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PREFACE 

This report documents work performed by Pacific Northwest National Laboratory for the 
California Institute for Energy Efficiency under subcontract PODR01-X08 between The Regents 
of the University of California and Battelle, Acting on behalf of Pacific Northwest National 
Laboratory. 

 

 

 

 

 

DISCLAIMER 

 

This report was prepared as the result of work sponsored by the California Energy 
Commission. It does not necessarily represent the views of the Energy Commission, its 
employees or the State of California. The Energy Commission, the State of California, its 
employees, contractors and subcontractors make no warrant, express or implied, and 
assume no legal liability for the information in this report; nor does any party represent 
that the uses of this information will not infringe upon privately owned rights. This 
report has not been approved or disapproved by the California Energy Commission nor 
has the California Energy Commission passed upon the accuracy or adequacy of the 
information in this report. 
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ABSTRACT 

This report documents original research by the Pacific Northwest National Laboratory (PNNL) 
for the California Institute for Energy and Environment on self-correcting controls for variable-
air-volume (VAV) heating, ventilating and air-conditioning (HVAC) systems and focuses 
specifically on air handling  and VAV box components of the air side of the system.  A complete 
set of faults for these components was compiled and a fault mode analysis was performed to 
understand the detectable symptoms of the faults and the chain of causation.  A set of 26 
algorithms was developed to facilitate the automatic correction of these faults in typical 
commercial VAV systems.  These algorithms include training tests that are used during 
commissioning to develop models of normal system operation, passive diagnostics used to 
detect the symptoms of faults, proactive diagnostics used to diagnose the cause of a fault, and 
fault correction algorithms.  Of the 26 algorithms, 10 were implemented in a prototype software 
package that interfaces with a test bed facility at PNNL’s Richland, WA, laboratory.  
Measurement bias faults were instigated in the supply-air temperature sensor and the supply-
air flow meter to test the algorithms developed.  The algorithms, as implemented in the 
laboratory software, correctly detected, diagnosed and corrected faults in most cases tested.  An 
economic and impact assessment was performed for deployment of self-correcting controls in 
California.  Assuming 15% HVAC energy savings and a modeled deployment profile, 3.1 TBtu 
to 5.8 TBtu of energy savings are possible by year 15 of deployment. 

 

 

Keywords: California Energy Commission, PNNL, self-correcting controls, VAV, faults, fault 
detection and diagnosis 
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EXECUTIVE SUMMARY 
The Pacific Northwest National Laboratory (PNNL) performed research for the California 
Institute for Energy and Environment (CIEE) in self-correcting controls for commercial building 
VAV systems.   The work included identification and analysis of fault modes and their 
symptoms, developing algorithms for the four steps of the process leading to automated 
correction of faults not requiring human intervention to physically repair or replace a system 
component, coding a selected subset of the algorithms in prototype laboratory-grade software, 
and laboratory testing.  These steps in the process include training to capture relationships 
among key variables, fault detection, fault diagnosis (which is also known as fault isolation), 
and fault correction.  The remainder of this executive summary briefly describes the work 
performed and key results and is organized in parallel to the chapter structure of the report.   

 

Identify Faults 
A comprehensive list of faults that affect VAV systems was developed and mapped to their 
potential  causes to facilitate the development of algorithms.  The list of faults was developed in  
a brainstorming session that brought together several experts with experience in diagnosing 
faults in HVAC systems and developing automated HVAC control and fault detection and 
diagnostic (FDD) systems. The faults were categorized as hard (physical) or soft (software) 
component faults.  The components for which faults were identified include temperature, 
pressure, and air-flow rate sensors, valves, dampers, fans, filters, coils, economizers, VAV 
boxes, and supply-fan controls.   Through a process called fault mode analysis, these faults were 
mapped to observable symptoms, which are indicators of deviations from expected system 
behavior.  Some of these symptoms are easily observable (for example, if the measured supply-
air temperature is colder than the mixed-air temperature when the coiling-cool valve in an air-
handler has been commanded closed.)  Other faults require the development of more complex 
models to empirically define normal operating conditions.   

A total of 28 faults were identified that can be diagnosed in the air-handler (filter/fan/coil) and 
VAV-box sections of the air side of VAV systems in this set of algorithms.  Of these, 18 are 
automatically correctable soft faults, and 10 are hard faults that require physical repair or 
replacement.   

 

Development of Self-correction Methods and Algorithms 
Based on physical principles, equipment design, and the insights gained from the fault-mode 
analysis, a set of rule-based algorithms was developed to facilitate automatic correction of the 
identified faults.  The structure for these algorithms is the same structure used previously by 
PNNL in development of self-correcting controls for the mixing-box section of air handlers.  
This structure is a four-step process to fault correction.  The first step, training, establishes the 
normal range for a set of variables and quantitative empirical relationships among some for 
later use in fault detection and diagnosis.  The next step, passive fault detection (or passive 
diagnostics) uses observation of fault symptoms during ordinary operation to detect when a 
fault has occurred.  After a fault is detected, proactive diagnostics (tests) are used to isolate 
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which of potentially several possible faults was responsible for the observed symptom.  This 
typically requires more information than is available from normal operation of the system, so 
specific diagnostic tests are run to create situations that provide additional data and 
information.  After the fault has been isolated, the fault correction process characterizes the fault 
(e.g., the magnitude of a constant bias in a sensor output rather than erratic, constantly 
changing, sensor output), formulates a mathematical description of the fault, and then subtracts 
the fault to compensate the behavior of the faulty device.   The correction is implemented via a 
virtual point (e.g., sensor output, control signal, etc.).  The algorithms are documented in detail 
in a companion report identified in the reference list of this report as Fernandez et al. 2011. 

 

Implementation of Algorithms in Software Code and Integration with 
the Control System 
The algorithms were successfully coded in prototype software using the Jython programming 
language (a hybrid of Java and Python).  A subset of the full suite of algorithms was coded.  
Priority was given to the development of all four steps of the fault-correction process for two 
key soft faults:  biased supply-air flow-rate sensors and biased supply-air temperature sensors.  
The software was integrated with a Johnson Metasys Building Automation System, using 
Factory Plant Management Interface (FPMI) software.  The software uses two sets of virtual 
points for sensors.  The first enables simulation of sensor faults through virtual sensor points 
that the control system reads in lieu of the direct sensor measurements.  These virtual sensor 
points enable instigation of faults without damaging equipment and the outputs of these virtual 
sensors exhibit the characteristics of the fault of interest.  The other virtual sensor points enable 
application of corrections developed by the self-correcting algorithms to the faulty sensor 
signals to create corrected sensor signals that replace erroneous values to the control algorithms.   

 

Laboratory Testing of the Self-Correcting Software 
Six laboratory tests were performed.  Three tests of supply-air flow-rate sensor bias and three 
tests of biased supply-air temperature sensors were performed.  The three tests for each fault 
were used to investigate differences in the outcome of the test as functions of fault severity and 
the values of key selectable thresholds for fault detection.  The tests were each initiated with a 5-
minute period of fault-free operation, during which no faults were detected.  In all tests, the 
passive diagnostic tests successfully detected a fault soon after its instigation.  In four tests, the 
fault was correctly diagnosed, and automatically corrected approximately to the level of the 
instigated bias.  Faults with low severity and higher detection thresholds presented problems, 
which led to an inconclusive result for one test of the biased supply-air temperature sensor and 
an incorrect fault determination for one test for the biased supply-air flow-rate sensor.  Modest 
changes in the algorithms are proposed to account for these issues.  All methods for fault 
detection and diagnosis impose a tradeoff between sensitivity and false positive fault detection.  
Generally, as sensitivity is increased, the probability of false positives increases.   Therefore, 
achieving the right balance between these behaviors is critical to successful deployment of the 
technology.  Further laboratory testing will be used to “tune” the associated variables (e.g., 
detection thresholds and sensor tolerances). 
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Economic and Impact Assessment of Deployment 
The targeted market for self-correcting controls in the short-term is built-up air systems, with a 
longer-term target of packaged HVAC systems. The benefits for self-correcting controls are 
estimated with PNNL’s Building Energy Analysis Modeling System (BEAMS) using data for 
California.  The market penetration over time is developed based on market diffusion curves, 
which are based on the Bass diffusion model.  The analysis estimates 1.2 to 2.4 TBtu in annual 
energy savings for the State of California from built-up systems by the end of year 15 after 
commercial introduction to the market and 1.9 to 3.8 TBtu by the end of 15 years for packaged 
systems (but with a lower initial impact than built-up systems).  Combining the two targeted 
markets, potential annual savings equal up to $160 million by year 15 with corresponding 
reductions in CO2 emissions of 130,000 metric tons.  

 

The Path Forward 
The final chapter of the report identifies specific proposed improvements to the algorithms to 
improve their performance, including: 
 

• Piecewise empirical models to capture relationship between variables better when 
distinctly different behavior exist (e.g., a range of control commands for which no 
measurable response occurs compared to a range where the response monotonically 
increases with increasing control command). 

 
• Use of cooling-coil effectiveness as the basis for relating the temperature change or air as 

it passes across the cooling coil to supply-fan speed and control signal to the chilled-
water valve.  
 

Additional laboratory testing of the full suite of algorithms to better understand preferred 
values for selectable parameters (e.g., detection thresholds), to ensure that the algorithms 
minimize false fault detection, and prepare the full suite of self-correcting algorithms for VAV 
systems for field application. 
 
The collective findings of the PNNL team in this project and prior work support development 
of a software module for self-correcting air-handler sensors, which would be suitable for use in 
field tests and early commercialization.  Although the caabilities of this  module would be 
limited in scope, they would address the important problems of out-of-calibration sensors in 
air-handling systems. 
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CHAPTER 1: 
Fault Identification and Analysis 
This chapter includes three sections.  In the first section, the typical single-duct variable-air-
volume (VAV) air-handling unit (AHU) and the VAV terminal boxes are briefly described, 
along with operating modes and sequences of control.  Potential faults are presented in the 
second section  for each component of the VAV system, and in the third section, a number of 
cause-effect diagrams are used to associate fault symptoms to the faults themselves, which are 
identified in the second section.   

System Description 
The single-duct, VAV air-handling and distribution system is described in this section with the 
AHU and VAV terminal boxes described separately.  The AHU receives return air from the 
building zones, recirculates a fraction of it and exhausts the rest to the outdoors.  The 
recirculated air mixes with outdoor air in the mixing box.  The mixed air is then filtered, cooled 
(or heated), and then distributed to the terminal boxes, which further control the air-flow to 
each zone and reheat the supply-air, if necessary. 

Air-handling Unit (AHU) 
Figure 1 is a schematic diagram of a generic single-duct AHU for VAV systems.  Typical sensors 
are identified by labeled, colored circles (see the key in the lower-right in the figure).  

 

Figure 1:  Diagram of a Typical VAV Air-handling Unit 
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filter, the heating coil (HC), if present, and the cooling coil (CC), which are used to maintain the 
supply-air at a predefined temperature set point in the supply duct downstream of the supply 
fan.  In practice, the supply fan may be located either upstream of the coils (blow through) or 
downstream of the coils (draw through, as shown in Figure 1).  In many systems, only a cooling 
coil is present.  The supply-fan speed is modulated to maintain the supply-air static pressure at 
a set point.  The return-fan speed is set according to the building’s pressurization requirement 
and the speed of the supply fan.  

When the AHU is in operation during occupied periods, it may work in one of four operating 
modes:  heating with minimum outdoor OA, economizing (with OA used for cooling), 
mechanical cooling with full economizing (100% OA), and mechanical cooling with minimum 
OA.  The specific mode used depends on the outdoor-air conditions.  The modes are shown 
graphically in Figure 2 and are described below.  

 

Figure 2: Air Handler Operating Modes 

 

Heating mode 

In this mode, the OA temperature is low enough that the mixed-air (MA) temperature is lower 
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Economizing (OA cooling) mode   

At higher OA temperatures, the AHU changes from the heating mode to cooling with OA (i.e., 
economizing with no mechanical cooling).  In this mode, both the heating-coil and the cooling-
coil valves are closed and the supply-air temperature is maintained at its set point by 
modulating the mixing-box dampers (opening the outdoor-air damper and closing the return-
air damper as the need for cooling increases).1  

Mechanical cooling with full economizing (100% OA mode)   

As the cooling load continues to increase, the OA damper opens until it reaches its maximum 
open position, provided the OA temperature (or enthalpy) remains sufficiently low to provide 
cooling.  If economizing with 100% OA cannot lower the MA temperature to the supply-air set 
point, mechanical cooling is initiated by modulating the cooling-coil valve open sufficiently to 
lower the supply-air temperature to its set point to meet the load that economizing cannot meet.  
This mode of economizing is frequently referred to as integrated.  The heating coil valve is kept 
completely closed in this operating mode.  Some economizer controls, known as non-integrated, 
do not simultaneously use economizing and mechanical cooling.  These systems do not enter 
the mechanical cooling with full economizing mode. 

Mechanical cooling with minimum OA mode   

When the OA temperature (or enthalpy) increases above the return-air temperature (or 
enthalpy) or other pre-specified limit, the OA damper modulates back to its minimum position 
for ventilation, and mechanical cooling is used to meet the entire cooling load.  The cooling coil 
valve is modulated to provide the required mechanical cooling, while the heating coil valve is 
kept completely closed. 

Variable-air-volume (VAV) Terminal Boxes  
VAV boxes are an integrated part of the VAV system.  In contrast to the air-handling unit, VAV 
terminal units have more varied types such as fan-powered terminal units, induction terminal 
units, and throttling VAV terminal units with or without reheating.  In the current stage of this 
project, the fault analysis focuses on the single-duct, pressure-independent throttling VAV box 
with hydronic reheat as shown in Figure 3.  This box captures many of the features of simpler 
terminal boxes, which can be modeled by deleting features of this box (e.g., terminal reheat).  
For the VAV box shown in Figure 3, the controller modulates the damper to meet thermal load 
requirements.  A minimum air flow rate is preset to satisfy space ventilation.  The valve can 
modulate the hot-water flow rate to the reheat coil to raise the temperature of the supply air to 
moderate cooling or to provide heat to the space.  

These VAV terminal boxes work in one of three operating modes:  cooling with more than the 
minimum air flow rate, deadband mode, and reheating.  The specific mode of operation  

                                                      
1 Economizing may be controlled on dry-bulb temperature or enthalpy.  
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Figure 3: Schematic diagram of a pressure-independent VAV box with hydronic reheat.  Solids 
lines represent flows of air and water; dashed lines represent control connections. 

 
 

Figure 4: Operating modes for a single-duct, pressure-independent throttling VAV box with 
hydronic reheat
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depends on the zone-air temperature.  The operating modes are shown graphically in Figure 4 
and are described below. 

Cooling with more than the minimum air flow rate   

The VAV box operates in this mode when the zone-air temperature increases above the space 
cooling set point.  In this case, the air flow rate is increased by increasing the damper opening.  
The reheat coil valve is kept closed. 

Deadband mode   

The VAV box operates in this mode when the zone-air temperature lies between the space 
cooling and heating set points.  The air flow rate is maintained at the minimum value to meet 
the ventilation requirement, and the reheat coil valve is kept closed. 

Reheating   

The VAV box enters this mode when the zone-air temperature decreases below the space 
heating set point.  In this case, the valve for the reheat coil modulates to meet the space heating 
load.  The air flow rate may be kept constant at its minimum value or the VAV damper may 
open further to meet additional space heating load after the reheat valve has opened 100%. 

 

Identification of potential faults 
Potential faults in air-handling units and the associated VAV terminal boxes can be identified in 
two steps.  First, a preliminary list of potential faults was prepared based on review of the 
literature on fault detection and diagnostics (FDD) for AHUs and VAV boxes (see, e.g., 
Fernandez et al. 2009a; Fernandez et al. 2009b; Dexter and Pakanen 2001; Hyvarinen and Karki 
1996; Smith and Bushby 2003).  The literature has generally focused on detection and diagnosis 
for a number of common faults (e.g., sensor biases and control logic errors).  Little attention has 
been given to developing a comprehensive list of potential faults and the causes of those faults. 
Therefore, a second step was used to address this limitation and identify a more complete set of 
faults and their potential causes.  A group of eight researchers identified and discussed 
additional faults and underlying causes observed in the field to develop a complete set of 
symptoms, faults and underlying causes.  The field experience of each participant in HVAC 
system implementation, maintenance and troubleshooting varied from approximately 2 years to 
over 30 years.  

HVAC faults can be classified into different categories according to criteria such as complete 
component failure versus performance degradation, hardware faults versus software faults, and 
self-correctable faults versus faults requiring human corrective action.  Because this work is 
performed in the context of self-correcting HVAC control, each fault is categorized as self-
correctable (SC), possibly self-correctable (PSC), and not self-correctable (NSC).  A SC fault is 
one that can be corrected through changes in the values of parameters or to software code in the 
control system.  These faults include, for example, incorrect schedules, poorly chosen set points, 
continually oscillating (or hunting) controls, incorrectly implemented controls, and failed or 
out-of-calibration sensors.  A PSC fault is one for which self correction may be feasible under 
certain circumstances, one for which the team is presently uncertain that self correction can be 
implemented, or a fault that may be correctable if additional sensors were installed beyond 
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those ordinarily present on the HVAC system.  An NSC fault is one for which restoration to 
normal system performance from the faulty situation is not possible without physical repair of 
the system, which requires human intervention.2   

The potential faults for the VAV air-handling system described earlier in this chapter are 
identified in Table 1 through Table 4.  Each table presents the faults for one of the major parts 
comprising the VAV system:  air-mixing section, filter-coil section, fan section, and VAV boxes.  
The categorization of each fault is given in the right-most column of each table, using the 
abbreviations SC, PSC and NSC. 

  

                                                      
2 NSC faults generally result from physical failure of components, but all physical faults are not NSC 
faults.  In fact, as stated in the text, some physical faults, such as complete failure of some sensors, can be 
automatically corrected.  Furthermore, compensation for some physical faults that improves performance 
of the system above the performance that would occur by default when a physical fault or failure occurs 
may be possible.  Such fault compensation will be considered in future research. 
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Table 1:  Air-Mixing Section Faults 

Components Type of 
Fault/Failure 

Specific Fault Fault Category 
(SC, PSC or 
NSC)* 

Temperature or 
humidity sensors 
(return air—RA, 
outdoor air—OA, 
mixed-air—MA) 

Complete failure—no 
signal 

 SC 

Constant bias in 
signal 

Sensor out of calibration SC 

Sensor installation location 
fault 

PSC 

Wiring fault SC 

Long lead wires SC 

Time varying bias in 
signal 

Sensor installation of 
location fault 

PSC 

Drifting signal SC 

Intermittent signal Communication problems 
such as a wiring fault 

PSC 

Sensor internal fault PSC 

Wiring fault (e.g., bad 
solder joint) 

PSC 

Randomly varying 
signal 

Communication problems 
such as a wiring fault 

PSC 

Sensor internal fault PSC 

Induced electrical noise PSC 

Damper and 
actuator 

Stuck damper (fully 
open, completely 
closed, intermediate 
position) 

Damper motor failure  NSC 

Damper linkage broken or 
disconnected 

NSC 

Damper or linkage stuck 
from rust or other corrosion 

NSC 

Wire to actuator 
disconnected or no power  

NSC 

Controller in manual mode  PSC 

Air leakage when 
damper is fully 
closed 

Damper blade damaged NSC 

Poor damper seals NSC 

Damper not closing 
completely 

PSC 
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Damper modulating 
but too open or too 
closed  

Damper obstructed NSC 

Damper linkage bent or 
loose 

NSC 

Incorrect actuator output 
range 

PSC 

Damper behavior not 
properly calibrated 

SC 

Mixed-air controller 
(economizer and 
outdoor-air 
ventilation control) 

No control signal Wire disconnected NSC 

Sensor failure PSC 

Control card failure PSC 

Controller in manual 
mode 

 PSC 

Incorrect minimum 
outdoor-air damper 
position setting in 
control code 

 SC 

Dampers hunting Improperly tuned control 
parameters 

SC 

Actuator output 
range not set 
correctly 

 

 SC 

Error in control code 
(logic) 

 SC 

Incorrect or poor 
economizer control 

Poorly chosen values for 
control parameters 

SC 

Error in coding of 
economizer control 
sequence 

SC 

Fault in CO2 sensor 
for demand control 
ventilation (see 
“Temperature or 
humidity sensor 
faults” for possible 
causes) 

 PSC 

* SC = self correctable; PSC = possibly self correctable; NSC = not self correctable. 
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Table 2:  Filter-coil Section Faults 

Components Type of 
Fault/Failure 

Specific Fault Fault Category 
(SC, PSC or 
NSC)* 

Temperature or 
humidity sensors 
(return air—RA, 
outdoor air—OA, 
mixed-air—MA) 

Complete failure—no 
signal 

 SC 

Constant bias in 
signal 

Sensor out of calibration SC 

Sensor installation location 
fault 

PSC 

Wiring fault SC 

Long lead wires SC 

Time varying bias in 
signal 

Sensor installation location 
fault 

PSC 

Drifting signal SC 

Intermittent signal Communication problems 
such as a wiring fault 

PSC 

Sensor internal fault PSC 

Wiring fault (e.g., bad 
solder joint) 

PSC 

Randomly varying 
signal 

Communication problems 
such as a wiring fault 

PSC 

Sensor internal fault PSC 

Induced electric noise PSC 

Damper and 
actuator 

Stuck damper (fully 
open, completely 
closed, intermediate 
position) 

Damper motor failure  NSC 

Damper linkage broken or 
disconnected 

NSC 

Damper or linkage stuck 
from rust or other corrosion 

NSC 

Wire to actuator 
disconnected or no power  

NSC 

Controller in manual mode  PSC 

Air leakage when 
damper is fully 
closed 

Damper blade damaged NSC 

Poor damper seals NSC 

Damper not closing 
completely 

PSC 
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Damper modulating 
but too open or too 
closed  

Damper obstructed NSC 

Damper linkage bent or 
loose 

NSC 

Incorrect actuator output 
range 

PSC 

Damper behavior not 
properly calibrated 

SC 

Mixed-air controller 
(economizer and 
outdoor-air 
ventilation control) 

No control signal Wire disconnected NSC 

Sensor failure PSC 

Control card failure PSC 

Controller in manual 
mode 

 PSC 

Incorrect minimum 
outdoor-air damper 
position setting in 
control code 

 SC 

Dampers hunting Improperly tuned control 
parameters 

SC 

Actuator output 
range incorrectly set  

 SC 

Error in control code 
(logic) 

 SC 

Incorrect or poor 
economizer control 

Poorly chosen values for 
control parameters 

SC 

Error in coding of 
economizer control 
sequence 

SC 

Fault in CO2 sensor 
for demand control 
ventilation (see 
“Temperature or 
humidity sensor 
faults” for possible 
causes) 

 PSC 

* SC = self correctable; PSC = possibly self correctable; NSC = not self correctable. 
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Table 3:  Fan Section Faults 

Components Type of 
Fault/Failure 

Specific Fault Fault Category 
(SC, PSC or 

NSC)* 
Fan (supply fan-SF, 
return fan-RF) 

Complete failure Power disconnected NSC 
Blown fuse NSC 

Off for protection 
(design safety 
measures) 

 NSC 

Decrease in fan 
efficiency 

Dirt accumulation NSC 
Loose fan blade NSC 
Other efficiency 
degradation 

NSC 

Pressure sensor 
(supply-air duct; see 
“Temperature or 
humidity sensor 
faults” in Table 1 for 
detailed fault or 
causes) 

Complete failure  PSC 
Biased signal  PSC 
Drifting signal  PSC 
Intermittent signal  PSC 
Randomly varying 
signal 

 PSC 

Supply and return 
fan controller 

No control signal Wire disconnected NSC 
Sensor failure PSC 
Controller card failure NSC 

Improperly tuned 
control parameters 

 SC 

Improper set point for 
supply-air duct 
pressure 

 SC 

Controller software 
and parameter value 
faults 

Improper value for supply-
air temperature set point 

SC 

Error in control code (logic) SC 
Actuator output 
range not set 
correctly 

 SC 

 Inappropriate 
override of automatic 
operation (e.g., 
variable flow rate 
bypass mode on) 

 SC 

* SC = self correctable; PSC = possibly self correctable; NSC = not self correctable. 
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Table 4:  VAV Terminal Section Faults 

Components Type of 
Fault/Failure 

Specific Fault Fault Category 
(SC, PSC or 

NSC)* 
Damper and 
actuator 

Stuck damper (fully 
open, completely 
closed, or 
intermediate 
position) 

Damper motor not working NSC 
Damper linkage broken NSC 
Damper or linkage frozen 
from rust or other corrosion 

NSC 

Wire to actuator 
disconnected or no 
electrical power 

NSC 

Incorrect minimum or 
maximum flow rate 
set point 

 SC 

Damper not fully 
open at maximum 
position 

Damper physically 
obstructed 

NSC 

Damper linkage bent or 
loose 

NSC 

Incorrect actuator output 
range 

SC 

Air-flow sensor (see 
“Temperature or 
humidity sensor 
fault” in Table 1 for 
detailed specific 
causes or faults) 

Complete failure  PSC 
Biased signal  PSC 
Drifting signal  PSC 
Intermittent signal  PSC 
Randomly varying 
signal 

 PSC 

Reheat coil Poor heat transfer 
from fouling (air or 
water side) 

 NSC 

Wrong coil capacity 
(oversized or 
undersized) 

Design fault  NSC 
Change in space function or 
usage pattern 
 

NSC 

Water leakage from 
coil 

 NSC 

Reduced water flow 
rate caused by 
water-side balance 
problems 

 NSC 

Valve and actuator 
(for reheat coil) 

Valve stuck (fully 
open, completely 
closed, or 
intermediate 
position) 

 NSC 

Water leakage when 
valve in closed 

 NSC 

Flow blocked  NSC 
Valve sized 
improperly 

 NSC 
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Valve modulating but 
not fully opening or 
closing (not 
modulating over full 
range) 

 PSC 

Zone-temperature 
sensor (see 
“Temperature or 
humidity sensor 
fault” in Table 1 for 
detailed specific 
causes or faults) 

Complete failure  PSC 
Biased signal  PSC 
Drifting signal  PSC 
Intermittent signal  PSC 
Randomly varying 
signal 

 PSC 

VAV box controller No control signal Wire disconnected NSC 
Sensor failure PSC 
Controller-card failure NSC 

Controller in manual 
mode 

 PSC 

Improperly tuned 
control parameters 

 SC 

Controller software 
fault 

Improper value for zone-air 
temperature set point 

SC 

Error in control code SC 
Actuator output 
range not set 
correctly 

 SC 

*SC = self correctable; PSC = possibly self correctable; NSC = not self correctable. 

Fault mode analysis 
Different faults may lead to the same symptom, such as an unmet supply-air temperature set 
point or increased heating energy use.  A clear structured relationship between the HVAC 
faults presented in the last section and their manifested symptoms will assist in developing the 
strategies for fault detection, isolation and self-correction presented later in this report.  

We use cause and effect diagrams (also known as fishbone or Ishikawa diagrams) as the tool to 
explore and document all potential causes (or faults) that result in a single effect (or symptom).  
Faults (and/or causes of faults) are arranged according to their level of detail or position in the 
chain of causality.  Thus, a significant advantage of this diagram is its ability to clearly illustrate 
the hierarchical relationship between a specific outcome and the factors that influence or can 
lead to that outcome.  A generic version of the cause and effect diagram is shown in Figure 5. 

Consider Figure 6 as an example.  The symptom (i.e., effect) is an incorrect value from a sensor, 
which may be caused by a biased signal, a drifting signal, a randomly varying signal, an 
intermittent signal, or no signal.  Each of these causes can be further analyzed to explore 
underlying causes.  
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Figure 5:  Generic Cause and Effect Diagram Adapted for Application to Equipment Faults 

 
 

Figure 6:  Cause-effect Diagram for an Incorrect Sensor Measurement 

 

Because an HVAC symptom is an observed deviation from normal (or expected) operation, it is 
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as indicators of symptoms.  Cause-effect diagrams are presented for a total of 11 symptoms 
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• Supply-air temperature differs from its set point 

• Supply-air pressure differs from its set point 

• AHU operation mode changes more frequently than normal 

• Supply-air flow rate differs from normal values under similar operating conditions 

• Supply-fan energy use differs from normal values under similar operating conditions 

• AHU heating energy use differs from normal values under similar operating conditions 

• AHU cooling energy use differs from normal values under similar operating conditions 

• Zone-air temperature differs from its set point 

• VAV box flow rate differs from normal values under similar operating conditions. 

Cross references to fault analyses for different symptoms are used in Figure 6 through Figure 16  
to make the cause-effect diagrams clearer and more legible.  For example, Figure 7 refers to 
Figure 6 regarding the possible faults for temperature sensors, humidity sensors and CO2 
sensors. 

The cause-effect diagrams are tools used for formulating algorithms for self correction of 
amenable faults in air handlers and VAV terminal boxes in Chapter 2.   

 

Figure 7:  Cause-effect Diagram for the Mixed-air Temperature Differing from Values Normally 
Occurring Under Similar Operating Conditions 
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Figure 8:  Cause-effect Diagram for the Supply-air Temperature Deviating from its Set Point 

 

 

 

Figure 9:  Cause-effect Diagram for the Supply-air Pressure Differing from its Set Point 
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Figure 10:  Cause-effect Diagram for the AHU Operation Mode Changing More Frequently than 
Normal 

 
 

 

Figure 11:  Cause-effect Diagram for the Supply-air Flow Rate Differing from its Value Under 
Similar Normal Operating Conditions
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Figure 12:  Cause-effect Diagram for the Supply-air Fan Energy Use Differing from Normal Values 
Under Similar Operating Conditions 

 

 

Figure 13:  Cause-effect Diagram for the AHU Heating Energy Consumption Differing from Normal 
Values Under Similar Operating Conditions 
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Figure 14:  Cause-effect Diagram for the AHU Cooling Energy Use Differing from Normal Values 
Under Similar Operating Conditions 

 

 

Figure 15:  Cause-effect Diagram for Zone-air Temperature Differing from its Set Point 
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Figure 16:  Cause-effect Diagram for the VAV-box Flow Rate Differing from Normal Values Under 
Similar Operating Conditions 
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CHAPTER 2: 
Algorithm Development 
A set of algorithms was developed to facilitate the detection, diagnosis and correction of faults 
in the air-handling section of VAV systems, based upon the faults identified in Chapter 1 and an 
understanding of the chain of causation for those faults, developed in the fault mode analysis. 

A holistic approach was found important to algorithm development.  Analyzing a subsystem in 
isolation for purposes of fault detection, isolation, and correction is often insufficient.  Faults 
originating outside of a subsystem can manifest as symptoms within the subsystem, and faults 
originating inside the subsystem can sometimes only be detected as a symptom elsewhere.  A 
holistic approach to SCC, which expands the boundary for analysis beyond the subsystem of 
interest to all relevant upstream and downstream components, addresses this.  For example, the 
air side of an air-handling system cannot be analyzed independently of the water side of the 
system.  An unexpected temperature measurement on the air side could be caused by a number 
of factors, one of which is a leaking hot- or cold-water coil.  

Another often important consideration is comparison of the measurements by a sensor inside a 
subsystem with measurements by other sensors outside of that subsystem.  For example, to 
check and correct faulty supply-air flow-rate sensor measurements in an air handler, we use air-
flow measurements in the VAV boxes served by the air handler.  To be able to use the VAV 
measurements for this purpose, the model used for fault diagnosis must be extended beyond 
the air handler (i.e., the  subsystem) itself to the VAV boxes it servers.  So, while we originally 
planned to develop algorithms for the air-handler filter, fan, and coil section alone, the analysis 
performed by the algorithms was extended to include VAV boxes as well. 

As another example, consider a supply-air fan that is inducing a lower air flow rate than 
expected.  This could have at its root a problem with the fan itself, such as a slipping belt.  The 
problem could, however, be stuck dampers either upstream or downstream of the 
filter/fan/coil section (i.e., outside air dampers or VAV dampers) that cause increased air-flow 
resistance.  In development of the algorithms, all components that affect the air side of the VAV 
system are considered.  Fernandez et al. (2009a) developed algorithms for the mixing-box 
section of an air handler.  In this report, algorithms for fault detection, isolation and self-
correction in all components downstream of the mixing box are considered.  These algorithms 
are presented in detail in Fernandez et al. 2011, which provides more detailed descriptions of 
the algorithms than presented here and the full set of flow charts.  Table 5 provides a full list of 
the faults that may lead to detection of a fault within those algorithms.  For each fault, Table 5 
also specifies whether it can be diagnosed through automatic or proactive diagnostic processes, 
and whether it can be automatically corrected. 

The algorithms are developed in such a way that they can be easily implemented in a software 
package that interfaces with an actual system in a laboratory for testing.  Figure 17 provides an 
overview of the process developed at the system level.  A red, dotted line encloses a box that 
conceptualizes the control system loop that the VAV system uses.  In a system without self-
correcting controls, this process is a simple loop that involves taking measurements from 
sensors, calculating control signals using the sensor readings as inputs, and then controlling the 
system via the actuators (valves, dampers, etc.) to which the control signals are sent.  In the self- 
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Table 5: Faults Detectable in Algorithms Developed for CIEE Algorithms report 

Type of Fault Fault 
Diagnosed? 

Fault 
Corrected? 

Hunting CC valve Yes Yes 
HC/CC valve controller software logic fault Yes Yes 
Fan controller software logic fault Yes Yes 
Supply-air flow station complete failure Yes No 
Supply-air fan complete failure Yes No 
Supply-air fan belt slipping/decreased fan η Yes No 
Supply-air flow station biased Yes Yes 
Supply-air flow station erratic Yes No 
CC valve stuck open or leaking Yes No 
HC valve stuck open or leaking Yes No 
MA temperature sensor biased Yes Yes 
MA temperature sensor erratic/not working Yes No 
HC temperature sensor biased Yes Yes 
HC temperature sensor erratic/not working Yes No 
SA temperature sensor biased Yes Yes 
SA temperature sensor erratic/not working Yes No 
Filter is clogged/oversized Yes No 

Filter differential pressure sensor biased/ 
erratic/not working 

Yes No 

Filter has fallen down or is installed incorrectly Yes No 

VAV box damper does not modulate in upper 
half of signal range 

Yes No 

VAV box damper does not modulate in lower 
half of signal range 

Yes No 

VAV box flow sensor is biased Yes Yes 

VAV box reheat coil valve stuck open or 
leaking 

Yes No 

Discharge air temperature sensor biased Yes Yes 

Discharge air temperature sensor erratic/not  
working 

Yes No 

VAV box flow station erratic/ not working Yes No 
VAV box damper stuck  Yes No 
VAV box incorrect maximum flow set point Yes Yes 
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Figure 17:  Master Flowchart for Self-Correcting Controls 
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correcting controls process, there are additional steps in the process.  The actual sensor 
measurements are input to virtual sensors, which generate corrected sensor values (when 
warranted).  The corrected virtual values are then used by the control algorithms in place of 
erroneous sensor readings so that the controller sends the correct actuation signal to the 
actuator.  From the standpoint of control, these virtual sensor readings replace the actual 
readings. 

A green dotted line in Figure 17 encloses a separate process that executes simultaneously with 
the control system loop.  This process is the automated fault detection, diagnostics, and 
correction loop (AFDDC).  This process takes in sensor data from the virtual sensor points as 
well as control code information from the control system and continuously monitors those 
values for signs of faults.   

As long as no faults are detected, the system runs through a sub-loop within this process that 
periodically checks for faults.  The process of checking for faults is called Passive Diagnostics 
because faults are detected through passive, observation monitoring only, without affecting the 
control process.   

When a fault is detected by the passive diagnostics, a process called Proactive Diagnostics is 
initiated.  The proactive process diagnoses (or isolates) the fault.  For example, passive 
diagnostics may detect that a set of sensors is displaying readings that are inconsistent with one 
another based on the physical relationships among the measured variables.  Proactive 
diagnostics determine which, if any of the sensors, is reading improperly, or if the detected 
inconsistency might be caused by something like stuck dampers or leaking valves that produce 
the unexpected (abnormal) measured conditions.  Proactive diagnostics involve taking control 
of the system away from its ordinary automatic operation and placing it into alternative states 
controlled by the AFDDC software.  The AFDDC software places the system into specific 
conditions that enable isolation of the fault to a specific component (or cause).  The proactive 
diagnostics can run automatically, immediately upon fault detection, can be scheduled to run at 
specific times, or can be run manually, when it is convenient for the building operator or 
occupants. 

Once the fault has been successfully diagnosed, the AFDDC Fault Correction process starts, 
wherein the specific component is recalibrated so that its fault can be automatically accounted 
for by the control system via the creation of a new virtual sensor point.  This is only possible, 
however, for “soft faults” or faults that exist in automatically correctable sensors or in the 
control code itself.  The criteria for a sensor being automatically correctable varies, but generally 
involves having a working sensor available somewhere else in the system or a model that can 
be used along with correct measurements of other conditions in the physical process to infer the 
correct value that the faulty sensor would provide if it were working properly.  

Another dotted line in Figure 17 encloses a set of Training processes.  Many of the fault 
detection algorithms rely on models of the physical system behavior under normal operation.  
Because each system is inherently different, these models are empirically in an initial training 
process that could be part of the system’s commissioning.  In training, the system’s normal 
(fault-free) operation is empirically and quantitatively characterized. 
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Training 
Four training algorithms are grouped under the set of training processes shown in Figure 17.  
The first one, titled “OAF Training” is used for detecting mixing-box faults, and is described in 
Fernandez et al. (2009b).  The others are training algorithms for the filter/fan/coil section of the 
air handler of the VAV system and are described in detail in Fernandez et al. (2009a).   

The “Filter/Fan/Coil/VAV Training 1” process, referred to subsequently as Training 1, 
develops empirical relationships between the normal supply-air flow rate (VS) and two 
parameters:  1) USF, the fan control signal, which is a voltage or current signal sent to the fan 
and is normalized to a range of 0-100% and 2) Udamp, the normalized control signal for the 
outdoor-air damper.  The variable Udamp  determines the outdoor-air damper position and, as a 
result, VS, given a value of the fan speed.  While VAV dampers individually can affect air-flow 
resistance, all the dampers in the VAV boxes served by a specific air handler are typically 
controlled together to maintain the supply-air static pressure at a fixed value (its set point).  
This training algorithm fits the collected data to a two-factor polynomial regression equation.   

Training 2 develops two empirical relationships.  The first relates the normal temperature rise of 
the air as it passes across the fan (from fan motor heat rejection) as a function of VS.  
Measurements of the temperature increase are taken at discrete values of the fan speed over its 
full range, and are stored as a lookup table.  Temperature increases from the fan for values of VS 
between the measured values of the table are determined by linearly interpolating. The second 
relates the normal filter pressure drop to VS, again based on measurements of the pressure drop 
across the filter at selected values of VS over its full range.   The measured results are stored in a 
lookup table and values of pressure drop for intermediate values of VS are obtained by linear 
interpolation. 

Training 3 develops an empirical relationship between ΔTSM, which is the difference between 
the supply-air temperature and the mixed-air temperature, and two variables, VS and the 
control signal for the chilled-water valve of the cooling coil, UCC.  Measurements are made and 
a polynomial curve fit is used to establish the relationship.   

 

Passive Diagnostics 
Figure 18  shows the main passive diagnostics process for the filter/fan/coil and VAV box 
sections.  The passive diagnostics process is serial, executing a set of algorithms sequentially 
until a fault is found, at which point the Passive Diagnostics process terminates and the 
proactive diagnostics process begins (according to how it is scheduled) or until all of the 
algorithms have passed without detection of a fault.   

Key information can be obtained from the passive diagnostics about the nature of the fault that 
dictates which proactive tests are necessary to isolate and diagnose the fault.  The specific 
passive diagnostic rule that detects the symptom of a fault provides one clue.  Other clues can 
sometimes be obtained from the sequence of passive diagnostic tests.  For example, if Fault 1 
always causes both symptom A  and symptom B, and Faults 2 and 3 cause symptom B, but not 
symptom A, then if the occurrence of symptom A is checked before the presence of symptom B 
and found not to be present, Fault 1 can be ruled out when symptom B is present.  This type of 
logic is employed in the passive diagnostic algorithms through use of a set of “flags.”  These  
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Figure 18:  Passive Diagnostics for Filter/Fan/Coil/VAV Boxes 
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numbered flags are raised at specific points in the passive diagnostic process when faults are 
detected.  The flags then direct the flow of proactive diagnostic tests so that only the remaining 
tests necessary to diagnose the observed symptom are performed. 

Descriptions of the individual algorithms run sequentially in the passive diagnostics follow [see 
also Fernandez et al. (2011)]. 

Check for Hunting Cooling Coil – This algorithm checks that the cooling coil valve is not 
“hunting.”  A hunting actuator is one that oscillates around the position it is seeking.  Poorly set 
values of control constants in the proportional-integral (PI) or proportional-integral-derivative 
(PID) controller for the cooling coil valve actuator can cause this.  The algorithm for checking 
for hunting uses a database of past cooling coil command signals to detect whether hunting is 
taking place.  No proactive diagnostics are needed to detect this fault. 

Control System Logic – This algorithm checks to ensure that flow through the air-handler heating 
coil and cooling coil do not occur at the same time.  It checks whether both the heating and 
cooling coils are properly off when the system is economizing with the outdoor-air damper 
signal Udamp < 100% open and that the heating coil is off when the system is economizing at 
Udamp =100%.  Violation of these faults indicates incorrect control algorithms for the air-handler 
damper system, and can be automatically corrected with a correct algorithm upon detection; no 
proactive diagnostics are needed to isolate the fault. 

Check Supply-air Temperature – This algorithm uses training data from Training 2 to determine if 
the observed fan heat gain matches the training closely enough.  This is done by monitoring the 
difference between the supply-air temperature and cooling coil inlet temperature.  If the heating 
and cooling coils are off, the allowable supply-air temperature is bound on both sides by 
temperature tolerances to the temperatures expected from Training 2.  If one of the coils is 
commanded on, the allowable supply-air temperature is only bounded on one side, i.e., if the 
cooling coil is on, the algorithm checks to make sure the supply-air temperature sensor is not 
reading higher than the cooling coil inlet temperature plus the fan temperature rise and the 
temperature tolerances. 

Set Point Maintenance - This algorithm checks whether both the supply-air temperature and 
supply-air static pressure are correctly within acceptable ranges of their set points.  If the 
supply-air temperature cannot maintain its set point, but the coils are not being commanded on, 
or if the supply-air static pressure cannot maintain its set point, but the fan is not being 
commanded on, this indicates a control software (or algorithm) fault that is automatically 
correctable.  Otherwise, these conditions might indicate a fault somewhere else in the system. 

Check Fan and Coil Signals – This algorithm uses the regression equations from Training 1 and 
Training 3 to determine if a) the current value of the coil coil control signal, UCC, is providing 
the expected degree of cooling, as measured by the difference between the supply-air and 
mixed-air temperatures, given the current supply-air flow rate and b) if the current value of the 
supply-fan control signal, USF, is providing the expected supply-air flow rate, given the current 
outdoor-air damper position.  Readings that are outside of acceptable ranges could indicate a 
number of different faults. 

VAV Box – This algorithm checks the sensor measurements from the VAV boxes for symptoms 
of faults.  First, for each VAV box whose reheat coil has been off for at least 10 minutes and 
whose damper is at least partially open, it checks whether the VAV-box discharge-air 
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temperature is correctly within specified tolerances of the supply-air temperature set point.  
Next, it checks whether the room temperature is within the proper range of the heating and 
cooling set-point temperatures.  This condition is acceptable, especially given the time delay 
between detecting that the room temperature differs from its set point by an unacceptable 
amount and subsequently returning the room temperature to the set point.  If the temperatures 
are outside acceptable tolerance of the set points, the algorithm also checks whether the VAV- 
box flow meter indicates a box air-flow rate correctly above its minimum set point, and when 
heating is required, that the reheat coil for the VAV box is commanded on.  If these conditions 
are violated a fault is present. 

Check Filter Pressure Drop- This algorithm uses Training 2 data to determine whether the fan’s 
differential pressure sensor is reading within acceptable ranges.  If the pressure drop is too 
high, a clogged filter that needs to be replaced could be indicated.  If it is too low, the filter 
could be missing, have fallen down out of its frame, or have been improperly installed.  Low 
filter pressure drop could also indicate that the sensor itself is faulty or that a fan fault exists.  
As with most other instances of fault detection, further proactive diagnostics are needed to 
isolate the specific fault. 

 

Proactive Diagnostics 
Proactive diagnostics begin subsequent (either immediately, or scheduled later) to the detection 
of a passive fault that cannot be automatically isolated and corrected.  Figure 19 shows the 
overall process of proactive diagnostics for the filter-fan-coil-VAV section.  Unlike the passive 
diagnostics, there is more management of the direction of logical flow through this proactive 
diagnostics process to efficiently schedule the tests - eliminating unnecessary testing.   

Proactive diagnostics always start with Check Fan.  A fan that is completely stuck or not 
functioning could potentially lead to all of the undiagnosed faults detected in the passive 
diagnosis.  Thus, verifying that the fan is, in fact, working is critical.  This test starts by checking 
that the measured supply-air flow rate matches its baseline values for full, medium and off fan 
speeds established during training.  If the values do not adequately match, the flow rate is 
verified to increase as the supply-fan command is increased.  A failure to meet this  criterion 
could indicate either a broken/unresponsive fan or a supply-air flow station that is not 
working.  A further check is used to differentiate these two potential causes.  The filter 
differential pressure is checked to verify that it increases as the fan control signal is increased.  If 
it too, does not change appreciably, the fault is associated with a broken supply fan.  If the 
differential pressure does change, it implicates a complete failure of the supply-fan air-flow 
station.   

If, on the other hand, the measured flow rate does increase as the fan control signal is increased, 
either the fan or the flow station has dropped out of calibration compared to its training 
baseline, but is still operating.  A further test in this case checks for two symptoms that may 
exist if the problem is a decrease in fan efficiency (i.e., fan producing decreased mechanical 
output for a given control signal – one cause is a slipping fan belt).  If this were the only fault, 
the deviation from training flow rates would be much greater at a full fan control signal 100% 
compared to the deviation when the control signal is zero (i.e., off).  The filter pressure drop 
would also be lower for each specific fan control signal than the pressure drop during training,  
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Figure 19:  Proactive Diagnostics for Filter/Fan/Coil and VAV Box Sections: Main Flowchart 
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because the fan is not able to drive as much flow and, therefore, not able to establish as strong a 
pressure drop across the filter.  The satisfaction of these two criteria automatically implicates a 
faulty fan.  A partially clogged filter muddies the analysis, however, because clogging may act 
to increase the filter pressure drop.  The assumption here is, however, that a clogged filter alone 
will not decrease the fan air flow rate sufficiently compared to training baseline values to 
bypass this entire set of algorithms.  If however, the partially clogged filter occurs in 
conjunction with a slipping fan belt, for instance, it may hinder the detection of the slipping fan 
belt using this process (flowchart) alone.  Thus, a somewhat redundant algorithm is used to 
distinguish between these different situations.  This algorithm compares the measured supply-
air flow rate against a few the individual VAV box measured flow rates.  This requires closing 
all of the VAV dampers but one and measuring the flow rate at the fully open damper.  Normal 
leakage through the network of closed dampers and ductwork needs to be accounted for (which 
is the purpose of the leakage flow testing performed in training).  This training-based leakage 
flow is subtracted from the measured supply- air flow rate before comparison to the VAV box 
measured flow rate.  If the two flow rates roughly match, the result implicates decreased 
efficiency of the supply fan, whereas if the values do not match adequately, this implicates a 
working, but faulty, supply-air flow station. 

If no faults are found in the fan or flow station, the measured flow rate should be reasonably 
close to the baseline (training) value, and selected proactive tests can then be scheduled 
according to clues from the passive diagnostics.  If Proactive Flag A,B, or D is active (these flags 
are raised in response to several conditions in the passive diagnostics; see Fernandez et al. 
2011), the Check Temperature Sensors and Coils process is performed.  A fault can be traced to one 
of the three air-handler temperature sensors (mixed air, cooling-coil inlet air, or supply air) or to 
a leaking heating or cooling coil.  Fault isolation is accomplished by setting the heating and 
cooling coil control signals to zero and monitoring the differences between the values of the 
three mixing-box temperature sensors at three fan speeds:  low, medium, and full.  Much of the 
differentiation relies on the temperature difference across a leaking heating or cooling coil 
decreasing with increased air-flow rate  (even as the total heating or cooling imparted to the air 
stream increases).  If the temperature change across the coils does not decrease with increasing 
flow rate, the fault is almost certainly with one of the temperature sensors, which can then be 
isolated by checking the three sensor readings against each other, accounting for fan 
temperature rise. 

The Check Filter process follows next.  It runs when a flag for a fault occurs in the filter check 
during the passive diagnostics (and no faults have been isolated thus far).  The algorithm 
isolates physical filter faults from pressure-drop sensor faults by setting the supply fan to zero 
and checking the measured pressure drop.  If it is non-zero, the fault is isolated to the pressure 
sensor.  If the pressure drop reads zero with the fan off, the fault is isolated to either a clogged 
filter, if the pressure drop was higher than the training value when the fault was detected, or to 
a missing, fallen or improperly installed filter, if the pressure drop was lower than the training 
value when the fault was detected. 

After the Check Filter process is completed, all potential faults in the air-handler filter-fan-coil 
section have been considered, leaving faults in the VAV boxes undiagnosed.  When a flag is 
raised in the passive diagnosis that indicates the possibility of a VAV-box fault, four VAV box 
tests is performed sequentially until a fault is isolated.   
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The first test for VAV boxes, VAV Box: Check All Dampers, uses sensed data for a range of fan 
speeds for all VAV boxes to isolate either faulty dampers or faulty VAV-box flow sensors in any 
of the VAV boxes.  Stuck dampers and completely non-functional VAV-box flow stations are 
indistinguishable at this point.  If one of these faults exists, a new flag is raised, and an 
additional test is used to isolate the fault.   

If no faults are found in the VAV-box flow stations and there is a flag for a specific faulty VAV 
box from the passive diagnostics, the next algorithm, VAV Temperature Sensors and Reheat Valves 
runs.  This process differentiates between faulty (leaking or stuck) VAV-box reheat valves and 
faulty VAV discharge-temperature sensors by checking for a coil heat-gain signature 
(decreasing temperature difference across the reheat coil at increasing air-flow rate).  If this 
signature is present, the fault is traced to a leaking or stuck open reheat valve.  If instead the 
temperature difference across the reheat coil (difference between the VAV-box discharge air 
temperature and the temperature of air entering the VAV box) is unchanged or increases , the 
fault is traced to the discharge-air temperature sensor itself.   If the discharge-air temperature 
remains constant at all reheat coil command signals, the fault is traced to a reheat coil valve that 
is stuck closed.  Otherwise, no faults related to VAV box temperature sensors or coils can be 
diagnosed.   

If no faults have yet been diagnosed in the VAV box, the VAV Box Flow Sensor process is used to 
isolate a faulty VAV-box flow-rate sensor.  In this process, the VAV-box flow rate is checked 
against the supply-air flow rate at low fan speeds, when all other VAV-box dampers are 
completely closed.  The assumption here is that at low fan speeds there will be negligible 
leakage flow through the other dampers.  This assumption needs to be verified.  If it is not a 
valid assumption, further data collection (training) may be required to quantify low-fan speed 
VAV system leakage (in addition to the full-speed leakage already performed).  If the VAV-box 
flow rate does not match the supply-air flow rate, the result indicates a faulty VAV flow meter.  
If the readings match and Flag H is active, the fault is traced to a stuck VAV-box damper.   

If no faults are detected after completion of the VAV Temperature Sensors and Reheat Valves 
process, one final VAV diagnostic test called VAV Box Maximum Flow Rate Set Point is 
performed.  This process tests whether the VAV box can meet its maximum flow-rate set point.  
At this point, all other components of the VAV box have been verified to be working properly, 
so this test should represent a conclusive test of the VAV box’s capability.  If it passes this test, 
the detection of a fault in the passive diagnostics may have been an aberration, and the 
diagnostics should be reset, the system returned to normal operation, and the passive 
diagnostics instigated once more.  There is one exception to this, however.  If the supply-air 
pressure sensor could not meet its set point (leading to Proactive Flag C), and all other 
components and processes are determined function properly within the proactive diagnostics,  
the supply-air pressure sensor is deemed to be faulty by the process of elimination.  There is no 
other way to test this sensor for a VAV system as instrumented. 

 

Fault Correction 
Figure 20 shows the overall process flowchart for automatic fault correction.  Automatic 
correction of diagnosed soft faults occurs subsequent to their diagnosis in the fault correction 
process.  Two classes of soft faults (software errors and hunting) are corrected automatically as  



35 

Figure 20: Fault Correction: Filter/Fan/Coil and VAV sections 
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they are detected in the passive diagnostics.  This leaves one class of soft faults (sensor biases) 
that need to be corrected after the proactive diagnostics.  There are four types of sensors and 
two types of flow-rate sensors that can be corrected using the processes presented here.  The 
correction process involves calibrating the faulty sensor against a working sensor in the same 
airstream.  First, however, the behavior of the faulty sensor is checked to determine whether its 
output is nearly constant over time compared to the working sensor against which it will be 
calibrated.   If the difference is constant, this indicates a bias that can be readily determined and 
corrected by subtracting a constant value for the incorrect measured value  in a virtual sensor 
placed in the control system loop.  If it is not constant, correction of the fault will require a more 
complex behavioral characterization not developed yet, or the sensor may behave erratically or 
have failed in some way, both of which require that the faulty sensor be replaced. 

The mixed-air and cooling coil inlet air-temperature sensor outputs can be recalibrated directly 
from the other, unbiased sensor.  Likewise the supply-air and any VAV-box air-temperature 
sensor can be recalibrated directly by using the other.  The supply-air flow-rate sensor and any 
of the individual VAV-box air-flow sensors can be recalibrated to the other, unbiased sensor, 
but account must be made for air-flow leakage between the measurement points (i.e., using a, 
albeit simple, model).  Most properly working dampers still leak slightly when they are 
completely closed, so it may not be possible to entirely isolate the flow into any one damper.  
Therefore, a leakage flow is characterized during Training 2 that can be used in this fault 
correction.  The leakage flow rate is the difference between the supply-air flow rate and the flow 
rate at any one VAV damper that is open while the rest are closed. 
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CHAPTER 3: 
Implementation and Testing 
The algorithms developed to detect, diagnose, and correct faults in VAV systems were 
implemented for laboratory testing by coding them into a programming package that interacts 
with Factory Plant Management Interface (FPMI) software.  In this project, FPMI  is used as a 
human/machine interface (HMI).  FPMI is a web-deployed front-end to the Object Linking and 
Embedding for Process Control (OPC) server and Structured Query Language (SQL) Database.  
Using the FPMI client interface, users can monitor live data, specify the control variables and 
sensor paths, and instigate diagnostic and correction tests, including the instigation of faults.  
Using a database server, the test data and control variables can be stored automatically.  In this 
way, the algorithms we develop are implemented in software code that is used to control the 
physical system that has been constructed as a test facility for investigating the performance of 
the algorithms for automated fault detection and correction. 

Description of the Test Facility 
Section 3 of Fernandez et al. (2009b)  provides a description of the laboratory facility used to test 
the VAV system algorithms.  In brief, the system is composed of a chilled water loop that 
provides chilled water to the coiling coil of an air handler.  The air handler draws outdoor air 
from the environment and mixes it with return air from the room the air handler is located in.  
An electric heater maintains this room at a temperature set point.  The mixed air flows through 
the chilled water coil, then through a fan and a flow-rate sensor.  The test facility has been 
updated for this project to include four pressure-independent VAV boxes.  From the discharge 
of air handler, where the flow rate sensor is located, the air stream branches to each of the VAV 
boxes.  Each VAV box includes a damper, discharge-air temperature sensor, and a flow meter.      

 

Implementation of Algorithms 
Priorities were set for implementation of the algorithms in software code to ensure 
compatibility with the available project budget.  The goals of this prioritization were the 
following: 

• Code a set of algorithms that enabled testing the entire process (fault detection, 
diagnostics, and correction), albeit for a limited number of faults 

• Focus on automatically-correctable, or soft faults, as opposed to hard faults 

• Include faults that had many diagnostic pathways so that diagnosis of the correct fault 
could be verified 

• Include all of the training algorithms, because data from these training tests is a valuable 
tool for future refinement of the algorithms. 

With these goals in mind,  a set of algorithms was selected that enabled implementation of 
faults in the supply-air temperature sensor and the supply-air flow meter, while differentiating 
these faults from those originating from the cooling-coil valve, the fan, other temperature 
sensors, and the VAV-box flow sensors. 



38 

The algorithms developed and the subset implemented in software are identified in Table 6. 

 

Table 6:  Algorithms Developed and Implemented (Coded) for Testing 

Algorithms Developed Algorithms 
Coded 

Training Algorithms 
Filter-fan-coil-VAV section, training algorithm 1:  
expected fan signal 

 

Filter-fan-coil section of VAV air-handler, training 
algorithm 2: single-factor variables 

 

Filter-fan-coil-VAV section, training algorithm 3: 
expected cooling coil valve signal 

 

Passive Diagnostics Algorithm for Control System Loop 
Control system loop: store data for hunting 
passive diagnostics 

 

Passive Diagnostics Algorithms 
Automatic detection and correction of hunting  
Control system logic  
Check supply-air temperature  
Set-point maintenance  
Check fan and coil signals  
Check filter pressure drop  

Proactive Diagnostics Algorithms 
Check fan  
Check supply-air flow sensor  
Temperature sensors and coil valves  
Check filter  
VAV: Check all dampers  

VAV: Temperature sensors and reheat valves  

VAV: VAV-box flow sensors  

VAV: VAV-box maximum flow rate set point  

Fault Correction Algorithms 
Mixed-air temperature sensor  
Cooling-coil inlet-air temperature sensor  
Supply-air temperature sensor  
Supply-air flow-rate sensor  
Control system logic 1  
Control system logic 2  
VAV discharge-air temperature sensor  

VAV flow sensor  
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Results 
Analysis of Training Data 
Data from the training provides insight into how parts of the system perform, which can be 
critical to inform the process of fault detection.  The set of algorithms developed here captures 
the variations of supply-air flow rate with supply-fan command signal and outdoor-air damper 
position, the temperature rise across the supply fan (from rejected motor heat) and the filter 
pressure drop with supply-air flow rate, and the temperature change from the mixed air to the 
supply air as a function of supply-air flow rate and the cooling-coil command signal.  The 
training tests each involved tracking how these key variables change as a function of one or 
multiple system parameters.  Given these “baseline” relationships, faults can be detected when 
values of these dependent variables differ the values indicated by the baseline (training) values 
for the same combination of conditions (values of independent variables).  This section reports 
on how the functional variations observed and the empirical relationships captured from 
laboratory  tests.  Chapter 5: Future Work describes some proposed changes to the models to 
better model the relationships among these variables. 

Training 1 Algorithm 
Training test #1 uses an algorithm designed to capture the supply-air flow rate as a function of 
the supply-fan command signal and outdoor-air damper position.  The supply-fan command 
signal directly affects the flow rate, while it was postulated that the outdoor-air damper would 
also affect the flow rate by changing the upstream resistance to air-flow.  Figure 21 shows the 
results of testing.  It reveals two things:  1) the supply-fan command signals do not correspond 
directly to fan speed (e.g., measured in revolutions per minute—rpm) and 2) a weak 
relationship exists between the outdoor-air dampers position and fan speed for the system 
tested.  The supply fan does not start operating until the command signal rises above 25% or so.  
Because the relationship between supply-fan flow rate and the control signal, USF, was modeled 
by a 2nd order polynomial, the regression process does not fit the constant supply-fan flow rate 
of zero for values of USF less than 25% well.  The model gives values less than zero for values of 
the fan control signal less than 25%.  The fit of the model for USF<25% could be improved by 
creating a two-region model with the first region for USF<25% giving a constant value of zero 
and the second region for 25%<USF≤100%.  In the second region, the flow rate would be 
represented by a second-order polynomial fit to measured data.  The second observation from 
the training is that, at least for the laboratory test system, there is only a weak relationship 
between the outdoor-air damper position and fan speed, with the fan speed peaking at 
intermediate damper positions (compared the relative positions of the different shades of data 
points and curves in Figure 21).  This relationship will likely change from system to system, 
however, at this point in the development process, the polynomial model is retained, but this 
may be reconsidered in future work.  

Training 2 Algorithm 
Training 2 includes models of two relationships, the temperature rise across the supply fan 
(from rejected motor heat) and the filter pressure drop, each as a function of supply-air flow 
rate.   

In the process of developing the algorithms, it was postulated that the heat gain across the 
supply fan would decrease with increasing flow rate because higher air-flow rate would  
dissipate the heat released over a greater mass of air, but this neglected the higher motor power 
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(and heat dissapated) with higher fan speeds.  The temperature diffeence increases at low fan 
speeds, reaches a local minimum at around 230 CFM, and then increases steadily through the 
highest flow rate measured, as shown in Figure 22. 

 

Figure 21:  Training 1 Data: Expected Supply-Air Flow Rate.  Data points and polynomial line fits 
to the data for different values of the outdoor-air damper signal (Udamp) are distinguished by 

different shades. 

 
 

Figure 22:  Temperature Rise Across the Supply-Fan as a Function of Supply-Air Flow Rate 
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The filter pressure drop exhibited the expected relationship of increasing pressure drop with 
supply-air flow rate, as shown in Figure 23. 

Training 3 Algorithm 
A 2nd order polynomial regression was used to fit a model to the measured values of the 
temperature change from the mixed air to the supply air as a function of supply-air flow rate 
and the cooling-coil command signal, UCC.   Here, there were two issues.  First, all control valve 
signals less than 25% resulted in  were equivalent to 0 (i.e., no control action).  The second and 
more important issue is that the test implicitly assumes that there is a constant difference 
between the mixed-air temperature and the chilled-water temperature.  That was not the case in 
this test, mostly because of poor control over the supply-air temperature.  During the test 
plotted in Figure 24, the chilled-water temperature rose from 52 to 62°F.  Hence, the largest 
temperature drop in the airstream occurred in an intermediate cooling-coil command signal, 
then dropped as the chilled-water temperature continued to drift higher.  Changes in the 
mixed-air and chilled-water temperatures are very important to account for, and an alternative 
model for Training 3 is proposed in Chapter 5 that should fix this problem in future work.  In 
any event, chilled-water valve and cooling-coil faults were not investigated in the tests for this 
project, so the training process can be modified before tests are performed in the future for the 
algorithms for fault detection,  diagnosis and correction processes for those faults.  

 

Figure 23:  Measured Filter Pressure Drop versus Supply Air Flow Rate 

 

Test Results 
Table 7 summarizes the tests of the fault detection, fault diagnostics (isolation) and fault 
correction processes performed and for which the test results are presented in this section.   
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Figure 24:  Difference Between the Mixed-air and Supply-air Temperatures Plotted against Supply-
Air Flow Rate for Values of the Cooling-Coil Control Signal (UCC) from 0 and 100%. 

 
 

Table 7:  Summary of Tests Performed and Primary results.  Check marks identify tests that were 
performed with successful results. 

Test Number and 
Fault Description 

Fault 
Severity 

Key 
Tolerances* 

Passive 
Diagnostics 

Proactive 
Diagnostics 

Fault 
Correction 

1.  Supply-air 
Temperature 
Sensor Bias 

+5⁰F Ttol=2⁰F 

USF,tol=10   
Inconclusive  

2.  Supply-air 
Temperature 
Sensor Bias 

+5⁰F Ttol=1⁰F 

USF,tol=10    
Corrected 
Bias of 
+4.1⁰F 

3.  Supply-air 
Temperature 
Sensor Bias 

+8⁰F Ttol=2⁰F 

USF,tol=10    
Corrected 
Bias of 
+6.6⁰F 

  

UCC =   0 

UCC =  10 

UCC =  20 

UCC =  30 

UCC =  40 

UCC =  50 

UCC =  60 

UCC =  70 

UCC =  80 

UCC =  90 

UCC = 100 

 
Supply-Air Flow Rate (CFM) 
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4. Supply-air Flow 
Rate Bias 

+265 
cfm 
(20% of 
max 
flow) 

Ttol=2⁰F 

USF,tol =10   Concluded 
that the bias 
was erratic: 
replace 
sensor 

5. Supply-air Flow 
Rate Bias 

+265 
cfm 
(20% of 
max 
flow) 

Ttol=2⁰F 

USF,tol =10    
Corrected 
bias of 
287.5 cfm 

6. Supply-air Flow 
Rate Bias 

+132 
cfm 
(10% of 
max 
flow) 

Ttol=2⁰F 

USF,tol =10   Conclusion: 
Fan belt slipping 
or decrease in fan 
efficiency  
 

 

*The subscript “tol” designates that the value given represents the tolerance for the variable that 
it subscripts. 

In Test #1, a 5⁰F supply-air temperature sensor bias was instigated with a 2⁰F temperature 
sensor tolerances used in the algorithms.  The supply-air temperature sensor biases are usually 
detected with the “Check supply-air temperature” algorithm.  The fault is detected as a 
consequence of the heat gain across the fan exceeding the acceptable range of fan heat gain (at 
the current supply-air flow rate) during Training 2.   The acceptable range is defined according 
to the tolerances of the temperature sensors.  In this case, the test was performed with the 
algorithms using ±2⁰F tolerances applied to all temperature sensors (i.e, assuming that each 
temperature sensor has an uncertainty of ±2⁰F ).  Because the air temperture increase caused by 
heat gain from the fan is calculated as the difference between the air temperture downstream of 
the fan and the the cooling coil inlet temperature (when the cooling coil is off; see Figure 1), the 
deviation in the temperature difference must exceed the expected training value by 4⁰F or more 
to conclude that the fault exists. 

Figure 25 shows the time series of the deviations of the air temperature rise caused by fan heat 
rejection from its expected value based on the relationship found in Training 1.  During the first 
several minutes of the test, there was no fault implemented, and the fan temperature rise was 
about 1⁰C lower than the equivalent training value.  This period is labeled on the figure as point 
1.  At point 2, a fault is implemented by adding a 5⁰F bias to the supply-air temperature sensor 
output.  This brings the air-temperature rise to just over 4⁰F, which is the threshold for detection 
of this fault.  The fault is quickly detected at point 3, and proactive diagnostics are started 
(beginning of region in elipse labeled 4).  During the proactive diagnostics, a series of tests is 
performed (see Fernandez et al. 2011) to isolate the fault as a supply-air temperature sensor 
fault (rather than being a bias in the mixed-air temperature sensor or a leaking heating coil, 
among other faults).  A problem occurs during the fault isolation process.  During the proactive 
diagnostic testing, at the specific point in the test where the supply-air temperature was 
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evaluated for bias (point 4a), the fan temperature rise dipped just below the critical 4⁰F 
threshold, and the algorithm could not verify that the supply-air temperature sensor was at 
fault.  However, because everything else was working properly, the test could not find a fault 
anywhere, and the result was a finding of “inconclusive.”  This was caused by the fault severity 
being equal to the threshold for fault detection (given the tolerances applied), rather than being 
a failure of the formulation of the algorithms.  When the algorithm decides that there is 
inconclusive evidence to diagnose (i.e., isolate) a specific fault, it clears all flags that have been 
raised to run specific diagnostic tests, returns to the passive diagnostics, and begins looking for 
faults again.  If the bias is persistent, it should be detected again, and perhaps if the conditions 
are right the next time, it would be diagnosed correctly. 

 

Figure 25:  Test 1 - Deviation of Fan Temperature Rise From Baseline Training Value 

 
Figure 26 shows the time history of the deviation of the air temperature increase caused by fan 
heat rejection from its expected value based on the relationship found in Training 1, this time 
for a test for which all steps were completed successfully.  The applied bias in Test 2 was +5⁰F, 
the same as in Test 1, but the temperature sensor tolerances were lowered to 1⁰F.  With the 
lowered tolerances, the issue that arose in Test 1 did not arise in this test.  After the proactive 
diagnostics, the program successfully determined that the fault was in the supply-air 
temperature sensor.  The program then began the fault correction process, determined that the 
nature of the fault was a steady bias, and then averaged the bias over a period of several 
minutes, finally determining that the magnitude of the fault was 4.1⁰F.  This correction is well 
within the tolerances of the sensors and can, therefore, be considered a correct recalibration of 
the supply-air temperature sensor. 
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Figure 26:  Test 2 - Deviation of Fan Temperature Rise from Expected Training Value 

 

Plotting the time series of the same variable (i.e., the deviation of the air temperature increase 
caused by fan heat rejection from its expected value) during Test 3 in Figure 27 shows the 
results of the same fault correction process, this time for a +8⁰F supply-air temperature sensor 
bias.  This test illustrates that an increased severity (magnitude) of the fault has the same 
practical effect as lowering the tolerances for fault detection.  If the tolerances were lowered too 
far, however, the rate of false fault detection would increase substantially.  In Test 3, the fault 
was identified correctly as a supply-air bias fault with a magnitude of 6.63⁰F and corrected. 

Tests 4 through 6 examined detection, diagnosis and correction of biases in the measurements 
by the supply-air flow-rate meter.  Two levels of fault severity were tested, a bias of +10% of the 
full speed air-flow rate (132 cfm) and a bias of +20% of the full speed air-flow rate (265 cfm).  
Tests 4 and 5 were each at +20% severity.   

The algorithms easily detected and isolated the Test 4 fault because the value of the supply fan 
control signal, USF, was well above the range of USF,cal [the expected value of USF obtained from 
the empirical relation between the normal supply-air flow rate (VS) and USF developed in 
Training 1].  As shown in Table 5, the tolerance for the supply-fan control signal USF,tol  was set 
to 10.  Therefore, USF must deviate from USF,cal by at least 10 for a bias fault to be detected.  In 
Test 4, after detection of a fault, the proactive diagnostics successfully isolated the fault to the 
supply-air flow meter; however, the fault was incorrectly characterized as caused by an erratic 
sensor rather than a steady bias in the flow meter measurements. 

During the fault correction process, the readings from the faulty sensor are monitored for a 
period of 15 minutes under controlled conditions to evaluate whether they are relatively 
constant.  When a relatively constant bias persists for 15 minutes, the algorithm deems the fault 
condition a biased sensor, rather than acting erratic one. 
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Figure 27:  Test 3 - Deviation of Fan Temperature Rise from Expected Training Value 

 
 

A statistical test is used to determine whether the sensor is behaving erratically or not.  The 
sensor is behaving erratically unless two criteria are met:  1) the standard deviation of readings 
from the same sensor over the 15-minute period must be below a specified threshold (discussed 
later) and 2) no more than 10% of all data points collected during the 15-minute period can lie 
more than 2 standard deviations from the mean (randomly distributed data should have about 
5%).  The threshold for the standard deviation specified for Test 4 was 20 cfm.  The observed 
standard deviation of the data equaled 47 cfm, thus exceeding the threshold, so that the sensor 
behavior as consider erratic and not a constant bias.  

The value of the threshold for the standard deviation was chosen somewhat arbitrarily based on 
limited past tests.  Both the uncertainty in measurements by the flow station (sensor) and 
variations in the flow rate contribute to variations in the flow rate with time.  The air-flow rate 
through a duct may not be entirely steady, and small variations may affect the measured flow 
rate at the instants that measurements are made (caused, for example, by vortices and 
recirculation).  Thus, knowing the uncertainty of the sensor under ideal conditions is likely 
insufficient information to choose an effective standard deviation threshold.  This threshold is 
thus one that should be set empirically, based on tests or experience with a known, properly 
working sensor.  We reset the standard deviation threshold to 60 for Tests 5 and 6. 

With the standard deviation threshold changed, the algorithms for all steps executed 
successfully in Test 5.  Figure 28 shows the process during the passive diagnostics that led to 
fault detection.  Here, the values of USF,cal calculated from measured values of air-flow rate and 
the relationship established during training, track the actual supply-fan control signal USF 
closely until the fault is implemented, after which USF,cal is about 20 higher.  The solid red lines 
in the graph show the limits for fault detection, which USF,cal is clearly within before the fault 
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occurs and above the upper limit following fault implementation (the black line shows the 
implementation of the bias for which the scale is shown on the right axis).  

 

Figure 28:  Test 5 - Passive Diagnostics - USF versus USF,cal 

 

 

During the proactive diagnostics, the critical test that traces the fault to the supply-air flow 
meter is shown in Figure 29.  The test stipulates that for the fault to be characterized as a 
supply-air flow-meter fault, the flow rates measured at the VAV terminal boxes must all be 
above or all be below the measured air-handler supply-air flow rate, with an additional 
threshold that serves as a margin of error in this calculation (which was set 20 cfm).  The flow 
rates measured at each VAV terminal box are adjusted higher to account for the “leakage flow” 
characterized during the Training 2.  The leakage flow is the average flow rate that leaks from 
the ductwork and any of the other dampers when one damper in the VAV box network is fully 
open and the rest are fully closed.  During this proactive test, the damper of each VAV box is 
sequentially opened while the rest are closed to compare their individual flow rates under these 
conditions to the supply-air flow rate measured at the air handler.  If the VAV-box flow meters 
are working properly, then the actual flow rate at the open VAV box during this test should 
equal the air-handler flow rate minus the leakage flow rate measured during Training 2.  Figure 
29 shows that each measured supply-air flow rate is at least 235 cfm greater than sum of the  
VAV-box and leakage flow rates, indicating that the supply-air flow meter is faulty (reading 
high).   

With the standard deviation threshold raised for the fault correction process, there was no 
problem correctly isolating and then correcting the fault.  The 265 cfm bias was characterized as 
a 287 cfm bias, which was a very close correction (within 8.5% of the actual bias). 

Figure 30 shows measurements during the passive diagnostics for Test 6 at a fault severity of 
+10% of full speed flow rate.  This fault, much like the fault for Test 1, is right at the limits of 
fault detection.  As shown in the figure, the fault was detected after USF,cal barely rose above the 
upper limit for fault detection. 
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Figure 29:  Test 5 - Proactive Diagnostics - VAV versus Supply Flow Rate 

 

 

 

Figure 30:  Test 6- Passive Diagnostics- USF versus USF,cal 

 
 

Analogous to the situation in Test 1, during the proactive diagnostics in Test 6, the variable 
intended to indicate the presence of the fault was only slightly above the upper limit for 
detection in the passive diagnostics and slightly below the lower limit for diagnosis in the 
proactive diagnostics.  For correct diagnosis of the supply-air flow meter fault, the sum of the 
measured flow rate and the leakage flow rate must be above the measured air-handler supply-
air flow rate plus the 20-cfm threshold or below the measured air-handler supply-air flow rate 
minus the 20-cfm threshold of the supply-air flow rate for all VAV boxes.  For Test 6, the 



49 

measured flow rates for all the boxes but one are much more than 20 cfm below the measured 
air-handler supply-air flow rate (see Figure 31).  Box #3, however, only reads 17 cfm below the 
measured supply-air flow rate.  The algorithm concludes, therefore, that the supply-fan belt is 
slipping, the supply-fan efficiency has decreased, or VAV dampers are stuck.  These faults are 
indistinguishable from one another in the current set of algorithms.  As a result, the proactive 
diagnostic algorithm reached the wrong conclusion.    

 

Figure 31:  Test 6 - Proactive Diagnostics VAV versus Supply-air Flow Rate 

 
 

Recall that in Test 1, the algorithm reported the result as “inconclusive,” and the algorithm 
returned the process to the passive diagnostics to start over.  This is preferable to an incorrect 
conclusion as in Test 6, when the fault severity is borderline.  The inclusive result was reached 
in Test 1 because the logical structure of the algorithms provided for unique tests for all possible 
faults.  The logical structure for identifying the fault with the supply-air flow measurement, in 
contrast, is a “process of elimination,” wherein if the fault must be A or B, and we determine 
that fault A for which we can directly test has not occurred, then the fault that occurred must be 
fault B.  As a result, Test 6 reveals a weakness in the approach used for isolating the supply-air 
flow-rate sensor fault.   

Without adding sensors to the VAV system (a constraint imposed by the technical team to 
reduce the incremental cost of implementing self-correcting capabilities), not much can be done 
about the rigor of the logic.  There are, however, steps that can be taken to better ensure that 
supply-air flow-meter faults are correctly isolated.  One is to set the fault detection thresholds so 
that they are higher than the fault diagnostic thresholds.  Another is to redesign the training 
process for the leakage flow rates.  Rather than assuming that the leakage flow is identical for all 
VAV boxes, the system could be trained to determine a unique leakage flow rate for each VAV 
box.  Referring to Figure 31, perhaps the leakage flow rate is much lower when VAV Box 3 is 
fully open and the others are completely closed.      
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CHAPTER 4: 
Economic and Impact Assessment 
Many faults affecting the energy efficiency and performance of HVAC systems go undetected 
and uncorrected, often for long periods of time.  Even when faults are detected and properly 
diagnosed, it is common for faults to persist because building operations staff do not find the 
time to address many of these faults, or HVAC service technicians do not receive approval from 
building owners to complete the required service or repair.   Self-correcting controls could 
automatically correct many of these faults by reconfiguring controls and recalibrating devices, 
and thus enable the system to maintain performance efficiency.  To estimate the potential 
energy and economic impacts of deploying self-correcting controls, we first estimate HVAC 
system-level savings (on average) and then multiply the savings by the potential number of 
systems impacted.  Cost savings and environmental benefits are then derived from the 
estimated energy savings.  To appropriately capture the persistent savings from controls that 
continually self-correct operational faults, the savings are estimated over a 15-year period based 
on forecasted building stock and energy price estimates developed by the California Energy 
Commission (CEC).   

 

Technical and Market Potential 
Based on published reports, savings between 10% and 30% are generally achievable by 
correcting operation problems.  It is reasonable to assume that systems retrofit with robust self-
correcting controls could achieve average HVAC energy savings of 15% over common 
operation conditions for applicable systems over the lifetime of the system (Mills 2009, Moore et 
al. 2008, Roth et al. 2005, Tso et al. 2007).   

The targeted market will include built-up, central HVAC systems with a longer-term market 
potential targeting packaged HVAC systems.  To determine the energy savings potential for 
these targeted systems, the energy consumed by various HVAC systems was calculated based 
on equipment shares derived from California Commercial End-Use Survey (CEUS) data (Itron 
2006).3  The CEUS survey queries provided information on equipment shares by building stock 
and climate zone as well energy consumption by end use.  California commercial building stock 
forecasts were taken from the California Energy Commission’s (CEC’s) most recent energy 
forecast (CEC 2009).  Equipment shares by building type and building stock forecasts were then 
input into the PNNL-developed Building Energy Analysis Modeling System (BEAMS)4 to 
derive consumption by equipment type (Elliott et al. 2004).  

Overall, the total energy used by both built-up and packaged systems to heat, cool , and 
ventilate commercial buildings in California is estimated to make up about one-quarter of the 
total delivered energy use in the overall commercial sector and just over three-quarters of the 
total delivered commercial HVAC energy use.  Figure 33 provides a diagram identifying the 

                                                      
3 CEUS data query received in Excel format from Mark Ciminelli, Senior Mechanical Engineer, California State Demand Analysis 
Office (10/13/2010).  
4 Chapter 2 of referenced report (Elliott et al. 2004) provides a detailed description of “BESET” model, which has 
since been renamed as “BEAMS.”   
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energy use targeted by self-correcting HVAC controls.  The energy use includes both natural 
gas and electric delivered energy consumption in trillions of British thermal units (TBtus).  The 
initial target, which focuses on built-up systems, only accounts for about 17 % of total HVAC 
energy use in commercial buildings; however, these self-correcting systems will be available for 
retrofit, enabling near-term deployment into the existing building stock.  Packaged systems 
make up a much larger portion of the total HVAC delivered energy use (60%); however, the 
current set of self-correcting controls has not yet been tested or demonstrated on packaged 
systems, so deployment into this market would likely be further in the future. 

 

Figure 32: Target Market for Self-Correcting Controls (Delivered TBtus) 

 

Methodology 
The benefit estimates for self-correcting controls are estimated with PNNL’s Building Energy 
Analysis Modeling System (BEAMS).  BEAMS is a bottom-up accounting model that compares 
baseline energy use against specific energy-efficient technologies or energy saving programs 
(Elliott et al. 2004).  The BEAMS model baseline was calibrated to represent the California 
commercial building energy market.  The underlying building stock assumptions and forecast 
are based on the most recent CEC energy forecast (CEC 2009), while HVAC equipment market 
shares by building type are based on CEUS survey results (Itron 2006).  Average equipment 
efficiencies were drawn primarily from the Department of Energy’s (DOE’s) National Energy 
Modeling System (NEMS) input assumptions (EIA 2010).  The baseline also includes heating 
and cooling end-use loads representing the baseline heating and cooling energy use per square 
foot.  To appropriately represent the savings in a particular sector, the baseline includes 
commercial building end-use loads developed for specific building types (e.g., education, large 
office, etc.) as well as by vintage for two encompassing California climate zones.  End-use loads 
were derived from the Facility Energy Decision System (FEDS) to reflect current energy 
technology and consumption behavior (PNNL 2008). 

The market penetration over time is developed based on market diffusion curves developed by 
PNNL, which are based on a Bass diffusion model (Bass 1969) for various building HVAC 
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technologies (Elliott et al. 20045).    Bass was the first to suggest the “S” curve or logistic 
functional form for the market diffusion of new products, and his concepts are still widely 
employed in the marketing discipline today.  The model development and empirical analysis 
were designed to generate more credible predictions of the adoption process of energy-
efficiency technologies in the buildings sector.  The timeframe for this study is limited to a 15-
year period. 

Built-up System Savings 
The initial set of self-correction methods and algorithms developed as part of this project are 
being tested and demonstrated on built-up HVAC systems.  Built-up HVAC systems are 
characterized as central HVAC systems that are custom-designed for a building.  Chillers and 
boilers make up the source components for the vast majority of the built-up systems in the 
California commercial building stock; however, a small percentage of the built-up systems are 
supplied with other HVAC source components (e.g., central air-conditioning and gas furnaces).  
The shares of built-up systems are identified with CEUS data queries to characterize the market 
potential and market penetration of self-correcting controls into this market.  

Two deployment paths were considered related to the deployment of self-correcting controls 
into the built-up HVAC market:   

Deployment Path 1:  Deployment of self-correcting controls as software code in an energy 
management and control system or building automations systems (BAS) in commercial 
buildings or as a third-party software connected to a BAS; and  
Deployment Path 2:  Deployment by integrating self-correcting code into distributed field 
panels or device controllers.   
 

Although BAS are found in relatively few buildings overall (5% of buildings encompassing 
approximately 17% of commercial floor space), they are much more prevalent in buildings that 
have built-up systems.  Based on data queries from the Energy Information Administration 
(EIA) Commercial Buildings Energy Consumption  Survey (CBECS), it is estimated that 
approximately 50% to 70% of commercial floor space served with built-up systems in California 
is equipped with building automation systems (EIA 2003).  Deployment through a BAS system 
would, therefore, provide significant opportunities to penetrate buildings with a newly 
installed BAS; but more importantly, it would also provide opportunities to retrofit and impact 
a large fraction of the existing building stock because these systems could be retrofit more easily 
and cost effectively with self-correcting controls.  The second deployment path, “Deployment 
by integrating self-correcting code into distributed field panels or device controllers “ would 
also provide opportunities to reduce energy use within the existing building stock; however, 
the opportunity for retrofit would more likely come as system components are retired and 
changed out or upgraded, which would be a much slower process.     

To assess the energy market and economic impact of self-correcting controls in the built-up 
market, it was assumed that a very aggressive market deployment program could achieve 40% 

                                                      
5 See Chapter 3, “Technology Diffusion Models – Application to Selected Energy-Efficient Products for Buildings,” of 
Elliott et al. for more information on development of diffusion models.  Sources for HVAC technology data and 
conclusions include Census of Manufacturers, Gas Appliance Manufacturers Association (GAMA) [Srinivasan & 
Mason (1986); Brown et al. (1989); Mahajan, Mason, and Srinivasan (1986)]. 
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market penetration in the built-up HVAC market 15 years after the initial date of 
commercialization by focusing on deployment through BAS.  It is also assumed that an 
additional 20% of the built-up HVAC stock that is new or is turned over during a 15-year 
period could be impacted with self-correcting controls through one or both of the previously 
described deployment paths.  Table 9 provides the market diffusion estimates over a 15-year 
period for the previously described “aggressive” deployment, which is referred to as the 
“High” market penetration scenario.  In addition, Table 9 provides market diffusion estimates 
for the “Moderate” market penetration scenario and for “Low” market penetration 
assumptions. 

Table 8: Market Diffusion and Energy Performance Assumptions for Built-up Systems 

Year 

Percentage of Built-up 
systems/stock (targeting buildings 

with BAS) 

Percentage of new and turnover 
equipment (source components 

for built-up systems) 

 
HVAC Energy 
Reduction per 

unit 
 Low Moderate High Low Moderate High  

1 0.5 0.8 1.0 0.3 0.4 0.5 15% 
2 1.2 1.8 2.4 0.6 0.9 1.2 15% 
3 2.1 3.1 4.1 1.0 1.6 2.1 15% 
4 3.2 4.7 6.3 1.6 2.4 3.2 15% 
5 4.5 6.7 9.0 2.2 3.4 4.5 15% 
6 6.0 9.1 12.1 3.0 4.5 6.0 15% 
7 7.8 11.7 15.6 3.9 5.8 7.8 15% 
8 9.7 14.5 19.4 4.8 7.3 9.7 15% 
9 11.6 17.4 23.2 5.8 8.7 11.6 15% 
10 13.5 20.2 27.0 6.7 10.1 13.5 15% 
11 15.2 22.8 30.5 7.6 11.4 15.2 15% 
12 16.8 25.1 33.5 8.4 12.6 16.8 15% 
13 18.1 27.1 36.1 9.0 13.6 18.1 15% 
14 19.1 28.7 38.3 9.6 14.4 19.1 15% 
15 20.0 30.0 40.0 10.0 15.0 20.0 15% 

 

Assuming an average HVAC energy reduction of 15% by year 15 and the market diffusion 
described in Table 9, the deployment of self-correcting controls in the built-up HVAC system 
market produces a year 15 statewide annual savings of 1.2 TBtu, under “Low” market 
penetration assumptions, 1.8 TBtu under “Moderate” penetration assumptions, and 2.4 TBtu 
under “High” penetration assumptions (see Figure 34).    

Although savings are initially relatively modest, they increase substantially over time.  The 
increase results from both the increasing market penetration as well as the savings that persists 
over time.  The persistence of savings is especially important when evaluating self-correcting 
controls because a fundamental characteristic of these measures is that they sustain peak 
performance and efficiency, which has been found to be difficult for many commercial building 
energy-efficient technologies, designs, and measures. 

In terms of specific end uses and fuel sources, most of the delivered energy savings generated 
from self-correcting controls in built-up systems are in the form of gas heating reductions.  
Figure 35 provides the breakout, over time, of the savings by end use and fuel source for the 
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Figure 33: Self-Correcting Annual Energy Savings for Built-up Systems by Market Penetration 
Scenario 

 

deployment of self-correcting controls into built-up systems, assuming the “High” penetration 
scenario. 

 

Figure 34: Built-up Annual Energy Savings by End- Use and Fuel Source (under the “High” market 
penetration scenario)
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Built-up system savings from self-correcting controls are concentrated in a few building types, 
with the miscellaneous building category (e.g., public assembly, religious, etc.), education, and 
large offices6 making up just over 85% of the savings (see Figure 36) 10 years after the initial 
deployment.  Health care facilities make up an addition 11% of the savings.   

 
Figure 35: Percent of Savings in Built-up Systems by Building Type 

 
Packaged System Savings 
Although the self-correcting controls developed as part of this project have not been directly 
tested or demonstrated on packaged systems, it is believed that the algorithms developed for 
built-up systems could be tailored to packaged systems to achieve similar performance benefits.  
Packaged systems are the most common HVAC systems in commercial buildings and make up 
60% of the total HVAC energy consumption in California.  Thus, any measure that improves the 
performance of packaged systems, in general, could have significant energy reduction impacts.  
Because packaged systems tend to be serviced less than built-up systems and are less likely to 
be affiliated with a BAS, there would likely be fewer opportunities to retrofit existing packaged 
systems with self-correcting controls.  The pathway for deployment of self-correcting controls 
would therefore more likely occur at the equipment production level for packaged systems.  
There are five well known manufacturers of commercial HVAC equipment that dominate the 
market:  Carrier, Lennox, McQuay, Trane, and York.  Based on a 2005 Northwest Energy 
Efficiency Alliance (NEEA) study, the “Big Three” manufacturers for packaged heating and 
cooling equipment used in the Pacific Northwest are Trane, Carrier, and Lennox, where Trane is 
estimated to have 50% of the market share, followed by Carrier (30%), and Lennox (15%) 
(NEEA 2005).  Other manufacturers, mainly York, are estimated to have 5% of the packaged 
HVAC commercial market share.  Assuming that the California HVAC market is similar to the 
Northwest and low-cost self-correcting controls were available and could be integrated into a 
packaged system during fabrication, only one or two companies would need to integrate these 
capabilities into their systems to provide a sizable impact on HVAC energy consumption. 
                                                      
6 “Large offices” are defined as office buildings equal to or greater than 30,000 square feet. 
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To assess the energy and economic impacts of self-correcting controls in the packaged system 
market, it was assumed that an aggressive market deployment program could achieve 40% of 
the packaged system HVAC stock that are new or replacement units during a 15-year period.7  
This would not include the fraction of existing packaged systems that could potentially be 
retrofit to incorporate self-correcting controls.  Table 10 provides the market diffusion estimates 
for a “Low,” “Moderate,” and “High” market penetration scenarios over a 15-year period. 

As shown in Figure 37, even while only penetrating into new equipment, the energy savings 
potential for deploying self-correcting controls into packaged systems is significant because of 
the prevalence of these systems.  By year 15, annual savings reach 3.8 TBtus under the scenario 
with “High” market penetration assumptions, 2.8 TBtus under the “Moderate” market 
penetration scenario and 1.9 TBTus under the “Low” market penetration assumptions.     

The savings generated from self-correcting controls deployed in packaged systems comes 
primarily in the form of natural gas heat savings and cooling savings.  Figure 38 provides the 
breakout, over time, of the savings by end use and fuel source for the deployment of self-
correcting controls into packaged systems, assuming the “High” penetration scenario. 

Table 9: Market Diffusion and Energy Performance Assumptions for Packaged Systems 

Year Percentage of new and turnover 
package system equipment 

 
HVAC Energy 
Reduction per 

unit 
 Low Moderate High  
1 0.5 0.8 1.0 15% 
2 1.2 1.8 2.4 15% 
3 2.1 3.1 4.1 15% 
4 3.2 4.7 6.3 15% 
5 4.5 6.7 9.0 15% 
6 6.0 9.1 12.1 15% 
7 7.8 11.7 15.6 15% 
8 9.7 14.5 19.4 15% 
9 11.6 17.4 23.2 15% 

10 13.5 20.2 27.0 15% 
11 15.2 22.8 30.5 15% 
12 16.8 25.1 33.5 15% 
13 18.1 27.1 36.1 15% 
14 19.1 28.7 38.3 15% 
15 20.0 30.0 40.0 15% 

 

 

 

                                                      
7 Although packaged system impacts would not be expected in the near-term, the impacts for a 15-year period are 
projected during the same 15-year period as the built-up systems for convenience and to coordinate with the CEC 
building and price forecasts. 
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Figure 36: Self-Correcting Annual Energy Savings for Packaged Systems by Market Penetration 
Scenario 

 
 

Figure 37: Packaged System Annual Energy Savings by End Use and Fuel Source (under 
aggressive market penetration scenario) 

 

Relative to the built-up system savings, the packaged system savings are spread more evenly 
amongst all building types; however, approximately two-thirds of the savings are concentrated 
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in retail buildings, warehouses, education and miscellaneous building categories.  Figure 39 
provides the savings percentages by building type for packaged system savings. 

 

Figure 38: Percent of Savings in Packaged Systems by Building Type 

 

 
Total Impacts on California Market 
Overall, the deployment of self-correcting controls in both built-up and packaged systems could 
noticeably reduce California HVAC energy consumption over time.  Figure 40 presents the 
annual savings projections by system type, while Figure 41 presents the savings total if 
deployment were to occur in built-up and packaged systems assuming aggressive deployment 
(i.e., “High” market penetration assumptions).  As shown in Figure 40, built-up system savings 
are initially greater than packaged system savings as a result of the retrofit potential of these 
systems into existing building stock.  In the longer-term, however, the deployment of self-
correcting controls into packaged systems becomes relatively greater as stock turns over 
because of the large quantity of these systems in the commercial buildings market.  

As shown in Figure 41, the combined annual delivered energy savings of deploying self-
correcting controls into both packaged and built-up systems is 3 TBtu after 10 years under the 
aggressive or “High” market penetration scenario.  These annual savings increase to 6.1 
TBtu/year at year 15 (i.e., 15 years after the date of commercialization).  This savings would 
equate to an approximate 3% to 4% overall reduction in commercial HVAC consumption in 
California over a 15-year period.  
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Figure 39: Self-Correcting Annual Energy Savings by System Type with Aggressive Market 
Deployment Assumptions (i.e., “High Pen”) 

 
 

Figure 40: Total Delivered Annual Energy Savings (both electric and natural gas) with Deployment 
into both Built-up and Packaged Systems (High Market Penetration Scenario) 

 

Economic Impact 
The energy cost savings associated with the energy savings presented in Figure 41 are shown in 
Figure 42.  Cost savings are derived by multiplying the savings (by energy type) by the 
delivered energy price, which are forecasted by the CEC8.  In the near-term (year 5), the self-
                                                      
8 Prices forecasted by CEC out to the year 2020.  Beyond 10 years, prices were held constant at 2020 prices.   
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correcting controls deployment would result in a relatively modest annual savings of between 
$8 and $11 million for each system type in which deployment occurs.  An aggressive 
deployment into both built-up systems and packaged systems could yield an annual cost 
savings of approximately $84 million 10 years after commercialization and $163 million 15 years 
after the technologies are commercialized. 

 
Figure 41: Annual Forecasted Energy Cost Savings by System Type 

 
Environmental Impacts 
The importance of reducing carbon dioxide (CO2) emissions has increased significantly in 
recent years.  The estimate of CO2 emission reductions associated with the energy savings from 
self-correcting controls is based on an average CO2 emissions avoidance factor per unit of 
energy consumption for the state of California9.  The CO2  emissions reductions are directly 
related to the energy savings presented in Figure 41 and the respective fuel source associated 
with the energy savings.   

It was estimated that approximately 7,000 to 10,000 metric tons of carbon equivalent (MMTCE) 
would be avoided annually by deploying self-correcting controls in either built-up or packaged 
systems (see Figure 43).  Approximately 65,000 MMTCE could be avoided annually with an 
aggressive deployment of self-correcting measures in both built-up and packaged systems in 10 
years from the initial deployment of the controls, which would increases to annual carbon 
emission avoidance of approximately 131,000 MMTCE 15 years after the initial deployment. 

                                                      
9 Emissions from electric usage are calculated using an average emissions rate for EPA’s E-Grid 
subregion:  WECC California (724.1201 lb/MWh), which are consistent with rates 
independently certified and registered each year by the California Climate Action Registry (see 
www.climateregistry.org) (EPA 2007).   
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Figure 42: Annual Equivalent Carbon Dioxide Emissions Avoided by System Type (MMTCE)  
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CHAPTER 5: 
Future Work 
Proposed future work falls into three categories:  1) improved models and procedures for 
collecting training data, 2) completion of the full suite of tests necessary to validate the fault 
detection, diagnosis, and correction algorithms for the air handling (filter/fan/coil) and VAV 
sections, 3) integrating the self-correcting control algorithms with building automation systems 
other than the Johnson Controls Metasys®10 used for the laboratory tests completed thus far, 
and 4) field testing the self-correcting control algorithms in operating commercial buildings.  

Improved Training Models and Procedures 
Each of the training algorithms requires modifications.  

Training 1 requires only a slight modification.  As noted in Chapter 3, no actuator response 
occurred for command signals under 25% for all dampers and valves in the laboratory system. 
The model for devices that respond in this manner should be revised to include a region for low 
values of command signals (e.g., less than 25%) for which no response occurs and a second 
region (e.g., 25% to 100%) in which the device (e.g., damper or fan) response increases with 
increasing command signal.  A polynomial curve fit can then be used to capture the behavior in 
this second region. The value of the command signal at which the response becomes non-zero 
may differ among equipment, controllers and systems, so a step to identify this transition point 
needs to be added to the Training 1 process and algorithm. 

As mentioned in Chapter 3, the leakage flow rate training (in Training 2) should be modified to 
the determine a leakage flow rate for each of the VAV boxes served by the air handler, rather 
than averaging the measured leakage flow rates to arrive at one leakage rate used for all VAV 
boxes.   

Training 3 requires a more substantial revision.   In hindsight, ΔTSM is inadequate for tracking 
the performance of the cooling coil.  As the difference between the mixed-air temperature and 
the chilled-water temperature changes, the achievable temperature drop across the cooling coil 
also changes.  The heat exchanger effectiveness, which can be shown as equal to the air-side 
temperature drop across the cooling coil divided by the thermodynamic maximum temperature 
drop achievable by the air, would be a better variable for this purpose.  For the cooling coil, that 
temperature drop would be the difference between the air temperature at the cooling-coil inlet 
and the chilled-water temperature (at the cooling-coil water inlet).  The air-temperature leaving 
the cooling coil is not ordinarily measured; therefore, it must be estimated from the supply-air 
temperature accounting for the increase in temperature as the cooled air flows past the supply 
fan (ΔTSF).  The change in air temperature across the cooling coil is then estimated as the 
difference THC – (TSA -  ΔTSF) = THC – TSA + ΔTSF, where THC is the air temperature leaving the 
heating coil but before entering the cooling coil (see Figure 1 for the locations of the sensors).   
Thus, the cooling-coil effectiveness (εCC) is given in terms of commonly available sensors by 

                                                      
10 Metasys is a registered trademark of Johnson Controls, Inc. 



63 

.
CWHC

SFSAHC
CC TT

TTT
−

∆+−
=ε  

When a heating coil is not present, the temperature entering the cooling oil can be taken as the 
mixed-air temperature, TMA.    

Figure 32 shows what Training 3 data from Figure 24 look like when the dependent variable 
plotted is εCC, rather than ΔTSM.  The relationships in Figure 32 and their dependence on the 
cooling-coil valve signal, UCC, are much clearer than those shown in Figure 24.  As UCC is 
increased, ECC increases. at first very quickly, then saturating at higher values of UCC. 

 

Figure 43:  "Cooling Coil Effectiveness" from Training 2 Data 

 
The model for Training 3 also needs to be corrected for response not starting for values of the 
control signal below some threshold (25% for the cooling coil in the laboratory apparatus).  As 
with Training 1, the model could be divided into two regions, the first below the threshold in 
which there is no response of the device (valve for Training 3) and the second in which the 
model can be expressed as a polynomial regression on the training data collected. 

 

Completion of Full Suite of Laboratory Tests 
Table 6 (in Chapter 3) identifies the faults for which algorithms were developed and software 
code implemented.  Testing was completed for only a subset of the algorithms in this project, as 
reported in Table 7.  A much more complete set of testing is required both to adjust the values 
of parameters for which values are selectable (e.g., the supply-fan control signal, USF,tol ) and to 
validate all the algorithms.  Furthermore, it is important to ensure that the fault detection and 
isolation algorithms can distinguish among different faults and not falsely isolate incorrect 
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faults.  This will require testing the algorithms with many different faults, even those which are 
not correctable, as part of ensuring that false positive fault detection and incorrect fault isolation 
are minimized.  Table 8 provides a list of all detectable VAV system faults identified in this 
project.  Many of these faults would be trivial to detect, but the algorithms for their detection 
have not been coded in software yet to enable testing.   Most of these faults are not self- 
correctable.  Nevertheless, demonstrating that all faults can be successfully distinguished from 
one another is important.  A key goal of the self-correcting controls process is not to “fix” faults 
that don’t exist, which requires minimization of false positive fault detection and errors in fault 
isolation.  Beyond proving this ability, performing tests on all of the faults will reveal 
weaknesses in the algorithms, which can then be used to formulate important improvements.  

 

Table 10: Testing Status for all Faults in Filter/Fan/Coil and VAV-Box Sections of VAV Systems 

Type of Fault Fault 
Tested?  Comments  

Hunting CC valve No  

HC/CC valve controller software logic fault No  

Fan controller software logic fault No  

Supply-air flow station complete failure No  

Supply-air fan complete failure No  

Supply-air fan belt slipping/decreased fan η No  

Supply-air flow station biased Yes  

Supply-air flow station erratic No  

CC valve stuck open or leaking No  

HC valve stuck open or leaking N/A No heating coil in lab apparatus 

MA temperature sensor biased Yes Tested in mixing-box tests (see 
Fernandez et al. 2009b) 

MA temperature sensor erratic/not working No  

HC temperature sensor biased N/A No heating coil in lab apparatus 

HC temperature sensor erratic/not working N/A  

SA temperature sensor biased Yes Algorithms working well 

SA temperature sensor erratic/not working No  

Filter is clogged/oversized No  

Filter differential pressure sensor biased/ 
erratic/not working 

No  
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Type of Fault Fault 
Tested?  Comments  

Filter has fallen down or is installed incorrectly No  

VAV box damper does not modulate in upper 
half of signal range 

No  

VAV box damper does not modulate in lower 
half of signal range 

No  

VAV box flow sensor is biased No  

VAV box reheat coil valve stuck open or 
leaking 

No  

Discharge air temperature sensor biased No   

Discharge air temperature sensor erratic/not  
working 

No  

VAV box flow station erratic/ not working No  

VAV box damper stuck  No  

VAV box incorrect maximum flow set point No  

 
Integrating with Additional BASs and Field Testing 
Although  the self-correcting control algorithms should be compatible with any building 
automation system, the linkages may vary from one BAS to another.  Therefore, to ensure 
compatibility with the variety of BASs found in commercial buildings, the algorithms should be 
connected to and laboratory tested with BASs other than the Johnson Controls Metasys system 
used in the laboratory apparatus.  The PNNL laboratory has the capability for such testing and 
will provide a suitable environment for such testing. 

Field testing frequently identifies needs and issues not anticipated during initial development 
and laboratory testing.  In preparation for commercial application, tests of the self-correcting 
control algorithms should be performed in operating commercial buildings to ensure 
compatibility with actual conditions in the field. 

 
Path Forward 
Given the status of the algorithms and testing, additional algorithm development and testing is 
clearly needed; however, even in the current state, a practical self-correcting control capability 
could be moved to field testing and commercial use relatively soon.  The current plans of the 
PNNL project team, in addition to furthering development and testing, are to develop a field 
deployable, user compatible, software module for fault detection, isolation and correction for 
mixing-box sensors of air handlers.  These algorithms have proven to perform well in 
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laboratory tests and, therefore, with limited additional laboratory testing, could be moved to 
field use.  The team anticipates applying software for this purpose first to built-up air handlers 
(rather than air handling in packaged rooftop HVAC units). 

As field test results provide data on the field performance of the algorithms and software as 
well as the prevalence and incidence of faults in the field, that information will be used to 
update the assessment of economic, energy and power demand impacts.   
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