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Abstract
Aspects of Martin’s Conjecture and Inner Model Theory
by
Benjamin Siskind
Doctor of Philosophy in Logic and the Methodology of Science
University of California, Berkeley
Professor John Steel, Co-chair

Professor Paolo Mancosu, Co-chair

In this dissertation we prove results relating to Martin’s Conjecture, a foundational con-
jecture in Recursion Theory, as well as results in Inner Model Theory, a part of Set Theory
which plays a central role in the meta-mathematics of Set Theory. While the different parts
of the thesis are not closely related, our interest in the work presented here stems from an
interest in the foundations of mathematics.

In chapter 1, we prove results relating to Martin’s Conjecture which are joint work with
Patrick Lutz. Among other things, we show that part of the conjecture holds for a natural
class of functions, the order-preserving functions. In chapter 2, we prove uniqueness theorems
about the core model, a fundamental object of study in Inner Model Theory. Our theorems
identify the core model in elementary set-theoretic terms, whereas the usual definitions of
the core model require deep knowledge of Inner Model Theory. Finally, in chapter 3, we
develop the theory meta-iteration trees, a framework for studying the kind of iteration tree
combinatorics which has become central to the study of mouse pairs and is relevant for
applications of Inner Model Theory to Descriptive Set Theory.
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Chapter 1

Progress on Martin’s Conjecture

There seems to be significant global structure to the functions on the Turing degrees which
come up naturally in Recursion Theory. In particular, the only natural functions seem to
be constant functions, the identity, and iterates of the Turing jump, or minor variations of
these functions. As one might expect, we can use a well-order of the reals to build patholog-
ical functions, so that this observed structure does not hold for all functions on the Turing
degrees, but such functions are not thought to be natural from the point of view of Recur-
sion Theory. Martin’s Conjecture asserts, roughly, that the observed structure on natural
functions on the Turing degrees holds for all functions under the Axiom of Determinacy, AD.
Assuming the existence of large cardinals, L(R) satisfies AD, so that results under AD apply
to functions which are constructible from the reals. While the relationship between the “nat-
ural” functions and those in L(R) is not clear, establishing the truth of Martin’s Conjecure
would vindicate the intuition that there is something real to the observed structure on the
natural functions.

In this chapter, we show that part of Martin’s Conjecture holds for order-preserving
functions on the reals, along with some other results relating to Martin’s Conjecture. All of
this work is joint with Patrick Lutz and also appears in his PhD thesis [12].

1.1 Preliminaries

In this section we’ll state Martin’s Conjecture precisely, along with some relevant well-known
theorems of ZF+AD. We'll also discuss previous work on Martin’s Conjecture due to Ted
Slaman and John Steel. First, we establish some notation and review basic definitions.

We’ll use the lowercase Latin alphabet to denote reals, either elements of Cantor space,
2¥, Baire space, w*, or some other standard structure. We let Dy denote the quotient of 2¢
under Turing-equivalence, =7, and use boldface lowercase Latin letters to denote elements
of DT-

Definition 1.1.1. A function f : R — R is Turing-invariant iff for all x,y € R, z =p y
implies f(z) =1 (y).
A Turing-invariant function f induces a function on the Turing degrees F by letting

F([z]r) = [f(z)]r, where [z]r denotes the degree of the real z, i.e. its equivalence class
under Turing-equivalence.



Under AC, every function on the Turing degrees arises in this way, though it is not known
whether this holds under ZF+AD. As we will mention later on, it does hold under Woodin’s
AD™, and so holds in L(R) under AD, in particular.

Going forward, we take ZF as our base theory and state any additional hypothesis.
We'll need the following well-known consequences of determinacy, which can be found in
Moschovakis [14], for example.

Theorem 1.1.2 (Mycielski). Assume AD. Then countable choice for reals, CCg, holds, i.e.
for every countable family of sets of reals, {A, | n € w}, there is a function f:w — R such
that f(n) € A, for alln € w.

Theorem 1.1.3 (Davis). Assume AD. Then every set of reals A has the perfect set property,
i.e. for every set of reals A, either A is countable or there is a perfect tree S such that [S] C A.

The most essential result is the following theorem of Martin.

Theorem 1.1.4 (Martin). Assume AD. Then for every set of reals A which is <p-cofinal,
there is a pointed perfect tree S such that [S] C A.

Here, a tree S C 2<“ is pointed perfect if it is perfect and every x € [S] (the infinite paths
of S), x> S.

A cone of Turing degrees is a set of Turing degrees of the form {x € Dr | x >7 b} for
some degree b.

It’s easy to see that if a tree S is pointed perfect, the degrees of infinite paths of S| i.e.
{[z]r | = € [S]}, is a cone.

For A C Dr, let’s put A € pu iff A contains a cone. p is called the Martin measure. The
following result, Martin’s Cone Theorem, is an immediate corollary of the previous theorem.

Theorem 1.1.5 (Martin). Assume AD.
1. For every A C Dy, either A contains a cone or A is disjoint from a cone,
2. is a countably complete ultrafilter on Dr.

(1) is sometimes called Turing Determinacy, TD. Note that (2) easily implies (1) over
ZF. (1) clearly implies (2) over CCg. Recently, Peng and Yu [15] showed that (1) implies
CCpg, so (1) and (2) are equivalent. These statements are also equivalent to the hypothesis
that every game with Turing-invariant pay-off set is determined.

We make the following definition.

Definition 1.1.6. For F,G : D — D,
F <y G & for p-ae. x, F(x) <r G(x)
F=y G & for pae x, F(x) =G(x)

Of course, these relations also make sense between degree-invariant functions by compar-
ing the induced functions on degrees. We can now state Martin’s Conjecture.

Definition 1.1.7. Martin’s Conjecture is the assertion that the following are provable from

ZF+AD+DC.



1. For any Turing-invariant f : R — R, if f is not =),-equivalent to a constant function,
then f ZM idR,

2. <y is a pre-well-order of the Turing-invariant functions f : R — R such that idg <,; f
and the <,;-successor of any f is J o f.

Here J : R — R is the Turing jump, i.e. J(z) = 2’ for any real z. Of course, this
conjecture is due to Tony Martin, in the late 70’s.

Both parts of Martin’s Conjecture are still open, even for Borel functions, but there have
been partial results.

Definition 1.1.8. A function f : R — R is uniformly invariant iff there is a function
U w X w — w X w such that if ®;(x) =y and ®;(y) = =, then Oy ), (f(x)) = f(y) and
Doy, (f () = f(=).

Theorem 1.1.9 (Slaman-Steel, [18]). Assume AD. Then Part 1 of Martin’s Conjecture holds
for the class of uniformly invariant functions.

Theorem 1.1.10 (Steel, [21]). Assume AD. Then Part 2 of Martin’s Conjecture holds for
the class of uniformly invariant functions.

In [18], Slaman and Steel also proved the following result, which has no uniformity
hypothesis.

Theorem 1.1.11 (Slaman-Steel). Assume AD. If f <, idg, then [ is =p-equivalent to a
constant function.

It follows that the full Martin’s Conjecture holds for continuous functions. Both parts of
Martin’s Conjecture remain open for ¥ functions.
Finally, Slaman and Steel also proved a result about Borel, order-preserving functions.

Definition 1.1.12. A function f : R — R is order-preserving iff x <7 y implies f(x) <r

f().

Of course, order-preserving functions are Turing-invariant.

Theorem 1.1.13 (Slaman-Steel). Part 2 of Martin’s Congecture holds for Borel, order-
preserving functions.

While these early results point to a positive answer for Martin’s Conjecture, there hadn’t
been much progress in this direction in the last 30 years. Going the other way, Alexander
Kechris has conjectured that =7 is a universal countable Borel equivalence relation, which
would imply that there is a Borel f witnessing that Part 1 fails.

We end the preliminary section with a refinement of Martin’s Theorem 1.1.4, which we
will need. See [13] for a proof.

Theorem 1.1.14. Assume AD. Let A be <rp-cofinal and w : A — w. Then there is a pointed
perfect S such that [S] C A and 7 [[S] is constant.



1.2 Measure-preserving functions

In this section, we introduce a natural class of functions and show, basically, that Part 1 of
Martin’s Conjecture holds for these functions.

Definition 1.2.1. A function [ : 2% — 2“ is measure-preserving iff for any = € 2%, there is
ay € 2¢ such that for all z >r y, f(z) >r = (equivalently, f[C,] C C,).

It is easy to see that increasing functions, i.e. f such that f(z) >r x, are measure-
preserving (we can just take y = ). There are many natural equivalences to being measure-
preserving; our next proposition includes some that we’ll use.

First, we make the following bit of notation. For 7 : X — Y and S C P(X), we let m,(95)
be the subset of P(Y') given by A € m,(S) iff 7~1(A) € S.

Proposition 1.2.2. Assume AD. Let f : 2¥ — 2¥ be Turing-invariant. The following are
equivalent.

1. f is measure-preserving,
2. for every x € 2¥, f > ¢z, the constantly x function,

3. F.(Uy) = Upr, where F is the function on the Turing degrees induced by f,

Proof. Fix f a Turing-invariant function. Then for any z, f >, ¢, iff there is a y such that
for all z >ry, f(z) >r x. So (1) is equivalent to (2).

Now let F' be the function on the Turing degrees induced by f. We show (1) implies (3).
Let A C Dy and B the set of reals with degree in A. First suppose A € Uy;. Then there is
an z such that C, C B. Since f is measure preserving, there is a y such that f[C,] C C,.
So C, C fC,] C f7'[B]. It follows that F~[A] € Uy, so A € F.(Uy). Now suppose
A & Uy By Martin’s Cone Theorem, B is disjoint from a cone, say C, N B = (). Letting y
be such that f[C,] C C,, we have that f~*[B]NC, = (. It follows that A & F.(Uy).

Finally we show (3) implies (1). Suppose that F,.(Uy) = Uy Let 2 € 2¥. Let C = {y €
Dr |y >7 [z]r}. Then C € Uy, so F7HC] € Uy, too. Since C, is the set of reals with
degree in C, it follows that f~[C,] contains a cone, i.e. there is a y such that f[C,] C C..
So f is measure-preserving. O

We already observed that increasing functions are trivially measure-preserving. One of
our main results is that functions which are order-preserving with respect to <, are either
constant on a cone or measure-preserving.

Definition 1.2.3. A function f : 2% — 2¥ is order-preserving iff whenever z <r vy, f(x) <r

f).

Notice that order-preserving functions must be Turing-invariant.

Theorem 1.2.4. Assume AD. Let f : 2¥ — 2¥ be order-preserving. Then either f is
constant on a cone or f is measure-preserving.

This is an easy consequence of an interesting criterion for a set to be <p-cofinal.
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Definition 1.2.5. A set A C 2¥ is countably directed iff for every countable X C A, there
is a z € A such that z >7 x for all x € X.

Notice that A is countably directed exactly when (A, <r[ A) is a countably directed
quasi-order.

Theorem 1.2.6. Let A C 2¥. Suppose that A contains a perfect set and is countably directed.
Then A is <p-cofinal.

We defer the proof of this theorem to §1.4

Proof of Theorem 1.2.4 Let f be order-preserving. Since every set has the perfect set prop-
erty, either ran(f) is countable or ran(f) contains a perfect set. In the former case, we’ll
show f is constant on a cone; in the latter case, we’ll show f is measure-preserving.

Case 1. ran(f) is countable.

Let ran(f) = {# | i € w}. Let A; = {z € 2 | f(z) =r z}. Then the A; are Turing-
invariant since f is order-preserving. Since |J; A; = 2¥, the countable completeness of the
Martin measure implies one of the A;’s must contain a cone. So for some i, f(x) = z; for a
cone of x, i.e. f is constant on a cone.

Case 2. ran(f) contains a perfect set.

We want to show that ran(f) is <p-cofinal, using Theorem 1.2.6. So let X = {z; | i € w}
be a countable subset of ran(f). By CCg, let {a; | i € w} such that f(a;) = ;. Since f is
order-preserving, f(€D, a;) >r x; for all ¢ € w. So ran(f) is countably directed. Theorem
1.2.6 implies it is <p-cofinal.

Now fix z. Since ran(f) is <p-cofinal, we can find some y such that f(y) > . Since f
is order-preserving, for any z >r vy, f(z) >r x. So f is measure-preserving, as desired.

O

Our main theorem on measure-preserving functions is the following.

Theorem 1.2.7. Assume AD+DCg. Let f : 2¥ — 2¥ be Turing-invariant and measure-
preserving. Then f(z) >r x on a cone.

Combining this with Theorem 1.2.4, we immediately get that Part 1 of Martin’s Conjec-
ture holds for order-preserving functions, assuming AD+DCg. We'll give another proof of
this just from AD in the next section.

As a warm up to Theorem 1.2.7, we’ll prove a weaker version. The proof is an elaboration
of Martin’s proof of the following theorem.

Theorem 1.2.8 (Martin, [18]). Assume AD. Suppose that f : 2% — 2% is Turing-invariant,
measure-preserving, and f(x) <t x on a cone. Then f(x) =r x on a cone.

This easily follows from the following lemmas.

Lemma 1.2.9. Let T be a pointed perfect tree and ® a Turing functional which is total on
[T]. Then there is a pointed perfect subtree S C T such that either

1. ® is constant on [S] or



2. ® is one-to-one on [S] and ®(x) & S = x for all x € [S].
A proof of this lemma can be found in [18].

Lemma 1.2.10 (Martin). Assume AD. Let A <p-cofinal and f : A — 2“ be such that for all
x € A, f(x) <p x. Then either f is constant on a <p-cofinal set or else there is a <p-cofinal
B C A and a real z such that for all x € B, f(z) ® z =r x.

Note that we do not assume f is Turing-invariant in the lemma statement.

Proof. Let m: A — w given by m(z) is the least e such that ®.(z) = f(x). By Theorem
1.1.14, there is a pointed perfect tree T such that [T] C A and 7 is constant on [T]. Let
® = P, for e this constant value. Then, by moving to a subtree of 7" if necessary, Lemma 1.2.9
gives that either @ is constant on [T'] or ®(z)®T =r x forallx € [T]. But f [ [T =@ [ [T],
so we're done. O

Corollary 1.2.11. Assume AD. Let g : 2¥ — 2¥ be such that g(x) >1 x on a <p-cofinal set
A. Then there is a function h, a real z, and <p-cofinal set B such that for all x € B,

1. g(h(x)) =z and
2. h(z)®z=r .

Proof. Since g is increasing on a <p-cofinal set, ran(g) is <p-cofinal. So we can define h
on ran(g) by h(z) = ®.(z) for e is the least n such that ®,(z) | and ¢g(®,(x)) = . Then
clearly g(h(x)) = z for any x € ran(g). So applying Lemma 1.2.10 to h gives a <p-cofinal
B Cran(g) and a real z as desired. O

To state the weaker version of Theorem 1.2.7, we need one more definition.
Definition 1.2.12. Let f,g:2¥ = 2¥. g is a modulus for f iff for any x, f[Cyx)] € Cs.

It is immediate from the definitions that if f has a modulus, it is actually measure-
preserving. If (the graph of) f is measure-preserving and Suslin, the closure properties of
the Suslin sets guarantee that f has a modulus (we just uniformize the relation R(x,y) <
f1Cy] € C,). Since increasing functions easily have a modulus, Theorem 1.2.7 easily implies
that every measure-preserving function has a modulus, under AD+DCg. We do not know
how to prove this in just AD.

We’ll need the following easy observation.

Proposition 1.2.13. Let f : 2“ — 2¥ and suppose that f has a modulus. Then f has an
increasing modulus, i.e. a modulus g such that g(x) >7 x for all x.

Proof. 1f g is a modulus for f, then z — ¢(z) @ x is an increasing modulus for f. m

Lemma 1.2.14. Assume AD. Let f : 2* — 2¥ measure-preserving. Suppose that f has a
modulus. Then there is a <p-cofinal set A such that for all x € A, f(x) > x.



Proof. Fix g an increasing modulus for f. Let B, h and z be as in Corollary 1.2.11 for g.
Now, for any x € B with x >7 g(z), f(x) >7 z since g is a modulus for f. So as g(h(z)) =z
for any x € B, whenever z € B and = > g(z),

f(z) = f(g(h(z)))
>r h(x) ® 2
>7 T,

using for the middle inequality that f(g(y)) > y for any y, since g is a modulus for f (we
apply this for y = h(z)). Since there are <p-cofinally many = € B with x >r ¢(z), we're
done. O

In the case that f is Turing-invariant, we immediately get our weaker version of Theorem
1.2.7.

Theorem 1.2.15. Assume AD. Assume f is Turing-invariant and has a modulus. Then
f(z) >r x for a cone of x.

As an aside, note that this version is actually enough to get Theorem 1.2.7 under the
(possibly) stronger hypothesis of AD™.

Corollary 1.2.16. Assume AD". Suppose f is Turing-invariant and measure-preserving.
Then f(x) >r x for a cone of x.

Proof. Suppose that there is a counter example, i.e. there is a measure-preserving, Turing-
invariant function f such that f(z) 27 = on a cone. This statement is projective in f, so by
the Y2-Reflection theorem, there is a Suslin-co-Suslin counter example, f. But then we can
uniformize the relation R(z,y) given by

R(z,y) < fIC:] € Cy,

since this is projective in f and the Suslin sets are closed under real quantification. So let
g be a function uniformizing R. Then g is a modulus for f. So Theorem 1.2.15 implies
f(x) >7 x on a cone, a contradiction. O

For a while, this was our best result on measure-preserving functions. Of course, it is made
irrelevant by Theorem 1.2.7, which we turn to now. The challenge here is how to make
due without the existence of a modulus. The first idea is to work with w-sequences which
approximate iteratively applying an increasing modulus.

Definition 1.2.17. Let f:2¥ — 2¥. Say a sequence T = (z; | i < w) is a modulus sequence
for fif x; <p w1 and for all y > @iy, f(y) 27 @5 .

Lemma 1.2.18. Assume ZF+AD+DCg. Let f :2¥ — 2% be measure-preserving. Then for
any x € 2 there is a modulus sequence T for f with xo = x.

Proof. This is immediate from the definitions and DCg. [



We can now prove the main theorem.

Proof of Theorem 1.2.7. We want to end up in a situation where we can apply Lemma 1.2.10
and then argue in a way similar to the proofs of Corollary 1.2.11 and Lemma 1.2.14. The
idea is to map some point z to a real y <7 z, f(x) but in such a way that the map = — y
cannot be constant on a <p-cofinal set. To do this, we will arrange that y is sufficiently
close to = in the sense that some nicely behaved function 7 : 2¥ — wy has 7w(x) = m(y). This
will guarantee that x — y cannot be constant on an <p-cofinal set. Lemma 1.2.7 will then
imply that f(x) >r x on a cone.

We start by introducing this ordinal-valued function. For any z € 2¥, we let 7(z)
be the least ordinal o such that there is a modulus sequence ¥ for f with o = x and
sup{w]’ | i € w} = . Note that there is such a sequence by Lemma 1.2.18. For every z,
wi < 7(z) < wy (using CCgr). Moreover, 7 is Turing invariant: if © =p y, then 7(z) = 7(y)
(since swapping x for y in a modulus sequence for f that starts with = produces a modulus
sequence which starts with ).

The following is the key observation about .

Claim 1. For any y there is an x such that y <7 x, f(x) and m(z) = 7 (y).!

Proof. Fix y. Let Z be a modulus sequence for f starting with zo = y such that sup{w?*
i € w} =m(y). Let & = ;. Then, by definition, y <r z, f(z). So we just need to see that
m(x) = w(f(x)) = w(y). First we check 7(z) = 7(y). But (z;41 | i < w) is a modulus for
x with sup{w]® | ¢ € w} = 7w(y). So 7(z) < 7(y). But for 2 any modulus sequence for f
starting with z, (y)~Z is a modulus sequence for f starting with y; moreover, wi < w?, so
the corresponding supremum doesn’t change. So we also have m(y) < 7(z). This finishes
the claim. O

By the claim, there is a <p-cofinal set A such that for every x € A, there is an z and a
y <r x, f(x) such that 7(y) = m(x) = m(z). By replacing A with a <p-cofinal subset of A if
necessary, the proof of Lemma 1.2.10 gives a function h : A — 2% such that for all x € A,
h(z) is such a y. In particular h(x) <7 z, f(z) for all z € Aand Troh =7 | A.

But then A cannot be constant on a <p-cofinal B C A. If it were, roh | B=n | B
would also be constant. But for all z, 7(z) > w{ and w{ takes on arbitrarily large values on
any <rp-cofinal set, a contradiction. So, by Lemma 1.2.10, there is a <p-cofinal B C A and a
real z such that h(z)® z = « for all x € B. Now, since f is measure-preserving, there is a y
such that for all x >7 y, f(x) >r 2. So for any € B with x >r vy, f(x) >r h(x) ® 2z =r x.

Since f is Turing-invariant, it follows that f(z) >7 2 on a cone, as desired. O

We'll discuss more consequences of this theorem in other sections, but let us point out a
particularly simple but interesting one.

Corollary 1.2.19. Assume ZF+ AD+DCgr. Then idg is the <p;-least upper bound of the
constant functions.

Proof. By Proposition 1.2.2, we have that a Turing-invariant function f is an upper-bound
of the constant functions under <, iff it is measure-preserving. So any Turing-invariant
<ur-upper-bound for the constant functions is >,; idg by Theorem 1.2.7. O

'We actually only need that 7(y) > «(z), but since we can prove they’re equal, we do.



This perspective on Theorem 1.2.7 reveals that it is a genuine structural result about
<, much like the Slaman-Steel theorem on regressive functions, not merely a partial result
on Martin’s Conjecture.

1.3 Order-preserving functions

In this section we’ll show that under just AD, Part 1 of Martin’s Conjecture holds for the
class of order-preserving functions.

Theorem 1.3.1. Assume AD. Let f : 2¥ — 2“. Then f is either constant on a cone or
f(z) >r x on a cone.

Again, with the additional hypothesis of DCpg, this is a consequence of Theorems 1.2.7 and
1.2.4, but we seem to need a modified proof that only works for order-preserving functions
if we want to drop DCg.

We’ll need some simple observations about measure-preserving functions which are easy
consequences of Theorem 1.2.7, but provable under just AD.

Lemma 1.3.2. Suppose f,g : 2* — 2% are measure-preserving. Then f o g is measure-
Preserving.

Proof. Fix z. Since f is measure-preserving, let y be such that f(z) >7 x for all z > y.
Since ¢ is measure-preserving, let u be such that g(z) >7 y for all z > u. Then for any
z>ru, fog(z) >r x. So fog is measure-preserving. O]

Lemma 1.3.3. Assume AD. Let f : 2“ — 2¥ be measure-preserving and w : 2 — Ord be
Turing-invariant. Then 7o f(x) > w(x) on a cone.

Proof. Towards a contradiction, assume 7 o f(z) < 7(z) on a cone, say above zg. By
our previous lemma, the finite iterates of f are measure-preserving. By CCg, let choose a
sequence (z, | n € w) such that for every n, for all 2 >¢ x,, f"(2) > xo. Let y = @, ,,
and a,, = 7(f"(y)). Then for every n, f"(y) >r o, and so as wo f(z) < w(x) for all z > x,

Ont1 = 7T(fnﬂ Y))
=mo f(f*(v))
<m(f"(y)) = an.

So (@, | n € w) is an infinite decreasing sequence of ordinals, a contradiction. ]

Proof of Theorem 1.3.1 Assume that f is not constant on a cone. Then Theorem 1.2.4
implies that f is measure-preserving. The rest of the proof will be exactly like the proof of
Theorem 1.2.7, except we use a different ordinal-valued function (since the ordinal-valued
function in that proof needed DCg to work).

For each z, define C'(z) to be the smallest set such that

o zc(C(x);



o if yc C(z) and z <r y, then z € C(x);
o if y,z € C(x), then y & z € C(z); and
e if y € C(x), then f(y) € C(x).

Note that for every z, C'(x) is a countable set. We now define our ordinal valued function 7
by 7(z) = sup{wi | y € C(x)}. As in the proof of Theorem 1.2.7, we have that 7 : 2 — wy,
7 is Turing-invariant, and 7(x) > wy.

To finish, it is enough to show that the for <p-cofinally many z there is a y <r z, f(z)
such that w(y) = m(x). Once we have this, we proceed exactly as in the proof of Theorem
1.2.7 to conclude that f(x) >7 z on a cone.

By Lemma 1.3.3, m o f(x) > m(x) on a cone. Fix z in this cone. Let x = 2z & f(z) and
y = f(z). We immediately have z <y x and y = f(z) <7 x. Since f order-preserving, we
also have we have y = f(z) <r f(x) (z <p z implies f(z) <7 f(x)). So we just need to see
that w(z) = m(y).?

By our choice of z,y and the definition of the C' operation,

Cly) € C(z) = C(x).

So by our choice of 7,
m(y) < m(z) = m(x).

But we chose z to have 7(f(z)) > 7n(z) = w(x), so 7(y) > 7(x), too (using again that
y = [f(2)). Som(x) =m(y). O

The above proof is fairly local, for example when f has IIj graph, one only needs IT}-
Determinacy to get that f(z) >7 x on a cone. On the other hand, if f is Borel, we still
seem to be using ITi-Determinacy. In unpublished work, Takayuki Kihara showed that this
is provable in just ZF via a different argument which uses Theorem 1.2.4 together with a
version of the Solecki Dichotomy.

1.4 Proof of Theorem 1.2.6

In this last subsection, we finally prove Theorem 1.2.6, our local criterion for a set of reals
to be <t cofinal.

This will be an easy consequence of a variant of a theorem of Groszek and Slaman [7].3
In a sense, this variant is an improvement of the Groszek-Slaman result: they showed, more
or less, that if {z; | i € w} contains a countable dense subset of [T], any real is computable
from €, z; together with finitely many branches of 7. Our result says that we can replace
D, z; with any real z such that {y € 2¥ | y <r z} contains a countable dense subset of [T7].
However, Groszek-Slaman only needed two branches of T' for their result, whereas we use
four.

2As in that proof, we only actually need 7(y) > 7(z), but again end up with equality.

3Interestingly, the technique used by Groszek and Slaman has its roots Martin’s Conjecture: it builds on
the methods used in Slaman and Steel’s proof that there are no regressive functions on the Turing degrees,
under AD, which needed to accomplish something similar.
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Theorem 1.4.1. Assume ZF. Let T C 2<% be a perfect tree. Let z be a real such that for
every o € T there is b < z such that 0 <b and b € [T]. Then for any real x there are reals
Yo, Y1, Y2, Y3 € [T] such that

2OY DN DY2DYys 27

Proof. Fix z and the real x € 2 we're trying to compute. Also fix X a countable dense
subset of [T'] such that z > b for every b € X (we can find such an X by choosing for any
o € T the left-most branch b of T" through o such that b <7 z). We’ll describe how to build
the reals yo, y1, Y2, ys € [T] so that z & yo © y1 B Y2 S y3 >1 .

We'll build the y; via finite approximations y!' (we’ll actually have that the sequence
(8, yt, vy, yy) | n € w) can be enumerated recursively in z @y By By2 B ys). To guarantee
that y; € [T, we’ll also maintain that there are infinite paths b of [T'] such that y* < b € X.

The bits of x will be coded into how the b}' deviate from the y;, as follows. We will make
sure we can enumerate a sequence ((ef, ef, e5, el) | n € w) recursively in z @ yo D y1 B Y2 B Y3
such that for all n € w,

L. for all 4, ®.n(2) is total and Pen # y;;
2. if nis even, then ®¢n = bf, ®er = b7, and 2(n) = 0iff eff < € (so z(n) = 1iff ef > €7);
3. if n is odd, then @y = by, ®op = b3, and x(n) = 0 iff e < ey.

If we can enumerate such a sequence, then clearly we can compute x by checking the order
on the appropriate e, e, .

We'll now describe how we intend to enumerate this sequence and then show that we can
build the y;’s so that this intended method succeeds.

Assume we have ef}, e, e, and e5.

Case 1. n is even.

First, we look for the least [ and ¢ such that ®.n disagrees with yo at [ and ®.n disagrees
with y; at t. Now let ef ! be the least index e such that ®.(z) converges on all inputs < [
in at most t steps and ®.(z) [ [ = yo [ [. Similarly, let e?“ be the least index e such that
®.(z) converges on all inputs < [ in at most t steps and ®.(2) [ lp = y3 [ lp. Finally, we let
eott = el and e} t! = el
Case 2. n is odd.

This case is basically the same; we just swap the roles of ¢ = 0,1 and 7 = 2,3. Let [, t
be the first places where ®.p disagrees with yp and ®.n disagrees with ys, respectively. Let
en™ be the least index e such that ®.(z) converges on all inputs < [ in at most ¢ steps and
®.(2) [l =1yo | I. Similarly, let 5™ be the least index e such that ®.(z) converges on all
inputs < [ in at most ¢ steps and ®.(z) [ lp = y1 [ I. Also let €)™ = e} and )™ = €.

This finishes the description of how we will enumerate the e} using z ® yo ® y1 B y2 © ys,
and so how we will compute = from z @ yo B y1 © y» B y3, assuming that the e} are as desired.

All that remains is to show how to build the y! and 0] so that following the above
procedure for picking the e' actually terminates and also has the desired properties. In
addition to properties (1)-(3) listed above, we will also need to ensure that we know where
the disagreements [,t occur at stage n. To do this, we will also maintain the following;:
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4. if n is even, then letting | = length(yy) and t = length(y}), yo(l) # by (1) and y1(t) #
by (t);

5. if n is odd, then letting | = length(yy) and t = length(yy), y2(1) # b3 (1) and ys(t) #
by (¢).

Note that since y* < y;, b7, it follows that these [,¢ are the same [,¢ from the procedure
for enumerating the e, i.e. the least disagreements between the appropriate y; and b}. It
follows that we can enumerate up through ef,...,e% just using z together with yg, ..., y%
and by, ..., b5.

Now suppose we've built up through y? and b7, maintaining that (1)-(5) hold for the e
for k < n. We’ll describe how to pick the new branches b!** € X C [T] and extend the y}'
to y/"t! so that (1)-(5) hold at n + 1.

We again split into an even and odd case.

Case 1. n is odd.

First, we let byt = b%. Now let j be the least index such that ®;(z) = b3 = by (recall,
such an index exists because by € X and so b? <t z). Now let k be the least index greater
than j such that ®,(z) converges, ®;(z) € X, and y§ < ®4(2) and set by = &,(2). Note

that such a k exists by the density of X. We now need to extend the y’s to the y'*’s to
force ef*? = j and e} = k, recalling the procedure for picking these indices.

Let [, t sufficiently large such that

e forany k < iand m <[, ®y(2) either doesn’t converge on input 7 in ¢ steps or converges
but disagrees with b5 (m)

e for any k < j and m < [, ®;(z) either doesn’t converge on input [ in ¢ steps or converges
but disagrees with b3 (m),

e by |l and b} | t are splitting nodes of 7.

Of course, we are using that T is perfect to guarantee such [, exist.

We then let by™! be the least element of X extending b7 | [ which disagrees with b} at
lp (this exists by density of X and since b7 | [ is a splitting node of T') and b7 is the least
element of X extending b} [ ¢ which disagrees with b} at ¢ (using that b} [ ¢ is a splitting
node). The rest of our assignments are:

o i =t

o Yt =0 Ity

o« gt =

oyt =it L

This maintains (1)-(5), by construction.
Case 2. n is even.
This case is entirely symmetric, swapping ¢ = 0,1 and ¢ = 2, 3.
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This finishes the construction of the y* and b}'. As promised, we set the y; = |, v/'. Our
construction guaranteed that z @& yo ® y1 & y2 B y3 >r x and, since [T is closed, we have
y; € [T] (because we maintained that for every n, y?* < b € X C [T]). O

Proof of Theorem 1.2.6. Let A be a countably directed set of reals which contains a perfect
set. We want to show that A is <p-cofinal. So fix z. We want to find a y € A such that
Yy > T

Fix T' C 2<% a perfect tree such that [T] C A. Let X be a countable dense subset of [T]
(as in the previous proof, we can define such an X: take the set of left-most paths through
any o € T'). By countable directedness of A, we can find z € A such that z > x for every
y € X. The density of X guarantees that for any o € T, 2z computes some infinite path b
through o. So applying Theorem 1.4.1 to T', z, and x gives that there are reals yo, y1,Y2,
ys € [T] C A such that

2DY DY Dy Dys 21 .

Using the countable directedness of A again, we get that there is a real y € A with y >
2D Yo Dy Dys D ys. Soy >r x, as desired. O

1.5 Ultrafilters on Dy under AD™

Martin’s Conjecture was stated by Martin under ZF+AD+DC, before AD" had been isolated
by Woodin. It seems likely that if it were first stated today, Martin’s Conjecture would be
stated under the hypothesis of AD" instead, as the consensus nowadays is that this is the
right generalization of the theory of L(R) under determinacy.

The main advantage to working with AD™ in the context of Martin’s Conjecture is
Woodin’s Countable Section Uniformization Theorem.

Theorem 1.5.1 (Woodin). Assume AD". Suppose R(x,vy) is a relation on R with countable
sections (i.e. for every x, {y | R(x,y)} is countable). Then R admits a uniformization.

This theorem immediately implies that, like in the context of AC, Turing-invariant func-
tions and functions on the Turing degrees are really the same. That is, we have the following.

Corollary 1.5.2. Assume ADY. Let F : Dy — Dp. Then there is a Turing-invariant
function f : 2 — 2% such that F([x]r) = [f(z)|r for all x € 2%.

Proof. Let R(z,y) be the relation on 2* x 2¥ given by F([z|r) = [y|r. This relation has
countable sections, so it has a uniformization f by Woodin’s theorem. It is easy to see this
f is as desired. m

The relevance (and existence) of the Countable Section Uniformization Theorem was
pointed out to us by William Chan. See his paper [2] for a proof of the theorem.

This means that both parts of Martin’s Conjecture are equivalent, under AD™, to corre-
sponding statements about functions on Dr.

Proposition 1.5.3. Assume AD".
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1. The following are equivalent.

(a) Part 1 of Martin’s Conjecture
(b) For any F : Dr — Dy, either F is (literally) constant on a cone or F >y idp,..

2. The following are equivalent.

(a) Part 2 of Martin’s Conjecture

(b) < is a pre-well-order of the functions F : Dy — Dr such that F' >y idp, and
for any F : Dy — Dy, J o F is the <p;-successor on F.

Here, J is the Turing jump as a function on Dr, i.e. J([z]r) = [2/]7 (contrary to our
earlier notation).

Combining this proposition with Theorem 1.2.7 (or the easier Corollary 1.2.16), we get
the following characterization of Part 1 of Martin’s Conjecture in terms of the Rudin-Keisler
order, where for U, W ultrafilters on X and Y, respectively, W <gk U iff thereisan: X — Y
such that 7, (U) = W.

Theorem 1.5.4. Assume AD". The following are equivalent.
1. Part 1 of Martin’s Conjecture

2. For every ultrafilter W on Dy, W <z Unr iff W is principal or W = U,,;.

Proof. Assume (1) holds. Let W on Dr with W <gx Uy. Let F': Dy — Dr be such that
W = F.(Uy). By the previous proposition and (1), F' is either constant on a set in Uy,
or F' >y idp,. If F'is constant on a set in Uy, W is principal. If F' >, idp,, then F
is measure-preserving, so F,(Uy) = Uy by Proposition 1.2.2. So (1), Part 1 of Martin’s
Conjecture, immediately implies (2).

For the converse, suppose (2) holds. Let F' : Dy — Dyp. If F,(Uy) is principal, then F
is constant on a set in Uy, i.e. constant on a cone. Otherwise, (2) gives F,(Uy) = Uy, s0
F' is measure-preserving (using Proposition 1.2.2). So Theorem 1.2.7 gives that F' > idp,..
By the previous proposition, we have (1). ]

In light of (2), natural test questions are whether we can rule out that known ultrafilters
on Dp are Rudin-Keisler below the Martin measure. For example, Lebesgue measure or
the comeager filter, which are ultrafilters on Dy because Turing degrees are tailsets; see [1].
While this is open, we can say something about the relationship between these ultrafilters
and U, under <gxk.

The following result is due to Andrew Marks and Adam Day, in unpublished work. We
proved it independently, but later. We give a particularly simple proof here, pointed out to
us by Gabriel Goldberg.

Definition 1.5.5. For W afilter on a set X, say that W is commutative if for any R C X x X,
{z [ {y| R(z.y)} e W} eW e {y[{z|R(z,y)} eW}eW

Lemma 1.5.6. Suppose W is commutative and U <gx W. Then U is commutative.
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Proof. Say W onY and U is on X. Let f:Y — X such that U = f,(W). Fix R C X x X.
But then

{reX|{yeX|Ry}eclUteUs f[f{lze X |{y|R(x,y)}cU}eW
s{acY | fT{ye X|R(f(a),y)}] eW}eW
s{acY |{beY | R(f(a),f(b)} e W}eW.

By applying this to R~!, we of course get:
WeX|{reX | Ry} Ut eU s (be [ {aeY | R(f(), f(4)} € W} € W

That W is commutative (applied to the relation on Y x Y given by R(f(a), f(b))) gives
these conditions on membership in W are equivalent, so that the conditions on membership
in U are equivalent as well, i.e.

{reX|{yeX|Rz,y)}elUleUs{ye X |{re X |R(x,y}ecU}eU
So U is commutative, as desired. O

Corollary 1.5.7. Assume AD. Suppose that W is a commutative ultrafilter on Dy. Then
Uy Lri W. In particular, Lebesque measure and the Comeager filter are not Rudin-Keisler
above the Martin measure.

Proof. By the previous lemma, it is enough to check that Uy, is not commutative. But this
is easy. Let R(wz,y) iff z ¢ C,. So for any x, {y | R(x,y)} contains a cone (the cone above
@, say). But for any y, {z | R(x,y)} = C}. So we have

{z[{y| R(x,y)} € Un} =Dr € Uy

but
{y[{z|R(z,y)} €U} =0 ¢ Un.

So R witnesses that Uy, is not commutative. The rest of the corollary follows from the
Fubini theorem and the Kuratowski-Ulam theorem along with the fact that Turing degrees
are tailsets (as mentioned above, see [1]). O

Using Theorem 1.4.1, we can prove one last easy result.

Theorem 1.5.8. Assume AD". Suppose W is a countably complete ultrafilter on Dy. Then
one of the following holds.

1. W s principal,
2. {x|C, e W}y eW, or
3. W =Uy
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Proof. Consider A = {z | C, € W}. If A ¢ W, then its complement, {z | C, & W} =
{x | C, € W} € W, giving (2). So suppose A € W. If A is countable, then since W is
countably complete, W must be principal. In the remaining case, we have A € W and A is
not countable. We want to show that W = U,,.

Since A is not countable, let A* be the set of reals with degree in A, that is, A* = {z €
2¢ | [z]r € A}. Then A* is uncountable, so it contains a perfect set. But for any countable
subset {z; | i € w} € A*, we have Cf,,;) € W so [, Clz) € W, by countable completeness
of W. But then we must have AN, Cny € W, too. In particular, AN (., C, is
non-empty. So there is a z € A* such that z >7 x; for all 7. So A* is countably directed.
Theorem 1.2.6 implies that A* is <p-cofinal. But this means for every x, there is a y > x
such that C, € W. But if y >7 x and C, € W, then C, € W since C, 2 C, and W is a
filter. This easily implies W = U,,. O]

Determinacy in L(R) allows for a complete analysis of the countably complete ultrafilters
on the projective ordinals. The results of this section show that a complete analysis of
the countably complete ultrafiters on Dy would decide Part 1 of Martin’s Conjecture in
L(R). While a complete analysis may be very difficult, we suspect that this may be a site
of more tractable problems relating to Martin’s Conjecture, perhaps ones involving more
sophisticated Descriptive Set Theory.

1.6 Additional results

In this final section we use results from the previous sections to identify a criterion for when
g <u f and also refute a natural variant of Kechris’s conjecture.

Theorem 1.6.1. Assume AD+DCg. For any f,g: 2 — 2¥ with f,g > idg, the following
are equivalent.

1. there is a z such that for all x,y >1 z,
g9(x) =r g(y) = f(z) =r f(y),

2. there is a Turing-invariant, measure-preserving function h : 2 — 2% such that f(z) =r
hog(x) on a cone,

3. there is a Turing-invariant function h : 2¥ — 2% such that h >, idg and f(x) =r
hog(x) on a cone,

4. there is a Turing-invariant function h : 2¥ — 2% such that f(x) =1 hog(x) on a cone.

Moreover, these all imply g <j; f.

Proof. (1) implies (2) is the most work, so we’ll save it for last. (2) implies (3) by Theorem
1.2.7. (3) trivially implies (4). Now we’ll show that (4) implies (1). Let z be such that
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f(z) =r hog(x) for all z >p 2. Let z,y >r 2z and suppose g(z) =r ¢g(y). Then since
x,y >r z and h is Turing-invariant, we have

f(z) =7 h(g())
=r h(g(y))
=r f(y).

This gives (1).

Finally, we show (1) implies (2). The idea here is simple: we’ll just let h be an extension
of fog™!, defined on the <p-cofinal set ran(g), and check that h is Turing-invariant and
measure-preserving. Of course, ¢ is not one-to-one, so how to make sense of f o g~! requires
some care.

Fix z such that for all x,y >7 z, g(z) =1 g(y) = f(x) =r f(y). Since g > idg, we can
also fix u such that for all x >7 u, there is some y >7 z such that g(y) = z (because g[C.]
is <p-cofinal, there is a cone of such z). For x >7 u, let * = ®.(x), for e the least index
such that ®.(x) is total, ®.(z) >r 2, and g(P.(x)) = z. By our choice of u, z* is defined for
x >7 u. We now define our h as follows.

W) = {f(x*) if © >7 u,

T otherwise.

We need to check that h is Turing-invariant. So suppose x =7 y. Clearly either both of
x,y are defined via the first case or both are defined via the second case in our definition
of h. In the second case, we have h(z) = x =r y = h(y). So suppose we're in the first
case, i.e. x,y > u. By the definition of the x-operation, we have that z*,y* > 2z and
g(x*) = © = y =1 g(y*). So by our choice of z, h(xz) = f(z*) =r f(y*) = h(y). So h is
Turing-invariant.

All that remains is to check that h is measure-preserving. So fix x. We need to find a
y so that h[Cy] C C,. First, since f >y idg, we may let a be such that f(c) >¢ « for all
¢ > a. Since g[Cra.aa] 18 <r-cofinal, we can let y >7 wu, z,a such that for every ¢ >r y,
¢ =7 g(b) for some b > x, 2z, a. We just need to check that h(c) >r x for every ¢ > y.

So suppose ¢ >7 y. Then there is b > x,z,a such that ¢ =7 g(b). Since ¢ >r u, ¢*
is defined and g(¢*) =7 ¢ =r ¢(b). But then by the definition of h and since ¢*,b > z,
h(c) = f(c*) = f(b). But b >r x,a, so f(b) >r x (by our choice of a). So h(c) >7 x. This
shows that h is measure-preserving, so (1) implies (2). O

Note that these (equivalent) criteria are not equivalent to g <,; f. For example, letting g
be the hyperjump, i.e. z + O(z), and f be the function 2 — O(z)“1), we have that g <y, f,
but (1) must fail because we can have O(x) =7 O(y) but wj < w} so that g(z) =r g(y)
but f(z) <r f(y). On the other hand, Steel’s Theorem 1.1.10 implies that these criteria
are actually equivalent to g <,; f when f, g are Borel uniformly invariant functions. It
is natural to ask how the natural order on Turing invariant functions determined by the
equivalent criteria (1)-(4) differs from the Martin order on the uniformly invariant functions,
in general, but we do not know the answer.

In §1.1, we mentioned that Kechris has conjectured = is a universal countable Borel
equivalence relation. We end this chapter by showing a natural variant of this conjecture
has a negative answer.
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Definition 1.6.2. A quasi-order on < on R is locally countable if for every x € R, {y | y < z}
is countable.

A locally countable quasi-order < on R is a universal Borel locally countable quasi-order
if <is Borel and for any Borel locally countable quasi-order < on R, there is a Borel function
f:R — Rsuch that x <y < f(x) < f(y).

Of course, <7 is a Borel locally countable quasi-order. Whether it is a universal such
quasi-order seems to us to be a very natural variant of Kechris’s conjecture, though, as far
as we know, it was not asked anywhere. In any case, it has a negative answer.

Theorem 1.6.3. <r is not a universal Borel locally countable quasi-order.

Proof. Fix Ay, A; disjoint, <p-cofinal, Borel sets of reals such that Ag U A; = R (e.g. reals
that start with 0 and reals that start with 1).

Let < be the countable Borel quasi-order (<r[ Ap) U (<r| Ay). We claim that there is
no Borel f such that z <y iff f(z) <r f(y).

Suppose not and fix such an f. Then f | Ag and f | A; easily extend to Borel order-
preserving maps fo, f1 : R — R. Since fy, fi are Borel, ran(fy) and ran(f;) are 31 and so
must either be countable or contain a perfect set, by the Perfect Set Theorem. But ran(f)
and ran(f;) cannot be countable since Ay and A; are not countable. It follows that ran(fy)
and ran(f;) contain a perfect set and are countably directed (using here that fy, fi are
order-preserving). So Theorem 1.2.6 gives that both of their ranges are <p-cofinal. So we
can find z € Ay and y € Ay such that fo(x) <7 fi(y). So f(z) <r f(y) but z £ y, a
contradiction. O
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Chapter 2

The Uniqueness of the Core Model

A major achievement of Inner Model Theory is Jensen and Steel’s identification of the core
model K under the hypothesis that there is no inner model with a Woodin cardinal in [11].
Under this hypothesis, K is a canonical inner model which is close to V', generalizing Jensen’s
seminal result that L is close to V under the more restrictive hypothesis that 0% doesn’t
exist. K plays a central role in the meta-mathematics of Set Theory: it is an essential tool
in establishing strong consistency strength lower bounds, for example in Steel’s result that
PFA implies ADY®) [29]

Jensen and Steel identify K as an inner model whose levels are certain premice, fine-
structural models of set theory which have a complicated definition involving somewhat
arbitrary decisions. In particular, Jensen and Steel use what are known as ms-indexed (pure-
extender) premice to build K. Other varieties of premice have been studied, for example
Jensen-indexed premice or the recent pfs-premice and least branch strategy mice of Steel’s
[25], and could give rise to ostensibly different versions of K. However, it is expected that all
these ostensibly different versions are the same. One reason for this expectation is that one
should be able to translate premice of one variety into premice of another variety. This has
been realized in some cases; for example, Fuchs [1] and [5] showed that one can translate ms-
indexed premice into a modified Jensen-indexed premice, and vice-versa. These translation
methods are carefully tailored to the varieties one is translating between. So, such methods
don’t seem like they can yield the kind of general result one would really like to show: any
successful notion of premouse must give rise to the same core model. In this chapter we take
a new approach to establishing sufficiently general results along these lines: we show that
in some contexts, abstract properties of the core model uniquely determine it, i.e. there is
at most one inner model with these properties. So any notion of premouse for which the
associated core model enjoys the abstract properties of K must actually give rise to the same
core model.

This chapter is organized as follows. In §2, we’ll prove a result for the core model below 01,
as various things are easier in this context. Moreover, the properties we’ll use about the core
model have actually been verified for both the Jensen-indexed and ms-indexed core model
below 01, so our result gives that these two versions of the core model are the same under
this hypothesis. In §3, we characterize the core model under the additional hypothesis that
there is a proper class of measurable cardinals. We start with some preliminary definitions
and observations, then discuss some new and folklore facts about K.

19



2.1 Preliminaries

We will consider transitive models of ZFC™, that is ZFC, stated with the Replacement
Schema and the Well-Ordering Theorem,! but without the Power Set Axiom. We introduce
the following bits of notation.

Definition 2.1.1. For M a transitive model of ZFC~, o(M) = OrdNM. For M, N transitive
models of ZFC™, and 7 : M — N an elementary embedding, we let 7w(o(M)) = o(NV).

We also introduce the following nonstandard notation, for convenience.

Definition 2.1.2. For p a limit cardinal we let
H, = U{H’i | kK < w a regular cardinal}.

For M a transitive model of ZFC~, we also set H]‘{[M) = M.

o

This notation is useful because this hierarchy comes up naturally in Inner Model Theory:
for M a premouse and y a limit cardinal of M, H,, is the universe of M|pu.
We also make the following definition.

Definition 2.1.3. “V=HOD” be the sentence in the language of set theory expressing that
every set is Y3-definable in ordinal parameters.

Note that satisfying “V=HOD” sufficiently locally implies GCH: for M a transitive
model of ZFC and p < o(M) an M-cardinal, if H(]‘/fﬂM E“V=HOD”, then M |= “2* = p*”,

since the order-type of the resulting well-ordering of H (]‘;ﬁ) v 2 P(p) definable over H (]‘;[ﬂ M
must have M-cardinality (u+)M.

We’ll also need to look at directed systems of elementary embeddings between transitive
models of ZFC~, which we’ll just call “directed systems of models of set theory”.

Definition 2.1.4. A directed system of models of set theory is a system D = {M;,m;; | i,j €
D and i < j} such that

1. < is a directed partial order on D,

2. for every 7,7,k € D,

(a) M; is a transitive model of ZFC~,
(b)

()

(d) if ¢ S] < k, then Tk = Tk O Ty .

if 7 < j, then 7, ; is an elementary embedding from M, into M;;,

;i 1s the identity on M;, and

Definition 2.1.5. For D = {M;,7;; | i,j € D and i < j} a directed system of models of set
theory D is well-founded if the direct limit (M., E) is well-founded, in which case we take
M, to be transitive and F =€ M.

!The Well-Ordering Theorem is the statement that every set admits a well-ordering.
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We will use this terminology and the results to follow even when the directed system D
is a definable family of transitive proper class models of ZFC (and elementary embeddings
between them). Of course, as ZFC theorems, any results proven about such a system is
schematic.

Our first lemma is implicit in the computations of HOD in models of determinacy, isolated
in this general form by Gabriel Goldberg.

Lemma 2.1.6. Let D = {M;, 7, j | i,j € D and i < j} be a well-founded directed system of
models of set theory. Let My, be its direct limit, 7 : M; — My, the direct limit maps, and
X C M.

The following are equivalent.

1. X € M,
2. there is an i € D such that
(a) m; o [X] € M; and
(b) for any j > i, m (7 L[X]) = 7 L[X].

,O0 2,00

Proof. First we show (1) = (2). Suppose X € M. Then X is the image of an element of
some model in our system, i.e. we can find an i € D and X € M; such that 7T,‘7OO(X) =X.
We check i witnesses (2) holds. For (2)(a), it’s enough to see that X = ;| [X]. But this is
trivial by elementarity: for any x € M;,

x € X < 7ri,oo(x) € 7Ti,oo(X) =X
=z em [X]

Since for any j > i, ;0 (mi (X)) = X, the corresponding calculation at j also gives (2)(b).

Now we show (2) = (1). So let i witness that (2) holds. For j > 4, let X; = m,  [X].
(2)(a) says X; € M;. Since X C M, (2)(b) gives that ;o (X;) C M, too. So, it’s enough
to show that 7ri7oo()_(z~) and X have the same elements of M. ,. So fix x € M,,. Then x is the
image of an element of some point in our system, so we can find a 7 > ¢ and £ € M, such
that ;o (Z) = z. By (2)(b), m;(X;) = X; (in particular, X; € M;). So since X; = 7, . [X],

00
TeX;e=ureX
Since ;. (X;) = i o0 (X:), applying m; o to the left-hand side, gives
T E (X)) &= 1 € X.
[

We'll identify a definability criterion which is sufficient for (2) and typical in applications
of the lemma.

Definition 2.1.7. Let D = {M;,m;; | ¢,7 € D and i < j} be a directed system of models
of set theory. For A C D, an A-indexed family of n-ary relations {R; | i € A} is uniformly
definable over D if there is an i € A, a € M;, and formula in the language of set theory
o(v1, ..., Uy, u) such that for all j > i,
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1. j €A,
2. R, QM;? and

3. for all z1,..., @, € Mj, Rj(x1,...,2,) <= M; = o(x1,...,2,,m j(a)).

A single relation R is uniformly definable over D if the constantly R D-indexed family is
uniformly definable over D.

Definition 2.1.8. For M a transitive set, a set X is a bounded subset of M if there is a
y € M such that X C y.

Lemma 2.1.9. Let D = {M;, 7, j | i,j € D and i < j} be a well-founded directed system of
models of set theory. Let My, be its direct limit, 7; o : M; — My, the direct limit maps. Let
X be a bounded subset of M.

Suppose that {m; 1 [X] | i € D} is uniformly definable over D. Then X € M.

Proof. Since X is a bounded subset of M., we can fix y € M., such that X C y. Let
i € D and y € M, such that m;»(y) = y. Then for all j > i, 7 [X] C m;(y). Since
{m; |X] | i € D} is uniformly definable over D, by increasing i if necessary, we have that
T X] is a bounded subset of M; which is definable over M;, and so m;.[X] € M; by
Replacement in M;. But then the elementarity of m; ; and the uniform definability of the
7, L [X] immediately gives m; ;(m; L[X]) = 7; L[X], so (2)(b) holds as well. So X € M, by

2,00 2,00 7,00

Lemma 2.1.6. O

We can use this lemma to show that appropriately intertwined directed systems of models
of set theory have the same direct limit when the points in the systems are models of
“V=HOD” and the direct limit models and maps are uniformly definable over both systems.
We state the result as a condition for when an initial segment of the direct limit of one
system is a subset of another.

Theorem 2.1.10. Let C and D be well-founded directed systems of models of set theory with
the same underlying partial order, C = {N;,0;,; | 1,7 € D andi < j} and D = {M;, m;; |
i,j€ D andi < j}. Let Ny, Mo be the direct limit models and 0; o, T; oo be the direct limit
maps.

Suppose that

1. for alli € D, N; C M;,
2. foralli € D, N; = “V=HOD”, and

3. Noo, Moo, {0i00}ien, {Tico}tiep are uniformly definable over D.
Then Ny C M.

Proof. Suppose that No, € M. Since N; satisfies “V=HOD”, N, satisfies “V=HOD”, too.
So, we can look at the least set of ordinals A € N, such that A & M., under the definable
well-order of N. Since N, and M, are uniformly definable over D, so is A. Further, since
A is a member of M; for all sufficiently large ¢, by the uniform definability of the N, so A
is a bounded subset of M. Since {0 o }iep, {Tic0 }icp, and A are uniformly definable over
D, we easily get {m; [A] | i € D} is also uniformly definable over D. So Lemma 2.1.9 gives
A € M, a contradiction. O
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Next, we’ll look at inner models which are definable via special kinds of Y,-formulas,
where by inner models we mean transitive proper class models of ZF, as is standard. We
will look at formulas which provably define inner models over some base theory, 7'/ In the
subsequent sections, we will consider just two base theories: ZFC+“0Y does not exist” and
ZFC+“there is no inner model of ZFC with a Woodin cardinal”, the latter of which we’ll
shorten to “there is no inner model with a Woodin cardinal”. When considered formally,
we mean that this is expressed in the language of set theory in the standard way. Note that
the hypotheses that there is no inner model with a Woodin cardinal and that 0% does not
exist are both absolute to inner models: that is, if they hold, they hold in any inner model
of ZFC. We introduce the following definition to capture this phenomenon.

Definition 2.1.11. A theory T is a nice extension ZFC iff it has the form ZFC+p for a
II,-sentence ¢ of the form “for every set of ordinals A, L[A] = 6” for some Il,-sentence 6.

We leave the following easy proposition to the reader.

Proposition 2.1.12. Let T be a nice extension of ZFC. Assume T'. Then for any transitive
proper class model W of ZFC, W = T.

It is straightforward to see that ZFC+“0Y does not exist” and ZFC+ “there is no inner
model with a Woodin cardinal” are nice extensions of ZFC.
We'll use the following standard notation.

Definition 2.1.13. For ¢(u, ¥) a formula with free variables «, v, M a transitive class and
T e M, we let

()M ={geM|ME @i}

Also, if p(u) has just one free variable u, we'll write ™ instead of ¢(u)™.

Definition 2.1.14. Let T be a nice extension of ZFC. A Yo-formula ¢(v) locally defines an
inner model over T iff ¢(v) has the form

3 (p is a strong limit cardinal Av € H, A H, = 60(v)).
for some formula #(v) and, letting M = ", the following is provable over T
e M is an inner model of ZFC,?
o for every strong limit cardinal pu, H) = 6.

Note that if ¢ locally defines an inner model over 7', then ¢ is a s-formula. Also note that
we can always take the p in the displayed formula above to be the least strong limit cardinal
such that v € H,. We'll see that these formulas are more nicely behaved than arbitrary
Yo-formulas which provably define inner models.

We need one more bit of notation.

2Recall that this is expressible in the language of set theory by asserting that ¢" is a transitive class which
is almost universal, closed under Godel operations, and satisfies AC; see [8]. Note that since we assumed T'
is a nice extension of ZFC, it follows that M |= T, as well.
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Definition 2.1.15. Let p = p(uy,...,u,) and x = x(¥,w) be formulas. The formula pX is
P AX(un) A AX(T U,
where pX~ defined recursively on the complexity of p as follows:

e for p an atomic formula, pX~ = p,
(P NPT = p 7 NEXT,

(pVEX =p Ve,
o (=) ==(p¥),

(Fup)X™ = Ju (x(v,u) A pX7), and

o (Vup)X” =Vu (x(¥,u) = p*7).
The point of this is just that if x" is a transitive class, say xV = M, then (pX)V = p™.

Lemma 2.1.16. Let T' be a nice extension of ZFC. Let v, be formulas which locally define
inner models over T'. Then there is a formula T which locally defines an inner model over T
such that T equivalent to V¥, provably over T'.

Proof. Let 6, p be formulas witnessing that ¢ and v locally define inner models over T,
that is, such that ¢ is Ju (p is a strong limit cardinal Av € H, A H, |= 6(v)) and v is
I (p is a strong limit cardinal Av € H, A H, | p(v)).

Let 7 be 3y (p is a strong limit cardinal Av € H, A H, |= p%(v)). We'll show that 7 is
our desired formula. Work in 7. Let M = ¢ and N = ™. Then M and N are both inner
models of 7. We need to show that N = 7" and that for any strong limit p, H = (p?)"x.
This latter claim immediately implies the former, so we just need to verify it.

Let u be a strong limit cardinal. Then g is a strong limit cardinal of M, so

Hijyw = p™
_ p(OH“)
= (pO)Hu’
using that ¢ and ¢ locally define inner models over T' (as witnessed by 6 and p) for the
second and first equivalences, respectively. O

For arbitrary Ys-formulas i) and ¢ which provably define inner models, it seems that %
should not be provably equivalent to a ¥s-formula, but we do not have an example.
Our next goal is to shows that for M, N inner models defined via local formulas over T,

the w-sequence of inner models (M, NM MN" NM NM, ...) is definable. The problem is that

this we may have no bound on the quantifier complexity of the formulas ¢, ¢, 1/}“’1#, ngw, e
(where ¢, 1 are some witnessing formulas to the definability of M, N). We get around this
by using our previous proposition.

Fix (¢; | i € w) a primitive recursive enumeration of formulas of the language of set
theory in one free variable. For v such a formula, let "' be the ¢ such that v = ;. For ¢,
formulas, let F, ,, be the primitive recursive function outputting the Godel numbers of the

sequence (@, V¥, VYL .). That is, F,,, is the function F' defined by
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e F(0)="¢" and

Fy¥rm ™ if k is even,

Fk+1)=
o F( ) {rspsop(kﬂ if k is odd.

Let Satg(w,v,u) be the usual definition of the Ag-satisfaction predicate.?

For ¢, 4 formulas which locally define inner models over T, say ¢
is  3p (pis a strong limit cardinal A v € H, A H, E 6() and ¢ is
F (p is a strong limit cardinal Av € H, A H, = p(v)), we also let &, ,(u,v) be the
formula

Fu(p is a strong limit cardinal A v € H, A Sato(H,, Fy,(u),v)).*

Proposition 2.1.17. Let T be a nice extension of ZFC. Suppose that ¢, are formulas
which locally define inner models over T'. Let § = &,. Then the following is provable in T'.

For every k € w,
E(k,v)V is an inner model of T°
£(0,v)" = ¢V,
E(k+1,0) =&Y if ks even, and
E(k+1,0)Y = 6D if ks odd.

Proof. Assume T'. We prove (1)-(4) by induction on k € w.

Since Fy ,(0) = 707, we immediately get £(0,v)" = ¢V, giving (2). Since " is an inner
model of T', by hypothesis, (1) holds for k& = 0.

Now suppose (1) holds at k, i.e. &(k,v)Y is an inner model of T. Assume k is even.
We'll verify &(k + 1,0)V = ¢&#»" " Then, since £(k,v)" is an inner model of ZFC, so is
Ek+1,0)Y = k2" By our hypothesis about ¢. We have that E(k,v) is

Fu(p is a strong limit cardinal A v € H, A Sato(H,, Fy,(k),v)),
which is equivalent to
Jpu(p is a strong limit cardinal Av € H, A Hy = ¢p, 4(v)).
Now, since k is even, Fy ,(k+ 1) ="p""» 7. So, £(k + 1,v) is equivalent to
Fu(p is a strong limit cardinal Av € H, A H,, = p*"or® (v)).

By the proof of Lemma 2.1.16, we get that £(k+1,v)" = ¢*¥)"  as desired. The case that
k is odd is basically the same (just replace p with 0). O

3So for any transitive x, y € z, and n € w, Saty(z,n,y) & = E on(y).

“Here we really mean that we’ve replaced Fp , with a formula defining defining it over ZFC.

SHere we mean £(k,v)Y is almost universal, etc., and satisfies the additional sentence witness that T is
nice.
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Again, although the precise statement is technical, we think of this proposition as saying
that for M, N locally definable inner models (over some nice T'), the w-sequence of inner
models (M, NM,MNM,NMNM, ...) is actually definable (over T'). This proposition is a
major reason why we’ve focused on inner models which are locally definable—it is not clear
that the sequence (M, N™ MM Mo .y is definable at all for two arbitrary ¥s-formulas which
provably define inner models (over some T'), as the quantifier complexity of the resulting
definitions gets arbitrarily large.

Unsurprisingly, one of the key properties we will use in identifying the core model is
covering. Informally, the covering properties of an inner model W are thought of asserting
that W is “close” to V. The specific covering property will make use of in most of our results
is captured in the following definition.

Definition 2.1.18. For inner models M C N of ZFC, we say that M is close to N if for all
measurable or singular strong limit cardinals p of IV,

1. p is measurable or singular in M and
2. ()M = (uH)".
We'll say that M is close if M is close to V.

The ms-indexed core model K of [11] is close, provably in ZFC+ “there is no inner model
with a Woodin cardinal”. This follows by combining the covering theorems of from Jensen-
Steel [11] and Mitchell-Schimmerling [?]. That is, we have the following.

Theorem 2.1.19. Assume there is no inner model with a Woodin cardinal. Then K is a
close inner model.

As far as we can tell, ordinary weak covering, i.e. that cof(\) > |\| whenever A > wy
is a successor cardinal of M, may not be transitive whereas the property just introduced is
transitive, that is we have the following.%

Proposition 2.1.20. Suppose M C N C P are inner models of ZFC, M 1is close to N, and
N is close to P. Then M 1is close to P.

Proof. This is immediate from the definition. m

We make another definition which is just a strengthening of locally defining an inner
model over T'.

Definition 2.1.21. A formula ¢ locally defines a close inner model over T iff ¢ provably
defines a close inner model over T' and T proves that " is close.

In the rest of this preliminary section, we dip into Inner Model Theory proper, reviewing
some well-known facts about K as well as proving some new ones. First, we will state a
folklore theorem about the absoluteness of iterability when there is no inner model with a
Woodin cardinal.

6There is a consequence of weak covering which is transitive: if g > wsy is a regular cardinal, then
cof((uT)M) > p. This actually works fine for our purposes below 0¥ but does not seem to work below a
Woodin cardinal, in general.
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Theorem 2.1.22. Assume there is no inner model with a Woodin cardinal. Let W be an
inner model of ZFC. Then K" is iterable.

This is a corollary of the following result, due to Steel (this is easy to obtain from
iterability absoluteness results in [27] and standard facts about the existence of Q-structures
for normal iteration trees on 1-small premice).

Theorem 2.1.23. Let W be an inner model of ZFC, k be an uncountable cardinal of W,
and P a 1-small premouse with P € HY. Then P is iterable iff HY = “P is iterable”.

Proof of Theorem 2.1.22. Since there is no inner model with a Woodin cardinal, KW is
defined and also has no Woodin cardinals. It follows that for any successor K" -cardinal, 7,
KW is 1-small. But if there is a bad normal iteration tree 7 on K" in V, then there is
a bad tree on KW|n for some such . But KW|n is iterable in W and so iterable in V, by
Theorem 2.1.23, a contradiction. [

Next, we’ll confirm that there is a definition of K which locally defines an inner model
over ZFC+“there is no inner model with a Woodin cardinal”. This follows from Steel’s
inductive definition of K from [20]. One could also use Schindler’s result from [0] that,
above wy, levels of K are just obtained by stacking, however this has not been checked in
context without the measurable cardinal.

Definition 2.1.24. For a a K-cardinal, a countably iterable, 1-small premouse N is a-
strong iff K'|ae < N and for all premice M such that M is 8-strong for all K-cardinals § < «,
the phalanx (N, M, «) is iterable.

Arguments from [20] give

Theorem 2.1.25. Assume there is no inner model with a Woodin cardinal. Let o be a
cardinal of K. Then

1. N is a-strong iff K|aw < N and for all premice M of size < |N| such that M is B-strong
for all K-cardinals B < «, the phalanz (M, N, «) is wy-iterable;

2. K|(a®)E = U{N|(a™)N | N is a-strong and |[N| = |a|}.
This immediately gives the following result.

Theorem 2.1.26. Assume there is no inner model with a Woodin cardinal. Let i be a strong
limit cardinal. Then K|u, i.e. Hf together with the extender sequence of K|u, is definable
without parameters over H,, uniformly in p.

Proof. Fix p. The idea here is to define when some premouse is an initial segment of K |u
by asserting there are sufficiently long sequences of sets S,, ordinals k,, and premice P,
such that the k, are the K cardinals, S, is the set of < k,-strong premice of some fized
cardinality, and P, = K |k,, using the inductive definition of K (i.e. the previous theorem).
We use that p is a strong limit to guarantee that the set of all < k,-strong premice of our
fixed cardinality < p is a member of H,,, since premice of size ¢ are essentially subsets of 6.

This is routine, but we include it here for completeness. A premouse () of size < p is a
proper initial segment of K|u iff there sequences (S, | @ < (), (P, | a < (), (ka | @ < (),
for some ¢ < pu, such that

27



1. e Spis the set of countably iterable, 1-small premice of size < |Q),
e Py =(V,,0),and
® Ko =W,
2. fora+1<(,
e S,.1is the set of all N € S, such that P, < N and for all M € S,, (M, N, «) is
wy-iterable,
® Fat1 = U{N’(K;—)N | N e Soz+1}> and
® Ko+l = O<Pa+1);

3. for A < ( a limit ordinal,

o Si=U{S«[a <A},
o P\=J{FP.|a< A}, and
o 1) =sup{r, | @ < A}; and

1. Q<P

By Theorem 2.1.25 and our above comments, this gives a definition for K|u over H, and is
clearly uniform in pu. O

We fix ¢k (v) be the formula which locally defines an inner model over over ZFC+ “there
is no inner model with a Woodin cardinal” given by the above inductive definition of K. We
also let “V=K” be the sentence Vv ¢k (v).

Theorem 2.1.25 also gives the following.

Theorem 2.1.27. Assume there is no inner model with a Woodin cardinal. Then K |=
“V .= K”. In particular, K = “V = HOD”.

Proof sketch. The point is that, by induction, we’ll have that for all K-cardinals 5 < o, K|«
is B-strong inside of K. For 1-small N which is a-strong in K, the iterability of (K |«, N, «)
inside K implies that this phalanx is actually iterable in V', which suffices for showing that
N is actually a-strong.

This implies K | “V = HOD” because K has a global well-order definable over V| by
Theorem 2.1.26. [

One can also prove Theorem 2.1.27 using Theorem 2.1.41, below.
While very general local definability results can likely be obtained from the methods of
[6], we easily get the following additional definability result.

Proposition 2.1.28. Assume there is no inner model with a Woodin cardinal. Let i be an
inaccessible cardinal such that (u™)% = u*. Then K|u* is definable without parameters over
H, .+, uniformly in p.
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Proof. This follows from Theorem 2.1.26 together with the fact that, under the hypotheses
of the proposition, K|u™ = S(K|u), the stack of countably iterable sound premice extending
K|y which project to u. This is sufficiently definable by Theorem 2.1.23, since the 1-small
premice which are levels of this stack are cofinal. n

Note that there may be no p as in the hypothesis of the proposition.
The following is an immediate corollary to the previous proposition, Theorem 2.1.26, and
Theorem 2.1.27.

Corollary 2.1.29. Assume there is no inner model with a Woodin cardinal. Let o be a

limat cardinal of K or the K-successor of an inaccessible cardinal of K. Let P be a transitive
model of ZFC~. Then

cafme HE — P is elementary (in the language of set theory), there is a unique premouse
P with universe P such that 7 : Kla — P is elementary (in the language of premice),

2. 4fm: P — HE s elementary (in the language of set theory), there is a unique premouse
P of P such that is 7 : P — K|« is elementary (in the language of premice).

Finally, we’ll work towards showing that, in certain situations, elementary embeddings
from initial segments of K are uniquely determined by their target model. These results are
new, as far as we know, but just require known techniques.

We’ll use the following easy criterion for being a fixed point of an embedding 7 : M — N.

Lemma 2.1.30. Let M, N be transitive models of ZFC™ and w : M — N elementary.
Suppose that sup”a = o and 7 is continuous at cof" (o). Then m(a) = a.

Proof. Let v = cof(a). Fix (B¢ | € < ) € M a cofinal increasing sequence in . Then
7 {Be | £ <7} is cofinal in w({B¢ | £ < v}) since supn”y = 7(7y). So we have

m(a) = supm({f | £ <7})
=supm’{B | £ <7}

]

Lemma 2.1.31. Let pu be a regular cardinal and M transitive models of ZFC™ such that
o(M) = u* and u is the largest cardinal of M. Then for any a < pt,

cof! (@) = ji = coffa) = .

Proof. Tf an ordinal v < p* has cof(a) = p, then cof" (o) = p since cof(u) < cof™ () <
as |a|M < p, since p is the largest cardinal of M. Conversely, if cof" (o) = p, then cof(a) =
since p is a regular cardinal.

O= F

Definition 2.1.32. Let p be regular cardinal. We let C, ,+ be the p-club filter on p*,
that is the filter generated by the cofinal subsets of u* which are closed under increasing
[-sequences.

29



Proposition 2.1.33. Let p be a reqular cardinal and M, N be transitive models of ZFC~
such that o(M) = o(N) = u™ and p is the largest cardinal of M. Suppose that w: M — N
is elementary and 7 is continuous at p. Then fiz(m) € C,, 1+

Proof. If a is a limit of fixed points of m which has cofinality p, then Lemma 2.1.31 gives
cof¥ (o) = p, so that m(a) = o by Lemma 2.1.30 (since sup 7”a = a, as it is a limit of fixed
points). So we just need to see m has arbitrarily large fixed points.

Fix 8 < p*. Above 3, we can build a p-sequence (g | £ < p) in pu such for all
n <& < p, that m(a,;) < ae. Let a = sup{age | £ < p}. Then a = supn”a and, by Lemma
2.1.31, cof™(a) = cof(a) = p. So by Lemma 2.1.30, 7(a) = cv. O

We’ll typically use this in the following situation.

Corollary 2.1.34. Let p be a reqular cardinal and M, N be transitive models of ZFC~ such
that o (M) = o(N) = p* and u is the largest cardinal of M, N. Suppose that w : M — N s
elementary. Then fiz(m) € C, +.

Proof. Since p is definable in the same way in M, N (as the largest cardinal), 7(p) = p. In
particular, 7 is continuous at p. So the previous proposition applies. O

Definition 2.1.35. Let p be a regular cardinal. An iterable premouse P is p-universal if
o(P) = " and P has largest cardinal p.

Note that, in general, there may be no premouse P which is p-universal, according to
this definition. However, if there is no inner model with a Woodin cardinal and there is a
regular cardinal p such that (u*)% = u* (e.g. for a measurable cardinal i), then K|u* is
p-universal.

Theorem 2.1.36. Assume there is no inner model with a Woodin cardinal. Suppose p is
a reqular cardinal such that (u™)% = pu*. Let P be p-universal. Then there is a unique
elementary embedding 7 : K|ut — P. Moreover, 7 is definable over H,+ in parameters K |p
and P|u, uniformly in P|u.

First we need to see that there is an embedding 7 : K|u* — P at all. For this, we extend
the definition of K(7,2) from [I1] to the case 7 = p and Q = u™.

Definition 2.1.37. Suppose that P p-universal. Def” = N{Hull”(T) | T € C,, .+ }.
Standard arguments, as in [11], give
Proposition 2.1.38. Suppose that P and Q are p-universal. Then Def = Def?.

Definition 2.1.39. If there is a p-universal P, then f((,u,,tﬁ) is the common transitive
collapse of Def” for any p-universal P.

Now, the collapsing weasel case of the proof of Lemma 4.31 from [11] gives

Proposition 2.1.40. Suppose that there is a p-universal P. Then f((,u, put) is p-universal
and there is a T € C,,,+ such that Def” = Hull”(T).
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Theorem 2.1.41. Assume there is no inner model with a Woodin cardinal. Suppose i is a
reqular cardinal such that (p*)% = p*. Then K|ut = K(u, ut).

Proof. We have that K|u = K (u, ut)|u, since K (p, p)|p also satisfies the inductive defini-
tion of K, as in the proof of Lemma 6.1 of [11]. Since p is regular, the stack over K|u =
K, pit)|pe is well-defined, i.e. the sound, iterable premice extending K|pu = K (u, u*)|p
and projecting to p are totally ordered by the initial segment relation. It follows that

K|pt < K (p, pt) or K(p, pt) < K|p*. But both have height x*, so they must be equal. [

This easily gives the following.

Proposition 2.1.42. Assume there is no inner model with a Woodin cardinal. Suppose
is a reqular cardinal such that (u™)% = pu*. Then for any T € C K|pt = Hull"*" (D).

B

Proof. Tt is enough to show that K |u* = Hull”(T") for some I' € C,, ,+. Let P be p-universal.
Using Proposition 2.1.40 and Theorem 2.1.41, we let T be such that K|u™ is the transitive
collapse of Hull”(T"). Let 7 : K|u* — P be the uncollapse map. By Proposition 2.1.34,
we can assume that I' is a set of fixed points of w. For any A C T, since 7”A = A,
7 Hull“*" (A) = Hull”(A) = Def”, and so ran(r) C 77 Hull“!*" (A). Tt follows that K |u* =
Hull®"" (A). O

Proof of Theorem 2.1.36. By Theorem 2.1.41, there is an embedding from K|u*™ into P,
and by Proposition 2.1.40, we actually have that K|u*t is the transitive collapse of Def” =
Hull”(T") for some T € Cp+- So suppose 7 : K|t — P is elementary. Then by Proposition
2.1.34, fix(m) € C, ,+, so we can find some A € C, ,+ which is a set of fixed points of 7 such

that Def” = Hull”(A). We also get K|p™ = Hull“*" (A), by Proposition 2.1.42. It follows
that

7 K|pt = 77 Hull® " (A)
= Hull”(7”A)
= Hull”(A)
= Def”.

Since 7 was arbitrary, Def” is the range of any elementary embedding from K|u* into P.
So there is at most one such embedding.

For the definability of 7, since p is regular, standard arguments give that K|u and P|u
have a common iterate, @, and letting i : K|pu — @ and j : P|p — @ be the iteration maps
of the comparison, and E, F' the length p extenders of these iteration maps,

S(Q) = Ult(K|ut, E) = Ult(P, F),

where S(Q) is the stack over Q. Let i : K|yt — S(Q) and j: P — S(Q) be the ultrapower
maps. Then we also have that i K|yt = j7Def”. It follows that 7 = j~' oi. Since K|u, P|u,
Q, and E, F are all in H,+ and since K|p* = S(K|u) and P = S(P|u), we get the required
definability of 7 (using for uniformity that F, F' came from the comparison). O]
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To finish this preliminary section, we review some results which hold below 0Y. In this
context, the theory of the Jensen-indexed core model, which we denote .J, has been developed
by Schindler, see [16] or [25].

The covering theorems of Schindler [10] and Cox [3] immediately give

Theorem 2.1.43. Assume 01 does not exist. Then J is close to V.

J also has an inductive definition—we let ¢ be the resulting formula. We have that ¢
locally defines a close inner model over ZFC+“0Y does not exist”. We also let “V = J” be
the formula Vv ¢ (v).

One important feature of Inner Model Theory below 0Y is that the theory of (definable)
proper class premice is well-behaved. This is because definable iteration trees on iterable
premice have definable well-founded branches, even when they are proper class sized. This
fails below a Woodin cardinal in general.

We have the following below 01.

Theorem 2.1.44. Assume 07 does not exist. Suppose that ¢ is a 3, -formula which defines
a close inner model W. Then

1. there is an elementary embedding k : K — KW, definable uniformly in o,

2. there is an elementary embedding j : J — JV, definable uniformly in .

Proof sketch. We'll just talk about the ms-indexed core model K, as it is symmetric. KW
is iterable in W and so it is actually iterable, by Theorem 2.1.22.7 Moreover, K" is close
to M by Theorem 2.1.19 in W. So K™ is close to V by Proposition 2.1.20. In particular,
(uH)E" = u* for all singular strong limit cardinals p, so K™ is universal in the sense that
it is maximal in the ms-indexed mouse-order, by standard arguments (cf. Lemma 6.3.1 of
Zeman [25]). In particular, K and K™ have a common, non-dropping iterate, obtained
by comparing the two inner models. By standard arguments (which can be found in [28]
or [20]), K" doesn’t move in this comparison and so there is an elementary embedding
k: K — KWY. Since k was obtained as the iteration map of the (definable) comparison, it is
definable, uniformly in the definition of W. O

We suspect that Theorem 2.1.44 may fail below a Woodin cardinal, but we do not have a
counterexample.

Finally, we also have that K and J are rigid. Because rigidity of an inner model is not
expressible in the language of set theory, in general, we make the following definition.

Definition 2.1.45. An inner model M is ¥,-rigid if there is no X,-definable, non-trivial
elementary embedding j : M — M.

By standard techniques (cf [28] or [20]), we have the following, for any n.
Theorem 2.1.46. Assume 0 does not exist. Then

1. K is ¥,-rigid,

"Below 01, this absoluteness fact is actually easier and holds for Jensen-indexed premice as well.
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2. J is Xy, -rigid.
This easily implies the following analogue of Theorem 2.1.27.

Theorem 2.1.47. Assume 01 does not exist. Then J |= “V = J". In particular, J = “V =
HOD”.

Proof sketch. By Theorem 2.1.44 in V| there is a definable elementary embedding j, : J —
J7. But also since J is a universal Jensen-indexed proper class premouse (i.e. Jensen-indexed
mouse-order maximal), the proof of 2.1.44% gives there is also an elementary embedding
g1 J7 — J which is still definable in V. But then j; 0 jo : J — J and so must be the
identity, by Theorem 2.1.46. It follows that J = J7, as desired. We get J | “V = HOD”
just as in the proof of Theorem 2.1.27. m

Of course, this also gives another proof of Theorem 2.1.27 under the additional hypothesis
that 0T does not exist. This same argument will come up again in our uniqueness results.

In [20], Steel proves that if there is no inner model with a Woodin cardinal and € is a
measurable cardinal, then K| is rigid. Surprisingly, it appears to be open whether K is
(3,-)rigid just under the hypothesis that there is no inner model with a Woodin cardinal.
The difficulty in adapting arguments from [20] to this context is that these arguments rely
on the existence of very soundness witnesses for initial segments of K which are definable
over K. We do not see how to get such witnesses in the general context.

2.2 Below 01

In this section, we will prove our simplest uniqueness result about the core model under the
hypothesis that 01 does not exist. We prove, basically, that the core model is the unique
inner model which “resembles the core model”, which we define shortly. The proof that there
is at most one such inner model doesn’t make use of the existence of the core model at all
and doesn’t use our hypothesis that 09 does not exist So there is a corresponding uniqueness
theorem which holds under just ZFC, although it is possibly trivial.

Definition 2.2.1. Let T be a nice extension of ZFC. For M an inner model, p(v) a formula
which locally defines a close inner model over T', and ¢ (u, v, w) a formula, M resembles the
core model via (p,) iff M = ¢" and the following is provable in T

1. ¢V E=4“V=HOD”,
2. ¢" = Vap(a),

3. for any ¥,-formula v, if W = ~" is a close inner model of ZFC, then ("7, v, w)
defines an elementary embedding from ¢V into ¢".?

8We mean the proof of the Jensen-indexed case, which was omitted but is symmetric to the ms-indexed
case, which we sketched.

9Recall that an elementary embedding between definable inner models of ZFC is expressible in the lan-
guage of set theory by asserting just i-elementarity.
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We’ll say that M X,-resembles the core model over T if we can take ¢ to be a ¥, -formula.
We'll just say that M resembles the core model if it ¥igg00-resembles the core model over
ZFC+“0Y does not exist”. Of course, this number is overkill: we just need n sufficiently
large so that the actual core model, K, ¥,,-resembles the core model over ZFC+“0Y does not
exist”.

Our main result is the following schema, for n > 1.

Theorem 2.2.2. Assume T. Suppose M and N resemble the core model over T wvia 3,-
formulas and M is ¥,,-rigid. Then M = N.

Proof. Fix ¢, p such that M resembles the core model via (¢, p) and let 1, x such that N
resembles the core model via (¢, x). So ¢ and 1) are formulas which locally define close inner
models over 7. For W an inner model, we’ll write MW instead of ¢ and NW instead of
7.

We first show N™ = M and MY = N. Since it’s symmetric, we’ll just show the former.
To get this, we’ll show that M elementarily embeds into some M, such that M., | V¢ (x),
so that M = Vo (z), ie. N¥ = M.

Let & = &, be the formula from Proposition 2.1.17 (defined in the discussion preceeding
it). Let My, = £(2k,v)V and N;, = £(2k+1,v)". Then by Proposition 2.1.17, My = ¢¥ = M,
N, = NMe and My, = M. Let m; = p("¢7, u,v)M and o; = (T, u,v)Ni. So 7 is
an elementary embedding from M; into M;,; and o; is an elementary embedding from N;
into Nj41. For i < j, let m; + M; — M; and o0;; : N; — N; the natural maps obtained
from composing the 7, and oy, respectively. Let C = {N;,0,; | 4,7 € wandi < j} and
D={M;,m;|ij€wandi<j}. Let Ny be the direct limit of C, M, the direct limit of
D, and 0, o, and ; « the direct limit maps.

First we’ll show M., Ny, are well-founded. Of course, the argument is the same for M.,
and N.; moreover, it is just Gaifman’s argument that the w'M-iterate of V' by a countably
complete ultrafilter is well-founded.

Suppose M is not well-founded. Let a least such M, is ill-founded below 7 o (a). By
Proposition 2.1.17 and how we chose the 7; ;, {(m;; | 7 > i) | ¢ € w} is uniformly definable
over D. But then for « least such that M is ill-founded below 7 o (v), for any ¢, mp; () is
the least (8 such that M, is ill-founded below ; o (5), so M cannot be ill-founded below
To.00(@) after all, a contradiction.

As we mentioned in the preceding argument, {(m;; | j > i) | i € w} is uniformly
definable over D. So by Replacement, the (transitivized) M., and a tail of the direct limit
maps T; ~ are also uniformly definable over D. Since N; is definable in M; we also get the
(transitivized) Ny and the direct limit maps o; o, are also uniformly definable over D. Since
we also have N; C M; and N; = “V=HOD” (by clause 1 of the definition of resembles the
core model), Theorem 2.1.10 gives N, C M. A symmetric argument shows M., C N.
But by elementarity, No, = Va(z) so My, does too, as desired.

To finish, let 7 = p("y¥ 7", u,v)V and ¢ = x(T¢ ", u,v)V. Sow : M — MY = N and
o: N — NM = M are elementary. If M # N then at least one of 7, ¢ is not the identity on
the ordinals. But then as o, 7 are definable by the ¥,-formulas v and 7, conw : M — M is a

34



¥,-definable elementary embedding!® which is not the identity, contradicting the ¥, -rigidity
of M. So M = N after all. 0

As in the preliminary section, we let K be the ms-indexed core model and J the Jensen-
indexed core model (defined below 0Y).

Theorem 2.2.3. Assume 0¥ doesn’t exist. Then K = J is the unique inner model which
resembles the core model.

Proof. Recall that the inductive definitions of K and J give formulas ¢x and ¢; which
locally define close inner models over ZFC+“01 doesn’t exist” (see the preliminaries section).
We want to see that there are formulas ¥k and 1 ; such that K and J resemble the core
model via (¢x, k) and (ps,1,), respectively. But (1) and (2), which only mention ¢, are
immediate from Theorems 2.1.27 and 2.1.47 and Theorem 2.1.44 immediately gives us our
desired formulas 1x and 1; witnessing (3) for i and ;. Finally we actually have that
both J and K are both sufficiently rigid, by Theorem 2.1.46, so Theorem 2.2.2 gives K = J
is the unique inner model which resembles the core model. O

2.3 Below a Woodin cardinal

In this section we prove a uniqueness theorem about the core model under the less restrictive
hypothesis that there is no inner model with a Woodin cardinal, assuming that there is
a proper class of measurable cardinals. We proceed similarly to before: we’ll (re-)define
“resembles the core model”, show there is at most one such inner model, and then prove
that the ms-indexed K is that model. We do not know whether the Jensen-indexed core
model satisfies the definition given in this section. While one can show that the ms-indexed K
is a modified Jensen-indexed proper class premouse, using the translation theorems of Fuchs
[1], [7], and so identify a (modified) Jensen-indexed core model in some sense, the theory
developed in [20] or [ 1] has not been worked out for Jensen-indexed premice. This is almost
certainly possible and will likely appear in Jensen’s in-progress manuscript [10]. In any case,
our theorem indicates that the resulting core model will likely just be the ms-indexed core
model, K.

Under the hypothesis that there is inner model with a Woodin cardinal but there is a
proper class of measurable cardinals, the ms-indexed K is just (J{ K, | ¢ measurable}, where
K, is the core model from Steel’s [20] (at the measurable cardinal y). In this context, we can
identify K while avoiding almost all the technicalities around definability from the previous
section. For i a measurable cardinal, we'll identify H[ as the unique H}{ for M which
“resembles the core model at (u, A)”, for A any inaccessible cardinal above p (assuming there
is no inner model with a Woodin cardinal, of course).

Definition 2.3.1. Let y© < A\ with x4 measurable and A inaccessible. A transitive model P
is p-full at \ iff P = V¥ for an inner model W of ZFC such that ; is measurable in W and

()W = pt.

10Using here that n > 1.
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It is not immediately obvious that being u-full at A is expressible in the language of set
theory, since we quantified over the proper class W in the above definition. We leave it to
the reader to check the following easy proposition.

Proposition 2.3.2. P is p-full at \ iff P is a transitive model of ZFC, o(P) = X\, P = i
is measurable, (u™)¥ = p*, and there is a well-order < of P such that every bounded subset

of A constructible from P and < is in P (i.e. P = V)\L(P’S)).

We let Full, y be the set of all P which are p-full at \. We can now state the main
definition of the section.

Definition 2.3.3. Let p be a measurable cardinal and A > p inaccessible. A transitive
model M resembles the core model at (y1, \) if there is a function from Full, \ into Full, ),
P+ MP* such that

1. for all P € Full, ,, M” C P,
2. M =M™,
3. for all P € Full,,, MM" = MP.

4. for any P,Q € Full,,, if 7 : H 5* — H}% is elementary, then 7 [ H %P is elementary

P . Q
from Hﬁ{ into H% ,

5. for any P, € Full, » such that () C P, there is an elementary embedding = : H %P —
H %Q such that

(a) me P,

(b) P = “m is the unique elementary embedding from H %P into H %Q.”

Let us briefly discuss this definition. First, the function P — MY is really just proxy
for M having something like a local definition which provably defines a close inner model.
This is why (4) is at all plausible. Still, it is convenient to abstract away from definability
to the extent we can. Also note that (2) and (5) give that H % elementarily embeds into

H %P for any P € Full, ). Finally note that (5) for P = @ = V) implies that there is no
non-trivial elementary embedding 7 : H % — H %, since the identity must be the unique
such embedding (all such embeddings are in V)).

Under the hypothesis that there is no inner model with a Woodin cardinal, we will show
that levels of K resemble the core model, as witnessed by the function P — (¢x)¥, and
that the maps 7 witnessing (5) for levels of K are actually uniformly definable, which will
be important for the uniqueness proof. We make the following definition capturing the
additional properties of the way K resembles the core model.

Definition 2.3.4. Let u be a measurable cardinal and A > p inaccessible. A transitive
model M strongly resembles the core model at (u,)\) if there is a function P — M?T such
that (1)-(5) hold, H i‘ﬁp is uniformly definable over H,, and the maps 7 : i‘ﬁp o H%Q
witnessing (5) are definable over H 5*’ uniformly in parameter H.
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We now prove the uniqueness result.

Theorem 2.3.5. Suppose that 1 is a measurable cardinal and X > i is inaccessible. Suppose
that N resembles the core model at (p, \) and M strongly resembles the core model at (i, \).
Then H% = Hi\fr.

Proof. Fix a function P — NT witnessing that N resembles the core model at (u, \) and
a function P — M? witnessing that M strongly resembles the core model at (u, \). We
also fix ¢ a formula witnessing that H %P is uniformly definable over H 5 . for P € Full, »,

i.e. such that H %P = ngfJf for all P € Full,  (such a ¢ is guaranteed by the definition of
strongly resembling the core model).
First we’ll verify the following.

Claim 1. H;ﬂM = HM

Proof. Let My = M, Ny = NM, M, = MM N, = N and M, = M™. Then, using
(1) for N, My C M; C My, so we can fix elementary embeddings 7 : Hﬁ“ — Hﬁl and o :
Hlivf — H%Q witnessing (5) for M. Similarly, fix an elementary embedding 7 : HIJ;@ — ng
witnessing (5) for M. (4) for N gives 7 fHﬁS : Hi\ff o Hﬁ:, so since m € My by (5)(a) for
M, (5)(b) for N gives that = [H/ivf = 7. A symmetric argument gives that 7 [Hﬁl =o0. S0
we have that 7 [Hﬁl =o.

Now suppose that 7 is not the identity and let x = crit(m). Then s is definable over
H /]ﬂo in parameter H 50, since 7 is, using (3) for M together with our assumption that M
strongly resembles the core model at (1, A). These assumptions together with (4) for N give
that crit(o) is defined in the same way over Hﬁl in parameter H)" = 7(H[°) as x = crit(r)
is over Hﬁo in parameter H)°. Since 7 is elementary, it follows that (k) = crit(c). But o
and 7 agree on the ordinals, so crit(o) = crit(r) = k. So 7(k) = k, contradicting that & is
the critical point of m. So m is the identity and H i\ﬁrM =H %, as claimed n

Next we show
Claim 2. H%N = HY,

Proof. Since our hypotheses on M and N are not symmetric, this doesn’t follow immediately
N
from the proof of the previous claim. What that proof does give that H %M =H %N. So,
by (5) for N, we get an elementary embedding 7 : Hli\i — H%N. By (3) for M, we have that
N
H %M =H %N. In particular, H %N = Vv ¢(v), by our choice of ¢. Since 7 is elementary,
H;]LV+ = Vv p(v) as well. So H%N = Hi\i, as claimed. O

By these claims and (5) for M and N, there are elementary embeddings 7 : H % —
HMY = N and o : HY, — Hli\iM = H%. Socor: H% — H% is elementary and so must
be the identity, by (5) for M (see discussion following the definition). It follows that 7 and
o are the identity as well and so H){ = H., as desired. O
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We now show that levels of K strongly resemble the core model under the hypothesis
that there is no inner model with a Woodin cardinal.

Lemma 2.3.6. Assume there is no inner model with a Woodin cardinal. Suppose that i is
measurable and X\ > p is inaccessible. Then the function on Full, given by P — K =
(or)f witnesses that Vi strongly resembles the core model.

Proof. (1) is immediate since K is provably close. (2) follows by how we chose our function.
(3) follows from Theorem 2.1.27. (4), (5), and the additional definability requirement on
the witnessing maps follow from Theorem 2.1.36 together with Theorem 2.1.26. Finally, the
fact that H ﬁip is definable over H f; follows from the fact that, working inside P, K|u is
definable over H,,, since p is a strong limit, by Theorem 2.1.26, together with the fact that
Klut = S(K|p), the stack over K|u, as p is regular and (u)% = p*. O

This lemma and the previous theorem immediately imply the following.

Theorem 2.3.7. Assume there is no inner model with a Woodin cardinal. Suppose there is
a proper class of measurable cardinals. Then K is the unique inner model such that for all
measurable cardinals p < X\, VX resembles the core model at (1, \).
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Chapter 3

Meta-Iteration Trees

In [25], John Steel isolates the notion of a mouse pair, a premouse P together with a suffi-
ciently well-behaved iteration strategy X for P. Steel proves a comparison theorem for mouse
pairs and shows that many of the basic results from lower-level inner model theory can be
stated in their proper general form by considering mouse pairs instead of just premice. For
example, we have the full Dodd-Jensen property for mouse pairs, and thus a well-founded
mouse pair order, whereas these both fail if we consider iterable premice in isolation. These
and other results seem to indicate that mouse pairs, not just their mouse components, are
the fundamental objects of study in inner model theory. In this chapter, we contribute to
this study by developing a useful framework for examining some of the nice properties of
iteration strategies which come up in work of Steel and others.

Given a stack of normal iteration trees S on a premouse P, Steel and Schlutzenberg iden-
tified a procedure for rearranging the extenders of S so that they generate a single normal
iteration tree W(g), the embedding normalization of S. The embedding normalization pro-
cess is best viewed as a kind tree of normal iteration trees, which we’ll call a meta-iteration
tree, or meta-tree. The meta-tree notion evolved from the work of Jensen, Schlutzenberg,
and Steel, but was first explicitly isolated by Schlutzenberg (see [9] and [19], which use
somewhat different terminology for meta-trees and their associated apparatus.) We use the
meta-iteration tree framework to prove some new results, for example, that some nice prop-
erties of iteration strategies (versions of normalizing well and strong hull condensation) pass
to tail strategies. We also use this framework to give what we think is a more perspicuous
proof of Schlutzenberg’s theorem on extending iteration strategies to infinite stacks. Outside
of this thesis, variants of this framework will be used to give a proof of full normalization
for mouse pairs in joint, in-progress work with Steel. Full normalization is used in Steel’s
work on optimal Suslin representations, which he has used to give descriptive-set-theoretic
characterizations of Woodin cardinals of the HOD of models of determinacy, see [23]

This chapter assumes familiarity with Jensen-indexed premice and their basic theory—we
refer the reader to Steel’s [20], §2.
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3.1 Tree embeddings and meta-iteration trees

In this section we introduce the basic objects we’ll study in this chapter: tree embeddings,
the embedding normalization, and meta-iteration trees. We’ll review some results of Steel
and Schlutzenberg and give most of a proof of Schlutzenberg’s theorem on extending iteration
strategies to infinite stacks. We postpone the proof of one relevant result until near the end
of the next section.

3.1.1 Tree embeddings

Tree embeddings were isolated by Steel in [24]. They arise naturally in the context of
embedding normalization and will feature prominently in the rest of the chapter. In this
subsection, we introduce tree embeddings and look at directed systems of normal iteration
trees under tree embeddings, identifying the natural direct limit normal iteration tree, when
1t exists.

Definition 3.1.1. Let P be a premouse and §,7 be normal iteration trees on P. A tree
embedding ® : S — T is a system (u®, v®, {s¢ }ecmn(s), {18 }cr1<in(s)) such that

L. v® : 1h(8) — Ih(T) is tree-order preserving, u® : {n | n +1 < 1h(S)} — Ih(T),
v®(€) = sup{u®(n) + 1| n < &}, and v*() <7 u®(§);

2. for all ¢ < 1h(S) and 1 <s &,

(a) s¢ Mg — MZ;(E) is elementary and s§ = idps:
(B) e © Sy = SE 0 lne’

() if £+ 1 <In(S), then tf = i) ¢ © s¢ with Ef € dom(tf);”
3. for all £ +1 < 1h(S), letting n = S-pred(£ + 1), and n* = T-pred(u(§) + 1),
(2) B = t¢ (),

(b) n* € [v(n), u(n)]r,
(c) 2, 1h(EF) = t2 [1h(EY).

Going forward, we’ll use the following notation for applications of the Shift Lemma.

Definition 3.1.2. Formaps7: N — N, 0 : M — M, and an extender E on the N-sequence,
we'll say the Shift Lemma applies to (w, 0, E) iff

1. N|dom(E) = M|dom(FE) and
2. w]dom(FE) = o [dom(FE)

1'We are using i7 to denote the possibly partial branch embeddings of T, following Steel [27].
2Note that t‘g’ is only a partial elementary map from Més into M ;F(E) in general, since [v(£), u(§)]7 may

drop. The demand that Ef € dom(tg’) just means that we don’t drop below the image of Eg along
[v(€), u()]T-
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In this case, the copy map associated to (w,o0, E) is the unique map 7 : Ult(P,E) —
Ult(P,7(E)), for P the least initial segment of M beyond dom(FE) with p(P) < crit(E) or
P = M and P the least initial segment of M beyond dom(w(E)) with p(P) < crit(n(E)) or
P = M, such that

1. Toigzifw)oaand
2. 71h(E) = 7 | Ih(E).

Note that in (3) of the definition of tree embedding above, we get that

M, MS
< T _ ]
BT, O totmar © T ek O s s

which together with (3)(c) guarantees that s¢y; is the copy map associated to (te, ivT(n),n* o
Sn, Eg ). Also note that while we didn’t explicitly mention how the s$ are defined at limit
A in the definition of tree embedding, they are uniquely determined by the commutativity
conditions (because we take direct limits at limit ordinals in iteration trees). Together,
these observations reveal that there is some redundant information in the definition of a tree
embedding: a tree embedding ® : S — 7T is actually totally determined by S, 7, and u®. In
fact, it is totally determined by S,u®, the extenders EZ with & ¢ ran(u?®), and the branch

choices [0, )7 for A such that ran(u®) N A is bounded below .

Definition 3.1.3. Let S be a normal tree of successor length v+ 1 and 7 a normal tree of
has successor length § + 1. For ® : S — T a tree embedding such that v®(y) <7 §, we let
u®(y) = 0 and t7 = ivT‘P(v) 5 © 52 and call the resulting system an extended tree embedding.

An extended tree embedding is non-dropping if (v®(y),d]7 doesn’t drop.

Remark 3.1.4. Note that if ® : § — T is a tree embedding and S has successor length § + 1,
then we can always view ® as a non-dropping extended tree embedding ® : S — T [v(d)+ 1.
On the other hand, if S has limit length, b is a cofinal branch of S, and ® : S — T is a tree
embedding, there may be no extension of ® to an extended tree embedding from S™b into
any extension of 7, even when S and T are by the same nice iteration strategy.

Here is an example due to Steel. Assume M{# exists and let A be the iteration strategy
for M;. Toward a contradiction, suppose for every S, 7T of limit lengths by A such that there
is @ : S — T with ran(v®) cofinal in 1h(7), v®[A(S)] C A(T).

Now let 7 € M; be a normal tree by A of height §+*"" which has no branch in M, where
d is the Woodin cardinal of M; (that such a tree exists is due to Woodin, see Lemma 1.1 of
[17]). Let g be Col(w,d) generic over M; and h generic for the Namba forcing over M;[g].
The restriction of A to countable trees which are in M;[g][h] is in M;[g][h] since Namba
forcing adds no reals and M; contains the restriction of A to trees of length § which are in
M. Now, in M;[g][h], Ih(T) has countable cofinality. We can take a Skolem hull to get S
countable in M,[g][h] and ® : S — T with ran(v?®) cofinal in 1h(7). Since S is countable
and by A, A(S) € Mi[g][h]. So, by assumption, v®[A(S)] € A(T); so A(T) is just the
downwards closure of v*[A(S)] (in M;[g][h]). This identification of A(T) was independent
of our choice of g, h, S, so we get A(T) € M, a contradiction.
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Despite this, we will be able to view the tree embeddings that appear naturally in embed-
ding normalization as extended tree embeddings and deal almost exclusively with extended
tree embeddings in the rest of the paper.

Definition 3.1.5. For tree embeddings or extended tree embeddings ® : S — T,V : U — V,
we put
OIéE+1~=TUE+T

FSTE+T1=UE+L v [E+1=0Y 1€+ 1, and T [o?() +1=V]v¥(€) + 1. Tt follows
that sy = s for n <&, u® € = u¥ [ and t) =t for n < £. Notice that we do not demand
that u%(f ) =u¥(£), even when ®, U are extended tree embeddings.

We introduce a few more useful bits of notation about tree embeddings. First, we will
sometimes write u2 for u®(a) and v® for v¥(a) and for a € dom(u®) and € € [v® (), u®(a)]T,

& _ AT ¢
Savg - Z,U@(a)’&- © Sa'

d

So sy ¢ is a partial elementary embedding from M7 into MJ. Also note that s3 = s7 u )

P

o _
and t; = S o (a)”

Definition 3.1.6. For a premouse P a directed system of normal iteration trees (on P) is a
system D = ({T,}aca, {Wap}azp), Where < is a directed partial order on A and

(a) for any a € A, 7T, is a normal iteration tree of successor length on P
(b) for any a,b € A with a <b, ¥,; : T, = T is an extended tree embedding,
(c) for any a,b,c € A such that a <b<c¢, ¥, =¥, . 0U,,;>

We'll sometimes use variant notation for directed systems, e.g. (75, Vup | a,b € A A a = b).
Let D = ({Ta}aca, {Was}a=s) be a directed system of normal iteration trees. We’ll define
an object limD which will be the direct limit of D in the category of trees (of successor

lengths) and extended tree embeddings, if this direct limit exists.
We’ll define

limD = <Da Sv S*a {Mx}x€D7 {Ex}x€D7 {Fa}aeA>

as follows.
We'll need names for the components of ¥, ;, so let

Wap = (tap; Vap, {55 o cm), {127 <mem))-
A u-thread is a partial function z : A — Ord such that
(i) for all a,b € dom(x), there is ¢ € dom(z) with a,b < ¢ and v, 0 z(a) = up,. o x(b),

(ii) dom(z) is a maximal subset of A with property (7).

3Tt follows from the definition that ¥, , must be the identity extended tree embedding on Ty, since for
any increasing ordinal-valued function u, u o u = u implies that u is the identity on it’s domain.
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Notice that the domains of u-threads have non-empty intersection since, by (ii), if a €
dom(x) then b € dom(x) for any b > a, so this just follows from the directedness of <. By (ii)
again, for any a € A and v < 1h(7,), there is exactly one u-thread = such that z(a) = v, we
write = [a,y]p in this case. So u-threads are just a useful way of describing the equivalence
classes of pairs (a,y) under applying u-maps ,p.

D is the set of all u-threads and <, <* will be certain partial orders with field D. Going
forward, we’ll write V*a ¢(a) to abbreviate 3bVa = bp(a).

For u-threads =,y we put

<y & Val(z(a) <yla)),
v <*y e Va(z(a) <7, y(a)).

These definitions makes sense since the domains of u-threads have non-empty intersection.
Since <7, is a refinement of the order < on ordinals, we get that <* is a refinement of <.

It’s easy to see that < is a linear order on D, but it could fail to be a well-order. If it is
a well-order, we identify it with its order-type 4. In any case, we will think of (D, <) as the
length of the direct limit. In the case that the direct limit produces a normal iteration tree,
0 will really be its length.

We now define I', = (u,, vg, {ng}7<1h(7')a{t§}7<1h(7é)> along with M, and E, for x such that
a € dom(z). We will actually only define the u-map and t-maps of the I';; these determine
the whole tree embedding, in the case that the target is actually a normal iteration tree. Fix
a and v < 1h(7,). Let = = [a,v]p and set u,(y) = [a,v]p. We'll actually leave M,, E,, and
t5, undefined unless the t-maps along x are total.

So, suppose we're in this case, i.e. V*bVe > b (tl;’(cb) is total). We define

M, = lim(M™, "¢

Ty toy | b= cand for all d = b, 17 is total).

For any b such that for all d = b, ti’(‘é) is total, we let ti(b) be the direct limit map and we
put 5 = tfc(b) o ti’b for any such b (this is independent of the choice of b).

We also let
T
for any such b (again, this is independent of the choice of b). We say that lim D is well-founded
iff
1. for all x € D, the model M, is defined and well-founded,
2. < is well-founded,

3. U = (M,, E,,<*) is a normal iteration tree (i.e. with models M,, exit extenders F,,
and tree-order <*).

If lim D is well-founded, one can show that letting v,(z) = sup{u.(y) +1 | y < z}, we
can define 5% to be the required copy maps so that 'y = (ua, v, {55} <in(), 115 }y<in(7a)) i
an extended tree embeddins from 7, into U and I', o ¥, , = I, for every a < b. Part of this
is the analysis of successors in the <*-order, below.
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Perhaps surprisingly, we can drop conditions (2) and (3) in the definition of the well-
foundedness of the direct limit.

Proposition 3.1.7. Let D be a directed system of normal iteration trees. Then limD s
well-founded iff for every u-thread x, the models M, are defined and well-founded.

Before we give a proof, we need the following observations about iterated applications of
the Shift Lemma. The first observation is especially easy, so we omit the proof.

Lemma 3.1.8. Let mg : My — My, m : My — My and o¢ : Ny — N1, 01 : Ny — Ny are
elementary and let E be on the My-sequence.

Suppose that the Shift Lemma applies to (my, 0o, E) and to (w1, o1, mo(E)) and let 1,
71 be the respective associated copy maps.

Then the Shift Lemma applies to (m o my, 010 0o, E) and 1 o 19 is the associated copy
map.

Next we see how the Shift Lemma interacts with direct limits. This is implicit in [24].

Definition 3.1.9. A directed system of premice is a system D = ({ M, }aca, {Tap}a<p), where
=< is a directed partial order on A and

(a) for any a € A, M, is a premouse,
(b) for any a,b € A with a <b, m,p : M, — M, is elementary, and
(c) for any a,b,c € A such that a <b < ¢, Ty = Tpe © Ty p-

Lemma 3.1.10. Let M = ({M,}aea, {Tap}azs) and N = ({Na}taca, {0ap}azp) be directed
systems of premice and {E,}aca extenders such that

(a) E, is on the M,-sequence,
(b) for all a,b € A such that a = b, Ey = m,4(E,), and
(¢c) for all a,b € A such that a = b, the Shift Lemma applies to (Tap, Cap, Fa).

For a,b € A such that a < b, let P, be the least initial segment of N, beyond dom(E,) such
that p(P,) < crit(E,) or P, = N, and let 7,3 be the copy map associated to (Tap, Tap, Eq).
Let M, =lim M, Ny =1limWN, 7, : M, — M, and o, : Ny — Ny be the direct limit maps,
and E, the common value of m,(E,). Suppose that M., and Ny are well-founded. Let Py
be the least initial segment of Ny beyond dom(Ey,) such that p(Ps) < crit( Ey).

Let Q@ = ({Ult(P,, Eu) Yaca, {Tapta<p). Let Qoo =1im Q, 7, : Ult(P,, E,) — Qo the direct
limit maps, and j : Noo — Qoo the unique map such that for every a € A, 7, o igz = joao,.

Then Qo = Ult(Px, Ex), j = ig‘;, and for all a € A, 7, is the copy map associated to
(Tas Oay Ea).

Proof. By replacing N, with P, if necessary, we may assume that P, = N,. The following
diagram illustrates the situation discribed in the lemma, in the this case, along a chain of <.
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Ta,b

M, > M, > M
w /\ w
£, = E, = e By

oy
N, Tt /\

2 lEb /\

Ult(Ny, By) —— Ult(Ny, By) — -

We want to show that j is just the ultrapower embedding by the image of £ under the
direct limit map. Let k = crit(Ex) and A = A(E). Let E; be the (k, A)-extender derived
from j. We show that j = zgj" and that F., is the trivial completion of ;. We just do
the case that the we're taking zero ultrapowers everywhere; the general case is basically the
same.

For a € A, let K, = crit(E,) and A\, = A\g,. To see j = igj, it’s enough to see that

Qoo ={i(f)(s) | s € N, f:[r,)! = N, f e N}

)
This is easy. For z € Q, v = Ta( ) for some a € A and z. Since Ult(N,, E,) is the zero
ultrapower of N, by E,, Z = i(g)(t) for some t € [A,]<* and g : [ko]I'l = N,, g € N,. But
then taking f = 0,(g) and s = 7,(t) = 7,(¢), we have

3(f)(s) = j o oalg)(ma(t))
= 7, 0 152 (9)(a(t))
= 7a(iz: (9)(1)
= 7a(7)
= .
Checking that E is the trivial completion of Ej is similar. Let s € [A] and X C [x]*],
X € M. Letting a € A, 3, and X be such that 7,(3) = 74(5) = 5, 04(X) = m,(X) = X, we
have
X € (E,)s & X € (E,)s
& 5eipg(X)
& 7,(5) € Ta0ip (X)
& 7,(5) € jo o, (X)
& s € j(X)
s X e (Ej)s-
That the 7, are just the appropriate copy follows from the various direct limit maps
having enough agreement. We need to check

o, [dom(E,) = 7, [dom(E,)
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and

T, [1h(E,) = 7, [1Th(E,).

These just follow from the fact that the relevant restrictions of these maps are the direct
limit maps for the systems of restricted models and maps, for example 7, [1h(E,) = 7, [1h(FE,)
is the direct limit map for the system

({UI(Na, Eo)[Ih(Eq) tacas {Tap [Th(Ea) baz) = ({Ma|(Ih(Ea), —1) }aca, {Tap [Th(Ea) Fazs)-
0 Lemma 3.1.10

Proof of Proposition 3.1.7. Again, this proposition amounts to saying (1) implies (2) and (3)
in the above definition of the well-foundedness of the direct limit. We first show (1) implies

(2).

Claim 1. Let x € D. Suppose M, is defined and that < is ill-founded below x. Then M, s
ill-founded.

Proof. We define an order preserving embedding f from <[z into the ordinals of M,.

Let x = [a,a]p and fix y = [b, f]p < x. Without loss of generality, we may assume
b < aand f+ 1 < Ih(7,) (this is just because we can move to ¢ > a,b where we have
¢, uac(@)]p = [a,a]p and [c, up(B)]p = [b, Blp, so that up.(5) + 1 < uge(a) +1 < 1h(T),
since [b, 5]p < [a,a]p). We let

() = th, 4 (W(EF)).

Clearly f maps y to an ordinal of M,. It’s easy to check that it is (strictly) order
preserving, so M, is ill-founded. [0 Claim 1

So now suppose that (D, <) is a well-order and that the models M, exist and are well-
founded (i.e. (1) and (2)). We show (3) by induction on (D, <).
More specifically, for z € D, we let

Dy = (To 1 (@(a) + 1), Wop | (To 1 (z(a) + 1)) @ = b A a,b € dom(z)).

It’s easy to see that lim D, = (im D) [z + 1, where for the I' systems, we just mean that for
any a € dom(z), (us)P* = u, [ x(a) + 1 and the corresponding t-maps are the equal.

We show that the u-maps of the I' systems preserve tree-predecessors of successor u-
threads on a tail, in the following sense.

Claim 2. For any x € D which has a <-successor z in D, there is y € D such that
y =<" -pred(z).

Moreover,
y =<" -pred(z) < YV*a (y(a) = To-pred(x(a) + 1))
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Proof. Fix x and z it’'s <-successor. First note that for any a € dom(z) N dom(z), z(a) =
x(a) + 1, since z(a) < xz(a) + 1 (as [a,z(a) + 1]p is a u-thread > x) but z(a) # SB( ) ( since
z # x). We'll show that there is a u-thread y such that V*a (y(a) = To-pred(z(a) + 1)).
Suppose that there is no immediate <*-predecessor of z. We’ll show that < is ill- founded a
contradiction.

We define sequences (a, | n € w), (6, | n € w) such that a, < a,+; and B, =
Tan-predz(a,) + 1 but Sup1 < Ug,an,,(Bn). Then, taking y, = [a,, Bu]p gives a witness
to the ill-foundedness of <.

We start with any ag € dom(z) and take 5y = T,,-pred(z(ag) + 1), as we must.

Given a, and B, = T,,-pred(z(a,) + 1), let

ant1 > &, least such that ug, a0, () # Tap,i-pPred(z(ans1) + 1),

We have that such an a,; exists, since otherwise y,, = [a,, b,|p is the immediate predecessor
of z in <*. Now let 3,41 = T, -pred(z(an41) + 1). Since ¥, ,. . is a tree embedding, we

must have that 8,41 € [Va,,an.1 (Br)s Uan,anis (5")]771n+1' So since Byi1 # Uay ani, (Bn), We have
Brt1 < Uay,an,1(Bn), as desired. [0 Claim 2

Let z be a u-thread of successor rank, say z is the <-successor of z (i.e. the rank of z
is the rank of x plus one). The observation made at the start of the previous proof shows
z(a) = z(a) + 1 for all most all a. Fix such an a, so for all b = a z(b) = z(b) + 1. It follows
that for all b > a,

2(b) = x(b) +1
= Ugp(z(a)) +1
a)+1)

(
(a

(
= Ugp(z

= Ua,b(

This shows that all successor u-threads are actually v-threads (defined in the obvious way)
when < is well-founded. Even when < is well-founded, there may be u-threads which are
not v-threads, so it was important to use u-threads in defining the direct limit.

Going forward, if x is a u-thread which is not the <-largest u-thread, we’ll let x + 1 be
the <-successor of x.

Claim 3. For all u-threads x € D,
(i) im D, is well-founded.

(i1) for all a € dom(x), Ty [ (Talz(a) + 1) is an extended tree embedding from T, | x(a) + 1
into imD [x + 1 and

(iii) for all a € dom(x), all b= a, and

(Fpo®up) [x(a) +1 =Ty [x(a) + 1.

Proof. We proceed by induction. We already know all the M, are defined and well-founded
and < is well-founded, so to show (i) we just need to see that (M,, E,, <l z) is a normal
iteration tree.
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In the base case, where x is the minimum u-thread, this is unique normal iteration tree
of length one on the base model and (ii) and (iii) hold trivially. For the successor case,
suppose we have (i)-(iii) for all z < x and suppose that z is not the last u-thread. So z has
a <-successor, x + 1 and, appealing to Claim 2, we can take y =<* -pred(z + 1). To show
(i) we need to see that we're applying E, following the rules of normality, i.e.

Subclaim 3.1. y is <-least such that crit(E;) < A(E,) and for P < M, least such that
My|IME,) < P and p(P) < crit(E,),

M, = Ult(P, E,).

Proof. By Claim 2, we may take a such that for all b > a, y(b) = Ty-pred(z(b) + 1). For
the appropriate choice of maps and models, we are now exactly in the situation of Lemma
3.1.10. The rest of the subclaim follows from the normality of each of the trees T,. We leave
the details to the reader. O

Since (ii) and (iii) hold at z and vy, it is easy to see that they hold at x + 1
Suppose now z has limit rank and (i)-(iii) hold for all z < x. We first need to see

Subclaim 3.2. For b = [0,2)< =g {y | y <* 2}, b is <-cofinal in x, there are finitely
many drops along b, and M, s the direct limit along b.

Proof. To see that b is cofinal, let y < z. Since z has limit rank, y +1 < x. Let a sufficiently
large such that y + 1 = [a,y(a) + 1]p. Let v + 1 least such that y(a) + 1 < v+ 1 <7, z(a).
We have that for all b > a,

y(b) < uap(y) +1=vap(y +1) <7, vap(2(a)) <7 2(b),

using here that ®,; is a tree embeddings (and the v-maps of tree embeddings are tree-order
preserving). So letting z = [a,]p + 1, we have that y < z <* . Since z is not a successor,
we actually have y < z <* x, as desired.

Since the model M, is defined, there is an a such that for all b > a, t;’&) is total. Suppose
first that there is some successor 7 <7, z(a) such that (1, z(a)]r, doesn’t drop. Then for all
b = a, we have that [v,4(n),z(b))7, doesn’t drop. Now, there is some u-thread z such that
z = [b,vap(n)]p for all sufficiently large b. But any drops from z to x in the direct limit
corresponds to a drop in [z(b), z(b))7,, for all sufficiently large b, so there are no such drops.

In the remaining case, z(a) is a successor ordinal and a drop in 7,. Let 5 = T,-pred(z(a)).
Letting z the u-thread such that z(b) = v, (2 (a)) for all sufficiently large b, we have z <* z
and there can be no drops between z and x in the direct limit tree, just as before (since for
all sufficiently large b, there are no drops in (z(b), z(b)]r, as ti’&) is total). By induction,
this means there are only finitely many drops.

Using our induction hypotheses (i) and (ii7) for z < z, it is straightforward to check
that M, is the direct limit along b, so we leave it to the reader. O

The subclaim immediately gives us (i) at = and it is straightforward to verify (i7) and
(131). n
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Notice that the proof of Proposition 3.1.7 implies that when the direct limit lim D is
well-founded, then I'y = (uq,va, {s¢}, {t¢}) is an extended tree embedding from 7 into U,
the direct limit tree, and I'y, o ¥, ;, = I', when a < b, as promised.

Going forward, we when lim D is well-founded, we will often identify the direct limit
normal trees with lim D.

We end this subsection by verifying that direct limit we’ve defined really is the direct limit
in the category of normal iteration trees (of successor lengths) and extended tree embeddings.
That is, we have the following.

Proposition 3.1.11. Let D = ({Ta}taca, {Wasta=p) be a directed system of normal iteration
trees.

Suppose there is a normal tree S and for all a € A extended tree embeddings 11, : T, — S
such that whenever a X b, I, = W, 4 o 11,.

Then the direct limit im D is well-founded and there is a unique tree embedding 11 :
limD — S such that I, =I1o T, for all a € A.

Proof. The proof is easy using Proposition 3.1.7. Let II, = (u}, v¥, {(s%)" }aca, {(t2)* }aca)-
We define IT = (u*, v*, {s%}rep, {t5 }2ep) from im D into S, verifying that it is as desired.

We let u*([a,alp) = uf(a). Notice that u* o u, = u} (here we're just recalling our
definition of w,, i.e. u,(a) = [a,a]p). Since S is a normal iteration tree, for any u-thread
x, there is an a such that for all b > a, (tfc(b))* is total. If u’(«) is a successor in S, we
have that the predecessor stabilizes for all sufficiently large b, as in Claim 2, but then if
for all sufficiently large b, (tg(b))* are not total, we must drop progressively further as we
move to ¢ > b, so that the model which is the predecessor of u}(a) in S is ill-founded,
a contradiction. If u}(«) is a limit ordinal, we get that we must drop infinitely often in
[0, u}(«))s, a contradiction.

Since for a X0, (t5,))" = (t’;(a))* o ¢*?  this tells us that for all sufficiently large a, the

z(a)’
ti’(l;) are total so that M, is defined, and there is a unique map ¢ : M, — M f (@) such that
(t’;(b))* = t* o tg(b) for all b > a (recalling that tg(b) was the direct limit map from M;’(b)
to M,). In particular, M, is well-founded. By Proposition 3.1.7, we get the direct limit is
well-founded and we’ve already verified I, = [T o I',, as desired. [] Proposition 3.1.11

We can define the direct limit of a commuting system of normal trees under ordinary
tree embeddings in the obvious way and verify versions of Propositions 3.1.7 and 3.1.11. It’s
easy to see that the direct limit of a system of normal trees under extended tree embeddings
is either the same as the corresponding direct limit of under ordinary tree embeddings, or
else is some tree U with length v+ 1 for a limit ordinal v, and the corresponding direct limit
under ordinary tree embeddings is just U [~.

3.1.2 Embedding normalization

[24] isolates the process of embedding normalization, a procedure of “normalizing” a (finite)
stack of normal iteration trees, i.e. given a stack of normal trees §, we produce a single
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normal tree W (S) which embeds the last model of S. For example, if S = (T ,), embedding
normalization produces a normal tree W (7T ,U) whose last model embeds the last model of U.
Roughly, the procedure works by doing the one-step embedding normalization at successors
and taking direct limits of a resulting directed system of normal iteration trees at limits.

In this subsection, we’ll review the one-step normalization in some detail. We’ll then use
the one-step embedding normalization to analyze inflationary tree embeddings, a particularly
nice class of tree embeddings identified by Schlutzenberg. We then discuss the embedding
normalization in general and review the Schlutzenberg-Steel theorem on extending iteration
strategies for single normal trees to strategies for finite stacks of normal trees.

Let S, 7 be normal iteration trees of successor length and F' be on the sequence of
last model of 7. Let @ = a(7T,F) < 1h(T) be least such that F' is on the sequence of
MT and let 8 = B(T,F) be least such that 3 = a or A(E]) > crit(F).* Suppose that
SIB+1=TI[p+1and dom(F) < MJ|Ih(ES), if 34+ 1 < Ih(S). In this case, we
define W = W(S, T, F), ® = ®57°F a partial extended tree embedding from S into W, and
STF a weakly elementary map from Ult(P, F) into the last model of W, where P is
the largest initial segment of the last model of § to which we can apply F'. In general, we
may reach ill-founded models in forming W and stop when we do. We say that W (S, T, F)
is well-founded if we never reach ill-founded models. If S and 7T are by a strategy > which
has SHC™, a variant of Steel’s strong hull condensation which we define at the end of this
section, then W will be well-founded.

First, we let Wla+1=T]a+ 1 and EYY = F. For the rest of W, we consider cases.

O =0

The dropping case.

Suppose F is applied to a proper initial segment P < MZ[Ih(EF), if 5+ 1 < Ih(S), or
P<1M/§9 if 3+ 1=1h(S).

In this case we’ve described all of VW already:

W=Tla+1(F)

and @ is just the identity on S [ S+ 1 except we set u(5) = a+1. Letting P the largest initial
segment of the last model of S to which we can apply F', we have P < Mg and t5 =L, So
Ult(P, F) is the last model of W and we take o = id.

Note that in this case, ® is total exactly when f+1 = lh(S) and Ult(P, F') is well-founded.

The non-dropping case.

Suppose F is applied to an initial segment P < Mg with Mg[lh(E‘g) 4 P, if f41 < 1h(S),
or no proper initial segment of M g projects across dom(F'), if 5+ 1 = 1h(S). We define @
and W as follows.

We can say the u map of ® at the outset:

u(€) = § if £ < 8,
at+1+(E-p) if&>p0.

We also will have lh(W) = a + 1 + (Ih(S) — ), so ran(u) = [0, ) U [a + 1,1h(WV)).

4Note that these definitions of a7, F) and B(T, F) also make sense when F is on the sequence of some
model of 7, not just the last model; we may use the notation in this more general context.
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As mentioned above, tree embeddings are actually uniquely determined by their domain
tree, their u-maps, extenders of the target tree with index not in the range of u, and branch
choices where ran(u) is bounded. So the rest of ® is already determined by the assignment
Wla+1=T]a+1and EY = F, although we need to verify that there is such a tree
embedding. This is done in [24]. In this case, ® is a total, non-dropping extended tree
embedding, as long as W (S, T, F) is well-founded.

Since t5 = ik and all the t¢ for £ > /3 agree with ¢5 beyond dom(F'), we have that F is
an initial factor of the extender of these .. We let o be the unique map such that the last
t-map factors as o o 7%, where N is the last model of S (using here that F is total on the
last model by our case hypothesis). Steel shows that o is weakly elementary in [24].

The following lemma shows that the one-step embedding normalization comes up natu-
rally in the context of tree embeddings.

Lemma 3.1.12 (Factor Lemma). Let ¥ : S — T be an extended tree embedding such that
U £ Id. Let = crit(u¥) and a + 1 be the successor of 3 =vY(8) in (B,u”(B)]r.

Suppose that f+1 = Ih(S) or f+1 < IW(S) and dom(E]) I MF|IMES). Then W(S,T |
a+ 1,ET) is defined and well-founded and there is a unique extended tree embedding T :
W(S,Tla+1,El) — T such that u" o +1=1id and ¥ =T o S Tt LB

Proof. First notice our hypotheses guarantee that W(S,T [« + 1, ET) is defined. We will
get that it is well-founded inductively, as we build our tree embedding I'.

Let W = W(S, T la+1,ET) and & = &ST+LEL Note that if 5+ 1 < 1h(S), then
W(S,T [ a+1,ET) is not in the dropping case, as if dom(E]) < Ih(E§), then T would
drop below lh(Eg) so that Eg is not in the domain of tg’, contradicting that U is a tree
embedding. So ® : & — W is a total, extended tree embedding (since either we are not in
the dropping case or §+ 1 = lh(S) and this is trivial). The commutativity condition totally
determines the u-map of I':

¢ iféE<a+1
WY o (u®) 1) E>at,

using in the second case that [« + 1,Th(W)) C ran(u®). We just need to check by induction
on £ that u' | (€ +1) is the u-map of a tree embedding from W[ (£ + 1) into 7. This shows,
in particular, that W [& + 1 is well-founded.

We have that I' [+ 1= U [+ 1 = Id, so we just need to see by induction on v > 3
that u' [u®(y) + 1 is the u-map of a tree embedding from W u®(v) + 1 into 7. This easily
passes through limits, so we just handle the successor case. The key thing here is verifying
that we have the required relationship between tree predecessors: for n = S-pred(y + 1),
n* = T-pred(u?(y) + 1), and ¢ = W-pred(u®(y) + 1), n* € [v"(¢),u"(¢)]7. Then we can
define our s-maps using the Shift Lemma and define the t-maps in the required way. Since
U is a tree embedding, we have n* € [v¥(n),u”(n)]7. We split into cases.

Case 1. n# 0.
Then v*®(n) = u®(n) = ¢, so we have

vhout(n) = v¥(n) <y’ <y u¥(n) =u' ou(n),
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as desired.

We have that s$+1 is the copy map associated to (tq’, tg’, Ef) We let Sgr(v)ﬂ be the
copy map associated to (tgé(v), il (e © syq,(n) Euq)( })- By our induction hypothesis, we
U _ 4T @ T v _ T r @
have that ¢ = tuq,(v) oty and Ly ()= © Sn = Ly ) v © Sy () © -
So, since 3‘1’+1 is the copy map associated to (t;l’, iqu’(n),n* o sg’, E;f), we have 834-1 =

by Lemma 3.1.8. We then let & () + =37, o 554, as we must,

I
S (7)1 ° 5741 u¥ (y)+1,u” (v41) (V412

which clearly maintains the commutativity condltlon

Case 2. n=n"=0.
In this case, crit(ES) = crit(E7, ()~ 1t follows that these are equal to crit(EYy () and

¢ = B as well. So we trivially have n* € [v"({),u" (¢)]7 (since n* = v'(() = B). We now
continue as in Case 1.

Case 3. 7= and n* > (.

In this case we have, by our choice of «, that n* >+ a + 1. We want to see that
¢ = a+ 1, since then n* € [vF'(a + 1), u' (o + 1)]7, using here that v'(a + 1) = a + 1 and
ul'(a+1) = u?(B).

Since ( is either 3 or a + 1, we just need to see 3 can’t be W-pred(u®(v) + 1) because
ANET) < crit(E)s ), using here that Ef = E}Y.

Since crit(ES) < )\(Eb9 ), using that ¥ is a tree embedding and our induction hypothesis,
we have

crit(E;rq,(W)) = tg’(crit(E‘s))
=1l oty (crit(ES))
= iy 1,um(p) © £ (crit(B))
= a1 v () (Ctit(Erng))-
So since crit(i/, Lu(g) 2 NET) > MED), if crit(EzL/g(W)) < AMEF), then crit(E, ) =
cr1t(EZ¥(7)) < )\(ET). But then 8 > n*, contradicting our case hypothesis. So ( = a + 1, as

desired. We now continue as in Case 1.
This finishes the successor case and the proof. [] Lemma 3.1.12

Definition 3.1.13. An extended tree embedding ¥ : S — T is inflationary if for any
£+ 1<1h(S) and v+ 1 € (WY (&), u¥(6)]7, letting n = T-pred(y + 1),

dom(E;r) g Mﬂsg’n(lh(Eg))

Not all extended tree embeddings are inflationary, but it is easy to see that ®S7-F is

inflationary. If W is inflationary and not the identity, then W satisfies the hypothesis of
the Factor Lemma. Letting ¥ = I" o ® be the resulting factorization, we’ll see that I' is
also inflationary so that if I' is not the identity it also satisfies the hypothesis of the Factor
Lemma. This observation will allow us to use iterated applications of the Factor Lemma to
completely factor a non-identity inflationary extended tree embedding.

Before returning to the factorization, we establish some basic facts about inflationary
tree embeddings. We start with the following easy proposition.
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Proposition 3.1.14. Let ®: S — T and V : T — U be extended tree embeddings. Suppose
that W o ® is inflationary. Let € +1 < IWT) with & € ran(u®). Then for any v+ 1 €
(WY (&), uY(E)]y, letting n = U-pred(y + 1),

dom(EY) < Mg’]sgpn(lh(Eg))

Proof. Let £ +1 < 1h(T) with & € ran(u®), say £ = u®(£). We have that (v”(£),u”(€)]
(0¥ (€), u"*®(&)]y. So for any y+1 € (v¥(£), u” ()], letting p = U-pred(y+1), dom(EY)
Mg’|s§’;‘b(lh(Eg)), since ¥ o @ is inflationary. But

IA 1N

Yod _ U B Yod
Sem T Wwer(g),y © 85
_ U )
o ° s ot
¢
= s5 n © t

So since E] = t?(Eg), dom(EY) < MY|s¢, (Ih(E])). U

In general, it seems that it should be possible for ¥ o ® to be inflationary even when
¥ is not inflationary, though we have not tried to come up with an example. However, if
U o ® and ® are inflationary and [crit(u?),1h(7")) C ran(u®), then the previous proposition
immediately gives that W is inflationary.

The situation with right factors of inflationary tree embeddings is simpler: they are
always inflationary:.

Proposition 3.1.15. Let ® : S — T and ¥V : T — U be extended tree embeddings. Suppose
that ¥ o ® is inflationary. Then ® is inflationary.

Proof. Let £ +1 < 1h(S), v+ 1 € (vé(f),u@(ﬁ)]T and n = T-pred(y + 1). Let n* =
U-pred(u? ()+1). We have that u¥ (y)+1 = v¥(y+1) and so u¥ (y)+1 € (v¥°®(€), u?°* ().
So since ¥ o @ is inflationary, dom(ELy )) < MY, |s¢s? (Ih(EF)). But

S = lven(gr © 56
- ﬁq’(n)m* © 87\? © Zqu’(&)m © S?
- Sgl,n* © Sgn
and dom(EJy () = s/, (dom(E])), so we must have dom(E]) < M [sg, (Ih(EY)), as de-
sired. O

Going the other way, we have that the inflationary tree embeddings are closed under
composition.

Proposition 3.1.16. Let ® : S — T and ¥ : T — U be inflationary extended tree embed-
dings. Then W o ® is an inflationary extended tree embedding.

53



Proof. This follows, more or less, directly from the definitions, but it still fairly involved.
We just need to verify that for £ +1 < 1h(S), 7+1 € (v'(€),u' ()], and p = U-pred(T + 1),
we need to show that dom(EY) < MY|s¢ (Ih(EY)).

Notice that

(07 () " (&) = (" (), v" (™ () U (v (u®(€)), u' ()lar-

We’ll handle these two regions separately, in order. Our first goal is to show the following.

Claim 1. For any £+ 1 < IWS) and any v+ 1 € (v*(£),u®(&)]r, letting n = T -pred(§ + 1)
and n* = U-pred(u”(y) + 1), for any 7 + 1 € (V¥ (n),n*u, letting p = U-pred(t + 1),
dom(EY) < MY |s¢ ,(I(EY)).

Proof Since ® is inflationary, we have dom(ET) < szn(lh(Eg)). It follows that
b p(dom(ET)) < st (Ih(EF)), since
r _ u r
e T Mr(e)p © %
_ U v AT [
= Lo (n),p © Sy Ol (g)n O 5¢

v )
= Snp O Seme

Now n* is the first place along [v¥(n),u”(n))y where we've finished moving up crit(E7)
to crit(EY ()); that is, 7" is the least ( € 0¥ (n),u¥(n)]y such that ¢ = u¥(n)
or else crit(i v,)) > syc(crit(ET)).  So since p < n*, crit(EY¥) < s7 (crit(ET)).
Since V¥ is inflationary, we have that dom(EY) < s? (Ih(ET)). It follows that
dom(EY) = (crit(EY)H)Mdlsn,(h(ED) a5 we cannot drop below the image of s (Ih(E]))
along [v¥ (n),w¥ (N)]y. But also, dom(EY ) = (crit(EY, ))+) won ™) g we must have
(dom(ET)) (s¥ (crit(E,)T) )M lsn ED) | by elementarity. So actually dom(EY) <
(dom(E%—)), smce CI‘lt(Eu) < sg’ (CI‘lt(ET)) and the respective domains are just the
successors of these cardinals in M“|s (lh(ET)). So dom(EY) < MY|s{ (Ih(EY)), as de-

sired. O
Using this claim, we can now prove the following by induction on 7.

Claim 2. For any £ +1 < INS) and any n € w*(€),u®(&)]7, for all T+ 1 € (V7 (£), v (n)]u,
letting p = U-pred(T + 1), dom(EY) 1 s¢ (IM(E)).

Proof. The base case n = v®(£) is trivial (there are no such 7) and since v-maps are tree-
order preserving and continuous at limits, the limit case is immediate from the induction
hypothesis. So we just need to handle the successor case.

So suppose the claim holds at n < u®(¢) and let v + 1 be the successor of 1 in
[02(€),u®(&)]r. Let 7+ 1 € (W'(&), v (y)|y and p = U-pred(r + 1). Also let n* =
U-pred(u?(y) +1). Now,

(W (), 0" (Ml = (W (€), " (M U (0¥ (), 17T U {u™ (m) + 1}

By our induction hypothesis, we have dom(EY) < M“]sgp(lh(ES)) when 7 + 1 €
(1 (€),vY(n)]y. By Claim 1, we also have dom(EY) < M“|s£p(1h(ES)) when 7+ 1 €
(v¥(n),n*]y. So we just need to consider the case that 7 = u‘I’p( ) and p = n*.
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Since @ is inflationary, dom(E7) < g’ (Ih(E )) so that s, .(dom(ET)) < St (lh(Ef))
n* is the least place along [U‘I'( ), u(n )]u where we ﬁnlsh moving up dom(ET), ie.
dom(Eg\p(,y)) = sy« (dom(ET)). So dom(EY ) < Se-(IN(EF)), as desired. This ﬁnishes
the successor step O

The case n = u®(€) just says that for 7 + 1 € (v'(£), 0" (u®(€))]y, dom(EY) <
MY|sg ,(In(EF)). So we’ve handled the first region, (v" (&), v¥ (u®())]u-

To finish the proof, we just need to deal with the second region, which is basically
immediate from the fact that ¥ is inflationary. Let 7+ 1 € (v¥(u®(€)),u!(€)]y and p =
U-pred(T + 1). Since ¥ is inflationary, dom(EY) < Mlzf|sg’®(§)p(lh(EZ;(é))). But EZ;,(O =

tg’(Eg) and Sfé(g)m ot = st ,, so dom(EY) g Mff|s£p(lh(Eg)), as desired. O

Combining these propositions immediately gives us the following.

Proposition 3.1.17. Let ® : S — T and V : T — U be extended tree embeddings with
[crit(u¥), I(T)) C ran(u®). Then ¥ o ® is inflationary iff both ® and ¥ are inflationary.

We also have inflationary tree embeddings are closed under (well-founded) direct limits,
in the following sense.

Proposition 3.1.18. Let D = ({Ta}aca {Vasba<s) be a directed system of normal trees such
that for all a,b € A with a < b, YV, is inflationary. Suppose that lim D is well-founded and
let T'y : T, — im D be the direct limit extended tree embeddings. Then for all a € A, T'y is
inflationary.

Proof. Fixa € A, £+1 <1h(T,), v+1 € (v'(€),ul(€)]7, and n = To-pred(y+1). Fix b with
a =< b such that [b,7]p = n and [b,7+ 1]p = v+ 1. So we must have that 7 = Tp-pred(y+ 1).
Since ¥, is inflationary, we have

dom(EZ") 9 MT|s, =" (Ih(E])).
Applying tl,-;b gives
dom(EI™P) < MImP[Es o 5/ (Ih(E]"))

lim D |2lim D
= M |2 T (7).

MhmD ’SFQ (lh(En))

ostozT\I, b

Yo, Ta
0 © 5 (h(EF)

Now we’ll return to iteratively factoring inflationary tree embeddings.

Theorem 3.1.19. Let ¥ : S — T be an inflationary extended tree embedding. Then there is
a unique sequence of extenders (F¢ | £ < A) such that there is a directed system of inflationary
extended tree embeddings D = ({Sete<n, {Une tn<e<n) satisfying:

1. 80 :S, S)\ = T, and \Ifo’)\ = \If;
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2. for E+1 <\, letting Be = crit(u¥s*) and ag + 1 the successor of Be in (Be, u?e(Be)|r,

_ T
((l) Ff - Eozgy

(b) S§+1 = W(Sg,TrOég + 1, Fg), and
(C) \Ij§7§+1 — @Sﬁ,ﬂa§+1,F57

3. for v < X\ a limit ordinal,

(a) Sy =1m({{Sc}ecr, {Vnelnceay), and
(b) for & <y, Ve, is the direct limit extended tree embedding.

4. forE < Xandn <& u¥s o, +1=1d.

Proof. The proof is by induction, using the Factor Lemma at successor steps. The uniqueness
is guaranteed at successors by (2), (4), and the uniqueness of the tree embedding produced by
the Factor Lemma; it follows at limits by (3) since direct limit tree embeddings are unique.

We’ll keep track of some auxiliary objects not mentioned in the theorem statement and
will maintain some additional hypotheses about them in our induction. We'll define (Fg |

¢ <) and D = ({Sehean, {Welnze<n) along with (T'e [ £ < A), (Be | £ < A), (ae [ £ < A),
and (0 | £ < A) by transfinite recursion, maintaining that for all £ < A,

1. DTE = ({Sctece, { Wi tn<c<e) is a directed system of inflationary extended tree em-
beddings with Sy = S,

2. I'e : S¢ = T is an inflationary extended tree embedding such that
(a) T'o =V and
(b) TgoWee =T

3. if I'e = Idr, then £ = A,

4. if T¢ # Ids,, then § < A, B¢ = crit(u¢), ag + 1 is the successor of f¢ in (B¢, u'¢(5¢)] 7,
and

(a) Fg = ET

0457
(b) Sep1 =W(Se, T lag+ 1, F),
(C) \I}£7£+1 — @Sﬁ,ﬂ&g‘i’l,Fg;

5. 0¢ = sup{a, +1|n <&} and

(a) u'¢ 8¢ = id and
(b) [d¢,1h(Se)) € ran(u¥o<)
6. if £ is a limit ordinal,
(a) S¢ =limDJ¢E, and
(b) forn < &, ¥, ¢ is the direct limit extended tree embedding.
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Notice that, if we succeed in our induction, then for some stage £ < 1h(7) we must have
I'¢ is the identity and so have S¢ = T and set A = &, by (3). This is because, by (4), the
sequence {F, | n < &£} is a subset of the exit extenders of 7 and (4) demands we add in
another F¢ from further out in 7 as long as I'¢ is not the identity. Here we are using that
o, < ag whenever 1 < &, since o, < crit(u'¢) < ag, by (5), and that the g is the index of
F¢ as an exit extender of T, by (4). Using these observations, it is easy to see that claims
(1)-(4) of our theorem statement are subsumed by our inductive hypotheses (1)-(6) in the
case £ = .

To start, we let Sy = S and Iy = V. In this case, (1)-(6) are all trivial or hold by
hypothesis, except for (4)(b) and (c), which we verify at £ = 1.

Now suppose we've defined our objects for all n < &, maintaining (1)-(6), except for
(4)(b) and (c) in the case n +1 = £.5

First suppose ¢ is a successor, say & = 7+ 1. If vt = id, then we must have ') =Idr
and so we have S, = T, set A = 1 and stop our construction. So suppose u'” is not the
identity. We need to continue our construction one more step.

We have that 8, = crit(u; ) and a, 4 1 is the successor of £, in (3, u™(8,)]7. By (2)
at 7, we have that I'; is inflationary, so that the Factor Lemma applies to it. So W(S,, T |
a, +1, EZ;) is defined and well-founded and we set S¢ = W(S,, T [, + 1, E;;), maintaining

T

(4)(b). We also let ¥, . = @S TenthEae - aintaining (4)(c). For all ¢ < n, set ¥¢, =
W, e0Wee and e = Ids,. The ¢ are inflationary by Proposition 3.1.16 (or Proposition
3.1.15) and our induction hypothesis. This maintains (1).

Now we let I's be the result of the Factor Lemma applied to I, so that I'c : S¢ — T,
u'sla,+1=r4d, and I, =T o ¥, . Welet § = sup{ac+ 1| ¢ < &} Then 6 = oy + 1
since a; < crit(u'c) < a,, by (5) at n. So we immediately get (5)(a). Towards (5)(b),
note that we have [a, + 1,1h(S¢)) C ran(u¥n¢) since ¥, = oS T LEL Moreover, u¥n¢
maps [3,,1h(S,)) onto [a, + 1,1h(S¢)). We have that ¥y, = W, . o ¥y, and our induction
hypothesis (5)(b) at 1 gives [d,,h(S,)) C ran(u”*"). So since crit(u?»¢) = 3, > 4, (by (5)(a)
at n), [8,,1h(S,)) C ran(u?0n). This gives (5)(b) since [ay, + 1,1h(S¢)) = u?7<¢”[3,,1h(S,)) C
ran(u¥ne°¥on) = ran(u¥os).

The last thing we need to check in the successor case is that I'¢ is actually inflationary.
We have that ', = I'c o ¥, ¢ is inflationary, U, ¢ is inflationary, and crit(u'¢) > 6, = a,, + 1
so that [crit(u¢),1h(S¢)) C ran(u'"). So Proposition 3.1.17 implies I'¢ must be inflationary,
too. This finishes the successor case.

Now suppose that ¢ is a limit ordinal. (1) is trivial since it holds at all n < £. Proposition
3.1.11 gives that lim D [ is well-founded, since 7 and the I',’s witness that the hypothesis
of that proposition obtains, by hypothesis (2). So we set S¢ = limD [£ and let U, ¢ be the
associated direct limit extended tree embeddings. We let I's be the unique tree embedding
from &g into 7T such that I') = I'c o @, ¢ for all n < &, which exists by Proposition 3.1.11.
Since the @, ¢ are right factors of the inflationary tree embeddings I, we have that ®, . is
inflationary by Proposition 3.1.15. Of the remaining clauses, (5) is the only one which is
not immediate. To verify this, we will go through the representation of lim D [ £ in terms of
u-threads, as in §3.1.

5As stated, (4)(b) and (c) are hypotheses about € + 1 and will be verified at stage £ + 1.
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Let 7 < & = sup{d, | n < &}. Then as §, < crit(u'") = g, for n < &, by (5) at 7,
we can find some 7 so that 7 < 3,. But §, = crit(u?»<) for all ¢ < £ with < ¢, since
B, = crit(u¥77+1) by (4)(c) and so the commutativity of the ¥’s gives 3, < crit(u?=¢) but
also ¢ o ¥, - =T, by (2)(b) below &, and so 8, = crit(u'") = min{crit(u?"<), crit(I'¢)} <
crit(u¥n¢), too. It follows that the wu-thread [n,7]p is fixed by all u¥»¢ so that [n,7]p
actually has rank 7 in the order < on u-threads, i.e. [n,7]p = 7. So u¥»¢(7) = 7, by the
characterization of the u-map of the direct limit tree embedding ¥, . in §3.1. Now since
[, =TeoW, ¢ and u'(7) = U, ¢(7) = 7, we must also have u'¢(7) = 7. Since 7 was
arbitary, this shows u'¢ | d¢ = id, which is (5)(a) at &.

Since (5)(a) holds at all n < £ and I'¢oW, ¢ = I',, we must have that crit(u¥»¢) = 3, > §,.5
First suppose that for cofinally many n < &, 8, > d,. Then for cofinally many 7 and any
¢>mn,0,=[n6)p=I[(,0)p. Fixsuch annand 7 < 1h(S,) such that [n, 7]p > ¢ = sup{J, |
¢ < &} Then 7 > §, so that 7 € ran(u¥*7) by (5)(b) at . But then [, 7]p € ran(u?o¢)
since, letting 7 such that u¥on(7) = 7,

[777 T]D = [07 ﬂD

= uYoE(7).

Now suppose that for all sufficiently large n, 5, = d,. Then [n, 5,]p = [(, Bc|p for all
sufficiently large n and ¢ > n. Fix such an n. Then for all { > n, ¢, = [(,d,]p and ; > 6,
so we have that [n, 8,]p > sup{d; | ¢ < &} = d¢. But then 6 = [, 8,]p since if ¢ > n and
7 < 1h(S;) is such that [¢,7]p < [1, Bylp, then as [, B,]p = [, Bclp, T < Be = crit(u¥es).
So [(,T]p =T < B¢ = 0¢ < d¢. Our induction hypothesis then gives that for any ¢ > 7, any
(¢, T]p > [¢,d¢c]p = d¢ is in ran(u®7), as in the previous case. This finishes our verification
of (5) and the limit step of the construction. O

Definition 3.1.20. For an inflationary tree embedding W, the factorization of ¥ is the
sequence (F¢ | £ < A) as in the previous theorem.

In the course of the proof we showed the following, which we isolate for later.

Proposition 3.1.21. Let UV : S — T be an inflationary extended tree embedding and (Fy |
£ < \) its factorization. Let 6(V) = sup{a(T, Fe) + 1| & < A}
Then [6(0), IW(T)) C ran(u®).

Suppose T and T are two trees on M (perhaps via different strategies) with some com-
mon extender F' on the sequence of their last models and that S is a tree such that both
W(S,T,F) and W(S,T,F) are defined. We won’t have that W(S,T,F) = W(S,T,F)
in general, but these trees will have many models in common and the one-step normaliza-
tion tree embeddings into these trees will be nearly the same, in the sense expressed in the
following definition of similar tree embeddings, defined below.

First, recall the following definition from [24].

Definition 3.1.22. For 7 a normal tree and nn <7 £, we let e% be the sequence of extenders

used along (1, )7, i.e. 6777:5 is the length-increasing enumeration of {E7 | o +1 € (n,£]7}.

6This was implicit in our verification of (5)(a) at &, but is easy to see granting it: 8, = crit(ut”) =
min{crit(u'¢), crit(u¥=¢)} and crit(uls) > o, +1 > B,,.
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Definition 3.1.23. Let ® : S — 7 and ¥ : § — U be extended tree embeddings. We say

® and ¥ are similar, which we denote & = ¥ iff for all £ < 1h(S), eO ub(e) = ezguw(g).

We can completely characterize this notion for inflationary ®, ¥ using the Factor Lemma:
® = U iff the factorizations of & and ¥ are equal.

We’ll need the following fact which says that if two trees 7,4 have two common models
M, N which are tree-related in both trees and have the same branch embeddings between
them in both trees, then the extenders used to get from M to N are the same in both trees.

Proposition 3.1.24. Suppose T, U are normal trees, n <7 &, n* <y &, M, Mg, and
either

1. n-to-¢ and n*-to-£* don’t drop, MT—MW*, and i/ nE —2 « gy OT

2. n* and n are the locations of the last drop along n-to-¢ and n*-to-£*.
T U
Then e, ¢ = €. ¢«

Proof. Of course, in case (2), we get that iTg and i“ ¢ are the uncoring map into Mg = Méi
So in either case, an Z”* . and are elementary on their common domain.

We can easily verify e, . = e o+ ¢« by induction using normahty and the initial segment
condition. Suppose v € [n,&)r and v e[, &)y and €] = e .. Let (+1,(*+1 be the
successors of v,v* in (n, |7 and (n*, £y, respeetlvely We just need to show that E] = EY..
Suppose not. Now since 61% = e%{w* and 7 Zn,ﬁ = @n%*, the tail embeddings 2. 2%5 and 7. .. must
be equal and elementary as well (since we’ve just factored out a common initial segment of
the extender of this common elementary map). So ET and Eu are both (trivial completions
of) initial segments of the extender of 27 = I they have the same length, we're done.
So without loss of generality, suppose lh(ET) < Ih(E%). Then EZ is a whole initial segment
of B and so on the MZ-sequence. By coherence ET is on the sequence of MZ = M/,
contradlctlon (Slnoe ¢ < &, ET is not on the M, T-sequence) Of course, we can t have that
one of e/ e and e cge I8 2 proper initial segment of the other since the embeddings are the
same, so the above argument shows they must be equal.

O

Lemma 3.1.25. Suppose ® : S — T and ¥V : S — U are inflationary extended tree embed-

dqfngs an O = W. Then for all £ < INS), Mg(g) Mffq,(g), MZ;(@ = ng,(f), s¢ = s¢, and
t{ — tg .
Proof. Our hypothesis that ® = ¥ immediately gives that Mug(g) = MY (e forall £ < 1h(S).
So we just need verify MZ;,( 6 = M“ ey ? sg’, and tg’ = tg’ by induction on &.

To start, MZ;)(O) = Mff\p( 0 = M(‘)S, se = sy =id. Also, t& = 20 u®(0) and ty = Z%’ ¥ (0) and
so these are equal since eOT’ué 0 = eg{u\p (0)"

So suppose we've verified the equalities for all n < £. Since t? = tg’, we have that
EZ:I’(g) = Ez’\p(g). Let n = S-pred(£ + 1), ¢ = T-pred(u®(§) +1), and ¢* = U-pred(u?(£) +1).
Since ® and ¥ are tree embeddings, we have ¢ € [v®(n),u®(n)]7 and ¢* € [v¥(n), v (n)]y. By
hypothesis, eg:uq) o = e%{uq, - and by our induction hypothesis, MZ;) = Mff\p () So we must
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have the extenders leading up to this model are the same, i.e. 60Tv<1>(n) = ez(’)’vq,(n), and so the
tail of the extenders used are the same, too, i.e. €7y, . o, =% . o, .. But the sequence of
v®(n),u®(n) v®(n),u? (n)

models along [v®(n), u®(n)]7 and [v¥(n), u¥ (n)]y are the same and so MCT = M since this is
the first model along these branches containing the domain of E ¢ Letting P be
the initial segment of this model to which we apply this extender 1n both 7i and U, we have
that M . ) = Ul(P, Els)) = Ult(P, By ) = My ;). We also get s¢, = s€+1 since
they are just the copy map associated to the same objects. Since v®(€ +1) <7 u®(£ + 1),
v¥(E+1) <y u¥(E+1), and eo WO Er1) = eg’u\p(&l) we also get that e(;r b(er1) = eg’ﬂje(g“) and

T _ U u
6;¢(§+1),u‘1’(§+1) = €ow (s 1) u¥ (e41) (like before, using here that M7, o (er1) = qu,(&l)). But then

ivq,(gﬂ) WP (E1) = ivq,(gﬂ) WY (E41) and so t§+1 = t£+1, too. This finishes the successor case.
At limit A, since the v-maps are continuous and tree-order preserving and the s-maps

commute with branch embeddings, we get MZ;)(/\) = Mgfl,(/\) and s§ = s} for free. We then
get t§ =t} just as in the successor case. O

Lemma 3.1.26. Suppose ¥V = S — T and ¥ : S — T are inflationary extended tree
embeddings such that UV = W. Suppose F is on the sequence of the last models of U and U.
Let B = B(U,F) and B = B(U, F). Suppose that W (T, U, F) and W(T,U,F) are defined
and well-founded, [3,Ih(T)) C ran(u”), and [, I(T)) C ran(u”).

Then ®THULE o U = §THUF o .

Proof. Let W= W(T,U,F), W=W(T,U,F), d = <1>WF and q> PTUF )
By our hyQotheses that § and 8 are in the ranges of ©¥ and u¥, respectively, let £ such
that 8 = u¥(¢) and ¢ such that 8 = u¥(¢). We actually have that £ = &, since for any (,

ETI’(C) EZ;(O, so crit(F) < )\(ET ) iff crit(F) < )\(E ) Since = ¥ and ® |3+ 1

and @ [ 5+ 1 are the identity, we get that for ¢ < 5,

T T
0,u”(¢) 0,u¥(¢)

Now since § = u¥(£) = u¥(€), we have ]\4f = MT and 67' = e] 5. So let P be the level
of this model to which we apply F in both W and W Then Mc‘xl =MW, = Ult(P F) and
uPY(€) = a+ 1, u®Y(€) = o + 1. So e e (¢) = €ormou (¢ Since both are just ef 5 = ef 5
followed by F. If either of W(T,U,F) or W(T,U, F) is in the dropping case, both are
and we're done. So suppose that neither is in the dropping case, so ® o U and ® o ¥ are
total extended tree embeddings. We prove @ o W [( +1 = ® o ¥ [ ¢ 4 1 by induction on
¢ < lhg S). Note tl_lat we've already established this for ¢ < {. Notice that the hypotheses
[3,1h(T)) C ran(u?) and [3,1h(7)) C ran(u”) imply that v¥(¢) = u¥(¢) and v¥(¢) = u”(¢)
for every ¢ > £. So we just need to show that eo ot () = eg‘g%\y(c) for ¢ > & These
hypothesis easily carry through limit ordinals, so we just need to handle successors.

Suppose we're at a successor (+1 > § and let x = S-pred((+1), 77 = T-pred(u¥(¢)+1),
and n = T-pred(u?(¢)+1). We have 77 € [v¥(x), v (x)]7 and n € [v¥(x),u" (x)]7, so we get
MﬁT = MJ and i; . il o (since ez@ 0¥ ) = el, (0% (x )) By our induction hypothe-

0,u®¥ () eg};%\p ©) since they’re equal

to e

sis at ¢, we have (by Lemma 3.1.25) that t?o‘l’ t¢°¥, and so Eng(o EY @Oqj(o Letting 7 =
W-pred(u®¥(¢) + 1) and v = W-pred(u®Y(¢) + 1), we have that 7 € [ Y(x ) %‘I’( w

and v € [v™Y(x), u®"¥ (x)]w, using our induction hypothesis (i.e. that ¢ o

X) u<I>o\I/ X)
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and normality, we have M;‘{/v = MW. Letting P MW = MW be the initial ~segment to

which we apply B’} . = EZ}{,O\I, in both W and W we get that both M, and

© (c+1)
M‘f}foq,(cﬂ are both just the ultrapower of P by EVX,O\I,( 9 and so eg)/ji;‘i’o‘i((-&-l) and eo’vq,oq,(cﬂ)
are both just eo 5= eo % followed by E% PO (¢ This finishes the successor case and the proof.

]

We can now verify our characterization of the relation & = W for inflationary extendend
tree embeddings &, V.

Proposition 3.1.27. Suppose ® : S — T and V : S — U are inflationary extended tree
embeddings. Then ® =V iff & and ¥ have the same factorizations.

Proof. Let (F¢ | £ < A) be the factorization of ® and (G¢ | £ < ) the factorization of U.
If (F¢g | € < A) = (Ge | & < 7), then applying Lemma 3.1.26 to each of the factor tree
embeddings easily gives U = @ (the lemma explicitly handles the successor step, but limit
stages are straightforward).

For the converse, suppose ® = U. Towards a contradiction, suppose (F¢ | £ < A) # (G¢ |
¢ < 7). First we observe that we can’t have that one of these factorizations is an initial
segment of the other. Without loss of generality, suppose v < A and G¢ = F¢ for all £ < 7.
Let ®* and I be the inflationary extended tree embeddings such that ® = "o ®* and ®* has
factorization (F¢ | £ < ). By the previous direction, we have ¥ = ®*. Let 5 = (T, F,), so
B = crit(u"). By Proposition 3.1.21 (and since crit(u') > 6(®*) by the proof of Proposition
3.1.19, as ' = T, using the notation of that proof), 3 € ran(u®"), say 8 = u® (£). Then
tg’* + t?, since tl;q)*(g) = 1d. But tg’* = tg = tg’, using Lemma 3.1.25, a contradiction.

Now let £ least such that Fy # G¢ (we just showed that there is such a £ < v, A). Let
p=B(T,Fe) and 8’ = B(U,G¢). As in the preceeding argument, we decompose ¢ as I' o ®*
and ¥ as A o ¥*, where ®* and ¥* have factorization (F,, | n < &) = (G, | n < &). By the
previous direction of the proposition, we have ®* = ¥*. We also have that 8 € ran(u®")
and 3 € ran(u?"), so let n such that u® (n) = B and ¢ such that v¥ (¢) = B'. First
notice that we must have that n = ¢ since if, for example, n < ¢, then u¥ () < " and so
ty =t) =ty (using that ®* = ¥* and Lemma 3.1.25). But since ® = ¥, using Lemma
3 1.25, glves t‘I’ = tq’ # tq’ , since u®" (n) is the critical point of u', a contradiction. Now,
since u®" (n) = crlt( F) and u”(n) = crit(u®), we also have that F is the first extender used
in (u® (n),u®(n)]7 and G¢ is the first extender used in (u¥" (1), u”(n)]y, by the definition of
the factorization. But then since ® = ¥ and ®* = ¥*, we have that F; = G¢, a contradiction.

O

We now briefly describe the embedding normalization of a stack of normal trees (7 ,U),
W (T,U), which we get as the last normal tree in a system

<W£7O-£7FCJ(I)T]’£ | 777£7C+ 1< lh(Z/{)’ n SU 5)7

which we define by induction on 1h(i/), where
L We =W(T, UTE+1);
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2. 0 : M¥ — MI* is weakly elementary and if £ + 1 < lh(U), Fr = o¢(EY);
3. For ¢ <y n <y &,

(a) ®™¢: W, — W, is a partial extended tree embedding,
(b) ®%¢ = &™¢ 0 %7 and

(c) oot = 2" 0 g;

4. For n = U-pred (£ + 1),
(a) W§+1 = W(Wm W§7 Fg),

(b) &7t = @V Wele and ¢y = oWV WVele,

5. For A < 1h(U) a limit and b = [0, )y, Wy = Im(W, ®7¢ | n <y € € b) and 5 is the

direct limit tree embedding.

If U has successor length, we let o7 ¥ be the last of the 0.

Remark 3.1.28. Let us point out one subtlety here: we may have deg(Mg) < deg(Moygg)
and so the sense in which o¢ is weakly elementary is really as a map from Mg into

M£§|(0(M£§),deg(M§’ )). This same phenomenon occurs in copying across a weakly ele-
mentary map, but let us give a simple example in this context, due to Steel.

Let M a premouse, k = deg(M), T = (F) with crit(E) > pp(M) and let N =
Ulty_1(M, E) = M]. We'll explain how we can have a tree U = (F,G) on N such that
deg(M) < deg(MX¥2), so that og : MY — M2 is only weakly elementary in this extended
sense.

Suppose that crit(F) < pp(M), i¥" is continuous at p,_1 (M), and crit(F) = nM | =nl |,
so iy : N — Ult(N, F) is discontinuous at py_1(N). So

,Ok—l(M1U) < Zg o 2%7 (pk71<M))7

hence

o1(pr1 (M) < oy 0ip oiy (pr-1(M)),

SO
u

MY :
o1(pr—1 (M) < Lt () © i (pr—1 (M)).

But ¥ preserves py_1(M), even though it is discontinuous there, because W took the

o iy (pr—1(M)) = pr—1 (M) and

full k-ultrapower of M. So i].\f}u
iy (E)

o1(pr—1 (M) < pr—r (MXM).

Now suppose G, our next extender used in U, is such that p,_;(MY) < crit(G), but
o1 (crit(@)) < pr_1 (M),

Then in U, we drop to degree k — 2 when applying G to MY, i.e. deg(MY) =k — 2, but
applying o1(G) to M doesn’t result in a drop, so deg(M?) = deg(M) =k — 1. So we
have deg(MY') < deg(M2?), as claimed.
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In general, we define W(g) for a stack of normal iteration trees S of length n + 1 with
a last model and og from the last model of S to the last model of W (S) by induction on
length n. For & = (S, ...Sn_1) we put

—

W(S) = WW(ST(n—1)),050_1Su-1),
and, if §,,_1 has successor length, we let

UW(S[(n—l)),UgKn_l)Sn_l o 0_*7

Og =
where o* is the last copy map from the last model of S,,_; to the last model of Us”mnq)sn—l'
Here an else where, when we copy a normal tree across a map which is only weakly elementary
(understood in the extended sense of the previous remark), we take the normal copied tree,
not the weakly normal one, that is, if 0 : M — N is weakly elementary and S is a normal
tree on M, ¢S is a normal tree on N (if we never reach ill-founded models). Such a copying
construction is carried out in [24].

Note that this procedure can be continued for infinite stacks by taking direct limits of
the resulting directed system of normal trees at limits, and then continuing as above if the
direct limit is well-founded. We’ll go through the details in the proof of Theorem 3.1.48,
below.

Definition 3.1.29. Let M be a premouse and ¥ be an (w, #)-iteration strategy for M. X
bottom-up normalizes well iff for any & by X with a last model P,

—

1. W(S) is by ¥ and

—

2. letting @ be the last model of W(S), Xg p = (X5 0)s-

Bottom-up normalizing well makes sense for strategies for infinite stacks as well, once we

have defined W(S) and og for an infinite stack (as we do in the proof of Theorem 3.1.48,
below).

Definition 3.1.30. Let M be a premouse and ¥ a (k,0)-iteration strategy for M.” iff
whenever T is a normal tree by ¥ and § is a normal tree such that there is a tree embedding

®:S — T, then S is by 2.

Remark 3.1.31. Bottom-up normalizes well and SHC™ are variants of normalizing well and
strong hull condensation from [24]. We discuss this a bit more at the end of the chapter,
but one difference between our notions is that Steel demands that all the different possible
ways of normalizing a stack are by ¥ (for example, we must have both W(W(S,T), old)

and W(S, W (T,U)) are by ¥) and that all tails of an (w, #)-strategy > have SHC~. We will
prove that these properties follow from our definitions.

The following lemma is implicit in [21] §2.7.

"A (k,0)-iteration strategy for a premouse M is a strategy for building stacks of length < » consisting
of normal trees of length < 6, except we allow the possibility that the last tree in the stack has length 6. A
f-iteration strategy is a strategy for building single normal trees of length < 6.
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Lemma 3.1.32. Let M be a premouse, 0 a reqular cardinal, and ¥ a 0-iteration strateqy
for M with SHC~. Let T be a normal tree on M by X of successor length. Suppose that
U is a normal tree on ML with Ih(U) < 0 a limit ordinal such that for all & < Ih(U),
We=W(T,UTE+1T) is by X.

Then there is a unique branch b of U such that Tm(Wg, ®7¢ | n <y € € b) is by 3.

Theorem 3.1.33 (Schlutzenberg, Steel). Let M be a premouse, 6 a regular cardinal, and
3 a O-iteration strategy for M with SHC™. Then there is a unique extension of 3 to an
(w, 0)-iteration strategy for M which bottom-up normalizes well.

Proof sketch. We define the extension of ¥ to stacks by induction: suppose we have S is
a finite stack with last model P and U a tree of limit length on P such that S™(U) is
by ¥. By the previous lemma, we let ¥(S™(U)) be the unique branch b of U such that

=,

W(W(S),o0q47b) is by ¥. By construction, this strategy bottom-up normalizes well and

clearly is the unique such strategy.
O

In [19], Schlutzenberg shows that we can actually extend ¥ to a (0,6 + 1)-strategy if we
start with ¥ a (6 + 1)-strategy (with SHC™). We’ll prove this result in the next section.

We mention one more useful result of Steel from [21]: embedding normalization commutes
with copying.

Theorem 3.1.34 (Steel). Let m : M — N be elementary and S be a finite stack of normal
trees on M such that ©S is well-founded. Suppose that W(nS) is well-founded.

—, -,

Then W (S) is well-founded and =W (S) = W (xS).

3.1.3 Meta-iteration trees

The embedding normalization process produces a kind of tree of iteration trees with tree em-
beddings between tree-order related nodes. This perspective is used in [24] and abstracted in
[19], [9] to their notions of “factor trees of inflations” and “insertion iterations”, respectively.
Here, we also isolate an abstraction of this kind of tree of iteration trees which we’ll call
meta-iteration trees, or meta-trees.

Definition 3.1.35. A meta-iteration tree (or meta-tree) is a system

S = ({Se}eams) {Feter1ame) {27 byzse)
such that
1. 1h(S) is an ordinal and <g is a tree-order on lh(S);
2. for all ¢ <gn <s & < 1h(S),

(a) S¢ has a last model,
(b) if £+ 1 < 1h(S), F¢ is an extender on the last model of S,
(c) ®7¢ is a partial extended tree embedding from S, into S
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(d) OE = Pt o PO
3. (Normality) for £ + 1 < 1h(S), letting e = a(Sg, Fy),

(a) for all 5 < &, Ih(F,) < Ih(Fy),
(b) for n = S-pred(¢ + 1),
i. n is least such that crit(F¢) < A(F,),
i Sevt = W(S,, Se, Fe),
iii. 1t = @SSl (as a partial extended tree embedding from S, into Sgiq);

4. for A < 1h(S), b = [0, A)s is a cofinal subset of A and there is a tail ¢ C b such that

(a) for all n,& € ¢ with n < &, &4 is total,
(b) & = lim(Se, 7 | € <o € € c)

(c) for all n € ¢, ®7* is the direct limit extended tree embedding and for £ € b\ c,
O = P71 0 &M where 1 = min c.

For a meta-tree S and a branch b of S|+, we let

lim(S ) = lim(Se, ¢ | n <5 € € ¢)

where c is any tail of b where the "¢ are total (if there is such a c).

A meta-tree S drops along (n,¢]s iff there is some successor v+ 1 € (n, €|t such that for
¢ = S-pred(y+1) and W(S;, S,, F,) is in the dropping case. We’ll use other natural variants
of this terminology (e.g. “n-to-§ drops in S”) with their obvious meaning.

When S has successor length & + 1, we write ®° for the main branch partial extended
tree embedding ®%¢.

Using results from the previous subsection, it is easy to see that the tree embeddings ®™¢
of a meta-tree are inflationary and that the length-increasing enumeration of (F, | (+1 €
(n,€]s) is the factorization of ®™¢.

We now give a couple examples of meta-trees. We start with a very familiar example:
ordinary normal iteration trees can be viewed as meta-trees with the same tree-order and
exit extenders.

Example 3.1.36. Let 7 be an iteration tree. Let 7 =7 [ £+ 1 and F; = EZ and for
n = T-pred(¢ + 1). Then

T = (Te, Pe Fe | £, ¢+ 1 <IW(T), £ <r 1)

is a meta-tree with underlying tree structure 7 (i.e. lh(T) = 1h(7) and <p=<7).
This is a meta-tree since for n = T-pred(£ + 1), we have

Terr = Te (E])
= W(Te, Ty, Fe)-
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Notice that we haven’t explicitly defined the tree embeddings of T, As remarked above,
they are uniquely determined by the extenders F; and the tree order <. One can check
that for n = T-pred(£+1), the (extended) tree embedding ®7¢+1 is just the unique extended
tree embedding with associated u-map given by

)¢ if ¢ <,
u@_{gﬂ if ¢ = 7.

The more important example of meta-trees comes from embedding normalization.

Example 3.1.37. Using our notation above for the embedding normalization of a stack
(T, u),
W(Tau) = <W57(I)€7777FC ‘ 67777C+ 1< lh(u)7 5 SZ/{ 77)

is a meta-tree with underlying tree structure U.

Definition 3.1.38. A stack of meta-trees is a sequence (S¢ | £ < 7) of meta-trees such that
for all £ + 1 < v, S¢ has successor length and the first tree of S*! is the last tree of S¢ and
at limit A\ < ~, the first tree of S* is the direct limit of the directed system of normal trees
generated by the trees of S¢ for £ < \.8

Definition 3.1.39. Let & be a normal iteration tree of successor length. A stack of meta-
trees S is on & when & is the first tree of the first meta-tree in the stack. A (k,0)-meta-
iteration strategy for S is a strategy for building stacks of length < x of meta-trees of length
< 6 on 8, allowing the possibility that there is a final meta-tree in the stack of length 6.°

Remark 3.1.40. If S is the unique tree of length 1 on M (i.e. & = (M)), then meta-trees on
S are just normal trees on M. In particular, a meta-iteration strategy for § is just a normal
iteration strategy for M.

The following is the main theorem on the existence of strategies for stacks of meta-trees.
This theorem is a generalization, due to Jensen, of Schlutzenberg’s extension of Theorem
3.1.33 to infinite stacks. The arguments are due to Steel and Schlutzenberg.

Theorem 3.1.41. Let M be a premouse, 8 a reqular cardinal, and ¥ a 6 + 1 strategy for
M that has SHC™. Then for every normal tree S by X of successor length < 0, there is a
unique (0,60 + 1)-meta-iteration strategy X% for S such that

S is by X* < every tree in every meta-tree 0f§ 18 by 2.

We’ll give a proof of this theorem in this chapter. To start, we generalize Lemma 3.1.32.

8Here we mean the directed system of normal trees whose trees are the trees of the S¢ and tree embeddings
are generated from the tree embeddings of the S¢ by closing under composition and direct limits, for £ < .
Also, since we may drop along some of these meta-trees, we mean that there is tail of £ < A such that the
main branch of S¢ does not drop, and we only use the meta-trees in this tail to form the system.

950 a strategy picks cofinal well-founded branches at limit stages in building a meta-tree in a stack and we
never must stop we building a stack by the strategy because we reach an ill-founded model or drop infinitely
often along an infinite stack.
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Lemma 3.1.42. Let M be a premouse, 0 a reqular cardinal, and X2 a 0 + 1-iteration strateqy
for M with SHC~. Let S be a normal tree on M by ¥ with successor length IWS) < 0 and
S = (S, Fy, ...) be a meta-tree on S of limit length < 6 such that for all & < IN(S), S¢ is by
¥. Let & = sup{ag + 1| & < Ih(S)}.

Then there is a unique branch b of S such that (lim, S) [ + 1 is by . Moreover, for this
b, lim, S is well-founded and is by ¥ if IW(S) < 0.

Proof. The existence and uniqueness of the branch b is just the same argument from [2/]
which gave us b in the case S = W(S,U) for some tree U in Lemma 3.1.32,'" so we just need
to show the “moreover” part of the lemma.

In the case that 1h(S) < 6, lim, S is too, and one can use SHC™ to show this well-founded
and by ¥ (this is basically part of the proof of Lemma 3.1.32). So, we only need to deal with
the case that 1h(S) = 6. We do this via an easy reflection argument.

First notice that since 1h(S) = 6, we get that 6 = 6 as well. Let u >> 6 and H transitive
with 7 : H — V), elementary, |H| =6, M,%,S,S,b € ran(m) and for o = crit(n), m(a) = 6,
and 1h(S) < a. Let M, X, etc., denote the relevant preimages under 7.

Let 7 be a normal tree on M in H by ¥ of length < a. Then #(7) is by ¥ and
the copy tree m7T is well-founded, the copy maps m¢ for { < o are just restrictions of ,
and 77 = «(T) | Ih(T). In particular, for all ¢ < a, 1h(S¢) < a, by elementarity, so
Ih(S¢) = h(S;) and 7S, = Se. So, letting 7S = (7S¢, 7(F¢),...), ©S=S[a. Let b= n"1(b).
Then since b was chosen so that (lim,S) [ § + 1 is by ¥, we have that (lim;S) [« + 1 is by
3. Tt follows that the copied tree w[limz(S) [a + 1] = limy 7S [ + 1 = limp(S [+ 1) [ + 1
is by ¥. Now, in V' (by the lemma in the case 1h(S) < 0), letting ¢ = [0, a)s, we have that
c is the unique branch of S| a such that lim.(S [ «a) [a + 1is by 2, so b = ¢. So the full

limg(S[«) is by ¥, and so well-founded. But then lim; S is well-founded and so well-founded
in H, too, since this is absolute. By elementarity, lim, S is well-founded, as desired. O

Notice that if we started with X a f-strategy and S of length < 6 with the properties in
the hypothesis of the lemma, the conclusion still holds.

As a corollary, we get that ¥ generates an (w,f + 1)-meta-iteration strategy for S for
normal trees S on M by X of successor length < 6.

Lemma 3.1.43. Let M be a premouse, 6 a reqular cardinal, and ¥ a 0 + 1-strategy for M
with SHC™. Then for any S by X of successor length < 0, there is a unique (w,d + 1)-meta-
strategy for S such that

S is by Sk < for every i < IN(S) and & < Ih(SY), Sel0+1is by ©.M

Proof. This is an easy induction using the previous lemma at limit stages and SHC™ at
successor stages. O

Note that if we started with ¥ a #-strategy for M, we would still get an (w, 0) strategy
Y5 for normal trees S by ¥ of successor length. For M, ¥, § as in the hypothesis of the
previous lemma, we let ¥* be the union of the X% from the conclusion.

10See [9] for an explicit proof.
MIf Th(S?) < 6, 1h(S{) < 6, too, so this just means that Sf is by 3.
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We need a few more results about meta-trees. The most involved is the following result
due to Schlutzenberg and the author, whose proof we postpone till the last section.'?

Theorem 3.1.44 (Schlutzenberg, Siskind). Let M be a premouse, 0 a regular cardinal, and
Y a 0 + 1-iteration strategy for M with SHC™. Let S be a tree by ¥ of successor length < 0
and (S, T) is a stack of meta-trees on S by L5 with last tree U. Then there is a meta-tree
U on S by X% with last tree U and ®Y = ®T o 5. Moreover, S-to-d doesn’t drop in U iff
S-to-U doesn’t drop in (S, T).

This theorem looks like full-normalization for stacks of meta-trees. We’ll come back to
this perspective in §3.2, where we prove the theorem.

Lemma 3.1.45. Let M be a premouse, 0 a reqular cardinal, and X2 a 0-iteration strategy for
M with SHC™. Let S be a normal tree by ¥ of successor length and S, T meta-trees on S
by 3 with the same last tree T. Then S =T.

Proof. The proof is really the same as the proof that there is a unique normal tree by X
giving rise to any X-iterate of M.

Without loss of generality, suppose 1h(S) < Ih(T). We show that S[{ +1=T[£ + 1 by
induction on 1h(S). Since both meta-trees have last tree T, it follows that 1h(S) = 1h(T) and
S=T.

Let S = (S, Fe,...) and T = (T¢, Ge, . ..) (s0 To =Sp =S and T = Soo = 7). Suppose
S¢ = Te. Suppose 1h(F) < 1h(Ge). It follows that F¢ is on the sequence of last model of T
But F¢ is used in 7 since it is used in S, for every n > £, a contradiction.

The same argument shows that we can’t have 1h(G¢) < Ih(F), either. So Fy = G¢. So
we get Sepq = Teyqa.

At limit stages we just use that both meta-trees are by the same meta-strategy. O

The following is a comparison theorem for normal trees. It is basically a variation of a
theorem of Schlutzenberg (see [19]), but discovered later and independently by the author.
The proof is a fairly straightforward modification of the ordinary premouse comparison by
least extender disagreement.

Theorem 3.1.46 (Tree comparison). Let M be a premouse, 0 a regular cardinal, and ¥ a
0 + 1-strategy for M with SHC™. Let k < 6 and {S¢ | € € Kk} a set of normal trees by ¥ of
successor lengths < 0. Then there is a normal tree T by ¥ with IW(T) < 0 and meta-trees S¢
on S by X* with Ih(S®) < 0 each with last tree T. Moreover, for some Sg, the main branch
Se-to-T of S* doesn’t drop.

To prove this, we need an easy lemma about the effect of drops in a meta-tree.

Lemma 3.1.47. Let S = (S¢, Ft, @, ¢) be a meta-tree and let ¢ + 1 = W(Se). Suppose
n = S-pred(§ + 1) is such that (n,& + 1]s is a drop and let v >s &+ 1. Then

1. @, is a total extended tree embedding from S, | Be + 1 into S,'3;

12This is version of the community of inflation, which is due Schlutzenberg (see [19]). As stated, it was
discovered later but independently by the author.

3Recall that @, . is a partial extended tree embedding, in general. Here we are just saying that it has
domain S, [ B¢ + 1.
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S
2. B¢ <s, 0, and Zﬁ;% = tg’g;
3. in particular, if (n,§ + 1l]s is the last drop along [0,~]s, then letting Q = core(Mi”),

(a) tgg is the uncoring map from Q~ into Mi”, and
Sy
(b) @< Mg
The main observation underlying this lemma is that, under the same hypotheses, we have

2*. the exit extenders used along (f¢,d,]s, are exactly the meta-tree exit extenders used

along (n,7]s.

In our first application of this analysis of necessary drops, below, we’ll use (2*) rather than
the literal lemma statement.

Proof. To show (1) and (2) we proceed by induction on v > £ + 1, checking (2’) as well.

For v = £ 4+ 1 we're done, as S = W(S,,, S¢, Fe) = S¢™ (Fe) (since we have a necessary
drop), so (1) holds and 3¢ <s,,, d¢y1 = ¢ + 1 giving us (2*) and part of (2). Moreover
i‘;&% 41 and tgfﬂ are both just the Fe-ultrapower map on the initial segment of Mgg" = M;f“
determined by normality, finishing (2).

At a successor stage v = x + 1 > & + 1, letting ( = S-pred(x + 1), we have that (2%)
applies to (, i.e. the exit extenders of [f¢, d]s are all of the form Fy for 6 +1 € (1, (]s.
Moreover, as F) doesn’t overlap any of these Fy, by the normality condition of meta-trees,
F, must be applied to the last model of S¢, i.e. B, = d;. It follows that S,+1 = S, (Fy), so
¢ 41 1s total, giving (1). We also have (2*), as the main branch of S, is just the main
branch of S with one more extender F). As in the v = £ 4+ 1 case, we have that the last
t-map of &, té’;‘“, is if;g;ﬂ since they are both the appropriate F\-ultrapower. Using

this we can check (2):
nx+1 _ 1Ox+1 | and
tﬁ& o tﬁ& © tﬁs

<7X+1 ASC
= o
tge Ol
ASX+1 ASC
= o
25C76X+1 255,54
_ Sx1
BesOx+1"

The first line is just using that ®, 11 = P¢ 410D, . The second uses that, by induction,
(2) holds at ¢. The third just uses that té’;‘“ = %;g;m as observed above. Finally, the last

. S . . . :
line uses that zﬁg e = z‘ggé, also observed above (the main branch of of Sgi; is the main

branch of S, followed by F)).

We leave it to the reader to check that (1),(2), (2*) pass through limits. This finishes
the proof of (1), (2), and (2%).

For (3), we now assume that 7-to-§ + 1 is the last drop along [0,7]s. By definition, fe-
to-ag + 1 must be a drop in the tree S,. By (2) (or maybe more clearly (2*)), any further
drops along [0, 6,]s, would correspond to additional drops along [0, v]s, so Be-to-ae + 1 is the

last drop along [0,~]s, and tg’g = i‘gg 5, 1s the uncoring map.
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Finally, letting ) = Core(M(;Sj)7 we have that ()~ is the domain of tgfﬂ. First suppose
B¢ = 6,. Then @~ < M;i”, since we're in the dropping case of W(S,, S¢, Fe), so @ < M;”.

Now suppose B¢ < 0,. By the definition of the dropping case again, @~ < M;:Hh( E)‘EZ =

Mi"ﬂh(E)g;’. So again we have () < Mi”. This finishes (3)(b) and the lemma.
[l

Proof of Theorem 3.1.46. We just do the case that 6 = w;. The general case is basically
the same. So fix {S; | i € w} a countable set of countable normal trees by ¥. We form
meta-trees on S; by transfinite recursion, extending meta-trees we have constructed so far
by the least extender disagreement among their last models. A reflection argument shows
that this process must terminate at some countable stage and our analysis of drops from
Lemma 3.1.47 shows that at least one of these meta-trees doesn’t drop along its main branch.

Again, this is a straightforward modification of the familiar process of comparison of
premice by least extender disagreement, but the dropping analysis looks a little different;
the reader may want to just skip to the last paragraph of the proof where this is done.

Here are the details. We define an increasing sequence of ordinals \,, extenders G, and,
for i < w, meta-trees S** on S; by ¥* with last models P*®, maintaining the following

1. foralli < w and 3 < a, S < S

2. for all i < wand B < a, PP|(\g,—1) = P

passive;

(Ag,—1) and P"*|()\g,0) is extender-

3. for all i, j < w, Ay < o(P>) and P**|(\,, —1) = PP*|()\,, —1);
4. for some i, j < w, G, = Ef:’a and P»*|()\,,0) is extender-passive.

Note that for j as in (4), we must have that G, is used in 8Z¢, since fixing an i as in (4) and
letting € = (8%, G.,), the minimality of A, implies that M7 = MZ¥', and G, = B~
(since otherwise either G, would be on the P?“-sequence, a contradiction, or else there is
some disagreement before A\, = 1h(G,)). It follows that for all 5 < o and all i < w, G4 is
used in S4°.

Given {S" | i <w} and (A\s | B < ), (Gg | B < a) we define \,, G,, and " for i < w
as follows. Let (A, ko) be lexicographically least such that for some 7,7 P"Y|(\y, ko + 1) #
P3(Ay, ko + 1). Since each of the P** is a M-iterate, we must have that k, = —1, for all
i < w, A\q < o(P>), and for some i, )\, is the index of some extender G, in P**. By the
minimality of A, and since all of the P are Y-iterates, G, is the unique such extender, i.e.
for all i < w, either E{™ = G, or P"*|()\,,0) is extender-passive; moreover, since (Aq, 0) is
a disagreement, we must have for some j, P?*|(\,,0) is extender-passive. By our induction

hypothesis (1) and (3), we have lh(G,) > lh(Gp) for all 8 < a. So, we let

Si,a—i—l _ Sija if Pi’a
S (G,) if PO

(Aa, 0) is extender-passive

(Aa, 0) is extender-active.

It’s easy to verify that our inductive hypotheses are maintained.
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Finally, at a limit stage A\, we simply let

Si,)\ _ E*( U Si,a)7

a<A

which is easily seen to maintain (1).

We now check that this process must terminate at some countable stage. Suppose not,
so that the process lasts w; + 1 stages producing meta-trees S = S*“!, with component
trees Sf = ¢ and last models P' = P, together with wy-sequences (Ao | o < wi),
<Ga | a < w1>.

Claim 1. For all i < w, IW(S") = wy + 1.

Proof. Tt’s clear that 1h(S?) is a successor and at most w; + 1 (since the extenders of S* are
some subset of the G,). So, towards a contradiction, suppose S' is countable. Then the last
tree of S" must be countable. But all of the G, are used in this last tree, a contradiction. [

A routine reflection argument will shows that some G, must be used in all of the meta-
trees S, which is a contradiction.

Let p large, H countable transitive with 7 : H — V|, elementary and M,¥*,(S; | ¢ <
w), (S* | i < w) € ran(r), each §;,S* € ran(7), and 1h(S%) < a = crit(nr) = wf’. As usual,
we use T to denote the preimage of x under 7, when = € ran(w). As in the proof of Lemma
3.1.42, we get that for all & < «, the copy trees mS_’g = Sg and the copy maps are just
restrictions of .

Claim 2. For alli,j < w,
1. a <gi wy and

2. for & + 1 is the successor of « in [0,w)g, Fg = ng.

Proof. Let S' be such that 7(S?) = S*. Then each S has length « + 1, by elementarity, and
7S" = S [a+1 (as in the proof of Lemma 3.1.42). By elementarity, we get [0, a)s: C [0, w;)si,
so a <gi wy, establishing (1).

Let & + 1 be the successor of a in [0,w;)si. Let @%’5 be the tree embeddings of S' and
CIDfm the tree embeddings of S¢. Since for any n <g: a, ﬂ(uézva) = u®ne1 | it is easy to see that
we must have a = crit(u®+1) and u®<1 (o) = w;. It follows that FgS is the first extender
used along («, wl]sil. Now the trees Sil all actually agree up to w; + 1, since they are all
normal trees by the same strategy which use the same extenders below w; (since otherwise
we would have a disagreement in the last models below the sup of the )\,). So we get that
all of the F, SS are equal (as they’re the first extender used along the same branch in the same
tree).

O

Since the FnSi are just some subset of the G, we get that some G, is used in every S'.

v
Letting v be such that G, = ng for all 7, we have that G, is used in every meta-tree S*. It
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follows that G., is on the sequence of every model P*7, so that A\, = 1h(G.) wasn’t the index
of a disagreement after all, a contradiction.

So this comparison process must terminate by some countable stage, i.e. at some count-
able o, P** = P for all i, j < w. Let S = S**. The last tree of S’ is the unique tree which
is by 2 and has last model P“®. So letting 7 be this tree, T is the last tree of all the S'.

Finally, we need to see that for some i, S doesn’t drop along its main branch. Towards
a contradiction, suppose that for all ¢, S' has a drop along its main branch; let & + 1 be the
index of some such drop, i.e. £+1 is on the main branch of S and letting n; = S;-pred(&;+1),
n;-to-&; + 1 is a drop.

Applying (2*) from the proof of Lemma 3.1.47, we have that the extenders F} for x > ¢
with y + 1 on the main branch of S* are a tail of the extenders used along the main branch
of 7. In particular, we have that each of the ng are used along the main branch of 7. As
each of these extenders corresponds to a drop along this branch, there must be a largest
index of one of them used T, say x is largest such that EZ' = F{Z for some i. But then for
any ¢, there is a y; such that EZ = F;‘(, since the extenders used along the main branch of
T above 7; are all of this form. Since the extenders of the S' are subsets of the G, there is
some (3 such that G = F;a for all 7. But then Gj is used in all of the meta-trees S*, which
is a contradiction, as before. O

Finally, we can now prove Theorem 3.1.41.

Proof of Theorem 3.1.41. We again just consider the case # = wy, so we define ¥* a strategy
for countable stacks of meta-trees by induction. Uniqueness will be clear.

Suppose we have a stack S = (S¢ | € < ) which is so far according to our strategy %,
where o < wy. Suppose first that « is a successor ordinal £ 4+ 1. Using Lemma 3.1.43, we
define the tail meta-strategy Zg for countable meta-trees on S by E; = E:’;g 14 This works
and is the unique extension with the property that every tree is by . -

Now suppose « is a limit ordinal. Let T¢ be the first tree of S¢ and ®7¢ : T, — T¢ the
associated partial tree embeddings. It’s enough to see that the direct limit lim(7¢, ®7¢) is
well-founded and by 3, since then we may set S¢ = lim(7¢, ®7¢) and proceed as in the
successor case. Applying the tree comparison theorem (Theorem 3.1.46) to {7¢ | £ < a}, we
get a countable tree 7, which is by X and for each £ < a a countable meta-tree T¢ on T¢ by
>* with last tree T,. Moreover, for some £ < «, T¢ doesn’t drop along T¢-to-T,.

For every n < a, we have T, is the last tree in the stack of meta-trees (S, T"*1). Applying
Theorem 3.1.44 to this stack, we get a meta-tree U by >* on 7, with last tree 7,. By Lemma
3.1.45, U =T". So ™ = ®Y = &' 6 &%" and if 7 is such that T7 doesn’t drop along its
main branch, then it follows that T"*! and S” don’t either.

So, we get that ®T° = &€ 0 " for all n < € < « and for all sufficiently large 7, £, these
are total extended tree embeddings.

Fixing ¢ above which these are total, we have lim(Sg, ®7¢ | ¢ < n < € < a) is well-
founded, by Proposition 3.1.11. Since ¥ has SHC™, we also get that lim(Sg, "¢ | ( < n <
£ <a)is by X. O

14 Technically, here we mean that E% is the restriction of 225 to single countable meta-trees.
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As a corollary, we get Schlutzenberg’s extension of Theorem 3.1.33 to countable stacks
of iteration trees.

Theorem 3.1.48 (Schlutzenberg). Let M be a premouse, 0 a regular cardinal, and 3 a 0+1-
strategy for M with SHC™. Then there is a unique extension of ¥ to an (wy,w; + 1)-strategy
for M which bottom-up normalizes well.

Proof. By induction on length of S, we define an meta-tree W(S) with last tree W(S) and
a weakly elementary embedding o¢ from the last model of S to the last model of W (S).
Let S = (S¢ | € < a). Suppose first that « is a successor ordinal £ + 1, so S has last

—

tree S¢ and we've defined W(S) and og from the last model of S¢, P, to the last model of

-

W(S). We define the tail strategy 25 P, by

—

U is by 2§7P§ & WW(S), o) is by X*.

Now if a is a limit ordinal, by induction we have W(S | € 4+ 1) is the last tree of an
meta-tree W(S € + 1) by &%, which is an meta-tree on W (S [€) when ¢ is a successor and
we take direct limits at limits. So, we have that (W(S£41) | € < a) is a stack of meta-trees
by 2*. We let W(S) = lim(W(S € +1) | € < a). We have weakly elementary maps Oge i1
from the last model of & &+ 1 to the last model of W(g '€+ 1). Since the direct limit tree
W(g ) is well-founded, we must have that a tail of these maps are total (this uses that the
og are factors of the t-maps). So, we can form the direct limit of the P, along these maps

—

and get a weakly elementary map og from P, into the last model of W(S), the last tree of

-

W(S). We can then extend X as in the successor case:

—

Uisby Xz p < WW(S), 08 is by T

3.1.4 Copying meta-trees

In this section we’ll continue to develop the basic theory of meta-trees. Pushing us forward
is the following analogy with the usual inner model-theoretic objects.

premice «~+ iteration trees
iteration trees «~+ meta-trees
strategies «~ meta-strategies

elementary embeddings «~ tree embeddings

Perhaps surprisingly, this analogy will produce useful results. Notice that one might have
found the tree comparison theorem (Theorem 3.1.46) by pursuing this analogy: that theorem
says any two normal iteration trees have a common meta-iterate, modulo the condition that
we started with trees by the same strategy. Besides this (necessary) restriction, this looks
like the analogue of the usual comparison theorem for premice.
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Our main goal in this section is a kind of copying result. The usual copying construction is
about lifting a normal iteration tree across an elementary embedding. Following the analogy,
our result will be about lifting a meta-tree across an extended tree embedding.

Of course, a copying result like this must come from the appropriate version of a Shift
Lemma, which is also motivated by the analogy. The Shift Lemma says that, under the right
conditions, we can complete the following diagram.

T L s T
w w
F — F
S 1 > S

1 I

Unfortunately, the precise conditions on when this is possible are quite technical. Besides
demanding that ¥ and II have sufficient agreement, we must choose the image F of F
carefully.

Definition 3.1.49. Let 7 be an iteration tree of successor length. An extender F' on
the M -sequence is A-anomalous in T if for a = o(T,F), a+1 < 1h(T) and for 8 =
T-pred(a + 1), letting P be the initial segment of MT to which we apply E/ in T, there is
G on the P-sequence such that zEaT(G) F and Cl“lt(ET) < AG) < 1h(G) < dom(ET)

Note that an ostensible weakening of this definition is actually equivalent: if F'is on
the M7 -sequence and there is some 7 + 1 < 1h(7) such that for f = T-pred(y + 1) and
P be the initial segment of M7 to Wthh we apply ET there is G on the P-sequence such
that ZET(G) = F and crit E7§ < 1h(G) < dom(ET) then a = v as a < v (as

F is on the M) but if a < 7, then lh(F) < I(E]) < I(ET) and A(ET) < A(F), since
crit(ET) < /\(G), so since A(ET) is the largest cardinal of M7 [lh(ET), lh(ET) cannot be a
cardlnal here, a contradiction.

Proposition 3.1.50. Let T, T be normal trees on M of successor lengths and W : T — T
an extended tree embedding. Let F be on the M -sequence with F € dom(t¥)' and a =
a(T,F). Let & € [¥(a),u¥(a)ly, F = si(F) and o = o(T,F). Then exactly one of the
following holds.

1. F = s (F) for somen € [v¥(a),u”(@)]r such that n <&,
2. £E=aq, or

3. v¥(a) <& E=a+1, and F is A\-anomalous in T .

15The only case in which this is important is when a1 = 1h(7), since a+1 < Ih(7), then Ih(F) < Ih(ET),
so that it is trivial.
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Moreover, there is a largest £ € [v¥(a),u”(@)]7 such that (2) holds.

Proof. It’s easy to see that (1)-(3) are mutually exclusive, so we just want to see that one
of them must hold. Suppose (1) fails, so that £ is the least n € [v¥(a),u”(a)]7 such that

F = s¥ (F). Then for all n < £ with n € [p¥(a),u” (@)]7, crit(i] ) < A(sy, (F)), since we
haven't finished blowing up s¥(F) to F along [v¥(a), £]7. _

First we'll consider the case that £ = v¥(a). Now, for all n < a, Ih(E]) < Ih(F), so
since sY [lh(E;r )+ 1= t%’ [lh(EZ— ) + 1, by the agreement properties of tree embeddings, so
Th( Z—(n)) < Ih(F). Since v¥(a) = sup{u”(n) + 1 | n < @}, this implies that Ih(F) > Ih(E])
for all ¢ < v¥(a). It follow v¥(a) = a.

Next, suppose that £ > v¥(@) is a limit ordinal. Then Ih(F) > sup{sy,(Ih(F)) | n <
£} > sup{lh(EZ) | ¢ < &}, since for any ¢ < € with v¥(a@) > ¢, letting x the least element
of (v¥(@),&)r with ¢ < x, x is a successor ordinal, v + 1, and for n = T-pred(y + 1),
crit(ET) < A(sy,(F)), so ¥ (Ih(F)) > M\ET) > lh(EZ). It follows that & = a.

Suppose now that (2) fails as well, i.e. € # a. We need to see that (3) holds. We
have a < £ since F' is on the MET -sequence. By our observations above, we must have
¢ >v¥(@) and £ is a successor ordinal, y + 1. It follows that o <, so Ih(F) < Ih(ET). Let
B = T-pred(y+1). Since n < £ = y+1, we have crit(E]) < A(sy 4(F)). Letting P the level
of M] to which we apply E7, we have that igﬁT(sgﬁ(F)) = F. So since 1h(F) < Ih(ET),
we must have 1h(G) < dom(ET). It follows that v = o and F' is A-anomalous in 7, by the
remarks following that definition. So we’ve shown exactly one of (1)-(3) holds.

Note that (2) always holds for some ¢ € [v¥ (@), u" (@)]7, namely £ = v¥(a). Now suppose
that £ is a limit ordinal for which there are cofinally many ¢ < & such that ¢ € [v¥(a), u¥(a)]r
and (2) holds at ¢. Then ¢ € [v¥ (@), u”(a)]7, since this is closed below u¥ (@), and (1) must
fail at ¢ since it fails at all ( < ¢ (the image of F' cannot stablize below £). By our above
observations, (2) must hold at ¢ as well. So there is a largest £ € [v¥ (@), u”(a)]7 for which
(2) holds. O

Definition 3.1.51. Let 7, 7 be normal trees on M of successor lengths and ¥ : 7 — T an
extended tree embedding. Let F be on the Mz—sequence with F € dom(t2), a = o(T, F),
and B3 = B(T, F).

An extender F' on the M7 -sequence is an adequate W-image of F if, letting o = a(T, F)
and ﬁ = ﬁ(T7F>7

1. ac ¥ a), v (@),

2. F=s? (F),

3. B € [¥(B),u" (B)lr,

4. 5%, 1dom(F) = s¥ [ dom(F),

5. if @ < u”(@) and, for v+ 1 the successor of o in (av,u”(@)]7, crit(E]) < Ih(F), then
IW(F) < dom(ET) and if @ +1 < In(T), dom(ET) < s% (Ib(E])).

We can use our previous proposition to show that there is always an adequate W-image

of F.

1)



Proposition 3.1.52. Let T, T be normal trees on M of successor lengths and W : T—T
an extended tree embedding. Let I be on the M -sequence with F' € dom(tL), a = o(T, F),
and 3 = B(T,F). Let F = s%.(F) for the largest & € [v¥(a),u”(a)ly such that & =
a(T, s3¢(F)). Then F is an adequate W-image of F.

Proof. Let a« = (T, F) and 5 = B(T, F). Before we start verifying (1)-(5), we need to see
that F is on the M -sequence. Suppose not. If a = u¥ (@), then F is on the M7 -sequence,
a contradiction, since F' = tY(F) = tY(F), as either a + 1 = 1h(7) or else this follows
from the agreement of t-maps, since 1h(F) < Ih(ET). So a < u¥(a). Since F is not on the
M -sequence, Ih(E7) < 1h(F), so A(E]) < M(F). Now let v + 1 be the successor of  in
[v¥ (@), u”(@)]7. Then dom(ET) < AM(ET) < In(F). Letting P be the initial segment of M
to which we apply ET, we have Ih(F) < o(P), since F' € dom(tY), so applying z'IE:T gives
Ih(ET) < ing(F) = 5341 (F). It follows that v +1 = (T, sy, (F)), contradicting the
maximality of a. So F is on the M7 -sequence.

Conclusions (1) and (2) are trivial, so we just need to verify (3)-(5). We'll start by
showing (3) and (4). Towards this, we’ll show v¥(3) < 8 < u¥(B). If 3+ 1 = Ih(T) then
u¥(B) + 1 = Ih(T) since ¥ is an extended tree embedding, so trivially 3 < u¥(3). So
suppose 3 + 1 < 1h(T). Then crit(F) < )\(ET), SO as t%’ [lh(Eg) +1 =1t} [lh(Eg) + 1,
crit(F) < tg—’(crit(F)) < )\(E; ) So B < u¥(B). For any ¢ < 3, we have A(Eg) < crit(F),
so using the agreement propertles of the maps of ¥, we get A(E7, (e)) < crit(F), so u? (&) < B.
Since v¥(B) = sup{u¥ (&) + 1| € < B}, we have v¥(5) < 8.

If 8 = u?(B), (3) is trivial and (4) is easy to see: either 3 < & in which case the agreement
of the maps of ¥ gives t‘ﬁl’ 'dom(F) = s¥ [dom(F) = t¥ [ dom(F), which easily implies (4),
or else f = a and u¥(a) = u¥(B) = B = a, which makes (4) trivial.

So, suppose 3 < u¥(B). Let n € (U‘I’(ﬂ),u (B)]7 least such that 8 < 1. 1 must be
a successor ordinal, v + 1. Let ( = T-pred(y + 1). We'll show that ( = [ and that
53 5(crit(F)) = crit(F), which suffices.

We consider cases. First suppose that 5 < @. In this case we'll be able to show that
B = ¢ and crit(ET) > crit(F). Suppose this fails, i.e. that ¢ < 8 or crit(ET) < crit(F).
In either case, Cl“lt(F ) € [CI‘It(ET) )\(ET)) (in the former case this is because crit(ET) <
MET) < crit(F) < ME]) < )\(ET), in the latter case we have assumed crit(E]) < crlt(F)
and still have crit(F) < A(E]) < A(ET)). Now since § < @, the agreement between
model maps in a tree embedding gives that ¢Y flh(E—T) = s2 [lh(EB—T) = t%’ [lh(EBT), SO
that crit(F) = & (crit(F)) = ¢5(crit(F)) = szq,( ¥ (3) © s (crit(F)). But E7 is used in
(W¥(B),u"(B))r, so that [erit(ET), A(ET)) is disjoint from ran(
So ¢ = ¢ and crit(ET) > crit(F), as claimed.

Now suppose f = a. We easily have that § < a. If § = a, we're done. So suppose
B < a. Then ( < v+1 < a. The argument for the previous case with sga replacing t%’ =ty
gives that 8 = ¢ and crit(E7) > crit(F). This finishes (3) and (4).

For (5), suppose o < u”(a) and crit(E7) < Ih(F), for 7 4 1 be the successor of a in
(a,u”(@)]7. dom(ET) <1h(F), this contradicts the maximality of a, as in the beginning of
the proof (applylng ET together with coherence gives that Ih(ET) < s¥_ . (Ih(F)), so that
Y4+ 1=a(T, sy, (F ))) So Ih(F) < dom(ET), as desired.

¥ () (B )), a contradiction.

76



For the rest of (5), we assume that @+ 1 < Ih(7). Towards a contradiction, suppose that
sx o (Ih(ET)) < dom(ET) (equality here is impossible, by coherence). Since dom(ET) <
MTIXNET), there is some P < MI|X(E]) projecting to crit(E]) with sg’a(lh(Eg)) <
dom(ET) < o(P). Applying ET gives that s} 7+1(lh(ET)) < Ih(ET), so we must have
v+ 1 < u¥(a), as otherwise EZH = s2_ 1 (ET) so that In(ET,,) < Ih(ET), contra-
dicting the normality of 7. Let 79 = 7. We just argued that 7o + 1 < u"(a), so
7 + 1 has some successor vy + 1 in [U‘I’(@),u‘l’(@)]T. Since we are still blowing up E7,
we must have that crit(E]) < si 1 (I(ET)). So, by normality, we actually must have
AET) = crit(ET) (normahty immediately gives )\(ET) < crit(ET) but AM(ET) < crit(ET)
is 1mp0881ble since crit(E] ) < s3 WOH(lh(ET)) < Ih(E7) so that crit(ET) is a cardinal of

MT [Ih(E] ) |lh( ’Yo+1) where /\(ET) is the largest cardinal). Smce Ih(ET) is a car-
dlnal of M 41 and MT, ET is total on M7, and so il . (P)<dom(ET) and projects to
crit(ET), by elementarlty So we have that

Cl"lt(ET)

(In(F)) < (Ih(E])) < dom(E]),

a'yo-i-l owyo—i—l

This last inequality makes 7; + 1 = u?(a@) impossible, as before, so that v, + 1 also has a
successor in [v¥(a),u”(a)]r, 72 + 1. Repeating this same reasoning allows us to conclude

crit(E7) < s . (Ih(F)) < s¥ . (Ih(E])) < dom(ET).

Continuing in this way, we get an w-sequence (7, | n € w) such that o = T-pred(vyp + 1)
and for all n,

o 1+ 1e¥(a),u”(@)r,
o v, +1= T—pl"ed(’}/n+1 + 1)’ and
o crit(ET ) < sy o (Ih(F)),

Tn+1

Letting £ = sup{y, + 1 | n < w}, we have £ € [v¥(a),u” (a)]r, since this set is closed below
its supremum, and so Proposition 3.1.50 implies that { = a(T, s} é(F )). This contradicts

the maximality of a. So we must have had dom(ET) < sj J(L(ET)) after all, finishing (5).

Although the full importance of condition (5) won’t be apparent until we look at the
copying construction, the next proposition is a preview which suffices for the Shift Lemma.

Proposition 3.1.53. Let T, T be normal trees on M of successor lengths and U : 7_‘_—>_7'
an extended tree embedding. Let F' be on the M;—sequen_ce with F € dom(tY), a = (T, F),
and = B(T,F). Let F be an adequate V-image of F', « = (T, F), and 5 = B(T,F).
Then

1. if W(T, F) is in the dropping case, then W (T, F) is in the dropping case, and

2. if W(T,F) is not in the dropping case, then t%’ [ dom(F) = dom(F)

Sgﬂ [
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Proof. For (1), suppose that W (T, F) is in the dropping case. We want to show W (T, F)
is, too. We consider cases. B

First suppose that §+ 1 < Ih(7). We must have 5+ 1 < 1h(7), too, and some level of
M7 |Ih(E]) past dom(F) projects strictly across dom(F). Let P be the least such level. If
B = u¥(j3), then since E;’(ﬁ) = t5(E]) and dom(F) = t§(dom(F)), the elementarity of 3
gives that P = t‘I’(P) for some P an initial segment of M 7:llh(Ei—) projecting strictly across
dom(F). So W(T F) is in the dropping case, as desired. So suppose 3 < u (6) Let v —1— 1
be the successor of 3 in [v¥(B),u¥(B)]r. Since p(P) < crit(F) < dom(F) < o(P) < 1h(E
and dom(F) < A(E]), we must have o(P) < A(E]), as this is a cardinal in M] [Ih( Eﬁ
Since crit(E) is also a cardinal here, we either have o(P) < crit(E]) or else Cl”lt(ET) <
p(P). Since we are still blowing up ET to E7, w5 We have crit(ET) < s— (lh(ET)) So if
o(P) < crit(ET ), then, o(P) < s— (lh(ET)) and, as before, the elementarlty of sﬁﬁ
that some P below lh(Eg) prOJects across dom(F), and W (T, F) is in the dropping case. So
suppose crit(E]) < p(P). Since p(P) < crit(F'), we cannot have B<aorB=abutf<a,
as we showed that crit(ET) > crit(F) in these cases in the proof of (3) and (4) of the previous
proposition. So we have 3 = @ and 8 = « and it is enough to see that o(P) < s‘;a(lh(Eg)).
But this follows from condition (5) since o(P) < dom(ET) < s% Lh(ET)).

Now suppose § + 1 = lh(T) (we won’t need to keep track of whether ﬁj— 1 < 1h(T)).
Then there is some P < M] beyond dom(F) projecting < crit(F). If [v¥(8), f]7 doesn’t
drop, then s¥ 3.5 is a total elementary map and so there is some P < M T — = M2 T beyond

implies

dom(F) projecting < crit(F) by elementarity. This implies W (T, F) 1s in the dropping
case. Now suppose that there is a drop along [vY(3),8]r. Let n-to-y + 1 be the first

drop. Then since ) < 7+ 1 < 3, we have crit(E]) < sgn(crit(ﬁ_’)), as we haven’t finished

blowing up crit(F) to crit(F) by n. Since 7-to-y + 1 is a drop, there is a P < M;r with

p(P) < crit(ET) < sgn(crit(ﬁ)). We must have dom(F') < o(P), as otherwise we would
v

drop below the current image of 1h(F), contradicting that F' € dom(tY). Since s B

elementary map, there is P < Mg = M7 beyond dom(F) projecting < crit(F), so W (T, F),
as before. This finishes (1).
For (2), Suppose that t‘I’ I dom(F) # s dom(F) We must show W (T, F) is in the

dropping case. We have that B < u¥(B), or else our hypothesis is impossible, so let v+ 1 be
the successor of 8 along [v¥(3),u”(B)]r. Since t3 Idom(F) # s% , [ dom(F), we must have
crit(E7) < crit(F). But then we must have § = @ and § = « (as mentioned before, via
the proof for (3) and (4) of the previous proposition). By (5), we get Ih(F) < dom(ET). So
since dom(ET) < M(ET) = A(E]), there is some P < M] [\NE]) with dom(F) < o(P) and
p(P) < crit(F). So W(T, F) is in the dropping case, as desired. O

is a total

Note that the proofs of (1) in the cases where § + 1 = Ih(T) or 8 = u¥(3) were very
general—we only used clause (5) of adequate W-image in the remaining case. B
We’ll briefly discuss two important cases where we can identify adequate W-images of F'.

Proposition 3.1.54. Let ¥ : T — T be an extended tree embedding, F on the M;-sequence,
a=a(T,F), and a = a(T,tL(F)). Suppose that o € ran(u"?).
Then tY (F) is an adequate W-image of F and o = u¥(&).
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Proof. We'll just show that o = u¥ (@), which immediately implies that t¥ (F) is an adequate
U-image of F, by our previous proposition.

Since v¥ (@) = sup{u?(¢) + 1| ¢ < a}, we must have v¥(a) < a, as in the proof that (2)
held for £ = v¥(@) in the previous proposition. In particular, a # u”(¢) for any ¢ < &. But
tY (F) = t¥(F) since either & + 1 = 1h(7), and this is trivial, or else Ih(F) < 1h(E7) and so
this follows by the agreement properties of the t-maps of a tree embedding. So o < u¥(a).
Since we assumed a € ran(u¥), we must have a = u¥(a). O

We now consider the case that W is inflationary. In this case, we can identify an adequate
W-image of F' which may differ from the image we proved was adequate in Proposition 3.1.52.

Definition 3.1.55. Let U : T — T be an extended tree embedding and F be on the Mjo—
sequence with F' € dom(tY). Let @ = a(T, F). The mﬂatzonary - Zmage of F is s} 5(F) for
¢ least such that & € [v¥(a),u”(a)]r and either £ = u (a) or else & < u¥(a) and for v+ 1
the successor of £ in [v¥ (@), u” (@)}, dom(ET) & M7 [Ih(s? (F)).

Proposition 3.1.56. Let ¥ : T — T be an inflationary extended tree embedding and F on
the M7 -sequence. Then the inflationary ¥-image of F' is the minimal adequate ¥-image of
F (with respect to length or corresponding «(T, F)).

Proof. Let & = (T, F)and 8 = B(T, F). Let £ € [v (’) ( )]T least such that £ = u¥(a
or £ < u”(a@) and for v 4 1 the successor of £ in [v¥(a),u” (a)]7, sy (Ih(F)) < dom(ET)
and F' = s3 (F). So F is the inflationary W-image of F. If £ = u ( ), then F' = t‘I’( )
and the agreement of t-maps implies that F is on the M7 -sequence. So suppose & < u¥(a).
By normality and our choice of £ we have that 1h(F) < dom(ET) < lh(ET), F'is on the
M -sequence. Let a = (T, F) and 3 = 3(T, F).

For (1) and (2), we have that £ = « by Proposition 3.1.50, since cases (1) and (3)
of that proposition are not possible by how we chose . In particular, if a = u¥(@) or
a < u¥(a) and Ih(F) < crit(E7), then we’re done by Proposition 3.1.52, since £ = a has
the maximality property of the hypothesis of that proposition. So we can assume o < u¥ (@)
and crit(ET) < A(F) < Ih(F) < dom(ET) for the rest of the proof.

The proof of (3) and (4) from Proposition 3.1.52 works here, even when o < u¥ (@), as it
made no use of the max1mahty hypothesis of . That argument also gives that if 8 < &
B < a, then t§ [dom(F) = s§ , [ dom(F).

(5) is immediate by our choice of o and the fact that ¥ is inflationary. O

Finally, we state and prove the Shift Lemma.

Lemma 3.1.57 (Shift Lemma). Let T, T, S, S are normal iteration trees on M of successor
lengths and ¥ : T — T, 11 : S — S estended tree embeddings. Let F be on the MZ;-
sequence with F' € dom(tL), a = o(T,F), and 8 = B(T, F). Let F be on the M -sequence,
a=a(T,F), and 8 = B(T, F).

Suppose that

(i) o € v¥(@),u"(@)]7,
(it) F = s5(F),
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(i1i) sgya I dom(F) = I dom(F),

B
(iv) LB+ 1~V |f
(v) SIB+1=TIB
(vi) B € [v"(B), ”(ﬁ)]s,

(vii) if B+1 < IW(S), then dom(F) < M3 |Ih(ES),

sy
5,
+1
+1

(viii) if B+ 1 < IW(S), then dom(F) < MS|Ih(ES),
(iz) if W(S, T, F) is in the dropping case, then W (S, T, F) is in the dropping case, and
(x) if W(S,T,F) is not in the dropping case, then tg I dom(F) = sgﬁ I dom(F),

Then W(S,T,F) and W (S, T, F) are defined and, letting [i be the greatest ordinal & such
that W (S, T, F) €41 is well-founded, p the greatest ordinal & such that W (S, T, F)[£+1 is
well-founded, W = W (S, T, F) | i+1, W = W(S, T, F) [ u+1, and ® = &STF & = ST-F,
there is unique partial tree embedding I : W — W with mazimal domain such that

LTla+1~Ula+1,
2. u'(@) = a,
3. To®=>®oll (on their common domain,).

Moreover, if W(S,T, F) is well-founded, W(S,T,F) is well-founded and T is a total ex-
tended tree embedding from W (S, T, F) into W(S,T, F). Further,

a) if W S 'T F) is not in the droppin case, then the ordinary Shift Lemma applies to

(a) if _ pping Y pp
(aa,tgo,F) and for T+ U(MS,F) — Ul(MS,F) the copy map, t., o ¢STF =
oSTF oo

(b) if ¥ and 11 are non-dropping, then I' is non-dropping, and

(c) if ¥ and 11 are inflationary and F is the inflationary V-image of F, then T' is infla-
tionary.

Note that by the definition of adequate W-image and Proposition 3.1.53, hypotheses
(i)-(x) hold when IT = ¥ and F is an adequate ¥-image of F.

Also notice that if we assume that all of the trees S,7,S,7 are all by some strategy
Y for M with SHC™, then W(S,T,F) and W(S, T, F) are by ¥, so that we get a total
extended tree embedding I' : W(S, T, F) — W(S, T, F).

Proof. We have W (S, T, F) is defined by hypotheses (iv) and (vii) and W (S, T, F') is defined
by (v) and (viii). So all of the work is in identifying I" and proving it is as desired, inductively.
At bottom, we are able to do this because the s-maps of tree embeddings are given by the
ordinary premouse Shift Lemma at successors.
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Notice that 1 > @+ 1 and g > a + 1 since W(S,T,F) [a+1 =T [ a+ 1 and

W(S,T,F ) la+1=T]a+1, so the first models which are possibly ill-founded are the new
models MY av1 and MY a1, Which are obtained as ultrapowers by F and F, respectively.

Now, the u-map of I" is totally determined by what we have demanded in (1)-(3). We
must have

u¥(¢) if( <a
u" (¢) =S « if ( =a
u®M(¢) if ¢ > @&, where ¢ is such that u®(€) = (.

Recall that this third case makes sense since u® maps [5,1h(S)) onto [@ + 1,1h(W)) and
u?M(¢) > a for all € such that u®(¢) > a (since if u®(€) > @, then & > 3, so u®l(¢) >
u®(B) = a+1).

The definition of u"'({) just given makes sense for any ordinal ¢, but the actual u-map of
I" has domain {¢ | ¢ < i and u*(¢) < pu} (since the domain can’t include anymore than this
and we want the domain of I' to be maximal). In the course of the proof, we’ll show that we
can drop the condition “¢ < ji” from the description of the domain of u'.

Since we had to define u' as above and tree embeddings are totally determined by their
u-map, uniqueness of I' is guaranteed. We just need to check that we actually find a tree
embedding with this u-map. This amounts to identifying s-maps and t-maps that make the
relevant diagrams commute. )

We've stipulated T'[a+1 ~ ¥ [a+1 and u" (@) = a, so since u® is maps [3,1h(S)

1

[@ + 1,1h(W)), we just need to find appropriate s’ and 'y by induction on ¢ € |8,
_ e e
We also show that if u®°"(¢) < p, then u®(€) < i We start with the base case.

) onto
h(S5)).
Base case. £ = f3.

As mentioned above, we have u®(f) = @ —|— 1 < [ outright in this case. We first want

to define s5,,. For I to be a tree embedding, s5,, must be the copy map associated to the
following situation.

v
W _ T Sa,a T _ agWw
Vo —= L N =
M} M/ M/! M

, o
YW 511 el
a1 TTTTTTTTTTITI r Mo

That is, sL 41 is the copy map associated to (s¥ F), which exists since the ordinary

I
S,
o0 B7ﬁ’
Shift Lemma applies, by hypotheses (iii)-(v).
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If W(S, T, F)is in the dropping case, then W (S, T, F) is too, by (ix), and so we’re done.
For the remainder of the proof, suppose that W(S, T, F) is not in the dropping case. If
p < u®(B), we stop, so suppose p > u®°(3). We must now put

r W r
t&+1 = Za—&—l,u% ©Say1-
For this to make sense, we need that a + 1 <y, u"(8) = u®"(3). Hypothesis (x) implies
that any extender used along (3,u"(8)]s has critical point > crit(F), so u® is tree-order

preserving on [3,u(B)]s. So a+ 1 = u®(8) <y u®(B) = uF(B). We have the following
picture.

11
_ — S5
MY = M§ —— M5 = M)) ——— M5,
B
B
A g+1 w w W
L » MY, ————— M)t

We already have that the left square commutes, by our choice of s& 41, S0 we need to see
that the right one does. We may assume 3 < u'(3), as otherwise this is trivial. For every
¢ > B, u?(¢) = v*(¢) and t? = sg’, letting ¢ + 1 be the least element of (3,u!(3)]s, so we
can expand the right square as follows.

S B S S S
My ————= Mg ———— M
Jr |2 I
EW, B
S w
My, ——— MZZIY — ]\/[z%fw
But these squares commute since ® is a tree embedding: the left square commutes
since 3? is the appropriate copy map and the right square commutes since the s-maps of a
tree embedding commute with branch embeddings, by definition. This finishes the base case.

Successor case. 3 < &+ 1 and u®(¢ +1) < p.

Since Urbon(g’) < u, we have Mﬁfon(@ is well-founded and so Mg is as well (since

85;? : M;gf(g)
so we have u®(€) < fi. So u®(E+1) = v®(E+1) = u®(€) +1 < ji. If £ = j3, then we have
u®(§) = a+ 1, so we already had u®(¢) < f.

Let 7 = S-pred(£ 4+ 1) and n = S-pred(u!!(€) + 1). We have 1 € [v'(7), u"(7)]s since II
is a tree embedding. .

There are two (similar) subcases depending on the critical point of Eg

Lo 18 8 >
— Mgen(@ is a total elementary embedding). If & > 3, then v®(¢) = u®(¢),

Subcase 1. crit(Ef) < crit(F).
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In this case 77 < § and 7 = W-pred(u®(£) +1). We also have that Crit(ESH(E)) < crit(F),

so that n < 8 and n = W-pred(u®™(£) + 1), too. We have the following picture, in the case
that we don’t drop.

Mf 1 Set1 M
+

@ . .
354,_1 id id Sun-‘rl

MY .. s MY

D
Uet1 r Ue

Each of the maps along the outer square of the bottom diagram are the copy maps asso-
ciated to the maps along corresponding side of the top square, inner square, and appropriate

extender. In particular, we let su be the copy map associated to (trq,, CE EZV B )+1)

we must. Note that the ordinary Shlft Lemma applies in this case because we have assumed

that, so far, I' is a tree embedding. In particular, since dom(EVg(s)) < M}]/‘/|)\(E}7/V), the

as
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agreement properties of t-maps gives that

tg(frdonmﬁﬂv

wie) =ty dom(E}L )
F
”7

[dom(EW( ))

using for this second equivalence that crit(AW r(m) > Crit(E q,on(g)), as, otherwise, we used
an extender E)Y with crit(E!Y) < cmt(Euq,oH ) < A(EYY), but then crit(E <I,On(g)) can’t be

in ran(i) r ) 2 ran(t;), a contradiction.

In the lower dlagram the inner square commutes by our induction hypothesis and all the
trapezoids commute since the outer maps are copy maps associated to the relevant objects.
We now want to see that the full outer square commutes. Let’s look at the two ways of going

around this outer square, s® ut i1 o s§+1 and s' a2, o 5€+1 Since SEJrl and s® §’+1 are copy maps

associated to the appropriate objects, Lemma 3.1.8 gives that suq, 41 © s£ 41 1s the copy map
¢

associated to (tq’ otd, sy, EF). Similarly, szg 05¢y is the copy map associated to (tzg, ot

ES) But tuq, o t5 =t 0 t‘g’ and sg = sL . so the two ways of going around the outer
3 Ug i

7777’ nmn’

; ; o o _ T o3
square are both the copy map associated to the same objects, so Su§+1 O Sgyq = su§+l OS¢y

Note that u?on +1=uv1 Poll <) ug’jlf We now define

r W r

te =1 <1> I gor1 O S

ufpy gL T g

as we must. Finally, we check that this assignment gives us a commuting square of the

t-maps. We get the following diagram.

I
S
S £+1 S S S
Mg, MS, MS,
e+1 E+1
2 e t®
E+1 vg_l u?+1
w w w
Mu— Mu<1>(uﬂ+1) Mu‘1>°H
£+1 Sq) W £+1
P
u
£+1

We just need to see that this diagram commutes, since zfg 1 is just the map going across
the top and t' W (e11) is the map going across the bottom (so this really is the relevant square
of t-maps). The left square is just the outer square of the lower commuting diagram, above,
though we used u'(£) +1 = v™(¢ + 1) and u® o u'(€) + 1 = v®(u(€) + 1) to change the
labeled indices of the models in the middle column to emphasize how we knew they were
tree-related to the appropriate models all the way on the right (we get these equivalences
since £ +1 > [ and u™(¢ + 1),u™(€) + 1 > B). We've also used that all the vertical t-maps
are the same as the corresponding s-maps (by the equivalence of the indices just mentioned).
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This last fact (that the vertical t-maps are the same as the corresponding s-maps) also gives
us that the square on the right commutes, since ® is a tree embedding.

If we drop when applying any of the E?, Efn, etc, then we drop applying all of them
and the initial segments to which we apply thes£e extenders are all mapped to each other
by the relevant maps. In this case, everything remains the same except that we must use
the initial segments to which we apply the extenders instead of the models displayed in the
above diagrams, e.g. some P < M;?S instead of M;f

Subcase 2. crit(Ef) > crit(F).

In this case 7 > B and u®(7) = W-pred(u®(£) +1). We also get Cl"it(Efn(g)) > crit(F), so
n > 3 and u®(n) = W-pred(u®¥(£) +1). We now have the model to which Ef is applied is
related to the model to which £} ©

same model in the previous case. Similarly on the S-W side. The only thing this changes is
that we replace the identity maps in the above previous diagram with these t-maps. This is
the diagram for the non-dropping case (as before, dropping makes little difference).

is applied by a t-map of ®, whereas they were just the

I
_ S
S £+1 S
M£+1 Mug+1
T
E& I u?
S sﬁv"] S
Mg — M
i n
) ) P P
Se+1 tﬁ tn su?+1
MYy ., MW
uﬁ SF un
w M w
Euif' Eu<I>ol'[
w
Mu(i) 777777777777777777777777777777777777777 > M PoTl | |
£+1 SF—
U

The rest of the diagrams and arguments are as before. This finishes the successor case.

Limit case. A > fis a limit and u®(\) < p. .
~ We have u®(§) < p for all £ < A, so that by our induction hypothesis, u®(£) < fi. So,
WP(N) = vP(\) = snp{u*(€) | € < A} < .
Let ¢ = [0,u®(\)yy and ¢ = [0, u®™()\))yy. We need to see that c is the <yy-downward
closure of v7[c]. To do this, we just trace ¢, ¢ back to the branch b = [0, \)s. We have

c={¢|InebE <y v‘f’(n))},
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and
c={& | € b€ <w o™ (n))}.
We also have that o7 (v®(n)) = v®°(n), so that v"[¢] = ¢, as desired.
So, we get our map ng commuting with the maps sgé © since we are taking the direct

limits along ¢ and ¢ on both sides. From here, we get t::@ as in the successor case. This
A

finishes our construction of I'. )

For the “moreover” clause, we've already shown that if u®"(&) < u, u®(§) < . So, if
the full W (S, T, F) is well-founded, then for all ¢ < 1h(S), u®(¢) < fi. But then i +1 =
Ih(W (S, T, F)), so I is a total extended tree embedding from W (S, T, F) into W(S, T, F).
Finally, we handle the “further” clauses. For (a), note that conditions (iii), (x), and the
agreement properties of t-maps of a tree embedding immediately give that the ordinary
Shift Lemma applies to (s, t%, F). It is straightforward to use that i otS = ¢2 o ¢l
and the definition of the embedding normalization maps to show tL_ o 057 = ¢57:F o 7,
where 7 is the copy map associated to (s¥ ., ¢, F). For (b), suppose that ¥ and II are
non-dropping. If W(S, T, F) is in the dropping case or 5+ 1 = 1h(S), it is easy to see that
I must be non-dropping (as our last t-map is just a copy map). Otherwise, I" still must be
non-dropping by our choice of t-maps, since for any ¢ < 1h(S) we have v™(¢)-to-u'(¢) drops
in S iff v®U(E)-to-u®l(€) drops in W. For (c¢), suppose that ¥ and II are inflationary and
need to check that I is, too. By Proposition 3.1.16, ® o II is inflationary, so I' o ® is, too,
since they’re equal (by (3)). Since V is inflationary, we have I' [a+ 1 is too, by (1). Since we
chose F to be the inflationary W-image of I/, I' [ & + 2 is inflationary as well. So Proposition

3.1.14 (applied to I' o ®) gives that I is inflationary, since [@ + 1,1h(W)) C ran(u?). O
We will carry over our notation for applications of the ordinary Shift Lemma.

Definition 3.1.58. For extended tree embeddings ¥ : T - T andII:S — S and an
extender F' on the M -sequence and F on the M -sequence, we'll say the Shift Lemma
applies to (W, 11, F', F) iff the hypotheses of the Shift Lemma are met, i.e. (i)-(x) hold.

If W(S, T, F), we'll say that an extended tree embedding I' : W(S, T, F) — W(S, T, F)
is the copy tree embedding associated to (V,1I, F, F) iff it is the unique extended tree em-
bedding as in the conclusion of the Shift Lemma.

Next we will carry out the copying construction: given an extended tree embedding
U :S — T, we will copy a meta-tree S on S to a meta-tree T on T, using the Shift Lemma
to determine the extenders of T. Because there may be multiple adequate WU-images of
some extender, there may be multiple ways to copy S. We’'ll use the minimal one; this is
occasionally important.

Proposition 3.1.59. Let S = (S¢, F¢, ®,¢) be a meta-tree. Let £ +1 < Ih(S) and n =
S-pred(§ +1). Then n is the least ¢ < & such that e < o.

Proof. For any ( < ¢, Iy = ng and B¢ < ag, trivially. So for any ¢ <¢,
55 < ¢ = CI’it(Fg) < )\(Fc)

We have that 7 is the least ( < & such that crit(F) < A(F¢), by definition, so it is also the
least ¢ < & such that 8¢ < ag. O
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Theorem 3.1.60 (Copying). Let M be a premouse, S, T be normal trees on M of successor
lengths, and I : & — T a non-dropping extended tree embedding. Let S = (S¢, F, ®7¢ |
&, C+1<InS)) be a meta-tree on S.

Then there is a largest pu < Ih(S) such that there is a meta-tree I'S = (T¢, Ge, U |
&, C+1 < py on T with tree-order <g| pu and for & < u, non-dropping extended tree embeddings
I¢: S — Te such that

1. T°=T,

2. for £+ 1 < p, Ge is an adequate T-image of F¢, and

3. forallm <g & < p, I o ®1¢ = Y& o [,
Moreover, if S, T are by some iteration strategy > for M with SHC™ and S is by ¥*, then
w=1Ih(S) and T'S is by ¥*.

Proof. We define I'S by induction, using the Shift Lemma at successors. p will just be the

least ordinal such that this process breaks down or the full 1h(S) if it doesn’t break down.
Let ¢ = a(F;,S;) and B¢ = B(F, S¢). Supposing we've define I'S | € + 1, let o =

a(Ge, Te) and fe = B(Ge, Te). We'll maintain the following by induction for n < £ < p.

L IMla,+1~T%a, + 1,

2. ap = utt (o) <7, u'" (&),
3. Telay, +1="T,[a, + 1, and
4. tgj is total.

Note that (3) is actually trivial, since I'S will be be a meta-tree and (4) follows from the
fact that the I'¢ will be non-dropping. This will allow us to verify that I'S has the same tree
order as S and show that we satisfy the hypotheses of the Shift Lemma at successor stages.

Suppose we've defined I'(S € + 1), so we have I'* : S — T¢ an extended tree embedding
with total last t-map, by (4). In particular, F¢ € dom(tgﬁ). We let G¢ be the minimal
adequate I'*-image of F¢. (1)-(3) easily imply that for n < &, crit(F;) < A(F)) iff crit(Ge) <
A(Gy), so that, {+1 has the same tree-predecessor in both S and I'S. Let n = S-pred({+1) =
T-pred(§ + 1).

We want to let T¢*! be the copy tree embedding associated to (I'¢, T, F¢, G¢). So we just
need to show:

Claim 1. The Shift Lemma applies to (T, T, F¢, Ge).

Proof. Recalling what this means, we need to verify the following ten (!) conditions are
satisfied.

(i) ae € " (ag), u™ (Gg)l7,

(i) Ge= sk .. (Fe),

045,045
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(iii) L, [dom(F) =

Qg Qg

She g | dom(F),

(iv) T" B + 1 = ¢ Be + 1,
(V) TolBe+1="TelPe+1,
(vi) Be € [0 (Be), u"" (Be)] 7,
(vii) if B + 1 < In(S,), then dom(Fy) < M

Sy
Ih(E % ),
(vii) if B¢ + 1 < I(7;), then dom(G¢) < M [Ih(E]7),
(ix) if W(T,, Te, G¢) is in the dropping case, then W (S,,, S¢, Fy) is in the dropping case,
(x) if W(T,, T¢, G¢) is not in the dropping case, then tg: I dom(F) = ng,ﬁg I dom(Fy),

This is all pretty easy. First, since we chose G¢ to be an adequate '*-image of Fy, all these
conditions are satsified if n = £. So suppose n < . We still get (i)-(iii) by how we chose G¢.
(iv) is immediate by our induction hypothesis (1), since 8¢ < @&,. Since ¢ < a,, induction
hypothesis (3) gives (v). (iv) also follows since G¢ is an adequate I'c-image of F¢ (using
clause (4) of that definition). For (vi), we consider cases: if B¢ < &y, (vi) is immediate from
(1); if B¢ = @y, this follows by (2), (3), and that G¢ is adequate (clause (3) of that defintion).
(vii) and (viil) are immediate since S and I'(S[€ 4+ 1) (G¢) are meta-trees.

For (ix), suppose W (T, T¢, G¢) is in the dropping case. We consider cases. First suppose
that B¢ < a, or B¢ = @, but B¢ < a,. Then either 3¢ + 1 = lh(T,) or else E[Z’ = E;”:, nd
so in either case, W (7¢, G¢) is in the dropping case, too. By Proposition 3.1.53, since G¢
is adequate, this implies W (S, F¢) is in the dropping case. Since either 3¢ + 1 = 1h(S,) or
1h(E§§) < Ih(E3") (as either Egj = B or f¢ = @, and so Egj = F,). So it follows that
W (S,, S, Fe) is in the dropping case, as desired. If a,, = u'"(a@,) or @, + 1 = 1h(S,), then
the arguments from the proof of (1) of Proposition 3.1.53, in the cases that 3 = u¥(3) or
B+ 1 =1h(T), give W(S,,S¢, F¢) is in the dropping case, too. So suppose a, < u"(a,)
and &, < lh(S,). We'll use that G, is an adequate I'"-image of F,. Since we assumed
W(T,, Te, Ge) is in the dropping case, there is a level P < M;r" Ih(E]" 7) such that dom(G¢) <
o(P) and p(P) < crit(Ge¢). Fix P the least such level. It is enough to see that P <

T"|s (lh(E 7)). Let 741 be the successor of ay, in (ay, u'" (@y)]7,. If o(P) < crit(EI),
then as crlt(ET") < s’ (lh(E@n)), we're done. So suppose Crit(EfZ;’) < o(P). Then we

Qn,Qn

must have crlt(E ") < p(P) < crit(Ge). Since G, is an adequate I'-image of F,, (specifically,
clause (5)), we have Ih(G,) < dom(E%) < 37 (lh( 7). Since dom(Gg) < MZ:’;Hh( )

we must have P < dom(E-"), since we chose P to be minimal. So P < M." st (lh(E@n)),
as desired. This finishes (ix). ) )
For (x), suppose tgg [ dom(Fy) # s 13 dom(Fg). Then we must have B¢ < u” (), but

also that 3¢ = @, and B¢ = a,. So let v + 1 be the successor of B¢ = a,, in (ay, ut (@), .
We must have crit(E;r” ) < crit(Ge). So since G, is adequate (clause (5), again), we have
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Ih(G,) < dom(E!"). So some level P<1M£’|lh(EZZ) = M;Z]’Hh(E;EZ) projects across dom(Gp),
i.e. W(T,,Te,Ge) is in the dropping case.
[

So we let T : 8¢y — Tei1 be the copy tree embedding associated to (T, T, Fy, Ge).
So we have D! [+ 1 =T [ag+ 1, u™ (ag) = g <7; ul*(ag), ¥ o @16t = Ynétiolm,
and ['**1 is non-dropping, by the Shift Lemma. This easily gives induction hypotheses (1)-(4)
hold at £ 4+ 1. This finishes the successor step.

Let A < 1h(S) be a limit ordinal and let b = [0, \)s. We put Ty = lim(T¢, U7¢ | n <g £ € b),
if this direct limit is well-founded. Otherwise, we put u = A and stop. Suppose it is well-
founded. We let I") be the extended tree embedding guaranteed by Proposition 3.1.11. Now
the normality clause in the definition of meta-tree gives that whenever ( < n <g & < A,
O ) ae + 1 &~ Id, U | a¢ + 1 ~ Id (using that 'S | A is a meta-tree with the same
tree-order as S, so far), and u!” (a;) = a¢. So since for any n <g A, [ 0 @7 = U o [, we
have for any ¢ <n, I'*1a; + 1~ T"[a; + 1. Combining this with (1) at n < & < X gives us
(1) at A. (2) is trivial since A is a limit ordinal. (3) holds since I'S| A is a meta-tree (this is
an easy observation about the agreement of trees in a meta-tree which follows by induction,
using at limit A that U7 [ a¢ ~ Id for ¢ < n <g A). (4) also follows since all of the I'*
for ¢ < X\ and a tail of the W& are (total) non-dropping tree embeddings and so I'* must
be as well. To see this, let £ <g A be such that W ) is a total, non-dropping extended tree
embedding. Let x + 1 =1h(S¢), 7+ 1 =1h(S)), x +1 = h(T¢), and 7+ 1 = 1h(7,). Since
¢ is non-dropping, v (X)-to-x doesn’t drop in T¢, so that U‘PE’Aorf()’()—to—v‘I’g’A(X) doesn’t
drop in 7. Since W, is non-dropping, v¥*” (y)-to-7 also does not drop. So v¥**°'* (¢)-to-7
doesn’t drop in 7x. But [v7(7),7]7 C [0 (%), 7]7., so [ is non-dropping, too. This
finishes the limit case.

We now turn to the “moreover” clause. Suppose S, 7T are by 3 and S is by ¥*, where X
is some strategy for M with SHC™. We show p+ 1 = 1h(S) and I'S is by ¥* simultaneously,
by induction.

As long as I'S T € 4+ 1 is by X%, we know £ < p since the process hasn’t broken down.
Successors cause no trouble, so we deal with limits. So we have I'S [\ is by ¥* and we need
to see that for b = ¥*(I'S [ A), b = [0, \)s. Since we take direct limits of both sides, by
Proposition 3.1.11, we get a direct limit tree embedding from the last tree of S™b to the last
tree of I'(S [ A)™b, which is by . So since ¥ has SHC™, the last tree of S | A7b is by X,
hence b = £*(STA) = [0, A)s by the definition of 3*.

O

We will also need the analogue of Lemma 3.1.10, whose proof we omit.

Lemma 3.1.61. Let C = ({Sa}aca, {Pubta<s) and D = ({Tataca, {Vas}tazs) be directed

systems of normal trees and {F,}.ca extenders such that
(a) F, is on the MI*-sequence,
(b) for all a,b € A such that a < b, Fy, = tor" (Fy),

(¢) for all a,b € A such that a < b, the Shift Lemma applies to (Vqyp, Pup, Fa, F).
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For a,b € A such that a = b, let Iy, be the copy tree embedding associated to
(Yap, Pa, Fu, Fy).  Suppose imC and UmD are well-founded. Let Soo = limC and
Too = imD, let &, : S, — So and V, : T, — To be the direct limit tree embeddings,
and let Fy, the common value of t2e(F,).

Let P = im({W(Sa, Ta, Fu) Yaca, {Tap}a<p). Suppose im P is well-founded. Let Wo, =
imP and Ty : W(Sa, Ta, Fu) = W be the direct limit extended tree embeddings, and 1T :
Soo = Wao be the unique extended tree embedding such that for every a € A, T'y o ®SaTeFa —

ITo ®, (such an extended tree embedding is guaranteed by Proposition 3.1.11).
Then Wae = W(Ss, Too, Fao), I = @5 TF and for all a € A, T, is the copy tree
embedding associated to (V,, ®,, Fy, F).

3.2 Meta-tree embeddings

In this final section, we complete our proof of Schlutzenberg’s Theorem 3.1.48 by proving
Theorem 3.1.44 and also establish that SHC™ and bottom-upnormalizing well pass to tail
strategies. These results are all proved by diving deeper into the kind of iteration tree
combinatorics we’ve been exploring so far. Key to this is the notion of a meta-tree embedding,
a natural analogue of tree embedding.

3.2.1 The definition
If the reader has been following along, they might be able to fill in the definition themselves.

Deﬁniti_())n 3.2.1. Let S, T be meta-trees on S. A meta-tree embedding from S into T is a
system A = (U, V, {F£}§<lh(8): {AC}C+1<lh(S)> such that

1. V i 1h(S) — Ih(T) is tree-order preserving, U : {n | n+ 1 < 1h(S)} — 1h(T), V(§) =
sup{U(n) +1|n <&}, and V(§) <r U(§);

2. for all £ < 1h(S) and 1 <g ¢,
(a) T¢: S¢ = Ty(e) is an extended tree embedding and I'y = Ids;
(b) @y © T =Teo P,
(c) if €+ 1 < Ih(S), then A¢ = Yy © Ie and for all ¢ € [V(E),U(E)]r,
uq’3<s>,<°rﬁ(@§) e dom(uq’gv(@);lﬁ
3. for £ +1 < 1h(S), n = S-pred(¢ + 1), and n* = T-pred(U(§) + 1),

_ B¢ s
© = tog (F¢),

(b) ag(g) = u(ag),
(c) n* € [V(n),U(n)lr, and

16Here, ®T may only be a partial tree embedding, since we may drop along [V (£),U(&)]r, so A
V(©).U(©) £

(a) Fyj

will only be partial in general, too. The additional condition explains that a? is in the domain of u®¢ in a
strong sense.
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(d) Texr [af +2~ A [04? + 2.

Note that (3) (a) and (b) imply that Fg(g) is an adequate Ag-image of FgS by Propo-
sition 3.1.54. We'll see shortly that (3) implies I'cy; is the copy map associated to
T S T
(Be; Pyor, e B Fue)): _ . o
We’ll carry over some our terminology and notation for tree embeddings in the natural

way. If Ih(S) = v+ 1, Ih(T) = 6 + 1, and V(y) <t 6, then we define the associated
extended meta-tree embedding by putting U(y) = § and A, = (IJ{T/(W)’(; oI',. We also define,
for n € dom(U) and € € [V(n),U(n)]r, F":5 =00y

We make the following easy observation about the agreement between the component
tree embeddings of a meta-tree embedding.

Proposition 3.2.2. Let A:S =T be a meta-tree embedding. Then for all ( <&,
Ag[@?—i—Q%F“@?—i—Q%AH@?—l—Z

Proof. We prove this by induction on &. This is trivial at £ = 0, so suppose it holds at
¢, we need to show it holds at £ + 1. By (3)(d) and the fact that the a? < oz? for { < ¢,
we ha\;e Lepq | a? +2 =~ A¢ ] a? + 2. Since also either V(¢ + 1) = U({ + 1) or else
crit(uvErnuern) > ag(g) +1= UF€+1(04§ + 1), we also have that Agy4 [a? +2=T [a? +2
for ¢ <&, too.

At A < 1h(S) a limit ordinal, we have V[0, \)s is a cofinal subset of [0, V(\)). Since
Sy = limp ), (S [ A) and Ty = limjg vy, (T [ V(A)), the commutativity condition (2)(b)
implies that I'y : S, — 7, is the direct limit tree embedding given by Proposition 3.1.11.
Whenever ( <n<g& <\ @) [l +1~1d, O, [ag(o + 1~ Id, and u'" (o) = O‘E(C)' So
since for any n <g A, F/\O(I)%«\ = @g(n)’v(/\)an, we have for any ¢ < n, I') [oz§+2 ~T1, [a?—i—Q.
The argument which let us extend the desired agreement for 'y to Agyy also works to get
the desired agreement for A,. O

We need the following result about extending meta-tree embeddings.

Proposition 3.2.3. Let A 'S = T be an extended meta-tree embedding. Let £ +1 =
INS). Let F' be on the MSE-sequence and & = a(Se, F) such that for all ¢ € [V (£),U(§)]r,
ulec(a) € dom(u‘bgU(&)). Let G = tgf(F) and o = a(Tyg), G).

Suppose that Ih(G) > sup{Ih(F,) +1|n < U(£)}. Then

1. G is the unique adequate A¢-image of F' with length at least sup{Ih(F))+1 | n < U(€)},
2. a=ub(a), and

3. if T™(G) is well-founded, then S™(F) is well-founded and there is a unique meta-tree
embedding from S™(F) into T™(G) extending A.

Proof. First, since Ih(G) > sup{Ih(F) + 1 | n < U(§)}, we have a > {ay +1 | n < U(&)}.

It follows that o € ran(uq)ng(O) C ran(u®¢) so that Proposition 3.1.54 implies o = u¢(@)
and that G is an adequate Ag-image of F'. But this holds for any adequate A¢-image of F’
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with length at least sup{Ih(F7) +1 | n < U(£)}, so that G is the unique such image. This
gives (1) and (2).

Since 1h(G) > sup{lh(F)+1 |7 < U(£)}, we must have Ih(F) > sup{Ih(F7)+1] ¢ < £}
and so both S™(F) and T (G) are putative meta-trees. Let n least such that n = £ or
crit(F) < A(Fy) and n* least such that n* = U(€) or crit(G) < A(FL).

Claim 1. n* is the least ¢ € [V(n),U(n)|r such that either ( = U(n) or else for v+ 1 the
successor of ¢ in [V(n),U(n)]r, crit(F) > dom(G).

Proof. We have that n* is least such that n* = U(€) or crit(G) < A(F,.). Since n = &
or else crit(F) < A(FJ), we easily get V(n) < n* < U(n). Let ¢ € [V(n),U(n)lr least
such that ( = U(n) or n* < (. First suppose n* = ¢ = U(n). Then there can be no
v+ 1 € [V(n),U(mn)r with crit(F,) > dom(G), as n* is minimal with this property. So
suppose n* < (. Then ( is a successor ordinal, v + 1. Let p = T-pred(y + 1). Then
p <t <. If p<n*or ait(F)) < dom(G), then actually crit(F)) < dom(G) < A(F,)

oT
. « T - .. . . U(n)
(since n* < 7). Then as F. is (the trivial completion of) an initial segment of tulfnvl’?(?a%)’
oT A .. A
dom(G) ¢ ran(turpfgz’;%)) - ran(ta%"), contradicting that ta%” (dom(F)) = dom(G). If n = ¢,

then replacing ;) with @ produces the same contradiction. So 7* = p € [V(n),U(n)]r and
crit(F) > dom(G). It follows that 7* is as claimed. O

Now assume T7(G) is well-founded, so that it has well-founded final normal tree
W (T, Tue),G). We want to show S™(F) is well-founded, too. For this, we just need
to see that W(S,, S¢, F) is well-founded, which we’ll get by producing a total extended tree
embedding I' : W(S,), S¢, F) = W(Ty, Tu(e), G). We'll also check that A extended by T is a
meta-tree embedding from S™(F) into T™(G).

I' will be the copy tree embedding associated to (A¢, Iy, F, G). So we need to see the
Shift Lemma applies to (Ag, Ty e, F,G). Let B = B(Se, F) and B = B(Tue), G). Recalling

what this means, we need to verify the following.

(1) Q€ [UAE (55>7UA5 (a)]TU(g)a

(i) G = sas(F),

(if) st [ dom(F) = 535 | dom(F),
(iv) AglB+1=~T,,-18+1,

(V) Ty 1B+1="Tye 18 +1,

(vi) B € [oPro (B), ulro (B))7,.,

(vii) if 5+ 1 < I0(S,), then dom(F) < M [In(ES"),

Ly T Ty
(viil) if 8+ 1 < 1h(7,-), then dom(Fg(g)) < My" [Ih(E,"),
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(ix) if W(Ty+, Tu(e), G) is in the dropping case, then W(S,, S, F') is in the dropping case,
and

(x) if W(T,+, Tu(e), G) is not in the dropping case, then tg”‘”* [dom(F') = Sgg dom(F).

(i)-(iii) are immediate since G is an adequate Ag-image of F. (vii) is immediate since S is a
meta-tree and (v) and (viii) are immediate since T is a meta-tree.

For (iv), if n* = U(n), then Lyppe = Ay and if n* < U(n ) then Claim 1 gives 5] > f8
which implies A, [ 3+1 ~ [54— 1 (smce it implies that v'»n* (3) = v21(B)). Since elther
n=~¢orelsen <& and B < a so that, by Proposition 3.2.2, A [+ 1~ A, [ B+ 1, this
gives (iv). Now, since G is an adequate Ag- 1mage of F, we have 8 € [v2 (5)7UA5(5)]7’U(5>
so that Proposition 3.2.2 again implies 8 € [v27(3), u™ (/B)]TU(E)' Since either n* = U(n) or

else ] > 3, we have § € [v"nr (57), ulnr (67)] 7. as well (since § < 3] = crit(u®vm) and
Ay =@ 0Ty, ie. (vi) holds. )

For (ix), suppose W (T, Ty (e), G) is in the dropping case. First suppose n < &. If 8 < oz%
or = a,SL but § < ag*, the argument from the proof of (ix) in the copying construction (in
the case f¢ < &, or Br = &, but B¢ < ) gives W(S,), S¢, F') is in the dropping case, t0o.

So suppose 3 = ai and 8 = 045*. If n* = U(n), then since Fl?fr(n) = t (FS) is an

adequate A,-image of FE, the argument from the rest of the proof of (ix) from the copying
construction gives that W(S,], Se, F) is in the dropping case. So suppose n* < U(n) and let
v+ 1 be the successor of #* in [V'(n),U(n)]r. By Claim 1, we have dom(G) < crit(F) and

ﬁ?f > 3, so that BT = 04 as well. If there is a P <M { T
then W(Ty (), G) is in the droppmg case and we get W(Sn, Se, F') is too. So suppose there

is no such P. Then the least level P projecting across dom(G) must be past dom(F}). It
follows that W(T,-, 75, F)) is in the dropping case as well. By hypothesis (2)(c), we have

uln (ay) € dom(uq);{*’U(")), so that u'n(ap) < ] = ay.. But ap. = g7 < ulnr (o))
because we are still blowing up F, to Fl?fr(n) along [V(n),U(n)]r. So, since we're in the

dropping case, u'»* (o)) = ay. = (7. So either o) +1 = 1h(S,) and there is a P < M ; T

(F,%) projecting across dom(G),

o (af)

’7'*
MEE o)

w N (a%)

projecting across dom(F,) or a% + 1 < Ih(S,) and there is a P < M }’n (o)
u ’ an

projecting across dom(F}). In either case, the elementarity of tZg*"* (or the fact that we drop
n
along v"n* (ap)-to- ulnn* (af), if we're in the former case but do drop along this branch, as
in the proof of (1) from Proposition 3.1.53), gives that W (S, S¢, F) is in the dropping case,
too, as desired.
If n = &, the proof is basically the same, replacing a with & and a with « if also

n* =U(n) =U(E), F) with F, and Ffj,, with G. This finishes (ix).

Finally, for (x), 1f n* = U(n) then the proof of (x) from the Copying construction works,
so we may assume n* < U(n). Suppose that tg""” I dom(F') # 537 7" 1 dom(F). So we
must have 3 < ulm7*(3); let 7 + 1 be the successor of 3 in [vTnn* (ﬁ) utnr (B)]7... Our
hypothesis gives crit(ET"*) < crit(G). By Claim 1, we have crit(EZ’*) < crit(FJ). It

follows that crit(E :(") ) = crit(E;r”*) and = %(n)-pred(u‘pg*ﬂ(n) (7) +1). This gives
u n*,U(n) (T)
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that t?” [ dom(F) # sg’é [ dom(F'). So the proof of (x) from the copying construction

gives that W(%(n),%(g):G) is in the dropping case. Since either 5+ 1 = lh(7,+) or else
l(h()E;U(T”) < lh(E;”*), this implies W (T,+, T (¢), G) is in the dropping case, too. This finishes
X).

By the Shift Lemma, we have W(S,,Se, F') is well-founded and I' : W(S,, S, F) —
W (T, Toe), G) is the unique tree embedding such that I'[a + 1~ A¢[a + 1, u''(a) = a,
and I o @515t = @TvTu©:C o', .. Tt’s easy to see that this implies &“(D is a meta-tree
embedding from ST (F) into T™(G) and is the unique such meta-tree embedding extending
A. O

This proposition immediately implies that the successor I'-maps must be given by the
Shift Lemma. Since the commutativity conditions guarantee that the limit I'-maps are direct
limit tree embeddings (as mentioned in the proof of Proposition 3.2.2), this implies that S,
T, and the U-map totally determine A.

Proposition 3.2.4. Let A = (U, V, {Tetecins), {Actcri<ims)) be a meta-tree embedding from
S into T. Then for all §+1 < INS), letting n = S-pred(§ +1) and n* = T-pred(U () +1), the
Shift Lemma applies to (Ag, 'y, Fgg, FqUT(g)) and U'eyy is the copy tree embedding associated
to (Ag, Ty pm, F§S, Fl}r(g)).

Proof. The definition of meta-tree embedding immediately gives that the extended tree em-
bedding AT€+1:S1E+1— TU(£) 41 together with F = Ff and G = Fg(@ are as in the
hypothesis of the previous proposition, so that the proof of that proposition gives that the
Shift Lemma applies to (Ag, Ty - Fgg, Fg(é)) and I'¢y4 is the copy tree embedding associated

777”7 Y
to (Ag, T F§S7Fg(g))? as desired. ]

R/

3.2.2 Lifting tree embeddings

Meta-tree embeddings come up naturally in a couple contexts. First, we’ll see that for
U : T — T a tree embedding between normal trees on the last model of some normal tree
S, we can lift ¥ to a meta-tree embedding from W(S, T) into W(S, T), assuming these are
well-founded. This is the content of the next theorem.

Theorem 3.2.5. Let S, T, and T be normal tree of successor length with T and T on M$
and W : T — T an extended tree embedding. Let ji greatest such that W(S,T | u+ 1) is
well-founded and p greatest such that W(S,T [+ 1) is well-founded.

Then u¥ (i) > p and there is a unique partial meta-tree embedding with mazimal domain
AWES, TIa+1) = WS, T+ 1) with U-map u”.

Moreover, for & < i such that U(£) < pu, letting Re be the last model of W (S, T 1€+ 1)
and o¢ : Mg — R¢ the embedding normalization map, Ry ) be the last model of W(S,T |

U(€) +1) and oy : MUT(Q — Ryg) the embedding normalization map, oy oty = 580 ¢.

Proof. Let W = W(S, T [ i+ 1) = W, Fe, ®c,)), W =W(S, T [ u+1) = W, Fe, @),

and o : Mg — MZX& o¢ Mg — MOV.Y& the associated embedding normalization maps. So
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we have that F; = 6§(E£T) and Fy = Ug(EZ). We also let a¢ = ozgv, Bg = Bgv, Qg = a}v, and
Be = B¢

Our meta-tree embedding A will have V = v” and U = u¥. We just need to see that
this works, by induction. Using the notation of the “moreover” clause, we have that R is
the last model of W and Ry is the last model of Wk.

We maintain by induction on £ that

1. AT€+1is an extended meta-tree embedding from W € + 1 into W U () +1,
2. for all ¢ € [V(€),U(&)]r, o¢ 0 s¥ = to 0

Note that the maps in (2) may be partial so we just mean that the maps commute on their
common domain. If £ + 1 < 1h(7T), then (2) implies tvof(Fg) = Fy(o).

We start with the successor case. Suppose (1) and (2) hold at £ and £ +1 < fi. We first
need to show the following.

Claim 1. For all ¢ € [V(€),U(&)]w, u"s¢(ag) € dom(u®v®).

This is not immediate from (2) alone, as it seems possible that tgg’C(Fg) € dom(tif‘U(g))

even though u'e¢(ag) € dom(u®ev©), as tgg’c(ﬁg) € dom( fé’U@) may appear on an earlier
model, to which we drop.

Proof. We'll show by induction that for all ¢ € [V(&),U(&)]w,
i if ¢ < U(§), letting v + 1 be the successor of ¢ in [V(&),U(&)]w, either

(a) By < a(We, tsi (Fe)) = ules(ag) or
(b) a(We,tsi (F)) < B, = us<(ag),

ii. ulec(af) € dom(uer®).

First, assume that (ii) holds below ¢ and (i) holds at (. We'll show that (ii) holds at (.
This is trivially unless ¢ < U(), so suppose ¢ < U(&) and let v + 1 be the successor of { in
[V(€),UE)]r. Since sf(E]) € dom(i] ), there is no level of MZ!lh(sg’C(Eg)_) projecting
across dom(ET). By (ii) below ¢ and (2), it follows that no level of Rdlh(tg?c(Fé)) projects
across dom(F). It follows that tgi’g(ﬁ’f) € dom( ic,wa))_ So we must have a(W,, tg?c(l:})) €
dom(ucbgU(é)). So if (i)(a) holds, then u"¢<(a;) € dom(u®sv®). If (i)(b) holds, we also have
uls< (@) € dom(u®ev®); as B, € dom(u®v®). So (ii) holds at (.

Now suppose (i) and (ii) hold below ¢, ¢ < U(§), and let 7 + 1 be the successor of ¢ in
(V(&),U(&)]w. We'll show that 8, < ule<(ag). Suppose not. Then ag +1 < Th(W), as T¢ is

an extended tree embedding, u'¢<(ag) is in the domain of u®<v© and lh(EV:“}g ‘(s )) < Ih(E).
B B u S Oé§

It follows that to7 ! [Th(En)+1 = toe7*! [Th(ExS)+1. But since u's<(ag) < B, taf = 155,
so that by (2), Fye) = tﬁi‘(ﬁ}). But since tEE’C(F’g) is on the R¢-sequence, we must have
lh(tg?c(]:})) < (EY . ) <Ih(F). But Ih(Fye) > Ih(F,) since U(£) > v and W is a

u"6:¢ (ae)
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meta-tree. This is a contradiction. So 8, < u'¢<(ag). We reach the same contradiction if
lh(E e (a )) < crit(F,), so crit(F,) < lh(EV\;gc(f )) as well. We'll use these facts to prove
B3 u S5 (ag

(i), by induction on (.

For the base case, we show (i)(a) holds at V(£). Since lh(tgi(pg)) > sup{lh(F,) + 1 |
n < V(€)},'" we have by Proposition 3.1.54 that a(WV(g),tgg(Fg)) = u'¢(ag). Since 3, <
u'¢(ag), this gives (1)(a). By Proposition 3.1.50, we have that &(Wc,tg?c(pg)) = ulec(ag)
whenever ( is a limit ordinal, so that (i)(a) must also hold at limit ¢ € [V(£),U(&))w.
So suppose (i) holds at (; we want to show that (i) holds at v + 1, the successor of ¢
in [V(£),U(¢)]w. So suppose v+ 1 < U(&) and let 7 4+ 1 be the successor of v + 1 in
V(£),U(&)]w. First suppose that (i)(a) holds at ¢. If dom(F,) < 1h(t§§<(F§)), then we
must have @(Wy+1,tg§’7+l(F£)) = u"e+1 (@), too, since every exit extender of W, 1 used
below u"¢7+1 (@) has length < 1h(F,) < lh(t4 ?E”“ (F¢)) or else is the image under trm“ of an
extender of length less than 1h(t£§<(F§)) since (i)(a) holds at ¢. Since 8, < ule v+1(a§) this
gives (i)(a) at y+1. Now suppose dom(F;) > lh(¢ gg “(F¢)). Then we must have 3, = u"s<(ag)
since we've shown 3, < u'¢<(ag) but cannot have dom(F,) < lh(E ¢) for any p < ute<(ag),
as Ih(E)) < 1h(t F“(Fg)) for all such p, since we have a(Wg,tgzg(Fg)) = ule¢(ag). Since
crit(F,) < lh(¢ FSC(Fé)) < dom(F,), we have &(le,tg?”“(lﬁé)) = a,, by Proposition
3.1.50. Now 3, > a, + 1 by the normality of W and u"¢2+1(a¢) = a,, + 1. So since 3, <
u'er+1(ag), we must actually have 8, = u'¢ +1(ag). This gives (i)(b). This finishes the case
that (i)(a) holds at ¢. So now suppose (i)(b) holds at (. Then since oz(Wg,tg?C(Fg)) < B,

we have dom(F,) > lh(E OV F“(F ))) > lh(tgé‘g(ﬁ‘g))). So we have crit(F,) < lh(tggg(ﬁ’g)) <
t 3

dom(F,), which gives a(WA,H,tEZ TF)) = a, and B, = a, + 1 = uferi(ag), as in the

previous case. So (i)(b) holds at v+ 1. This finishes the successor case O

Now let n = W-pred(¢ + 1) and n* = W-pred(U(¢) + 1). Since W and W have the
same tree-order as S and T, respectively, we have n* € [V(n),U(n)]w, since ¥ is a tree
embedding. By condition (2) of our induction hypothesis, we have tvof(Fg) = Fy(e)- By our
claim and since h(Fy ) > sup{lh( a)+ 1| n < U}, as W is a meta-tree, Proposition

3.2.3 implies that we can extend A € + 1 to a meta-tree embedding from W [ € + 2 into
W U() + 2. Recalling the proof of that proposition, we just extend A € 4+ 1 by letting
[¢y1 be the copy map associated to (Ag, Ty, ¢, Fe, Fiy (¢))- Using conclusion (a) of the Shift
Lemma, hypothesis (2) at 7, and the definition of the embedding normalization maps, it is
straightforward to verify (2) holds at £ + 1 for ( = V(£). We get our meta-tree embedding
ATE4+2:WIE+2— WIU(E+ 1) + 1 by setting Aci1 = Py(e)u(e) © Leqr. This gives (1).
Using that (2) holds for ¢ = V(€ + 1), the definitions of the embedding normalization maps
of W give that (2) holds at all ¢ € [V(§+1),U(€ + 1)]w. We leave it to the reader to verify
this.

At a limit A\, we have that V”[0, \)yw is a cofinal subset of [0,V (\))w, since WU is a tree

1"We have 1h(F¢) > sup{Ih(F},) +1 | n < £}, which implies Ih(F¢) > sup{lh(Fy(,)) +1 | n < &}. This gives
the desired inequality because V(f) =sup{U(n) | n < &}.
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embedding, V = v¥, and W and W have the same tree-order as S and T, respectively, so that
the commutativity conditions so far guarantee that there is a direct limit tree embedding
Oy WIA+T = WIV(E) +1. We then let Ay = Oy n,um) o La. It is easy to see that
extending A I'A by I'y and A, gives us our desired meta-tree embedding A TA+1: W]
A+1—=WIU)+1,1ie (1) holds at A. (2) is straightforward to check using the definition

of the embedding normalization maps; we leave this to the reader. O

We call the meta-tree embedding A from the previous Theorem the lift of ¥. As a
corollary we get the following result.

Theorem 3.2.6. Let M be a premouse, k < 0 regular cardinals, and ¥ a (k,0)-strategy for
M with SHC™ which bottom-up normalizes well. Then all tails of ¥ have SHC™.

Proof. Let S be a stack on M by ¥ with last model P. Let U : T — T be a tree embedding
with 7,7 normal trees on P with 7 by ¥. We want to show 7 is by ¥. By truncating
T if necessary, we may assume VU is an extended tree embedding. Let W = W(S), which
is well-founded and by X, since ¥ bottom-up normalizes well. Let o : P — MY be the
associated embedding normalization map. Then there is a tree embedding o¥ : 0T — o7,
and 0T is by ¥y yw, since ¥ bottom-up normalizes well. It suffices to show that W (W, oT)
is by ¥, again by bottom-up normalizing well. We have that W(W, ¢ T) is well-founded and
all of its trees are by ¥ (by bottom-up normalizing well). By Theorem 3.2.5, we have that
W(W, oT) is well-founded, too, and there is a meta-tree embedding A from W(W, oT) into
W(W,oT). In particular, we have the last [-map of A is a total extended tree embedding
from W(W, oT) into a tree by ¥, so that SHC™ gives W(W, oT) is by ¥, too, as desired. [

3.2.3 Normalizing stacks of meta-trees

In this subsection, we study another source of meta-tree embeddings: the analogue of em-
bedding normalization for meta-trees. As one might expect, this will be used in the proof of
Theorem 3.1.44. We start with the one-step case.

Given meta-trees S, T of lengths and an extender ' on ML, we want to define a meta-
tree W = W(S, T, F) and an extended meta-tree embedding A = ASTF from S into W.
Moreover, we will have that the last tree of W is just W (Sw, Too, F') and A, the last A-
map of 5, is ®9<-T:F g0 that this analogue of embedding normalization is really producing
an analogue of full normalization. It’s hard to point to an intuitive explanation of this fact,
but one reasonable intuition is that meta-trees are basically coarse-structural objects—all
the fine structure occurs one-level down, in some sense. Ordinary embedding normalization
also coincides with full normalization in the coarse setting, i.e. for nice trees on V.

For a meta-tree T = (7, F¢, @, ¢) of successor length and F' on the sequence of the last
model of T, we define

a(T, F') = the least £ such that F' is on the MZ-sequence,
b(T, F') = the least n < a(T, F') such that n = a(T, F') or
n <& <a(T,F) and crit(F) < A(F).
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Note that a(T, F) is also the least £ such that £ +1 = 1h(T) or £+ 1 < Ih(T) and «(7e, F¢) <
(T, F).

Let S = (S¢, Fe, @), T = (Te, Ge, U,y ¢), and F' on the sequence of the last model of T.
Let a = a(T, F) and b = b(T, F'). Suppose that S[b+1 =T [b+ 1 and if b+ 1 < Ih(S),
suppose that dom(F') < lh(Fy).

We define W = W, He, 11, ¢) and A= (U, V,T'¢, A¢) inductively as follows. First, we let
Wla+1=TJa+ 1. We put

¢ if &€ <b
U(€>_{a+1+(§—b) ife>b’

and V(€) = sup{U(n) + 1| < €} )
We let H, = F, Wy = W(Sy, Ta, F), and let A b+ 1 be the identity tree embedding
onSTb+1=TI[b+ 1 followed by A, = &0,

The dropping case. Suppose that b+1 < 1h(S) and some P<1MZX”|lh(Fb) projects across
dom(F) or b+ 1 = Ih(S) and some P < MX” projects across dom(F). Then we stop, so that
W =T [a+ 17(F). In this case, we must have W(S,,7,, F) is in the dropping case and
W(Sy, Ta, F) = W(Suo, Too, F) is the last tree of W (using here that S, [af +1 = Sy [} +1).
We also have that and A is an extended tree embedding from S [b+ 1 into W with last tree
embedding A; = ¢ 7a " = §SeTa ",

The non-dropping case. Suppose we're not in the dropping case. Then if b+ 1 < 1h(S),
we continue building W by using images of the extenders of S. We’ll maintain the following
by induction on £ > b.

1L A= (UE+1,V[E+1,{0,} <, {2, }n<e) is an extended meta-tree embedding from
STé+ 1 into WIU(E) + 1,

2. Wye) = W(Se, Ta, F) and Ag = @570,

Note that there is a lot built into (1); for example, we must have I'c = A, for & > b by our
choice of U.

We've already established the base case £ = b. So suppose £ > b and (1) and (2) hold at
all ( <¢. Let n = S-pred(§ + 1). There are two subcases depending on the critical point of
Fé'.

First suppose crit(F;) < crit(#). In this case n < b and crit(Hyg)) = crit(tvog(Fg)) =
crit(F), since t5 has critical point crit(F'), by our induction hypothesis (2).

Since Wb+ 1=S[b+ 1, we must put n = W-pred(U(§) + 1), as dictated by normality.
We let Wyey+1 = W(Wy, Wu(e), Hu(e)) and, we let I'cyq be the copy tree embedding given
by associated to (A¢, Iy, = Id, Fe, Hy(¢)). It is easy to see that Proposition 3.2.3 applies here
since either A¢ = T, so is total, or else £ = b and «(Sy, F},) = af € dom(u”) because we're
in the non-dropping case (even though W (S, 7., F') may be in the dropping case, we have
either af +1 = 1h(Sy) or af + 1 < 1h(S) and no level of Mfé’ﬂh(Fb) projects across dom(F)

so that if W (S, 7, F) is in the dropping case, we must have of = 5(T,, F) € dom(u®?)).
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So the Shift Lemma does apply to these objects, by the proof of that proposition. Since
€+ 1>0b, we also let Agyy = I'eqy. This maintains (1) by Proposition 3.2.3. To see (2), we
show that Wy(e)41 = W(Set1, 7o, F) and ey = PSe+1: T gimultaneously.

Let W = W(S@rl, To. F) and I' = @S+ 70l Let @ = oS, F) and o = a(Wye), Hue))-
Let & = ¢SnSefe and & = WV fue© . We show T' = T'¢yy by showing it satlsﬁes the
conditions which uniquely determine I'¢y; in the conclusion of the Shift Lemma. First we
show that I'fa+1 =T¢[a+1 and u' (@) = o, which guarantees that T [a+2 = T¢q [a+2.
From here, we’ll show by induction on ¢ < lh(S ) that FTod[(+1=®[C+1and W]
u®(¢)+1 = Wy(e)+1 [u®(¢) +1, which establishes I' = I'¢;; by the remaining commutativity
condition I'gy; o ® = ®, which uniquely determines the rest of I'c,;. Note that we're using
in several places that I'), = Id.

We have that Sepy [a+1 = S a+1, sothat Wla+1= Wue | o+ 1 and
Fla+1= Ieqr [ @+ 1, since both are just given by one-step embedding normalization
W(S:la+ 1,8, F), by (2) at & Moreover, u' (@) = u”¢(a), since both of these u-maps
are just the wu-map of the embedding normalization by F' (for Ag, this is our induction
hypothesis (2)). We have that F; = E et and so £t = = T agrees with 55 on F¢ (as either
Ih(Fe) < lh(ng) or a+1=1h(S;)). It follows that Hy ) = EZV so that u" (@) = a. This

Ta)?

establishes T'[& + 2 = [eyy @ + 2. o

For the rest, we show by induction on ¢ < 1h(S,) that To® [ +1=® [+ 1, ut°®(() =
u®(¢), and Wu®(C) + 1 = Wy(e)41 [u®(C) + 1. Let § = B(S, Fe) and = B(Wu(e), Hu(e))-
We have that = /3 by our case hypothesis and so v® [ 5+ 1 = v® | B+ 1 = id. Also by
our case hypothe51s we have o' [ﬁ +1=id,soTo®[f+1=D[B+1= Ids,j341. Since
u" agrees with o' on @ + 1 and u' (@) = «, as already established, we get u?(f) = a+1
so u°®(B) = ul(@+1) = a+ 1. We also clearly have u®(8) = a + 1 (since ® is just
one-step normalization by Hy ), so u'°®(8) = u®(8). Moreover, we already established
Wila+1 =Wy la+1=Wye4 [a+ 1, as desired.

Suppose now C > [ and our mductlon hypothesis holds up to (. We have that the exit

extenders EY 2 ( and E ‘I’(C; are equal since they are both images of EC under the same

t-map (our mductlon hypothesis implies the (th ¢- maps of ['o ® and ® are the same). It
follows that W and Wye)11 agree up to v®(¢ + 1) =u®() +1and ' o ® and ® agree up
to ¢ 4+ 2. Since ¢ 4+ 1 > 3, we get that «® and u® agree with their corresponding v-maps on
¢ 4+ 1. Moreover, since u®(¢) > a > a(7,, F) (using here that £ > b so U(§) > a), we have
that u' agrees with v above u®(¢). So u'°*(¢ +1) = v"°?(¢( +1) = v®({ + 1) and the trees
agree this far, too.

~ Both trees must pick the same branches at limits, as well, since at limit A\ = v®(\) =
v'°®(X), both trees must pick the image of [0, A)s, under the same map. So as long as we
don’t reach ill-founded models, this agreement continues through limits. This finishes the
induction, establishing (2) holds at £ + 1, in the case crit(F;) < crit(F).

Now suppose crit(F¢) > crit(F'). In this case n > b and crit(Hyg)) > A(F). It follows
that a+1 < U(n) = W-pred(U(§)+1). Where we used I';, above, we must now use A,, which
is, in particular, not the identity. We let Wyey4y1 = W(Wu(m), Wou(e), Hue)) and I'eyyq the
copy map associated to (A¢, A, Fe, Hyg)), which is possible via Proposition 3.2.3, as before.
We let Agyy = ey, which maintatins (1). Let W = W (S¢t1,7a, F) and [ = ¢ServTal
Again, we must show that I' satisfies the properties in the conclusion of the Shift Lemma
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which uniquely specify I'cy;.

Getting I'[ & + 2 = [¢yy [ @ + 2 is the same as before. For the rest, we now want to see
that T o ® = ® o A,,, where ® is as before and & = Vv Wu@ - Hu©), The argument here is
the same as in the previous case: we get agreement up to 5 + 2 for free and then use that
the remainder of our trees and tree embeddings are given by images of S, under the same
maps. We leave the details to the reader. This gives (2) at £ + 1 and finishes the successor
case.

Now suppose our induction hypothesis holds below some limit A > b. We must let Ay =
'y be the unique tree embedding from Sy = limp ), (S [ A) to Wy = limg y ), (W [ V(X))
which commutes with the rest of our embeddings. By Lemma 3.1.61, we must have that
Iy = ®5»7=F  This maintains (1) and (2) and finishes the one-step normalization.

For normalizing an arbitrary stack of meta-trees (S, T), we’ll need to talk about direct
limits of systems of meta-trees under meta-tree embeddings. Our analysis of direct limits of
trees under extended tree embeddings from §3.1 carries over to meta-trees under meta-tree
embeddings in the natural way.

Definition 3.2.7. A directed system of meta-trees is a system D = ({Tq taca, {8} o),
where < is a directed partial order on some set A and

(a) for any a € A, T, is a meta-tree of successor length,
(b) for any a,b € A with a < b, A% . T, — T, is an extended meta-tree embedding,
(c) for any a,b,c € A such that a < b =< ¢, Ane = Abe o Aab,

We define lim D similarly to before, except we replace the parts of the tree embeddings
with the corresponding parts of our meta-tree embeddings, e.g. we form U-threads x using
the U, and form trees 7T, by taking direct limits along AZ’(I;) instead of the t-maps, provided
that enough of these are total. We also define systems Ao which, when the direct limit is
well-founded, are extended meta-tree embeddings from T, into lim D.

We say lim D is well-founded if all the 7, are defined and are actually normal trees, the
order on U-threads is well-founded, and the direct limit object is an meta-tree. Like in the
case of direct limits of trees under extended tree embeddings, the last two conditions follow
from the first.

We get that this construction really identifies the direct limit in the category of meta-trees
(of successor lengths) and extended meta-tree embeddings between them, i.e. we have

Proposition 3.2.8. Let D = ({Ty Y aea, {A}axs) be a directed system of meta-trees.
Suppose there is a meta-tree S and for all a € A extended meta-tree embeddings I -
T, — S such that whenever a < b, I’ = A%b o .
Then the direct limit lim D is well-founded and there is a unique extended meta-tree
embedding II:limD — S such that i = Il o A° foralla € A.

Now, given a stack of meta-trees (S,T), with S = (S¢, F¢, Ppe), T = (T, Ge, W),
we define W(S,T) as the last meta-tree in a sequence of meta-trees W¢ = (WE,FS of
successor lengths, for £ < Ih(T). We also define (partial) extended meta-tree embeddings
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A€ LW — WE for n <r & Of course, our construction only makes sense as long as we
never reach ill-founded models, in which case we’ll say that W(S, T) is well-founded.
We maintain the following by induction.

LWL =T

2. forn <& Wa(W,G,) +1 =W a(W7,G,) +1
3. forn <¢, G, = Ff(W",Gn)’

4. for ¢ <pn <y & At = Anéo Ao,

5. fornp <p & AL =, ..

To start, W° = S. Given everything up to W¢, let 7 = T-pred(¢£ + 1). We want to set
W = W(W7, W Ge), so we need to see that the agreement hypotheses of the one-step
case are met. If 17 = f , this is trivial, so assume n < £. By our induction hypothesis (3),
we have that G, (WU G,)- By the normality of T, we have that crit(Ge) < A(Gy), so
b(We, Ge) < a(W“, G,). If b(W'£ Ge) < a(W", Gn) we’re done by our induction hypothesis (2)
and if b(W¢, G¢) = a(W", G,)) = Ih(W") — 1, we're also done (since F,(W¢, G¢) is undefined).
So assume b(W*, Ge) = a(W",G,) < Ii(W?) — 1. Then Fly, ¢ , is defined, but as G, is
on the sequence of the last models of both WQ(W”,Gn) and 7,, the last tree of W, we must

have that Th(F}y, o ) = I(Gy). So the hypotheses of the one-step case still apply. We

also put Al = AWWECe apd AGE+H! = Anétl o ASn whenever ¢ <p 1. By our work in
the one-step case and our induction hypothesis at n and &, it’s easy to see all our induction
hypotheses still hold at £ + 1.

At limit A we take the extended meta-tree embedding direct limit along the branch chosen
by 7. That is, letting Dy = ({W"}, ..», {&"’5}773?5@)\% we let WA = lim Dy, if this is well-
founded. The last tree of W* is the direct limit of the 7, under ¥, ¢ for n <p & <1 A by
our induction hypotheses (1) and (5), which is just 7Ty (since T is an meta-tree). We also let
A" be the direct limit meta-tree embeddings. It’s easy to see that this maintains the rest
of our induction hypotheses. This finishes the limit case and the definition of W(S, ']T)

For a finite stack of meta-trees S, we also define, by induction, W(S) = W(W(STn),S,).

This definition makes sense since, by induction, W(S) and S have the same same last tree.

Definition 3.2.9. Let S be a normal tree of successor length, 8 a regular cardinal, and ¥ an
(w, #)-meta-iteration strategy for S. ¥ normalizes well iff for any finite stack of meta-trees
S by 3, W(S) is by ¥ (in particular, it is well-founded).

Proposition 3.2.10. Let M be a premouse, 6 a reqular cardinal, and 3> a 0-iteration strategy
for M with SHC=. Let S be a normal tree on M by ¥ of successor length j0. Then X%
normalizes well.

Proof. By induction, we just need to verify this for stacks of length 2. By our characterization
of %, we just need to see that all the trees in all the W& = W(S, T £+ 1) are by ¥. We do
this by induction. At successors, all our new trees are all of the form W (U, V,G) for trees
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U,V which are by X, so W(U,V,G) is by ¥ by SHC™. At limit )\, we have all the W¢ for
€ < X are by ¥* and we want to see the direct limit along [0, \)y is by X*. The trees of
the direct limit are either trees of W¢ or else are (non-trivial) direct limits along one-step
embedding normalization tree embeddings by the extenders of [0, A)y. All these non-trivial
direct limit trees agree with 7\ up to dx + 1, where 0y = sup,,{a(T¢, G¢) | £ < A}, which is
by ¥. At limit ordinals v > J, in these direct limit trees, the branches are images under the
v-maps of earlier trees which are by ¥ and so must be by ¥ by SHC™. O

We can now easily prove Theorem 3.1.44.

Proof of Theorem 3.1.44 Let S be a normal tree by ¥ of successor length and (S, T) be
a stack by X5 with last tree Y. Since X% normalizes well, U = W(S,T) is by X%, and
is a meta-tree with last tree . Since A®* : S — U is a meta-tree embedding, we have
A% o &, = . We have ®° = ®; ,, Of 000 = = &Y, and, by (5), A%>® =T, = dT. So
®Y = BT o 5. Any drop along the main branch of U comes from being in the dropping case
at some stage in forming W(S, T) along the main branch of T (and so comes from a drop of
T), or else is the image of a drop coming from S under the resulting meta-tree embedding.
It follows that U drops along its main branch iff (S, T) drops from S-to-U.

O

3.2.4 Uniqueness of embedding normalization

When we defined the embedding normalization of stack of normal trees S, W(g ), we chose
to iteratively embedding normalize pairs of normal trees, going from left-to-right. This is ba-
sically an arbitrary decision: for example, we could normalize the stack (S, 7T, U) from right-
to-left as well, producing the normal tree W(S, W (T ,U)) (assuming this is well-founded).
In this section, we’ll prove that any way of normalizing a stack actually produces the same
final normal tree, answering a question of Steel. We’ll use this result to show that bottom-up
normalizing well passes to tail strategies.

We need some terminology for discussing different potential embedding normalizations
of a stack of normal trees.

Definition 3.2.11. Let S be a stack of normal iteration trees of length n € w. A putative
embedding normalization sequence for S is any sequence of stacks of putative normal trees
obtained by iteratively normalizing pairs of adjacent trees until we reach an ill-founded model
or end up with a single normal tree, that is a sequence <§0, e ,§m> such that

(i) 8=,
(ii) either m =n—1or m < n—1 and the last tree of S™~1 has an ill-founded last model,
(iii) for i+ 1 < m, Si is a stack of normal trees and there is a k < n — i such that S™1 is
SUTE(W(SL,Si)) " os (ST (K +1,n — 1)),
where we build W (S}, S +1) until we reach an ill-founded model, and if W( 1, Shy) IS

well-founded, then o; : M;'5012+1 — M W(SkSi) is the associated embedding normaliza-
tion map and o; (Si [(k+1,n— z)) is the stack of putative normal trees obtained by

102



copying S I (k+1,n—14)] under o; as long as possible (i.e. we stop when we reach an

ill-founded model).

An embedding normalization sequence for Sisa putative embedding normalization se-
quence for S consisting of stacks normal tree, i.e. in which we never reach ill-founded models.
A normal tree T is an embedding normalization of S if there is an embedding normalization
sequence for S with final stack (T). Tt is easy to see that the last stack of any embedding
normalization sequence must consist of a single normal tree.

We’ll show that all embedding normalizations of a stack are the same, as are the resulting
embedding normalization maps. This is an easy consequence of a kind of associativity of
embedding normalization: for any stack (S,7T,U), W(S,W(T,U)) = W(W(S,T),cld),
where ¢ is the embedding normalization map from the last model of T to the last model of
W(S,T).

First, we’ll show that embedding normalization is continuous in the sense that it com-
mutes with taking direct limits. This will be important for dealing with limit stages in our
inductive proof of associativity.

Theorem 3.2.5 implies that we can lift directed systems of trees to directed systems of
meta-trees via the embedding normalization process.

Proposition 3.2.12. Let S be a normal tree with last model P and D = ({T }aca, {Wapta=b)
is a directed system of trees on P and suppose for all a € A, W(S,T,) is well-founded.
Then there are (unique) meta-tree embeddings A**  such that D* =
{W(S, To) Yaen, {A®Y o) is a directed system of meta-trees, US™" = wYb, and for
o¢ the embedding normalization map from MZ" into the last model of W(S, T, | € + 1),
b Vap _ e a
Opvasiey Ole " =los ©OE.
We call this D* the lift of D.
For D = ({T,}aea, {A%},<p) a directed system of meta-trees, and B C A, we define
D [B = <{Ta}aEB{Aa7b}ajb/\a,b€B>'
The following is immediate from Proposition 3.2.8.

Proposition 3.2.13. Let D = ({Ty}aca, {A}azs) be a well-founded directed system of
meta-trees such that im D is well-founded. Suppose that B C A is such that for every a € A
there are extended meta-tree embeddings =T, — lim(D | B) such that for every a,b € A
such that a = b, Za o Awb — Ze,

Then im D = lim(D | B).

Note that any <-cofinal B C A satisfies the hypothesis of the proposition, for example.
Now we’ll show that embedding normalization is continuous.

Theorem 3.2.14. Let S be a normal tree with last model P, D = ({Ta}aca, {%apb}a=p) be
a directed system of trees on P such that W(S,T,) is well-founded for every a € A, and let
D* be the lift of of D.

Suppose that im D is well-founded. Then for any p, UimD* | u + 1 is well-founded iff
W(S,im D[ p+ 1) is well-founded and imD* [+ 1 = W(S,limD [ u+ 1).
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Note that this implies, in particular, that if limD* is well-founded, then the full
W(S,lim D) is well-founded, and vice-versa. In this case, looking at the last tree on ei-
ther sides gives us im{({W (S, T2) }aca, {A%}a<p) = W(S,lim D).

Proof. First notice that since lim D is well-founded and the underlying partial orders of D*
and D are the same, we have that the order on U-threads of D (which are just u-threads of D)
is well-founded. So we can let ©* be largest such that lim D* [ u* 41 is well-founded. We also
let p be largest such that W(S,1lim D) [ + 1 is well-founded. For every a,b € A such that
a = b and every £ < 1h(7,), we have Ag’b cW(S, Ta €+ 1) = W(S, Ty [u®®(€) + 1), where
u®® = yYat. For z a u-thread, we let D, = (W(S, T, [ x(a)+1), Ag’(l;) | a,b € dom(z)Aa < D),

and D% the lift of D,, so D% is just the system (W(S, T, [ x(a) + 1), Awb fz(a)+1|a,be

a,b
dom(z) A a < b). We also let Tg’b —

We let M, and E, be the models and extenders of limD. If x + 1 has rank < lh(lim D)
and x has rank < u, we let o, be the embedding normalization map from M, into the last
model of W(S,limD [z + 1). Also, if  + 1 has rank < lh(limD) and = < p*, we let F,
be the meta-tree exit extender of limD* [ 4+ 1. For a € A and £ < 1h(7,), let of be the

embedding normalization map from Mg; into the last model of W(S,7, [ £ + 1) and for
a =0, let tg’b = t?a’b. We also let t¢ : MZ‘L — Miq¢, be the t-maps of the direct limit tree
embedding from 7, into lim D.

We also A® = (U, VI, A7) be the partial tree embedding from T, into lim D* [ p* + 1.
If [a,€]p < p*, then A® | € + 1 is a total extended tree embedding from T, | € + 1 into

HmD* [ [a,{]p + 1. Let 7¢ = £58. For x a u-thread and a,b € dom(z) with a < b, we have

T;(’Z) 004 = Ui(b) o tg’(z), and since the last model of lim D} is a direct limit of the last

models of the W(S, 7, [ x(a) + 1) under the T;(’Z) and 7¢(a) is the resulting direct limit map,

we get an elementary embedding o from M, into the last model of lim D} with the obvious
commutativity properties. If z +1 < lh(lim D), then since FXSS’T“W“)H) = Jg(a)(E;rE‘a)) for
all a € dom(z), we get that F, = o} (E,).

Finally, if x has rank < p, we let o, be the embedding normalization map from M, into
the last model of W(S,lim D, ). We'll show by induction on u-threads z that the rank of =

is < p iff it is < p* and if rank of x < p, p*,

1. im D = W(S,limD,)

Base case. Let x be the D u-thread of rank 0.
So z(a) = 0 for all @ € dom(x), so T, [x(a) + 1 is the trivial tree on P, the last model of
S. lim D, is also the trivial tree on P. So

W(S, Talz(a) +1) = W(S,limD,) = S.

This gives (1). For (2), we have that o = 0, = id.
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Successor case. Let x have successor rank in <, say z is the successor of y, where y has
rank < g, p*.
By our induction hypothesis (1) at y, we have that lim D; = W(S,limD,). By (2) at y,

we have Fy, = 0,(E,) = 0,(E,). So we get

lim Dy = lim D}, ™ (F))
=W(S,imD,) " (F,)
=W(S,limD,).

This shows (1) and, since we didn’t assume = < u, u*, we get that

x < p* < lim D is well-founded
< W(S,limD,) is well-founded
Sz < .

(2) follows since o, and o are determined in the same way from o, = oy and o, = o7
and the last t-map of the common relevant tree embedding, where z = lim D-pred(y + 1).

Limit case. Suppose x has limit rank and for all y < x, y < p, p*. We get that x < p, p*
for free in this case. For all a € dom(z) and all £ we have

§€0,2(a))7, & [a,&]p <" .

Moreover, any y <* z has the form [a,{|p for some a € dom(z) and £ € [0,z(a))r,. We
define a system of meta-trees C with underlying partial order < on some set C'. =<, won’t
be directed on the full set C, but we’ll look at Cy, C; C C such that =<¢] Cy and =<¢] C) are
directed. We'll have that lim(C [ Cp) = lim D} and lim(C [ C;) = W(S,limD,). We then
show that Proposition 3.2.13 applies to B = Cy N C1, so that

lim D} =lim(C [ B) = W(S,lim D,).

Let C = {(a,€) | € € [0,2(a)]r} U{y | v <* 2}, Co = {(a,6) | £ € [0,2(a)}r.}, and
Cr={(a,8) [ £ €[0,2(a))7.} Uy [y < x}. So B=ConNCy = {(a,§) [ € €[0,2(a))7 }-
For all y <* z, a,b € dom(z), € € [0,z(a)], and n € [0,2(b)]7,, we put

(@,€) Zc (byn) & a=bAu™ (&) <
(a'a g) jC Yy = [aag]'D S* Yy
y=czey<z

We also put y Zc (a,§) for all y <* ¢, a € dom(z), and £ € [0, z(a)]7,

We define meta-trees U, for ¢ € C as follows. For a € dom(x), and ¢ € [0,z(a)]7,, we
put Uge) = W(S, 7. [+ 1). For y <* x, we put U, = limD; = W(S,limD,), using our
induction hypothesis (1) at y.

We define the extended meta-tree embeddings Qed . U, — Uy for ¢ <¢ d as follows. If

(a, &) =c¢ (b,n), we put
Qéa7§)7(b?77) — @W(S 7—b Aa b

uab
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If y <¢ z, and for { < rank of y, we let
Q¢ =1d
and for ¢ = the rank of y (=1h(U,) — 1), we let

Y,z _ FW(S,imD)
QC *(I)y,z

Finauyv if <a7 5) jC Yy, we pUt
ﬁ(a,ﬁ),y — Q[avg]'D:y o Ka I«é— _'_ 1

It is easy to check that whenever ¢ <¢ d =<¢ e, Qee = Qe o e,

We have that A = {(a,z(a)) | a € dom(x)} is a <¢-cofinal subset of Cy, and DX =C | A,
so by Proposition 3.2.13, lim D} = lim(C | Cy). Similarly, {y | y <* z} is a <¢-cofinal subset
of C, so W(S,limD,) = lim(C | C}).

We now show that Proposition 3.2.13 applies to C [ Cy and B. There are two cases
depending on how often x(a) is a limit ordinal.

Subcase 1. x(a) is a limit ordinal on a <-cofinal set.
This is the easy case. For any a such that z(a) is a limit ordinal,

Ulaa(@) = im{Ufa) tear,aa) {2 ec e a@)-

Since ({Uae) te<r, 2(a), {Q(“’é)’(a’”)}ggTaKnx(aﬁ C (C | B), we get a meta-tree embedding
=@2(@) with the commutativity properties of 3.2.13. By our case hypothesis, we can do this
for <-cofinally many a’s, so we can do it for all of them by composing with the Ai’(ab).

Subcase 2. There is a € dom(x) such that for all b = a, x(b) is a successor ordinal.
Fix such an a. Since z doesn’t have successor rank, for all b > a there is a u-thread
yp <* x such that for all ¢ = b with ¢ € dom(y),

V(2 (b)) <7 yole) <7, 2(c).

It follows that there is an extended tree embedding from 7, [ z(b) + 1 into 7. | ys(c) + 1
and so this lifts to an extended meta-tree embedding ' from W(S, T, | z(b) + 1) into
W(S, T Typ(c) +1). We let

é(bvx(b)) é(c,yb(c)) le) fbvc7

where Z(©%(9) is the direct limit meta-tree embedding from Ute(e) = W(S, T Tys(c)+1) into

limC | B. It’s easy to see that the =) meet the commutativity condition of Proposition
3.2.13.

So in either case, we have lim(C | Cy) = lim(C [ B).

Now for y <* z, D, C C[ B and U, = limD,, so we get extended meta-tree embeddings

=Y from U, into lim(C | B) with the commutativity properties of Proposition 3.2.13, as in

Subcase 1 for Cy. This gives lim(C [ Cy) = lim(C | B).
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So lim D} = lim(C | B) = W(S,limD,), giving (1). For (2), o, and o are both just the
direct limit map from M, into the last model of this common meta-tree (such a map exists
because we're obtaining the models on either side via direct limits of maps which commute
with the o, = o for y <* ).

This finishes the limit case and the induction. O

The main step in the proof of the uniqueness of embedding normalizations is to show that
the two embedding normalizations of stacks of length 3 are the same, i.e. W(W/(S,T),old) =
W(S,W(T,U)). We think of this as a kind of associativity of the embedding normalization
operation. We prove this by induction on the length of ¢4. The next lemma will get us
through the successor step of that induction.

Lemma 3.2.15. Let S be a normal tree with last model P and T, T normal trees on P of
successor length. Let F' be an extender on the P-sequence and suppose that W(T,T,F) is
defined. Let o : M — MYET) be the associated embedding normalization map.

Let i largest such that W(W(S,T),W(S,T),o(F)) [ u+1 is well-founded and p* largest
such that W(S, W (T, T, F)) [ u* + 1 is well-founded.

Then = p* and

WW(S,T), WS, T),a(F)[u+1=WS,W(T,T,F))u+1.
Moreover, AWSDWED)0(F) s the lift of T T 18

Of course this implies that if W(W(S,T),W(S,T),o(F)) is well-founded, so is
W(S,W (T, T, F)), and vice-versa.

Proof. We will just assume all of the meta-trees are well-founded; it is straightforward
to check that we are below p on one side iff we are below p* on the other. We’ll prove
W(W(S, T),W(S,T),o(F)) =W(S,W(T,T,F)) by induction. To start, we need to name
all of the objects involved. )

Let = B(T,F), and a = a(T, F). Let W(S,T) = (T¢, Fe, ®¢), a¢ : M — ML the
embedding normalization map, W(S,T) = (T¢, Fe, D, ¢), and o¢ : MZ — MZ the embedding
normalization map. Note that ¢ = 04, the last of these maps, and o [ Ih(F) +1 = o, |
Ih(F) + 1. )

LetU = W(T,T,F)and ® = &7 7F. Sowe haveU [a+1 =T [a+1, 8 = U-pred(a+1),
u®(B) = a+ 1, and u® [ [8,1h(T)) is an order isomorphism and preserves tree-order strictly
above [3.

Let W(S,U) = (We, G, ¥, ) and e - MZ — MY the associated embedding normal-
ization map. Notice that for £ > 8, Wyey = W(S,W(T [ { + 1,7, F)) and for { < 3,
W) = We = Te. )

Let W* = W(W(S,T), W(S,T),0(F)) = (W¢,Gg, ;) and A - W(S,T) — W* be the
meta-tree embedding coming from the meta-tree embedding normalization. We have that
W(S,T) and T have the same tree-order, @ = a(W(S,T),0(F)), and 8 = b(W(S,T),o(F)).

18Recall that this just means that AV(ST)W(S,T)o(F) is the meta-tree embedding as in Theorem 3.2.5 for
v =T T.F

107



It follows that U2 = u®. We let u = U2 = 4®. We have that for §> 08, A = PTeTao(F)
and Wy ) = W (T¢, T, o(F)) and for £ < B8, u(€) =&, and Wi =We = Te. We also have,
by Proposition 3.2.4, that, at successors, A¢1; is a copy tree embedding associated to the
appropriate objects, which we’ll use later on.

Note that, sinced fa+1 =T [a+1, WS, T)a+1 =WSU)[a+1 It
follows that W* [u(a) +1 = W(S,U) [u(a) + 1, by the definition of the one-step meta-tree
embedding normalization. So we just need to show by induction on ¢ < 1h(7T) with £ > 3
that W* Tu(§) + 1 = W(S,U) [u(€) + 1.

We need an easy preliminary observation.

Claim 1. W* and W(S,U) have the same tree-order, <y.

Proof. We have that W(S,U) has the same tree-order as U, so we just need to see that W*
does, too.

U = W(T,T,F), sothat U | a+1 = T | a+ 1. We also have that W* =
W(W(S,T),W(S,T),o(F)), so that W* | a+1 = W(S,T) [ a«+ 1. Since W(S,T) has
the same tree-order as 7, we have that i/ and W* have the same tree-order up to a. We
also have 8 = U-pred(a + 1) = W*-pred(a + 1). If W(T,T, F) is in the droppin case, then
so is W*, and we're done. So suppose we’re not in the dropping case. Then it is enough to
see that W* and U assign the same tree-predecessors and make the same branch choices in
u” [.10(T)). ) ) _

Let € > B with £ +1 < Ih(T). Let n = T-pred(§ + 1). Since W (T, T, F) is defined and
& > 3, we get that

Since Fy = 5§(Eg), it follows that crit(Ez) > crit(F) iff crit(Fy) > crit(o(F)). So,
recalling how the one-step embedding normalization works, if crit(E]) > crit(F), then
u(n) = U-pred(u(é) + 1) = Wrpred(u(f) + 1) and if crit(EY) < crit(F), then n =
U-pred(u(§) + 1) = Wr-pred(u(§) + 1).

Now let A > /3 be a limit ordinal and suppose the tree-orders agree below u(A) = v(\) =

sup{u(n) | n < A}. Then [0,v(\))y and [0,v(A))w+ are both the common downwards closure
of v”[0, A)7, using here that [0, A\)7 = [0, A)w(s,7)- O

Now we’ll show the following by induction on &.
1) Wierr1 = W@+,
(ii) for all n such that n <y u(§), ¥yue) = V; 6. and
oy LA
(ili) toc' 0 G¢ = My(e) O t¢

Note that (ii) makes sense by our previous claim and (i) and (ii) suffice to get W* |
u(€) +1=W(S,U)[u(€)+ 1. (iii) will be important for seeing that, if they're defined, the
next meta-tree exit extenders are the same, i.e. GZ(g) = Gy(e)-
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Base case. ¢ = 0.

Recall that u(f) =a+landU[a+1=T [a+1,so WS, UTa+1) =W(S,T [a+1).
In particular, for n <7 & < a, We =T, U né = ®,¢, and T = 0¢. In particular, 7, (F) =
0o(F) = o(F). Recall also that T[8+1=T[8+1, so also W = T¢g and ¥, = ®, ¢ for
n <7 & < B. We also have 8 = U-pred(a + 1) and F = EY, so we get

Woi1 = W<W6>Waaﬂ'a(EZ))
== W(%?an—(F))

a+1-
This observation also gives us that Ag = Wj ., = Ws .41, since all of these tree embed-

dings are just ®757=7(F)  Since we have already established W* [ov + 1 = W(S,U) [a+1,
this is the only new 1nstance of (ii) we need to verify.
For (iii), we have that t? = i%’a +1, which is just the F' ultrapower embedding on (some

initial segment of) M T = M“ We need to recall how 7,41 is defined. First, since Ag =

W - -
U5 i1, t57 | factors as 1 o d °(°F 9 for o = gWeWamalF) = 575 7a:0(F) gnd, letting ¢ be the
copy map associated to (cra, g, F'), we have that m,11 = 1 o ¢. Since ¢ was the relevant
copy map,

MLP P

e (F) 08 = PO lg-
Applying 1 to both sides, we get

¢oz F)oag—zpogootg.

W
Since too =1o zM(F) and T,y = @ o1, we get

A _ o
tos 008 = TMat1 © Ly,

which is the relevant instance of (iii).
Here’s the commutative diagram illustrating the situation just discussed.

0'5 =
M

-
My
F 7o (F)

Ta+1

Wa
Mo

We now turn to the successor case.

19Here and elsewhere we are ignoring dropping, but this just requires working with initial segments of the
displayed models. Since this only occurs in the dropping case of the corresponding embedding normalization,
some of the displayed factors also end up being trivial. We leave the details to the reader.
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Successor case. ¢+ 1> f.

Suppose £ + 1 < 1h(7T), otherwise we're done. By our induction hypothesis (iii) at &,
tvo6 O O¢ = Ty(¢) © t?. We have Gye) = () © t?(EZ) and, since A is a meta-tree embedding
with U-map u, G}, ) = tos oﬁg(EZ). So Gue) = Gy (). Also note that u({+1) = u({) +1, as
¢ > . Let n* = U-pred(u(&) +1) = W*-pred(u(§) + 1), using our previous claim to get that
these predecessors are the same. We have that W,- = Wy. and W) = WZ(&) by induction
(or outright when these ordinals are below «), so that

Waeyr1 = WWoe, W), Gue))
=WV, Wae): Guge))

_ *
= Wie)+
and
AW WG
U iersr = OV W Guo
= Vo WG

= W u(e)1-

This gives (i) and the new instance of (ii). For (iii), let n = T-pred(¢ + 1). We’ll consider
subcases based on whether crit(E7 ) > crit(F).

Subcase (a). crit(E]) > crit(F).

In this case we have that n* = u(n). We need to recall how we get the maps 7¢y1 and
Tu(e)+1- Let g1 = o7 TeFe g0 that the last t-map of ®, ¢y factors as ¢¢ 1 composed with
an ultrapower of Fy = 65(EZ). Let ¢¢i1 be the copy map associated to (o, 7y, EVT) We
have that

Ogt1 = Yeg1 © et

Similarly, let ¢7 ., = VunWu© Yo g0 that the last t-map of Uomue)+1 factors as
Vo)1 composed with an ultrapower of GZ(@- Let o7 )41 be the copy map associated

to (Tu(e)s Tu(n), Eif(g)). We have that Tue)+1 = U541 ° Prge)sr- Also let ¢4 be the copy map

associated to (tvog, tan, F¢). We have the following diagram.
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Oc+1

- Pe+1 7= ¢£+1 7
M, Ult(MZ, Fy) M
B} ) Iy
M7 — MI
(2, (2 ~{ Tet1 i
u e
u(n) 7Tu(,7) MOO ’
Z/{ *
EE u(§)
Mifer . UM, Gr) M
Pue)+1 ¢u(é)+1

Te+1

We just need to see that the outer most square commutes. Using induction hypothesis
(ili) at n and &, we get that ¢4 o <,0§+1A: ©gi1 © tg’ﬂ, sinc? the left-hand side and the }right—
hand side are both the copy map to (tss o T, 57 o Ty, EZ) = (My(e) © t?, Tu(y) gt,?, E’g), by
Lemma 3.1.8. Since Agyq is the copy tree embedding associated to (Ag, A, Fg, G;(g)), we
have that the right square commutes, i.e. tvo“l O Yer1 = Piyg O Tt (this is just conclusion
(a) of the Shift Lemma). Combining these facts gives that the whole outer square commutes,
fe. toi o Ter1 = Mey1 O tgyy, which is (iii) at £ + 1. This finishes Subcase (a).

Subcase (b). crit(E{) < crit(F).

In this case n* = n < . Checking (iii) is similar to Subcase (a), except we must replace
t%’ and t57 with the identity on M;r and M2" (using that the last t-map of I';, is the identity,
since I'y, = Idg, ), respectively, and 7, with m, = &,. This new inner square commutes
trivially and the rest of the argument is the same. We leave the details to the reader.

This finishes Subcase (b) and the successor case. All that remains is the limit case.
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Limit case. ¢ > [ is a limit ordinal.
Since £ > 3, we have that u(§) = v(§) = sup{u(§) | £ < 7}. Since Y and W* have the

same tree-order, (i) and (ii) are immediate, as we new trees and tree embeddings come from
the same direct limit. For (iii), we have each of the maps &,, tvoE, t?, and 7 is the unique
map such that for all n € (8, £)7,%° the relevant trapezoid in the following diagram commute.

_ 0'5 _
M7 ME
e tcf)”h&

e _ e
_ o _
M7 M
A A
tg’ tf]) ol A
u o AW
Mu(ﬁ) WU(U) MOO
U ou(n),u(e)
u(n),
u Wa(e)
Mu(f) Tu(¢) Moo

For example, since M; 7 is the direct limit of the M, 7 under the i ¢ and Mo§ is the dlrect
limit of the MOJ under the too“ and o¢ ozT = too e o oy, for n <7 ¢ <7 &, o¢ : MT — M

is the unique map such that o¢ o il nE = tog’ “oa, forall n <7 &.

For any n <+ &, we have each of the trapezoids commute and the inner squares commute,
by our induction hypothesis (iii), so that the outer square commutes on points in the range
of 2 2775 Since every pomt in MT is in the range of z ¢ for some 1 <7 &, the whole outer

square commutes, i.e. 55 o O¢ = Ty(g) © tg. So (iii) holds at £. This finishes the limit case
and the induction. .
The “moreover” clause is immediate because u® = u?. [

We can now prove our associativity result.

Theorem 3.2.16. Let (S,T,U) be a stack of normal trees on M. Suppose W(S,T) is
well-founded and and let 0 = 057 . Let u greatest such that WOW(S,T), ol | u+ 1) and
WW(S, T), WW(S,T),cld | u+ 1)) are well-founded. Let u* greatest such that W(T ,U |
w4+ 1) and W(S, W (T ,Uu* + 1)) are well-founded. Then p = p* and

W(W(S, T), WS, T), ol [ 1t + 1)) = W(S, W(T, U i+ 1)).

20We're assuming for convenience that there is no dropping above 3. In general, we just need to look at
the tail of this branch above the last drop.
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Proof. The proof is by induction on the length of 4. We will assume p+1 = p*+1 = lh(U).
Inspecting the proof, it is easy to see that we are below p on one side iff we are below p* on
the other, as usual.

Let W(T,U) = (Ue, Fe, @) and 7¢ @ M — M the associated embedding normal-

ization maps. Let ¢ : MY — Mg be the copy maps, so oo = 0. Let 7§ : Mﬁ’f —
MY SN Be the embedding normalization maps of W(S,Us). Let WW (S, T),old) =

(We, Ge, W, ) and @ = MZH — MX% the embedding normalization map. Finally, let
W = W(W(S,T), W(W(S,T),oUd) | €+ 1) and, for n <y €, A7 : W7 — W¢ the
meta-tree embedding normalization meta-tree embeddings (using here that o/ has the
same tree-order as ). Since this is the meta-tree embedding normalization of the stack
(W(S,T),W(W(S,T),old) £ + 1), we have that W is the last tree of W¢.

We show by induction on & < 1h(Uf) that £ < p iff £ < p* and

(i) W& =W(S,U)
(i) peooe = s, o Te,
(iii) for n <y &, A€ is the lift of P, .

The base case is trivial since the two meta-trees are just W(S,7T) and ¢y = 7 = id and
o9 =72 =0, so (i) and (ii) hold. (iii) is trivial.

Lemma 3.2.15 will take us through the successor step. Suppose we have (i) and (ii) hold
for all { < &. Let n = U-pred(§ + 1). Then we also have that n = olf-pred(£ + 1), since
these trees have the same tree-order. So, since W(W (S, T), old) has the same tree-order as
oU, we have that

W = W(W? WE, Gy).

By our induction hypothesis (i) at n and £, we get
W = W(W(S,U,), W(S,U), Ge).
We have that G¢ = ¢¢ o Ug(Egj) so that induction hypothesis (ii) at £ gives
Ge =5, o 1e(EY') = m& (Fe).
Applying Lemma 3.2.15 (with T =U,,, T = U, F = Fy, and 0 = 7%,) gives
W = W(S, Ue ),

using here that Ueyy = W(U,,Ue, Fe). This gives (i) at £ + 1. For (ii), let 7" be the copy
map associated to (7¢, 7, Eé”), ©* the copy map associated to (¢¢, ¢, Egu), and 7* the copy

map associated to (75,7, F¢). We have the following diagram.
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Ter1

u T* u o Us:Fe Uers
MY, Ult(MY, F) MY
Tn
ML{ - Mgon
O¢+1 On T, * 7T§O+1
U 4%
Myt M
Egu K
ol W. Wei1
M£+1 (;0* Ult(Moon’ Gf) UWWW&G& MOO
Te+1

We just need to see that the outermost square commutes. Our induction hypothesis
(ii) at n and £ gives that ¢* o oy = 7* o 7%, since the left-hand side and right-hand side
maps are both the copy map associated to the same objects (using Lemma 3.1.8). So it

. v M
is enough to see that ¢"'m"™Ve%¢ o 1* = 737" o g“n™ee Now = g""nVete o

gh t that Wi, We,Ge * g:l Un Ug, Fe N 7 toonnyrl Wi, We,Ge ggoo ’
Ppe41 Uy U, F, ~Mouo" : U e41 41 Dy 1
to®" = oMot 04> | and the proof of Lemma 3.2.15 gives ¢t o 7wl = w3l o tes”

(the reader can check that this is an instance of clause (iii) of the inductive hypothesis in

that proof). It follows that o"V»Vele o 7* and 7! o gMnlefe agree on ran(i%in). So it
suffices to check that these maps agree on the sup of the generators of .

We have 7* [Th(F;) + 1 = 7§, [Th(F;) + 1, because it is a copy map, and crit(o?V»WeCe) >
MGe) = 75 (A(F)), so that o?VrWeCeon* | A\(Fy) = nS, [ A(F). We also have crit(o¥nHeFe) >
A(F:), so we just need to see that 75 [ A\(Fy) = 75 | M(Fg). Let ae = azw(T’u). We have
that U [ ag +1 = U1 [ag + 1. Tt follows that 75, = 75", Since either ag + 1 = lh(U) or
ag+1 < 1h(Ue) and 1h(F) < lh(Egg), the agreement properties of embedding normalization
maps gives that ng ITh(Fe)+1 = 75 [1h(F;)+1. Similarly, ngl Mh(Fe)+1 = 75! [h(Fe)+1,
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using here that F; = uﬁ“ So wS 1h(Fg) + 1 = 7§, [ 1Th(F) + 1, which is more agreement
than we needed. So the outer square commutes, i.e. Qg1 001 = 75 oTeyq. This is (ii) at
§+ 1.

For (iii), it suffices to show A7¢+! is the lift of ®, 11, since the other instances
of (iii) follow by induction. But this is immediate from Lemma 3.2.15 since Anétl —
AW(SUn)W(SUe).Ge  This finishes the successor step.

Finally, suppose we're at limit v < 1h(H/) and (i)-(iii) hold at all £ <. Let b = [0,7)y =
0, V)ors- Let D = ({Ueeep, {Pre po<yeer)® and D* be the lift of D to a directed system of
meta-trees. By our induction hypothesis (iii), we have that D* = ({W¢}¢g, {5”’5}n§u§€b>.
We have that U, = limD and W? = limD*, so Theorem 3.2.14 gives WY = W(S,U,),
U, = limy (U, @, ¢) and WY = lim, (W, &n,£>' So (i) holds. Since the u-threads of D are the
same as the U-threads of D*, we get that, for n < v, the u-map of the new direct limit tree
embedding ®, , is the same as the U-map of the new meta-tree embedding A" Tt follows
that A" is the lift of P, ., giving the new instances of (ii). It is straightforward to see that
(ii) holds at v because all of the relevant maps are direct limit maps, just like in the proof
of Lemma 3.2.15 that condition (iii) (of that proof) held in the limit case. This finishes the
induction.

]

Combining this result with Steel’s result that embedding normalization commutes with
copying, Theorem 3.1.34, will give our uniqueness result about embedding normalizations of
a stack of normal trees.

Theorem 3.2.17. Let S be a finite stack of normal trees. Suppose that S has an embedding
normalization, T. Then T is the unique embedding normalization of S and every putative
embedding normalization sequence for S is an embedding normalization sequence for S.

Proof. Before we start, let us just mention that the core of this proof is nothing more than
the fact that we can omit parentheses when expressing terms generated out of an associative
binary operation. We encourage the reader to convince themselves that this is all that is
needed, modulo the previous theorem and Theorem 3.1.34.

Let S be a stack of length n > 2 (the theorem is trivial for n < 2). Let <SO St 8
be an embedding normalization sequence for S with last stack (7). Let (77, .. Tm> be the
left-to-right putative embedding normalization sequence for S , that is, the unique sequence
such that for all i + 1 < m, Tt = OW(TE T " oi(T | (1,n — i), for o; the appropriate
embedding normalization map. Recalling notation from earlier, we have that Ti = <W(§ I
i+1))"0g, (5[ i +1,n—1)). Our first goal is to show the following.

Claim 1. <710, . ,7_Lm> is an embedding normalization sequence with final stack (T).

Proof. The idea is to iteratively use our associativity result, Theorem 3.2.16, to convert

(80,8, ..., 8" 1) into (T°,...,T™).

21We actually need to restrict to & above the last drop along b, but this causes no trouble, so we’ll ignore
it.
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We define embedding normalization sequences (S*°, 8", ... &1 and indices (k;, ;)
by recursion, maintaining that (7 is the last stack of (§0, &1, ... §tn—1),
First, we let
(8% 801 Sty = (80 St S,

Given (80,851 ... §im=1) we let j; be the largest j such that
St = SH k(W (S, Spl)) "oy (S 1 (k + 1,m — 5)),

for some k > 1, where o; the appropriate embedding normalization map, if such a j exists.
In this case, we also let k; be the witnessing k.

If no such j exists, then we stop. In this case we must have <f0, e ,71m> is an initial
segment of (§%0 &1 . &) It follows that have that they must be equal, since we
cannot have m < n — 1, as we do not reach an ill-founded model. Since (7) is the last stack
of (§%0, 81 ... 81 we're done.

Now suppose that j; and k; are defined. By our choice of j;, for any | < n — j;,
S’i,ji+l+1 _ <W(Séyji+l7Siyji+l)>f\o_ji+l (S’i,jﬂrl f(lyn — = l))
It follows that
SHHR = (W (S ki)™ gy, (WS, 820)) oy, (™1 (ks + 1m — i) .22
Let my = O giii, and 7y, Ty the resulting copy maps such that
o (S_‘”’ [[kiyn — jz)) = (WOS;;j,WlS,i’iﬂl)Aﬂg (5”’ Mk +1,n — ]Z))
Since normalizing commutes with copying, by Theorem 3.1.34, we get
mW (S, 8¢ty) = W(moSy™, mS7iy),

and actually, letting o = aﬂos’iji’ms’iﬁl,
To((W(S, SN 05 (8™ (kit1,n—3:))) = (W (moSy”, mSy) " oomy (8™ | (kit+1,n—jj)).
So we get

SHHEEL = (W(W (S Thy), W (moSpP, mSyi ) "o 0 0 0 ma (8™ 1 (ks + 1,m — j;)).

By Theorem 3.2.16,

W(W(S™ 1), W (w08, mSi2y) = W(W(W(S™ T hy), w087 ), 7o m Syt
= W(S¥i [k +2),

22Recall that for a stack S, W (S) is the (putative) normal tree obtained by iteratively embedding normal-
izing from left-to-right and o4 is the resulting embedding normalization map.
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W (Shdifk;),mo ST
where 1 = " (8" ki) moSy

that for any [ > k; + 1,

. Theorem 3.2.16 also gives that Ogiiip, 42 = Ok; © 0 O Ta. It follows

i+2

SHIH = (W(S™ [T+ 1)) guier (S 11+ 1,n — ji)).

In particular, our induction hypothesis gives that 7 = W (S%) and so W (S"¥ 1) is well-
founded for all I <n — j;.
We now define (S0 ... SLr=1) ag follows.

e for p < jia §i+1,p = 5@‘,177
o for p > j;, ST = (W(Si [ (p — ji) + 1)>A0-§iaji[(p—ji)+1(‘§i7ji '[(p— i) + 1,n — ji)).

By our above observations, this is an embedding normalization sequence with last stack
(T), as desired.

Now, it is easy to see that the j; must be strictly decreasing, so that at some stage i, j;
is undefined and (7°,...,7™) = (S0, il . Sin-1y, O

In particular, it follows that n = m + 1.

To finish, we just need to show that any putative embedding normalization sequence for
S is actually an embedding normalization sequence and has last stack (7). So suppose that
(L?O, e ,L7P> is a putative embedding normalization sequence.

Claim 2. <ﬁ0, . ,Zj@ is an embedding normalization sequence with final stack (T).

Proof. The proof is basically the same as that of the last claim. We define putative embed-
ding normalization sequences (S*°, ... §*P) by recursion, maintaining that S = /7. We’'ll
stop when we reach an i such that (7°,..., 7" 1) = (§i0, Sl Sin=1) Since (T) is the
last stack of T°,..., 71}, this gives the claim.

To start, we let (S%0 ... 8%) = @ ..., U4"). Given (S0, .. S") we define
(SHL0 . §HLP) just as we did in the proof of Claim 1. Similarly to that proof, this
must terminate at some i such (7°,... 7" 1) = (§40 Sl . §in=1) ag desired. O

]

We get the following theorem is an easy corollary.

Theorem 3.2.18. Let M be a premouse, 0 a reqular cardinal, and ¥ an (w, 0)-strategy on
M which has SHC™ and bottom-up normalizes well. Then all tails of ¥ bottom-up normalize
well.

Proof. Fix S a stack on M by ¥ of length n and T a stack on MOS; by Y& ,,s of length
m. Since ¥ bottom-up normalizes well, W(‘STAT') is by ¥. In particular, W(S_’“T‘) is an
embedding normalization of S™7 (as witnessed by the left-to-right embedding normalization

sequence). Now consider the putative embedding normalization sequence (507 o ,5”) such
that for ¢ < p,
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eifi<m, S =8 (W(T i+ 1)>A0'ﬁi+1(71”i +1,m)),

— — -

o ifi>m, S =(W(SI(i+1- M) " 056541y (S T+ 1 —=m,n)~(W(T))),

where we stop building the trees in the displayed stacks if we reach an ill-founded model. By
Theorem 3.2.17, (8%, ..., SP) is actually an embedding normalization sequence, so we never
actually reach an ill-founded model, p +1 = n + m, and S = (W(S™T)). Since we never

—, — —

reach ill-founded models, this gives that W(W(S),ocsW (T)) = W(S™T). It follows that

- — —

W(W(S)),osW(T) is by X, so that W(T) is by g s, as desired. O

In earlier versions of [21], one version of Steel’s notion of mouse pair was a pair (P, )
such that ¥ is an (w, wy )-strategy for P and all tails of ¥ bottom-up normalize well and have
SHC™, in our terminology. Theorems 3.2.6 and 3.2.18 reveal that this is equivalent to the
ostensible weakening that > itself has SHC™ and bottom-up normalizes well.

Steel revised the notion of mouse pair from earlier versions of [21] to the final version which
appears in [25]. These modifications, including leaving ordinary Jensen-indexed premice for
the modified pfs-premice, are used to secure the central comparison theorem for mouse pairs
in [25]. The work in this chapter shows that one can get pretty far working with pairs of the
form (P, %), for ¥ is an (w, wy )-strategy for P and all tails of ¥ bottom-up normalize well and
have SHC™. We believe that one should be able to further develop the theory of pairs (P, ¥) of
this form, including proving a comparison theorem for these pairs (i.e. a strategy comparison
theorem). One route to such a theorem would be to rely on Steel’s mouse pair comparison
theorem from [24] and attempt to translate between mouse pairs in the above sense and
mouse pairs in the sense of [24]—this involves translating between the ordinary Jensen-
indexed premice and pfs-premice, as well as between the corresponding strategies. Another
route would be to try to modify Steel’s proof to obtain a direct comparison theorem for these
mouse pairs. Steel has made progress on this front. Modulo a direct comparison theorem of
this form, we believe we can recover many other nice properties of mouse pairs. For example,
we think we see how to prove that > moves itself correctly, which suffices for Dodd-Jensen
and, ultimately, very strong hull condensation. Very strong hull condensation suffices for full
normalization and, consequently, positionality, but also can be used to show that the s-maps
of (weak) tree embeddings are mouse pair elementary via direct combinatorial arguments,
similar to those in this chapter.
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