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Jian Dai

Calibration and Test of a Discrete Choice Model
with Endogenous Choice Sets

Conventional discrete choice models assume implicitly that the choice set is
independent of the decisionmaker’s preferences conditional on the explanatory
variables of the models. This assumption is implausible in many choice situa-
tions where the decisionmaker selects his or her choice set. This paper estimates
and tests a discrete choice model with endogenous choice sets based on Horo-
witz’ theoretical work. To calibrate the model, a new probability simulator is
introduced and a sequential estimation procedure is developed. The model and
calibration methods are tested in an empirical application as well as Monte
Carlo simulations. The empirical results are used to test the theory of endoge-
nous choice sets and to examine the differences between the new model and a
conventional choice model in parameter estimates and predicted choice proba-
bilities. The empirical results strongly suggest that ignoring the endogeneity of
choice sets in choice modeling can have serious consequences in applications.

1. INTRODUCTION

Explaining the outcomes of choices by individuals among sets of discrete
alternatives has been a research objective of many fields including economics,
geography, marketing research, psychology, and transportation systems analy-
sis. In geography spatial choice modeling has been studied extensively [see
Wrigley (1982, 1988); Golledge and Rushton (1984); Pitfield (1984); Wrigley
and Longley (1984); Horowitz (1985); Golledge and Stimson (1987); Golledge
and Timmermans (1988); Fischer, Nijkamp, and Papageorgiou (1990); Timmer-
mans and Golledge (1990); and Thill (1992) for recent reviews and books. See
also Rushton (1969a, 1969b, 1969c, 1971); Golledge and Rushton (1976) for
early work]. In applications discrete choice random-utility models have been
widely used to analyze choice behavior and to predict choices. These models

This research was in part supported by a scholarship from the Midwest Transportation Center
at the University of Iowa and the Iowa State University. The author is deeply grateful to Joel L.
Horowitz for insightful suggestions and many discussions. The author is also grateful to Marc Arm-
strong, Clair Pavlic, Gerard Rushton, Eugene Savin, and Frank Weirich for their support during the
research.

Jian Dai is a researcher in the Graduate School of Management and the Center for
Statistics in Science and Technology at the University of California at Davis.

Geographical Analysis, Vol. 30, No. 2 (April 1998) © 1998 Ohio State University Press
Submitted: 6/13/97. Revised version accepted: 9/23/97.



96 Geographical Analysis

assume that an individual’s choice is an expression of his or her preferences,
that the individual’s preferences among available alternatives can be described
by a utility function that depends on the attributes of alternatives and the indi-
vidual, and that the individual selects the alternative with the highest utility.
The utility of an alternative is represented as the sum of two components: a
deterministic component that accounts for systematic effects of observed attrib-
utes on choice, and a random component that accounts for the effects of un-
observed variables that influence choice. The random-utility models then
predict the probability that a randomly selected individual will choose a particular
alternative, given the values of the observed variables and a joint probabili
distribution of the random variables (for example, Manski and McFadden 1981;
Ben-Akiva and Lerman 1985; Ortuzar and Willumsen 1994).

In discrete choice modeling it is assumed that the decisionmaker makes a
choice from the choice set which is usually a subset of the set of all alternatives.
Many questions can be asked about the choice set, such as these: Where does
the choice set come from? Is it known? Is it fixed? How is it selected or how
might it be determined? How might it be modeled given the choice set gener-
ation process? Furthermore, how might the choice be modeled given the choice
process? Choice set modeling is an important issue in discrete choice analysis
because correct estimation of a choice model and correct prediction of choice
probabilities are conditional on correct information about the choice set (Manski
1977; Williams and Ortuzar 1982). It is also a complex issue involving behavior
theories, model structures, computational methods, and data availability. Re-
searchers are increasingly concerned with the choice set issue and have been
developing approaches to solving some of the problems.

In this paper we are concerned with a particular problem, namely, modeling
choice and the choice set when both are the outcomes of a choice process in
which the individual selects the choice set based on his or her preferences.
The work is based on an approach developed by Horowitz (1991) to modeling
choice with endogehous choice sets. This paper has two objectives. The first
objective is to implement and estimate the choice model with endogenous
choice sets proposed by Horowitz. Choice models involving endogenous choice
sets are more complex than conventional choice models. This paper introduces
new methods to compute choice probabilities and to estimate the parameters of
the model. The second objective is to test the model. The model and estimation
methods are first tested using simulation data. The model is then tested in an
empirical application. The empirical test is carried out in a particular choice
context, namely, college choice by high school seniors. College choice is an
example of choice that depends on both spatial and nonspatial variables (for
example, locational college attributes and academic quality) and, as will be
explained later, it has characteristics that make it an ideal context for the pur-
pose. Using the empirical results, the theory of endogenous choice sets is
tested. Furthermore, the results of the new model are compared to those of a
conventional choice model and the consequences of ignoring the dependence
between choice set selection and final choice are explored. In this paper we
consider the case where the choice set can be observed.

The rest of the paper is organized as follows. Section 2 provides a brief
review of approaches to ghoice set modeling. Section 3 defines the choice con-
text and presents the choice model with endogenous choice sets. Section 4 dis-
cusses the computational issues and calibration methods. Section 5 tests the
models and calibration methods in Monte Carlo simulations. Section 6 presents
the application and results of empirical testing. Section 7 gives concluding
comments. '
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2. APPROACHES TO CHOICE SET MODELING

In most applications of random-utility models, the choice set of each individ-
ual is specified by the analyst a priori and is assumed to be fixed. The simplest
approach to choice set specification consists of assuming that the choice set
includes all conceivable alternatives and is the same for all individuals in the
population. These assumptions are, however, often tenuous. For example, a
commuter whose residence and work locations are not served by transit does
not have the option to go to work by transit. An alternative approach is to use
deterministic rules to decide the availability (or unavailability) of a particular
alternative to the individual based on the knowledge and judgment of the
analyst (for example, Ben-Akiva and Lerman 1974; Adler and Ben-Akiva 1976;
Gautschi 1981). For example, in destination choice modeling, the individuals
living in different geographic areas are often assumed to have different choice
sets for the reason that they might be subject to different spatial constraints
(for example, Southworth 1981; Miller and O’Kelly 1983). The specification of
choice sets based on deterministic rules is simple to carry out but can result in
incorrect choice sets. The prespecified choice set may include an alternative
whose choice probability is zero or it may exclude an alternative whose choice
probability is nonzero.

One possible solution to the problem of misspecifying choice sets is to model
the choice set for each individual. In the probabilistic models of choice set gen-
eration, the choice set is considered to be random with a probability distribu-
tion that can be estimated from the data. Although the choice set may be fixed
to the individual, it is random for the modeling purpose because the analyst
does not have perfect information about the choice set generation process and
therefore cannot predict it with certainty. A discrete choice model with random
choice sets can be expressed as (Manski 1977)

P(i) = ) P(i|C)"P(C|G)

ceG

where G is the universal set of alternatives, P(C|G) is the probability that an indi-
vidual's choice set is C,P(i|C) is the probability that alternative i is chosen con-
ditional on choice set C. Similar ideas of decomposing a choice model into two
submodels, a choice set submodel and a choice submodel, are also presented by
Burnett (1980) and Burnett and Hanson (1979, 1980).

A high degree of complexity is implied in the choice models with choice set
generation. The set of choice sets that can be formed from G is the power set of
G, and it contains (2™©) — 1) elements, where m(G) is the number of alterna-
tives in G. For example, 1,023 choice sets can be formed from a universal set
with only ten alternatives. Thus, the number of choice sets is intractably large
when G is large. To make a choice set model useful in applications, it is neces-
sary to place a priori restrictions on the possible choice sets. Usually, P(C|G) is
restricted to a parametric family of distributions. For example, the dogit model
(Gaudry and Dagenais 1979) assumes that an individual is either captive to an
alternative or is free to choose from the full choice set. Random-constraints
models (Swait and Ben-Akiva 1987a, 1987b) use probabilistic constraints to
derive a family of parametric choice set models. See also Boccara (1989) and
Thill and Horowitz (1997).

A search model is proposed by Richardson (1982) in which the choice set is
the result of a sequential search and is not fully known to the individual until
the choice has been made. Meyer (1980) develops a theoretical model of choice
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set generation that incorporates learning in the context of destination choice.
Fotheringham (1983, 1988a, 1988b) suggests a competing-destination model in
which the individual first selects a cluster of similar alternatives and then chooses
from within this cluster. See also Fotheringham and Trew (1993) and Haynes
and Fotheringham (1991). Miron and Lo (1997) propose a destination choice
model that accounts for the selection bias due to correlation between error
terms in the choice set model and the choice model. A more comprehensive
review of choice set modeling, in the context of destination choice, can be
found in Thill (1992).

Conventional random-utility models assume implicitly that the choice set is
independent of the decisionmaker’s preferences conditional on the explanatory
variables of the models. This assumption of independence is implausible in
many choice situations where the decisionmaker chooses his or her choice set.
Horowitz (1991) is concerned with this problem and develops an approach to
modeling choice set selection and modeling choice conditional on endogenous
choice sets. Horowitz’s theoretical framework is presented in the next section.

3. THE CHOICE MODEL
3.1 The Choice Context

The choice context is the one in which the number of alternatives is large,
collection of detailed information about all alternatives is costly, and sequential
search is too time consuming to be feasible. There are many examples such
as automobile choice, residential location choice, and college choice. In those
choice situations, the number of possible alternatives can be very large. There-
fore, it is very costly for an individual to acquire information about all alterna-
tives. A strategy that the individual may apply consists of using easily available
though incomplete information to choose a small subset of alternatives, acquir-
ing detailed information about alternatives in the subset, and finally selecting a
single alternative from this subset. Horowitz (1991) considered these choice sit-
uations and proposed a choice process that may consist of up to three consecu-
tive stages:

(1) Using easily available but incomplete information, the individual selects a
subset D of the set of all possible alternatives.

(2) An external process selects a subset C of D.

(3) The individual chooses a single alternative from C.

In this choice process, the choice set is selected by the individual based on his or
her preferences. Thus, it is called an endogenous choice set. The possibility that
choice may be a multistage process and that the choice set is the outcome of the
choice process seriously complicates the development of choice models, even if
the choice set is observed by the analyst. This is because, when the choice set is
endogenous, the process of generating choice sets and the process of making the
final choice may depend on the same attributes of the individual or alternatives, so
that the two processes are not independent in general. For example, in modeling
migration destination choice, the variable “relatives and friends living there” may
be unobserved by the analyst but influence all stages of the choice process.

3.2 The Theoretical Model

In application of random-utility models, Horowitz (1991) develops a theoret-
ical framework for modeling choice with endogenous choice sets, which encom-
passes the three-stage process. To minimize the complexity of the discussion
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and implementation, in this paper we collapse stages 1 and 2 of the process into
a single stage called choice set generation. The notations are introduced as fol-
lows. Let G be the set of all possible alternatives and C be a subset of G from
which the final choice is made. Thus, C is the choice set. For the example of
automobile choice, G consists of all makes and models of automobiles available
in the market, and C is the set of automobiles that the consumer has test-
driven. Let z; be a vector of attributes of alternative i that are both known to
the individual when selecting C and observed by the analyst, and #; be a random
variable representing variables that are relevant to choice set selection but not
observed by the analyst. Denote U(x;,¢;) the utility of alternative i to the indi-
vidual conditional on attributes that affect final choice, where x; represents
observed attributes and ¢; represents unobserved attributes. Let o and § be con-
stant parameters. Following Horowitz, the probability that choice set C is
chosen is given by

P(C) = Plﬂ(z.-a+m >0), () (za+n <0)|. (1)
ieC i¢C

The joint probability of final choice i and choice set C is

P(i,C) = P[ ﬂ (x:if+ & > Gp + &, i #7), ﬂ(zjoz+r]j > 0),
jeC je€C
(2)
() (zjx+7; < 0)
j¢C .
It follows that the probability of alternative i being chosen conditional on C is

Pli ™\

P(C)

_P(x,-ﬂ+s,->xjﬂ+sj,VjeC;zja+r]jZO,VjeC;zja+r)j<0,Vj¢C)
P(zja +n; > 0,Vj € C;zja +1; < 0,Vj ¢ C)

P(i/C) =

(3)

ifi e C; and P(i|C) = 0 if i ¢ C. In the model of equations (3), the random com-
ponent of the utility function ¢&; is permitted to be correlated with #;, the random
component in the choice set generation function. In other words, the stochastic
dependence of the random component of utility on C makes equation (3) differ
from conventional choice models such as multinominal logit or probit models.

3.3 The Operational Model

Given a specification of the joint distribution of the random variables (e;,7;)
up to a set of constant parameters, «, f in equation (3) and any unknown param-
eters of the distribution of (g,#) can be estimated in principle by the method of
maximum likelihood subject to identification restrictions. The complexity of the
specification that can be dealt with is, however, restricted by computational
considerations. We want an operational model that preserves the essence of
endogenous choice sets (; is correlated with &;) and that is as simple as possi-
ble in order to minimize computational complexities. The implementation is as
follows. Assuming that the two-dimensional random variable (&;,#,) is indepen-



100 / Geographical Analysis

dently distributed across alternatives and ¢; is independently and identically dis-
tributed (IID), equation (3) yields L

[[Pxif+e>xB+e,j#i; zo+n =20, VjeC)

jeC
T PG+, 0)
jeC

P(i/C) =

(4)

In equation (4) the random variables &; and #; for any alternative i may depend on
common unobserved attributes and therefore be correlated. Further assume that

N = 7281 + 7, (5)

where 7; is a random variable that is uncorrelated with ¢;, and y is a scalar param-
eter. Note that, in equation (5), 7, is decomposed into two additive components:
& and 7;. & represents unobserved variables that affect both choice set selection
and the final choice. The random variable 7; represents unobserved attributes
that affect choice set generation but not the final choice. For example, in college
choice modeling, 7; may represent unobserved variables such as expectations
about financial aid that affect choice set generation but not the final choice. The
parameter y reflects differences in scale that may occur at different choice stages
due to changes in the decisionmaker’s information. Substitution of (5) into (4)

yields

I1 P(xiB + & > xB +&,j #iszj0+ y2g5 + 15 = 0)

P(i/Cc) =" (6)

T P(zjaTyzsj + t; >0)
jeC

The probability function of (6) can be evaluated by using either a probability sim-
ulator, or traditional numerical integration techniques. Let the random variables ¢;
and 7, be IID normal and set the variances of ¢ and 7 equal to one by normaliza-
tion. For simplicity of notation, define v; = x;8, w; = z;a, and w} = w;//y*+ 1.
Equation (6) then yields

P(i/C) =

roo & (w; + y%e) H{[(D(v,- —vi+¢) — 1]Pw; + Y2(vi — v +¢)]
—o hPy

N r‘” ®{(; +7)/7*18(1) dr}g(e) de

—wy—y2(v—v;+€)

-1
x [H <p(w;)] ()
j#i

where ®(-) is the normal cumulative distribution function, ¢(-) is the normal prob-
ability distribution function. The derivation of equation (7) is given in the Appen-
dix. Either equation (6) or equation (7) can be used as the operational model for
applications. '
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mum likelihood estimation, is quite large. Thus, as a practical matter, the speed
as well as accuracy of the probability calculation are important. In this section,
the methods of calculating choice probabilities are discussed, the likelihood
functions for estimating the model are defined, and a two-step sequential esti-
mation procedure is proposed. The computationally efficient simulator to be
introduced is also useful to evaluate other probability functions involving multi-
ple integrals such as the multinominal probit model.

4.1 Methods of Calculating Choice Probabilities

Historically, numerical integration has been the most frequently used method
for calculating choice probabilities (Hausman and Wise 1978; Daganzo 1979;
Ben-Akiva and Lerman 1985). It is highly accurate and, if the function involves
a single integral, it is also fast. However, this method has severe limitations in
evaluating multiple integrals because the computational effort increases expo-
nentially with the dimensionality of the integral. Another method for comput-
ing choice probability is numerical approximation. The well-known Clark
approximation (Clark 1961; Daganzo 1979) sequentially approximates the distri-
bution of the maximum of two normal variables by a normal variable with the
mean and variance of this maximum. This method is fast, the computation
effort increasing only quadratically with the number of alternatives in the
choice set. However, the accuracy of the approximation is highly variable. The
method appears to overestimate small probabilities, and its estimation bias can-
not be reduced by increasing sample size (Horowitz, Sparmann, and Daganzo
1982).

An alternative approach is to use Monte Carlo methods to evaluate multiple
integrals in the probability function. This approach approximates the choice prob-
ability by sampling the random variables in the choice model (for example, Ler-
man and Manski 1981; Geweke 1989; McFadden 1989). For any given number
of Monte Carlo draws, the number of operations in the simulation increases
almost linearly with the dimension of the integral. Thus, the simulation method
is much more efficient than the numerical integration method. Moreover, esti-
mation errors in simulations can be reduced by increasing the number of draws
of random variables. In other words, the simulators have good asymptotic prop-
erties. The smooth recursive conditioning (SRC) simulator (Bérsch-Supan and
Hajivassiliou 1993) is especially promising. Like the Stern (1992) simulator, the
SRC simulator is unbiased, bounded between zero and unity, and smoothed.
Moreover, it can simulate choice probabilities more accurately than the Stern simu-
lator. The use of the SRC simulator in maximum likelihood estimation is easy,
simply adding the simulator as a user subroutine to a standard maximum like-
lihood estimation software. The maximum likelihood estimation with smoothed
probability simulator is called smooth simulated maximum likelihood (SSML)
estimation.

4.2 The Conditional Likelihood Function

To estimate the parameters of the model using the method of maximum like-
lihood estimation (MLE), the log likelihood function must be specified. Let N
be the sample size. The log likelihood function of the choice model conditional
on endogenous choice sets'is

N
InL 2 Zym In P(in |Cy, Zin, Xin, @, B, ), (8)

n=1 ieC
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where y;, is a choice indicator, which is equal to 1, if individual n has chosen
alternative i, and equal to 0 otherwise. One way to obtain the estimates dv, By
and j, is to maximize and solve equation (8). However, this approach to estimat-
ing the model does not work. The results of numerical experiments, which will be
presented later, show that the estimates of dy and j obtained from maximizing
(8) are highly erroneous. There might be identification problems with the param-
eters if information about the alternatives not in the choice set is not utilized.
Thus, we use an alternative approach to obtaining the parameter estimates, which
is discussed below.

4.3 The Joint Likelihood Function and Sequential Estimation

The alternative approach is to maximize a joint likelihood function, in which
the information about the alternatives not in the choice set is utilized. The joint
likelihood function is given by

N
InL = ZlnP(im Cnlzimximavﬂ’ )’)

n=1

ln[P(iﬂ |szimxim o, ﬂ, Y)P(Cn |G1 Ziny a)]

I
z _ﬁ_Mz

N

= Z Z In P(i,|Cpy Zins Xin, %, B, 7) +Z Z In P(Cy |G, Zin, @)- 9)

n=1 ieC, n=1C,cG

Equation (9) involves two likelihood functions: the likelihood function of the
choice model and the likelihood function of a choice set model. Since the choice
set model uses alternatives in and out of the choice set, it helps avoid the iden-
tification problem. Two methods can be used to estimate the parameters of the
choice model. Although full information maximum likelihood (FIML) estimation
can maximize (9) in one step, it is computationally burdensome. For this reason, we
employ an alternative estimation procedure, termed sequential estimation.

In sequential estimation, we first maximize the likelihood function of the
choice set model to get &, the estimate of «; and then, insert & into the likeli-
hood function of the choice model and maximize the second function to obtain
estimates of # and 7. The log likelihood of the choice set model is

Ny

InLy=Y_ Y InP(Ca|Dpzin, ), (10)

n=1 C,eD,

where N is the size of the sample for estimating a, and P(C,|Dn, %, a) is the
probability that individual n chooses choice set C,, conditional on set D, which
is a subset of the set of all alternatives. The reason for using only a subset is to
make the choice set model computationally tractable. The choice set model (Dai
1995) is

_P(Cy)
P(Ca) +E(C3)
T ®(wn) I1 [t - ®(w},)

TT ®(wi) 11 11— @)l + 11 @(w}) 1] 11— Pwi))’
jecCy ieC; j€Ca

ieCy,

P(Cnan) =

(11)
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where C, is the individual’s choice set, C* is a set of alternatives selected
randomly from the set {G —C,}, and D, = {C,, C;}. This choice set model
requires C, and C} to be the same size in order to have the uniform conditioning
property (McFadden 1978) hold. The second log likelihood for maximizing over f
and y is given by

N,
InLy =" > yulnP(in|Cn,%in, in, B, 7), (12)

n=] ieC

where wy, = 21,4, and Ny is the size of the sample used in the second-step estima-
tion. Given equations (10), (11), and (12), the sequential estimation procedure
consists of two steps:

(1) Estimate the parameter vector a by applying MLE to the choice set model,
P(C,|Dy,2,, ). Denote the estimates by 4.

(2) Compute wy, = 24, for all i € C,,. Use wy, as a separate independent vari-
able to estimate the parameter vector # and scalar y.

The estimates obtained from this procedure are consistent and asymptotically
normal. The proof of consistency of a estimated using equation (11) is given in
Dai (1995). The proof of consistency and asymptotic normality for the rest of the
parameters is standard (for example, Amemiya 1985; Judge et al., 1985). Note that
the variance-covariance matrix of the estimates obtained in step 2 cannot be esti-
mated consistently using the usual formulae involving second derivatives of the
log-likelihood function or the outer-product of the gradient. This problem is similar
to that of sequential estimation of nested logit models (Amemiya 1978; McFadden
1981). The corrected asymptotic variance-covariance matrix of the sequential esti-
mators is given by Dai (1995).

5. NUMERICAL EXPERIMENTS

The objectives of the numerical experiments are twofold: (1) to assess the
accuracy of the probability simulator and the simulated maximum likelihood
estimators; and (2) to evaluate the performance of the models and the estima-
tion procedure. We want to know if the SRC simulator can produce estimates
of the choice probabilities as accurate as those by numerical integration. We
would like to see if the models and estimation methods work and how well
they perform.

Equation (6) is used for obtaining the simulated probabilities and equation
(7) is used for numerical integration. To compute the choice probabilities, it
is necessary to specify the values of the parameters and explanatory variables
in the model. The simplest example that can be constructed consists of the
three parameters 6 = [, 8,7]' and two explanatory variables, z and x, observed
attributes relevant to choice set selection and final choice, respectively. Let
5 be the size of the choice set, Av=Axf=[1,05,05]" and w=za=
[—0.24, —0.24, —0.24, —0.24]) .The choice probabilities are computed, and the
results are presented in Table 1. The empirical distributions of the simulated
probabilities are based on one hundred simulations. Within each simulation
the random variables are sampled R times. Table 1 shows that, even with only
twenty Monte Carlo draws, the simulated probabilities (mean = 0.44085 and
S.D.= 0.03100) are close to that by numerical integration (0.43970). Further-
more, the accuracy of the simulated probability estimates can always be
increased by using a larger number of draws. The SRC simulator produces
good results.
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TABLE 1

Distribution of the Probability Simulator

,  R=10 R=20 R=50 R=100
Simulated Probability
Mean 0.44304 0.44085 0.44125 0.44098
Standard Deviation 0.04090 0.03100 0.01996 0.01380

“True” probability = 0.43970
Av = Axf = [1,0.5,0.5]' and w = [~0.24, —0.24, —0.24, —0.24]'

To examine the Ferformance of the simulated maximum likelihood estimates,
the same set up of three parameters and two explanatory variables is used. In
addition, two functions are employed to generate the data sets:

* Choice set generation function:
ic = l(za+y% + 1, > 0,i e G)
* Choice function:
yi = L + & > xf + ¢,Vj € C,i # )

Using the two functions, the data are generated in three steps:

Step 1. Specify the true values of the parameter vector and generate variables.
The specified parameter vector is 8y = [0, By, 7o) = [—0.4,1.0, 0.5]".
These values are chosen to obtain choice sets of reasonable size and
choice probabilities of reasonable magnitude. The explanatory vari-
ables are realized as IID standard normal random variables. For each
sample, the random variables 7 and ¢ are drawn from IID standard nor-
mal distributions.

Step 2. Use the choice set generation function to obtain the choice set for
eachobservation. The size of the master choice set G is set to be 16.
The size of choice set C, is allowed to vary from 2 to 7 and is drawn
from G. For sequential estimation, a second set C}, is drawn from the
set {G — C,.}. The elements in C, and C;, are mutually exclusive. The
range of 2 to 7 is chosen because 2 is the minimum size of a choice set
and the double of 7 is smaller than 16.

Step 3. Use the choice function to generate choice from choice set C, for each
observation.

The parameters are estimated using the smooth simulated maximum likelihood
(SSML) estimation method. The choice probabilities are estimated by the SRC
simulator with one hundred Monte Carlo draws for each observation. The experi-
ments are repeated forty times for each of the likelihood functions. The estimation
results are presented in Table 2. The first part of the table presents the means and
standard deviations of the estimates computed using the conditional likelihood
function defined in equation (8). The second part gives the results of sequential
estimation using likelihood functions (10) and (12). The third part shows the true
values. ‘

The conditional likelihood function clearly produces biased estimates of « and
7. The results of sequential estimation using tie likelihood functions in (10) and
(12) are much better. The mean value of & is —0.4124, which is close to the true
value —0.4000. The standard deviation is small (0.0494). These suggest that the
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TABLE 2
Distribution of the SSML Estimates

(1) SSML estimates based on the conditional likelihood function
i ; j
Mean —0.1852 0.9348 0.6692
S.D. 1.7637 0.1764 0.4215

(2) SSML estimates based on the joint likelihood function-Sequential estimation
Step 1
i

Mean —-0.4124
S.D. 0.0494
Step 2 N
7
Mean 1.0051 0.5500
S.D. 0.1113 0.2373
(3) True values
) Bo Yo
— {04000 1.0000 0.5000

choice set model works well. The estimates obtained from the second step of
estimation are also good. The mean values of estimated § and y are [1.0051
0.5500], close to the true values [1.0000 0.5000], and the standard deviations
are smaller than those obtained from the conditional likelihood function. The
results indicate that the joint log-likelihood function and the sequential estima-
tion method work very well.

6. EMPIRICAL APPLICATION
6.1 The Choice Context—College Choice

The objective of the empirical work is to test the choice model with endoge-
nous choice sets using real world data. The empirical study is conducted in a
particular choice context, namely, college choice by college-bound high school
seniors. College choice provides an ideal context for the empirical application.
There are at least two reasons for this. First, college choice data are readily
available. To investigate the external validity of choice models based on labora-
tory choice experiments, Horowitz and Louviere (1990) have collected data on
college choice in cooperation with the American College Testing Program
(ACT). We have access to the data sets at no cost. In contrast, acquisition of
real world data with similar quality for other choices (for example, automobile
choice, residential location choice) could cost large amounts of money if the data
could be acquired at all. Second, college choice by high school seniors does not
involve certain complications that can be present in models of other choices.
For example, college choice is clearly a multistage choice process (that is, appli-
cation, admission, and final choice) and the choice set (the set of colleges to
which the student has been admitted) is readily observable.

6.2 Data and Variables

The college choice data sets were collected during 1987 to 1988. A survc:,f' of
a random sample of 1,265 ACT-tested high school seniors was conducted by
mail to determine the colleges to which each of the seniors had been admit-
ted, the amount of financial aid each senior had received, and the college the
senior had chosen to attend. The survey was conducted in the fall, after the
students had enrolled in their chosen colleges. This survey plus an ACT sup-
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TABLE 3
Definition of Variables
Symbol Definition
TUI Annual tuition in dollars
BMBD  Annual cost of room and board in dollars
FIN Financial aid received in dollars
ws Dummy variable equal to 1 if work study is available, 0 otherwise
DIST Distance from student’s home to college in miles
TLSTU  Total students enrolled in the college
POP Population of the city or town in which the college is located

HSEL  Dummy variable equal to 1 if the average ACT composite score or SAT total score
of entering freshmen exceeds 90% of the scores of other students in the nation,
0 otherwise

MSEL  Dummy variable equal to 1 if the average ACT composite score or SAT total score of
entering freshmen exceeds 50% of the scores of other students in the nation but less
than those of the top 10% of students, 0 otherwise

LSEL Dummy variable equal to 1 if the average ACT composite score or SAT total score
of entering freshmen is less than 50% of the scores of other students in the nation,

0 otherwise
FOUR  Dummy variable equal to 1 for four-year or more college and 0 otherwise
BA Dummy variable equal to 1 if the highest degree offered is the B.A. or B.S., 0 otherwise
MA Dummy variable equal to 1 if the highest degree offered is the M.A. or M.S., 0 otherwise

SPORT  Dummy variable equal to 1 if the college is in NCAA division 1 or 1A for football or
basketball and 0 otherwise
PRIV Dummy variable equal to 1 if the college is private, 0 otherwise
COLD  Dummy variable equal to 1 if the average daily maximum temperature in January is
below 32F and 0 otherwise _
MILD  Dummy variable equal to 1 if the average daily maximum temperature in January is
between 32 and 45F
ACTS The student’s ACT composite score
FINC The student’s family income in 1987 dollars
0= Less than $6,000,
1=$6,000 to 11,999, 2=$12,000 to $17,999,
3=$18,000 to 23,999, 4 = $24,000 to $29,999,
5 =$30,000 to 35,999, 6 = $36,000 to $41,999,
7 = $42,000 to 49,999, 8 =$50,000 to $59,999,
9 =$60,000 and over.
ENW Dummy variable equal to 1 if the student expected not to work during first year of
college

plemental survey yielded 602 responses, of which 302 observations are usable
for this study. The data include a number of attributes of the students and the
colleges in their choice sets. These attributes represent factors appearing to be
important in college choice, such as college cost and financial aid, selectivity on
admission, students’ academic aptitude, and family income. The attributes are
coded into twenty variables, which are defined in Table 3. In choice modeling,
the variables representing individual attributes are usually used in interaction
terms with attributes of the alternatives. The interaction variables used in this
study are defined in Table 4. A detailed discussion of the data collection pro-
cess can be found in Horowitz and Louviere (1990). Discussions of variables
affecting college choice are referred to by Chapman (1981); Manski and Wise
(1983); Cook and Zallocco (1983); Erdman (1983); Hearn (1984, 1991); Hossler,
Braxton, and Coopersmith (1989); Sanders (1990); Dixon and Martin (1991);
Flint (1991, 1993); Rickman and Green (1993).

6.3 Estimation and Testing

The coefficients in the choice model with endogenous choice sets are esti-
mated using the two-step sequential estimation procedure discussed in section
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TABLE 4
Definition of Interaction Variables ,
Symbol Definition
HACT Dummy variable equal to 1 if the student’s composite ACT score is equal to or
greater than 26, 0 otherwise
MACT Dummy variable equal to 1 if the student’s composite ACT score is between 19

and 25, 0 otherwise

Dummy variable equal to 1 if the student’s composite ACT score is equal to or
less than 18, 0 otherwise

Dummy variable equal to 1 if family income is equal to or higher than $42,000,

0 otherwise
MINC Dummy variable equal to 1 if family income is between $24,000 and $41,999,
0 otherwise
LINC Dummy variable equal to 1 if family income is less than $24,000, 0 otherwise
D30 Dummy variable equal to 1 if distance from student’s home location to college

location is greater than 30 miles, 0 otherwise
HSEL'HACT  Higher selectivity times higher ACT composite score
HSEL’MACT  Higher selectivity times medium ACT composite score
MSEL*MACT  Medium selectivity times medium ACT composite score
LSEL*HACT  Lower selectivity times higher ACT composite score
PRIV*HACT Private college times higher ACT composite score
PRIV'ENW Private college times expected not to work
PRIV*HINC Private college times higher family income
RBC*D30 Room and board cost times distance greater than 30 miles

3.3. In this procedure the parameters affecting choice set generation are esti-
mated first by sampling choice sets [see equations (10) and (11)]. Conditional
on those estimates, the rest of the parameters in the model are estimated
[equation (12)]. The choice probabilities are computed using the smooth recur-
sive conditioning simulator with one hundred Monte Carlo draws for each
observation. The results from the first estimation step are presented in Table
5, and the results from the second step are shown in Table 6. Reported in the
tables are parameter estimates and their (asymptotic) standard errors and values
of the ¢t statistic.

All estimates have expected signs and most of them are statistically significant
at the 0.05 significance level. Note that a positive value of an estimate indicates
a positive relationship between the dependent variable and the corresponding
explanatory variable, and a negative value vice versa. We first examine the
estimated parameters that affect choice-set selection (see Table 5) and then
those affecting final choice (see Table 6). The coefficients associated with
HSEL*HACT and LSEL*HACT have opposite signs with the former being pos-
itive and the latter being negative. This suggests that students with higher ACT
scores are more likely to apply for colleges with higher selectivity and unlikely
to apply for those that admit almost everyone, other things being equal. The
positive values with MSEL*MACT and HSEL*MACT indicate that students
with medium ACT scores tend to choose to apply to moderately and highly
selective colleges. It may also imply that the highly selective colleges are likely
to admit students not only in the higher ACT score group but also in the me-
dium ACT score groups. The coefficients of PRIV*HACT and PRIV*ENW sug-
gest that private colleges are likely to be in the choice sets of those students
who have higher ACT scores and who do not expect, at the time of applica-
tion, to work during the first year of college. The signs of FOUR and TUI sug-
gest that the students are more interested in four-year colleges than two-year
ones, and that students are less likely to include colleges with higher tuition
into their choice sets, other things being equal.
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TABLE 5
Results of First-Stage Estimation

Parameter i

No. Variable Estim:te A;)t';np:ztlc #valaa
HSELTHACT

LSEL*HACT

MSEL*MACT

HSEL*MACT

PRIV*HACT

PRIV*ENW

FOUR

TUI

First-Stage Summary
Number of observation = 287
Number of cases = 1,684

L(a =0) = —198.93

L{a) = —87.78

—2[L(a ='0) — L(a = &)] = 222.3

QDU WD -

TABLE 6
Results of Second-Stage Estimation Using Simulated Likelihood
Parameter Asymptotic
No. Variable Estimates Std. err. t stat.
Y AlD
10 wSs
11 TUI
12 RBC*D30
13 BA
14 COLD
15 PRIV*HINC
16 LSEL
17 Gamma

Second-stage summ

Number of observations = 226
Number of cases = 659
L(y=05,8=0,a = & = —230.00
L*(y =58 =j,a=d) = —191.80
~9[L — L*] = 76.41

Combined model summary
L(y=05,8=0,a = 0) = —428.92
L'(y =8 =7a=4d) = -279.58

In the final stage of the choice process, a student selects a college to attend
from the ones that have admitted him or her. The coeficients related to final
choice are shown in Table 6. The coefficients of financial aid variables have
expected positive signs and those of cost variables have expected negative
signs. Specifically, the coefficient for the room and board cost variable has a
significantly negative effect on an alternative’s utility only when home-to-college
distance is beyond a certaip distance (thirty miles in this case). The signs of the
remaining parameters suggest that, other things being equal, students from
higher-income families are more likely to attend private colleges than those
from lower-income families, students are less likely to choose a college that
has low selectivity and offers no degrees higher than the baccalaureate, and stu-
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dents are also less likely to attend a college located in areas where winter is very
cold. The results are consistent with the findings of previous research in college
choice (for example, Manski and Wise 1983; Hearn 1991; Flint 1991). Other
variables in the data are also tried in model specifications. Those variables
include the college’s involvement in major sports, college size, and the size of
the city or town in which the college is located. It turns out that additional vari-
ables contribute little to increasing the likelihood values. Therefore, they are
not included in the final model.

The coefficients in a random-utility model are measures of marginal utilities
of the corresponding variables. A simple economic hypothesis is that the mar-
ginal utilities of financial aid variables are equal to the marginal disutilities of
schooling cost variables. It is expected that a student would be indifferent in
choosing a college to attend if the college gives the student an extra dollar in
financial and increases the cost of attending that college by an extra dollar.
In technical terms, the sum of coeflicients of financial aid and cost variables
should be approximately equal to zero. Thus, one way to check the estimation
results is to test the null hypothesis that

(Bap + Bws) — (Brur + Brec'px) 0,

where the coefficients for cost variables have negative values. The test statistic has
chi-square distribution with one degree of freedom. The critical value for the test
at the 0.05 significance level is 3.841 and the computed test value is 0.8181. Thus,
the null hypothesis is not rejected, indicating that the estimation results are con-
sistent with the expectation.

Using the estimation results, the hypothesis of endogenous choice sets can be
tested easily. The null hypothesis is that choice set selection and final choice are
independent in college choice. This is equivalent to testing that the coefficient
of gamma is zero. The test statistic is the ¢ test. Table 6 shows that the ¢ value
for gamma is 2.114. Thus, the null hypothesis is rejected at the 0.05 significance
level. This provides empirical evidence that in college choice the choice set is
indeed endogenous and that a model of college choice without considering the
endogeneity of choice sets would have been misspecified.

6.4 Comparison with a Conventional Choice Model

We now examine the differences in estimated coefficients and in prediction
between the new model and a conventional choice model. It can be shown
(see Appendix) that the new model reduces to an identity probit model when
the choice sets are exogenous. Thus, the identity probit model is chosen as the
alternative model for comparison. Using the same data and same specification
of the systematic component of the utility function for the new model, an iden-
tity probit model of college choice is estimated and the results are presented in
Table 7. The differences between the two models in estimated parameter values
are shown in Table 8. The probit model has fewer parameters than the new
model since it ignores choice set selection. Of the parameters that are common
to both models, the estimates have same signs but different values. It seems
that the probit model consistently underestimates the values of parameters
with a positive sign and overestjmates those with a negative sign. The fractional
differences between pairs of estimates from the two models range from 24 to 67
percent. Recall that the hypothesis in equation (15) is not rejected using the
results of the new model. However, the hypothesis is now rejected using the
results of the probit model. The test value computed using the probit model is
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TABLE 7
Estimation Results of the Identity Probit Model
Parameter i
No. : Variable Estimates A;)":P:::lc t stat.
1 AID
2 ws
3 TUI
4 RBC*D30
5 BA
6 COLD
7 PRIV*HINC
8 LSEL
Model summa
Number of observations = 226
Number of cases = 659
L(b = 0) = -230.00
L*(b = f) = —192.47
—2[L - L*} = 75.06
TABLE 8
Differences in Estimated Parameter Values
Estimated Parameters _Di-ﬂ'erencv B
(New Model) {Probit)
Variable Name Bl £ g2 - f1 100 (f2 - BL)/A1
2.9106 2.1198
0.6227 0.4462
-1.0874 —0.5544
-1.3127 -1.0030
—0.4324 —0.3268
-0.7039 —-0.5039
0.8693 0.6128
—-0.2594 -0.0845

7.6254, which is larger than the critical value (3.841) at the 0.05 significance
level.

The differences in estimated coefficients do matter in choice analysis and in
prediction because different coefficient values mean different marginal utilities
of the corresponding variables in the models. The ratio of one coefficient to
another measures the marginal rate of substitution (MRS) between one college
attribute and another. For example, the ratio of marginal utility of low selectiv-
ity (LSEL) to the marginal utility of tuition (TUI) indicates the average student’s
trade-off between these two variables. The new model suggests that, on aver-
age, about a $2,400 deduction in tuition is needed to compensate a student for
going to a school with low selectivity, while the number estimated from the
probit model is only about $1,500. Similarly, the new model indicates that
about a $2,000 decrease in room and board cost is needed to compensate a
student for attending a lower-selective college, whereas the value given by the
probit model is about $800. These examples show that students’” willingness
to pay inferred from the two models with and without endogenous choice sets
are quite different.

Finally, the differences between the two models in prediction are assessed.
Conventionally, aggregate demand for each alternative is predicted using com-
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peting models and then differences in aggregate demand are examined. How-
ever, aggregate demand for each alternative cannot be computed in this case
because in the data set the number of alternatives (colleges) is larger than the
number of students and few students share a given choice set. Thus, we can

only compare predicted choice probabilities at the individual student level.
Define

IP:n —Pm
o= 3 Tl

where P;, and Py, are the choice probabilities of student n choosing alternative i,
computed by the probit model and the new model, respectively. d, is the frac-
tional difference between the two predicted probabilities summed over all alterna-
tives in the choice set C,. I, is the size of C,, and ¢, is the average fractional
difference in predicting the probability that a particular alternative is chosen.
We call d, the cumulative fractional difference and e, the average fractional
difference.

Three scenarios are developed for evaluating the distributions of d and e. In
the first scenario, no values of the explanatory variables are changed. Thus,
the predictions are based on existing conditions. In the second scenario, it is
assumed that the amount of financial aid from the student’s chosen college is
increased by $2,000. In the third scenario, it is supposed that the chosen col-
lege reduces tuition by 50 percent as well as increases the amount of financial
aid by $2,000. The purpose of the last two scenarios is to examine the differences
between predictions by the two models when one or more of the explanatory
variables change in values. Notice that in the new model the change in college
attributes will not affect C, and/or I,. What will change are P(C,), the probabil-
ity that C, is chosen, and of course, Pi,, the probability that alternative i is
chosen conditional on C,,.

The distributions of the cumulative fractional differences and average fractional
differences in predicted choice probabilities computed from the two models are
shown in Table 9. The distributions are based on 226 observations. In the table,
dl, d2, d3, and el, €2, €3 represent the distributions of the differences based
on scenarios 1, 2, and 3, respectively. In scenario 1, the medians of the two
distributions (dl,el) are 0.3702 and 0.1358. It indicates that, on average, the

TABLE 9 .
Distribution of Fractional Difference in Prediction

(1) Cumulative Fractional Difference

Percentile dl d2 d3
25 0.1772 0.3094 0.6359
Median 0.3702 0.6123 1.1510
75 0.7371 1.2423 2.2593
(2) Average Fractional Difference
Percentile ‘el e2 el
25 0.0634 0.1298 0.2637
Median 0.1358 0.2262 0.4159

75 0.2453 0.4002 0.6973
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fractional difference is about 37 percent per observation, and approximately 14
percent per alternative. The differences are increased noticeably in scenarios 2
and 3, where predictions are made for changes in the financial aid and tuition vari-
ables. In scenario 2, the median values of d and e are 0.6123 and 0.2262, sug-
gesting that the differences in prediction increase to 61 percent per observation
and 23 percent per alternative, on average. In scenario 3, the average differences
in d and e are about 115 percent and 42 percent, as a result of assuming an
increase in the amount of financial aid and a decrease in tuition by the college
the students chose to attend. Those results show that predictions by models
with and without endogenous choice sets can be very different, especially when
one or more of the explanatory variables have changed values.

7. CONCLUSIONS

In this paper a new choice model with endogenous choice sets has been esti-
mated and tested. Choice models with endogenous choice sets are more complex
both analytically and computationally than are conventional choice models. To
estimate the model new calibration methods are introduced. In particular, the
paper shows that the SRC simulator and the SSML estimation are promising:
they are fast, accurate, efficient, and easy to use. These new methods are use-
ful not only for calibrating this model but also other choice models with com-
plex structures such as the multinominal probit model. Furthermore, a joint
likelihood function and a two-step sequential estimation procedure are devel-
oped to estimate the parameters of the model. The results of numerical experi-
ments show that the model, calibration methods, and estimation procedure
work well.

The model is further tested in an empirical application, namely, college
choice by high school seniors. The model fits the college choice data well. The
empirical results are used to test the theory of endogenous choice sets. The test
results show that, in college choice, choice set selection and final choice are not
independent. The college choice model would have been misspecified if the
endogeneity of choice sets were ignored in the modeling. Furthermore, the
new model is compared with a conventional choice model in which choice sets
are assumed to be exogenous. The results show that students’ willingness to pay
inferred from the two models is different and choice probabilities predicted by
the two models are very different. The empirical evidence strongly suggests that
ignoring the endogeneity of choice sets in choice modeling can have serious
consequences in applications.

In implementing the theoretical model, this paper has made several simplify-
ing assumptions. Some of the restrictive assumptions can be relaxed without
making the model computationally intractable. For example, it is not difficult
to extend the operational model to a choice process with two-stage choice set
generation, thanks to the probability simulator. Some other assumptions, for
instance, that the random variables influencing choice set selection are indepen-
dent across alternatives, are very difficult to remove. In some applications the
choice set may be difficult to identify or observe. These problems have not been
dealt with in’ this paper and are treated as topics for further research. This
paper is but a first step in implementing and applying this new choice model
with endogenous choice sets. We intend to explore the possibility for the
model to become an important element of several urban theories. For example,
the model can be used in the study of urban housing markets and residential
location choice, where it is well established that the two/three-stage choice pro-
cess is common practice.
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APPENDIX
Derivation of the Choice Model in Equation (7)

The probability that alternative i is chosen conditional on choice set C is
given by

P(vi+& >v+¢,YjeC,j #i;w;+y%+1,>0,VjeC)
P(WJ+}’28j+‘l'j >0,VjEC)

P(i|C) =

We derive P; first. Let P; be conditional on ¢ and 7; for all je C and i #j to
obtain

P, =P(g < vi —vj+ &57% > —1j — wj; 1 > —w; — ye))

T; + w;
=P(r,->—w,-——y2£,-) HP[— ]‘}’2 ]<8j<v,-—vj+e,-].
j#i

Assume ¢g;s and 7; are iid normal, and let 1(A) be an indicator function which takes
value 1, if A occurs, and 0 otherwise. Then,

e o( 229 [ (2225) -o( 252
Ot J¢' ae 7 aE

% 1 ‘L3+wj<vi—\zj+ei
2 O

o2 o) (5]
a‘l.' ];é' aE },208

y2
X 1|:‘l}> *Wj—;(\’,‘—\{i'{'&)]}
€

where ®( ) is the normal cumulative distribution function. We first integrate over
the distributions of the ;s (j # i) to obtain

n=ofet P [I[ @y rael

- O (5 +wy)/Y*al} x (1/a:)4(1/0:) dr,

where #( ) is the normal probability density function. Notice that g, and o, are
unidentifiable in (A4). Setting g; = 0. = 1 by normalization and finishing the
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Horowitz (1991) points out that the choice model with endogenous choice sets
reduces to a conventional choice model if choice set generation is independent
of final choice. Thus, the model in (A9) should reduce to an identity probit model
if y approaches 0. This is one way to verify the model. As y — 0, the term in the
inner integral of equation (A9) becomes

T4+ w,
(D( > f) = 1(z +w; > 0)

= Jw 1(r +w; > 0)¢(7)dr

—wy

jww $(r)de Ow,) (A10)

Using (A10) and setting y 0, equation (A9) reduces to

11 o) j [[oi—y+e

P(i|C B
Joo [H(V‘ _vj+s)} () de, (All
=~ | j##i

which is, indeed, an identity probit model.
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