian as a precondi-
tioner at each L-BFGS iteration and requires only
the application of this matrix to a vector, never its
storage.

Appendix E: SCFMI Population Derivatives

The first derivative of the population of domain
A with respect to SCFMI rotation parameters by
(II.26) and (A.1) is:
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The second derivative of the population of domain
A with respect to SCFMI rotation parameters by
(II.26) and (B.1) is:
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For the case Gα = Mα we have the following intermediate results that can be used to show that both

(E.1) and (E.2) are zero:
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Appendix F: Linearly Dependent SCFMI Population
Derivatives

The first and second derivatives of populations
with respect to the degrees of freedom in the linearly

dependent SCFMI subspaces, {X ′}, described in the
text can be obtained by replacing unprimed SCFMI
subspace labels in (E.1) and (E.2) with their primed
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counterparts (Cα,X′ ← Cα,X etc). The statements
made in the text assume that the vectors spanning
the primed subspaces are constructed in a specific
way (II.32) from unprimed Gα = Mα SCFMI sub-

spaces. Rewriting the primed variants of (E.1) and
(E.2) in terms of Mulliken-domain attributed vectors
yields:
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F ûδ

Dô
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Dô
Xk̂

+ δCq̂

Et̂
δXp̂
F ûδ
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In these expressions, matching primed and un-
primed subspace indices, X ′ and X, are coupled
because all occupied vectors in subspace X ′ have
Mulliken-domain labels X. This coupling of indices
is also described by (II.32). The gradient and Hes-
sian for the degrees of freedom present in the un-
primed subspace SCFMI are recovered for X = C
and Y = D in the above, and these can be shown

using the results for important cases below to both
be zero. The derivatives for the newly introduced de-
localization degrees of freedom are given by X ̸= C
and Y ̸= D. Orthogonal Mulliken domains refers
to the case where the columns of Mα are orthogo-
nal, and thus at our initial condition we can choose
without loss of generality to have σα,OO, σα,XX ,
σα,X′X′ , and µα all I.

[
∑
Z′W ′

σ−1
α,OOT

T
α,Z′GT

αS(Pα,A +PT
α,A)SGαTα,W ′α−1

α,OO]
Y k̂Xl̂ = (σ−1

α,OO)
Y k̂Xl̂[δXA + δYA ] (F.3)

[
∑
Z′

σ−1
α,OOT

T
α,Z′GT

αS(Pα,A +PT
α,A)S(I−PαS)GαCα,Y ′σ−1

α,Y ′Y ′ ]
Xl̂F t̂(F.4)

=

[∑
Z

σ−1
α,OOT

T
α,Zµα

]Xl̂ •

• Aγ̃

(
(Cα,A)

Aγ̃ •
• Aq (σ

−1
α,Y ′Y ′)

Aq̂F t̂ −
∑
E

[(I− δYE )δYAµ−1
α,Y Y µα,Y ECα,E ]

Aγ̃ •
• Eq (σ

−1
α,Y ′Y ′)

Eq̂F t̂

)
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−δXA
[
σ−1
α,OOσα,OY ′σ−1

α,Y ′Y ′

]Xl̂F t̂

= (CASE: F = Y )→ [σ−1
α,OOσα,OA]

Xl̂ •
• Aq(σ

−1
α,Y ′Y ′)

Aq̂F t̂ − δXA [σ−1
α,OOσα,OY ′σ−1

α,Y ′Y ′ ]
Xl̂F t̂

= (CASE: F = Y = X)→ 0

= (CASE: Orthogonal Mulliken Domains)→ 0

[σ−1
α,X′X′C

T
α,X′GT

α(I− SPα)S(Pα,A +PT
α,A)S(I−PαS)GαCα,Y ′σ−1

α,Y ′Y ′ ]
EŝF t̂ = (F.5)

+
∑
G

(σ−1
α,X′X′)

EŝGv̂[CT
α,G(I− SΦα,X)S(I−PS)Cα,A]GvAu(σ

−1
α,Y ′Y ′)

AûF t̂

+
∑
H

(σ−1
α,X′X′)

EŝAv̂[CT
α,A(I− SP)S(I−Φα,Y S)Cα,H ]AvHu(σ

−1
α,Y ′Y ′)

HûF t̂

+δXE (σ−1
α,X′X′)

EŝXv̂[CT
α,XS(I−PS)Cα,A]XvAu(σ

−1
α,Y ′Y ′)

AûF t̂

+δYF (σ−1
α,X′X′)

EŝAv̂[CT
α,A(I− SP)SCα,Y ]AvY u(σ

−1
α,Y ′Y ′)

Y ûF t̂

+
∑
G

δYF δYA (σ−1
α,X′X′)

EŝGv̂[CT
α,G(I− SΦα,X)S(I−PS)Cα,Y ]GvY u(σ

−1
α,Y ′Y ′)

Y ûF t̂

+
∑
H

δXE δXA (σ−1
α,X′X′)

EŝXv̂[CT
α,X(I− SP)S(I−Φα,Y S)Cα,H ]XvHu(σ

−1
α,Y ′Y ′)

HûF t̂

−
∑
H

δXE δYA (σ−1
α,X′X′)

EŝXv̂[CT
α,XS(I−PS)Φα,Y SCα,H ]XvHu(σ

−1
α,Y ′Y ′)

HûF t̂

−
∑
G

δYF δXA (σ−1
α,X′X′)

EŝGv̂[CT
α,GSΦα,X(I− SP)SCα,Y ]GvY u(σ

−1
α,Y ′Y ′)

Y ûF t̂

−
∑
GH

(σ−1
α,X′X′)

EŝGv̂[CT
α,GS(δ

X
AΦα,X(I− SP) + δYA (I−PS)Φα,Y )SCα,H ]GvHu(σ

−1
α,Y ′Y ′)

HûF t̂

+δYF δXE (δXA + δYA )(σ−1
α,X′X′)

EŝXv̂[CT
α,X(I− SP)SCα,Y ]XvY u(σ

−1
α,Y ′Y ′)

Y ûF t̂

+
∑
GH

(δXA + δYA )(σ−1
α,X′X′)

EŝGv̂[CT
α,GSΦα,X(I− SP)SΦα,Y SCα,H ]GvHu(σ

−1
α,Y ′Y ′)

HûF t̂

= (CASE: E = X,F = Y )→
+δYA (σ−1

α,X′X′)
EŝXv̂[CT

α,XS(I−PS)Cα,A]XvAu(σ
−1
α,Y ′Y ′)

AûF t̂

+δXA (σ−1
α,X′X′)

EŝAv̂[CT
α,A(I− SP)SCα,Y ]AvY u(σ

−1
α,Y ′Y ′)

Y ûF t̂

= (CASE: Orthogonal Mulliken Domains)→ 2δEŝ
Aâδ

F t̂
Aâ
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